WorldWideScience

Sample records for thermal storage materials

  1. Microwavable thermal energy storage material

    Science.gov (United States)

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  2. Local Thermal Insulating Materials For Thermal Energy Storage ...

    African Journals Online (AJOL)

    Thermal insulation is one of the most important components of a thermal energy storage system. In this paper the thermal properties of selected potential local materials which can be used for high temperature insulation are presented. Thermal properties of seven different samples were measured. Samples consisted of: ...

  3. Thermal energy storage based on cementitious materials: A review

    Directory of Open Access Journals (Sweden)

    Khadim Ndiaye

    2018-01-01

    Full Text Available Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Many heat storage materials can be used in the building sector in order to avoid the phase shift between solar radiation and thermal energy demand. However, the use of storage material in the building sector is hampered by problems of investment cost, space requirements, mechanical performance, material stability, and high storage temperature. Cementitious material is increasingly being used as a heat storage material thanks to its low price, mechanical performance and low storage temperature (generally lower than 100 °C. In addition, cementitious materials for heat storage have the prominent advantage of being easy to incorporate into the building landscape as self-supporting structures or even supporting structures (walls, floor, etc.. Concrete solutions for thermal energy storage are usually based on sensible heat transfer and thermal inertia. Phase Change Materials (PCM incorporated in concrete wall have been widely investigated in the aim of improving building energy performance. Cementitious material with high ettringite content stores heat by a combination of physical (adsorption and chemical (chemical reaction processes usable in both the short (daily, weekly and long (seasonal term. Ettringite materials have the advantage of high energy storage density at low temperature (around 60 °C. The encouraging experimental results in the literature on heat storage using cementitious materials suggest that they could be attractive in a number of applications. This paper summarizes the investigation and analysis of the available thermal energy storage systems using cementitious materials for use in various applications.

  4. Phase Change Materials for Thermal Energy Storage

    OpenAIRE

    Stiebra, L; Cabulis, U; Knite, M

    2014-01-01

    Phase change materials (PCMs) for thermal energy storage (TES) have become an important subject of research in recent years. Using PCMs for thermal energy storage provides a solution to increase the efficiency of the storage and use of energy in many domestic and industrial sectors. Phase change TES systems offer a number of advantages over other systems (e.g. chemical storage systems): particularly small temperature distance between the storage and retrieval cycles, small unit sizes and lo...

  5. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  6. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  7. Heat transfer and thermal storage performance of an open thermosyphon type thermal storage unit with tubular phase change material canisters

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Hu, Bo-Wen; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel open heat pipe thermal storage unit is design to improve its performance. • Mechanism of its operation is phase-change heat transfer. • Tubular canisters with phase change material were placed in thermal storage unit. • Experiment and analysis are carried out to investigate its operation properties. - Abstract: A novel open thermosyphon-type thermal storage unit is presented to improve design and performance of heat pipe type thermal storage unit. In the present study, tubular canisters filled with a solid–liquid phase change material are vertically placed in the middle of the thermal storage unit. The phase change material melts at 100 °C. Water is presented as the phase-change heat transfer medium of the thermal storage unit. The tubular canister is wrapped tightly with a layer of stainless steel mesh to increase the surface wettability. The heat transfer mechanism of charging/discharging is similar to that of the thermosyphon. Heat transfer between the heat resource or cold resource and the phase change material in this device occurs in the form of a cyclic phase change of the heat-transfer medium, which occurs on the surface of the copper tubes and has an extremely high heat-transfer coefficient. A series of experiments and theoretical analyses are carried out to investigate the properties of the thermal storage unit, including power distribution, start-up performance, and temperature difference between the phase change material and the surrounding vapor. The results show that the whole system has excellent heat-storage/heat-release performance

  8. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  9. Selection of materials with potential in sensible thermal energy storage

    International Nuclear Information System (INIS)

    Fernandez, A.I.; Martinez, M.; Segarra, M.; Martorell, I.; Cabeza, L.F.

    2010-01-01

    Thermal energy storage is a technology under investigation since the early 1970s. Since then, numerous new applications have been found and much work has been done to bring this technology to the market. Nevertheless, the materials used either for latent or for sensible storage were mostly investigated 30 years ago, and the research has lead to improvement in their performance under different conditions of applications. In those years a significant number of new materials were developed in many fields other than storage and energy, but a great effort to characterize and classify these materials was done. Taking into account the fact that thousands of materials are known and a large number of new materials are developed every year, the authors use the methodology for materials selection developed by Prof. Ashby to give an overview of other materials suitable to be used in thermal energy storage. Sensible heat storage at temperatures between 150 and 200 C is defined as a case study and two different scenarios were considered: long term sensible heat storage and short term sensible heat storage. (author)

  10. Composite materials for thermal energy storage: enhancing performance through microstructures.

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermal Energy Storage with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lavinia Gabriela SOCACIU

    2012-08-01

    Full Text Available Thermal energy storage (TES systems provide several alternatives for efficient energy use and conservation. Phase change materials (PCMs for TES are materials supplying thermal regulation at particular phase change temperatures by absorbing and emitting the heat of the medium. TES in general and PCMs in particular, have been a main topic in research for the last 30 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. PCMs possesses the ability of latent thermal energy change their state with a certain temperature. PCMs for TES are generally solid-liquid phase change materials and therefore they need encapsulation. TES systems using PCMs as a storage medium offers advantages such as high TES capacity, small unit size and isothermal behaviour during charging and discharging when compared to the sensible TES.

  12. Optically-controlled long-term storage and release of thermal energy in phase-change materials.

    Science.gov (United States)

    Han, Grace G D; Li, Huashan; Grossman, Jeffrey C

    2017-11-13

    Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid-solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive goal. Herein, we report a combination of photo-switching dopants and organic phase-change materials as a way to introduce an activation energy barrier for phase-change materials solidification and to conserve thermal energy in the materials, allowing them to be triggered optically to release their stored latent heat. This approach enables the retention of thermal energy (about 200 J g -1 ) in the materials for at least 10 h at temperatures lower than the original crystallization point, unlocking opportunities for portable thermal energy storage systems.

  13. Improved thermal storage material for portable life support systems

    Science.gov (United States)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  14. Aluminum and silicon based phase change materials for high capacity thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Zhengyun; Wang, Hui; Li, Xiaobo; Wang, Dezhi; Zhang, Qinyong; Chen, Gang; Ren, Zhifeng

    2015-01-01

    Six compositions of aluminum (Al) and silicon (Si) based materials: 87.8Al-12.2Si, 80Al–20Si, 70Al–30Si, 60Al–40Si, 45Al–40Si–15Fe, and 17Al–53Si–30Ni (atomic ratio), were investigated for potentially high thermal energy storage (TES) application from medium to high temperatures (550–1200 °C) through solid–liquid phase change. Thermal properties such as melting point, latent heat, specific heat, thermal diffusivity and thermal conductivity were investigated by differential scanning calorimetry and laser flash apparatus. The results reveal that the thermal storage capacity of the Al–Si materials increases with increasing Si concentration. The melting point and latent heat of 45Al–40Si–15Fe and 17Al–53Si–30Ni are ∼869 °C and ∼562 J g −1 , and ∼1079 °C and ∼960 J g −1 , respectively. The measured thermal conductivity of Al–Si binary materials depend on Si concentration and is higher than 80 W m −1  K −1 from room temperature to 500 °C, which is almost two orders of magnitude higher than those of salts that are commonly used phase change material for thermal energy storage. - Highlights: • Six kinds of materials were investigated for thermal energy storage (550–1200 °C). • Partial melting of Al–Si materials show progressively changing temperatures. • Studied materials can be used in three different working temperature ranges. • Materials are potentially good candidates for thermal energy storage applications.

  15. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, D. K.; Burrows, R. W.; Shinton, Y. D.

    1985-01-01

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations are discussed. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  16. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  17. Optically-controlled long-term storage and release of thermal energy in phase-change materials

    OpenAIRE

    Han, Grace G. D.; Li, Huashan; Grossman, Jeffrey C.

    2017-01-01

    Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid–solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive ...

  18. Do encapsulated heat storage materials really retain their original thermal properties?

    Science.gov (United States)

    Chaiyasat, Preeyaporn; Noppalit, Sayrung; Okubo, Masayoshi; Chaiyasat, Amorn

    2015-01-14

    The encapsulation of Rubitherm®27 (RT27), which is one of the most common commercially supplied heat storage materials, by polystyrene (PS), polydivinyl benzene (PDVB) and polymethyl methacrylate (PMMA) was carried out using conventional radical microsuspension polymerization. The products were purified to remove free RT27 and free polymer particles without RT27. In the cases of PS and PDVB microcapsules, the latent heats of melting and crystallization for RT27 ( and , J/g-RT27) were clearly decreased by the encapsulation. On the other hand, those of the PMMA microcapsules were the same as pure RT27. A supercooling phenomenon was observed not only for PS and PDVB but also for the PMMA microcapsules. These results indicate that the thermal properties of the heat storage materials encapsulated depend on the type of polymer shells, i.e., encapsulation by polymer shell changes the thermal properties of RT27. This is quite different from the idea of other groups in the world, in which they discussed the thermal properties based on the ΔHm and ΔHc values expressed in J/g-capsule, assuming that the thermal properties of the heat storage materials are not changed by the encapsulation. Hereafter, this report should raise an alarm concerning the "wrong" common knowledge behind developing the encapsulation technology of heat storage materials.

  19. Rapid charging of thermal energy storage materials through plasmonic heating.

    Science.gov (United States)

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-09-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.

  20. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-01-15

    This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 C and crystallizes at 40.6 C. It has latent heats of 54.6 and -48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications. (author)

  1. Study on paraffin/expanded graphite composite phase change thermal energy storage material

    International Nuclear Information System (INIS)

    Zhang Zhengguo; Fang Xiaoming

    2006-01-01

    A paraffin/expanded graphite composite phase change thermal energy storage material was prepared by absorbing the paraffin into an expanded graphite that has an excellent absorbability. In such a composite, the paraffin serves as a latent heat storage material and the expanded graphite acts as the supporting material, which prevents leakage of the melted paraffin from its porous structure due to the capillary and surface tension forces. The inherent structure of the expanded graphite did not change in the composite material. The solid-liquid phase change temperature of the composite PCM was the same as that of the paraffin, and the latent heat of the paraffin/expanded graphite composite material was equivalent to the calculated value based on the mass ratio of the paraffin in the composite. The heat transfer rate of the paraffin/expanded graphite composite was obviously higher than that of the paraffin due to the combination with the expanded graphite that had a high thermal conductivity. The prepared paraffin/expanded graphite composite phase change material had a large thermal storage capacity and improved thermal conductivity and did not experience liquid leakage during its solid-liquid phase change

  2. High-temperature thermal storage systems for advanced solar receivers materials selections

    Science.gov (United States)

    Wilson, D. F.; Devan, J. H.; Howell, M.

    1990-01-01

    Advanced space power systems that use solar energy and Brayton or Stirling heat engines require thermal energy storage (TES) systems to operate continuously through periods of shade. The receiver storage units, key elements in both Brayton and Stirling systems, are designed to use the latent heat of fusion of phase-change materials (PCMs). The power systems under current consideration for near-future National Aeronautics and Space Administration space missions require working fluid temperatures in the 1100 to 1400 K range. The PCMs under current investigation that gave liquid temperatures within this range are the fluoride family of salts. However, these salts have low thermal conductivity, which causes large temperature gradients in the storage systems. Improvements can be obtained, however, with the use of thermal conductivity enhancements or metallic PCMs. In fact, if suitable containment materials can be found, the use of metallic PCMs would virtually eliminate the orbit associated temperature variations in TES systems. The high thermal conductivity and generally low volume change on melting of germanium and alloys based on silicon make them attractive for storage of thermal energy in space power systems. An approach to solving the containment problem, involving both chemical and physical compatibility, preparation of NiSi/NiSi2, and initial results for containment of germanium and NiSi/NiSi2, are presented.

  3. New materials for thermal energy storage in concentrated solar power plants

    Science.gov (United States)

    Guerreiro, Luis; Collares-Pereira, Manuel

    2016-05-01

    Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.

  4. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2014-01-01

    Highlights: • Classification of phase change materials. • Studies on phase change properties of various phase change materials. • Influence of nanomaterials on properties of phase change materials. - Abstract: Thermal energy storage system plays a critical role in developing an efficient solar energy device. As far as solar thermal devices are concerned, there is always a mismatch between supply and demand due to intermittent and unpredictable nature of solar radiation. A well designed thermal energy storage system is capable to alleviate this demerit by providing a constant energy delivery to the load. Many research works is being carried out to determine the suitability of thermal energy storage system to integrate with solar thermal gadgets. This review paper summarizes the numerous investigations on latent heat thermal energy storage using phase change materials (PCM) and its classification, properties, selection criteria, potential research areas and studies involved to analyze the thermal–physical properties of PCM

  5. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Sari, Hayati; Oenal, Adem

    2004-01-01

    The present study deals with two subjects. The first one is to determine the thermal properties of lauric acid (LA)-stearic acid (SA), myristic acid (MA)-palmitic acid (PA) and palmitic acid (PA)-stearic acid (SA) eutectic mixtures as latent heat storage material. The properties were measured by the differential scanning calorimetry (DSC) analysis technique. The second one is to study the thermal reliability of these materials in view of the change in their melting temperatures and latent heats of fusion with respect to repeated thermal cycles. For this aim, the eutectic mixtures were subjected to 360 repeated melt/freeze cycles, and their thermal properties were measured after 0, 90,180 and 360 thermal cycles by the technique of DSC analysis. The DSC thermal analysis results show that the binary systems of LA-SA in the ratio of 75.5:24.5 wt.%, MA-PA in the ratio of 58:42 wt.% and PA-SA in the ratio of 64.2:35.8 wt.% form eutectic mixtures with melting temperatures of 37.0, 42.60 and 52.30 deg. C and with latent heats of fusion of 182.7, 169.7 and 181.7 J g -1 , respectively. These thermal properties make them possible for heat storage in passive solar heating applications with respect to climate conditions. The accelerated thermal cycle tests indicate that the changes in the melting temperatures and latent heats of fusion of the studied eutectic mixtures are not regular with increasing number of thermal cycles. However, these materials, latent heat energy storage materials, have good thermal reliability in terms of the change in their thermal properties with respect to thermal cycling for about a one year utility period

  6. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  7. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Silakhori, Mahyar; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Baradaran, Saeid; Naghavi, Mohammad Sajad

    2014-01-01

    Highlights: • A novel phase change composite of palmitic acid–polypyrrole(PA–PPy) was fabricated. • Thermal properties of PA–PPy are characterized in different mass ratios of PA–PPy. • Thermal cycling test showed that form stable PCM had a favorable thermal reliability. - Abstract: In this study a novel palmitic acid (PA)/polypyrrole (PPy) form-stable PCMs were readily prepared by in situ polymerization method. PA was used as thermal energy storage material and PPy was operated as supporting material. Form-stable PCMs were investigated by SEM (scanning electron microscopy) and FTIR (Fourier transform infrared spectrometer) analysis that illustrated PA Particles were wrapped by PPy particles. XRD (X-ray diffractometer) was used for crystalline phase of PA/PPy composites. Thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) were used for investigating Thermal stability and thermal energy storage properties of prepared form-stable PCMs. According to the obtained results the form stable PCMs exhibited favorable thermal stability in terms of their phase change temperature. The form-stable PCMs (79.9 wt% loading of PA) were considered as the highest loading PCM with desirable latent heat storage of 166.3 J/g and good thermal stability. Accelerated thermal cycling tests also showed that form stable PCM had an acceptable thermal reliability. As a consequence of acceptable thermal properties, thermal stability and chemical stability, we can consider the new kind of form stable PCMs for low temperature solar thermal energy storage applications

  8. Microencapsulated n-octacosane as phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-10-15

    This study deals with preparation and characterization of polymethylmetracrylate (PMMA) microcapsules containing n-octacosane as phase change material for thermal energy storage. The surface morphology, particle size and particle size distribution (PSD) were studied by scanning electron microscopy (SEM). The chemical characterization of PMMA/octacosane microcapsules was made by FT-IR spectroscopy method. Thermal properties and thermal stability of microencapsulated octacosane were determined using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The melting and freezing temperatures and the latent heats of the microencapsulated octacosane as PCM were measured as 50.6 and 53.2 C, 86.4 and -88.5 J/g, respectively, by DSC analysis. TGA analysis indicated that the microencapsulated octacosane degrade in two steps and had good chemical stability. Thermal cycling test shows that the microcapsules have good thermal reliability with respect to the accelerated thermal cycling. Based on the results, it can be considered that the microencapsulated octacosane have good energy storage potential. (author)

  9. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  10. Phase change material thermal storage for biofuel preheating in micro trigeneration application: A numerical study

    International Nuclear Information System (INIS)

    Wu, Dawei; Chen, Junlong; Roskilly, Anthony P.

    2015-01-01

    Highlights: • Engine exhaust heat driven phase change material thermal storage. • Fuel preheating for direct use of straight plant oil on diesel engine. • CFD aided design of the phase change material thermal storage. • Melting and solidification model considering natural convection. - Abstract: A biofuel micro trigeneration prototype has been developed to utilise local energy crop oils as fuel in rural areas and developing countries. Straight plant oils (SPOs) only leave behind very little carbon footprint during its simply production process compared to commercial biodiesels in refineries, but the high viscosity of SPOs causes difficulties at engine cold starts, which further results in poor fuel atomisation, compromised engine performance and fast engine deterioration. In this study, a phase change material (PCM) thermal storage is designed to recover and store engine exhaust heat to preheat SPOs at cold starts. High temperature commercial paraffin is selected as the PCM to meet the optimal preheating temperature range of 70–90 °C, in terms of the SPO property study. A numerical model of the PCM thermal storage is developed and validated by references. The PCM melting and solidification processes with the consideration of natural convection in liquid zone are simulated in ANSYS-FLUENT to verify the feasibility of the PCM thermal storage as a part of the self-contained biofuel micro trigeneration prototype

  11. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage

    International Nuclear Information System (INIS)

    Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C.

    2015-01-01

    Highlights: • Review of organic phase change materials for thermal energy storage. • Review of the eutectic mixtures of organic PCMs. • Review of the techniques of PCM encapsulations and enhancing the thermal conductivity. • Applications of low and medium temperature organic PCMs are listed in detail. • Recommendations are made for future applications of organic PCMs. - Abstract: Thermal energy storage as sensible or latent heat is an efficient way to conserve the waste heat and excess energy available such as solar radiation. Storage of latent heat using organic phase change materials (PCMs) offers greater energy storage density over a marginal melting and freezing temperature difference in comparison to inorganic materials. These favorable characteristics of organic PCMs make them suitable in a wide range of applications. These materials and their eutectic mixtures have been successfully tested and implemented in many domestic and commercial applications such as, building, electronic devices, refrigeration and air-conditioning, solar air/water heating, textiles, automobiles, food, and space industries. This review focuses on three aspects: the materials, encapsulation and applications of organic PCMs, and provides an insight on the recent developments in applications of these materials. Organic PCMs have inherent characteristic of low thermal conductivity (0.15–0.35 W/m K), hence, a larger surface area is required to enhance the heat transfer rate. Therefore, attention is also given to the thermal conductivity enhancement of the materials, which helps to keep the area of the system to a minimum. Besides, various available techniques for material characterization have also been discussed. It has been found that a wide range of the applications of organic PCMs in buildings and other low and medium temperature solar energy applications are in abundant use but these materials are not yet popular among space applications and virtual data storage media. In

  12. Maximizing the energy storage performance of phase change thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Amin, N.A.M.; Bruno, F.; Belusko, M. [South Australia Univ., Mawson Lakes, South Australia (Australia). Inst. for Sustainable Systems and Technologies

    2009-07-01

    The demand for electricity in South Australia is highly influenced by the need for refrigeration and air-conditioning. An extensive literature review has been conducted on the use of phase change materials (PCMs) in thermal storage systems. PCMs use latent heat at the solid-liquid phase transition point to store thermal energy. They are considered to be useful as a thermal energy storage (TES) material because they can provide much higher energy storage densities compared to conventional sensible thermal storage materials. This paper reviewed the main disadvantages of using PCMs for energy storage, such as low heat transfer, super cooling and system design issues. Other issues with PCMs include incongruence and corrosion of heat exchanger surfaces. The authors suggested that in order to address these problems, future research should focus on maximizing heat transfer by optimizing the configuration of the encapsulation through a parametric analysis using a PCM numerical model. The effective conductivity in encapsulated PCMs in a latent heat thermal energy storage (LHTES) system can also be increased by using conductors in the encapsulation that have high thermal conductivity. 47 refs., 1 tab., 1 fig.

  13. Thermal analysis of the drywell for the Nuclear Material Storage Facility

    International Nuclear Information System (INIS)

    Steinke, R.G.

    1997-01-01

    The Nuclear Materials Storage Facility Renovation Project has a conceptual design for the facility to store nuclear materials in containers inside drywells with passive cooling for long-term storage. The CFX thermal-hydraulic computer program was used to analyze internal heat-transfer processes by conduction, convection, and radiation with natural circulation of air by hydraulic buoyancy with turbulence and thermal stratification (TS) evaluated. A vertical drywell was modeled with 14 containers on support plates at 12-in. intervals. The TS of bay air outside the drywell increased the container maximum temperature by 0.728 F for each 1.0 F of bay-air TS from the bottom to the top of the drywell. The drywell outer-surface peak heat flux was shifted downward because of the effect of bay-air TS. An equivalent model was evaluated by the nodal-network conduction, convection, and radiation heat-transfer computer program (Thermal System Analysis Program) TSAP. The TSAP results are in good agreement with the CFX-model results, with the difference in results understood based on the approximations of each model

  14. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  15. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage

    International Nuclear Information System (INIS)

    Xiao, X.; Zhang, P.; Li, M.

    2013-01-01

    Highlights: • The addition of expanded graphite improved apparent thermal conductivity significantly. • The quadratic parallel model was used to predict the effective thermal conductivity. • The melting/freezing temperatures of mixture PCMs shifted slightly with adding of EG. - Abstract: Solar energy storage has become more attractive in recent years. In particular, latent thermal energy storage (LTES) with large energy storage density and isothermal heat storage/retrieval characteristics is a hot research topic. In the present study, sodium nitrate, potassium nitrate and their mixture were used as the base materials, and expanded graphite (EG) with high thermal conductivity and thermo-chemical stability was used as an additive to enhance the thermal conductivity. EG with various mass fractions was added to the base materials to form mixture phase change materials (PCMs), and the thermal characteristics of the mixtures were studied extensively. The transient hot-wire tests showed that the addition of EG enhanced the apparent thermal conductivity significantly, e.g. the apparent thermal conductivity of the nitrates/10 wt.% EG mixture PCM was increased by about 30–40%. The test results showed good agreement with theoretical calculations of the quadratic parallel model. Tests with differential scanning calorimeter (DSC) revealed that the melting/freezing temperatures of the mixture PCMs shifted slightly, compared with those of pure nitrates

  16. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    Science.gov (United States)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.

  17. Experimental Study on Melting and Solidification of Phase Change Material Thermal Storage

    Science.gov (United States)

    Ambarita, H.; Abdullah, I.; Siregar, C. A.; Siregar, R. E. T.; Ronowikarto, A. D.

    2017-03-01

    Melting and solidification process of Phase Change Materials (PCMs) are investigated experimentally. The tested PCMs are Paraffin wax and Steric acid which typically used for solar water heater. The objective is to explore the characteristics of the PCM when it is being melted and solidified. The experiments are performed in a glass box. One side of the box wall is heated while the opposite wall is kept constant and other walls are insulated. Temperature of the heated wall are kept constant at 80°C, 85°C, and 90°C, respectively. Every experiment is carried out for 600 minutes. Temperatures are recorded and the melting and solidification processes are pictured by using camera. The results show that the melting process starts from the upper part of the thermal storage. In the solidification process, it starts from the lower part of the thermal storage. As a thermal energy storage, Paraffin wax is better than Steric acid. This is because Paraffin wax can store more energy. At heat source temperature of 90°C, thermal energy stored by Paraffin wax and Stearic acid is 61.84 kJ and 57.39 kJ, respectively. Thus it is better to used Paraffin wax in the solar water heater as thermal energy storage.

  18. Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials

    OpenAIRE

    Gutiérrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez Aseguinolaza, Javier; Barreneche Güerisoli, Camila; Calvet, Nicolas; Py, Xavier; Fernández Renna, Ana Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-01-01

    Today, one of the biggest challenges our society must face is the satisfactory supply, dispatchability and management of the energy. Thermal Energy Storage (TES) has been identified as a breakthrough concept in industrial heat recovery applications and development of renewable technologies such as concentrated solar power (CSP) plants or compressed air energy storage (CAES). A wide variety of potential heat storage materials has been identified depending on the implemented TES method: sensibl...

  19. Influence of accelerated thermal charging and discharging cycles on thermo-physical properties of organic phase change materials for solar thermal energy storage applications

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2015-01-01

    Highlights: • Identification of organic phase change materials namely benzamide and sebacic acid. • Thermal reliability studies on identified phase change materials. • Measurement of phase transition temperature and latent heat of fusion. • Analysis of relative percentage difference (RPD%) in heat of fusion and melting temperature of benzamide and sebacic acid. - Abstract: Integration of appropriate thermal energy storage system plays a predominant role in upgrading the efficiency of solar thermal energy devices by reducing the incongruity between energy supply and demand. Latent heat thermal energy storage based on phase change materials (PCM) is found to be the most efficient and prospective method for storage of solar thermal energy. Ensuring the thermal reliability of PCM through large number of charging (melting) and discharging (solidification) cycles is a primary prerequisite to determine the suitability of PCM for a specific thermal energy storage applications. The present study explains the experimental analysis carried out on two PCM’s namely benzamide and sebacic acid to check the compatibility of the material in solar thermal energy storage applications. The selected materials were subjected to one thousand accelerated melting and solidification cycles in order to investigate the percentage of variation at different stages on latent heat of fusion, phase transition temperature, onset and peak melting temperature. Differential Scanning Calorimeter (DSC) was used to determine the phase transition temperature and heat of fusion upon completion of every 100 thermal cycles and continued up to 1000 cycles. Relative Percentage Difference (RPD%) is calculated to find out the absolute deviation of melting temperature and latent heat of fusion with respect to zeroth cycle. The experimental study recorded a melting temperatures of benzamide and sebacic acid as 125.09 °C and 135.92 °C with latent heat of fusion of 285.1 (J/g) and 374.4 (J/g). The

  20. Dimethyl terephthalate (DMT) as a candidate phase change material for high temperature thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuecuekaltun, Engin [Advansa Sasa Polyester San, A.S., Adana (Turkey); Paksoy, Halime; Bilgin, Ramazan; Yuecebilgic, Guezide [Cukurova Univ., Adana (Turkey). Chemistry Dept.; Evliya, Hunay [Cukurova Univ., Adana (Turkey). Center for Environmental Research

    2010-07-01

    Thermal energy storage at elevated temperatures, particularly in the range of 120-250 C is of interest with a significant potential for industrial applications that use process steam at low or intermediate pressures. At given temperature range there are few studies on thermal energy storage materials and most of them are dedicated to sensible heat. In this study, Dimethyl Terephthalate - DMT (CAS No: 120-61-6) is investigated as a candidate phase change material (PCM) for high temperature thermal energy storage. DMT is a monomer commonly used in Polyethylene terephtalate industry and has reasonable cost and availability. The Differential Scanning Calorimetry (DSC) analysis and heating cooling curves show that DMT melts at 140-146 C within a narrow window. Supercooling that was detected in DSC results was not observed in the cooling curve measurements made with a larger sample. With a latent heat of 193 J/g, DMT is a candidate PCM for high temperature storage. Potential limitations such as, low thermal conductivity and sublimation needs further investigation. (orig.)

  1. Development of thermal energy storage materials for biomedical applications.

    Science.gov (United States)

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits.

  2. Experimental analysis of a low cost phase change material emulsion for its use as thermal storage system

    International Nuclear Information System (INIS)

    Delgado, Mónica; Lázaro, Ana; Mazo, Javier; Peñalosa, Conchita; Dolado, Pablo; Zalba, Belén

    2015-01-01

    Highlights: • A low cost PCM emulsion has been analyzed as thermal energy storage system. • Its thermophysical and rheological properties have been determined. • The system shows advantages in terms of energy density and heat transfer rate. • The PCM emulsion system has been compared to other thermal energy storage systems. - Abstract: A 46 l commercial tank with a helical coil heat exchanger and containing a low cost phase change material emulsion has been experimentally analyzed as a thermal energy storage system in terms of volumetric energy density and heat transfer rate, for its subsequent comparison with other thermal energy storage systems. This phase change material emulsion shows a phase change temperature range between 30 and 50 °C, its solids content is about 60% with an average particle size of 1 μm. The low cost phase change material emulsion shows a thermal storage capacity by mass 50% higher than water and an increase in viscosity up to 2–5 orders of magnitude. The results have shown that the global heat transfer coefficient of the phase change material emulsion tank is around 2–6 times higher than for conventional latent systems previously analyzed in literature, although 5 times lower than if it contains water. The phase change material emulsion tank presents an energy density 34% higher than the water tank, which makes it a promising solution. Measures to improve its performance are also studied in this work.

  3. Computational Design of Non-natural Sugar Alcohols to Increase Thermal Storage Density: Beyond Existing Organic Phase Change Materials.

    Science.gov (United States)

    Inagaki, Taichi; Ishida, Toyokazu

    2016-09-14

    Thermal storage, a technology that enables us to control thermal energy, makes it possible to reuse a huge amount of waste heat, and materials with the ability to treat larger thermal energy are in high demand for energy-saving societies. Sugar alcohols are now one promising candidate for phase change materials (PCMs) because of their large thermal storage density. In this study, we computationally design experimentally unknown non-natural sugar alcohols and predict their thermal storage density as a basic step toward the development of new high performance PCMs. The non-natural sugar alcohol molecules are constructed in silico in accordance with the previously suggested molecular design guidelines: linear elongation of a carbon backbone, separated distribution of OH groups, and even numbers of carbon atoms. Their crystal structures are then predicted using the random search method and first-principles calculations. Our molecular simulation results clearly demonstrate that the non-natural sugar alcohols have potential ability to have thermal storage density up to ∼450-500 kJ/kg, which is significantly larger than the maximum thermal storage density of the present known organic PCMs (∼350 kJ/kg). This computational study suggests that, even in the case of H-bonded molecular crystals where the electrostatic energy contributes mainly to thermal storage density, the molecular distortion and van der Waals energies are also important factors to increase thermal storage density. In addition, the comparison between the three eight-carbon non-natural sugar alcohol isomers indicates that the selection of preferable isomers is also essential for large thermal storage density.

  4. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Science.gov (United States)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  5. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES).

    Science.gov (United States)

    Ferrer, Gerard; Barreneche, Camila; Solé, Aran; Juliá, José Enrique; Cabeza, Luisa F

    2017-07-10

    Thermal energy storage (TES) systems using phase change materials (PCM) have been lately studied and are presented as one of the key solutions for the implementation of renewable energies. These systems take advantage of the latent heat of phase change of PCM during their melting/ solidification processes to store or release heat depending on the needs and availability. Low thermal conductivity and latent heat are the main disadvantages of organic PCM, while corrosion, subcooling and thermal stability are the prime problems that inorganic PCM present. Nanotechnology can be used to overcome these drawbacks. Nano-enhanced PCM are obtained by the dispersion of nanoparticles in the base material and thermal properties such as thermal conductivity, viscosity and specific heat capacity, within others, can be enhanced. This paper presents a review of the patents regarding the obtaining of nano-enhanced materials for thermal energy storage (TES) in order to realize the development nanotechnologies have gained in the TES field. Patents regarding the synthesis methods to obtain nano-enhanced phase materials (NEPCM) and TES systems using NEPCM have been found and are presented in the paper. The few existing number of patents found is a clear indicator of the recent and thus low development nanotechnology has in the TES field so far. Nevertheless, the results obtained with the reviewed inventions already show the big potential that nanotechnology has in TES and denote a more than probable expansion of its use in the next years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage

    International Nuclear Information System (INIS)

    Su Junfeng; Wang Xinyu; Wang Shengbao; Zhao Yunhui; Huang Zhen

    2012-01-01

    Graphical abstract: DSC curves of microPCMs/gypsum composite samples before and after a thermal cycling treatment. Highlights: ► Microcapsules containing paraffin was fabricated by in-situ polymerization. ► Methanol-modified melamine–formaldehyde (MMF) was used as shell material. ► MicroPCMs/gypsum-matrix building materials were applied for solar energy storage. ► The structure and thermal conductivity of composites had been investigated. - Abstract: Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The aim of this work was to prepare and investigate the properties of microPCMs/gypsum-matrix building materials for thermal energy storage. MicroPCMs contain paraffin was fabricated by in situ polymerization using methanol-modified melamine–formaldehyde (MMF) as shell material. A series of microPCMs samples were prepared under emulsion stirring rates in range of 1000–3000 r min −1 with core/shell weight ratios of 3/1, 2/1, 1/1, 1/2 and 1/3, respectively. The shell of microPCMs was smooth and compact with global shape, its thickness was not greatly affected by the core/shell ratio and emulsion stirring rate. DSC tests showed that the shell of microPCMs did not influence the phase change behavior of pure paraffin. It was found from TGA analysis that microPCMs samples containing paraffin lost their weight at the temperature of nearly 250 °C, which indicated that the PCM had been protected by shell. More shell material in microPCMs could enhance the thermal stability and provide higher compact condition for core material. After a 100-times thermal cycling treatment, the microPCMs contain paraffin also nearly did not change the phase change behaviors of PCM. With the increasing of weight contents of microPCMs in gypsum board, the thermal conductivity (λ) values of composites had decreased. The simulation of temperature tests proved that the

  7. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  8. Characteristics of phase-change materials containing oxide nano-additives for thermal storage.

    Science.gov (United States)

    Teng, Tun-Ping; Yu, Chao-Chieh

    2012-11-06

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

  9. Microencapsulation of salts for enhanced thermochemical storage materials

    NARCIS (Netherlands)

    Cuypers, R.; Jong, A.J. de; Eversdijk, J.; Spijker, J.C. van 't; Oversloot, H.P.; Ingenhut, B.L.J.; Cremers, R.K.H.; Papen-Botterhuis, N.E.

    2013-01-01

    Thermochemical storage is a new and emerging long-term thermal storage for residential use (cooling, heating & domestic hot water generation), offering high thermal storage density without the need for thermal insulation during storage (Fig. 1). However, existing materials for thermochemical storage

  10. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2015-01-01

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  11. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

    Directory of Open Access Journals (Sweden)

    Jackie D. Renteria

    2014-11-01

    Full Text Available We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

  12. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Tahan Latibari, Sara; Mehrali, Mehdi; Mahlia, Teuku Meurah Indra; Cornelis Metselaar, Hendrik Simon

    2014-01-01

    Highlights: • Introducing novel form-stable PCM of stearic acid (SA)/carbon nanospheres (CNSs). • The highest stabilized SA content is 83 wt% in the SA/CNS composites. • Increasing thermal conductivity of composite phase change material with high amount of latent heat. - Abstract: Stearic acid (SA) is one of the main phase change materials (PCMs) for medium temperature thermal energy storage systems. In order to stabilize the shape and enhance the thermal conductivity of SA, the effects of adding carbon nanospheres (CNSs) as a carbon nanofiller were examined experimentally. The maximum mass fraction of SA retained in CNSs was found as 80 wt% without the leakage of SA in a melted state, even when it was heated over the melting point of SA. The dropping point test shows that there was clearly no liquid leakage through the phase change process at the operating temperature range of the composite PCMs. The thermal stability and thermal properties of composite PCMs were investigated with a thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC), respectively. The thermal conductivity of the SA/CNS composite was determined by the laser flash method. The thermal conductivity at 35 °C increased about 105% for the highest loading of CNS (50 wt%). The thermal cycling test proved that form-stable composite PCMs had good thermal reliability and chemical durability after 1000 cycles of melting and freezing, which is advantageous for latent heat thermal energy storage (LHTES)

  13. Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sun, J.Q.; Zhang, R.Y.; Liu, Z.P.; Lu, G.H.

    2007-01-01

    The purpose of this study is to determine the thermal reliability and corrosion of the Al-34%Mg-6%Zn alloy as a latent heat energy storage material with respect to various numbers of thermal cycles. The differential scanning calorimeter (DSC) analysis technique was applied to the alloy after 0, 50, 500 and 1000 melting/solidification cycles in order to measure the melting temperatures and the latent heats of fusion of the alloy. The containment materials were stainless steel (SS304L), carbon steel (steel C20) in the corrosion tests. The DSC results indicated that the change in melting temperature for the alloy was in the range of 3.06-5.3 K, and the latent heat of fusion decreased 10.98% after 1000 thermal cycles. The results show that the investigated Al-34%Mg-6%Zn alloy has a good thermal reliability as a latent heat energy storage material with respect to thermal cycling for thermal energy storage applications in the long term in view of the small changes in the latent heat of fusion and melting temperature. Gravimetric analysis as mass loss (mg/cm 2 ), corrosion rate (mg/day) and a microscopic or metallographic investigation were performed for corrosion tests and showed that SS304L may be considered a more suitable alloy than C20 in long term thermal storage applications

  14. Thermal performance of a PCM thermal storage unit

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ming; Bruno, Frank; Saman, Wasim [Sustainable Energy Centre, Inst. for Sustainable Systems and Technologies, Univ. of South Australia, Mawson Lakes, Adelaide (Australia)

    2008-07-01

    The thermal performance of a PCM thermal storage unit (TSU) is studied numerically and experimentally. The TSU under analysis consists of several flat slabs of phase change material (PCM) with melting temperature of -26.7 C. Liquid heat transfer fluid (HTF) passes between the slabs to charge and discharge the storage unit. A one dimensional mathematical model was employed to analyze the transient thermal behavior of the storage unit during the melting and freezing processes. The model takes into consideration the temperature variations in the wall along the flow direction of the HTF. The paper compares the experimental and numerical simulation results in terms of HTF outlet temperatures during the melting period. (orig.)

  15. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Fuensanta, Mónica, E-mail: monica.fuensanta@aidico.es [AIDICO, Technological Institute of Construction, Camí de Castella, 4, 03660 Novelda, Alicante (Spain); Paiphansiri, Umaporn [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Romero-Sánchez, María Dolores, E-mail: md.romero@aidico.es [AIDICO, Technological Institute of Construction, Camí de Castella, 4, 03660 Novelda, Alicante (Spain); Guillem, Celia; López-Buendía, Ángel M. [AIDICO, Technological Institute of Construction, Camí de Castella, 4, 03660 Novelda, Alicante (Spain); Landfester, Katharina [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2013-08-10

    Highlights: • A paraffin wax RT80 was encapsulated in styrene–butyl acrylate copolymer as polymer shell using miniemulsion polymerization process to obtain a novel nanoencapsulated PCM with 80 °C melting temperature. • Nano-PCMs have high compact structure, spherical morphology and thermal stability. • The nano-PCMs have potential applications as thermal energy storage materials. - Abstract: A novel nanoencapsulation of a paraffine type phase change material, RT80, in a styrene–butyl acrylate copolymer shell using the miniemulsion polymerization process was carried out. General characteristics of the RT80 nanoparticles in terms of thermal properties, morphology, chemical composition and particle size distribution were characterized by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Dynamic Light Scattering (DLS). The influence of different monomers (styrene, butyl acrylate) and the surfactant/paraffin mass ratios on nanoparticles properties such as thermal capacity, particle size and morphology were systematically investigated. In all cases studied, encapsulation efficiency was close to 80 wt% with a particle size distribution between 52 and 112 nm and regular spherical shape and uniform structure. The amount of encapsulated paraffin achieved was comprised between 8 and 20%. Melting and crystallization heats were found to be approximately 5–25 J g{sup −1}, mainly depending on surfactant/paraffin mass ratio. Melting temperature of RT80 nanoparticles slightly decreased (1–7 °C) respect to the raw RT80. In addition, the encapsulated RT80 nanoparticles show thermal stability even after 200 thermal (heat-cooling) cycles.

  16. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Fuensanta, Mónica; Paiphansiri, Umaporn; Romero-Sánchez, María Dolores; Guillem, Celia; López-Buendía, Ángel M.; Landfester, Katharina

    2013-01-01

    Highlights: • A paraffin wax RT80 was encapsulated in styrene–butyl acrylate copolymer as polymer shell using miniemulsion polymerization process to obtain a novel nanoencapsulated PCM with 80 °C melting temperature. • Nano-PCMs have high compact structure, spherical morphology and thermal stability. • The nano-PCMs have potential applications as thermal energy storage materials. - Abstract: A novel nanoencapsulation of a paraffine type phase change material, RT80, in a styrene–butyl acrylate copolymer shell using the miniemulsion polymerization process was carried out. General characteristics of the RT80 nanoparticles in terms of thermal properties, morphology, chemical composition and particle size distribution were characterized by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Dynamic Light Scattering (DLS). The influence of different monomers (styrene, butyl acrylate) and the surfactant/paraffin mass ratios on nanoparticles properties such as thermal capacity, particle size and morphology were systematically investigated. In all cases studied, encapsulation efficiency was close to 80 wt% with a particle size distribution between 52 and 112 nm and regular spherical shape and uniform structure. The amount of encapsulated paraffin achieved was comprised between 8 and 20%. Melting and crystallization heats were found to be approximately 5–25 J g −1 , mainly depending on surfactant/paraffin mass ratio. Melting temperature of RT80 nanoparticles slightly decreased (1–7 °C) respect to the raw RT80. In addition, the encapsulated RT80 nanoparticles show thermal stability even after 200 thermal (heat-cooling) cycles

  17. Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Latibari, Sara Tahan; Mehrali, Mehdi; Indra Mahlia, Teuku Meurah; Cornelis Metselaar, Hendrik Simon

    2013-01-01

    PA/GO (palmitic acid/graphene oxide) as PCMs (phase change materials) prepared by vacuum impregnation method, have high thermal conductivity. The GO (graphene oxide) composite was used as supporting material to improve thermal conductivity and shape stabilization of composite PCM (phase change material). SEM (Scanning electronic microscope), FT-IR (Fourier transformation infrared spectroscope) and XRD (X-ray diffractometer) were applied to determine microstructure, chemical structure and crystalloid phase of palmitic acid/GO composites, respectively. DSC (Differential scanning calorimeter) test was done to investigate thermal properties which include melting and solidifying temperatures and latent heat. FT-IR analysis represented that the composite instruction of porous palmitic acid and GO were physical. The temperatures of melting, freezing and latent heats of the composite measured through DSC analysis were 60.45, 60.05 °C, 101.23 and 101.49 kJ/kg, respectively. Thermal cycling test showed that the form-stable composite PCM has good thermal reliability and chemical stability. Thermal conductivity of the composite PCM was improved by more than three times from 0.21 to 1.02. As a result, due to their acceptable thermal properties, good thermal reliability, chemical stability and great thermal conductivities, we can consider the prepared form-stable composites as highly conductive PCMs for thermal energy storage applications. - Highlights: • Novel composite PCM with high thermal conductivity and latent heat storage. • New thermal cycling test for thermal reliability of composite PCMs. • Increasing thermal conductivity of composite PCM with graphene oxide. • Increasing thermal stability of phase change material by adding graphene oxide

  18. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material

    International Nuclear Information System (INIS)

    Trigui, Abdelwaheb; Karkri, Mustapha; Krupa, Igor

    2014-01-01

    Highlights: • This study deals with the comparison of experimental results for different PCM composite to be used in passive solar walls. • This paper reports on the successful use of a specific experimental method in order to characterize the phase change effects. • The results have shown that most important thermal properties of these composites at the solid and liquid states. • Results indicate the thermal effectiveness of phase change material and significant amount of energy saving can be achieved. • Heat flux measurements are a very interesting experimental source of data which comes to complete the calorimetric device (DSC). - Abstract: Phase change material (PCM) composites based on low-density polyethylene (LDPE) with paraffin waxes were investigated in this study. The composites were prepared using a meltmixing method with a Brabender-Plastograph. The LDPE as the supporting matrix kept the molten waxes in compact shape during its phase transition from solid to liquid. Immiscibility of the PCMs (waxes) and the supporting matrix (LDPE) is a necessary property for effective energy storage. Therefore, this type paraffin can be used in a latent heat storage system without encapsulation. The objective of this research is to use PCM composite as integrated components in a passive solar wall. The proposed composite TROMBE wall allows daily storage of the solar energy in a building envelope and restitution in the evening, with a possible control of the air flux in a ventilated air layer. An experimental set-up was built to determine the thermal response of these composites to thermal solicitations. In addition, a DSC analysis was carried out. The results have shown that most important thermal properties of these composites at the solid and liquid states, like the “apparent” thermal conductivity, the heat storage capacity and the latent heat of fusion. Results indicate the performance of the proposed system is affected by the thermal effectiveness of

  19. Nanoencapsulation of phase change materials for advanced thermal energy storage systems

    Science.gov (United States)

    Shchukina, E. M.; Graham, M.; Zheng, Z.

    2018-01-01

    Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes energy release/uptake. PMID:29658558

  20. Nanoencapsulation of phase change materials for advanced thermal energy storage systems.

    Science.gov (United States)

    Shchukina, E M; Graham, M; Zheng, Z; Shchukin, D G

    2018-04-16

    Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes energy release/uptake.

  1. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2016-01-01

    Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.

  2. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  3. Investigation of metal fluoride thermal energy storage materials: availability, cost, and chemistry. Final report, July 15, 1976--December 15, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Eichelberger, J.L.

    1976-12-01

    Storage of thermal energy in the 400 to 1000/sup 0/C range is attracting increasing consideration for use in solar power, central power, vehicular, and commercial process systems. This study investigates the practicality of using metal fluorides as the heat storage medium. The projected availability of metal fluorides has been studied and is shown to be adequate for widespread thermal storage use. Costs are projected and discussed in relation to thermal energy storage applications. Phase diagrams, heats of fusion, heat capacities, vapor pressures, toxicity, stability, volume changes, thermal conductivities, fusion kinetics, corrosion, and container materials of construction for a wide range of fluorides have been examined. Analyses of these data in consideration of thermal energy storage requirements have resulted in selection of the most cost-effective fluoride mixture for each of 23 temperature increments between 400 and 1000/sup 0/C. Thermo-physical properties of these 23 materials are presented. Comparison of fluoride with non-fluoride materials shows that the fluorides are suitable candidates for high temperature applications on the bases of cost, heat capacity/unit volume, heat capacity/unit weight, corrosive properties, and availability.

  4. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Ersoy, Orkun

    2016-01-01

    Highlights: • Sepiolite-based phase change material nanocomposites were prepared. • An easy direct impregnation process was used. • This paper is one of the first study about sepiolite-based phase change material nanocomposites. • Influence of PCM type on thermal properties of nanocomposites was reported. - Abstract: This paper is one of the first study about the preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage applications. Sepiolite is an important natural fibrous raw material. Nanoscale fibrous tubular structure of sepiolite becomes important in nanocomposite preparation. In this study, sepiolite/paraffin and sepiolite/decanoic acid nanocomposites were manufactured by the direct impregnation method. By the preparation of nanocomposites, PCM move in tubular channels of sepiolite, phase changing occurs in these tubes and surface area increases like as in microencapsulation. The structure and properties of nanocomposites PCMs (CPCM) have been characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The SEM results prove the successful preparation of phase change material/sepiolite nanocomposites and point out that the fibers of sepiolite is modified with phase change materials in the nanocomposite. The phase change enthalpies of melting and freezing were about 62.08 J/g and −62.05 J/g for sepiolite/paraffin nanocomposites and 35.69 J/g and −34.55 J/g for sepiolite/decanoic acid nanocomposites, respectively. The results show that PCM/sepiolite nanocomposites were prepared successfully and their properties are very suitable for thermal energy storage applications.

  5. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  6. Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu

    2010-01-01

    Stearic acid/expanded graphite composites with different mass ratios were prepared by absorbing liquid stearic acid into the expanded graphite. In the composite materials, the stearic acid was used as the phase change material for thermal energy storage, and the expanded graphite acted as the supporting material. Fourier transformation infrared spectroscopy, X-ray diffraction, scanning electron microscopy and thermal diffusivity measurement were used to determine the chemical structure, crystalline phase, microstructure and thermal diffusivity of the composites, respectively. The thermal properties and thermal stability were investigated by differential scanning calorimetry and thermogravimetric analysis. The thermal analysis results indicated that the materials exhibited the same phase transition characteristics as the stearic acid and their latent heats were approximately the same as the values calculated based on the weight fraction of the stearic acid in the composites. The microstructural analysis results showed that the stearic acid was well absorbed in the porous network of the expanded graphite, and there was no leakage of the stearic acid from the composites even when it was in the molten state.

  7. LiH thermal energy storage device

    Science.gov (United States)

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  8. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2004-01-01

    This paper deals with the preparation of paraffin/high density polyethylene (HDPE) composites as form-stable, solid-liquid phase change material (PCM) for thermal energy storage and with determination of their thermal properties. In such a composite, the paraffin (P) serves as a latent heat storage material and the HDPE acts as a supporting material, which prevents leakage of the melted paraffin because of providing structural strength. Therefore, it is named form-stable composite PCM. In this study, two kinds of paraffins with melting temperatures of 42-44 deg. C (type P1) and 56-58 deg. C (type P2) and latent heats of 192.8 and 212.4 J g -1 were used. The maximum weight percentage for both paraffin types in the PCM composites without any seepage of the paraffin in the melted state were found as high as 77%. It is observed that the paraffin is dispersed into the network of the solid HDPE by investigation of the structure of the composite PCMs using a scanning electronic microscope (SEM). The melting temperatures and latent heats of the form-stable P1/HDPE and P2/HDPE composite PCMs were determined as 37.8 and 55.7 deg. C, and 147.6 and 162.2 J g -1 , respectively, by the technique of differential scanning calorimetry (DSC). Furthermore, to improve the thermal conductivity of the form-stable P/HDPE composite PCMs, expanded and exfoliated graphite (EG) by heat treatment was added to the samples in the ratio of 3 wt.%. Thereby, the thermal conductivity was increased about 14% for the form-stable P1/HDPE and about 24% for the P2/HDPE composite PCMs. Based on the results, it is concluded that the prepared form-stable P/HDPE blends as composite type PCM have great potential for thermal energy storage applications in terms of their satisfactory thermal properties and improved thermal conductivity. Furthermore, these composite PCMs added with EG can be considered cost effective latent heat storage materials since they do not require encapsulation and extra cost to enhance

  9. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  10. Research opportunities in salt hydrates for thermal energy storage

    Science.gov (United States)

    Braunstein, J.

    1983-11-01

    The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.

  11. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  12. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  13. Development of a thermal storage system based on the heat of adsorption of water in hygroscopic materials

    NARCIS (Netherlands)

    Wijsman, A.J.T.M.; Oosterhaven, R.; Ouden, C. den

    1979-01-01

    A thermal storage system based on the heat of adsorption of water in hygroscopic materials has been studied as a component of a solar space heating system. The aim of this project is to decrease the storage volume in comparison with a rock-bed storage system by increasing the stored energy density.

  14. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang Guiyin; Li Hui; Liu Xu

    2010-01-01

    Form-stable lauric acid (LA)/silicon dioxide (SiO 2 ) composite phase change materials were prepared using sol-gel methods. The LA was used as the phase change material for thermal energy storage, with the SiO 2 acting as the supporting material. The structural analysis of these form-stable LA/SiO 2 composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR). The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the LA was well dispersed in the porous network of SiO 2 . The DSC results indicated that the melting latent heat of the form-stable composite phase change material is 117.21 kJ kg -1 when the mass percentage of the LA in the SiO 2 is 64.8%. The results of the TGA showed that these materials have good thermal stability. The form-stable composite phase change materials can be used for thermal energy storage in waste heat recovery and solar heating systems.

  15. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Electrically conductive carbon nanofiber/paraffin wax composites for electric thermal storage

    International Nuclear Information System (INIS)

    Zhang Kun; Han Baoguo; Yu Xun

    2012-01-01

    Highlights: ► Carbon nanofiber (CNF)/paraffin wax composite is found to be a promising electric thermal storage material. ► The thermal storage capacity of CNF/paraffin wax composite is five times of traditional electric thermal storage material. ► CNF is shown to be an effective conductive filler for the composite. - Abstract: The research of electric thermal storage (ETS) has attracted a lot of attention recently, which converts off-peak electrical energy into thermal energy and release it later at peak hours. In this study, new electric thermal storage composites are developed by employing paraffin wax as thermal storage media and carbon nanofiber (CNF) as conductive fillers. Electric heating and thermal energy release performances of the CNF/paraffin wax composites are experimentally investigated. Experimental results show that, when the composites are heated to about 70 °C, the developed electrically conductive CNF/paraffin wax composites present a thermal storage capacity of about 280 kJ/kg, which is five times of that of traditional thermal storage medium such as ceramic bricks (54 kJ/kg). The CNF/paraffin wax composites can also effectively store the thermal energy and release the thermal energy in later hours.

  17. Experimental study of phase change materials for thermal storage in the temperature range of 300–400°C

    Directory of Open Access Journals (Sweden)

    Adinberg R.

    2014-01-01

    Full Text Available Phase change materials (PCM based on inorganic salts having a temperature of fusion between 300 and 400°C, were investigated using a lab scale set-up dedicated for studying latent heat storage for concentrating solar thermal power (CSP technology. This experimental system provides thermal measurements of PCM specimens of about 1000 g under the heating temperature up to 450°C and enables simultaneous investigation of calorimetric properties of the loaded materials and heat transfer effects developed in the thermal storage during the charge and discharge phases. The measurement technique comprised temperature and pressure sensors, a control and data acquisition system and a thermal analysis model used to evaluate the experimental data. Results of the thermochemical tests conducted with a thermal storage medium composed of the ternary eutectic mixture of carbonate salts (34.5% K2CO3–33.4% Na2CO3–32.1% Li2CO3 and Diphyl (synthetic thermal oil, max working temperature 400°C used as the heat transfer fluid are presented and discussed in this paper.

  18. Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage

    International Nuclear Information System (INIS)

    Jamekhorshid, A.; Sadrameli, S.M.; Barzin, R.; Farid, M.M.

    2017-01-01

    Highlights: • A composite of wood–plastic-MEPCM has been produced. • Compression molding has been used for the composite preparation. • Thermal and properties were investigated using DSC analysis and cycling test. • Leakage test has been performed for the encapsulated PCM. • The composites can be used as a building material for thermal energy management. - Abstract: Application of phase change materials (PCMs) in lightweight building is growing due to the high latent heat of fusion of PCMs and their ability to control temperature by absorbing and releasing heat efficiently. Wood-plastic composites (WPC) are materials used in the interior parts of buildings that have improved properties compared to conventional materials. However, these materials have low energy storage capacity, which can be improved by incorporating PCM in them. Leakage of PCM is a major obstacle to the industrial applications, which can be solved through the use of microencapsulated PCM (MEPCM). This paper presents the performance tests conducted for a composite of wood-plastic-MEPCM for using in buildings for thermal storage. The wood-plastic-MEPCM composites were produced in this project using compression molding and their thermal and mechanical properties were investigated using DSC analysis, cycling test, leakage test, and three point bending analysis. The results showed that there is no leakage of PCM during phase change. The results also indicated that the composite has reasonable thermal properties, but its mechanical properties need to be improved by increasing the pressure during the molding process or by using extrusion method. The produced composites can be used as a building material for thermal energy management of building.

  19. Heat transfer efficient thermal energy storage for steam generation

    International Nuclear Information System (INIS)

    Adinberg, R.; Zvegilsky, D.; Epstein, M.

    2010-01-01

    A novel reflux heat transfer storage (RHTS) concept for producing high-temperature superheated steam in the temperature range 350-400 deg. C was developed and tested. The thermal storage medium is a metallic substance, Zinc-Tin alloy, which serves as the phase change material (PCM). A high-temperature heat transfer fluid (HTF) is added to the storage medium in order to enhance heat exchange within the storage system, which comprises PCM units and the associated heat exchangers serving for charging and discharging the storage. The applied heat transfer mechanism is based on the HTF reflux created by a combined evaporation-condensation process. It was shown that a PCM with a fraction of 70 wt.% Zn in the alloy (Zn70Sn30) is optimal to attain a storage temperature of 370 deg. C, provided the heat source such as solar-produced steam or solar-heated synthetic oil has a temperature of about 400 deg. C (typical for the parabolic troughs technology). This PCM melts gradually between temperatures 200 and 370 deg. C preserving the latent heat of fusion, mainly of the Zn-component, that later, at the stage of heat discharge, will be available for producing steam. The thermal storage concept was experimentally studied using a lab scale apparatus that enabled investigating of storage materials (the PCM-HTF system) simultaneously with carrying out thermal performance measurements and observing heat transfer effects occurring in the system. The tests produced satisfactory results in terms of thermal stability and compatibility of the utilized storage materials, alloy Zn70Sn30 and the eutectic mixture of biphenyl and diphenyl oxide, up to a working temperature of 400 deg. C. Optional schemes for integrating the developed thermal storage into a solar thermal electric plant are discussed and evaluated considering a pilot scale solar plant with thermal power output of 12 MW. The storage should enable uninterrupted operation of solar thermal electric systems during additional hours

  20. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  1. A Comprehensive Review of Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2018-01-01

    Full Text Available Thermal energy storage (TES is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.

  2. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials

    International Nuclear Information System (INIS)

    Khudhair, Amar M.; Farid, Mohammed M.

    2004-01-01

    Energy storage in the walls, ceiling and floor of buildings may be enhanced by encapsulating suitable phase change materials (PCMs) within these surfaces to capture solar energy directly and increase human comfort by decreasing the frequency of internal air temperature swings and maintaining the temperature closer to the desired temperature for a longer period of time. This paper summarizes the investigation and analysis of thermal energy storage systems incorporating PCMs for use in building applications. Researches on thermal storage in which the PCM is encapsulated in concrete, gypsum wallboard, ceiling and floor have been ongoing for some time and are discussed. The problems associated with the application of PCMs with regard to the selection of materials and the methods used to contain them are also discussed

  3. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  4. Mechanical Reinforcement, Shapestabilization and Thermal Improvement of Phase-Change Energy Storage Materials Using Graphene Oxide Aerogel

    Science.gov (United States)

    Schuman, Yue Xu

    Paraffin is known as a good energy storage phase change material (PCM) because of its high energy storage capacity and low cost. However, the leakage of liquid paraffin beyond its melting point and its low thermal conductivity hinder applications of paraffin in energy storage systems. Recently, nanomaterials have been used to create PCM composites in order to enhance their thermal properties while shape stabilizing the PCMs. However, fundamental studies on the material structures and mechanical behavior of the thermally enhanced PCM composites are limited especially at the nanoscale. In this study, we developed a PCM composite using graphene oxide aerogel (GOxA) as the reinforcing 3D network. The GOxA functions thermally as a heat transfer path and mechanically as a nanofiller to reinforce the PCM matrix. We characterized the morphology, the crystal and molecular structures as well as the multiscale mechanical and thermal behavior of the GOxA-PCM composite to evaluate the role of GOxA in the PCM composite. The molecular and diffraction characterizations imply that the GOxA network may affect the paraffin's crystallization, potentially forming an interfacial phase at the surfaces of GOxA. Furthermore, the mechanical properties were studied using nanoindentation at the nano/microscale and a digital durometer at the macroscale from 25degree C to 80 degree C. The mechanical characterizations show that the GOxA-PCM composite is 3 7x harder than pure paraffin and maintains significant strength even above paraffin's melting point due to the support from the GoxA. Moreover, the composite is much less strain-rate sensitive than paraffin. The reinforcement via GOxA is much beyond the prediction by the rule of mixture, implying a strong GOxA-paraffin interfacial bonding. Finally, a thermal scanning microscopy (SThM) along with AFM was used to study the thermal properties at microscale. AFM and thermal images indicate that GOxA-PCM has a better thermal conductivity. The latent

  5. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material

    International Nuclear Information System (INIS)

    Zhang, Zhengguo; Zhang, Ni; Peng, Jing; Fang, Xiaoming; Gao, Xuenong; Fang, Yutang

    2012-01-01

    Highlights: ► EG was obtained by microwave irradiation to prepare the paraffin/EG composite PCM. ► Composite PCM was characterized by XRD to investigate the chemical compatibility. ► Temperature profiles of the composite PCM were obtained during thermal energy storage. -- Abstract: The paraffin/expanded graphite (EG) composite phase change material (PCM) was prepared by absorbing liquid paraffin into EG, in which paraffin was chosen as the PCM. EG was produced by microwave irradiation performed at room temperature. It was found that the EG prepared at 800 W irradiation power for 10 s exhibited the maximum sorption capacity of 92 wt% for paraffin. Scanning electron microscopy images showed that paraffin was uniformly dispersed in the pores of EG. Differential scanning calorimeter analysis indicated that the melting temperature of the composite PCM was close to that of paraffin, and its latent heat was equivalent to the calculated value based on the mass fraction of paraffin in the composite. X-ray diffraction analysis showed that the composite PCM was just a combination of paraffin with EG, and no new substance was produced. Thermal energy storage performance of the composite PCM was tested in a latent thermal energy storage (LTES) system. Transients of axial and radial temperature profiles were obtained in the LTES for the composite PCM and paraffin. The thermal energy storage charging duration for the composite PCM was reduced obviously compared to paraffin.

  6. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials

    International Nuclear Information System (INIS)

    Fang, Yutang; Yu, Huimin; Wan, Weijun; Gao, Xuenong; Zhang, Zhengguo

    2013-01-01

    Highlights: • Average particle size of Tet/PS nanocapsules is smaller than the same type composite. • Latent heat of Tet/PS nanocapsules is as high as the same type composite. • Freeze–thaw cycle test and centrifugal sedimentation method are employed. • Tet/PS nanocapsules can be a candidate for cold thermal energy storage. - Abstract: In this paper, a novel polystyrene/n-tetradecane composite nanoencapsulated phase change material as latent functionally thermal fluid (LFTF) for cold thermal energy storage was synthesized by ultrasonic-assistant miniemulsion in situ polymerization. The morphology, chemical structure and thermal performances of the nanoencapsulated phase change material (NEPCM) were measured by particle size analyzer, transmission electron microscope (TEM), Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG), respectively. The thermo-physical properties of the cool storage media were tested as well. The results showed that, a uniform spherical NEPCM with average diameter of 132 nm was prepared. The melting and freezing points and the latent heats of the NEPCMs was measured as 4.04 °C and −3.43 °C, 98.71 J g −1 and 91.27 J g −1 , respectively. The specific heat of its latex were determined as the maximum value of 4.822 J g −1 K −1 . The freeze–thaw cycle test indicated that the NEPCMs have good mechanical stability, and most capsules were still complete except some broken individuals from TEM images. Due to its good thermal properties and mechanical stability, the polystyrene/n-tetradecane NEPCM displays a good potential for cool energy storage

  7. Performance Evaluation of Various Phase Change Materials for Thermal Energy Storage of A Solar Cooker via Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Dede Tarwidi

    2016-11-01

    Full Text Available In this paper, thermal performance of various phase change materials (PCMs used as thermal energy storage in a solar cooker has been investigated numerically. Heat conduction equations in cylindrical domain are used to model heat transfer of the PCMs. Mathematical model of phase change problem in the PCM storage encompasses heat conduction equations in solid and liquid region separated by moving solid-liquid interface. The phase change problem is solved by reformulating heat conduction equations with emergence of moving boundary into an enthalpy equation. Numerical solution of the enthalpy equation is obtained by implementing Godunov method and verified by analytical solution of one-dimensional case. Stability condition of the numerical scheme is also discussed. Thermal performance of various PCMs is evaluated via the stored energy and temperature history. The simulation results show that phase change material with the best thermal performance during the first 2.5 hours of energy extraction is shown by erythritol. Moreover, magnesium chloride hexahydrate can maintain temperature of the PCM storage in the range of 110-116.7°C for more than 4 hours while magnesium nitrate hexahydrate is effective only for one hour with the PCM storage temperature around 121-128°C. Among the PCMs that have been tested, it is only erythritol that can cook 10 kg of the loaded water until it reaches 100°C for about 3.5 hours. Article History: Received June 22nd 2016; Received in revised form August 26th 2016; Accepted Sept 1st 2016; Available online How to Cite This Article: Tarwidi, D., Murdiansyah, D.T, Ginanja, N. (2016 Performance Evaluation of Various Phase Change Materials for Thermal Energy Storage of A Solar Cooker via Numerical Simulation. Int. Journal of Renewable Energy Development, 5(3, 199-210. http://dx.doi.org/10.14710/ijred.5.3.199-210

  8. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  9. Heat transfer characteristics of thermal energy storage of a composite phase change materials: Numerical and experimental investigations

    International Nuclear Information System (INIS)

    Aadmi, Moussa; Karkri, Mustapha; El Hammouti, Mimoun

    2014-01-01

    In the present study, phase change materials based on epoxy resin paraffin wax with the melting point 27 °C were used as a new energy storage system. Thermophysical properties and the process of melting of a PCM (phase change material) composite were investigated numerically and experimentally. DSC (differential scanning calorimetry) has been used for measurement of melting enthalpy and determination of PCM heat capacity. The thermophysical properties of the prepared composite have been characterized by using a new transient hot plate apparatus. The results have shown that the most important thermal properties of these composites at the solid and liquid states are like the “apparent” thermal conductivity, the heat storage capacity and the latent heat of fusion. These experimental results have been simulated by using numerical Comsol ® Multiphysiques 4.3 based models with success. The results of the experimental investigation compare favorably with the numerical results and thus serve to validate the numerical approach. - Highlights: • Phase change materials based on paraffin spheres used as new energy storage system. • Thermophysical properties and the melting process of composites were investigated. • All experimental results have been simulated using Comsol ® Multiphysiques. • The ability to store and release the thermal energy were investigated. • A very thin molten PCM (phase change material) exists which is apparently visible in the spheres

  10. Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Alva, Guruprasad; Huang, Xiang; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: •Myristic acid–palmitic acid eutectic was microencapsulated with silica shell. •Structure, morphology of microencapsulated phase change material were investigated. •Thermal capacity, stability of microencapsulated phase change material were analyzed. •Silica shell improved thermal stability of microencapsulated phase change material. -- Abstract: In this work microencapsulation of myristic acid–palmitic acid (MA–PA) eutectic mixture with silica shell using sol−gel method has been attempted. The core phase change material (PCM) for thermal energy storage was myristic acid−palmitic acid eutectic mixture and the shell material to prevent the PCM core from leakage was silica prepared from methyl triethoxysilane (MTES). Thermal properties of the microcapsules were measured by differential scanning calorimeter (DSC). The morphology and particle size of the microcapsules were examined by scanning electronic microscope (SEM). Fourier transformation infrared spectrophotometer (FT–IR) and X–ray diffractometer (XRD) were used to investigate the chemical structure and crystalloid phase of the microcapsules respectively. The DSC results indicated that microencapsulated phase change material (MPCM) melts at 46.08 °C with a latent heat of 169.69 kJ kg −1 and solidifies at 44.35 °C with a latent heat of 159.59 kJ kg −1 . The thermal stability of the microcapsules was analyzed by a thermogravimeter (TGA). The results indicated that the MPCM has good thermal stability and is suitable for thermal energy storage application.

  11. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.

    Science.gov (United States)

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-21

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg(-1) by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.

  12. Thermal energy storage for smart grid applications

    Science.gov (United States)

    Al-Hallaj, Said; Khateeb, Siddique; Aljehani, Ahmed; Pintar, Mike

    2018-01-01

    Energy consumption for commercial building cooling accounts for 15% of all commercial building's electricity usage [1]. Electric utility companies charge their customers time of use consumption charges (/kWh) and additionally demand usage charges (/kW) to limit peak energy consumption and offset their high operating costs. Thus, there is an economic incentive to reduce both the electricity consumption charges and demand charges by developing new energy efficient technologies. Thermal energy storage (TES) systems using a phase change material (PCM) is one such technology that can reduce demand charges and shift the demand from on-peak to off-peak rates. Ice and chilled water have been used in thermal storage systems for many decades, but they have certain limitations, which include a phase change temperature of 0 degrees Celsius and relatively low thermal conductivity in comparison to other materials, which limit their applications as a storage medium. To overcome these limitations, a novel phase change composite (PCC) TES material was developed that has much higher thermal conductivity that significantly improves the charge / discharge rate and a customizable phase change temperature to allow for better integration with HVAC systems. Compared to ice storage, the PCC TES system is capable of very high heat transfer rate and has lower system and operational costs. Economic analysis was performed to compare the PCC TES system with ice system and favorable economics was proven. A 4.5 kWh PCC TES prototype system was also designed for testing and validation purpose.

  13. A review on phase change energy storage: materials and applications

    International Nuclear Information System (INIS)

    Farid, Mohammed M.; Khudhair, Amar M.; Razack, Siddique Ali K.; Al-Hallaj, Said

    2004-01-01

    Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed

  14. Preparation of shape-stabilized co-crystallized poly (ethylene glycol) composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Qian, Yong; Wei, Ping; Jiang, Pingkai; Li, Zhi; Yan, Yonggang; Ji, Kejian; Deng, Weihua

    2013-01-01

    Highlights: • Shape-stabilized PEG composites were prepared by sol–gel process. • The increased energy storage ability of composite was from cocrystallization effect. • Diammonium phosphate improved flame retardancy properties of PEG composite. • PEG composites had potential to be used as thermal energy storage materials. - Abstract: Shape-stabilized co-crystallized poly (ethylene glycol) (PEG) composites were prepared by sol–gel process. Tetraethoxysilane was utilized as supporting matrix precursor. The crystallization property as well as thermal energy storage properties of PEG was influenced by silica network. The combination of PEG 2k and PEG 10k with suitable ratio (3:1 by weight) led to synergistically increased fusion enthalpy attributed to cocrystallization effect. Furthermore, halogen-free flame retarded PEG composites were obtained using diammonium phosphate as flame retardant. With suitable composition, the latent heat value of flame retarded PEG composite was 96.7 kJ/kg accompanied with good thermal stability and improved flame retardancy properties. Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), polarized optical microscope (POM) and scanning electron microscope (SEM) were used to characterize the structure of PEG composites. Thermal stability properties of PEG composites were investigated by thermogravimetric analyzer (TGA). Char residue obtained from muffle furnace of PEG composites was analyzed by SEM and FT-IR. Flame retardancy properties of PEG composites were estimated by pyrolysis combustion flow calorimeter. Results showed that it was potential for shape-stabilized halogen-free flame retarded PEG composite to be applied in thermal energy storage field

  15. Temperature dependency of the thermal conductivity of porous heat storage media

    Science.gov (United States)

    Hailemariam, Henok; Wuttke, Frank

    2018-04-01

    Analyzing the variation of thermal conductivity with temperature is vital in the design and assessment of the efficiency of sensible heat storage systems. In this study, the temperature variation of the thermal conductivity of a commercial cement-based porous heat storage material named - Füllbinder L is analyzed in saturated condition in the temperature range between 20 to 70°C (water based storage) with a steady state thermal conductivity and diffusivity meter. A considerable decrease in the thermal conductivity of the saturated sensible heat storage material upon increase in temperature is obtained, resulting in a significant loss of system efficiency and slower loading/un-loading rates, which when unaccounted for can lead to the under-designing of such systems. Furthermore, a new empirical prediction model for the estimation of thermal conductivity of cement-based porous sensible heat storage materials and naturally occurring crystalline rock formations as a function of temperature is proposed. The results of the model prediction are compared with the experimental results with satisfactory results.

  16. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM)

    International Nuclear Information System (INIS)

    Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe

    2014-01-01

    Highlights: • We study the effect of phase change materials integration on the thermal performances of an ICSSWH. • Two kinds and tree radiuses of the PCM layer are studied and the most appropriate design is presented. • The use of phase change materials in ICSSWH is determined to reduce the night thermal losses. • Myristic acid is the most appropriate PCM for this application regarding the daily and night operation. - Abstract: In this paper, we propose a numerical study of an integrated collector storage solar water heater (ICSSWH). Two numerical models in three-dimensional modeling are developed. The first one which describes a sensible heat storage unit (SHSU), allowing validating the numerical model. Based on the good agreement between numerical results and experimental data from literature, and as this type of solar water heater presents the disadvantage of its high night losses, we propose to integrate a phase change material (PCM) directly in the collector and to study its effect on the ICSSWH thermal performance. Indeed, a second 3D CFD model is developed and series of numerical simulations are conducted for two kind (myristic acid and RT42-graphite) and three radiuses (R = 0.2 m, R = 0.25 m and R = 0.3 m) of this PCM layer. Numerical results show that during the day-time, the latent heat storage unit (LHSU) performs better than the sensible one when myristic acid is used as PCM. Regarding the night operating of this solar system, it is found that the LHSU is more effective for both PCMs as it allows lower thermal losses and better heat preservation

  17. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials.

    Science.gov (United States)

    Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu

    2010-09-15

    Flame retardant n-hexadecane/silicon dioxide (SiO(2)) composites as thermal energy storage materials were prepared using sol-gel methods. In the composites, n-hexadecane was used as the phase change material for thermal energy storage, and SiO(2) acted as the supporting material that is fire resistant. In order to further improve flame retardant property of the composites, the expanded graphite (EG) was added in the composites. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine chemical structure, crystalloid phase and microstructure of flame retardant n-hexadecane/SiO(2) composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the n-hexadecane was well dispersed in the porous network of the SiO(2). The DSC results indicated that the melting and solidifying latent heats of the composites are 147.58 and 145.10 kJ/kg when the mass percentage of the n-hexadecane in the composites is 73.3%. The TGA results showed that the loading of the EG increased the charred residue amount of the composites at 700 degrees C, contributing to the improved thermal stability of the composites. It was observed from SEM photographs that the homogeneous and compact charred residue structure after combustion improved the flammability of the composites. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Materials compatibility issues related to thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.

    1986-01-01

    Attention is given to results obtained to date in developmental investigations of a thermal energy storage (TES) system for the projected NASA Space Station's solar dynamic power system; these tests have concentrated on issues related to materials compatibility for phase change materials (PCMs) and their containment vessels' materials. The five PCMs tested have melting temperatures that correspond to the operating temperatures of either the Brayton or Rankine heat engines, which were independently chosen for their high energy densities.

  19. Heat transfer characteristics of thermal energy storage for PCM (phase change material) melting in horizontal tube: Numerical and experimental investigations

    International Nuclear Information System (INIS)

    Aadmi, Moussa; Karkri, Mustapha; El Hammouti, Mimoun

    2015-01-01

    This paper focuses on the experimental and numerical study of the storage and release of thermal heat during melting and solidification of PCM (phase change material). Heat transfer enhancement techniques such as the use of conductors like graphite and metal tubes have been proven to be effective. The material used for thermal energy storage systems is a composite based on epoxy resin loaded with metal hollow tubes filled with paraffin wax. Differential Scanning Calorimetry has been used for measurement of melting enthalpy and determination of heat capacity. The thermophysical properties of the prepared composite phase change material have been characterized using a new transient hot plate apparatus. The results have shown that most important thermal properties of these composites at the solid and liquid states are the ‘‘apparent’’ thermal conductivity, the heat storage capacity and the latent heat of fusion. These experimental results have been simulated using numerical Comsol ® Multiphysics 4.3 based models with success. The results of the experimental investigation are compared favorably with the numerical results and thus serve to validate the numerical approach. - Highlights: • Phase change materials based on cylindrical used as new energy storage system. • Thermophysical properties and the melting process of composites were investigated. • All experimental results have been simulated using Comsol ® Multiphysiques. • The ability to store and release the thermal energy were investigated. • Good improvement in the thermal conductivity of composites

  20. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    International Nuclear Information System (INIS)

    Sun, Zhiming; Zhang, Yuzhong; Zheng, Shuilin; Park, Yuri; Frost, Ray L.

    2013-01-01

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value

  1. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Yuzhong [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Park, Yuri [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-04-20

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

  2. Buffer thermal energy storage for a solar Brayton engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  3. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  4. Fatty acid esters-based composite phase change materials for thermal energy storage in buildings

    International Nuclear Information System (INIS)

    Sarı, Ahmet; Karaipekli, Ali

    2012-01-01

    In this study, fatty acid esters-based composite phase change materials (PCMs) for thermal energy storage were prepared by blending erythritol tetrapalmitate (ETP) and erythritol tetrastearate (ETS) with diatomite and expanded perlite (EP). The maximum incorporation percentage for ETP and ETS into diatomite and EP was found to be 57 wt% and 62 wt%, respectively without melted PCM seepage from the composites. The morphologies and compatibilities of the composite PCMs were structurally characterized using scanning electron microscope (SEM) and Fourier transformation infrared (FT–IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by differential scanning calorimetry (DSC) analysis. The DSC analyses results indicated that the composite PCMs were good candidates for building applications in terms of their large latent heat values and suitable phase change temperatures. The thermal cycling test including 1000 melting and freezing cycling showed that composite PCMs had good thermal reliability and chemical stability. TG analysis revealed that the composite PCMs had good thermal durability above their working temperature ranges. Moreover, in order to improve the thermal conductivity of the composite PCMs, the expanded graphite (EG) was added to them at different mass fractions (2%, 5%, and 10%). The best results were obtained for the composite PCMs including 5wt% EG content in terms of the increase in thermal conductivity values and the decrease amount in latent heat capacity. The improvement in thermal conductivity values of ETP/Diatomite, ETS/Diatomite, ETP/EP and ETS/EP were found to be about 68%, 57%, 73% and 75%, respectively. Highlights: ► Fatty acid esters-based composite PCMs were prepared by blending ETP and ETS with diatomite and expanded perlite. ► The composite PCMs were characterized by using SEM, FT–IR, DSC and TG analysis methods. ► The DSC results indicated that the composites PCMs had good thermal

  5. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    International Nuclear Information System (INIS)

    Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith

    2005-01-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity

  6. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  7. Study on thermal property of lauric–palmitic–stearic acid/vermiculite composite as form-stable phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2015-09-01

    Full Text Available The form-stable composite phase change material of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite was prepared by vacuum impregnation method for thermal energy storage. The maximum mass fraction of lauric–palmitic–stearic acid ternary eutectic mixture retained in vermiculite was determined as 50 wt% without melted phase change material seepage from the composite phase change material. Fourier transformation infrared spectroscope and scanning electron microscope were used to characterize the structure and morphology of the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material, and the results indicate that lauric–palmitic–stearic acid ternary eutectic mixture was well confined into the layer porous structure of vermiculite by physical reaction. The melting and freezing temperatures and latent heats were measured by differential scanning calorimeter as 31.4°C and 30.3°C, and 75.8 and 73.2 J/g, respectively. Thermal cycling test showed that there was no significant change in the thermal properties of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material after 1000 thermal cycles. Moreover, 2 wt% expanded graphite was added to improve the thermal conductivity of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material. All results indicated that the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material had suitable thermal properties and good thermal reliability for the application of thermal energy storage in building energy efficiency.

  8. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  9. Advanced high-temperature thermal energy storage media for industrial applications

    Science.gov (United States)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  10. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials

    International Nuclear Information System (INIS)

    Sarı, Ahmet

    2016-01-01

    Graphical abstract: In this work, novel bentonite-based and form-stable composite phase change materials (Bb-FSPCMs) were produced for LHTES in buildings by impregnation of CA, PEG600, DD and HD with bentonite clay. The microstructures of the compatibility of the Bb-FSPCMs were by using SEM and FT-IR techniques. The DSC results indicated that the produced Bb-FSPCMs composites had suitable phase change temperature of 4–30 °C and good latent heat capacity between 38 and 74 J/g. The TG results demonstrated that all of the fabricated Bb-FSPCMs had good thermal resistance. The Bb-FSPCMs maintained their LHTES properties even after 1000 heating–cooling cycling. The total heating times of the prepared Bb-FSPCMs were reduced noticeably due to their enhanced thermal conductivity after EG (5 wt%) addition. - Highlights: • Bb-FSPCMs were produced by impregnation of CA, PEG600, DD and HD with bentonite. • DSC analysis indicated that Bb-FSPCMs had melting temperature in range of 4–30 °C. • DSC analysis also showed that Bb-FSPCMs had latent heat between 38 and 74 J/g. • The TG analysis demonstrated that Bb-FSPCMs had good thermal resistance. • Thermal conductivity of Bb-FSPCMs were enhanced noticeably with EG (5 wt%) addition. - Abstract: In this work, for latent heat thermal energy storage (LHTES) applications in buildings, bentonite-based form-stable composite phase change materials (Bb-FSPCMs) were produced by impregnation of capric acid (CA), polyethylene glycol (PEG600), dodecanol (DD) and heptadecane (HD) into bentonite clay. The morphological characterization results obtained by scanning electron microscopy (SEM) showed that the bentonite acted as good structural barrier for the organic PCMs homogenously dispersed onto its surface and interlayers. The chemical investigations made by using fourier transform infrared (FT-IR) technique revealed that the attractions between the components of the composites was physical in nature and thus the PCMs were hold

  11. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  12. Transient analysis of a thermal storage unit involving a phase change material

    Science.gov (United States)

    Griggs, E. I.; Pitts, D. R.; Humphries, W. R.

    1974-01-01

    The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.

  13. Phase-change material as a thermal storage media

    Energy Technology Data Exchange (ETDEWEB)

    El Chazly, Nihad M; Khattab, Nagwa M [Dokki, Cairo (Egypt)

    2000-07-01

    Heat storage based on the sensible heating of media such as water, rock and earth represent the first generation of solar energy storage subsystems and technology for their utilization. However, recently the heat storage based on the latent heat associated with a change in phase of a material offers many advantages over sensible heat storage. The most important characteristic of such a subsystem is its a sufficient storage capacity. An idealized model visualizing a thermal capacitor using a phase change material is constructed and subjected to simulated solar system environmental conditions. The proposed model is of a flat plate geometry consisting of two panels compartments forming the body of the capacitor containing the paraffin, leaving at their inner surfaces a thin passage allowing the water flow. The whole structure was assumed to be insulated to minimize heat loss. An analysis of the model is conducted using Goodman technique to generate data about the temperature distribution, the melt thickness, and the heat stored in the PCM under conditions of: ( i ) constant mass flow rate tests for various water inlet temperatures and ( ii ) constant water inlet temperature for various mass flow rate. A FORTRAN computer program was constructed to perform the analysis. It was found the water outlet temperature increases with time until it becomes nearly equals to the inlet temperature. Increasing the mass flow rate for a given inlet temperature, decreases the time required for outlet temperature to reach a given value. Increasing inlet temperature for a given mass flow rate gives a very rapid decrease in the time required for the outlet water temperature to reach a given value. Instantaneous rate of heat storage was determined from the inlet-to- exit temperature differential and measured flow rate. This rate was then integrated numerically to determine the cumulative total energy stored as a function of time. It was found that the instantaneous rate of heat storage

  14. From rice husk to high performance shape stabilized phase change materials for thermal energy storage

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Latibari, Sara Tahan; Rosen, Marc A.

    2016-01-01

    A novel shape-stabilized phase change material (SSPCM) was fabricated by using a vacuum impregnation technique. The lightweight, ultra-high specific surface area and porous activated carbon was prepared from waste material (rice husk) through the combination of an activation temperature approach...... and a sodium hydroxide activation procedure. Palmitic acid as a phase change material was impregnated into the porous carbon by a vacuum impregnation technique. Graphene nanoplatelets (GNPs) were employed as an additive for thermal conductivity enhancement of the SSPCMs. The attained composites exhibited...... exceptional phase change behavior, having a desirable latent heat storage capacity of 175 kJ kg(-1). When exposed to high solar radiation intensities, the composites can absorb and store the thermal energy. An FTIR analysis of the SSPCMs indicated that there was no chemical interaction between the palmitic...

  15. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  16. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays

    International Nuclear Information System (INIS)

    Wang, Teng-yue; Diao, Yan-hua; Zhu, Ting-ting; Zhao, Yao-hua; Liu, Jing; Wei, Xiang-qian

    2017-01-01

    Highlights: • A new type of solar air collection-storage thermal system with PCM is proposed. • Flat micro-heat pipe array is used as the core heat transfer element. • Air volume flow rate influence charging and discharging time obviously. • Air-side thermal resistance dominates during charging and discharging. - Abstract: In this study, a new type of solar air collection-storage thermal system (ACSTS) with phase change material (PCM) is designed using flat micro-heat pipe arrays (FMHPA) as the heat transfer core element. The solar air collector comprises FMHPA and vacuum tubes. The latent thermal storage device (LTSD) utilizes lauric acid, which is a type of fatty acid, as PCM. The experiments test the performance of collector efficiency and charging and discharging time of thermal storage device through different air volume flow rates. After a range of tests, high air volume flow rate is concluded to contribute to high collector efficiency and short charging and discharging time and enhance instantaneous heat transfer, whereas an air volume flow rate of 60 m"3/h during discharging provides a steady outlet temperature. The cumulative heat transfer during discharging is between 4210 and 4300 kJ.

  17. Load following generation in nuclear power plants by latent thermal energy storage

    International Nuclear Information System (INIS)

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  18. Thermal energy storage for solar power generation - State of the art

    Science.gov (United States)

    Shukla, K. N.

    1981-12-01

    High temperature storage for applications in solar-thermal electric systems is considered. Noting that thermal storage is in either the form of latent, sensible or chemically stored heat, sensible heat storage is stressed as the most developed of the thermal storage technologies, spanning direct heating of a storage medium from 120-1250 C. Current methods involve solids, packed beds, fluidized beds, liquids, hot water, organic liquids, and inorganic liquids and molten salts. Latent heat storage comprises phase-change materials that move from solid to liquid with addition of heat and liquid to solid with the removal of heat. Metals or inorganic salts are candidates, and the energy balances are outlined. Finally, chemical heat storage is examined, showing possible high energy densities through catalytic, thermal dissociation reactions.

  19. Preparation and characterization of form-stable paraffin/polycaprolactone composites as phase change materials for thermal energy storage

    Directory of Open Access Journals (Sweden)

    Aludin M.S.

    2017-01-01

    Full Text Available Paraffin is Phase Change Materials (PCM that possesses desirable properties such as high thermal energy storage and thermal stability to make it suitable for thermal energy storage applications. However, paraffin has been reported to leak out during the melting process. In this study, composites were prepared by dissolving paraffin and polycaprolactone (PCL at varied mass percent compositions in chloroform and then purified through precipitation techniques. The leakage test was conducted by placing the composite samples on a set of four-layer filter papers and left in a furnace at 90°C for 1 hour. By incorporating PCL into paraffin phase, the leakage mass percentage was drastically reduced. The PCL polymer matrix in the composites may have trapped the paraffin molecules during melting process thus prevent it from leaking.

  20. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    Science.gov (United States)

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  1. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage.

    Science.gov (United States)

    Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2013-01-01

    A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated.

  2. Technical and economic feasibility of thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shelpuk, B.; Joy, P.; Crouthamel, M.

    1977-06-01

    The technical and economic feasibility of various thermal energy storage alternatives is determined by comparing the system performance and annualized cost which result from each storage alternative operating with the same solar collector model, the same building load model, and the same heating system and controls model. Performance and cost calculations are made on the basis of an hour-by-hour time step using actual weather bureau data for Albuquerque, N. M., and New York City for a single six-month heating season. The primary approach to comparing various storage alternatives is to allow the collector area and storage mass to vary until a minimum cost combination is achieved. In the Albuquerque location collector area of 325 ft/sup 2/, water storage mass of 12.5 lb/ft/sup 2/ of collector area, and phase change mass of 6.25 lb/ft/sup 2/ of collector area results in minimum cost systems, each of which delivers about 50% of the total building demand. The primary conclusion is that, using current costs for materials and containers, water is the cheapest storage alternative for heating applications in both Albuquerque and New York City. The cost of containing or encapsulating phase change materials, coupled with their small system performance advantage, is the main reason for this conclusion. The use of desiccant materials for thermal storage is considered to be impractical due to irreversibilities in thermal cycling.

  3. Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C

    Directory of Open Access Journals (Sweden)

    José Miguel Maldonado

    2018-04-01

    Full Text Available The improvement of thermal energy storage systems implemented in solar technologies increases not only their performance but also their dispatchability and competitiveness in the energy market. Latent heat thermal energy storage systems are one of those storing methods. Therefore, the need of finding the best materials for each application becomes an appealing research subject. The main goal of this paper is to find suitable and economically viable materials able to work as phase change material (PCM within the temperature range of 210–270 °C and endure daily loading and unloading processes in a system with Fresnel collector and an organic Rankine cycle (ORC. Twenty-six materials have been tested and characterized in terms of their thermophysical conditions, thermal and cycling stability, and health hazard. Two materials out of the 26 candidates achieved the last stage of the selection process. However, one of the two finalists would require an inert working atmosphere, which would highly increase the cost for the real scale application. This leads to a unique suitable material, solar salt (40 wt % KNO3/60 wt % NaNO3.

  4. Green chemistry solutions for sol–gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Romero-Sanchez Maria Dolores

    2018-01-01

    Full Text Available NaNO3 has been selected as phase change material (PCM due to its convenient melting and crystallization temperatures for thermal energy storage (TES in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks. As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2 instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C. Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  5. Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications

    International Nuclear Information System (INIS)

    Sugo, Heber; Kisi, Erich; Cuskelly, Dylan

    2013-01-01

    New high energy-density thermal storage materials are proposed which use miscibility gap binary alloy systems to operate through the latent heat of fusion of one component dispersed in a thermodynamically stable matrix. Using trial systems Al–Sn and Fe–Cu, we demonstrate the development of the required inverse microstructure (low melting point phase embedded in high melting point matrix) and excellent thermal storage potential. Several other candidate systems are discussed. It is argued that such systems offer enhancement over conventional phase change thermal storage by using high thermal conductivity microstructures (50–400 W/m K); minimum volume of storage systems due to high energy density latent heat of fusion materials (0.2–2.2 MJ/L); and technical utility through adaptability to a great variety of end uses. Low (<300 °C), mid (300–400 °C) and high (600–1400 °C) temperature options exist for applications ranging from space heating and process drying to concentrated solar thermal energy conversion and waste heat recovery. -- Highlights: ► Alloys of immiscible metals are proposed as thermal storage systems. ► High latent heat of fusion per unit volume and tunable temperature are advantageous. ► Thermal storage systems with capacities of 0.2–2.2 MJ/L are identified. ► Heat delivery is via a rigid non-reactive high thermal conductivity matrix. ► The required inverse microstructures were developed for Sn–Al and Cu–Fe systems

  6. Thermal contact resistance in carbon nanotube enhanced heat storage materials

    NARCIS (Netherlands)

    Zhang, H.; Nedea, S.V.; Rindt, C.C.M.; Smeulders, D.M.J.

    2015-01-01

    Solid-liquid phase change is one of the most favorable means of compact and economical heat storage in the built environment. In such storage systems, the vast available solar heat is stored as latent heat in the storage materials. Recent studies suggest using sugar alcohols as seasonal heat storage

  7. Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Cheng Wenlong; Liu Na; Wu Wanfan

    2012-01-01

    In order to overcome the difficulty of conventional phase change materials (PCMs) in packaging, the shape-stabilized PCMs are proposed to be used in the electronic device thermal control. However, the conventional shape-stabilized PCMs have the drawback of lower thermal conductivity, so a new shape-stabilized PCM with high thermal conductivity, which is suitable for thermal control of electronic devices, is prepared. The thermal properties of n-octadecane-based shape-stabilized PCM are tested and analyzed. The heat storage/release performance is studied by numerical simulation. Its thermal control effect for electronic devices is also discussed. The results show that the expanded graphite (EG) can greatly improve the thermal conductivity of the material with little effect on latent heat and phase change temperature. When the mass fraction of EG is 5%, thermal conductivity has reached 1.76 W/(m K), which is over 4 times than that of the original one. Moreover, the material has larger latent heat and good thermal stability. The simulation results show that the material can have good heat storage/release performance. The analysis of the effect of thermal parameters on thermal control effect for electronic devices provides references to the design of phase change thermal control unit. - Highlights: ► A new shape-stabilized PCM with higher thermal conductivity is prepared. ► The material overcomes the packaging difficulty of traditional PCMs used in thermal control unit. ► The EG greatly improves thermal conductivity with little effect on latent heat. ► The material has high thermal stability and good heat storage/release performance. ► The effectiveness of the material for electronic device thermal control is proved.

  8. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P

    2014-01-01

    Full Text Available in the near term. Sensible heat storage in packed beds involves a random packing of ceramic pebbles/particles in an insulated container. The temperature change of the solid during charging/discharging is used to store/release thermal energy. The primary... the packed bed due to vaporization and condensation effects. 2.3. Macro-encapsulation of PCM In the macro-encapsulation approach the PCM is retained within a hollow shell material. The shell can be preformed, filled with a molten PCM and sealed; or it can...

  9. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage

    International Nuclear Information System (INIS)

    Chen, Changzhong; Liu, Wenmin; Wang, Hongwei; Peng, Kelin

    2015-01-01

    Highlights: • Three new kinds of SSPCMs were synthesized with different skeleton materials. • The phase change properties and thermal stability of SSPCMs were investigated. • The maximum enthalpy in heating (cooling) process is 107.5 kJ/kg (102.9 kJ/kg). • The rigid groups and crosslinking structure of SSPCMs improve the thermal stability. • The SSPCMs could be applied in the temperature range of 30–70 °C. - Abstract: Three kinds of new polymeric SSPCMs with different crosslinking structures were synthesized and characterized for thermal energy storage. In the SSPCMs, three hexahydroxy compounds (sorbitol, dipentaerythritol and inositol) were individually employed as the molecular skeleton and polyethylene glycol (PEG) was used as the phase change functional chain. The molecular structure, crystalline properties, phase change behaviors, thermal reliability and stability of the synthesized SSPCMs were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetry (TG), respectively. The results show that the prepared SSPCMs possess high thermal energy storage density and an applicable temperature range of 30–70 °C, and the maximum phase change enthalpy in the heating and cooling process for the SSPCMs is 107.5 kJ/kg and 102.9 kJ/kg, respectively. The prepared SSPCMs have good reusability, excellent thermal reliability and stability from the heating-cooling thermal cycle test and TG curves. The resultant SSPCMs could be potentially applied in the areas of thermal energy storage and temperature-control

  10. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    Science.gov (United States)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  11. Thermal energy storage using chloride salts and their eutectics

    International Nuclear Information System (INIS)

    Myers, Philip D.; Goswami, D. Yogi

    2016-01-01

    Achieving the goals of the U.S. Department of Energy (DOE) Sunshot initiative requires (1) higher operating temperatures for concentrating solar power (CSP) plants to increase theoretical efficiency, and (2) effective thermal energy storage (TES) strategies to ensure dispatchability. Current inorganic salt-based TES systems in large-scale CSP plants generally employ molten nitrate salts for energy storage, but nitrate salts are limited in application to lower temperatures—generally, below 600 °C. These materials are sufficient for parabolic trough power plants, but they are inadequate for use at higher temperatures. At the higher operating temperatures achievable in solar power tower-type CSP plants, chloride salts are promising candidates for application as TES materials, owing to their thermal stability and generally lower cost compared to nitrate salts. In light of this, a recent study was conducted, which included a preliminary survey of chloride salts and binary eutectic systems that show promise as high temperature TES media. This study provided some basic information about the salts, including phase equilibria data and estimates of latent heat of fusion for some of the eutectics. Cost estimates were obtained through a review of bulk pricing for the pure salts among various vendors. This review paper updates that prior study, adding data for additional salt eutectic systems obtained from the literature. Where possible, data are obtained from the thermodynamic database software, FactSage. Radiative properties are presented, as well, since at higher temperatures, thermal radiation becomes a significant mode of heat transfer. Material compatibility for inorganic salts is another important consideration (e.g., with regard to piping and/or containment), so a summary of corrosion studies with various materials is also presented. Lastly, cost data for these systems are presented, allowing for meaningful comparison among these systems and other materials for TES

  12. New composites graphite/salt for high temperature thermal energy storage: From elaboration to development of thermal characterization methods for orthotropic conductive materials

    International Nuclear Information System (INIS)

    Acem, Zoubir

    2007-01-01

    This PhD is carried out within the framework of DISTOR (European) and HTPSTOCK (French) projects, which have for objective to conceive and study new graphite/salt composites dedicated to high temperature energy storage (>200 deg. C). She is split into two distinct part. The first one focused mainly on works linked with elaboration and thermal characterisation of these new composites. The different composites ways of elaboration (Dispersion, uniaxial compression, isostatic) associated to the different kind of graphite (Natural expanded graphite (ENG), synthetic graphite) investigated during the PhD are presented. The results of the thermal characterization campaign of these composites are also presented and permit to highlight the impact of graphite in the thermal behaviour of studied materials. Based on these results, modelling studies of the evolution of the thermal conductivity have been undertaken to deepen the understanding of the effect of graphite (quantity, size of particles) on the effective conductivity composites. The second one describes the thermal characterization devices and associated thermo-kinetics models which had to be developed and adapted to the specificities of newly developed materials. This concerns mainly the materials prepared by compression, which present orthotropic properties and are difficult to reproduce. So, the characterization of this kind of material is very difficult and tedious. That is why we are committed to develop and adapt existing methods of characterization to allow the complete thermal characterisation of an orthotropic conductive material from a single experimentation on a single sample. (author) [fr

  13. Thermodynamic analysis of a thermal storage unit under the influence of nano-particles added to the phase change material and/or the working fluid

    Science.gov (United States)

    Abolghasemi, Mehran; Keshavarz, Ali; Mehrabian, Mozaffar Ali

    2012-11-01

    The thermal storage unit consists of two concentric cylinders where the working fluid flows through the internal cylinder and the annulus is filled with a phase change material. The system carries out a cyclic operation; each cycle consists of two processes. In the charging process the hot working fluid enters the internal cylinder and transfers heat to the phase change material. In the discharging process the cold working fluid enters the internal cylinder and absorbs heat from the phase change material. The differential equations governing the heat transfer between the two media are solved numerically. The numerical results are compared with the experimental results available in the literature. The performance of an energy storage unit is directly related to the thermal conductivity of nano-particles. The energy consumption of a residential unit whose energy is supplied by a thermal storage system can be reduced by 43 % when using nano-particles.

  14. Preparation, microstructure and thermal properties of Mg−Bi alloys as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang, Dong; Sun, Zheng; Li, Yuanyuan; Cheng, Xiaomin

    2016-01-01

    Highlights: • The microstructure and thermal properties of Mg−Bi alloys are determined. • The relationship between melting enthalpies and phase composition are studied. • The activation energy of Mg−54%Bi alloy is calculated by multiple DSC technology. • Mg−54%Bi alloy is proposed as a phase change material at high (>420 °C) temperature. - Abstract: Comparing with Al-based phase change material, Mg-based phase change material is getting more and more attention due to its high corrosion resistance with encapsulation materials based on iron. This study focuses on the characterization of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi (wt. %) alloys as phase change materials for thermal energy storage at high temperature. The phase compositions, microstructure and phase change temperatures were investigated by X-ray diffusion (XRD), electron probe micro-analysis (EPMA) and differential scanning calorimeter (DSC) analysis, respectively. The results indicates that the microstructure of Mg−36%Bi and Mg−54%Bi alloys are mainly composed of α-Mg matrix and α-Mg + Mg_3Bi_2 eutectic phases, Mg−60%Bi alloy are mainly composed of the Mg_3Bi_2 phase and α-MgMg_3Bi_2 eutectic phases. The melting enthalpies of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi alloys are 138.2, 180.5 and 48.7 J/g, with the phase change temperatures of 547.6, 546.3 and 548.1 °C, respectively. The Mg−54%Bi alloy has the highest melting enthalpy in three alloys. The main reason may be that it has more proportion of α-Mg + Mg_3Bi_2 eutectic phases. The thermal expansion of three alloys increases with increasing temperature. The values of the thermal conductivity decrease with increasing Bi content. Besides, the activation energy of Mg−54%Bi was calculated by multiple DSC technology.

  15. Thermal characteristic investigation of eutectic composite fatty acid as heat storage material for solar heating and cooling application

    Science.gov (United States)

    Thaib, R.; Fauzi, H.; Ong, H. C.; Rizal, S.; Mahlia, T. M. I.; Riza, M.

    2018-03-01

    A composite phase change material (CPCM) of myristic acid/palmitic acid/sodium myristate (MA/PA/SM) and of myristic acid/palmitic acid/sodium laurate (MA/PA/SL) were impregnated with purified damar gum as called Shorea Javanica (SJ) to improve the thermal conductivity of CPCM. The thermal properties, thermal conductivity, and thermal stability of both CPCM have investigated by using a Differential Scanning Calorimetry (DSC) thermal analysis, hot disc thermal conductivity analyzer, and Simultaneous Thermal Analyzer (STA), simultaneously. However, a chemical compatibility between both fatty acid eutectic mixtures and SJ in composite mixtures measured by Fourier Transform Infra-Red (FT-IR) spectrophotometer. The results were obtained that the thermal conductivity of MA/PA/SM/SJ and MA/PA/SL/SJ eutectic composite phase change material (CPCM) were improved by addition 3 wt.% and 2 wt.% of Shorea javanica (SJ), respectively, without occur a significant change on thermal properties of CPCM. Moreover, the absorbance spectrum of FT-IR shows the good compatibility of SJ with both MA/PA/SM and MA/PA/SL eutectic mixtures, the composite PCM also present good thermal performance and good thermal stability. Therefore, it can be noted that the purified Shorea Javanica proposed, the as high conductive material in this study was able to improve the thermal conductivity of eutectic PCM without any significant reduction on its thermo-physical and chemical properties and can be recommended as novelty composite phase change material for thermal energy storage application.

  16. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  17. Phase change materials in non-volatile storage

    OpenAIRE

    Ielmini, Daniele; Lacaita, Andrea L.

    2011-01-01

    After revolutionizing the technology of optical data storage, phase change materials are being adopted in non-volatile semiconductor memories. Their success in electronic storage is mostly due to the unique properties of the amorphous state where carrier transport phenomena and thermally-induced phase change cooperate to enable high-speed, low-voltage operation and stable data retention possible within the same material. This paper reviews the key physical properties that make this phase so s...

  18. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  19. Thermal properties and heat storage analysis of palmitic acid-TiO_2 composite as nano-enhanced organic phase change material (NEOPCM)

    International Nuclear Information System (INIS)

    Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C.

    2016-01-01

    Highlights: • Novel composite of palmitic acid and TiO_2 nanoparticles with enhanced thermal energy storage capabilities • The composite is thermally reliable and chemically stable. • Thermal conductivity of the composite increases significantly with the loading. - Graphical Abstract: - Abstract: In the present study, the phase change behavior of prepared novel composites of palmitic acid and solid nanoparticles of titanium dioxide (TiO_2) for thermal energy storage has been investigated. The nanoparticles are dispersed into the base fluid in various mass fractions (0.5, 1, 3, and 5%), and their effects on the thermo-physical properties have been investigated. Structural analysis has been carried out by using FESEM, and crystallography was checked by XRD technique. The chemical/functional groups of the base fluid and composite PCMs have been analyzed by using FT-IR spectrum. The observations showed that the TiO_2 nanoparticles do not affect the chemical structure of palmitic acid; however they improve the chemical stability. The phase transition temperature and latent heat of fusion has shown the significant stability with the increase in nanoparticle weight fractions. The accelerated thermal cycle test of the composite shows good thermal reliability for 1500 melt/freeze cycles. Thermal conductivity of palmitic acid increased gradually by 12.7, 20.6, 46.6, and 80% for the nanoparticle weight fractions of 0.5, 1, 3, and 5% respectively. Based on the results, it can be mentioned that the prepared palmitic acid based nano-enhanced organic phase change composite materials can be very well used as potential solar thermal energy storage materials.

  20. KNO3/NaNO3 - Graphite materials for thermal energy storage at high temperature: Part I. - Elaboration methods and thermal properties

    International Nuclear Information System (INIS)

    Acem, Zoubir; Lopez, Jerome; Palomo Del Barrio, Elena

    2010-01-01

    Composites graphite/salt for thermal energy storage at high temperature (∼200 deg. C) have been developed and tested. As at low temperature in the past, graphite has been used to enhance the thermal conductivity of the eutectic system KNO 3 /NaNO 3 . A new elaboration method has been proposed as an alternative to graphite foams infiltration. It consists of cold-compression of a physical mixing of expanded natural graphite particles and salt powder. Two different compression routes have been investigated: uni-axial compression and isostatic compression. The first part of the paper has been devoted to the analysis of the thermal properties of these new graphite/salt composites. It is proven that cold-compression is a simple and efficient technique for improving the salt thermal conductivity. For instance, graphite amounts between 15 and 20%wt lead to apparent thermal conductivities close to 20 W/m/K (20 times greater than the thermal conductivity of the salt). Furthermore, some advantages in terms of cost and safety are expected because materials elaboration is carried out at room temperature. The second part of the paper is focused on the analyses of the phase transition properties of these graphite/salt composites materials.

  1. Study of Aquifer Thermal Energy Storage

    Science.gov (United States)

    Okuyama, Masaaki; Umemiya, Hiromichi; Shibuya, Ikuko; Haga, Eiji

    Yamagata University 'Aquifer Thermal Energy Storage (ATES)' is the experimental system which has been running since 1982. From the results for along terms of experiments, we obtain many important knowledge. This paper presents the accomplishments for 16 years and the characteristics of thermal energy storage in thermal energy storage well. The conclusions show as follows. 1)In recent years, the thermal recovery factor of warm energy storage well becomes almost constant at about 60%. 2) The thermal recovery factor of cool energy storage well increases gradually and becomes at about 15%. 3) Since the ferric colloidal dam is formed in aquifer, thermal recovery factor increase year after year. 4) Back wash can remove clogging for ferric colloidal dam. 5) The apparent thermal diffusivity decrease gradually due to ferric colloidal dam.

  2. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Technologies LLC, Minneapolis, MN (United States)

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the

  3. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37 0 C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8 0 C (100 0 F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance

  4. Thermal Performance of the Storage Brick Containing Microencapsulated PCM

    International Nuclear Information System (INIS)

    Lee, Dong Gyu

    1998-02-01

    The utilization of microencapsulated phase change materials(PCMs) provides several advantages over conventional PCM application. The heat storage system, as well as heat recovery system, can be built to a smaller size than the normal systems for a given thermal cycling capacity. This microencapsulated PCM technique has not yet been commercialized, however. In this work sodium acetate trihydrate(CH 3 COONa · 3H 2 O) was selected for the PCM and was encapsulated. This microencapsulated PCM was mixed with cement mortar for utilization as a floor heating system. In this experiment performed here the main purpose was to investigate the thermal performance of a storage brick with microencapsulated PCM concentration. The thermal performance of this storage brick is dependent on PCM concentration, flow rate and cooling temperature of the heat transfer fluid, etc. The results showed that cycle time was shortened as the PCM content was increased and as the mass flow rate was increased. The same effect was obtained when the cooling temperature was decreased. For each thermal storage brick the overall heat transfer coefficient(U-value) was constant for a 0% brick, but was increased with time for the bricks containing microencapsulated PCM. For the same mass flow rate, as the cooling temperature decreased, the amount of heat withdrawn increased, and in particular a critical cooling temperature was found for each thermal storage brick. The average effectiveness of each thermal storage brick was found to be approximately 48%, 51% and 58% respectively

  5. Thermal Feature of a Modified Solar Phase Change Material Storage Wall System

    Directory of Open Access Journals (Sweden)

    Chenglong Luo

    2018-01-01

    Full Text Available This work is to study a novel solar PCM storage wall technology, that is, a dual-channel and thermal-insulation-in-the-middle type solar PCM storage wall (MSPCMW system. The system has the following four independent functions, passive solar heating, heat preservation, heat insulation, and passive cooling, and it can agilely cope with the requirements of climatization of buildings in different seasons throughout the year and is exactly suitable for building in regions characterized by hot summer and cold winter. The present work experimentally analyzes thermal feature of the system working in summer and winter modes, respectively.

  6. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    Science.gov (United States)

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  7. Experimental investigation of thermal storage integrated micro trigeneration system

    International Nuclear Information System (INIS)

    Johar, Dheeraj Kishor; Sharma, Dilip; Soni, Shyam Lal; Goyal, Rahul; Gupta, Pradeep K.

    2017-01-01

    Highlights: • Energy Storage System is integrated with Micro trigeneration system. • Erythritol is used as Phase Change Material. • Maximum energy saved is 15.30%. • Combined systems are feasible to increase energy efficiency. - Abstract: In this study a 4.4 kW stationary compression ignition engine is coupled with a double pipe heat exchanger, vapour absorption refrigeration system and thermal energy storage system to achieve Trigeneration i.e. power, heating and cooling. A shell and tube type heat exchanger filled with erythritol is used to store thermal energy of engine exhaust. Various combinations of thermal energy storage system integrated micro-trigeneration were investigated and results related to performance and emissions are reported in this paper. The test results show that micro capacity (4.4 kW) stationary single cylinder diesel engine can be successfully modified to simultaneously produce power, heating and cooling and also store thermal energy.

  8. Study of Material Compatibility for a Thermal Energy Storage System with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Songgang Qiu

    2018-03-01

    Full Text Available The suitability of stainless steel 316L and Inconel 625 for use in a latent heat thermal energy storage (TES system was investigated. A NaCl–NaF eutectic mixture with a melting temperature of 680 °C was used as the phase change material (PCM. Containers were filled with the PCM prior to heating to 750 °C, then examined after 100 and 2500 h of high-temperature exposure by analyzing the material surface and cross-section areas. A small amount of corrosion was present in both samples after 100 h. Neither sample suffered significant damage after 2500 h. The undesirable inter-granular grain boundary attack found in SS316L samples was in the order of 1–2 µm in depth. On Inconel 625 sample surface, an oxide complex formed, resisting material dissolution into the PCM. The surface morphology of tested samples remained largely unchanged after 2500 h, but the corrosion pattern changed from an initially localized corrosion penetration to a more uniform type. After 2500 h, the corrosion depth of Inconel 625 remained at roughly 1–2 µm, indicating that the corrosion rate decelerated. Both materials demonstrated good compatibility with the chosen NaF–NaCl eutectic salt, but the low corrosion activity in Inconel 625 samples shows a performance advantage for long term operation.

  9. Design Considerations of a Solid State Thermal Energy Storage

    Science.gov (United States)

    Janbozorgi, Mohammad; Houssainy, Sammy; Thacker, Ariana; Ip, Peggy; Ismail, Walid; Kavehpour, Pirouz

    2016-11-01

    With the growing governmental restrictions on carbon emission, renewable energies are becoming more prevalent. A reliable use of a renewable source however requires a built-in storage to overcome the inherent intermittent nature of the available energy. Thermal design of a solid state energy storage has been investigated for optimal performance. The impact of flow regime, laminar vs. turbulent, on the design and sizing of the system is also studied. The implications of low thermal conductivity of the storage material are discussed and a design that maximizes the round trip efficiency is presented. This study was supported by Award No. EPC-14-027 Granted by California Energy Commission (CEC).

  10. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  11. Analysis of thermal energy storage material with change-of-phase volumetric effects

    Science.gov (United States)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    NASA's Space Station Freedom proposed hybrid power system includes photovoltaic arrays with nickel hydrogen batteries for energy storage and solar dynamic collectors driving Brayton heat engines with change-of-phase Thermal Energy Storage (TES) devices. A TES device is comprised of multiple metallic, annular canisters which contain a eutectic composition LiF-CaF2 Phase Change Material (PCM) that melts at 1040 K. A moderately sophisticated LiF-CaF2 PCM computer model is being developed in three stages considering 1-D, 2-D, and 3-D canister geometries, respectively. The 1-D model results indicate that the void has a marked effect on the phase change process due to PCM displacement and dynamic void heat transfer resistance. Equally influential are the effects of different boundary conditions and liquid PCM natural convection. For the second stage, successful numerical techniques used in the 1-D phase change model are extended to a 2-D (r,z) PCM containment canister model. A prototypical PCM containment canister is analyzed and the results are discussed.

  12. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials

    International Nuclear Information System (INIS)

    Huang, Jin; Wang, Tingyu; Zhu, Panpan; Xiao, Junbin

    2013-01-01

    Highlights: ► Phase change point and fusion heat of samples are about 51 °Cand 150 J/g respectively. ► DSC results indicated the core material is not Na 2 HPO 4 ·12H 2 O but Na 2 HPO 4 ·7H 2 O. ► Encapsulation takes a significant role in reducing subcooling degree. - Abstract: Microcapsules loaded by disodium hydrogen phosphate heptahydrate (Na 2 HPO 4 ·7H 2 O) were prepared by means of the suspension copolymerization-solvent volatile method, with modified polymethylmethacrylate (PMMA) as coating polymer under the conditions of various organic solvents. The formation of the microencapsulated phase change materials (MEPCMs)-PMMA/Na 2 HPO 4 ·7H 2 O was investigated and analyzed. The morphology of the resultant materials was characterized by using scanning electron microscope (SEM) and phase contrast microscope. Its final composition was confirmed by the Fourier transformation infrared (FT-IR). Thermo gravimetric analyzer (TGA) and differential scanning calorimetry (DSC) were adopted to reveal its thermal stability and thermal properties. Results indicated that the materials owned improved subcooling degree and good thermal properties, enabling the materials to be one promising phase change materials for thermal energy storage

  13. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jin, E-mail: huangjiner@126.com [School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou (China); Wang, Tingyu; Zhu, Panpan; Xiao, Junbin [School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou (China)

    2013-04-10

    Highlights: ► Phase change point and fusion heat of samples are about 51 °Cand 150 J/g respectively. ► DSC results indicated the core material is not Na{sub 2}HPO{sub 4}·12H{sub 2}O but Na{sub 2}HPO{sub 4}·7H{sub 2}O. ► Encapsulation takes a significant role in reducing subcooling degree. - Abstract: Microcapsules loaded by disodium hydrogen phosphate heptahydrate (Na{sub 2}HPO{sub 4}·7H{sub 2}O) were prepared by means of the suspension copolymerization-solvent volatile method, with modified polymethylmethacrylate (PMMA) as coating polymer under the conditions of various organic solvents. The formation of the microencapsulated phase change materials (MEPCMs)-PMMA/Na{sub 2}HPO{sub 4}·7H{sub 2}O was investigated and analyzed. The morphology of the resultant materials was characterized by using scanning electron microscope (SEM) and phase contrast microscope. Its final composition was confirmed by the Fourier transformation infrared (FT-IR). Thermo gravimetric analyzer (TGA) and differential scanning calorimetry (DSC) were adopted to reveal its thermal stability and thermal properties. Results indicated that the materials owned improved subcooling degree and good thermal properties, enabling the materials to be one promising phase change materials for thermal energy storage.

  14. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials

    International Nuclear Information System (INIS)

    Lv, Peizhao; Liu, Chenzhen; Rao, Zhonghao

    2016-01-01

    Highlights: • Different particle sizes of kaolin were employed to load paraffin. • The effects and reasons of particle size on thermal conductivity were studied. • Thermal property and thermal stability of the composites were investigated. • The leakage and thermal storage and release rate of the composites were studied. • The effect of vacuum impregnation method on thermal conductivity was investigated. - Abstract: In this paper, different particle sizes of kaolin were employed to incorporate paraffin via vacuum impregnation method. The paraffin/kaolin composites were characterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeter (DSC) and Thermogravimetry (TG). The results showed that the paraffin/kaolin composite with the largest particle size of kaolin (K4) has the highest thermal conductivity (0.413 W/(m K) at 20 °C) among the diverse composites. The latent heat capacity of paraffin/K4 is 119.49 J/g and the phase change temperature is 62.4 °C. In addition, the thermal properties and thermal conductivities of paraffin/K4 with different mass fraction of K4 (0–60%) were investigated. The thermal conductivities of the composites were explained in microcosmic field. The phonon mean free path determines the thermal conductivity, and it can be significantly affected by temperature and the contact surface area. The leaks, thermal storage and release properties of pure paraffin and paraffin/kaolin composites were investigated and the composites presented good thermal stabilities.

  15. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management

    International Nuclear Information System (INIS)

    Wu, Weixiong; Zhang, Guoqing; Ke, Xiufang; Yang, Xiaoqing; Wang, Ziyuan; Liu, Chenzhen

    2015-01-01

    Highlights: • A kind of composite phase change material board (PCMB) is prepared and tested. • PCMB presents a large thermal storage capacity and enhanced thermal conductivity. • PCMB displays much better cooling effect in comparison to natural air cooling. • PCMB presents different cooling characteristics in comparison to ribbed radiator. - Abstract: A kind of phase change material board (PCMB) was prepared for use in the thermal management of electronics, with paraffin and expanded graphite as the phase change material and matrix, respectively. The as-prepared PCMB presented a large thermal storage capacity of 141.74 J/g and enhanced thermal conductivity of 7.654 W/(m K). As a result, PCMB displayed much better cooling effect in comparison to natural air cooling, i.e., much lower heating rate and better uniformity of temperature distribution. On the other hand, compared with ribbed radiator technology, PCMB also presented different cooling characteristics, demonstrating that they were suitable for different practical application

  16. Enhanced Thermal Properties of Novel Latent Heat Thermal Storage Material Through Confinement of Stearic Acid in Meso-Structured Onion-Like Silica

    Science.gov (United States)

    Gao, Junkai; Lv, Mengjiao; Lu, Jinshu; Chen, Yan; Zhang, Zijun; Zhang, Xiongjie; Zhu, Yingying

    2017-12-01

    Meso-structured onion-like silica (MOS), which had a highly ordered, onion-like multilayer; large surface area and pore volume; and highly curved mesopores, were synthesized as a support for stearic acid (SA) to develop a novel shape-stabilized phase change material (SA/MOS). The characterizations of SA/MOS were studied by the analysis technique of scanning electron microscope, infrared spectroscopy, x-ray diffraction, differential scanning calorimeter (DSC), and thermal gravimetry analysis (TGA). The results showed that the interaction between the SA and the MOS was physical adsorption and that the MOS had no effect on the crystal structure of the SA. The DSC results suggested that the melting and solidifying temperature of the SA/MOS were 72.7°C and 63.9°C with a melting latent heat of 108.0 J/g and a solidifying latent heat of 126.0 J/g, respectively, and the TGA results indicated that the SA/MOS had a good thermal stability. All of the results demonstrated that the SA/MOS was a promising thermal energy storage material candidate for practical applications.

  17. Myo-inositol based nano-PCM for solar thermal energy storage

    International Nuclear Information System (INIS)

    Singh, D.K.; Suresh, S.; Singh, H.; Rose, B.A.J.; Tassou, S.; Anantharaman, N.

    2017-01-01

    Highlights: • Properties of Myo-Inositol laden with Al_2O_3 and CuO nanoparticles was studied. • The melting point was found to increase for MI-A and decrease for MI-C. • MI interacted only physically on addition of NPs. • Mass changes were <3% after thermal cycling of MI-A and MI-C. • MI-A is more suited for thermal energy storage than MI-C. - Abstract: The thermo-physical behavior of Myo-Inositol (MI), (a sugar alcohol), was investigated as a potential material for developing more compact solar thermal energy storage systems than those currently available. This latent heat storage medium could be utilized for commercial and industrial applications using solar thermal energy storage in the temperature range of 160–260 °C, if its thermal performance was modified. The objective of this investigation was to determine via experimentation, if Al_2O_3 and CuO nanoparticles dispersed in pure MI for mixtures of 1, 2 and 3% (by weight) improved the thermal performance of MI for solar thermal energy systems. Nanoparticles only physically interacted with MI, and not chemically, even after 50 thermal cycles. The distribution of CuO nanoparticles in the nano-PCM was found to be more uniform than alumina nanoparticles. After cycling, nano-MIs studied here suffered a lower decrease in heat of fusion than pure MI, which makes nano-MIs more suitable for solar thermal storage applications at 160–260 °C. Between CuO and Al_2O_3 nanoparticles, latter was found to be more suitable for compact solar thermal energy storage owing to an increase in melting point observed.

  18. Use of filler materials to aid spent nuclear fuel dry storage

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1981-09-01

    The use of filler materials (also known as stabilizer or encapsulating materials) was investigated in conjunction with the dry storage of irradiated light water reactor (LWR) fuel. The results of this investigation appear to be equally valid for the wet storage of fuel. The need for encapsulation and suitable techniques for closing was also investigated. Various materials were reviewed (including solids, liquids, and gases) which were assumed to fill the void areas within a storage can containing either intact or disassembled spent fuel. Materials were reviewed and compared on the basis of cost, thermal characteristics, and overall suitability in the proposed environment. A thermal analysis was conducted to yield maximum centerline and surface temperatures of a design basis fuel encapsulated within various filler materials. In general, air was found to be the most likely choice as a filler material for the dry storage of spent fuel. The choice of any other filler material would probably be based on a desire, or need, to maximize specific selection criteria, such as surface temperatures, criticality safety, or confinement

  19. PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates

    International Nuclear Information System (INIS)

    Guarino, Francesco; Athienitis, Andreas; Cellura, Maurizio; Bastien, Diane

    2017-01-01

    Highlights: • This paper analyzes the performance of a building-integrated thermal storage system. • A wall opposing a glazed surface serves as phase change materials thermal storage. • The study is based on both experimental and simulation studies. • Heat is stored and released up to 6–8 h after solar irradiation. • Yearly heating requirements are reduced by 17% in a cold climate. - Abstract: As energy availability and demand often do not match, thermal energy storage plays a crucial role to take advantage of solar radiation in buildings: in particular, latent heat storage via phase-change material is particularly attractive due to its ability to provide high energy storage density. This paper analyzes the performance of a building-integrated thermal storage system to increase the energy performances of solaria in a cold climate. A wall opposing a highly glazed façade (south oriented) is used as thermal storage with phase change materials embedded in the wall. The study is based on both experimental and simulation studies. The concept considered is particularly suited to retrofits in a solarium since the PCM can be added as layers facing the large window on the vertical wall directly opposite. Results indicate that this PCM thermal storage system is effective during the whole year in a cold climate. The thermal storage allows solar radiation to be stored and released up to 6–8 h after solar irradiation: this has effects on both the reduction of daily temperature swings (up to 10 °C) and heating requirements (more than 17% on a yearly base). Coupling of the thermal storage system with natural ventilation is important during mid-seasons and summer to improve the PCM charge-discharge cycles and to reduce overheating. Results also show that cooling is less important than heating, reaching up to 20% of the overall annual energy requirements for the city of Montreal, Canada. Moreover, the phase change temperature range of the material used (18–24

  20. Enhanced safety in the storage of fissile materials

    International Nuclear Information System (INIS)

    Williams, G.E.; Alvares, N.J.

    1978-01-01

    An inexpensive boron-loaded liner of epoxy resin for fissile-material storage containers was developed that can be easily fabricated of readily available, low-cost materials. Computer calculations indicate reactivity will be reduced substantially if this neutron-absorbing liner is added to containers in a typical storage array. These calculations compare favorably with neutron-attenuation experiments with thermal and fission neutron spectra, and tests at the Fire Test Facility indicate the epoxy resin will survive extreme environmental and accident conditions. The fire-resistant and insulating properties of the epoxy-resin liner further augment its ability to protect fissile materials. Boron-loaded epoxy resin is adaptable to many tasks but is particularly useful for providing enhanced criticality safety in the packaging and storage of fissile materials

  1. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2006-01-01

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period

  2. Fabrication and characterization of stearic acid/polyaniline composite with electrical conductivity as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Yi; Ji, Hui; Shi, Huan; Zhang, Ting; Xia, TianDong

    2015-01-01

    Highlights: • Stearic acid/polyaniline composite PCM with electrical conductivity was fabricated. • Stearic acid acted as thermal energy storage media and doping acid. • Latent heats of SA/PANI are as high as the same type composites. • Improved electrical conductivity of capsules is 0.7042 S cm −1 . - Abstract: This paper presents the experimental investigation on the thermal properties and electrical conductivity of the new microencapsulated phase change material by entrapping of stearic acid (SA) into PANI (polyaniline) shell through self-assembly method. Experimental results reveal that PANI nuclei grew on the surface of SA, and then copied its original morphological structure and finally exhibited peony flower-like morphology. The two components have good compatibility and have no chemical reaction both in the process of fabrication and subsequent use, while hydrogen bondings between the imino groups and carboxyl groups exist. The maximum mass fraction of stearic acid loaded in SA/PANI is determined as high as 62.1 wt% without seepage of melted SA from capsules. Due to the secondary doping with carboxyl group, the composite phase change material embedded with SA exhibits improved electrical conductivity from 0.3968 S cm −1 to 0.7042 S cm −1 when compared to PANI. The phase change temperatures and latent heats of SA/PANI are measured to be 55.6 °C and 113.02 J/g for melting and, 50.8 °C and 112.58 J/g for freezing, respectively. TG analysis test revealed that the prepared SA/PANI composite PCM has high thermal durability in working temperature range. Moreover, the results of DSC, FT-IR, TG, conductivity investigation and thermal cycling test are all show that the thermal reliability and electrical conductivity of the SA/APNI have imperceptible changes. In total, the additional electrical conductivity, high heat storage potential and good thermal reliability and stability facilitated SA/PANI to be considered as a viable candidate for thermal

  3. Charging-discharging characteristics of macro-encapsulated phase change materials in an active thermal energy storage system for a solar drying kiln

    Directory of Open Access Journals (Sweden)

    Kumar Shailendra

    2017-01-01

    Full Text Available The present study explores suitability of two phase change materials (PCM for development of an active thermal storage system for a solar drying kiln by studying their melting and solidification behaviors. A double glass glazing prototype solar kiln was used in the study. The storage system consisted of a water storage tank with PCM placed inside the water in high density polyethylene containers. The water in the tank was heated with help of solar energy using an evacuated tube collector array. The melting and solidification temperature curves of PCM were obtained by charging and discharging the water tank. The study illustrated the utility of the PCM in using the stored thermal energy during their discharge to enhance the temperature inside the kiln. The rate of temperature reduction was found to be higher for paraffin wax as compared to a fatty acid based PCM. The water temperature during the discharge of the PCM showed dependence on the discharge characteristics of each PCM suggesting their suitability in designing active thermal storage systems.

  4. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  5. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  6. New kinds of energy-storing building composite PCMs for thermal energy storage

    International Nuclear Information System (INIS)

    Biçer, Alper; Sarı, Ahmet

    2013-01-01

    Graphical abstract: In this work, 10 new kinds of BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters into gypsum, cement, diatomite, perlite and vermiculite. DSC results showed that the melting temperatures and energy storage capacities of the prepared BCPCMs are in range of about 40–55 °C and 31–126 J/g, respectively. TG investigations and thermal cycling test showed that the BCPCMs had good thermal endurance and thermal reliability. It can be also concluded that among the prepared 10 kinds materials, especially the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage applications in buildings due to the fact that they have relatively high heat storage ability. Highlights: ► New kinds BCPCMs were prepared by blending of liquid XPL and XPM esters with some building materials. ► The BCPCMs had suitable melting temperatures and energy storage capacities. ► Especially, the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage. - Abstract: Energy storing-composite phase change materials (PCMs) are significant means of thermal energy storage in buildings. Although several building composite PCMs (BCPCMs) have been developed in recent years, the additional investigations are still required to enrich the diversity of BCPCMs for solar heating and energy conservation applications in buildings. For this purpose, the present work is focused the preparation, characterization and determination of 10 new kinds of BCPCMs. The BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters with gypsum, cement, diatomite, perlite and vermiculite as supporting matrices. The scanning electron microscopy (SEM) and Fourier Transform Infrared (FT-IR) analysis showed that the ester compounds were adsorbed uniformly into the building materials due to capillary forces

  7. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials

    Science.gov (United States)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na

    2017-11-01

    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  8. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  9. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  10. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  11. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  12. Thermoelectric cooling in combination with photovoltaics and thermal energy storage

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2017-01-01

    Full Text Available The article deals with the use of modern technologies that can improve the thermal comfort in buildings. The article describes the usage of thermal energy storage device based on the phase change material (PCM. The technology improves the thermal capacity of the building and it is possible to use it for active heating and cooling. It is designed as a “green technology” so it is able to use renewable energy sources, e.g., photovoltaic panels, solar thermal collectors, and heat pump. Moreover, an interesting possibility is the ability to use thermal energy storage in combination with a photovoltaic system and thermoelectric coolers. In the research, there were made measurements of the different operating modes and the results are presented in the text.

  13. Central unresolved issues in thermal energy storage for building heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Swet, C.J.; Baylin, F.

    1980-07-01

    This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

  14. Thermal behavior of latent thermal energy storage unit using two phase change materials: Effects of HTF inlet temperature

    Directory of Open Access Journals (Sweden)

    Fouzi Benmoussa

    2017-09-01

    Full Text Available This work presents a numerical study of the thermal behavior of shell-and-tube latent thermal energy storage (LTES unit using two phase change materials (PCMs. The heat transfer fluid (HTF flow through the inner tube and transfer the heat to PCMs. First, a mathematical model is developed based on the enthalpy formulation and solved through the governing equations. Second, the effects of HTF inlet temperature on the unsteady temperature evolution of PCMs, the total energy stored evolution as well as the total melting time is studied. Numerical results show that for all HTF inlet temperature, melting rate of PCM1 is the fastest and that of PCM2 is the slowest; increasing the HTF inlet temperature considerably increases the temperature evolution of PCMs. The maximum energy stored is observed in PCM2 with high melting temperature and high specific heat; heat storage capacity is large for high HTF inlet temperature. When the HTF inlet temperature increases from 338 K to 353 K, decreasing degree of melting time of PCM2 is the biggest from 1870 s to 490 s, which reduces about 73.8%; decreasing degree of melting time of PCM1 is the smallest from 530 s to 270 s, which reduces about 49.1%.

  15. Thermal energy storage in granular deposits

    Science.gov (United States)

    Ratuszny, Paweł

    2017-10-01

    Energy storage technology is crucial for the development of the use of renewable energy sources. This is a substantial constraint, however it can, to some extent, be solved by storing energy in its various forms: electrical, mechanical, chemical and thermal. This article presents the results of research in thermal properties of granular deposits. Correlation between temperature changes in the stores over a period of time and their physical properties has been studied. The results of the research have practical application in designing thermal stores based on bulk materials and ground deposits. Furthermore, the research results are significant for regeneration of the lower ground sources for heat pumps and provide data for designing ground heat exchangers for ventilation systems.

  16. Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems

    Science.gov (United States)

    Kerslake, Thomas W.; Jacqmin, David A.

    1998-01-01

    Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.

  17. Easy and industrially applicable impregnation process for preparation of diatomite-based phase change material nanocomposites for thermal energy storage

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Ersoy, Orkun; Gokce, Ozgur

    2015-01-01

    The high porosity, high oil and water absorption capacity and low density of diatomite make it ideal for industrial applications. The porous structure of diatomite protects phase change materials (PCMs) from environmental factors as a supporting matrix and phase changes occur in nanopores of diatomite. Previous research on diatomite/PCMs composites aimed optimal composite preparation but many methods were feasible only in laboratory scale. In large scale industrial fabrication, easy, continuous and steady state methods are need to be performed. The main purpose of this study was to prepare leakage-free, thermally stable nanocomposite PCMs (nanoCPCMs) by an easy, continuous and steady state method for high temperature thermal energy storage applications. A series of nanoCPCMs with different paraffin:diatomite mass ratios were prepared. The properties of nanoCPCMs have been characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The leak (exudation) test was performed on prepared composites at higher temperatures (95 °C) in comparison with literature. As the optimum composite for thermal energy storage applications, thermal reliability of nanoCPCM was evaluated after 400 cycles of melting and freezing. NanoCPCM melted at 36.55 °C with latent heat of 53.1 J/g. - Highlights: • Diatomite-based phase change material nanocomposites were prepared. • An easy and industrially applicable impregnation process was developed. • Influence of diatomite: PCM mass ratio on thermal properties reported.

  18. Thermal properties and stabilities of the eutectic mixture: 1,6-hexanediol/lauric acid as a phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Han, Lipeng; Ma, Guixiang; Xie, Shaolei; Sun, Jinhe; Jia, Yongzhong; Jing, Yan

    2017-01-01

    Highlights: • The eutectic mixture of 1,6-hexanediol/lauric acid was studied as a phase change material. • The mass fraction of 1,6-hexanediol in eutectic point is 70%. • The melting point and latent heat are measured to be 36.92 °C and 177.11 J g −1 . • The eutectic mixture showed good thermal and cyclic stabilities. - Abstract: Thermal properties and stabilities of the eutectic mixture: 1,6-hexanediol (HE) and lauric acid (LA) as a new phase change material (PCM) for latent heat thermal energy storage (TES) were investigated. Differential scanning calorimetry (DSC) results indicated that the aforementioned HE/LA mixture with eutectic composition (70/30 wt.%) was a suitable PCM in terms of melting point (T peak = 36.92 ± 0.71 °C) and latent heat of fusion (ΔH m = 177.11 ± 7.93 J g −1 ). After 1000 thermal cycles, the change in melting point for the eutectic mixture was in the range of −0.49% to −1.19%, and the change in latent heat of fusion was in the range of −0.22% to −3.24%. The eutectic mixture was thermally and chemically stable according to results of thermogravimetric analysis (TGA), volatile test and Fourier Transform Infrared (FT-IR) spectroscopic analysis. Therefore, the HE/LA eutectic mixture is an effective TES material to reduce energy consumption.

  19. An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system

    Science.gov (United States)

    Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.

    2016-05-01

    The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.

  20. Assessing the thermal performance of three cold energy storage materials with low eutectic temperature for food cold chain

    International Nuclear Information System (INIS)

    Li, Yu-Chu M.; Chen, Yen-Hong A.

    2016-01-01

    Development a novel inorganic salt eutectic solution for cold energy storage material (ESM) have succeeded conducted in this study. The eutectic solutions shows a low melting temperature and high latent heat of fusion value as effect of addition nano copper powder into the eutectic solution. We report a new simulation technique of thermal property as well as test results of three inorganic salts. The thermal property of three inorganic salts were simulated using the differential scanning calorimetry (DSC) method with the help of three binary phase diagrams. The simulation shows the liquidus temperature of each binary phase diagram conforming nicely to the theoretical prediction of the Gibbs-Duhem equation. In order to predict cold storage keeping time, we derived a heat transfer model based on energy conservation law. Three ESMs were tested for their cold energy storage performance and thermal properties aging for durability. The empirical results indicate that, for food cold chain, the melting point rule is superior with less deviation. With this information, one can pre-estimate the basic design parameters with great accuracy; the cost of design and development for a new cold storage logistics system can be dramatically reduced. - Highlights: • For these three ESMs, their modified values of melting point and latent heat are presented in Table 2. • But, TC is usually not a constant like TE. • The freezing time underwent a drop ∼10% in the binary eutectic region.

  1. Electricity storage using a thermal storage scheme

    Energy Technology Data Exchange (ETDEWEB)

    White, Alexander, E-mail: ajw36@cam.ac.uk [Hopkinson Laboratory, Cambridge University Engineering Department, Trumpington Street, Cambridge. CB2 1PZ (United Kingdom)

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  2. Thermal energy storage properties of mannitol–fatty acid esters as novel organic solid–liquid phase change materials

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2012-01-01

    Highlights: ► Four kinds of mannitol–fatty acid esters were synthesized as novel organic PCMs for thermal energy storage applications. ► The synthesized PCMs were characterized using FT-IR, 1 H NMR, 13 C NMR, DSC and TGA methods and thermal cycling test. ► The melting temperatures and latent heat values of the PCMs were in the range of 42–65 °C and 145–202 J/g, respectively. ► Thermal conductivity of the PCMs was increased significantly by addition of EG with especially 10 wt%. ► The synthesized PCMs are promising organic PCMs for solar heating applications. - Abstract: In this study, four kinds of mannitol–fatty acid esters were synthesized as novel organic phase change materials (PCMs) for thermal energy storage applications. The structural characterization of synthesized mannitol hexastearate (MHS), mannitol hexapalmitate (MHP), mannitol hexamyristate (MHM) and mannitol hexalaurate (MHL) were carried out using Fourier Transform Infrared (FT-IR), Proton Nuclear Magnetic Resonance ( 1 H NMR), and 13 C NMR spectroscopy methods. Thermal energy storage properties and thermal reliability of the synthesized PCMs were determined using differential scanning calorimetry (DSC) method at a heating rate of 1 °C/min. DSC results showed that the melting temperatures of the PCMs were in the temperature range of 42–65 °C and their latent heat values spanned between 145 and 202 J/g. The latent heats of these PCMs are low compared to mannitol but they fall into the same range as fatty acids. The synthesized PCMs have much lower phase change temperatures and supercooling degree (about 1–8 °C) and compared to the mannitol. They have also better odor, noncorrosivity and thermal durability properties as compared to the fatty acids. Thermal cycling test consisted of repeated 1000 melting/solidification cycles also revealed that the synthesized PCMs have good thermal reliability. In addition, thermal conductivity of the PCMs was increased significantly by

  3. Polyaniline as a material for hydrogen storage applications.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  5. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  6. Solar-thermal conversion and thermal energy storage of graphene foam-based composite

    KAUST Repository

    Zhang, Lianbin

    2016-07-11

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  7. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  8. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.

    Science.gov (United States)

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-13

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  9. A review of phase change materials for vehicle component thermal buffering

    International Nuclear Information System (INIS)

    Jankowski, Nicholas R.; McCluskey, F. Patrick

    2014-01-01

    Highlights: • A review of latent heat thermal energy storage for vehicle thermal load leveling. • Examined vehicle applications with transient thermal profiles from 0 to 800 °C. • >700 materials from over a dozen material classes examined for the applications. • Recommendations made for future application of high power density materials. - Abstract: The use of latent heat thermal energy storage for thermally buffering vehicle systems is reviewed. Vehicle systems with transient thermal profiles are classified according to operating temperatures in the range of 0–800 °C. Thermal conditions of those applications are examined relative to their impact on thermal buffer requirements, and prior phase change thermal enhancement studies for these applications are discussed. In addition a comprehensive overview of phase change materials covering the relevant operating range is given, including selection criteria and a detailed list of over 700 candidate materials from a number of material classes. Promising material candidates are identified for each vehicle system based on system temperature, specific and volumetric latent heat, and thermal conductivity. Based on the results of previous thermal load leveling efforts, there is the potential for making significant improvements in both emissions reduction and overall energy efficiency by further exploration of PCM thermal buffering on vehicles. Recommendations are made for further material characterization, with focus on the need for improved data for metallic and solid-state phase change materials for high energy density applications

  10. Thermal performance analysis of a phase change thermal storage unit for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W. [Institute for Sustainable Systems and Technologies School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2011-01-15

    This paper presents the results of a comprehensive numerical study on the thermal performance of an air based phase change thermal storage unit (TSU) for space heating. The unit is designed for integration into space heating and cooling systems. The unit consists of a number of one dimensional phase change material (PCM) slabs contained in a rectangular duct where air passes between the slabs. The numerical analysis was based on an experimentally validated model. A parametric study has been carried out including the study on the effects of charge and discharge temperature differences, air mass flow rate, slab thicknesses, air gaps and slab dimensions on the air outlet temperatures and heat transfer rates of the thermal storage unit. The paper introduces and discusses quantities called charge and discharge temperature differences which play an important role in the melting and freezing processes. (author)

  11. Low temperature thermal energy storage: a state-of-the-art survey

    Energy Technology Data Exchange (ETDEWEB)

    Baylin, F.

    1979-07-01

    The preliminary version of an analysis of activities in research, development, and demonstration of low temperature thermal energy storage (TES) technologies having applications in renewable energy systems is presented. Three major categories of thermal storage devices are considered: sensible heat; phase change materials (PCM); and reversible thermochemical reactions. Both short-term and annual thermal energy storage technologies based on prinicples of sensible heat are discussed. Storage media considered are water, earth, and rocks. Annual storage technologies include solar ponds, aquifers, and large tanks or beds of water, earth, or rocks. PCM storage devices considered employ salt hydrates and organic compounds. The sole application of reversible chemical reactions outlined is for the chemical heat pump. All program processes from basic research through commercialization efforts are investigated. Nongovernment-funded industrial programs and foreign efforts are outlined as well. Data describing low temperature TES activities are presented also as project descriptions. Projects for all these programs are grouped into seven categories: short-term sensible heat storage; annual sensible heat storage; PCM storage; heat transfer and exchange; industrial waste heat recovery and storage; reversible chemical reaction storage; and models, economic analyses, and support studies. Summary information about yearly funding and brief descriptions of project goals and accomplishments are included.

  12. A numerical study of latent thermal energy storage in a phase change material/carbon panel

    Energy Technology Data Exchange (ETDEWEB)

    Mekaddem, Najoua, E-mail: mekaddem.najoua@gmail.com; Ali, Samia Ben, E-mail: samia.benali@enig.rnu.tn; Hannachi, Ahmed, E-mail: ahmed.hannachi@enig.rnu.tn [Research Laboratory of Process Engineering and Industrial Systems, National Engineering School of Gabes (Tunisia); Mazioud, Atef, E-mail: mazioud@u-pec.fr [IUT Senart, Department of Industrial Engineering and Maintenance, University Paris-Est (France)

    2016-07-25

    To reduce the energetic dependence of building, it has become necessary to explore and develop new materials promoting energy conservation. Because of their high storage capacity, phase change materials (PCMs) are efficient to store thermal energy. In this paper, a 3D model was studied for simulation of energy storing cycles to predict the performances of PCM loaded panels. Carbon was used as supporting material for the PCM. The simulation was based on the enthalpy method using Ansys Fluent software. The panel was exposed to a daily heat flow including the effects of convection and radiation. The results show that the temperature decreased of approximately 2.5°C with a time shift about 2 hours. The steady state was reached after four cycles. Thus, after four cycles the PCM showed its effects on the temperature conditioning.

  13. A numerical study of latent thermal energy storage in a phase change material/carbon panel

    Science.gov (United States)

    Mekaddem, Najoua; Ali, Samia Ben; Mazioud, Atef; Hannachi, Ahmed

    2016-07-01

    To reduce the energetic dependence of building, it has become necessary to explore and develop new materials promoting energy conservation. Because of their high storage capacity, phase change materials (PCMs) are efficient to store thermal energy. In this paper, a 3D model was studied for simulation of energy storing cycles to predict the performances of PCM loaded panels. Carbon was used as supporting material for the PCM. The simulation was based on the enthalpy method using Ansys Fluent software. The panel was exposed to a daily heat flow including the effects of convection and radiation. The results show that the temperature decreased of approximately 2.5°C with a time shift about 2 hours. The steady state was reached after four cycles. Thus, after four cycles the PCM showed its effects on the temperature conditioning.

  14. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  15. Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage

    International Nuclear Information System (INIS)

    Shaikh, Shadab; Lafdi, Khalid

    2006-01-01

    The present work involves the use of a two dimensional control volume based numerical method to conduct a study of a combined convection-diffusion phase change heat transfer process in varied configurations of composite PCM slabs. Simulations were conducted to investigate the impact of using different configurations of multiple PCM slabs arrangements with different melting temperatures, thermophysical properties and varied sets of boundary conditions on the total energy stored as compared to using a single PCM slab. The degree of enhancement of the energy storage has been shown in terms of the total energy stored rate. The numerical results from the parametric study indicated that the total energy charged rate can be significantly enhanced by using composite PCMs as compared to the single PCM. This enhancement in the energy storage can be of great importance to improve the thermal performance of latent thermal storage systems

  16. Thermal Feature of a Modified Solar Phase Change Material Storage Wall System

    OpenAIRE

    Luo, Chenglong; Xu, Lijie; Ji, Jie; Liao, Mengyin; Sun, Dan

    2018-01-01

    This work is to study a novel solar PCM storage wall technology, that is, a dual-channel and thermal-insulation-in-the-middle type solar PCM storage wall (MSPCMW) system. The system has the following four independent functions, passive solar heating, heat preservation, heat insulation, and passive cooling, and it can agilely cope with the requirements of climatization of buildings in different seasons throughout the year and is exactly suitable for building in regions characterized by hot sum...

  17. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage.

    Science.gov (United States)

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-08-11

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.

  18. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Chen, Keping; Yu, Xuejiang; Tian, Chunrong; Wang, Jianhua

    2014-01-01

    Highlights: • Paraffin/polyurethane composite as form-stable phase change material was prepared by bulk polymerization. • Paraffin/polyurethane composite possesses typical character of dual phase transition. • Total latent heat of n-eicosane/PUPCM is as high as 141.2 J/g. • Maximum encapsulation ratio for n-octadecane/PUPCM composites is 25% w/w. - Abstract: Polyurethane phase change material (PUPCM) has been demonstrated to be effective solid–solid phase change material for thermal energy storage. However, the high cost and complex process on preparation of PUPCMs with high enthalpy and broad phase transition temperature range can prohibit industrial-scale applications. In this work, a series of novel form-stable paraffin/PUPCMs composites (n-octadecane/PUPCM, n-eicosane/PUPCM and paraffin wax/PUPCM) with high enthalpy and broad phase transition temperature range (20–65 °C) were directly synthesized via bulk polymerization. The composites were prepared at different mass fractions of n-octadecane (10, 20, 25, 30% w/w). The results indicated that the maximum encapsulation ratio for n-octadecane/PUPCM10000 composites was around 25% w/w. The chemical structure and crystalline properties of these composites were characterized by Fourier transform infrared spectroscopy (FT-IR), polarizing optical microscopy (POM), wide-angle X-ray diffraction (WAXD). Thermal properties and thermal reliability of the composites were determined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). From DSC analysis, the composites showed a typical dual phase change temperature. The enthalpy for the composite with 25% w/w n-eicosane was as high as 141.2 J/g. TGA analysis indicated that the composites degraded at considerably high temperatures. The process of preparation of PUPCMs and their composites was very simple, inexpensive, environmental friendly and easy to process into desired shapes, which could find the promising applications in solar

  19. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  20. Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes

    International Nuclear Information System (INIS)

    Motte, Fabrice; Falcoz, Quentin; Veron, Emmanuel; Py, Xavier

    2015-01-01

    Highlights: • ESEM and XRD characterizations have been performed. • Compatibility of these ceramics with the conventional binary Solar Salt is tested at 500 °C. • Tested ceramics have relevant properties to store thermal energy up to 1000 °C. • Feasibility of using ceramics as filler materials in thermocline is demonstrated. - Abstract: This paper demonstrates the feasibility of using several post-industrial ceramics as filler materials in a direct thermocline storage configuration. The tested ceramics, coming from several industrial processes (asbestos containing waste treatment, coal fired power plants or metallurgic furnaces) demonstrate relevant properties to store thermal energy by sensible heat up to 1000 °C. Thus, they represent at low-cost a promising, efficient and sustainable approach for thermal energy storage. In the present study, the thermo-chemical compatibility of these ceramics with the conventional binary Solar Salt is tested at medium temperature (500 °C) under steady state. In order to determine the feasibility of using such ceramics as filler material, Environmental Scanning Electron Microscopy (ESEM) and X-Ray Diffraction (XRD) characterizations have been performed to check for their chemical and structural evolution during corrosion tests. The final objective is to develop a molten salt thermocline direct storage system using low-cost shaped ceramic as structured filler material. Most of the tested ceramics present an excellent corrosion resistance in molten Solar Salt and should significantly decrease the current cost of concentrated solar thermal energy storage system

  1. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  2. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  3. A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage

    Science.gov (United States)

    Wang, Junyong; Andriamitantsoa, Radoelizo S.; Atinafu, Dimberu G.; Gao, Hongyi; Dong, Wenjun; Wang, Ge

    2018-03-01

    A novel in-situ assembly strategy has been developed to synthesis polyethylene glycol (PEG)@iron-benzenetricarboxylate metal-organic gel (MOG-100-Fe) shape-stabilized composite phase change materials by regulating metal-to-ligand ratio. The PEG@MOG-100-Fe was prepared by an ingenious introduction of PEG into the traditional sol-gel prepared MOG-100-Fe. The composite exhibited high heat storage density and thermal stability. The PEG loading content reached up to 92% without any leakage above its melting point. The heat storage density reaches to 152.88

  4. Thermal Analysis of the SAFKEG Package for Long Term Storage

    International Nuclear Information System (INIS)

    NARENDRA, GUPTA

    2005-01-01

    Interim plutonium storage for up to 10 years in the K-reactor building is currently being planned at Savannah River Site (SRS). SAFKEG package could be used to store Pu metal and oxide (PuO2) in the K-reactor complex with other packagings like 9975. The SAFKEG is designed for carrying Type-B materials across the DOE complex and meets the 10CFR71 requirements. Thermal analyses were performed to ensure that the temperatures of the SAFKEG components will not exceed their temperature limits under the K-reactor storage conditions. Thermal analyses of the SAFKEG packaging with three content configurations using BNFL 3013 outer container (Rocky Flats, SRS bagless transfer cans, and BNFL inner containers) were performed for storage of PuO2 and plutonium metal

  5. Experimental study on heat storage system using phase-change material in a diesel engine

    International Nuclear Information System (INIS)

    Park, Sangki; Woo, Seungchul; Shon, Jungwook; Lee, Kihyung

    2017-01-01

    Engines usually use only about 25% of the total fuel energy for power, and the rest is discarded to the cooling water and exhaust gas. Therefore, a technique for utilizing external waste heat is required to improve fuel efficiency in terms of total energy consumption. In this study, a heat storage system was built using a phase-change material in order to recover about 30% of the thermal energy wasted through engine cooling. The components of the heat storage system were divided into phase-change material, a heat exchanger, and a heat-insulating container. For each component, a phase-change material that is suitable for use in vehicles was selected based on the safety, thermal properties, and durability. As a result, a stearic acid of a fatty acid series with natural extracts was determined to be appropriate. In order to measure the reduction in engine fuel consumption, a thermal storage system designed for the actual engine was applied to realize a quick warm-up by releasing stored heat energy directly on the coolant during a cold start. This technique added about 95 calories of heat storage device warm-up time compared to the non-added state, which was reduced by about 18.1% to about 27.1%. - Highlights: • The diesel engine used phase-change material with heat storage system. • The thermal storage system designed for the actual engine. • A stearic acid of a fatty acid series was determined to be appropriate. • Applied heat storage system was reduced by about 18.1%–27.1%.

  6. Lauric Acid Hybridizing Fly Ash Composite for Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Dawei Xu

    2018-04-01

    Full Text Available Fly ash includes different mineral phases. This paper reported on the preparation of a novel lauric acid (LA/fly ash (FA composite by vacuum impregnation as a form-stable phase change material (PCM for thermal energy, and especially investigated the effect of the hydrochloric acid-treated fly ash (FAh on the thermal energy storage performance of the composites. The morphology, crystalline structure, and porous textures of the samples were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, Brunauer–Emmett–Teller (BET, X-ray fluorescence (XRF, and differential scanning calorimetry (DSC. The results indicated that hydrochloric acid treatment was beneficial to the increase of loading capacity and crystallinity of LA in the LA/FAh composite, which caused an enhanced thermal storage capacity with latent heats for melting and freezing of LA/FAh (80.94 and 77.39 J/g, higher than those of LA/FA (34.09 and 32.97 J/g, respectively. Furthermore, the mechanism of enhanced thermal storage properties was investigated in detail.

  7. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    Science.gov (United States)

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review

    International Nuclear Information System (INIS)

    Sun, Yongjun; Wang, Shengwei; Xiao, Fu; Gao, Diance

    2013-01-01

    Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

  9. Concrete thermal energy storage for steam generation

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Establishing enhancement methods to develop cost-effective thermal energy storage technology requires a detailed analysis. In this paper, a numerical investigation of the concrete based thermal energy storage system is carried out. The storage system consists of a heat transfer fluid flowing inside...

  10. New polyurethane/docosane microcapsules as phase-change materials for thermal energy storage.

    Science.gov (United States)

    Felix De Castro, Paula; Shchukin, Dmitry G

    2015-07-27

    Polyurethane microcapsules were prepared by mini-emulsion interfacial polymerization for encapsulation of phase-change material (n-docosane) for energy storage. Three steps were followed with the aim to optimize synthesis conditions of the microcapsules. First, polyurethane microcapsules based on silicone oil core as an inert template with different silicone oil/poly(ethylene glycol)/4,4'-diphenylmethane diisocyanate wt % ratio were synthesized. The surface morphology of the capsules was analyzed by scanning electronic microscopy (SEM) and the chemical nature of the shell was monitored by Fourier transform infrared spectroscopy (FT-IR). Capsules with the silicone oil/poly(ethylene glycol)/4,4'-diphenylmethane diisocyanate 10/20/20 wt % ratio showed the best morphological features and shell stability with average particle size about 4 μm, and were selected for the microencapsulation of the n-docosane. In the second stage, half of the composition of silicone oil was replaced with n-docosane and, finally, the whole silicone oil content was replaced with docosane following the same synthetic procedure used for silicone oil containing capsules. Thermal and cycling stability of the capsules were investigated by thermal gravimetric analysis (TGA) and the phase-change behavior was evaluated by differential scanning calorimetry (DSC). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Review of thermal energy storage technologies based on PCM application in buildings

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Zhang, Yinping

    2013-01-01

    Thermal energy storage systems (TES), using phase change material (PCM) in buildings, are widely investigated technologies and a fast developing research area. Therefore, there is a need for regular and consistent reviews of the published studies. This review is focused on PCM technologies...... is paid to discussion and identification of proper methods to correctly determine the thermal properties of PCM materials and their composites and as well procedures to determine their energy storage and saving potential. The purpose of the paper is to highlight promising technologies for PCM application...... developed to serve the building industry. Various PCM technologies tailored for building applications are studied with respect to technological potential to improve indoor environment, increase thermal inertia and decrease energy use for building operation. What is more, in this review special attention...

  12. Thermal properties and reliability of eutectic mixture of stearic acid-acetamide as phase change material for latent heat storage

    International Nuclear Information System (INIS)

    Ma, Guixiang; Han, Lipeng; Sun, Jinhe; Jia, Yongzhong

    2017-01-01

    Highlights: • The system of stearic acid-acetamide binary mixtures were studied as phase change material. • The eutectic mixtures featured low melting temperatures and high latent heats of fusion for latent heat storage. • Solid-liquid phase diagrams for the system were constructed. • Negligible change in stability after 500 heating/cooling cycles. - Abstract: The thermal properties and reliability of the stearic acid (SA) with acetamide (AC) binary mixture were characterized using differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR). The phase diagrams for the SA-AC binary mixture with AC in the metastable and the stable form were constructed. The eutectic system with stable AC is 0.604 mol fraction SA, and displayed a melting temperature (T m ) of 64.55 °C and latent heat of melting (ΔH m ) of 193.87 J·g −1 . The eutectic systems with metastable AC are 0.397 and 0.604 mol fraction SA. The melting temperatures are 62.23 °C and 62.54 °C, and latent heats of fusion are 222.10 J·g −1 and 194.28 J·g −1 , respectively. Following accelerated thermal cycling tests, TG and FT-IR analysis indicate that the eutectic mixture (χ SA = 0.397) with the metastable AC has good cyclic and thermal stability. The results show that the SA-AC eutectic mixture use as phase change material (PCM) possess good prospect for low temperature thermal energy storage (TES) applications.

  13. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  14. Solar applications of thermal energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

    1979-01-01

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  15. Critical phenomena and their effect on thermal energy storage in supercritical fluids

    International Nuclear Information System (INIS)

    Hobold, Gustavo M.; Da Silva, Alexandre K.

    2017-01-01

    Highlights: •High power thermal energy storage using supercritical fluids. •Influence of property variation on energy and power density. •Multi-fluid analysis and generalization for several storage temperatures. •Cost, heat transfer and energy density evaluation for high temperature storage. -- Abstract: Large-scale implementation of concentrated solar power plants requires energy storage systems if fossil sources are to be fully replaced. While several candidates have appeared, most still face major issues such as cost, limited energy density and material compatibility. The present paper explores the influence of property variation in the proximity of the critical point on thermal energy storage using supercritical fluids (sTES) from thermodynamic and heat transfer standpoints. Influence of thermodynamic operational parameters on energy density of isobaric and isochoric sTES and their optima is discussed, showing that the energy density results from a competition between average specific heat and loaded density. Moreover, sTES is shown to be applicable to virtually any storage temperature, depending only on the fluid’s critical point. Finally, a heat transfer and energy density comparison to other existing storage mechanisms is presented and supercritical water is shown to be competitive for high temperature thermal energy storage.

  16. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    Science.gov (United States)

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    Science.gov (United States)

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  18. Nanoparticles for heat transfer and thermal energy storage

    Science.gov (United States)

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  19. Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light

    International Nuclear Information System (INIS)

    Wang, Yunming; Tang, Bingtao; Zhang, Shufen

    2014-01-01

    Graphical abstract: Organic shape-stabilized solar thermal energy storage materials (OCSPCMs) with broadband harvesting for visible light were obtained by crosslinking and color matching, which provided a new platform for improving the efficiency of solar radiation utilization. - Highlights: • Novel phase change materials (OCSPCMs) were obtained by crosslinking and color matching. • The η of the OCSPCM was higher than 0.74 (visible light from 400 nm to 700 nm). • The phase change latent heats of the OCSPCMs were more than 120 J/g. • The OCSPCM has excellent form-stable effect during phase change process. - Abstract: Broadband visible sunlight usage and shape-stabilized effect were achieved using organic, cross-linking, and shape-stabilized phase-changed materials (OCSPCMs) with broadband visible light absorption, which were obtained by cross-linking reticulation and color matching (yellow, red, and blue) according to solar irradiation energy density. The obtained OCSPCMs exhibited excellent form-stable phase-change energy storage and broadband visible light-harvesting. Under broadband irradiation (from 400 nm to 700 nm), the light-to-heat conversion and the thermal energy storage efficiency (η > 0.74) of the OCSPCMs were significantly improved upon solar irradiation by color matching compared with those of OCSPCMs with single-band selective absorption of visible light (yellow, red, or blue). Differential scanning calorimetric results indicated that the phase change temperatures and latent heats of OCSPCMs ranged from 32.6 °C to 60.2 °C and from 120.1 J/g to 132.7 J/g, respectively. The novel materials show a reversible (more than 200 cycles) phase transition via ON/OFF switching of visible light irradiation

  20. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Howard, Rob; Van den Akker, Bret

    2014-01-01

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)

  1. Pcm inclusion in gypsum boards for thermal energy storage through latent heat: thermal characterization with DSC; Incorporacion de materiales de cambio de fase en placas de yeso para almacenamiento de energia termica mediante calor latente: caracterizacion termica del material mediante la tecnica DSC

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, A.; Neila, F. J.; Garcia, A.

    2011-07-01

    Differential Scanning Calorimetry (DSC) is a thermal analysis technique which has been used for more than three decades to measure the temperatures and heat flows associated with transitions in materials as a function of time. Other techniques, are Differential Thermal Analysis DTA and Conventional Calorimetry. There is great uncertainty in the values supplied by the manufacturers (because they are referred to pure substances) and the DSC should be used to get more accurate values. It will be analyzed the thermal storage capacity depending on temperature for several compound materials formed by some aggregates, mainly gypsum and phase change materials, in various proportions. The results have been compared with other building materials such as gypsum boards and brick layer. The suitability of the new construction material for thermal energy storage will be assessed in comparison with other materials traditionally used for this purpose. (Author) 21 refs.

  2. Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material

    International Nuclear Information System (INIS)

    Gutierrez, Andrea; Ushak, Svetlana; Galleguillos, Hector; Fernandez, Angel; Cabeza, Luisa F.; Grágeda, Mario

    2015-01-01

    Highlights: • Bischofite as phase change material for TES is studied. • Thermophysical properties of bischofite mixtures with PEG were determined. • The aim was to improve the cycling stability of bischofite. • The heating and cooling during 30 cycles were measured. • The most stable sample was bischofite + 5% PEG 2 000. - Abstract: Bischofite is a by-product of the non-metallic mining industry. It has been evaluated as phase change material in thermal energy storage, but it shows little cycling stability, therefore in this paper the mixture of bischofite with an additive was studied. Since polyethylene glycol (PEG) is a PCM itself, in this paper PEG (with different molecular weights) is used as additive in a PCM (bischofite) to improve its thermal behaviour. Results show that adding 5% PEG 2 000 to bischofite gives a more cycling stable PCM without affecting its melting temperature neither decreasing significantly its heat of fusion. This research shows that mixing an inorganic PCM with an organic additive can be a good option to improve the thermal performance of the PCM

  3. Thermal energy storage material thermophysical property measurement and heat transfer impact

    Science.gov (United States)

    Tye, R. P.; Bourne, J. G.; Destarlais, A. O.

    1976-01-01

    The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurized water reactor, boiling water reactor, supercritical steam reactor, and high temperature gas reactor. The salts considered were LiNO3, 63LiOH/37 LiCl eutectic, LiOH, and Na2B4O7. The thermal conductivity, specific heat (including latent heat of fusion), and density of each salt were measured for a temperature range of at least + or - 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

  4. Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage

    International Nuclear Information System (INIS)

    Sarı, Ahmet; Alkan, Cemil; Biçer, Alper; Altuntaş, Ayşe; Bilgin, Cahit

    2014-01-01

    Graphical abstract: This paper was aimed to prepare, characterize and determinate of thermal energy storage properties of PMMA/C19 micro/nanocapsules as a novel encapsulated phase change material (M/N-EPCM). The chemical structure of the prepared M/N-EPCM was verified using FTIR spectroscopy method. The analysis results obtained from POM and SEM indicated that the synthesized capsules had virtually spherical-shape. The PSD analysis indicated that the M/N-EPCM capsules had mean diameter of 8.18 μm and the percentage of the capsules with nanosize was 4.90 (v/v). The DSC results showed that the synthesized M/N-PCM had a melting temperature and total latent heat value as 31.23 °C and 139.20 J/g, respectively. It can be also deduced from all results that the synthesized M/N-EPCM had promising thermal energy storage potential due to its good latent heat thermal energy storage properties, thermal durability, thermal reliability, chemical stability, thermal conductivity and phase change reversibility properties. - Highlights: • The chemical structure of the prepared M/N-EPCM was verified using FTIR spectroscopy method. • POM and SEM results indicated that the M/N-EPCM had virtually spherical shape-appearance. • The M/N-EPCM had mean diameter of 8.18 μm and the percentage of the capsules with nanosize was 4.90 (v/v). • The M/N-PCM had a melting temperature and total latent heat value as 31.23 °C and 139.20 J/g, respectively. • The M/N-EPCM had promising thermal energy storage potential. - Abstract: This paper was aimed to prepare, characterize and determine the thermal energy storage properties of poly(methyl methacrylate) (PMMA)/n-nonadecane (C19) capsules as a novel micro/nanoencapsulated phase change material (M/N-EPCM). The M/N-EPCM was fabricated via emulsion polymerization reaction of methylmethacrylate (MMA) monomer occurred around C19 used as core material. The chemical structure of the prepared M/N-EPCM was verified using Fourier transform infrared

  5. Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Baydaa Jaber Nabhan

    2015-06-01

    Full Text Available Phase change materials (PCMs such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.% of (TiO2 nano-particles with about (10nm diameter. It is found that the phase change temperature varies with adding (TiO2 nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity has been found to increase by about (10% at nanoparticles loading (5wt.% and 15oC.

  6. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  7. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  8. Thermal compatibility of Sodium Nitrate/Expanded Perlite composite phase change materials

    International Nuclear Information System (INIS)

    Li, Ruguang; Zhu, Jiaoqun; Zhou, Weibing; Cheng, Xiaomin; Li, Yuanyuan

    2016-01-01

    Highlights: • Expanded Perlite/Sodium Nitrate composites hardly reported in thermal storage fields. • The thermal compatibility and adsorption of Expanded Perlite were investigated. • The thermo physic properties of composites were determined. • The thermal stability and long term enthalpy changes of composites were investigated. - Abstract: The present work focused on the preparation and characterization of a new thermal storage material applied in thermal energy management. X-ray diffraction (XRD) results showed that Expanded Perlite (EP) has a good thermal stability varying from 300 °C to 900 °C. Morphology of scanning electron microscopy (SEM) revealed that sodium nitrate is uniformly encapsulated and embedded in the three-dimensional network structure of EP. Fourier transform infrared (FT-IR) spectroscopy indicated that the EP is physically combined with the nitrate salt. Thermo-gravimetric analysis (TGA) and differential Scanning Calorimeter (DSC) indicated that the composites have good thermal stability. The adsorption capacity of loose EP was 213.21%. When the EP mass fraction varying from 10% to 60%, thermal conductivity decreased with the content of EP increased, and the highest thermal conductivity is 1.14 W (m K)"−"1 at 300 °C. SEM revealed the network structure of EP provided thermal conduction paths which enhanced the thermal conductivity of the composites. All results indicated that EP could be a good adsorption material to be applied in the thermal storage fields.

  9. Thermal analysis on organic phase change materials for heat storage applications

    Science.gov (United States)

    Lager, Daniel

    2016-07-01

    In this paper, methodologies based on thermal analysis to evaluate specific heat capacity, phase transition enthalpies, thermal cycling stability and thermal conductivity of organic phase change materials (PCMs) are discussed. Calibration routines for a disc type heat flow differential scanning calorimetry (hf-DSC) are compared and the applied heating rates are adapted due to the low thermal conductivity of the organic PCMs. An assessment of thermal conductivity measurements based on "Laser Flash Analysis" (LFA) and the "Transient Hot Bridge" method (THB) in solid and liquid state has been performed. It could be shown that a disc type hf-DSC is a useful method for measuring specific heat capacity, melting enthalpies and cycling stability of organic PCM if temperature and sensitivity calibration are adapted to the material and quantity to be measured. The LFA method shows repeatable and reproducible thermal diffusivity results in solid state and a high effort for sample preparation in comparison to THB in liquid state. Thermal conductivity results of the two applied methods show large deviations in liquid phase and have to be validated by further experiments.

  10. Thermal performance and heat transport in aquifer thermal energy storage

    NARCIS (Netherlands)

    Sommer, W.T.; Doornenbal, P.J.; Drijver, B.C.; Gaans, van P.F.M.; Leusbrock, I.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as

  11. High-temperature molten salt thermal energy storage systems for solar applications

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  12. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  13. Semi-transparent solar energy thermal storage device

    Science.gov (United States)

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  14. IEA SHC Task 42 / ECES Annex 29 - Working Group B: Applications of Compact Thermal Energy Storage

    NARCIS (Netherlands)

    Helden, W. van; Yamaha, M.; Rathgeber, C.; Hauer, A.; Huaylla, F.; Le Pierrès, N.; Stutz, B.; Mette, B.; Dolado, P.; Lazaro, A.; Mazo, J.; Dannemand, M.; Furbo, S.; Campos-Celador, A.; Diarce, G.; Cuypers, R.; König-Haagen, A.; Höhlein, S.; Brüggemann, D.; Fumey, B.; Weber, R.; Köll, R.; Wagner, W.; Daguenet-Frick, X.; Gantenbein, P.; Kuznik, F.

    2016-01-01

    The IEA joint Task 42 / Annex 29 is aimed at developing compact thermal energy storage materials and systems. In Working Group B, experts are working on the development of compact thermal energy storage applications, in the areas cooling, domestic heating and hot water and industry. The majority of

  15. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  16. Thermal energy storages analysis for high temperature in air solar systems

    International Nuclear Information System (INIS)

    Andreozzi, Assunta; Buonomo, Bernardo; Manca, Oronzio; Tamburrino, Salvatore

    2014-01-01

    In this paper a high temperature thermal storage in a honeycomb solid matrix is numerically investigated and a parametric analysis is accomplished. In the formulation of the model it is assumed that the system geometry is cylindrical, the fluid and the solid thermo physical properties are temperature independent and radiative heat transfer is taken into account whereas the effect of gravity is neglected. Air is employed as working fluid and the solid material is cordierite. The evaluation of the fluid dynamic and thermal behaviors is accomplished assuming the honeycomb as a porous medium. The Brinkman–Forchheimer–extended Darcy model is used in the governing equations and the local thermal non equilibrium is assumed. The commercial CFD Fluent code is used to solve the governing equations in transient regime. Numerical simulations are carried out with storage medium for different mass flow rates of the working fluid and different porosity values. Results in terms of temperature profiles, temperatures fields and stored thermal energy as function of time are presented. The effects of storage medium, different porosity values and mass flow rate on stored thermal energy and storage time are shown. - Highlights: • HTTES in a honeycomb solid matrix is numerically investigated. • The numerical analysis is carried out assuming the honeycomb as a porous medium. • The Brinkman–Forchheimer–extended Darcy model is used in the governing equations. • Results are carried out for different mass flow rates and porosity values. • The main effect is due to the porosity which set the thermal energy storage value

  17. Experimental investigation and exergy analysis on thermal storage integrated micro-cogeneration system

    International Nuclear Information System (INIS)

    Johar, Dheeraj Kishor; Sharma, Dilip; Soni, Shyam Lal; Gupta, Pradeep K.; Goyal, Rahul

    2017-01-01

    Highlights: • Energy Storage System is integrated with Micro cogeneration system. • Erythritol is used as Phase Change Material. • Maximum energy saved is 15.2%. • Maximum exergy saved is 4.22%. • Combined systems are feasible to increase energy and exergy efficiency. - Abstract: This paper describes the performance of thermal storage integrated micro-cogeneration system based on single cylinder diesel engine. In addition to electricity generated from genset, waste heat from hot exhaust of diesel engine was used to heat water in a double pipe heat exchanger of 67.70 cm length with inside tube diameter of 3.81 cm and outside tube diameter of 5.08 cm. Additionally, a latent heat thermal energy storage system was also integrated with this cogeneration system. A shell and tube type heat exchanger of 346 mm diameter and 420 mm height with 45 tubes of 18 mm diameter each was designed and fabricated, to store thermal energy, in which Erythritol (C_4H_1_0O_4) was used as phase changing material. The test results show that micro capacity (4.4 kW), stationary, single cylinder, diesel engine can be successfully utilized to simultaneously produce power as well as heating, and to also store thermal energy. Slight decrease in engine performance was observed when double pipe heat exchanger and latent heat thermal energy storage system was integrated with engine but the amount of energy which could be recovered was significant. Maximum percentage of energy saved was obtained at a load of 3.6 kW and was 15.2%.

  18. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  19. Thermal performance of a multiple PCM thermal storage unit for free cooling

    International Nuclear Information System (INIS)

    Mosaffa, A.H.; Infante Ferreira, C.A.; Talati, F.; Rosen, M.A.

    2013-01-01

    Highlights: ► Numerical analysis on the performance of a thermal storages as free cooling system. ► Employing multiple PCMs to enhance heat transfer rate in thermal storages. ► Using an effective heat capacity method, the phase change parameters are determined. ► The effect of the slabs size and air channel thickness on COP is investigated. - Abstract: As demand for refrigeration and air conditioning increased during the last decade, the opportunities have expanded for using thermal energy storage (TES) systems in an economically advantageous manner in place of conventional cooling plants. Many cool storage systems use phase change materials (PCMs) and achieve peak load shifting in buildings. This work presents numerical investigations of the performance enhancement of a free cooling system using a TES unit employing multiple PCMs. The TES unit is composed of a number of rectangular channels for the flowing heat transfer fluid, separated by PCM slabs. Using the effective heat capacity method, the melting and solidification of the PCM is solved. The forced convective heat transfer inside the channels is analyzed by solving the energy equation, which is coupled with the heat conduction equation in the container wall. The effect of design parameters such as PCM slab length, thickness and fluid passage gap on the storage performance is also investigated using an energy based optimization. The results show that a system which can guarantee comfort conditions for the climate of Tabriz, Iran has an optimum COP of 7.0. This could be achieved by a combination of CaCl 2 ·6H 2 O with RT25 with the optimum air channel thickness of 3.2 mm, length of 1.3 m and PCM slab thickness of 10 mm

  20. Trial production of ceramic heat storage unit and study on thermal properties and thermal characteristics of the heat storage unit. Mixed salts of Na2CO3, MgCl2 and CaCl2 as heat storage medium

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    1998-12-01

    Heat storage technique of high temperature and high density latent heat can be applied to an accumulator of heat generated by nuclear power plant in the night and to a thermal load absorber. For the practical use of the heat storage technique, it is important to improve heat exchange characteristics between heat storage medium, such as molten salts, and heat transfer fluid because of low thermal conductivity of the molten salts, to improve durability among molten salt and structure materials and to develop the molten salt with stable thermal properties for a long period. Considering the possibility for the improvement of heat exchange characteristics of phase change heat storage system by absorbing molten salt in porous ceramics with high thermal conductivity, high temperature proof and high resistance to corrosion, several samples of the ceramics heat storage unit were made. Basic characteristics of the samples (strength, thermal properties, temperature characteristics during phase change) were measured experimentally and analytically to study the utility and applicability of the samples for the heat storage system. The results show that the heat storage unit should be used in inactive gas condition because water in the air absorbed in the molten salts would yield degeneration of properties and deterioration of strength and that operation temperature should be confined near fusion temperature because some molten salts would be vaporized and mass would be decreased in considerable high temperature. The results also show that when atmospheric temperature changes around the melting temperature, change in ceramic temperature becomes small. This result suggests the possibility that ceramic heat storage unit could be used as thermal load absorber. (J.P.N.)

  1. Effect of kinetics on the thermal performance of a sorption heat storage reactor

    NARCIS (Netherlands)

    Gaeini, M.; Zondag, H.A.; Rindt, C.C.M.

    2016-01-01

    To reach high solar fractions for solar thermal energy in the built environment, long-term heat storage is required to overcome the seasonal mismatch. A promising method for long term heat storage is to use thermochemical materials, TCMs. In this research, a lab-scale test thermochemical heat

  2. Advanced latent heat of fusion thermal energy storage for solar power systems

    Science.gov (United States)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  3. Performance of Loaded Thermal Storage Unit with a Commercial Phase Change Materials based on Energy and Exergy Analysis

    Directory of Open Access Journals (Sweden)

    Abdullah Nasrallh Olimat

    2017-11-01

    Article History: Received July 6th 2017; Received in revised form September 15th 2017; Accepted 25th Sept 2017; Available online How to Cite This Article: Olimat, A.N., Awad, A.S., Al-Gathain, F.M., and Shaban, N.A.. (2017 Performance of Loaded Thermal Storage Unit With A Commercial Phase Change Materials Based on Energy and Exergy Analysis. International Journal of Renewable Energy Develeopment, 6(3,283-290. https://doi.org/10.14710/ijred.6.3.283-290

  4. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  5. High-Temperature Thermal Energy Storage for electrification and district heating

    DEFF Research Database (Denmark)

    Pedersen, A. Schrøder; Engelbrecht, K.; Soprani, S.

    stability upon thermal cycling. The most promising material consists of basalt, diabase, and magnetite, whereas the less suited rocks contain larger proportions of quartz and mica. An HT-TES system, containing 1.5 m3 of rock pieces, was constructed. The rock bed was heated to 600 ˚C using an electric heater......The present work describes development of a High Temperature Thermal Energy Storage (HT-TES) system based on rock bed technology. A selection of rocks was investigated by thermal analysis in the range 20-800 ˚C. Subsequently, a shortlist was defined primarily based on mechanical and chemical...... to simulate thermal charging from wind energy. After complete heating of the rock bed it was left fully charged for hours to simulate actual storage conditions. Subsequently the bed discharging was performed by leading cold air through the rock bed whereby the air was heated and led to an exhaust. The results...

  6. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  7. Tritium Storage Material

    International Nuclear Information System (INIS)

    Cowgill, Donald F.; Luo, Weifang; Smugeresky, John E.; Robinson, David B.; Fares, Stephen James; Ong, Markus D.; Arslan, Ilke; Tran, Kim L.; McCarty, Kevin F.; Sartor, George B.; Stewart, Kenneth D.; Clift, W. Miles

    2008-01-01

    Nano-structured palladium is examined as a tritium storage material with the potential to release beta-decay-generated helium at the generation rate, thereby mitigating the aging effects produced by enlarging He bubbles. Helium retention in proposed structures is modeled by adapting the Sandia Bubble Evolution model to nano-dimensional material. The model shows that even with ligament dimensions of 6-12 nm, elevated temperatures will be required for low He retention. Two nanomaterial synthesis pathways were explored: de-alloying and surfactant templating. For de-alloying, PdAg alloys with piranha etchants appeared likely to generate the desired morphology with some additional development effort. Nano-structured 50 nm Pd particles with 2-3 nm pores were successfully produced by surfactant templating using PdCl salts and an oligo(ethylene oxide) hexadecyl ether surfactant. Tests were performed on this material to investigate processes for removing residual pore fluids and to examine the thermal stability of pores. A tritium manifold was fabricated to measure the early He release behavior of this and Pd black material and is installed in the Tritium Science Station glove box at LLNL. Pressure-composition isotherms and particle sizes of a commercial Pd black were measured.

  8. Experimental assessment of the thermal performance of storage canister/holding fixture configurations for the Los Alamos Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Naffziger, D.C.; Gregory, W.S.

    1997-11-01

    This report presents experimental results on the thermal performance of various nested canister configurations and canister holding fixtures to be used in the Los Alamos Nuclear Materials Storage Facility. The experiment consisted of placing a heated aluminum billet (to represent heat-generating nuclear material) inside curved- and flat-bottom canisters with and without holding plate fixtures and/or extended fin surfaces. Surface temperatures were measured at several locations on the aluminum billet, inner and outer canisters, and the holding plate fixture to assess the effectiveness of the various configurations in removing and distributing the heat from the aluminum billet. Results indicated that the curved-bottom canisters, with or without holding fixtures, were extremely ineffective in extracting heat from the aluminum billet. The larger thermal contact area provided by the flat-bottom canisters compared with the curved-bottom design, greatly enhanced the heat removal process and lowered the temperature of the aluminum billet considerably. The addition of the fixture plates to the flat-bottom canister geometry greatly enhances the heat removal rates and lowers the canister operating temperatures considerably. The addition of the fixture plates to the flat-bottom canister geometry greatly enhances the heat removal rates and lowers the canister operating temperatures considerably. Finally, the addition of extended fin surfaces to the outer flat-bottom canister positioned on a fixture plate, reduced the canister temperatures still further

  9. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2015-01-01

    Highlights: • A parameter to indicate the energy efficiency ratio of PCTES units is defined. • The characteristics of the energy efficiency ratio of PCTES units are reported. • A combined parameter of the physical properties of the working mediums is found. • Some implications of the energy efficiency ratio in design of PCTES units are analyzed. - Abstract: From aspect of energy consuming to pump heat transfer fluid, there is no sound basis on which to create an optimum design of a thermal energy storage unit. Thus, it is necessary to develop a parameter to indicate the energy efficiency of such unit. This paper firstly defines a parameter that indicates the ratio of heat storage of phase change thermal energy storage unit to energy consumed in pumping heat transfer fluid, which is called the energy efficiency ratio, then numerically investigates the characteristics of this parameter. The results show that the energy efficiency ratio can clearly indicate the energy efficiency of a phase change thermal energy storage unit. When the fluid flow of a heat transfer fluid is in a laminar state, the energy efficiency ratio is larger than in a turbulent state. The energy efficiency ratio of a shell-and-tube phase change thermal energy storage unit is more sensitive to the outer tube diameter. Under the same working conditions, within the heat transfer fluids studied, the heat storage property of the phase change thermal energy storage unit is best for water as heat transfer fluid. A combined parameter is found to indicate the effects of both the physical properties of phase change material and heat transfer fluid on the energy efficiency ratio

  10. Preparation and Thermal Properties of Eutectic Hydrate Salt Phase Change Thermal Energy Storage Material

    OpenAIRE

    Liang, Lin; Chen, Xi

    2018-01-01

    In this study, a new cold storage phase change material eutectic hydrate salt (K2HPO4·3H2O–NaH2PO4·2H2O–Na2S2O3·5H2O) was prepared, modified, and tested. The modification was performed by adding a nucleating agent and thickener. The physical properties such as viscosity, surface tension, cold storage characteristics, supercooling, and the stability during freeze-thaw cycles were studied. Results show that the use of nucleating agents, such as sodium tetraborate, sodium fluoride, and nanoparti...

  11. New method of thermal cycling stability test of phase change material

    Directory of Open Access Journals (Sweden)

    Putra Nandy

    2017-01-01

    Full Text Available Phase Change Material (PCM is the most promising material as thermal energy storage nowadays. As thermal energy storage, examination on endurance of material for long-term use is necessary to be carried out. Therefore, thermal cycling test is performed to ensure thermal stability of PCM. This study have found a new method on thermal cycling test of PCM sample by using thermoelectric as heating and cooling element. RT 22 HC was used as PCM sample on this thermal cycling test. The new method had many advantages compared to some references of the same test. It just needed a small container for PCM sample. The thermoelectric could release heat to PCM sample and absorb heat from PCM sample uniformly, respectively, was called as heating and cooling process. Hence, thermoelectric had to be supported by a relay control device to change its polarity so it could heat and cool PCM sample alternately and automatically. On the other hand, the thermoelectric was cheap, easy to be found and available in markets. It can be concluded that new method of thermal cycling test by using thermoelectric as source of heating and cooling can be a new reference for performing thermal cycling test on PCM.

  12. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Tudor Albert Ioan

    2018-01-01

    Full Text Available Thermal energy storage systems using phase change materials (PCMs as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300–500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  13. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Science.gov (United States)

    Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores

    2018-05-01

    Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  14. Heat storage system utilizing phase change materials government rights

    Science.gov (United States)

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  15. Novel Magnetic-to-Thermal Conversion and Thermal Energy Management Composite Phase Change Material

    Directory of Open Access Journals (Sweden)

    Xiaoqiao Fan

    2018-05-01

    Full Text Available Superparamagnetic materials have elicited increasing interest due to their high-efficiency magnetothermal conversion. However, it is difficult to effectively manage the magnetothermal energy due to the continuous magnetothermal effect at present. In this study, we designed and synthesized a novel Fe3O4/PEG/SiO2 composite phase change material (PCM that can simultaneously realize magnetic-to-thermal conversion and thermal energy management because of outstanding thermal energy storage ability of PCM. The composite was fabricated by in situ doping of superparamagnetic Fe3O4 nanoclusters through a simple sol–gel method. The synthesized Fe3O4/PEG/SiO2 PCM exhibited good thermal stability, high phase change enthalpy, and excellent shape-stabilized property. This study provides an additional promising route for application of the magnetothermal effect.

  16. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  17. Novel “open-sorption pipe” reactor for solar thermal energy storage

    International Nuclear Information System (INIS)

    Aydin, Devrim; Casey, Sean P.; Chen, Xiangjie; Riffat, Saffa

    2016-01-01

    Highlights: • A novel ‘open sorption pipe’ heat storage was experimentally investigated. • Effect of absolute moisture levels on heat storage performance was analyzed. • Hygrothermal-cyclic performances of Zeolite 13X and vermiculite–calcium chloride were compared. • Vermiculite–calcium chloride has more durable performance than Zeolite at 80 °C regeneration temperature. • Sorption pipe system using vermiculite–calcium chloride provides energy storage density of 290 kW h/m"3. - Abstract: In the last decade sorption heat storage systems are gaining attention due to their high energy storage density and long term heat storage potential. Sorption reactor development is vital for future progress of these systems however little has done on this topic. In this study, a novel sorption pipe reactor for solar thermal energy storage is developed and experimentally investigated to fulfill this gap. The modular heat storage system consists of sorption pipe units with an internal perforated diffuser pipe network and the sorption material filled in between. Vermiculite–calcium chloride composite material was employed as the sorbent in the reactor and its thermal performance was investigated under different inlet air humidity levels. It was found that, a fourfold increase of absolute humidity difference of air led to approximately 2.3 times boost in average power output from 313 W to 730 W and an 8.8 times boost of average exergy from 4.8 W to 42.3 W. According to the testing results, each of three sorption pipes can provide an average air temperature lift of 24.1 °C over 20 h corresponding to a system total energy storage capacity of 25.5 kW h and energy storage density of 290 kW h/m"3. Within the study, vermiculite–calcium chloride performance was also compared with the widely investigated Zeolite 13X. Vermiculite–calcium chloride showed a good cyclic ability at regeneration temperature of 80 °C with a steadier thermal performance than Zeolite

  18. Long term thermal energy storage with stable supercooled sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Schultz, Jørgen M.; Johansen, Jakob Berg

    2015-01-01

    Utilizing stable supercooling of sodium acetate trihydrate makes it possible to store thermal energy partly loss free. This principle makes seasonal heat storage in compact systems possible. To keep high and stable energy content and cycling stability phase separation of the storage material must...... it expands and will cause a pressure built up in a closed chamber which might compromise stability of the supercooling. This can be avoided by having an air volume above the phase change material connected to an external pressure less expansion tank. Supercooled sodium acetate trihydrate at 20 °C stores up...

  19. Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material

    International Nuclear Information System (INIS)

    Fan, Li-Wu; Wu, Yu-Yue; Xiao, Yu-Qi; Zeng, Yi; Zhang, Yi-Ling; Yu, Zi-Tao

    2016-01-01

    Highlights: • A liquid metal is adopted as the PCM in a thermal energy storage-based heat sink. • Transient performance of the heat sink is tested in comparison to an organic PCM. • The liquid metal has a similar volumetric latent heat of fusion to the organic PCM. • Outperformance of the liquid metal is found due to its higher thermal conductivity. • Liquid metals are preferred when the system weight is less important than volume. - Abstract: In this Technical Note, the use of a liquid metal, i.e., a low melting point Pb–Sn–In–Bi alloy, as the phase change material (PCM) in thermal energy storage-based heat sinks is tested in comparison to an organic PCM (1-octadecanol) having a similar melting point of ∼60 °C. The thermophysical properties of the two types of PCM are characterized, revealing that the liquid metal is much more conductive while both have nearly identical volumetric latent heat of fusion (∼215 MJ/m"3). By using at the same volume of 80 mL, i.e., the same energy storage capacity, the liquid metal is shown to outperform significantly over the organic PCM under the various heating powers up to 105.3 W/cm"2. During the heating period, the use of the liquid metal leads to a remarkable extension of the effective protection time to nearly twice longer as well as a reduction of the highest overheating temperature by up to 50 °C. The cool-down period can also be shortened significantly by taking advantage of the much higher thermal conductivity of the liquid metal. These findings suggest that liquid metals could serve as a promising PCM candidate for particular applications where the volume limit is very rigorous and the penalty in weight increment is acceptable.

  20. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  1. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  2. Transient characteristics of thermal energy storage in an enclosure packed with MEPCM particles

    International Nuclear Information System (INIS)

    Siao, Yong-Hao; Yan, Wei-Mon; Lai, Chi-Ming

    2015-01-01

    The heat transfer characteristics of phase change materials have been of continuing interest of research due to various potential technical applications, such as the latent-heat thermal energy storage, thermal protection, as well as active/passive electronic cooling. In this work, the transient characteristics of thermal energy storage in a partitioned enclosure filled with microencapsulated phase change material (MEPCM) particles were investigated experimentally and numerically. To examine the different melting temperature effects, two different MEPCM particles are tested. The core phase change materials of the MEPCM are n-octadecane with melting temperature about T M  = 28 °C and 37 °C. The enclosure is partitioned and is differentially heated by the two horizontal isothermal surfaces, while the other vertical surfaces are considered thermally insulated. The studies have been undertaken for five sets of the hot and cold wall temperatures imposed across the enclosure. The consequents show that the numerical results are in agreement with the measured data. At the initial transient, the net energy storage in enclosure, Q net , increases with the time Fo. Finally, the Q net approaches quickly the steady state for the case with a higher temperature difference of T h  − T c . Additionally, higher dimensionless accumulated energy through the hot wall Q h and cold wall Q c is found for a case with higher hot wall temperature T h

  3. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  4. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant.

    Science.gov (United States)

    Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu

    2018-01-15

    MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH 2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH 2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.

  5. Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3.

    Science.gov (United States)

    Kadoono, Tomosuke; Ogura, Masaru

    2014-03-28

    A novel type of material encapsulating phase-change materials (PCMs) is reported concerning their implication for use as thermal energy storage devices. The composites of siliceous SBA-15 or carbonaceous CMK-3 mesoporous assemblies and organic PCMs could be used to make leak-free devices that retain their capabilities over many thermal cycles for heat storage/release. A confinement effect was observed that alters the thermal properties of the encapsulated PCM, especially in CMK-3 without any similar effects in other carbon materials.

  6. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    Science.gov (United States)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions

  7. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands.

    Science.gov (United States)

    Porteiro, Jacobo; Míguez, José Luis; Crespo, Bárbara; de Lara, José; Pousada, José María

    2016-03-21

    Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials) in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  8. Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage

    Czech Academy of Sciences Publication Activity Database

    Anghel, E.M.; Pavel, P.M.; Constantinescu, M.; Petrescu, S.; Atkinson, I.; Buixaderas, Elena

    2017-01-01

    Roč. 208, Sep (2017), s. 1222-1231 ISSN 0306-2619 Grant - others:AV ČR(CZ) AR-17-02 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : phase change materials * thermal energy storage * modeling Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 7.182, year: 2016

  9. Nanoscale heat transfer in carbon nanotube - sugar alcohol composites as heat storage materials

    NARCIS (Netherlands)

    Zhang, H.; Rindt, C.C.M.; Smeulders, D.M.J.; Gaastra - Nedea, S.V.

    2016-01-01

    Nanoscale carbon structures such as graphene and carbon nanotubes (CNTs) can greatly improve the effective thermal conductivity of thermally sluggish heat storage materials, such as sugar alcohols (SAs). The specific improvement depends on the heat transfer rate across the carbon structure. Besides,

  10. Development of Latent Heat Storage Phase Change Material Containing Plaster

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2016-05-01

    Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.

  11. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  12. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  13. Preparation and Thermal Properties of Eutectic Hydrate Salt Phase Change Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Lin Liang

    2018-01-01

    Full Text Available In this study, a new cold storage phase change material eutectic hydrate salt (K2HPO4·3H2O–NaH2PO4·2H2O–Na2S2O3·5H2O was prepared, modified, and tested. The modification was performed by adding a nucleating agent and thickener. The physical properties such as viscosity, surface tension, cold storage characteristics, supercooling, and the stability during freeze-thaw cycles were studied. Results show that the use of nucleating agents, such as sodium tetraborate, sodium fluoride, and nanoparticles, are effective. The solidification temperature and latent heat of these materials which was added with 0, 3, and 5 wt% thickeners were −11.9, −10.6, and −14.8°C and 127.2, 118.6, 82.56 J/g, respectively. Adding a nucleating agent can effectively improve the nucleation rate and nucleation stability. Furthermore, increasing viscosity has a positive impact on the solidification rate, supercooling, and the stability during freeze-thaw cycles.

  14. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan; Kim, Taeil; France, David M.; Smith, Roger K.

    2018-01-01

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degrees C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.

  15. Experimental and numerical investigation of form-stable dodecane/hydrophobic fumed silica composite phase change materials for cold energy storage

    International Nuclear Information System (INIS)

    Chen, Jiajie; Ling, Ziye; Fang, Xiaoming; Zhang, Zhengguo

    2015-01-01

    Highlights: • Form-stable dodecane/fumed silica composite for cold storage is prepared. • A suggesting hypothesis that explains infiltration mechanism is proposed. • The performance of the composite phase change material is investigated. • Numerical simulation of system is carried out and results fit well. - Abstract: A kind of form-stable composite phase change materials used for cold thermal energy storage is prepared by absorbing dodecane into the hydrophobic fumed silica. With relatively suitable pore diameter and hydrophobic groups, hydrophobic fumed silica is beneficial to the penetration and infiltration of dodecane and the leakage problem solving. Scanned by electron micrographs and Fourier transformation infrared, the composite phase change material is characterized to be just physical penetration. Besides, the differential scanning calorimeter and thermo gravimetric analysis reveals the high enthalpy, good thermal stability and cycling performance of this composite phase change material. What’s more, Hot-Disk thermal constants analyzer demonstrates that the composite phase change material has low thermal conductivity which is desired in cold storage application. In the experiment, a cold energy storage system is set up and the results from the experiment show that the system has excellent performance of cold storage by incorporating composite phase change material. Apart from that, the experimental data is found to have a great agreement with the numerical simulation which is carried out by using the commercial computational fluid dynamics software FLUENT.

  16. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  17. Evaluation of in-situ thermal energy storage for lunar based solar dynamic systems

    Science.gov (United States)

    Crane, Roger A.

    1991-01-01

    A practical lunar based thermal energy storage system, based on locally available materials, could significantly reduce transportation requirements and associated costs of a continuous, solar derived power system. The concept reported here is based on a unique, in-situ approach to thermal energy storage. The proposed design is examined to assess the problems of start-up and the requirements for attainment of stable operation. The design remains, at this stage, partially conceptional in nature, but certain aspects of the design, bearing directly on feasibility, are examined in some detail. Specifically included is an engineering evaluation of the projected thermal performance of this system. Both steady state and start-up power requirements are evaluated and the associated thermal losses are evaluated as a basis for establishing potential system performance.

  18. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    Science.gov (United States)

    Goli, Pradyumna; Legedza, Stanislav; Dhar, Aditya; Salgado, Ruben; Renteria, Jacqueline; Balandin, Alexander A.

    2014-02-01

    Li-ion batteries are crucial components for progress in mobile communications and transport technologies. However, Li-ion batteries suffer from strong self-heating, which limits their life-time and creates reliability and environmental problems. Here we show that thermal management and the reliability of Li-ion batteries can be drastically improved using hybrid phase change material with graphene fillers. Conventional thermal management of batteries relies on the latent heat stored in the phase change material as its phase changes over a small temperature range, thereby reducing the temperature rise inside the battery. Incorporation of graphene to the hydrocarbon-based phase change material allows one to increase its thermal conductivity by more than two orders of magnitude while preserving its latent heat storage ability. A combination of the sensible and latent heat storage together with the improved heat conduction outside of the battery pack leads to a significant decrease in the temperature rise inside a typical Li-ion battery pack. The described combined heat storage-heat conduction approach can lead to a transformative change in thermal management of Li-ion and other types of batteries.

  19. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  20. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands

    Directory of Open Access Journals (Sweden)

    Jacobo Porteiro

    2016-03-01

    Full Text Available Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  1. Hollow ceramic block: containment of water for thermal storage in passive solar design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Winship, C.T.

    1983-12-27

    The project activity has been the development of designs, material compositions and production procedures to manufacture hollow ceramic blocks which contain water (or other heat absorptive liquids). The blocks are designed to serve, in plurality, a dual purpose: as an unobtrusive and efficient thermal storage element, and as a durable and aesthetically appealing surface for floors and walls of passive solar building interiors. Throughout the grant period, numerous ceramic formulas have been tested for their workabilty, thermal properties, maturing temperatures and color. Blocks have been designed to have structural integrity, and textured surfaces. Methods of slip-casting and extrusion have been developed for manufacturing of the blocks. The thermal storage capacity of the water-loaded block has been demonstrated to be 2.25 times greater than that of brick and 2.03 times greater than that of concrete (taking an average of commonly used materials). Although this represents a technical advance in thermal storage, the decorative effects provided by application of the blocks lend them a more significant advantage by reducing constraints on interior design in passive solar architecture.

  2. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank

    International Nuclear Information System (INIS)

    Allouche, Yosr; Varga, Szabolcs; Bouden, Chiheb; Oliveira, Armando C.

    2015-01-01

    Highlights: • Cold storage characteristics in latent and sensible heat storage mediums were studied. • Thermo-physical characterization of the phase change material was carried out. • A non-Newtonian shear thickening behavior of the phase change material was observed. • An energy storage enhancement (53%) was observed in the latent heat storage medium. - Abstract: In the present paper, the performance of a microencapsulated phase change material (in 45% w/w concentration) for low temperature thermal energy storage, suitable for air conditioning applications is studied. The results are compared to a sensible heat storage unit using water. Thermo-physical properties such as the specific heat, enthalpy variation, thermal conductivity and density are also experimentally determined. The non-Newtonian shear-thickening behavior of the phase change material slurry is quantified. Thermal energy performance is experimentally determined for a 100 l horizontal tank. The heat transfer between the heat transfer fluid and the phase change material was provided by a tube-bundle heat exchanger inside the tank. The results show that the amount of energy stored using the phase change material is 53% higher than for water after 10 h of charging, for the same storage tank volume. It was found that the heat transfer coefficient between the phase change material and the tube wall increases during the phase change temperature range, however it remains smaller than the values obtained for water

  3. Low-Temperature Thermal Energy Storage Program. Annual progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, G.D.; Eissenberg, D.M.; Kedl, R.J.

    1979-05-01

    The Low-Temperature Thermal Energy Storage (LTTES) Program is part of a national effort to develop means for reducing United States dependence on oil and natural gas as primary energy sources. To this end, LTTES addresses the development of advanced sensible and latent heat storage technologies that permit substitution by solar or off-peak electrical energies or permit conservation by recovery and reuse of waste heat. Emphasis is on applying these technologies to heating and cooling of buildings. As the LTTES program continued to mature, a number of technologies were identified for development emphasis, including (1) seasonal storage of hot and cold water from waste or natural sources in aquifers, (2) short-term or daily storage of heat or coolness from solar or off-peak electrical sources in phase-change materials, and (3) recovery and reuse of rejected industrial heat through thermal storage. These areas have been further divided into three major and four minor activities; significant accomplishments are reported for each.

  4. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  5. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage

    Science.gov (United States)

    Wang, Hao; Zhao, Liang; Chen, Lijie; Song, Guolin; Tang, Guoyi

    2017-12-01

    We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.

  6. Study of the thermal properties of selected PCMs for latent heat storage in buildings

    Science.gov (United States)

    Valentova, Katerina; Pechackova, Katerina; Prikryl, Radek; Ostry, Milan; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements of thermal properties of selected phase change materials (PCMs) which can be used for latent heat storage in building structures. The thermal properties were measured by the transient step-wise method and analyzed by the thermal spectroscopy. The results of three different materials (RT18HC, RT28HC, and RT35HC) and their thermal properties in solid, liquid, and phase change region were determined. They were correlated with the differential scanning calorimetry (DSC) measurement. The results will be used to determine the optimum ratio of components for the construction of drywall and plasters containing listed ingredients, respectively.

  7. Energy storage crystalline gel materials for 3D printing application

    Science.gov (United States)

    Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang

    2017-04-01

    Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.

  8. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage

    International Nuclear Information System (INIS)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali

    2010-01-01

    This study is focused on the preparation, characterization and thermal properties of microencapsulated n-heptadecane with polymethylmethacrylate shell. The PMMA/heptadecane microcapsules were synthesized as novel solid-liquid microencapsulated phase change material (microPCMs) by emulsion polymerization method. The chemical and thermal characterization of the microPCMs were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The diameters of microPCMs were found in the narrow range (0.14-0.40 μm) under the stirring speed of 2000 rpm. The spherical surfaces of microPCMs were smooth and compact. The DSC results show that microPCMs have good energy storage capacity. Thermal cycling test showed that the microPCMs have good thermal reliability with respect to the changes in their thermal properties after repeated 5000 thermal cycling. TGA analyses also indicated that the microPCMs degraded in three steps and have good thermal stability. Based on all results, it can be considered that the PMMA/heptadecane microcapsules as novel solid-liquid microPCMs have good energy storage potential.

  9. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material

    International Nuclear Information System (INIS)

    Tao, Y.B.; Lin, C.H.; He, Y.L.

    2015-01-01

    Highlights: • Nanocomposite phase change materials were prepared and characterized. • Larger specific surface area is more efficient to enhance specific heat. • Columnar structure is more efficient to enhance thermal conductivity. • Thermal conductivity enhancement is the key. • Single walled carbon nanotube is the optimal nanomaterial additive. - Abstract: To enhance the performance of high temperature salt phase change material, four kinds of carbon nanomaterials with different microstructures were mixed into binary carbonate eutectic salts to prepare carbonate salt/nanomaterial composite phase change material. The microstructures of the nanomaterial and composite phase change material were characterized by scanning electron microscope. The thermal properties such as melting point, melting enthalpy, specific heat, thermal conductivity and total thermal energy storage capacity were characterized. The results show that the nanomaterial microstructure has great effects on composite phase change material thermal properties. The sheet structure Graphene is the best additive to enhance specific heat, which could be enhanced up to 18.57%. The single walled carbon nanotube with columnar structure is the best additive to enhance thermal conductivity, which could be enhanced up to 56.98%. Melting point increases but melting enthalpy decreases with nanomaterial specific surface area increase. Although the additives decrease the melting enthalpy of composite phase change material, they also enhance the specific heat. As a combined result, the additives have little effects on thermal energy storage capacity. So, for phase change material performance enhancement, more emphasis should be placed on thermal conductivity enhancement and single walled carbon nanotube is the optimal nanomaterial additive

  10. Thermal Analysis Evaluation of Spent Fuel Storage Rack for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangjin; Oh, Jinho; Kwak, Jinsung; Lee, Jongmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Spent fuel storage rack is to store spent fuel assemblies. The spent fuel storage rack is submerged in the designated pool for cooling. Due to the condition change of the pool water, the effect of thermal load on spent fuel storage rack must be analyzed and evaluated. In this paper, thermal stress analysis is performed and evaluated on a spent fuel storage rack. For thermal stress evaluation of the spent fuel storage rack, load combinations and allowable criteria in ASME Sec. III NB-3220 are applied. In cases of A-1 and B-1, the same temperature applied on the whole model, thermal stress doesn't occur because there is no constraint about the thermal expansion. The support frame is located on the pool bottom in free standing type and the racks are located in the support frame with enough space. Thermal expansion was considered and reflected in the design of spent fuel storage rack in advance. Thermal stress analysis is performed and evaluated on a spent fuel storage rack with consideration of pool water temperature variation. The thermal analysis including a linear heat transfer and the thermal stress analysis is performed for the racks and support frame and resulted stresses are within allowable criteria.

  11. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  12. Solid-solid phase change thermal storage application to space-suit battery pack

    Science.gov (United States)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  13. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...... of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control....

  14. Design and installation manual for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  15. Cold storage condensation heat recovery system with a novel composite phase change material

    International Nuclear Information System (INIS)

    Xia, Mingzhu; Yuan, Yanping; Zhao, Xudong; Cao, Xiaoling; Tang, Zhonghua

    2016-01-01

    Highlights: • Cold storage condensation heat recovery system using PCM was proposed. • CW with a phase change temperature of nearly 80 °C was selected as the potential PCM. • The optimal mass ratio between the CW and EG was 10:1. • The thermal and physical performances of the CW/EG were investigated. • The thermal reliability was demonstrated by 1000 cycles. - Abstract: Using condensation heat from cold storage refrigeration systems to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation. However, few studies have investigated cold storage condensation heat recovery using phase change materials (PCMs). In this study, a cold storage condensation heat recovery system that uses PCMs has been designed and analysed. According to the principle of energy cascade recycling, different operation modes could be effectively switched to recycle condensation heat. Furthermore, a novel and suitable phase change composite material is developed for cold storage condensation heat recovery, which has a relatively large latent heat, high thermal conductivity, and an appropriate phase change temperature (i.e. 80 °C). With carnauba wax (CW) as the PCM and expanded graphite (EG) as the additive, a composite was developed with an optimal mass ratio of CW:EG = 10:1. The thermal and physical properties and the interior structure of the composite were then investigated using a scanning electron microscope (SEM), thermal constants analyser (Hot Disk), differential scanning calorimeter (DSC), and Fourier transform infrared spectrometer (FT-IR). Furthermore, experiments on the melting and solidification processes and accelerated thermal cycling were also conducted. It was found that at the optimal mass ratio of 10:1, the temperatures of the CW/EG composite in the melting and solidification processes were 81.98 °C and 80.43 °C, respectively, while the corresponding latent heats were 150.9 J/g and 142.6 J/g, respectively

  16. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  17. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  18. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.

    Science.gov (United States)

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-04-29

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  19. Sensitivity analysis of efficiency thermal energy storage on selected rock mass and grout parameters using design of experiment method

    International Nuclear Information System (INIS)

    Wołoszyn, Jerzy; Gołaś, Andrzej

    2014-01-01

    Highlights: • Paper propose a new methodology to sensitivity study of underground thermal storage. • Using MDF model and DOE technique significantly shorter of calculations time. • Calculation of one time step was equal to approximately 57 s. • Sensitivity study cover five thermo-physical parameters. • Conductivity of rock mass and grout material have a significant impact on efficiency. - Abstract: The aim of this study was to investigate the influence of selected parameters on the efficiency of underground thermal energy storage. In this paper, besides thermal conductivity, the effect of such parameters as specific heat, density of the rock mass, thermal conductivity and specific heat of grout material was investigated. Implementation of this objective requires the use of an efficient computational method. The aim of the research was achieved by using a new numerical model, Multi Degree of Freedom (MDF), as developed by the authors and Design of Experiment (DoE) techniques with a response surface. The presented methodology can significantly reduce the time that is needed for research and to determine the effect of various parameters on the efficiency of underground thermal energy storage. Preliminary results of the research confirmed that thermal conductivity of the rock mass has the greatest impact on the efficiency of underground thermal energy storage, and that other parameters also play quite significant role

  20. Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement

    International Nuclear Information System (INIS)

    Thapa, Suvhashis; Chukwu, Sam; Khaliq, Abdul; Weiss, Leland

    2014-01-01

    Highlights: • Useful thermal conductivity envelope established for small scale TES. • Paraffin conductivity enhanced from .5 to 3.8 W/m K via low-cost copper insert. • Conductivity increase beyond 5 W/m K shows diminished returns. • Storage with increased conductivity lengthened thermoelectric output up to 247 s. - Abstract: The operation and useful operating parameters of a small-scale Thermal Energy Storage (TES) device that collects and stores heat in a Phase Change Material (PCM) is explored. The PCM utilized is an icosane wax. A physical device is constructed on the millimeter scale to examine specific effects of low-cost thermal conductivity enhancements that include copper foams and other metallic inserts. Numerical methods are utilized to establish useful operating range of small-scale TES devices in general, and the limits of thermal conductivity enhancement on thermoelectric operation specifically. Specific attention is paid to the manufacturability of the various constructs as well as the resulting thermal conductivity enhancement. A maximum thermal conductivity of 3.8 W/m K is achieved in experimental testing via copper foam enhancement. A simplified copper matrix achieves conductivity of 3.7 W/m K and allows significantly reduced fabrication effort. These results compare favorably to baseline wax conductivity of .5 W/m K. Power absorption is recorded of about 900 W/m 2 . Modeling reveals diminishing returns beyond 4–6 W/m K for devices on this scale. Results show the system capable of extending thermoelectric operation several minutes through the use of thermal energy storage techniques within the effective conductivity ranges

  1. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  2. Thermodynamic analysis of pumped thermal electricity storage

    International Nuclear Information System (INIS)

    White, Alexander; Parks, Geoff; Markides, Christos N.

    2013-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater need for electricity storage. Although there are many existing and emerging storage technologies, most have limitations in terms of geographical constraints, high capital cost or low cycle life, and few are of sufficient scale (in terms of both power and storage capacity) for integration at the transmission and distribution levels. This paper is concerned with a relatively new concept which will be referred to here as Pumped Thermal Electricity Storage (PTES), and which may be able to make a significant contribution towards future storage needs. During charge, PTES makes use of a high temperature ratio heat pump to convert electrical energy into thermal energy which is stored as ‘sensible heat’ in two thermal reservoirs, one hot and one cold. When required, the thermal energy is then converted back to electricity by effectively running the heat pump backwards as a heat engine. The paper focuses on thermodynamic aspects of PTES, including energy and power density, and the various sources of irreversibility and their impact on round-trip efficiency. It is shown that, for given compression and expansion efficiencies, the cycle performance is controlled chiefly by the ratio between the highest and lowest temperatures in each reservoir rather than by the cycle pressure ratio. The sensitivity of round-trip efficiency to various loss parameters has been analysed and indicates particular susceptibility to compression and expansion irreversibility

  3. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  4. Demonstration of EnergyNest thermal energy storage (TES) technology

    Science.gov (United States)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  5. Phase changing nanocomposites for low temperature thermal energy storage and release

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2017-09-01

    Full Text Available The aim of this paper is to develop new elastomeric phase change materials (PCM for the thermal energy storage/release below room temperature. In particular, poly(cyclooctene (PCO/paraffin blends filled with various concentrations of carbon nanotubes (CNTs, were prepared by a melt compounding process. The microstructural, thermo-mechanical and electrical properties of the resulting materials were investigated. The microstructure of these materials was characterized by the presence of paraffin domains inside the PCO, and CNTs were located only inside the paraffin domains in forms of aggregated clusters. DSC tests evidenced the existence of two distinct crystallization peaks at –10 and at 6 °C, respectively associated to the paraffin and the PCO phases, indicating that both the polymeric constituents are thermally active below room temperature. Moreover, CNT addition did not substantially alter the melting/crystallization properties of the material. Noticeable improvements of the mechanical properties and of the electrical conductivity with respect to the neat PCO/paraffin blend could be obtained upon CNT addition, and also thermal conductivity/diffusivity values were considerably enhanced above the percolation threshold. Finite element modeling demonstrated the efficacy of the prepared nanocomposites for applications in the thermal range from –30 to 6 °C.

  6. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  7. Thermodynamic Calculations of Ternary Polyalcohol and Amine Phase Diagrams for Thermal Energy Storage Materials

    Science.gov (United States)

    Shi, Renhai

    Organic polyalcohol and amine globular molecular crystal materials as phase change materials (PCMs) such as Pentaglycerine (PG-(CH3)C(CH 2OH)3), Tris(hydroxymethyl)aminomethane (TRIS-(NH2)C(CH 2OH)3), 2-amino-2methyl-1,3-propanediol (AMPL-(NH2)(CH3)C(CH2OH)2), and neopentylglycol (NPG-(CH3)2C(CH2OH) 2) can be considered to be potential candidates for thermal energy storage (TES) applications such as waste heat recovery, solar energy utilization, energy saving in buildings, and electronic device management during heating or cooling process in which the latent heat and sensible heat can be reversibly stored or released through solid state phase transitions over a range of temperatures. In order to understand the polymorphism of phase transition of these organic materials and provide more choice of materials design for TES, binary systems have been studied to lower the temperature of solid-state phase transition for the specific application. To our best knowledge, the study of ternary systems in these organic materials is limited. Based on this motivation, four ternary systems of PG-TRIS-AMPL, PG-TRIS-NPG, PG-AMPL-NPG, and TRIS-AMPL-NPG are proposed in this dissertation. Firstly, thermodynamic assessment with CALPHAD method is used to construct the Gibbs energy functions into thermodynamic database for these four materials based on available experimental results from X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The phase stability and thermodynamic characteristics of these four materials calculated from present thermodynamic database with CALPHAD method can match well the present experimental results from XRD and DSC. Secondly, related six binary phase diagrams of PG-TRIS, PG-AMPL, PG-NPG, TRIS-AMPL, TRIS-NPG, and AMPL-NPG are optimized with CALPHAD method in Thermo-Calc software based on available experimental results, in which the substitutional model is used and excess Gibbs energy is expressed with Redlich-Kister formalism. The

  8. Confined-Volume Effect on the Thermal Properties of Encapsulated Phase Change Materials for Thermal Energy Storage.

    Science.gov (United States)

    De Castro, Paula F; Ahmed, Adham; Shchukin, Dmitry G

    2016-03-18

    We have encapsulated the heat exchange material, n-docosane, into polyurethane capsules of different sizes. Decreasing the size of the capsules leads to changes of the crystallinity of phase-change material as well as melting/crystallization temperature. The novelty of the paper includes 1) protection of the nanostructured energy-enriched materials against environment during storage and controlled release of the encapsulated energy on demand and 2) study of the structure and surface-to-volume properties of the energy-enriched materials dispersed in capsules of different sizes. The stability of energy nanomaterials, influence of capsule diameter on their energy capacity, homogeneity and operation lifetime are investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Using the shield for thermal energy storage in pulsar

    International Nuclear Information System (INIS)

    Sager, G.T.; Sze, D.K.; Wong, C.P.C.; Bathke, C.G.; Blanchard, J.P.; Brimer, C.; Cheng, E.T.; El-Guebaly, L.A.; Hasan, M.Z.; Najmabadi, F.; Sharafat, S.; Sviatoslavski, I.N.; Waganer, L.

    1995-01-01

    The PULSAR pulsed tokamak power plant design utilizes the outboard shield for thermal energy storage to maintain full 1000MW(e) output during the dwell period of 200s. Thermal energy resulting from direct nuclear heating is accumulated in the shield during the 7200s fusion power production phase. The maximum shield temperature may be much higher than that for the blanket because radiation damage is significantly reduced. During the dwell period, thermal power discharged from the shield and coolant temperature are simultaneously regulated by controlling the coolant mass flow rate at the shield inlet. This is facilitated by throttled coolant bypass. Design concepts using helium and lithium coolant have been developed. Two-dimensional time-dependent thermal hydraulic calculations were performed to confirm performance capabilities required of the design concepts. The results indicate that the system design and performance can accommodate uncertainties in material limits or the length of the dwell period. (orig.)

  10. Thermal-hydraulic analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1987-01-01

    This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs

  11. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Li, Wei; Song, Guolin; Chu, Xiaodong; Tang, Guoyi

    2012-01-01

    Microcapsules containing n-octadecane with different methylmethacrylate (MMA (methyl methacrylate))-based copolymer shells were fabricated by a suspension-like polymerization. Butyl acrylate (BA), butyl methacrylate (BMA), lauryl methacrylate (LMA) and stearyl methacrylate (SMA) were employed as monomers to copolymerize with MMA. Pentaerythritol tetraacrylate (PETRA) was employed as a crosslinking agent. The (microencapsulted phase change materials) MicroPCMs were characterized using Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Thermal properties and thermal resistances of MicroPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), respectively. Phase change enthalpies and PCM contents of MicroPCMs increased with the length decreasing of the side chain of the monomers. The n-octadecane content of as much as 77.3% can be obtained in the crosslinked MicroPCMs with P(MMA-co-BMA) as shell, and accompanied by the highest melting enthalpy (173.7 J/g) and crystallization enthalpy (174.4 J/g). Heat capacities of crosslinked MicroPCMs are higher than those of their uncrosslinked counterparts. The crosslinked MicroPCMs exhibit significantly greater thermal stabilities compared with their uncrosslinked counterparts and the n-ontadecane bulk. The crosslinked MicroPCMs with P(MMA-co-SMA) displays the highest thermal resistance temperature up to 255 °C. Therefore, MicroPCMs with MMA-based copolymer as shells, especially crosslinked copolymer shells, show excellent potentials for thermal energy storage. -- Highlights: ► n-Octadecane was encapsulated with methylmethacrylate(MMA)-based copolymer shells. ► n-Octadecane content of Microcapsules increased with length decreasing of side chain of monomers. ► Microcapsule with P(MMA-co-butyl methacrylate) has the highest latent heat. ► Microcapsule with P(MMA-co-stearyl methacrylate) has the greatest thermal stability.

  12. Review of Phase Change Materials Based on Energy Storage System with Applications

    Science.gov (United States)

    Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.

    2017-05-01

    The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.

  13. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    International Nuclear Information System (INIS)

    Fang, Guiyin; Li, Hui; Cao, Lei; Shan, Feng

    2012-01-01

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 °C with a latent heat of 84.48 kJ kg −1 and solidify at 56.86 °C with a latent heat of 78.79 kJ kg −1 when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: ► Form-stable PA/active aluminum oxide composites as PCMs were prepared. ► Chemical structure, crystalloid phase and microstructure of composites were determined. ► Thermal properties and thermal stability of the composites were investigated. ► Expanded graphite can improve thermal conductivity of the composites.

  14. Performance maps for the control of thermal energy storage

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Zeiler, Wim

    2017-01-01

    Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change mat...... material tanks, and thermochemical material tanks. The results show that these performance maps can fully account for the dynamics of thermal energy storage tanks.......Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change...

  15. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage.

    Science.gov (United States)

    Li, Min; Guo, Qiangang; Nutt, Steven

    2017-04-01

    A composite phase change material (PCM) comprised of organic montmorillonite (OMMT)/paraffin/grafted multi-walled nanotube (MWNT) is synthesized via ultrasonic dispersion and liquid intercalation. The microstructure of the composite PCM has been characterized to determine the phase distribution, and thermal properties (latent heat and thermal conductivity) have been measured by differential scanning calorimetry (DSC) and a thermal constant analyzer. The results show that paraffin molecules are intercalated in the montmorillonite layers and the grafted MWNTs are dispersed in the montmorillonite layers. The latent heat is 47.1 J/g, and the thermal conductivity of the OMMT/paraffin/grafted MWNT composites is 34% higher than that of the OMMT/paraffin composites and 65% higher than that of paraffin.

  16. Gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  17. Thermal Analysis of a Thermal Energy Storage Unit to Enhance a Workshop Heating System Driven by Industrial Residual Water

    Directory of Open Access Journals (Sweden)

    Wenqiang Sun

    2017-02-01

    Full Text Available Various energy sources can be used for room heating, among which waste heat utilization has significantly improved in recent years. However, the majority of applicable waste heat resources are high-grade or stable thermal energy, while the low-grade or unstable waste heat resources, especially low-temperature industrial residual water (IRW, are insufficiently used. A thermal energy storage (TES unit with paraffin wax as a phase change material (PCM is designed to solve this problem in a pharmaceutical plant. The mathematical models are developed to simulate the heat storage and release processes of the TES unit. The crucial parameters in the recurrence formulae are determined: the phase change temperature range of the paraffin wax used is 47 to 56 °C, and the latent heat is 171.4 kJ/kg. Several thermal behaviors, such as the changes of melting radius, solidification radius, and fluid temperature, are simulated. In addition, the amount of heat transferred, the heat transfer rate, and the heat storage efficiency are discussed. It is presented that the medicine production unit could save 10.25% of energy consumption in the investigated application.

  18. Evaluation of alternative phase change materials for energy storage in solar dynamic applications

    Science.gov (United States)

    Crane, R. A.; Dustin, M. O.

    1988-01-01

    The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.

  19. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study

    Directory of Open Access Journals (Sweden)

    Xiangfei Kong

    2016-01-01

    Full Text Available This study is focused on the preparation and performance of a building energy storage panel (BESP. The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP, which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM was incorporated into expanded perlite (EP through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC, scanning electron microscope (SEM, best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1 the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2 the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3 in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  20. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study.

    Science.gov (United States)

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-25

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  1. Plutonium storage thermal analysis (U)

    International Nuclear Information System (INIS)

    Hensel, S.J.; Lee, S.Y.; Schaade, J.B.

    1997-01-01

    Thermal modeling of plutonium metal ingots stored in food pack cans provides information useful for performing stored material safety evaluations. Four storage can geometries were modeled, and several conclusions can be made from the 14 cases analyzed. The ingot temperature increased from 7 degrees F to 12 degrees F (depending on can configuration) per additional watt of power. Including internal convection lowers computed ingot temperatures by 70 degrees F. Accounting for the heat flow through the bottom of the cans to the storage rack lowered computed ingot temperatures by an additional 70 degrees F to 80 degrees F. In the rimmed can systems storing ingots with a power of 10.35 watts, the ingot temperature varies from 190 degrees F to 213 degrees F. Including a plastic bag between the inner and outer can increases the ingot temperature by 15 degrees F. Adding a label to the outer can side reduces the outer can side temperature by 13 degrees F. Changes in ambient temperature affect the outer can temperatures more than the ingot temperature by a factor of 3. Similarly, a 5 degrees F drop in outer can temperature due to increased convection lowered the ingot temperature by only 2 degrees F

  2. Parametric studies and optimisation of pumped thermal electricity storage

    International Nuclear Information System (INIS)

    McTigue, Joshua D.; White, Alexander J.; Markides, Christos N.

    2015-01-01

    Highlights: • PTES is modelled by cycle analysis and a Schumann-style model of the thermal stores. • Optimised trade-off surfaces show a flat efficiency vs. energy density profile. • Overall roundtrip efficiencies of around 70% are not inconceivable. - Abstract: Several of the emerging technologies for electricity storage are based on some form of thermal energy storage (TES). Examples include liquid air energy storage, pumped heat energy storage and, at least in part, advanced adiabatic compressed air energy storage. Compared to other large-scale storage methods, TES benefits from relatively high energy densities, which should translate into a low cost per MW h of storage capacity and a small installation footprint. TES is also free from the geographic constraints that apply to hydro storage schemes. TES concepts for electricity storage rely on either a heat pump or refrigeration cycle during the charging phase to create a hot or a cold storage space (the thermal stores), or in some cases both. During discharge, the thermal stores are depleted by reversing the cycle such that it acts as a heat engine. The present paper is concerned with a form of TES that has both hot and cold packed-bed thermal stores, and for which the heat pump and heat engine are based on a reciprocating Joule cycle, with argon as the working fluid. A thermodynamic analysis is presented based on traditional cycle calculations coupled with a Schumann-style model of the packed beds. Particular attention is paid to the various loss-generating mechanisms and their effect on roundtrip efficiency and storage density. A parametric study is first presented that examines the sensitivity of results to assumed values of the various loss factors and demonstrates the rather complex influence of the numerous design variables. Results of an optimisation study are then given in the form of trade-off surfaces for roundtrip efficiency, energy density and power density. The optimised designs show a

  3. A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties

    International Nuclear Information System (INIS)

    Zhang, He; Xing, Feng; Cui, Hong-Zhi; Chen, Da-Zhu; Ouyang, Xing; Xu, Su-Zhen; Wang, Jia-Xin; Huang, Yi-Tian; Zuo, Jian-Dong; Tang, Jiao-Ning

    2016-01-01

    Highlights: • A novel flaky graphite-doped phase-change microcapsule (FGD-MPCM) was prepared. • FGD-MPCM has substantial latent heat storage capacity (135.8 J/g). • FGD-MPCMs/cement composite is capable of reducing indoor temperature fluctuation. • Compressive strength of cement composite with 30% FGD-MPCMs can reach to 14.2 MPa. - Abstract: Facing upon the increasingly severe energy crisis, one of the key issues for reducing the building energy consumption is to pursue high-performance thermal energy storage technologies based on phase-change materials. In this study, a novel cement composite incorporated with flaky graphite-doped microencapsulated phase-change materials (FGD-MPCMs) was developed. Various techniques, such as field emission-scanning electron microscopy (FE-SEM), optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to analyse the composite structure and thermal performances. The results indicate that the spherical microcapsules are well dispersed in the cement matrix. When combined within the cement, the thermal stability of the microcapsules was highly improved, and the inclusion of greater amounts of FGD-MPCMs further increased the latent heat of the composite. The mechanical properties of the cement composites were affected with the increase of FGD-MPCMs dosage and the porosity of the composites. In spite of this, the compressive strength and flexural strength of the cement composite with 30% FGD-MPCM could still reach to as high as 14.2 MPa and 4.1 MPa, respectively. Results from the infrared thermography and the model room test suggested that the composite filled with FGD-MPCMs is capable of reducing indoor temperature fluctuation and exhibits good potential for application in buildings to enhance energy savings and thermal comfort.

  4. Solidification of high temperature molten salts for thermal energy storage systems

    Science.gov (United States)

    Sheffield, J. W.

    1981-01-01

    The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.

  5. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage

    International Nuclear Information System (INIS)

    Cao, Lei; Tang, Yaojie; Fang, Guiyin

    2015-01-01

    Shape-stabilized fatty acid eutectics/carboxy methyl cellulose-1 composites as phase change materials (PCMs) were synthesized by absorbing liquid eutectics into the carboxy methyl cellulose-1 fibers. The chemical structure, crystalloid phase and morphology were determined by the Fourier transformation infrared spectroscope, X-ray diffractometer and scanning electronic microscope. The thermal properties and thermal stability were measured by the differential scanning calorimeter, thermogravimetric analyzer and the thermal cycling test, respectively. The results indicate that the eutectics are well adsorbed in the porous structure of the carboxy methyl cellulose-1. According to the DSC (differential scanning calorimeter) results, the composites melt at 32.2 °C with latent heat of 114.6 kJ/kg and solidify at 29.2 °C with latent heat of 106.8 kJ/kg. The thermal cycling test proves that the composites have good thermal reliability. It is envisioned that the prepared shape-stabilized PCMs have considerable potential for developing their roles in thermal energy storage. - Highlights: • The fatty acid eutectic/carboxy methyl cellulose-1 composites as PCMs were prepared. • Chemical structure and microstructure of composites were determined by FT-IR and SEM. • Thermal properties and stabilities were investigated by DSC and TGA. • The thermal cycling test confirmed that the composite has good thermal reliability

  6. Exact solution of thermal energy storage system using PCM flat slabs configuration

    International Nuclear Information System (INIS)

    Bechiri, Mohammed; Mansouri, Kacem

    2013-01-01

    Highlights: • An exact solution of a latent heat storage unit (LHSU) consisting of several flat slabs was obtained. • The working fluid (HTF) circulating by forced convection between the slabs charges and discharges the storage unit. • The charging/discharging process is investigated for various HTF working conditions and different design parameters. - Abstract: An analytical investigation of thermal energy storage system (TESS) consisting of several flat slabs of phase change material (PCM) is presented. The working fluid (HTF) circulating on laminar forced convection between the slabs charges and discharges the storage unit. The melting and solidification of the PCM was treated as a radial one dimensional conduction problem. The forced convective heat transfer inside the channels is analyzed by solving the energy equation, which is coupled with the heat conduction equation in the PCM container. The comparison between the present exact solution with the numerical predictions and experimental data available in literature shows good agreement. The charging/discharging process is investigated in terms of liquid–solid interface position, liquid fraction, total heat transmitted to the PCM and thermal storage efficiency for various HTF working conditions and different design parameters such as PCM slab length, fluid passage gap and thickness of PCM duct container

  7. Aquifer thermal energy (heat and chill) storage

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, E.A. (ed.)

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  8. Thermal and flow analysis of the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% effort of Title 1)

    International Nuclear Information System (INIS)

    Steinke, R.G.; Mueller, C.; Knight, T.D.

    1998-03-01

    The computational fluid dynamics code CFX4.2 was used to evaluate steady-state thermal-hydraulic conditions in the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% of Title 1). Thirteen facility cases were evaluated with varying temperature dependence, drywell-array heat-source magnitude and distribution, location of the inlet tower, and no-flow curtains in the drywell-array vault. Four cases of a detailed model of the inlet-tower top fixture were evaluated to show the effect of the canopy-cruciform fixture design on the air pressure and flow distributions

  9. Low temperature desalination using solar collectors augmented by thermal energy storage

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand

    2012-01-01

    Highlights: ► A new low temperature desalination process using solar collectors was investigated. ► A thermal energy storage tank (TES) was included for continuous process operation. ► Solar collector area and TES volumes were optimized by theoretical simulations. ► Economic analysis for the entire process was compared with and without TES tank. ► Energy and emission payback periods for the solar collector system were reported. -- Abstract: A low temperature desalination process capable of producing 100 L/d freshwater was designed to utilize solar energy harvested from flat plate solar collectors. Since solar insolation is intermittent, a thermal energy storage system was incorporated to run the desalination process round the clock. The requirements for solar collector area as well as thermal energy storage volume were estimated based on the variations in solar insolation. Results from this theoretical study confirm that thermal energy storage is a useful component of the system for conserving thermal energy to meet the energy demand when direct solar energy resource is not available. Thermodynamic advantages of the low temperature desalination using thermal energy storage, as well as energy and environmental emissions payback period of the system powered by flat plate solar collectors are presented. It has been determined that a solar collector area of 18 m 2 with a thermal energy storage volume of 3 m 3 is adequate to produce 100 L/d of freshwater round the clock considering fluctuations in the weather conditions. An economic analysis on the desalination system with thermal energy storage is also presented.

  10. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  11. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Song, Guolin; Chu, Xiaodong; Li, Xuezhu; Tang, Guoyi

    2013-01-01

    Highlights: ► n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). ► Microcapsules using divinylbenzene as crosslinking agent have better quality. ► Microcapsule with butyl methacrylate–divinylbenzene has highest latent heat. ► Microcapsule with butyl methacrylate–divinylbenzene has greatest thermal stability. ► Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA–DVB polymer was up to 248 °C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  12. Experimental investigation for the optimization of heat pipe performance in latent heat thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Ladekar, Chandrakishor; Choudhary, S. K. [RTM Nagpur University, Wardha (India); Khandare, S. S. [B. D. College of Engineering, Wardha (India)

    2017-06-15

    We investigated the optimum performance of heat pipe in Latent heat thermal energy storage (LHTES), and compared it with copper pipe. Classical plan of experimentation was used to optimize the parameters of heat pipe. Heat pipe fill ratio, evaporator section length to condenser section length ratio i.e., Heat pipe length ratio (HPLR) and heat pipe diameter, was the parameter used for optimization, as result of parametric analysis. Experiment with flow rate of 10 lit./min. was conducted for different fill ratio, HPLR and different diameter. Fill ratio of 80 %, HPLR of 0.9 and heat pipe with diameter of 18 mm showed better trend in charging and discharging. Comparison between the storage tank with optimized heat pipe and copper pipe showed almost 186 % improvement in charging and discharging time compared with the copper pipe embedded thermal storage. Heat transfer between Heat transferring fluid (HTF) and Phase change material (PCM) increased with increase in area of heat transferring media, but storage density of storage tank decreased. Storage tank with heat pipe embedded in place of copper pipe is a better option in terms of charging and discharging time as well heat storage capacity due to less heat lost. This justifies the better efficiency and effectiveness of storage tank with embedded optimized heat pipe.

  13. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  14. Investigation of diffusional transport of heat and its enhancement in phase-change thermal energy storage systems

    International Nuclear Information System (INIS)

    Saraswat, Amit; Bhattacharjee, Rajdeep; Verma, Ankit; Das, Malay K.; Khandekar, Sameer

    2017-01-01

    Thermal energy storage in general, and phase-change materials (PCMs) in particular, have been a major topic of research for the last thirty years. Due to their favorable thermo-dynamical characteristics, such as high density, specific heat and latent heat of fusion, PCMs are usually employed as working fluids for thermal storage. However, low thermal conductivities of organic PCMs have posed a continuous challenge in its large scale deployment. This study focuses on experimental and numerical investigation of the melting process of industrial grade paraffin wax inside a semi-cylindrical enclosure with a heating strip attached axially along the center of semi-cylinder. During the first part of the study, the solid-liquid interface location, the liquid flow patterns in the melt pool, and the spatial and temporal variation of PCM temperature were recorded. For numerical simulation of the system, open source library OpenFOAM® was used in order to solve the coupled Navier-Stokes and energy equations in the considered system. It is seen that the enthalpy-porosity technique implemented on OpenFOAM® is reasonably well suited for handling melting/solidification problems and can be employed for system level design. Next, to overcome the inherent thermal limitations of PCM storage material, the study further explored the potential of coupling the existing heat source with copper-water heat pipes, so as to help augment the rate of heat dissipation within the medium by increasing the effective system-level thermal conductivity. Integration of heat pipes led to enhanced transport, and hence, a substantial decrease in the total required melting time. The study provides a framework for designing of large systems with integration of heat pipes with PCM based thermal storage systems.

  15. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes

    International Nuclear Information System (INIS)

    Karaipekli, Ali; Biçer, Alper; Sarı, Ahmet; Tyagi, Vineet Veer

    2017-01-01

    Highlights: • Expanded perlite/n-eicosane composite for thermal energy storage was prepared. • Addition of CNTs increases considerably the thermal conductivity of the composite. • The composite PCM including 1 wt% CNTs is promising material. - Abstract: Paraffins constitute a class of solid-liquid organic phase change materials (PCMs). However, low thermal conductivity limits their feasibility in thermal energy storage (TES) applications. Carbon nano tubes (CNTs) are one of the best materials to increase the thermal conductivity of paraffins. In this regard, the present study is focus on the preparation, characterization, and improvement of thermal conductivity using CNTs as well as determination of TES properties of expanded perlite (ExP)/n-eicosane (C20) composite as a novel type of form-stable composite PCM (F-SCPCM). It was found that the ExP could retain C20 at weight fraction of 60% without leakage. The SEM and FTIR analyses were carried out to characterize the microstructure and chemical properties of the composite PCM. The TES properties of the prepared F-SCPCM were determined using DSC and TG analyses. The analysis results showed that the components of the composite are in good compatibleness and C20 used as PCM are well-infiltrated into the structure of ExP/CNTs matrix. The DSC analysis indicated that the ExP/C20/CNTs (1 wt%) composite has a melting point of 36.12 °C and latent heat of 157.43 J/g. The TG analysis indicated that the F-SCPCM has better thermal durability compared with pure C20 and also it has good long term-TES reliability. In addition, the effects of CNTs on the thermal conductivity of the composite PCM were investigated. Compared to ExP/C20 composite, the use of CNTs has apparent improving effect for the thermal conductivity without considerably affecting the compatibility of components, TES properties, and thermal stability.

  16. Carbon material for hydrogen storage

    Science.gov (United States)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  17. Protocols for atomistic modeling of water uptake into zeolite crystals for thermal storage and other applications

    International Nuclear Information System (INIS)

    Fasano, Matteo; Borri, Daniele; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • Numerical protocols for modeling water adsorption and infiltration into zeolite. • A priori screening of new materials for heat storage and desalination is possible. • Water uptake isotherms for bridging atomistic and engineering scales. - Abstract: We report numerical protocols for describing the water uptake process into microporous materials, with special emphasis on zeolite crystals. A better understanding and more predictive tools of the latter process are critical for a number of modern engineering applications, ranging from the optimization of loss free and compact thermal storage plants up to more efficient separation processes. Water sorption (and desorption) is indeed the key physical phenomenon to consider when designing several heat storage cycles, whereas water infiltration is to be studied when concerned with sieving through microporous materials for manufacturing selective membranes (e.g. water desalination by reverse osmosis). Despite the two quite different applications above, in this article we make an effort for illustrating a comprehensive numerical framework for predicting the engineering performances of microporous materials, based on detailed atomistic models. Thanks to the nowadays spectacular progresses in synthesizing an ever increasing number of new materials with desired properties such as zeolite with various concentrations of hydrophilic defects, we believe that the reported tools can possibly guide engineers in choosing and optimizing innovative materials for (thermal) engineering applications in the near future.

  18. Integration of Decentralized Thermal Storages Within District Heating (DH Networks

    Directory of Open Access Journals (Sweden)

    Schuchardt Georg K.

    2016-12-01

    Full Text Available Thermal Storages and Thermal Accumulators are an important component within District Heating (DH systems, adding flexibility and offering additional business opportunities for these systems. Furthermore, these components have a major impact on the energy and exergy efficiency as well as the heat losses of the heat distribution system. Especially the integration of Thermal Storages within ill-conditioned parts of the overall DH system enhances the efficiency of the heat distribution. Regarding an illustrative and simplified example for a DH system, the interactions of different heat storage concepts (centralized and decentralized and the heat losses, energy and exergy efficiencies will be examined by considering the thermal state of the heat distribution network.

  19. Thermal energy storage for cooling of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  20. Current status of ground source heat pumps and underground thermal energy storage in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B. [Justus Liebig University, Giessen (Germany). Institute of Applied Geosciences; Karytsas, C.; Mendrinos, D. [Center for Renewable Energy Sources, Pikermi (Greece); Rybach, L. [Geowatt AG, Zurich (Switzerland)

    2003-12-01

    Geothermal Heat Pumps, or Ground Coupled Heat Pumps (GCHP), are systems combining a heat pump with a ground heat exchanger (closed loop systems), or fed by ground water from a well (open loop systems). They use the earth as a heat source when operating in heating mode, with a fluid (usually water or a water-antifreeze mixture) as the medium that transfers the heat from the earth to the evaporator of the heat pump, thus utilising geothermal energy. In cooling mode, they use the earth as a heat sink. With Borehole Heat Exchangers (BHE), geothermal heat pumps can offer both heating and cooling at virtually any location, with great flexibility to meet any demands. More than 20 years of R and D focusing on BUE in Europe has resulted in a well-established concept of sustainability for this technology, as well as sound design and installation criteria. Recent developments are the Thermal Response Test, which allows in-situ-determination of ground thermal properties for design purposes, and thermally enhanced grouting materials to reduce borehole thermal resistance. For cooling purposes, but also for the storage of solar or waste heat, the concept of underground thermal energy storage (UTES) could prove successful. Systems can be either open (aquifer storage) or can use BHE (borehole storage). Whereas cold storage is already established on the market, heat storage, and, in particular, high temperature heat storage (> 50{sup o}C) is still in the demonstration phase. Despite the fact that geothermal heat pumps have been in use for over 50 years now (the first were in the USA), market penetration of this technology is still in its infancy, with fossil fuels dominating the space heating market and air-to-air heat pumps that of space cooling. In Germany, Switzerland, Austria, Sweden, Denmark, Norway, France and the USA, large numbers of geothermal heat pumps are already operational, and installation guidelines, quality control and contractor certification are now major issues

  1. Development of latent heat storage systems. New storage materials and concepts for solar energy, efficient use, and spaceflight applications. Entwicklung von Latentwaermespeichern. Neue Speichermaterialien und Konzepte fuer Solarenergie, rationelle Energienutzung und Raumfahrtanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Glueck, A.; Krause, S.; Lindner, F.; Staehle, H.J.; Tamme, R. (DLR, Stuttgart (Germany). Inst. fuer Technische Thermodynamik)

    1991-11-01

    To extend the operational range of thermal energy storage systems and to provide access to new fields of applications, it is necessary to develop storage systems with higher energy densities than can be achieved with conventional materials. Advanced storage concepts such as latent heat storage and chemical storage are suitable for this. (orig.).

  2. Basic Considerations for Dry Storage of Spent Nuclear Fuels and Revisited CFD Thermal Analysis on the Concrete Cask

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jae Soo [ACT Co. Ltd., Daejeon (Korea, Republic of); Park, Younwon; Song, Sub Lee [BEES Inc., Daejeon (Korea, Republic of); Kim, Hyeun Min [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The integrity of storage facility and also of the spent nuclear fuel itself is considered very important. Storage casks can be located in a designated area on a site or in a designated storage building. A number of different designs for dry storage have been developed and used in different countries. Dry storage system was classified into two categories by IAEA. One is container including cask and silo, the other one is vault. However, there is various way of categorization for dry storage system. Dry silo and cask are usually classified separately, so the dry storage system can be classified into three different types. Furthermore, dry cask storage can be categorized into two types based on the type of the materials, concrete cask and metal cask. In this paper, the design characteristics of dry storage cask are introduced and computational fluid dynamics (CFD) based thermal analysis for concrete cask is revisited. Basic principles for dry storage cask design were described. Based on that, thermal analysis of concrete dry cask was introduced from the study of H. M. Kim et al. From the CFD calculation, the temperature of concrete wall was maintained under the safety criteria. From this fundamental analysis, further investigations are expected. For example, thermal analysis on the metal cask, thermal analysis on horizontally laid spent nuclear fuel assemblies for transportation concerns, and investigations on better performance of natural air circulation in dry cask can be promising candidates.

  3. Basic Considerations for Dry Storage of Spent Nuclear Fuels and Revisited CFD Thermal Analysis on the Concrete Cask

    International Nuclear Information System (INIS)

    Noh, Jae Soo; Park, Younwon; Song, Sub Lee; Kim, Hyeun Min

    2016-01-01

    The integrity of storage facility and also of the spent nuclear fuel itself is considered very important. Storage casks can be located in a designated area on a site or in a designated storage building. A number of different designs for dry storage have been developed and used in different countries. Dry storage system was classified into two categories by IAEA. One is container including cask and silo, the other one is vault. However, there is various way of categorization for dry storage system. Dry silo and cask are usually classified separately, so the dry storage system can be classified into three different types. Furthermore, dry cask storage can be categorized into two types based on the type of the materials, concrete cask and metal cask. In this paper, the design characteristics of dry storage cask are introduced and computational fluid dynamics (CFD) based thermal analysis for concrete cask is revisited. Basic principles for dry storage cask design were described. Based on that, thermal analysis of concrete dry cask was introduced from the study of H. M. Kim et al. From the CFD calculation, the temperature of concrete wall was maintained under the safety criteria. From this fundamental analysis, further investigations are expected. For example, thermal analysis on the metal cask, thermal analysis on horizontally laid spent nuclear fuel assemblies for transportation concerns, and investigations on better performance of natural air circulation in dry cask can be promising candidates

  4. Bentonite-like material sealing to high-level radioactive wastes storage

    International Nuclear Information System (INIS)

    Linares, J.; Linares Gonzalez, J.; Huertas Garcia, F.; Reyes Camacho.

    1993-01-01

    Among the most used materials for sealing of radioactive waste storage, bentonite shows a high number of advantages because of its plasticity, thermal and hydraulic conductivity, etc. The paper makes a review on different Spanish deposits of bentonite and their stability. Most of studies are focussed on the volcanic region at Cabo de Gata (Almeria). That area offers the most productive hydrothermal bentonite deposits in Spain

  5. Melting/solidification characteristics of paraffin based nanocomposite for thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Lokesh Selvam

    2017-01-01

    Full Text Available The present work aimed to investigate the melting and solidification characteristics of nanoparticle enhanced phase change material (NEPCM. The NEPCM were prepared using paraffin as the phase change material and multiwall carbon nanotube (MWCNT as the nanomaterial without using any dispersant. Thermal conductivity of the NEPCM was measured with respect to temperature and the measured data showed higher enhancement than the phase change material both in liquid and solid state, due to inherent high conductive and the continuous networking of the MWCNT. A reduction in solidification and melting time of 42% and 29% was achieved in the case of NEPCM with 0.9% and 0.3%, respectively. It is concluded that enhanced heat transfer characteristics of NEPCM is highly beneficial towards design and development of efficient thermal energy storage system for various applications.

  6. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    International Nuclear Information System (INIS)

    JOSEPHSON, W.S.

    2003-01-01

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis

  7. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  8. Thermal Evaluation of Storage Rack with an Advanced Neutron Absorber during Normal Operation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-Jae; Kim, Mi-Jin; Sohn, Dong-Seong [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    The storage capacity of the domestic wet storage site is expected to reach saturation from Hanbit in 2024 to Sin-wolseong in 2038 and accordingly management alternatives are urgently taken. Since installation of the dense rack is considered in the short term, it is necessary to urgently develop an advanced neutron absorber which can be applied to a spent nuclear fuel storage facility. Neutron absorber is the material for controlling the reactivity. A material which has excellent thermal neutron absorption ability, high strength and corrosion resistance must be selected as the neutron absorber. Existing neutron absorbers are made of boron which has a good thermal absorption ability such as BORAL and METAMIC. However, possible problems have been reported in using the boron-based neutron absorber for wet storage facility. Gadolinium is known to have higher neutron absorption cross-section than that of boron. And the strength of duplex stainless steel is about 1.5 times higher than stainless steel 304 which has been frequently used as a structural material. Therefore, duplex stainless steel which contains gadolinium is in consideration as an advanced neutron absorber. Temperature distribution is shown in figure 4. In pool bottom region near the inlet shows a relatively low tendency and heat generated from the fuel assemblies is transmitted to the pool upper region by the vertical flow. Also, temperature gradient appear in rack structures for the axial direction and temperature is uniformly distributed in the pool upper region. Table 1 presents the calculated results. The maximum temperature is 306.63K and does not exceed the 333.15K (60℃). The maximum temperature of the neutron absorber is 306.48K.

  9. Thermal diffusivity measurement of erythritol and numerical analysis of heat storage performance on a fin-type heat exchanger

    International Nuclear Information System (INIS)

    Zamengo, Massimiliano; Funada, Tomohiro; Morikawa, Junko

    2017-01-01

    Highlights: • Thermal diffusivity of Erythritol was measured by temperature wave method. • Thermal diffusivity was measured in function of temperature and during phase change. • Database of temperature-dependent thermal properties is used for numerical analysis. • Heat transfer and heat storage were analyzed in a fin-type heat exchanger. • Use of temperature-dependent properties in calculations lead to longer melting time. - Abstract: Temperature dependency of thermal diffusivity of erythritol was measured by temperature wave analysis (TWA) method. This modulating technique allowed measuring thermal diffusivity continuously, even during the phase transition solid-liquid. Together with specific heat capacity and specific enthalpy measured by differential scanning calorimetry, the values of measured properties were utilized in a bi-dimensional numerical model for analysis of heat transfer and heat storage performance. The geometry of the model is representative of a cross section of a fin-type heat exchanger, in which erythritol is filling the interspaces between fins. Time-dependent temperature change and heat storage performance were analyzed by considering the variation of thermophysical properties as a function of temperature. The numerical method can be utilized for a fast parametric analysis of heat transfer and heat storage performance into heat storage systems of phase-change materials and composites.

  10. Thermophysical Characterization of MgCl₂·6H₂O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES).

    Science.gov (United States)

    Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter

    2017-04-24

    The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 ), erythritol (C 4 H 10 O 4 ) and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature.

  11. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  12. Rheological and thermal properties of suspensions of microcapsules containing phase change materials.

    Science.gov (United States)

    Cao, Vinh Duy; Salas-Bringas, Carlos; Schüller, Reidar Barfod; Szczotok, Anna M; Hiorth, Marianne; Carmona, Manuel; Rodriguez, Juan F; Kjøniksen, Anna-Lena

    2018-01-01

    The thermal and rheological properties of suspensions of microencapsulated phase change materials (MPCM) in glycerol were investigated. When the microcapsule concentration is raised, the heat storage capacity of the suspensions becomes higher and a slight decline in the thermal conductivity of the suspensions is observed. The temperature-dependent shear-thinning behaviour of the suspensions was found to be strongly affected by non-encapsulated phase change materials (PCM). Accordingly, the rheological properties of the MPCM suspensions could be described by the Cross model below the PCM melting point while a power law model best described the data above the PCM melting point. The MPCM suspensions are interesting for energy storage and heat transfer applications. However, the non-encapsulated PCM contributes to the agglomeration of the microcapsules, which can lead to higher pumping consumption and clogging of piping systems.

  13. Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Chen, Xiaodong

    2018-03-01

    Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Heat transfer enhancement in triplex-tube latent thermal energy storage system with selected arrangements of fins

    Science.gov (United States)

    Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng

    2018-01-01

    The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.

  15. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin; Chu, Xiaodong; Li, Xuezhu [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@tsinghua.edu.cn [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). Black-Right-Pointing-Pointer Microcapsules using divinylbenzene as crosslinking agent have better quality. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has highest latent heat. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has greatest thermal stability. Black-Right-Pointing-Pointer Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA-DVB polymer was up to 248 Degree-Sign C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  16. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    Science.gov (United States)

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  17. Thermal simulation of storage in TSS-Galleries

    International Nuclear Information System (INIS)

    Lain Huerta, R.; Martinez Santiago, T.; Ramirez Oyangueren, P.

    1993-01-01

    This report describes the experiment ''thermal simulation of storage in TSS-galleries'' what is been developed in salt mine of Asse, Germany. The report has 3 part: 1) Analysis of objectives and general description of boundary layers. 2) Geomechanics parameters of salt mine. 3) Thermal modelization, thermomechanics modelization and data acquisition

  18. Phase transition of neopentyl glycol in nanopores for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Li, Qifeng; Wang, Liping; Lan, Xiaozheng, E-mail: lanxzh@sdau.edu.cn

    2016-05-20

    Highlights: • NPG nanocomposites in porous glass (d = 11.5–300 nm) are prepared. • Solid transition temperature of the nanocomposites can be tuned to ∼11 °C below the bulk. • Latent heat of the pore NPG varies in the range of 65.5–99.6% of the bulk value. • Nanoconfinement provides a way of reusing those ideal heat storage materials. - Abstract: Size-dependent thermal properties of neopentyl glycol (NPG) embedded in controlled porous glasses (CPGs) are investigated using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), and powder X-ray diffraction (XRD). In the nanopores of CPGs (diameter d = 11.5–300 nm), NPG shows depressed solid–solid and solid–liquid phase transition temperatures and latent heats, which decrease as the pore size becomes smaller. In thermal cycling around the solid transition, the nano-sized NPG display stable transition temperature and enthalpy change as the bulk. Supercooling in the solid transition increases with the decreasing pore diameter (d > 25 nm). From FT-IR and XRD analysis, NPG in the nanopores maintains the same structure as the bulk. The nanoencapsulated NPG is analogous to a series of new phase change materials (PCMs), through which the ideal heat storage performance of the bulk may be handed down.

  19. Phase transition of neopentyl glycol in nanopores for thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Chao; Li, Qifeng; Wang, Liping; Lan, Xiaozheng

    2016-01-01

    Highlights: • NPG nanocomposites in porous glass (d = 11.5–300 nm) are prepared. • Solid transition temperature of the nanocomposites can be tuned to ∼11 °C below the bulk. • Latent heat of the pore NPG varies in the range of 65.5–99.6% of the bulk value. • Nanoconfinement provides a way of reusing those ideal heat storage materials. - Abstract: Size-dependent thermal properties of neopentyl glycol (NPG) embedded in controlled porous glasses (CPGs) are investigated using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), and powder X-ray diffraction (XRD). In the nanopores of CPGs (diameter d = 11.5–300 nm), NPG shows depressed solid–solid and solid–liquid phase transition temperatures and latent heats, which decrease as the pore size becomes smaller. In thermal cycling around the solid transition, the nano-sized NPG display stable transition temperature and enthalpy change as the bulk. Supercooling in the solid transition increases with the decreasing pore diameter (d > 25 nm). From FT-IR and XRD analysis, NPG in the nanopores maintains the same structure as the bulk. The nanoencapsulated NPG is analogous to a series of new phase change materials (PCMs), through which the ideal heat storage performance of the bulk may be handed down.

  20. Aquifer thermal energy storage in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Iihola, H; Ala-Peijari, T; Seppaenen, H

    1988-01-01

    The rapid changes and crises in the field of energy during the 1970s and 1980s have forced us to examine the use of energy more critically and to look for new ideas. Seasonal aquifer thermal energy storage (T < 100/sup 0/C) on a large scale is one of the grey areas which have not yet been extensively explored. However, projects are currently underway in a dozen countries. In Finland there have been three demonstration projects from 1974 to 1987. International co-operation under the auspices of the International Energy Agency, Annex VI, 'Environmental and Chemical Aspects of Thermal Energy Storage in Aquifers and Research and Development of Water Treatment Methods' started in 1987. The research being undertaken in 8 countries includes several elements fundamental to hydrochemistry and biochemistry.

  1. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  2. A basic study on Thermosyphon-type thermal storage unit (TSU) using Nanofluid as the heat transfer medium

    Science.gov (United States)

    Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua

    2018-05-01

    This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.

  3. A basic study on Thermosyphon-type thermal storage unit (TSU) using Nanofluid as the heat transfer medium

    Science.gov (United States)

    Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua

    2017-11-01

    This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.

  4. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  5. Investigation of Heat Pump Operation Strategies with Thermal Storage in Heating Conditions

    Directory of Open Access Journals (Sweden)

    Wangsik Jung

    2017-12-01

    Full Text Available A heat pump with thermal storage system is a system that operates a heat pump during nighttime using inexpensive electricity; during this time, the generated thermal energy is stored in a thermal storage tank. The stored thermal energy is used by the heat pump during daytime. Based on a model of a dual latent thermal storage tank and a heat pump, this study conducts control simulations using both conventional and advanced methods for heating in a building. Conventional methods include the thermal storage priority method and the heat pump priority method, while advanced approaches include the region control method and the dynamic programming method. The heating load required for an office building is identified using TRNSYS (Transient system simulation, used for simulations of various control methods. The thermal storage priority method shows a low coefficient of performance (COP, while the heat pump priority method leads to high electricity costs due to the low use of thermal storage. In contrast, electricity costs are lower for the region control method, which operates using the optimal part load ratio of the heat pump, and for dynamic programming, which operates the system by following the minimum cost path. According to simulation results for the winter season, the electricity costs using the dynamic programming method are 17% and 9% lower than those of the heat pump priority and thermal storage priority methods, respectively. The region control method shows results similar to the dynamic programming method with respect to electricity costs. In conclusion, advanced control methods are proven to have advantages over conventional methods in terms of power consumption and electricity costs.

  6. Development of graphite foam infiltrated with MgCl 2 for a latent heat based thermal energy storage (LHTES) system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Kim, Taeil; Zhao, Weihuan; Yu, Wenhua; France, David M.

    2016-08-01

    Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermal diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.

  7. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage

    International Nuclear Information System (INIS)

    Tang, Xiaofen; Li, Wei; Zhang, Xingxiang; Shi, Haifeng

    2014-01-01

    Microencapsulated phase change material with a low supercooling degree is one of the increasing important researches as well as industrial application for thermal energy storage. This study develops a novel and low supercooling microencapsulated n-octadecane (MicroC18) with n-octadecyl methacrylate (ODMA)–methacrylic acid (MAA) copolymer as shell using suspension-like polymerization. The fabrication and properties of MicroC18 were characterized by using a field-emission scanning electron microscope (FE-SEM), Fourier transformed infrared spectroscopy (FTIR), particle size distribution analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The MicroC18 with spherical shapes and an average diameter of 1.60–1.68 μm are fabricated. The onset crystallizing temperatures of MicroC18 are only 4 °C below that of n-octadecane. The unique copolymer shell has a significant impact on the low supercooling of MicroC18. The n-octadecane in all of the samples crystalizes by heterogeneous nucleation. The content of n-octadecane in the microcapsules is low; however, the microcapsules still exhibit high enthalpy through the contribution of the shells. At a monomers/n-octadecane mass ratio is 2:1, as used in the recipes, the MicroC18 with highest phase change enthalpy was obtained. The temperature of thermal resistant of MicroC18 is approximately 235.6 °C, which is affected by the thickness of the polymer shell. - Highlights: • Microencapsulated n-octadecane with comb-like copolymer shell has low supercooling. • The unique shell plays a significant role in suppressing supercooling. • The types of cross-linker affect morphologies and heat enthalpies of microcapsules. • Microcapsules exhibit high phase change enthalpies and thermal stabilities

  8. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    Science.gov (United States)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262

  9. Institutional storage and disposal of radioactive materials

    International Nuclear Information System (INIS)

    St Germain, J.

    1986-01-01

    Storage and disposal of radioactive materials from nuclear medicine operations must be considered in the overall program design. The storage of materials from daily operation, materials in transit, and long-term storage represent sources of exposure. The design of storage facilities must include consideration of available space, choice of material, occupancy of surrounding areas, and amount of radioactivity anticipated. Neglect of any of these factors will lead to exposure problems. The ultimate product of any manipulation of radioactive material will be some form of radioactive waste. This waste may be discharged into the environment or placed within a storage area for packaging and transfer to a broker for ultimate disposal. Personnel must be keenly aware of packaging regulations of the burial site as well as applicable federal and local codes. Fire codes should be reviewed if there is to be storage of flammable materials in any area. Radiation protection personnel should be aware of community attitudes when considering the design of the waste program

  10. Feasibility study of D-mannitol as phase change material for thermal storage

    Directory of Open Access Journals (Sweden)

    Rocío Bayón

    2017-05-01

    Full Text Available The feasibility of D-mannitol as PCM for latent heat storage has been studied by keeping it melted at 180 ºC in air for up to 16 days. During this period of time, down to 80% initial mass was lost and sample appearance changed to a dark-brown-sticky paste. The strong mass decrease implies that not only water but also carbon containing volatile species are produced. These results indicate that D-mannitol undergoes thermal degradation which can be associated to caramelization processes similar to the ones occurring in sugars. Such processes involve complex reactions like dehydrations, condensations and polymerizations, which lead to a great variety of volatile and non-volatile products. Various characterization techniques have been applied in order to study both kinetics and reaction products. From the kinetic point of view thermal degradation of D-mannitol proceeds much faster and at lower temperatures than predicted by the models found in the literature. In relation to the degradation products, the analyses with liquid chromatography indicate the formation of three compounds although their stoichiometry could not be fully elucidated with the characterization techniques applied in this work. However it seems that some of the products are polymeric species that contain carbonyl groups and that are the responsible for the sample browning, the strong absorption in the 200 nm–500 nm range, the two bands at 1730 cm–1–1645 cm–1 observed in infrared spectra and also for the occurrence of a glass transition. Therefore this study proves that D-mannitol undergoes strong and fast degradation at temperatures close to its melting point which should be enough reason for avoiding its use as PCM in any latent heat storage application unless it is somehow stabilized.

  11. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Yiran li

    2013-10-01

    Full Text Available This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs, based on eutectic mixtures as phase change materials (PCMs for thermal energy storage and high-density polyethylene (HDPE-ethylene-vinyl acetate (EVA polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD–capric acid (CA, TD–lauric acid (LA, and TD–myristic acid (MA, which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC. The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD–CA PCM, 24.53 °C/24.92 °C (FS TD–LA PCM, and 33.15 °C/30.72 °C (FS TD–MA PCM, respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM and Fourier-transform infrared (FT-IR spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP. It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  12. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.

    Science.gov (United States)

    Huang, Jingyu; Lu, Shilei; Kong, Xiangfei; Liu, Shangbao; Li, Yiran

    2013-10-22

    This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs), based on eutectic mixtures as phase change materials (PCMs) for thermal energy storage and high-density polyethylene (HDPE)-ethylene-vinyl acetate (EVA) polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD)-capric acid (CA), TD-lauric acid (LA), and TD-myristic acid (MA), which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC). The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD-CA PCM), 24.53 °C/24.92 °C (FS TD-LA PCM), and 33.15 °C/30.72 °C (FS TD-MA PCM), respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP). It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  13. Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage

    International Nuclear Information System (INIS)

    Han, Pengju; Lu, Lixin; Qiu, Xiaolin; Tang, Yali; Wang, Jun

    2015-01-01

    This paper was aimed to prepare, characterize and determine the comprehensive evaluation of promising composite macrocapsules containing microencapsulated PCMs (phase change materials) with calcium alginate gels as the matrix material. Macrocapsules containing microcapsules were fabricated by piercing-solidifying incuber method. Two kinds of microcapsules with n-tetradecane as core material, UF (urea-formaldehyde) and PMMA (poly(methyl methacrylate)) respectively as shell materials were prepared initially. For application concerns, thermal durability and mechanical property of macrocapsules were investigated by TGA (thermal gravimetric analysis) and Texture Analyser for the first time, respectively. The results showed excellent thermal stability and the compressive resistance of macrocapsules was sufficient for common application. The morphology and chemical structure of the prepared microcapsules and macrocapsules were characterized by SEM (scanning electron microscopy) and FT-IR (fourier transform infrared) spectroscopy method. Phase change behaviors and thermal durability of microcapsules and macrocapsules were investigated by DSC (differential scanning calorimetry). In order to improve latent heat of composite microcapsules, the core-shell weight ratio of tetradecane/UF shell microcapsules was chosen as 5.5:1 which obtained the phase change enthalpy of 194.1 J g −1 determined by DSC. In conclusion, these properties make it a feasible composite in applications of textile, building and cold-chain transportation. - Highlights: • We improved the phase change enthalpy with a higher core-shell ratio. • Urea-formaldehyde was firstly used as a shell material in the composite. • Mechanical and thermal durability property of the macrocapsules was firstly investigated in our work.

  14. Thermal energy storage in the form of heat or cold with using of the PCM-based accumulation panels

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2016-01-01

    Full Text Available This article describes the usage of thermal energy storage in the form of heat and cold with an adaptation of the special device which is composed of the thermal panels. These panels are based on the phase change materials (PCM for normal inner environment temperature in buildings. The energy for the thermal energy storage is possible to get from built-in electric heating foil or from the tube heat exchanger, which is build in the thermal panels. This technology is able to use renewable energy sources, for example, solar thermal collectors and air-to-water heat pump as a source of heat for heating of the hot water tank. In the cooling mode, there is able to use the heat pump or photovoltaics panels in combination with thermoelectric coolers for cooling.

  15. Dynamic Heat Storage and Cooling Capacity of a Concrete Deck with PCM and Thermally Activated Building System

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    This paper presents a heat storage and cooling concept that utilizes a phase change material (PCM) and a thermally activated building system (TABS) implemented in a hollow core concrete deck. Numerical calculations of the dynamic heat storage capacity of the hollow core concrete deck element...... in the article highlight the potential of using TABS and PCM in a prefabricated concrete deck element....

  16. Fundamental research on the gravity assisted heat pipe thermal storage unit (GAHP-TSU) with porous phase change materials (PCMs) for medium temperature applications

    International Nuclear Information System (INIS)

    Hu, Bo-wen; Wang, Qian; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel gravity-assisted heat pipe thermal storage unit (GAHP-TSU) is presented and tested. • Composite granular solid–liquid PCM is piled up as the porous medium layer in GAHP-TSU. • GAHP-TSU avoids the major obstacle of low thermal conductivity of the PCM. • GAHP-TSU enables the thermal storage unit with outstanding heat transfer performance. - Abstract: In this study, a novel gravity-assisted heat pipe type thermal storage unit (GAHP-TSU) has been presented for the potential application in solar air conditioning and refrigeration systems, in which composite granular solid–liquid PCMs compounded by RT100 and high-density polyethylene with phase change temperature of 100 °C are piled up as a porous PCMs medium layer. Water is used as heat transfer fluid in the GAHP-TSU. The heat transfer mechanism of heat storage/release in the GAHP-TSU is similar to that of the gravity-assisted heat pipe, which is superior to traditional direct-contact or indirect-contact thermal storage units. The properties of start-up, heat transfer characteristics on the stages of heat absorption and release of the GAHP-TSU are studied in detailed, including necessary calculations based on heat transfer theory. The results show that the whole system is almost isothermal at the temperature over 70 °C and the heat transfer properties are excellent both for heat absorption and release stages. The GAHP-TSU device with low thermal conductivity of the PCMs is promising in potential industry applications

  17. Transient thermal response of a packed bed for energy storage unit utilizing phase change material: experimental and numerical study

    International Nuclear Information System (INIS)

    Bemansour, A.

    2006-01-01

    The present work concerns the numerical and experimental study of the transient response of a packed bed latent heat thermal energy storage system. Experiments were carried out to measures the transient temperature distributions inside a cylindrical bed, which is randomly packed with spheres having uniform sizes and encapsulated the paraffin wax as a phase change material (PCM), with air as a working fluid. A two-dimensional separate phases formulation is used to develop a numerical analysis of the transient response of the bed, considering the influence of both axial and radial thermal dispersion. The fluid energy equation was transformed by finite difference approximation and solved by alternating direction implicit scheme, while the PCM energy equation was solved using fully explicit scheme. This analysis can be applied for both charging and recovery modes and a broad range of Reynolds numbers. Measurements of both fluid and PCM temperature were conducted at different axial and radial positions and at different operating parameters. Experimental measurements of temperature distribution compare favorably with the numerical results over a broad range of Reynolds numbers.(Author)

  18. Solar cookers with and without thermal storage - A review

    International Nuclear Information System (INIS)

    Muthusivagami, R.M.; Velraj, R.; Sethumadhavan, R.

    2010-01-01

    The continuous increase in the level of green house gas emissions and the increase in fuel prices are the main driving forces behind efforts to more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. Among the different energy end uses, energy for cooking is one of the basic and dominant end uses in developing countries. Energy requirement for cooking accounts for 36% of total primary energy consumption in India. Hence, there is a critical need for the development of alternative, appropriate, affordable mode of cooking for use in developing countries. However, the large scale utilization of this form of energy is possible only if the effective technology for its storage can be developed with acceptable capital and running costs. Thermal energy storage is essential whenever there is a mismatch between the supply and consumption of energy. Latent heat storage in a phase change material is very attractive because of its high storage density with small temperature swing. The choice of PCM plays an important role in addition to heat transfer mechanism in the PCM. In this present work a review has been made to study all the research and development work carried out in the field of solar cooker in particular the storage type solar cookers. A novel concept of PCM-based storage type solar cooker is also presented which is under experimental investigation. (author)

  19. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    simple short-term prediction models to realize almost all of the theoretical potential of this control strategy. Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost savings potential. In fact, zoning simplification may improve optimizer performance and save computation time. The mass of the internal structure did not show a strong effect on the optimization. Building construction characteristics were found to impact building passive thermal storage capacity. It is thus advisable to make sure the construction material is well modeled. Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. Since they are a key factor in determining the building cooling load, efforts should be made to keep the internal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone temperature setpoints and active TES operation because of the coupling of the base chiller for building precooling and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. The impact of mismatch in this category may be significant. Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of optimal control for active and passive building thermal storage inventory. The key findings are: (1) Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads will likely lead to attractive savings resulting from optimal combined thermal

  20. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    Science.gov (United States)

    Kelly, Jesse C.

    Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on

  1. Heat pipe solar receiver with thermal energy storage

    Science.gov (United States)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  2. Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage.

    Science.gov (United States)

    Arce, Maria Elena; Alvarez Feijoo, Miguel Angel; Suarez Garcia, Andres; Luhrs, Claudia C

    2018-01-26

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (material at the temperatures employed.

  3. FFTF vertical sodium storage tank preliminary thermal analysis

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1995-01-01

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall

  4. Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances.

    Science.gov (United States)

    Yegin, Cengiz; Nagabandi, Nirup; Feng, Xuhui; King, Charles; Catalano, Massimo; Oh, Jun Kyun; Talib, Ansam J; Scholar, Ethan A; Verkhoturov, Stanislav V; Cagin, Tahir; Sokolov, Alexei V; Kim, Moon J; Matin, Kaiser; Narumanchi, Sreekant; Akbulut, Mustafa

    2017-03-22

    As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m K), which are very high considering their relatively low elastic modulus values on the order of 21.2-28.5 GPa. The synergistic combination of these properties led to the ultralow total thermal resistivity values in the range of 0.38-0.56 mm 2 K/W for a typical bond-line thickness of 30-50 μm, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.

  5. Spent nuclear fuel storage pool thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Gay, R.R.

    1984-01-01

    Storage methods and requirements for spent nuclear fuel at U.S. commercial light water reactors are reviewed in Section 1. Methods of increasing current at-reactor storage capabilities are also outlined. In Section 2 the development of analytical methods for the thermal-hydraulic analysis of spent fuel pools is chronicled, leading up to a discussion of the GFLOW code which is described in Section 3. In Section 4 the verification of GFLOW by comparisons of the code's predictions to experimental data taken inside the fuel storage pool at the Maine Yankee nuclear power plant is presented. The predictions of GFLOW using 72, 224, and 1584 node models of the storage pool are compared to each other and to the experimental data. An example of thermal licensing analysis for Maine Yankee using the GFLOW code is given in Section 5. The GFLOW licensing analysis is compared to previous licensing analysis performed by Yankee Atomic using the RELAP-4 computer code

  6. Strategies for commercializing customer thermal-energy storage. [64 references

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.H.

    1976-12-01

    This report presents strategies for commercializing customer thermal storage. Four storage techniques are evaluated: space heating, air conditioning, hot-water heating, and interruptible hot-water heating. The storage systems involved store off-peak electric energy for thermal applications during peak load hours. Analyses of both storage techniques and principal parties affected by storage indicate four barriers: the absence of (1) commercially available air conditioning storage devices, (2) appropriate rates, (3) information on both rates and devices, and (4) widespread utility support. Development of appropriate rates is the key to commercialization. The criteria used to evaluate rate types are: maximum combined utility and customer benefits, ease of commercialization, and practical feasibility. Four rate types--demand charges, time-of-use rates, and two forms of load management rates (a monthly credit and an off-peak discount)--plus the possibility of utility ownership are considered. The best rate types for each storage option are: for hot-water heating, a monthly credit for allowing utility interruptions or an off-peak price discount for storage; for space heating, an off-peak discount contingent upon meeting utility requirements; and for air conditioning, an off-peak discount plus monthly credit.

  7. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    Directory of Open Access Journals (Sweden)

    Lin Zheng

    2017-11-01

    Full Text Available The paper presents the different properties of phase change material (PCM and Microencapsulated phase change material (MEPCM employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compare the materials heat transfer performance. The slurry flow characteristics of MEPCM slurry also have been tested. Furthermore, in order to analyze the improvement effect on stability, the stability of MEPCM slurry with different surfactants have been tested. The researches of the PCM and MEPCM thermal properties revealed a more prospective application for phase change materials in energy storage/transportation systems. The study aims to find the most suitable chilling medium to further optimize the design of the cold storage/transportation systems with solar driven cooling cycles.

  8. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  9. CALORSTOCK'94. Thermal energy storage. Better economy, environment, technology

    International Nuclear Information System (INIS)

    Kangas, M.T.; Lund, P.D.

    1994-01-01

    This publication is the first volume of the proceedings of CALORSTOCK'94, the sixth international conference on thermal energy storage held in Espoo, Finland on August 22-25, 1994. This volume contains 58 presentations from the following six sessions: Aquifer storage, integration into energy systems, Simulation models and design tools, IEA energy conservation through energy storage programme workshop, Earth coupled storage, District heating and utilities

  10. Ice XVII as a Novel Material for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Leonardo del Rosso

    2017-02-01

    Full Text Available Hydrogen storage is one of the most addressed issues in the green-economy field. The latest-discovered form of ice (XVII, obtained by application of an annealing treatment to a H 2 -filled ice sample in the C 0 -phase, could be inserted in the energy-storage context due to its surprising capacity of hydrogen physisorption, when exposed to even modest pressure (few mbars at temperature below 40 K, and desorption, when a thermal treatment is applied. In this work, we investigate quantitatively the adsorption properties of this simple material by means of spectroscopic and volumetric data, deriving its gravimetric and volumetric capacities as a function of the thermodynamic parameters, and calculating the usable capacity in isothermal conditions. The comparison of ice XVII with materials with a similar mechanism of hydrogen adsorption like metal-organic frameworks shows interesting performances of ice XVII in terms of hydrogen content, operating temperature and kinetics of adsorption-desorption. Any application of this material to realistic hydrogen tanks should take into account the thermodynamic limit of metastability of ice XVII, i.e., temperatures below about 130 K.

  11. Studies on heat storage, 9

    International Nuclear Information System (INIS)

    Taoda, Hiroshi; Hayakawa, Kiyoshi; Kawase, Kaoru; Kosaka, Mineo

    1985-01-01

    To estimate the extent of thermal oxidative aging of the crosslinked and surface coated polyethylene pellets used as a latent heat thermal storage material, their deterioration was investigated by applying the heating-cooling cycle which simulated the daily insolation over 6 months (8-hour holding at 150 deg C as the highest temperature in a day followed by 5-hour holding at 30 deg C as the lowest one). The degradation, e.g., the lowering of heat of crystallization and in crystallization temperature, is thought to be caused by both the decrease in molecular weight of polyethylene due to thermal oxidative decomposition and the crosslinking between produced radicals. With the increase in the degree of crosslinking and branching in a molecular chain which has low bond dissociation energy, thermal deterioration of polyethylene proceeds more rapidly. Polyethylene pellets can endure long periods of practical heat cycling as a thermal storage material when they are treated with radical scavengers under proper control of their crosslinking degrees. The repeating heat storage experiments by using the developed polyethylene thermal storage material were performed and very promising results were obtained. (author)

  12. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  13. The use of lipids as phase change materials for thermal energy storage

    Science.gov (United States)

    Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...

  14. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Science.gov (United States)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  15. Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage

    Directory of Open Access Journals (Sweden)

    Huaiyu Shao

    2017-11-01

    Full Text Available Mg-based materials have been investigated as hydrogen storage materials, especially for possible onboard storage in fuel cell vehicles for decades. Recently, with the development of large-scale fuel cell technologies, the development of Mg-based materials as stationary storage to supply hydrogen to fuel-cell components and provide electricity and heat is becoming increasingly promising. In this work, numerical analysis of heat balance management for stationary solid oxide fuel cell (SOFC systems combined with MgH2 materials based on a carbon-neutral design concept was performed. Waste heat from the SOFC is supplied to hydrogen desorption as endothermic heat for the MgH2 materials. The net efficiency of this model achieves 82% lower heating value (LHV, and the efficiency of electrical power output becomes 68.6% in minimizing heat output per total energy output when all available heat of waste gas and system is supplied to warm up the storage. For the development of Mg-based hydrogen storage materials, various nano-processing techniques have been widely applied to synthesize Mg-based materials with small particle and crystallite sizes, resulting in good hydrogen storage kinetics, but poor thermal conductivity. Here, three kinds of Mg-based materials were investigated and compared: 325 mesh Mg powers, 300 nm Mg nanoparticles synthesized by hydrogen plasma metal reaction, and Mg50Co50 metastable alloy with body-centered cubic structure. Based on the overall performances of hydrogen capacity, absorption kinetics and thermal conductivity of the materials, the Mg nanoparticle sample by plasma synthesis is the most promising material for this potential application. The findings in this paper may shed light on a new energy conversion and utilization technology on MgH2-SOFC combined concept.

  16. A work procedure of utilising PCMs as thermal storage systems based on air-TES systems

    International Nuclear Information System (INIS)

    Iten, M.; Liu, S.

    2014-01-01

    Highlights: • A procedure to design effective thermal energy storage (TES) system. • A guidance for the selection of the working material (PCM) and the heat exchanger development. • Suggestions for heat transfer enhancement techniques for the air-TES system. • Mathematical, computational and experimental methods optimising the air-TES system. - Abstract: The paper seeks to offer a procedure to design an effective short term thermal energy storage (TES) system using phase change materials. The methodology focus on two main aspects: the selection of the working material and the heat exchanger development. The selection of the appropriate PCMs is one of the main keys for any TES therefore their classifications, properties, advantages and disadvantages need to be investigated. Due to the intensive researches using this kind of materials in the recent years, there are a range of commercial PCMs available and supplied by different companies. However, all types of PCM present their specific problems and therefore requirements are defined in order to select the most suitable PCMs. The other main key when designing TES is related to the heat exchanger formed by the PCM and the cold/hot heat sources. For this step, the choice of the appropriate container to encapsulate the PCM and the heat transfer enhancement techniques are analysed. Distinct methodologies such as experimental and numerical study methods and modelling software tools are presented to analyse the thermal energy performance of the system and achieve the optimal design of the TES system

  17. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  18. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  19. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  20. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of the thermal denitration in-storage-can step in the CEUSP process

    International Nuclear Information System (INIS)

    Vedder, R.J.; Collins, E.D.; Haas, P.A.

    1986-01-01

    A thermal denitration in-the-storage-can process has been developed for use in the Consolidated Edison Uranium Solidification Program Facility. This process is being used to convert approx.1000 kg of highly fissile and radioactive uranium to a solid form for safe long-term storage. The material being solidified also contains approx.300 kg of cadmium and approx.40 kg of gadolinium which had been combined with the uranium to provide criticality safety. The unique thermal denitration process was found to be extremely susceptible to entrainment of solids by splattering, foaming, or expulsion actions. The process connection nozzle, through which the feed solution and purging air are supplied and the emerging off-gases are discharged, and the off-gas handling system were modified extensively to permit operation without development of nozzle or line pluggage due to accumulation of solid deposits. A process study was made to determine the effects of feed components and process variables on the tendency of the reacting mixture to splatter, foam, or be expelled. Because of the equipment modifications and the selection of appropriate processing conditions, the feed material is being denitrated without significant problems

  2. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    2017-01-01

    Sorption heat storage has the potential to store large amounts of thermal energy from renewables and other distributed energy sources. This article provides an overview on the recent advancements on long-term sorption heat storage at material- and prototype- scales. The focus is on applications

  3. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  4. Solar dryer with thermal storage and biomass-backup heater

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Department of Physics and Biochemical Sciences, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Ngwalo, G. [Department of Mechanical Engineering, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi)

    2007-04-15

    An indirect type natural convection solar dryer with integrated collector-storage solar and biomass-backup heaters has been designed, constructed and evaluated. The major components of the dryer are biomass burner (with a rectangular duct and flue gas chimney), collector-storage thermal mass and drying chamber (with a conventional solar chimney). The thermal mass was placed in the top part of the biomass burner enclosure. The dryer was fabricated using simple materials, tools and skills, and it was tested in three modes of operation (solar, biomass and solar-biomass) by drying twelve batches of fresh pineapple (Ananas comosus), with each batch weighing about 20 kg. Meteorological conditions were monitored during the dehydration process. Moisture and vitamin C contents were determined in both fresh and dried samples. Results show that the thermal mass was capable of storing part of the absorbed solar energy and heat from the burner. It was possible to dry a batch of pineapples using solar energy only on clear days. Drying proceeded successfully even under unfavorable weather conditions in the solar-biomass mode of operation. In this operational mode, the dryer reduced the moisture content of pineapple slices from about 669 to 11% (db) and yielded a nutritious dried product. The average values of the final-day moisture-pickup efficiency were 15%, 11% and 13% in the solar, biomass and solar-biomass modes of operation respectively. It appears that the solar dryer is suitable for preservation of pineapples and other fresh foods. Further improvements to the system design are suggested. (author)

  5. Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage

    International Nuclear Information System (INIS)

    Wang, Yi-Cheng; Lu, Lin; Gunasekaran, Sundaram

    2015-01-01

    We describe a gold nanoparticle (AuNP)-based thermal history indicator (THI) for monitoring low-temperature storage. The THI was prepared from tetrachloroaurate using gelatin as a reducing reagent. Gelatin also acts as a stabilizer to control the growth of the AuNPs. The size and shape of the AuNPs were characterized by UV–vis spectrophotometry and transmission electron microscopy and are initially found to be spherical with an average particle size of ∼19 nm. Initially, the color of the THIs is slightly pink, but after a 90-day storage in the freezer, as both the size and shape of the AuNPs change, the color of the THIs turns to red. After 90 days the absorbance peaks of THIs held at room temperature are red-shifted from 538 to 572 nm and possessed larger amplitude compared to those stored in the freezer. The color change is a function of both storage time and temperature. The observed increase in size is mainly due to storage temperature while the change in shape is mainly due to storage time. The THIs experiencing higher temperature treatments exhibit a more intense color change which is attributed to a localized surface plasmon resonance effect. Thus, the observed visual color changes can provide information regarding the thermal history the material has experienced. Accordingly, when used in conjunction with time-temperature sensitive products, the THI may serve as a proactive system for monitoring and controlling product quality and/or safety. For example, the THI is useful in safeguarding high-value biological products such as enzymes, antibodies, plasma, stem cells and other perishables that have to be stored at low temperatures. (author)

  6. Program definition and assessment overview. [for thermal energy storage project management

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  7. Materials used in refrigerated storage system

    Energy Technology Data Exchange (ETDEWEB)

    Abakians, H

    1970-09-01

    Applications of cryogenic technology have increased at a phenomenal rate during the past decade. With the installation of a number of refrigerated storage tanks in Iran, e.g., LPG storage at Bandar Mah Shahr and Kharg Is., and ammonia storage at Bandar Shahpour, it is appropriate to review the materials used in constructing low temperature storage systems. In order to have an economical fully refrigerated storage installation without assuming the risk of brittle fracture, appropriate notch-tough material should be selected for the important and highly stressed components. In general, the lower the operating temperature, the more expensive is the material to be used. Hence, care should be taken to select the required material in such a manner that it will be suitable for the operating temperature and not lower. The most economical materials for low temperatures are steels. Ordinary carbon steel can be used down to -20$F and the Killed carbon steel down to -50$F. Nickel steels (2 1/4%) can be used down to -75$ to 100$F, Nickel steels (3 1/2%) down to -150$F, and 9% nickel steels down to 1,320$F. Stainless and aluminum alloys can be used down to -423$F. Tabular data give some commonly used materials in low temperature and cryogenic services with their lowest allowable temperature, tensile strength, and relative cost.

  8. Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System

    Science.gov (United States)

    Ganguly, Sayantan

    2017-04-01

    Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.

  9. Hydrogen Storage In Nanostructured Materials

    OpenAIRE

    Assfour, Bassem

    2011-01-01

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storag...

  10. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix

    International Nuclear Information System (INIS)

    Kumar, Ashish; Saha, Sandip K.

    2016-01-01

    Graphical abstract: I. Metal matrix is used as the thermal conductivity enhancers (TCE) in PCM-based TES. II. Time evolution second law analysis is evaluated for different porosities and pore diameters. III. Reduction in fluctuation in HTF temperature is significantly affected by the change in porosity (ε) shown in figure. IV. Maximum energy and exergy efficiencies are obtained for porosity of 0.85. V. Effect of pore diameter on first law and second law efficiencies is found to be marginal. - Abstract: Thermal energy storage system in a concentrating solar plant (CSP) reduces the gap between energy demand and supply caused by the intermittent behaviour of solar radiation. In this paper, detailed exergy and energy analyses of shell and tube type latent heat thermal storage system (LHTES) for medium temperature solar thermal power plant (∼200 °C) are performed to estimate the net useful energy during the charging and discharging period in a cycle. A commercial-grade organic phase change material (PCM) is stored inside the annular space of the shell and the heat transfer fluid (HTF) flows through the tubes. Thermal conductivity enhancer (TCE) in the form of metal matrix is embedded in PCM to augment heat transfer. A numerical model is developed to investigate the fluid flow and heat transfer characteristics using the momentum equation and the two-temperature non-equilibrium energy equation coupled with the enthalpy method to account for phase change in PCM. The effects of storage material, porosity and pore-diameter on the net useful energy that can be stored and released during a cycle, are studied. It is found that the first law efficiency of sensible heat storage system is less compared to LHTES. With the decrease in porosity, the first law and second law efficiencies of LHTES increase for both the charging and discharging period. There is no significant variation in energy and exergy efficiencies with the change in pore-diameter of the metal matrix.

  11. Thermophysical Characterization of MgCl2·6H2O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES)

    Science.gov (United States)

    Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter

    2017-01-01

    The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘C. Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C5H12O5), erythritol (C4H10O4) and magnesiumchloride hexahydrate (MCHH, MgCl2·6H2O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl2·6H2O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘C and a phase change enthalpy of 166.9 ± 1.2 J/g with only 2.8 K supercooling at sample sizes of 100 g. The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature. PMID:28772806

  12. Thermophysical Characterization of MgCl2·6H2O, Xylitol and Erythritol as Phase Change Materials (PCM for Latent Heat Thermal Energy Storage (LHTES

    Directory of Open Access Journals (Sweden)

    Stephan Höhlein

    2017-04-01

    Full Text Available The application range of existing real scale mobile thermal storage units with phase change materials (PCM is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 , erythritol (C 4 H 10 O 4 and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O. The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC scale with only small changes of the melting enthalpy and temperature.

  13. Hydrogen storage material, electrochemically active material, electrochemical cell and electronic equipment

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a hydrogen storage material comprising an alloy of magnesium. The invention further relates to an electrochemically active material and an electrochemical cell provided with at least one electrode comprising such a hydrogen storage material. Also, the invention relates to

  14. Thermophysical and Mechanical Properties of Hardened Cement Paste with Microencapsulated Phase Change Materials for Energy Storage.

    Science.gov (United States)

    Cui, Hongzhi; Liao, Wenyu; Memon, Shazim Ali; Dong, Biqin; Tang, Waiching

    2014-12-16

    In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35-36 °C, 55-56 °C and 72-74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55-56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.

  15. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  16. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    Science.gov (United States)

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  17. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  18. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  19. The Use of Heat-Resistant Concrete Made with Ceramic Sanitary Ware Waste for a Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Paweł Ogrodnik

    2017-12-01

    Full Text Available The paper presents the results obtained in the course of a study on the concrete made of aggregate obtained from wastes of sanitary ceramics. Previous examinations proved high in strength and durability of concrete of this type, and it showed a resistance to high temperatures. The material was classified as a fireproof concrete. While searching for the optimal applications of such concrete, a series of examinations and analyses on its thermal energy storage (TES properties were performed. This paper describes the two-stage experiment on the thermal behavior of the concrete made with sanitary ceramic wastes during cooling processes in comparison to different building materials subjected to the same thermal conditions. On the basis of the thermal, infrared analysis, and suitable calculations, the thermal power and the ability of the composite to store thermal energy was estimated. Finally, it was stated that the concrete made of sanitary ceramic waste aggregate and alumina cement can be recommended as a heat-accumulating material, and in combination with high durability can be used, e.g., for the construction of fireplace bodies.

  20. Thermal reservoir sizing for adiabatic compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kere, Amelie; Goetz, Vincent; Py, Xavier; Olives, Regis; Sadiki, Najim [Perpignan Univ. (France). PROMES CNRS UPR 8521; Mercier-Allart, Eric [EDF R et D, Chatou (France)

    2012-07-01

    Despite the operation of the two existing industrial facilities to McIntosh (Alabama), and for more than thirty years, Huntorf (Germany), electricity storage in the form of compressed air in underground cavern (CAES) has not seen the development that was expected in the 80s. The efficiency of this form of storage was with the first generation CAES, less than 50%. The evolving context technique can significantly alter this situation. The new generation so-called Adiabatic CAES (A-CAES) is to retrieve the heat produced by the compression via thermal storage, thus eliminating the necessity of gas to burn and would allow consideration efficiency overall energy of the order of 70%. To date, there is no existing installation of A-CAES. Many studies describe the principal and the general working mode of storage systems by adiabatic compression of air. So, efficiencies of different configurations of adiabatic compression process were analyzed. The aim of this paper is to simulate and analyze the performances of a thermal storage reservoir integrated in the system and adapted to the working conditions of a CAES.

  1. Optimal controls of building storage systems using both ice storage and thermal mass – Part II: Parametric analysis

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A detailed analysis is presented to assess the performance of thermal energy storage (TES) systems. ► Utility rates have been found to be significant in assessing the operation of TES systems. ► Optimal control strategies for TES systems can save up to 40% of total energy cost of office buildings. - Abstract: This paper presents the results of a series of parametric analysis to investigate the factors that affect the effectiveness of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs (including energy and demand costs) while maintaining adequate occupant comfort conditions in buildings. The analysis is based on a validated model-based simulation environment and includes several parameters including the optimization cost function, base chiller size, and ice storage tank capacity, and weather conditions. It found that the combined use of building thermal mass and active thermal energy storage system can save up to 40% of the total energy costs when integrated optimal control are considered to operate commercial buildings.

  2. Performance Assessment of Low-Temperature Thermal Storage with Electromagnetic Control

    Directory of Open Access Journals (Sweden)

    Ya-Wei Lee

    2014-08-01

    Full Text Available This study presents electromagnetic-controlled thermal storage (ECTS that can be directly implemented in strategies of low-temperature waste heat recovery for energy-consuming equipment. A magnetic nanofluid (MNF prepared from fine iron ferrite ferromagnetic particles is recommended as a latent heat medium (LHM. During electromagnetic induction, local flow fluctuations are generated and thermal convection in the MNF can be enhanced. The achieved results demonstrated that ECTS has a wide operational range and an optimum storage efficiency of 84.46%. Thus, a self-perturbation mode used to enhance thermal energy transportation can be designed for numerous waste heat management applications.

  3. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  4. Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application

    OpenAIRE

    Solé, Aran; Neumann, Hannah; Niedermaier, Sophia; Cabeza, Luisa F.; Palomo, Elena

    2014-01-01

    Sugar alcohols are potential phase change materials candidates as they present high phase change enthalpy values, are non-toxic and low cost products. Three promising sugar-alcohols were selected: D-mannitol, myo-inositol and dulcitol under high melting enthalpy and temperature criterion. Thermal cycling tests were performed to study its cycling stability which can be determining when selecting the suitable phase change material. D-mannitol and dulcitol present poor thermal stability...

  5. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Tsolakoglou Nikolas P.

    2017-01-01

    Full Text Available This work investigates melting and solidification processes of four different Phase Change Materials (PCM used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF. Both charging (melting and discharging (solidification processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates. Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  6. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Science.gov (United States)

    Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis

    2017-11-01

    This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  7. Storage containers for radioactive material

    International Nuclear Information System (INIS)

    Cassidy, D.A.; Dates, L.R.; Groh, E.F.

    1981-01-01

    A radioactive material storage system is disclosed for use in the laboratory. This system is composed of the following: a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof; a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate; the groove and the gasket, and a clamp for maintaining the cover and the plate are sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage

  8. Experimental research on thermal characteristics of a hybrid thermocline heat storage system

    International Nuclear Information System (INIS)

    Yin, Huibin; Ding, Jing; Yang, Xiaoxi

    2014-01-01

    Considering the high-temperature thermal utilization of solar energy as the research background in this paper and focussing on the heat storage process, a kind of hybrid thermocline heat storage method in multi-scale structure and relevant experimental systems are designed by using the mixed molten nitrate salt as the heat storage medium and two representative porous materials, i.e. zirconium ball and silicon carbide (SiC) foam, as the heat storage fillers. The fluid flow and heat storage performance of molten salt in multi-scale structure are experimentally investigated. The results show that the theoretical heat storage efficiencies amongst the three experimental heat storage manners are less than 80% because of the existence of thermocline layers. Comparing to the single-phase molten salt heat storage, the two hybrid thermocline heat storage manners with porous fillers lead to a certain decrease in the effective heat storage capacity. The presence of porous fillers can also help to maintain the molten salt fluid as ideal gravity flow or piston flow and partially replace expensive molten salt. Therefore, it requires a combination of heat storage capacity and economical consideration for optimization design when similar spherical particles or foam ceramics are employed as the porous fillers. -- Highlights: • A hybrid thermocline heat storage method in multi-scale structure is developed. • The fluid flow and heat storage performance are experimentally investigated. • Stable thermocline can form in single tank for the experimental cases. • The hybrid thermocline heat storage with porous filler is promising

  9. TEMPERATURE PREDICTION IN 3013 CONTAINERS IN K AREA MATERIAL STORAGE (KAMS) FACILITY USING REGRESSION METHODS

    International Nuclear Information System (INIS)

    Gupta, N

    2008-01-01

    3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO 2 density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures

  10. Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Jianding Li

    2018-02-01

    Full Text Available Magnesium (Mg-based materials are promising candidates for hydrogen storage due to the low cost, high hydrogen storage capacity and abundant resources of magnesium for the realization of a hydrogen society. However, the sluggish kinetics and strong stability of the metal-hydrogen bonding of Mg-based materials hinder their application, especially for onboard storage. Many researchers are devoted to overcoming these challenges by numerous methods. Here, this review summarizes some advances in the development of Mg-based hydrogen storage materials related to downsizing and catalysis. In particular, the focus is on how downsizing and catalysts affect the hydrogen storage capacity, kinetics and thermodynamics of Mg-based hydrogen storage materials. Finally, the future development and applications of Mg-based hydrogen storage materials is discussed.

  11. Thermal analysis elements of liquefied gas storage tanks

    Science.gov (United States)

    Yanvarev, I. A.; Krupnikov, A. V.

    2017-08-01

    Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.

  12. Experimental and theoretic investigations of thermal behavior of a seasonal water pit heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Chatzidiakos, Angelos

    Seasonal heat storages are considered essential for district heating systems because they offer flexibility for the system to integrate different fluctuating renewable energy sources. Water pit thermal storages (PTES) have been successfully implemented in solar district heating plants in Denmark....... Thermal behavior of a 75,000 m3 water pit heat storage in Marstal solar heating plant was investigated experimentally and numerically. Temperatures at different levels of the water pit storage and temperatures at different depths of the ground around the storage were monitored and analyzed. A simulation...... model of the water pit storage is built to investigate development of temperatures in and around the storage. The calculated temperatures are compared to the monitored temperatures with an aim to validate the simulation model. Thermal stratification in the water pit heat storage and its interaction...

  13. Hydrogen storage in Mg: a most promising material

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, A.; Lal, C.

    2009-01-01

    hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity up to 7.6 wt% for on board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system as well as by ball milling that introduces defects with improved surface properties. The studies reported promising results, such as improved kinetics and lower desorption temperatures, however, the state of the art materials are still far from meeting the aimed target for their transport applications. Therefore further research work is needed to achieve the goal by improving development on hydrogenation, thermal and cyclic behavior of metal hydrides. In the present article the possibility of commercialization of Mg based alloys has been discussed. (author)

  14. Experimental investigation into a packed bed thermal storage solution for solar gas turbine systems

    CSIR Research Space (South Africa)

    Klein, P

    2013-09-01

    Full Text Available High temperature thermal storage in randomly packed beds of ceramic particles is proposed as an effective storage solution for Solar Gas Turbine (SGT) cycles in the near term. Numerical modelling of these systems allows for optimised thermal storage...

  15. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    Science.gov (United States)

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology.

  17. Flexible operation of thermal plants with integrated energy storage technologies

    Science.gov (United States)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  18. METHOD OF CALCULATION OF THE NON-STATIONARY TEMPERATURE FIELD INSIDE OF THERMAL PACKED BED ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2014-04-01

    Full Text Available e paper presents a method of the approximate calculation of the non-stationary temperature field inside of thermal packed bed energy storages with feasible and latent heat. Applying thermoelectric models and computational methods in electrical engineering, the task of computing non-stationary heat transfer is resolved with respect to third type boundary conditions without applying differential equations of the heat transfer. For sub-volumes of the energy storage the method is executed iteratively in spatiotemporal domain. Single-body heating is modeled for each sub-volume, and modeling conditions are assumed to be identical for remained bod-ies, located in the same sub-volume. For each iteration step the boundary conditions will be represented by re-sults at the previous step. The fulfillment of the first law of thermodynamics for system “energy storage - body” is obtained by the iterative search of the mean temperature of the energy storage. Under variable boundary con-ditions the proposed method maybe applied to calculating temperature field inside of energy storages with packed beds consisted of solid material, liquid and phase-change material. The method may also be employed to compute transient, power and performance characteristics of packed bed energy storages.

  19. Performance of stratified thermal-storage system for Oliver Springs Elementary School. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Bedinger, A.F.G.

    1981-01-01

    A progress report is given on the performance of a stratified thermal storage system coupled with a heat recovery refrigeration machine designed to provide space heating, cooling and service water heating. Water storage tanks utilizing a flexible membrane to resist temperature blending will be used as the thermal storage element. The two design goals of the heat recovery and thermal energy storage system are (1) to minimize the need to purchase energy for space heating and cooling and water heating and (2) to minimize electrical demand. An automatic data acquisition system will be used for system performance and data gathering. Data collection is expected to begin in September, 1981.

  20. Methods of forming thermal management systems and thermal management methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  1. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxin [ORNL; Bhat, Vinay V [ORNL; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL

    2012-01-01

    Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

  2. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.

    Science.gov (United States)

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-06-27

    Graphene materials were synthesized by reduction of exfoliated graphite oxide and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction pattern analysis, and nitrogen adsorption/desorption studies. RGO forms a continuous network of crumpled sheets, which consist of large amounts of few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. These results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving its specific capacitance, energy, and power density.

  3. Biogeochemical aspects of aquifer thermal energy storage

    NARCIS (Netherlands)

    Brons, H.J.

    1992-01-01

    During the process of aquifer thermal energy storage the in situ temperature of the groundwater- sediment system may fluctuate significantly. As a result the groundwater characteristics can be considerably affected by a variety of chemical, biogeochemical and microbiological

  4. Development of the ReaxFFCBN reactive force field for the improved design of liquid CBN hydrogen storage materials.

    Science.gov (United States)

    Pai, Sung Jin; Yeo, Byung Chul; Han, Sang Soo

    2016-01-21

    Liquid CBN (carbon-boron-nitrogen) hydrogen-storage materials such as 3-methyl-1,2-BN-cyclopentane have the advantage of being easily accessible for use in current liquid-fuel infrastructure. To develop practical liquid CBN hydrogen-storage materials, it is of great importance to understand the reaction pathways of hydrogenation/dehydrogenation in the liquid phase, which are difficult to discover by experimental methods. Herein, we developed a reactive force field (ReaxFFCBN) from quantum mechanical (QM) calculations based on density functional theory for the storage of hydrogen in BN-substituted cyclic hydrocarbon materials. The developed ReaxFFCBN provides similar dehydrogenation pathways and energetics to those predicted by QM calculations. Moreover, molecular dynamics (MD) simulations with the developed ReaxFFCBN can predict the stability and dehydrogenation behavior of various liquid CBN hydrogen-storage materials. Our simulations reveal that a unimolecular dehydrogenation mechanism is preferred in liquid CBN hydrogen-storage materials. However, as the temperature in the simulation increases, the contribution of a bimolecular dehydrogenation mechanism also increases. Moreover, our ReaxFF MD simulations show that in terms of thermal stability and dehydrogenation kinetics, liquid CBN materials with a hexagonal structure are more suitable materials than those with a pentagonal structure. We expect that the developed ReaxFFCBN could be a useful protocol in developing novel liquid CBN hydrogen-storage materials.

  5. Performance analysis of phase-change material storage unit for both heating and cooling of buildings

    Science.gov (United States)

    Waqas, Adeel; Ali, Majid; Ud Din, Zia

    2017-04-01

    Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ∼29°C in summer and 21°C during winter season. The appropriate melting point was ∼27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa.

  6. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  7. Equivalent thermal conductivity of the storage basket with spent nuclear fuel of VVER-1000 reactors

    International Nuclear Information System (INIS)

    Alyokhina, Svitlana; Kostikov, Andriy

    2014-01-01

    Due to limitation of computation resources and/or computation time many thermal problems require to use simplified geometrical models with equivalent thermal properties. A new method for definition of equivalent thermal conductivity of spent nuclear fuel storage casks is proposed. It is based on solving the inverse heat conduction problem. For the proposed method two approaches for equivalent thermal conductivity definition were considered. In the first approach a simplified model in conjugate formulation is used, in the second approach a simplified model of solid body which allows an analytical solution is used. For safety ensuring during all time of spent nuclear fuel storage the equivalent thermal conductivity was calculated for different storage years. The calculated equivalent thermal conductivities can be used in thermal researches for dry spent nuclear fuel storage safety.

  8. Thermal behavior of neutron shielding material, NS-4-FR, under long term storage conditions

    International Nuclear Information System (INIS)

    Yamada, N.; O-iwa, A.; Asano, R.; Horita, R.; Kusunoki, K.

    2004-01-01

    NS-4-FR, Epoxy-Resin, has been widely used as a neutron shielding material for casks. It is recognized that the resin will degrade during storage and loose weight under high temperature conditions. Most of the examinations for the resin degrading behavior were conducted with rather small bare resin specimens. However, the actual quantity of neutron shielding is quite large and is covered by the cask body. To confirm the degrading behavior of the resin under the long-term storage conditions, we performed the test on the specimen with the same cross-section as the actual design, Hitz B69. The resin test vessels were made out of stainless steel and equipped with flange

  9. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  10. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  11. Storage effects on anthocyanins, phenolics and antioxidant activity of thermally processed conventional and organic blueberries.

    Science.gov (United States)

    Syamaladevi, Roopesh M; Andrews, Preston K; Davies, Neal M; Walters, Thomas; Sablani, Shyam S

    2012-03-15

    Consumer demand for products rich in phytochemicals is increasing as a result of greater awareness of their potential health benefits. However, processed products are stored for long-term and the phytochemicals are susceptible to degradation during storage. The objective of this study was to assess the storage effects on phytochemicals in thermally processed blueberries. Thermally processed canned berries and juice/puree were analysed for phytochemicals during their long-term storage. The phytochemical retention of thermally processed blueberries during storage was not influenced by production system (conventional versus organic). During 13 months of storage, total anthocyanins, total phenolics and total antioxidant activity in canned blueberry solids decreased by up to 86, 69 and 52% respectively. In canned blueberry syrup, total anthocyanins and total antioxidant activity decreased by up to 68 and 15% respectively, while total phenolic content increased by up to 117%. Similar trends in phytochemical content were observed in juice/puree stored for 4 months. The extent of changes in phytochemicals of thermally processed blueberries during storage was significantly influenced by blanching. Long-term storage of thermally processed blueberries had varying degrees of influence on degradation of total anthocyanins, total phenolics and total antioxidant activity. Blanching before thermal processing helped to preserve the phytochemicals during storage of blueberries. Copyright © 2011 Society of Chemical Industry.

  12. Materials behavior in interim storage of spent fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Gilbert, E.R.; Inman, S.C.

    1982-01-01

    Interim storage has emerged as the only current spent-fuel management method in the US and is essential in all countries with nuclear reactors. Materials behavior is a key aspect in licensing interim-storage facilities for several decades of spent-fuel storage. This paper reviews materials behavior in wet storage, which is licensed for light-water reactor (LWR) fuel, and dry storage, for which a licensing position for LWR fuel is developing

  13. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}