WorldWideScience

Sample records for thermal spray symposium

  1. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  2. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  3. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  4. The 2016 Thermal Spray Roadmap

    Czech Academy of Sciences Publication Activity Database

    Vardelle, A.; Moreau, Ch.; Akedo, J.; Ashrafizadeh, H.; Berndt, C. C.; Berghaus-Oberste, J.; Boulos, M.; Brogan, J.; Bourtsalas, A.C.; Dolatabadi, A.; Dorfman, M.; Eden, T.J.; Fauchais, P.; Fisher, G.; Gaertner, F.; Gindrat, M.; Henne, R.; Hyland, M.; Irissou, E.; Jordan, E.H.; Khor, K.A.; Killinger, A.; Lau, Y.C.; Li, C.-J.; Li, L.; Longtin, J.; Markocsan, N.; Masset, P.J.; Matějíček, Jiří; Mauer, G.; McDonald, A.; Mostaghimi, J.; Sampath, S.; Schiller, G.; Shinoda, K.; Smith, M.F.; Syed, A.A.; Themelis, N.J.; Toma, F.-L.; Trelles, J.P.; Vassen, R.; Vuoristo, P.

    2016-01-01

    Roč. 25, č. 8 (2016), s. 1376-1440 ISSN 1059-9630 Institutional support: RVO:61389021 Keywords : anti-wear and anti-corrosion coatings * biomedical * electronics * energy generation * functional coatings * gas turbines * thermal spray processes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://dx.doi.org/10.1007/s11666-016-0473-x

  5. Thermally sprayed coatings: Aluminum on lead

    International Nuclear Information System (INIS)

    Usmani, S.; Czajkowski, C.J.; Zatorski, R.

    1999-01-01

    An experimental program to determine the feasibility of thermally spraying aluminum on a lead substrate was initiated in support of the accelerator production of tritium (APT) Project for the US Department of Energy. The program consisted of two distinct parts: (1) the characterization of the thermally sprayed coatings, including microhardness testing, effects of heating, and microstructure and porosity determinations, and (2) effects of mercury doping and heat treatments on the thermally sprayed composite. The project determined that aluminum could successfully be thermally sprayed onto the lead. The coatings had a dense microstructure, with a Vicker's Pyramid Hardness (VPH) of about 60, and a maximum porosity (found in strips on the samples) of 12%

  6. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  7. High Temperature Oxidation of Spark Plasma Sintered and Thermally Sprayed FeAl-Based Iron Aluminides

    Czech Academy of Sciences Publication Activity Database

    Haušild, P.; Karlík, M.; Skiba, T.; Sajdl, P.; Dubský, Jiří; Palm, M.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 465-468 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA)/12./. Prague, 04.09.2011-08.09.2011] Institutional support: RVO:61389021 Keywords : thermal spraying * plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.531, year: 2012

  8. 6th International Symposium on Thermal Expansion

    CERN Document Server

    1978-01-01

    This 6th International Symposium on Thermal Expansion, the first outside the USA, was held on August 29-31, 1977 at the Gull Harbour Resort on Hecla Island, Manitoba, Canada. Symposium Chairman was Ian D. Peggs, Atomic Energy of Canada Limited, and our continuing sponsor was CINDAS/Purdue University. We made considerable efforts to broaden the base this year to include more users of expansion data but with little success. We were successful, however, in establishing a session on liquids, an area which is receiving more attention as a logical extension to the high-speed thermophysical property measurements on materials at temperatures close to their melting points. The Symposium had good international representation but the overall attendance was, disappointingly, relatively low. Neverthe­ less, this enhanced the informal atmosphere throughout the meeting with a resultant frank exchange of information and ideas which all attendees appreciated. A totally new item this year was the presentation of a bursary to ...

  9. Examining Thermally Sprayed Coats By Fluorescence Microscopy

    Science.gov (United States)

    Street, Kenneth W., Jr.; Leonhardt, Todd A.

    1994-01-01

    True flaws distinquished from those induced by preparation of specimens. Fluorescence microscopy reveals debonding, porosity, cracks, and other flaws in specimens of thermally sprayed coating materials. Specimen illuminated, and dye it contains fluoresces, emitting light at different wavelength. Filters emphasize contrast between excitation light and emission light. Specimen viewed directly or photographed on color film.

  10. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  11. Thermal spray coatings replace hard chrome

    International Nuclear Information System (INIS)

    Schroeder, M.; Unger, R.

    1997-01-01

    Hard chrome plating provides good wear and erosion resistance, as well as good corrosion protection and fine surface finishes. Until a few years ago, it could also be applied at a reasonable cost. However, because of the many environmental and financial sanctions that have been imposed on the process over the past several years, cost has been on a consistent upward trend, and is projected to continue to escalate. Therefore, it is very important to find a coating or a process that offers the same characteristics as hard chrome plating, but without the consequent risks. This article lists the benefits and limitations of hard chrome plating, and describes the performance of two thermal spray coatings (tungsten carbide and chromium carbide) that compared favorably with hard chrome plating in a series of tests. It also lists three criteria to determine whether plasma spray or hard chrome plating should be selected

  12. Antibacterial characteristics of thermal plasma spray system.

    Science.gov (United States)

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an

  13. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  14. Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Akoshima, Megumi; Takahashi, Satoru

    2017-09-01

    Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.

  15. Impact Response of Thermally Sprayed Metal Deposits

    Science.gov (United States)

    Wise, J. L.; Hall, A. C.; Moore, N. W.; Pautz, S. D.; Franke, B. C.; Scherzinger, W. M.; Brown, D. W.

    2017-06-01

    Gas-gun experiments have probed the impact response of tantalum specimens that were additively manufactured using a controlled thermal spray deposition process. Velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response under one-dimensional (i . e . , uniaxial strain) shock compression to peak stresses ranging between 1 and 4 GPa. The acquired wave-profile data have been analyzed to determine the Hugoniot Elastic Limit (HEL), Hugoniot equation of state, and high-pressure yield strength of the thermally deposited samples for comparison to published baseline results for conventionally wrought tantalum. The effects of composition, porosity, and microstructure (e . g . , grain/splat size and morphology) are assessed to explain differences in the dynamic mechanical behavior of spray-deposited versus conventional material. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Thermal spray deposition and evaluation of low-Z coatings

    International Nuclear Information System (INIS)

    Seals, R.D.; Swindeman, C.J.; White, R.L.

    1996-01-01

    Thermally sprayed low-Z coatings of B 4 C on Al substrates were investigated as candidate materials for first-wall reactor protective surfaces. Comparisons were made to thermally sprayed coatings of B, MgAl 2 O 4 , Al 2 O 3 , and composites. Graded bond layers were applied to mitigate coefficient of thermal expansion mismatch. Microstructures, thermal diffusivity before and after thermal shock loading, steel ball impact resistance, CO 2 pellet cleaning and erosion tolerance, phase content, stoichiometry by Rutherford backscattering spectroscopy, and relative tensile strengths were measured

  17. Elastic response of thermal spray deposits under indentation tests

    International Nuclear Information System (INIS)

    Leigh, S.H.; Lin, C.K.; Berndt, C.C.

    1997-01-01

    The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data

  18. Performances and reliability of WC based thermal spray coatings

    International Nuclear Information System (INIS)

    Scrivani, A.; Rosso, M.; Salvarani, L.

    2001-01-01

    Thermal spray processes are used for a lot of traditional and innovative applications and their importance is becoming higher and higher. WC/CoCr based thermal spray coatings represent one of the most important class of coatings that find application in a wide range of industrial sectors. This paper will address a review of current applications and characteristics of this kind of coating. The most important spraying processes, namely HVOF (high velocity oxygen fuel) are examined, the characterization of the coatings from the point of view of corrosion and wear resistance is considered. (author)

  19. High-power electronics thermal management with intermittent multijet sprays

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Correia, André M.; Moreira, António L.N.

    2012-01-01

    Thermal management plays a crucial role in the development of high-power electronics devices, e.g. in electric vehicles. The greatest energy demands occur during power peaks, implying dynamic thermal losses within the vehicle’s driving cycle. Therefore, the need for devising intelligent thermal management systems able to efficiently respond to these power peaks has become a technological challenge. Experiments have been performed with methanol in order to quantify the maximum heat flux removed by a multijet spray to keep the 4 cm 2 surface temperature stabilized and below the threshold of 125 °C. A multijet atomization strategy consists in producing a spray through the multiple and simultaneous impact of N j cylindrical jets. Moreover, the spray intermittency is expressed through the duty cycle (DC), which depends on the frequency and duration of injection. Results evidence that: i) a shorter time between consecutive injection cycles enables a better distribution of the mass flow rate, resulting in larger heat transfer coefficient values, as well as higher cooling efficiencies; ii) compared with continuous sprays, the analysis evidences that an intermittent spray allows benefiting more from phase-change convection. Moreover, the mass flux is mainly affecting heat transfer rather than differences induced in the spray structure by using different multijet configurations. - Highlights: ► Intermittent spray cooling (ISC) is advantageous for intelligent thermal management. ► Distributing the mass flow rate through ISC improves heat transfer. ► Multijet sprays with increasing number of jets have higher heat transfer rates. ► ISC with multijet sprays benefit more from phase-change than continuous sprays.

  20. Unit thermal performance of atmospheric spray cooling systems

    International Nuclear Information System (INIS)

    Porter, R.W.; Jain, M.; Chaturvedi, S.K.

    1980-01-01

    Thermal performance of an open atmospheric spray pond or canal depends on the direct-contact evaporative cooling of an individual spray unit (spray nozzle or module) and the interference caused by local heating and humidification. Droplet parameters may be combined into a dimensionless group, number of transfer units (NTU) or equivalent, whereas large-scale air-vapor dynamics determine interference through the local wet-bulb temperature. Quantity NTU were implied from field experiments for a floating module used in steam-condenser spray canals. Previous data were available for a fixed-pipe nozzle assembly used in spray ponds. Quantity NTU were also predicted using the Ranz-Marshall correlations with the Sauter-mean diameter used as the characteristic length. Good agreement with experiments was shown for diameters of 1--1.1 cm (module) and 1.9 mm

  1. Research into Thermal Sprayed Coatings with Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    Justinas Gargasas

    2012-01-01

    Full Text Available Research on thermal sprayed coatings with ultrasonic methods is the main object of this thesis. Metal surface coating was applied to modify its mechanical and physical-chemical properties and resistance to external impact and improve aesthetics. Spraying was carried out by scanning the rotating sample of 30 cm/s speed. Surface microstructure, ultrasonic thickness, porosity, micro hardness and surface modulus tests performed. Conclusions were formulated.Article in Lithuanian

  2. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    Science.gov (United States)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  3. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    Science.gov (United States)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  4. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Curry, N.; Markocsan, N.; Nylen, P.; Joshi, S.; Vilémová, Monika; Pala, Zdeněk

    2016-01-01

    Roč. 25, 1-2 (2016), s. 202-212 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] Institutional support: RVO:61389021 Keywords : axial injection * column ar microstructure * porosity * suspension plasma spraying * thermal conductivity * thermal diffusivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0355-7

  5. Thermal decomposition of uranylnitrate by the Spray-Dryer process

    International Nuclear Information System (INIS)

    Wildhagen, G.R.S.; Silva, G.C. da

    1988-01-01

    The proposal of this work consist in the thermal decomposition of uranyl nitrate solutions by the Spray-Dryer process aiming the production of highly reactive fluidized UO 3 , adequate for the use in posterior of reduction to UO 2 and hydrofluorination to UF 4 , in a fluidized bed for the obtention of UF 6 in the cicle of nuclear fuels. (author) [pt

  6. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  7. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  8. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  9. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  10. Standard guide for metallographic preparation of thermal sprayed coatings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers recommendations for sectioning, cleaning, mounting, grinding, and polishing to reveal the microstructural features of thermal sprayed coatings (TSCs) and the substrates to which they are applied when examined microscopically. Because of the diversity of available equipment, the wide variety of coating and substrate combinations, and the sensitivity of these specimens to preparation technique, the existence of a series of recommended methods for metallographic preparation of thermal sprayed coating specimens is helpful. Adherence to this guide will provide practitioners with consistent and reproducible results. Additional information concerning standard practices for metallographic preparation can be found in Practice E 3. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitatio...

  11. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  12. Advanced homogenization strategies in material modeling of thermally sprayed TBCs

    International Nuclear Information System (INIS)

    Bobzin, K.; Lugscheider, E.; Nickel, R.; Kashko, T.

    2006-01-01

    Thermal barrier coatings (TBC), obtained by atmospheric plasma spraying (APS), have a complex microstructure (lamellar, porous, micro-cracked). Process parameters take an influence on this microstructure. Two methods based on the homogenization for periodic structures are presented in this article. The methods are used to calculate the effective material behavior of APS-TBCs made of partially yttria stabilized zirconia (PYSZ) depending on the microstructure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  13. BEHAVIOR OF THERMAL SPRAY COATINGS AGAINST HYDROGEN ATTACK

    OpenAIRE

    Vargas, Fabio; Latorre, Guillermo; Uribe, Iván

    2003-01-01

    The behavior of nickel and chrome alloys applied as thermal spray coatings to be used as protection against embrittlement by hydrogen is studied. Coatings were applied on a carbon steel substrate, under conditions that allow obtain different crystalline structures and porosity levels, in order to determine the effect of these variables on the hydrogen permeation kinetics and as a protection means against embrittlement caused this element. In order to establish behaviors as barriers and protec...

  14. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  15. Electrical properties of pressure quenched silicon by thermal spraying

    International Nuclear Information System (INIS)

    Tan, S.Y.; Gambino, R.J.; Sampath, S.; Herman, H.

    2007-01-01

    High velocity thermal spray deposition of polycrystalline silicon film onto single crystal substrates, yields metastable high pressure forms of silicon in nanocrystalline form within the deposit. The phases observed in the deposit include hexagonal diamond-Si, R-8, BC-8 and Si-IX. The peculiar attribute of this transformation is that it occurs only on orientation silicon substrate. The silicon deposits containing the high pressure phases display a substantially higher electrical conductivity. The resistivity profile of the silicon deposit containing shock induced metastable silicon phases identified by X-ray diffraction patterns. The density of the pressure induced polymorphic silicon is higher at deposit/substrate interface. A modified two-layer model is presented to explain the resistivity of the deposit impacted by the pressure induced polymorphic silicon generated by the thermal spraying process. The pressure quenched silicon deposits on the p - silicon substrate, with or without metastable phases, display the barrier potential of about 0.72 eV. The measured hall mobility value of pressure quenched silicon deposits is in the range of polycrystalline silicon. The significance of this work lies in the fact that the versatility of thermal spray may enable applications of these high pressure forms of silicon

  16. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  17. Fatigue Crack Growth in Bodies with Thermally Sprayed Coating

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Medřický, Jan; Tomek, L.; Siegl, J.; Mušálek, Radek; Curry, N.; Björklund, S.

    2016-01-01

    Roč. 25, 1-2 (2016), s. 311-320 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Thermal barrier coating * fatigue * crack growth * digital image correlation * digital image correlation Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0329-9

  18. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  19. Current situation and development tendency of thermal spraying materials in China

    Institute of Scientific and Technical Information of China (English)

    YU; Yue-guang

    2005-01-01

    The current situations of thermal spraying materials in China are described in this paper.The thermal spraying technology in China has a great progress over tens of years. More than one hundred varieties of material products serve thermal spraying producing now. They belong to three kinds, powders,wires and rods. Technologies for producing alloy, ceramic and composite powders, alloy and cored wires,and oxide ceramic rods are applied to large-scale production. Many research and development works on advanced materials for thermal spraying are carrying out recent years. They show that the general tendencies of thermal spraying materials in China are composite or low-impurity component, ultrafine or nanosized microstructure, high properties, and specialized and systematized applications. Thermal spraying materials have great prospects with the development of saving society in China.

  20. X-rays characterisation of thermal sprayed bioceramics and composites

    International Nuclear Information System (INIS)

    Khor, K.A.; Cheang, P.; White, T.

    2000-01-01

    Materials characterization using x-rays plays an important role in the ongoing endeavour to develop superior materials for biomedical devices. Current emphasis on biomaterials worldwide has highlighted the prominence of materials in successful implementation of implants to improve the quality of human lives. A clear example can be seen in the artificial hip implant where a layer of bioactive material, hydroxyapatite (HA), drastically aids the pain during the post-operation recovery process. Thermal spray is a process whereby powders are injected into a high temperature flame. Instantaneous melting takes place and the molten droplets are projected at a very high velocities onto a suitably prepared substrate. The adoption of this process by most biomedical companies manufacturing artificial hip implants is based on the efficacy of the process and the economic benefits such as high production rate and relatively low installation cost. However, material decomposition often occurs in the high temperature environment of thermal spray. Subsequent development of proper process parameters, customised powder characteristics and better process control nonetheless help mitigate this effect. A constant demand in the escalating usage of biomaterials in human body is reliability. Implants should preferably remain in the body for at least 5-10 years with minimal occurrences of revision. To ensure an acceptable level of reliability, materials characterisation is needed at practically every stage of its development and manufacture. The role that x-rays play in biomaterials development can be categorised as: (1) phase identification and structural determination and (2) chemical analysis. This paper will present the characterisation of biomaterials using x-rays in the development of new generation of biomaterials and composites that posses superior properties than the present group of materials. Specifically, this paper will highlight the problems encountered in phase identification

  1. Process-based quality for thermal spray via feedback control

    Science.gov (United States)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  2. An electrothermal chemical technology for thermal spray coatings

    International Nuclear Information System (INIS)

    Wald, S.; Appelbaum, G.; Alimi, R.; Rabani, L.; Zoler, D.; Zhitomirsky, V.; Factor, M.; Roman, I.

    1998-01-01

    A new spray technology for producing hard-coatings, has been developed at the SOREQ Nuclear Research Center. The concept is based on the extensive experience accumulated at SOREQ in the course of the development of Electrothermal (ET), Electrothermal-Chemical (ETC) and Solid-Propellant Electrothermal-Chemical (SPETC) guns(r). High quality coatings may be obtained by thermal spraying powder particles onto a variety of substrates. Mature state-of-the-art technologies such as plasma spray, high velocity oxy fuel (HVOF) and detonation gun (D-Gun) are widely used for many applications. As each method has its own drawbacks there is a need for a combination of several parameters which cannot be achieved by any existing individual commercial technology. The method presented is oriented toward a high-quality, multi-step, high-throughput, easily programmable continuous coating process and relatively inexpensive technology. The combustion products of a solid or liquid propellant accelerate the powder particles of the coating material. A pulsed-plasma jet, provided by a confined capillary discharge, ignites the propellant and controls the combustion process. The powder particles are accelerated to velocities over 1000 m/s. Due to the very high carrier gas density, high velocity, high throughput and high powder consumption efficiency are obtained. The plasma jet enables control of the gas temperature and consequently influences the powder temperature

  3. Thermal Radiation Effects on Thermal Explosion in Polydisperse Fuel Spray-Probabilistic Model

    Directory of Open Access Journals (Sweden)

    Ophir Navea

    2011-06-01

    Full Text Available We investigate the effect of thermal radiation on the dynamics of a thermal explosion of polydisperse fuel spray with a complete description of the chemistry via a single-step two-reactant model of general order. The polydisperse spray is modeled using a Probability Density Function (PDF. The thermal radiation energy exchange between the evaporation surface of the fuel droplets and the burning gas is described using the Marshak boundary conditions. An explicit expression of the critical condition for thermal explosion limit is derived analytically and represents a generalization of the critical parameter of the classical Semenov theory. Because we investigated the model in the range where the temperature is very high, the effect of the thermal radiation is significant.

  4. Applications of thermal spraying for automotive parts. Jidosha ni okeru yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Mori, K [Toyota Motor Co. Ltd., Aichi (Japan)

    1992-10-31

    Application of thermal spraying for automotive parts is described. Outlines of the spraying types that are materialized recently, like 'gel-double spraying of turbo-compressor housing part' and 'iron alloy spraying to outer portion of valve lifter made with Al alloy', are introduced. Gel-double spraying technology is widely used in the jet engine of aeroplane, however its use in automotive turbo was difficult from the reason like quality assurance relating to continuous production of automotives. As a result of the research and development based on the above reasons, a low speed torque is confirmed by the formation of gel-double spray layer. Spraying to the outer part of the valve lifter made from Al alloy is cited as the best example of thermal spraying. Relation between flying speed of spraying particles and degree of flattening, etc., relating to the conformity of adhesion power of coated layer, is explained. Further research topics are given as; improvement of spraying efficiency, improvement of resistance of spraying equipments, unification of equipments standards, quantification of spray coatings, design of spray materials, etc. 9 refs., 8 figs., 1 tab.

  5. Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings

    Science.gov (United States)

    Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay

    2015-07-01

    Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.

  6. Computational homogenisation for thermoviscoplasticity: application to thermally sprayed coatings

    Science.gov (United States)

    Berthelsen, Rolf; Denzer, Ralf; Oppermann, Philip; Menzel, Andreas

    2017-11-01

    Metal forming processes require wear-resistant tool surfaces in order to ensure a long life cycle of the expensive tools together with a constant high quality of the produced components. Thermal spraying is a relatively widely applied coating technique for the deposit of wear protection coatings. During these coating processes, heterogeneous coatings are deployed at high temperatures followed by quenching where residual stresses occur which strongly influence the performance of the coated tools. The objective of this article is to discuss and apply a thermo-mechanically coupled simulation framework which captures the heterogeneity of the deposited coating material. Therefore, a two-scale finite element framework for the solution of nonlinear thermo-mechanically coupled problems is elaborated and applied to the simulation of thermoviscoplastic material behaviour including nonlinear thermal softening in a geometrically linearised setting. The finite element framework and material model is demonstrated by means of numerical examples.

  7. Thermal stability study of crystalline and novel spray-dried amorphous nilotinib hydrochloride

    NARCIS (Netherlands)

    Herbrink, Maikel; Vromans, Herman; Schellens, Jan Hm; Beijnen, Jos H; Nuijen, Bastiaan

    2018-01-01

    The thermal characteristics and the thermal degradation of crystalline and amorphous nilotinib hydrochloride (NH) were studied. The spray drying technique was successfully utilized for the amorphization of NH and was evaluated by spectroscopic techniques and differential scanning calorimetry (DSC).

  8. Thermal spray coating for corrosion under insulation (CUI) prevention

    Science.gov (United States)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  9. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2014-08-01

    Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.

  10. A new method for thermal spraying of Zn-Al coatings

    International Nuclear Information System (INIS)

    Gorlach, I.A.

    2009-01-01

    This paper presents the development of the thermal spraying system built on the principles of the high velocity air flame (HVAF) process. HVAF sprayed coatings showed considerably higher bond strength than coatings obtained by the conventional methods, indicating the advantage of this method in areas where the adhesion strength is critically important. The highly dense structure of the coating obtained with HVAF eliminates a need for a top paint coat, which is typically applied on metal sprayed coatings to extend service life. The thermal sprayed coatings were characterized by the standard techniques, such as light microscopy, scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, salt spray and bond strength tests. The results show that thermal sprayed coatings have a dense structure, low presence of oxides and high resistance to corrosion. High spray rate and good coating quality make the HVAF thermal spray method a viable alternative to the conventional thermal spraying technologies, such as Wire Flame and Twin-Wire Arc.

  11. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  12. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  13. Thermal Diffusivity Measurement for Thermal Spray Coating Attached to Substrate Using Laser Flash Method

    Science.gov (United States)

    Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio

    2011-11-01

    Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.

  14. Thermal spraying of polyethylene-based polymers: Processing and characterization

    Science.gov (United States)

    Otterson, David Mark

    This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational

  15. Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Rob; Wang, Zhenwei; Jankovic, Jasna; Yick, Sing; Maric, Radenka; Ghosh, Dave [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Kesler, Olivera [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada); Rose, Lars [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, BC V6T 1Z4 (Canada)

    2007-07-10

    In this article, the applications, potential advantages, and challenges of thermal plasma spray (PS) processing for nanopowder production and cell fabrication of solid oxide fuel cells (SOFCs) are reviewed. PS processing creates sufficiently high temperatures to melt all materials fed into the plasma. The heated material can either be quenched into oxide powders or deposited as coatings. This technique has been applied to directly deposit functional layers as well as nanopowder for SOFCs application. In particularly, low melting point and highly active electrodes can be directly fabricated on zirconia-based electrolytes. This is a simple processing technique that does not require the use of organic solvents, offering the opportunity for flexible adjustment of process parameters, and significant time saving in production of the cell and cost reduction compared with tape casting, screen printing and sintering processing steps. Most importantly, PS processing shows strong potential to enable the deposition of metal-supported SOFCs through the integrated fabrication of membrane-electrode assemblies (MEA) on porous metallic substrates with consecutive deposition steps. On the other hand, the application of PS processing to produce SOFCs faces some challenges, such as insufficient porosity of the electrodes, the difficulty of obtaining a thin (<10 {mu}m) and dense electrolyte layer. Fed with H{sub 2} as the fuel gas and oxygen as the oxidant gas, the plasma sprayed cell reached high power densities of 770 mW cm{sup -2} at 900 C and 430 mW cm{sup -2} at 800 C at a cell voltage of 0.7 V. (author)

  16. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    OpenAIRE

    Shibe, Vineet; Chawla, Vikas

    2016-01-01

    Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 ste...

  17. Quality control of thermal spray coatings in diesel engines; Qualitaetskontrolle an thermisch gespritzten Beschichtungen in Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Carstensen, Jesper Vejloe [MAN Diesel and Turbo, Copenhagen (Denmark). Material Technology and Research Dept.; Lindegren, Maria [Struers A/S, Ballerup (Denmark). Application Dept.

    2013-06-01

    Thermal spraying is a method, which is suitable for coating of large components. The coatings can e.g. improve the wear, friction and/or corrosion properties of components so that they can withstand the increased loads. The quality of the coatings is essential to ensure reliable operation of the components. However, quality control of thermally sprayed coatings is indeed nontrivial and sample preparation is a key issue. This paper shows examples of thermal spray coated components in large diesel engines and provides insight into the methods used in preparing samples for quality control. (orig.)

  18. Identifying Indicators of Progress in Thermal Spray Research Using Bibliometrics Analysis

    Science.gov (United States)

    Li, R.-T.; Khor, K. A.; Yu, L.-G.

    2016-12-01

    We investigated the research publications on thermal spray in the period of 1985-2015 using the data from Web of Science, Scopus and SciVal®. Bibliometrics analysis was employed to elucidate the country and institution distribution in various thermal spray research areas and to characterize the trends of topic change and technology progress. Results show that China, USA, Japan, Germany, India and France were the top countries in thermal spray research, and Xi'an Jiaotong University, Universite de Technologie Belfort-Montbeliard, Shanghai Institute of Ceramics, ETH Zurich, National Research Council of Canada, University of Limoges were among the top institutions that had high scholarly research output during 2005-2015. The terms of the titles, keywords and abstracts of the publications were analyzed by the Latent Dirichlet Allocation model and visually mapped using the VOSviewer software to reveal the progress of thermal spray technology. It is found that thermal barrier coating was consistently the main research area in thermal spray, and high-velocity oxy-fuel spray and cold spray developed rapidly in the last 10 years.

  19. An assessment of thermal spray coating technologies for high temperature corrosion protection

    International Nuclear Information System (INIS)

    Heath, G.R.; Heimgartner, P.; Gustafsson, S.; Irons, G.; Miller, R.

    1997-01-01

    The use of thermally sprayed coatings in combating high temperature corrosion continues to grow in the major industries of chemical, waste incineration, power generation and pulp and paper. This has been driven partially by the development of corrosion resistant alloys, improved knowledge and quality in the thermal spray industry and continued innovation in thermal spray equipment. There exists today an extensive range of thermal spray process options, often with the same alloy solution. In demanding corrosion applications it is not sufficient to just specify alloy and coating method. For the production of reliable coatings the whole coating production envelope needs to be considered, including alloy selection, spray parameters, surface preparation, base metal properties, heat input etc. Combustion, arc-wire, plasma, HVOF and spray+fuse techniques are reviewed and compared in terms of their strengths and limitations to provide cost-effective solutions for high temperature corrosion protection. Arc wire spraying, HP/HVOF and spray+fuse are emerging as the most promising techniques to optimise both coating properties and economic/practical aspects. (orig.)

  20. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  1. ZrO2 coatings on stainless steel by aerosol thermal spraying

    International Nuclear Information System (INIS)

    Di Giampaolo, A.R.; Reveron, H.; Ruiz, H.; Poirier, T.; Lira, J.

    1998-01-01

    Zirconia coatings, with a wide range of thickness (1 to 80 μ) have been obtained by spraying a ZrO 2 sol with an oxyacetylenic flame, on stainless steel substrates. The sol was prepared by mixing Zr-n-propoxide and acetic acid in order to obtain a zirconium oxyacetate precipitate, which was filtrated, washed with 1-propanol, dryed and subjected to an hydrothermal treatment. A new sol-gel based ceramic deposition process , aerosol thermal spraying was developed based on previous thermal spray work. A compressed air spray gun was used to produce a fine aerosol flow which was injected in the flame of the thermal spray torch and deposited on polished and sand blasted substrates. This original technique allows simultaneous spraying, drying and partial sintering of the zirconia nanometric particles. The maximum working temperature necessary to yield a resistant coating is 1000 deg C. This method produced crack-free homogeneous layers of monoclinic ZrO 2 with good adhesion to the substrate and low porosity, as shown by X-ray diffraction and scanning electron microscopy. Oxidation test, carried out by heat treatments in air atmosphere at 800 deg C indicated good protection, mainly for low thickness coatings deposited in polished substrates. This original deposition technique offers several advantages when compared with classical thermal spraying techniques, such as plasma spraying. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  2. Demonstration of Thermally Sprayed Metal and Polymer Coatings for Steel Structures at Fort Bragg, NC

    Science.gov (United States)

    2017-09-01

    ER D C/ CE RL T R- 17 -3 0 DoD Corrosion Prevention and Control Program Demonstration of Thermally Sprayed Metal and Polymer Coatings...and Polymer Coatings for Steel Structures at Fort Bragg, NC Final Report on Project F07-AR10 Larry D. Stephenson, Alfred D. Beitelman, Richard G...5 2.1.2 Thermoplastic polymer coating (flame spray

  3. Review of US Nanocorp - SNL Joint Development of Thermal-Sprayed Thin-Film Cathodes for Thermal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; DAI,JINXIANG; XIAO,T. DANNY; REISNER,DAVID E.

    2000-11-14

    The use of plasma spray to deposit thin metal-sulfide cathode films is described in this paper. Conventional electroactive stack components in thermal batteries are constructed from pressed-powder parts that are difficult to fabricate in large diameters in thicknesses <0.010. Plasma-sprayed electrodes do not steer from this difficulty, allowing greater energy densities and specific energies to be realized. Various co-spraying agents have been found suitable for improving the mechanical as well as electrochemical properties of plasma-sprayed cathodes for thermal batteries. These electrodes generally show equal or improved performance over conventional pressed-powder electrodes. A number of areas for future growth and development of plasma-spray technology is discussed.

  4. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  5. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  6. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne

    2005-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) and plasma thermal spray coatings as a replacement for hard chrome plating on gas turbine engine components...

  7. Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders

    Science.gov (United States)

    Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang

    2018-02-01

    In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.

  8. Proceedings of the solar thermal concentrating collector technology symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.P.; Kreith, F. (eds.)

    1978-08-01

    The purpose of the symposium was to review the current status of the concentrating collector technology, to disseminate the information gained from experience in operating solar systems, and to highlight the significant areas of technology development that must be vigorously pursued to foster early commercialization of concentrating solar collectors. Separate abstracts were prepared for thirteen invited papers and working group summaries. Two papers were previously abstracted for EDB.

  9. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    Directory of Open Access Journals (Sweden)

    Vineet Shibe

    2016-01-01

    Full Text Available Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.

  10. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  11. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  12. Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future

    Science.gov (United States)

    Sampath, Sanjay

    2010-09-01

    Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.

  13. Effect of layer thickness on the properties of nickel thermal sprayed steel

    Energy Technology Data Exchange (ETDEWEB)

    Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id; Wijayanta, Agung Tri, E-mail: agungtw@uns.ac.id [Department of Mechanical Engineering, Sebelas Maret University, Jl. Jr. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.

  14. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States); Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2016-11-04

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials for corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray

  15. Modeling of droplet dynamic and thermal behaviour during spray ...

    Indian Academy of Sciences (India)

    Modeling Studies Volume 26 Issue 3 April 2003 pp 355-364 ... Mathematical modeling of supersonic gas atomization for spray forming has been investigated. ... Department of Mechanical Engineering, M.S. Ramaiah Institute of Technology, Bangalore 560 054, India; Department of Mechanical Engineering, University ...

  16. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    International Nuclear Information System (INIS)

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-01-01

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure

  17. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  18. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  19. Preparation of high critical temperature YBa2Cu3O7 superconducting coatings by thermal spray

    International Nuclear Information System (INIS)

    Lacombe, Jacques

    1991-01-01

    The objective of this research thesis is the elaboration of YBa 2 Cu 3 O 7 superconducting coatings by thermal spray. These coatings must have a high adherence, a high cohesion, and the best possible electrical characteristics. The author first briefly presents physical-chemical characteristics of this ceramic, and proposes a bibliographical synthesis on thick coatings prepared by thermal spray. In the next parts, he studies and describes conditions of elaboration of poly-granular coatings of YBa 2 Cu 3 O 7 , and their structural and electric characteristics [fr

  20. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  1. Suspension thermal spraying of hydroxyapatite: Microstructure and in vitro behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Bolelli, Giovanni, E-mail: giovanni.bolelli@unimore.it [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer [Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universität Stuttgart, Allmandring 7b, 70569 Stuttgart (Germany); Altomare, Lina; De Nardo, Luigi [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano (Italy)

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27–37 μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%–70% were obtained, depending on the deposition parameters and the use of a TiO{sub 2} bond coat. The average hardness of layers with low (< 24%) and high (70%) crystallinity was ≈ 3.5 GPa and ≈ 4.5 GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5–7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈ 3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14 days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. - Highlights: • Thin, dense HA layers were originated by HVSFS deposition of molten agglomerates of ≈ 1 μm. • Tensile adhesion strength of HVSFS HA onto Ti well above the threshold of ISO 13779-2 • Crystallinity (10–70%) is determined by system temperature during deposition. • Crystallinity controls the reactivity during immersion in simulated body fluid. • SAOS-2 osteoblast-like cells adhered well and

  2. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    Science.gov (United States)

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  3. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  4. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.

    Science.gov (United States)

    Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. © 2013.

  5. Influence of Roughness on Quality Molybdenum Deposit Layer by Thermal Spraying

    Directory of Open Access Journals (Sweden)

    Marián Bujna

    2016-01-01

    Full Text Available In this paper we deal with the impact of roughness on the quality of molybdenum layer. Insufficient cleaning may result in a poor quality of the sprayed layer. Our aim is to analyze the influence of surface roughness on the quality of molybdenum layer thickness applied by thermal spraying. Thermal spraying influence several physical and chemical properties of the coating surface. The most important ones include: hardness, density, porosity, corrosion resistance and adhesion. This technology of surface treatment of material is often used for its high degree of hardness. Hardness and erosion resistance are the parameters that need to be achieved particularly in working conditions where there is excessive depreciation of a component.

  6. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    Science.gov (United States)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  7. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  8. Characterisation of WC-12Co thermal spray powders and HPHVOF wear resistant coatings

    CSIR Research Space (South Africa)

    Lovelock, HDL

    1998-01-01

    Full Text Available were selected for the deposition of thermal spray coatings using the JP 5000 high pressure high velocity oxyfuel (HPHVOF) system. Dry sand rubber wheel abrasion tests were performed on the coatings in order to determine the effect of powder...

  9. Assessment of thermal spray coatings for wear and abrasion resistance applications

    Science.gov (United States)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  10. Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    OpenAIRE

    Song, B.; Bai, M.; Voisey, K.T.; Hussain, Tanvir

    2017-01-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using...

  11. Sealing of thermally-sprayed stainless steel coatings against corrosion using nickel electroplating technique

    Directory of Open Access Journals (Sweden)

    Hathaipat Koiprasert

    2007-07-01

    Full Text Available Electric arc spraying (EAS is one of the thermal spray techniques used for restoration and to providecorrosion resistance. It can be utilized to build up coatings to thicknesses of several millimeters, It is easy to use on-site. Most importantly, the cost of this technique is lower than other thermal spraying techniques thatmay be suitable for part restoration. A major disadvantage associated with the electric arc sprayed coating is its high porosity, which can be as high as 3-8% making it not appropriate for use in immersion condition. This work was carried out around the idea of using electroplating to seal off the pore of the EAS coating, with an aim to improve the corrosion resistance of the coating in immersion condition. This research compared the corrosion behavior of a stainless steel 316 electric arc sprayed coating in 2M NaOH solution at 25oC. It was found that the Ni plating used as sealant can improve the corrosion resistance of the EAS coating. Furthermore, the smoothened and plated stainless steel 316 coating has a better corrosion resistance than the plated EAS coating that was not ground to smoothen the surface before plating.

  12. Aluminium-12wt% silicon coating prepared by thermal spraying technique: Part 1 optimization of spray condition based on a design of experiment

    Directory of Open Access Journals (Sweden)

    Jiansirisomboon, S.

    2006-03-01

    Full Text Available At present, thermal spray technology is used for maintenance parts of various machines in many industries. This technology can be used to improve the surface wear resistance. Therefore, this technology can significantly reduce cost of manufacturing. Al-12wt%Si alloy is an interesting and popular material used in the automotive industry. This research studies the suitable condition for spraying of Al-12wt%Si powder. This powder was sprayed by a flame spray technique onto low carbon steel substrates. The suitable conditions for spraying can be achieved by a design of experiment (DOE principle, which provided statistical data defined at 90% confidence. This research used control factors, which were oxygen flow rate, acetylene flow rate and spray distance. The satisfaction levels of these factors were set at 3 levels, i.e. low, medium and high, in order to determine suitable responses, which were hardness, thickness, wear rate and percentage volume fraction of porosity. It was found that the optimized condition for spraying Al-12wt%Si powder consisted of 38 ft3/hr (1.026 m3/hr of oxygen flow rate, 27 ft3/hr (0.729 m3/hr of acetylene flow rate and 58 mm of spray distance.

  13. In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods

    Directory of Open Access Journals (Sweden)

    Radu Alexandru Roşu

    2012-03-01

    Full Text Available Titanium alloys are successfully used in medicine as implants due to their high mechanical properties and good biocompatibility. To improve implant osseointegration of titanium alloys, they are covered with hydroxyapatite because of its bioactive properties. Coating the implants with hydroxyapatite by thermal spraying, due to the temperatures developed during the deposition process, the structure can be degraded, leading to formation of secondary phases, such as TCP, TT CP, CaO. The paper presents the experimental results of hydroxyapatite layers deposition by two thermal spraying methods: Atmospheric Plasma Spraying (APS and High Velocity Oxy-Fuel (HVOF. The microstructure of the deposited layers is characterized by X-ray diffraction analysis and electronic microscopy. The bioactivity of the hydroxyapatite layers was investigated in Simulated Body Fluid (SBF by immersing the covered samples deposited by the two thermal spraying methods. In both cases the coatings did not present defects as cracks or microcracks. X-ray diffraction performed on hydroxyapatite deposited layers shows that the structure was strongly influenced by plasma jet temperature, the structure consisting mainly of TCP (Ca3PO42. The samples deposited by HVO F after immersing in SBF lead to formation of biological hydroxyapatite, certifying the good bioactivity of the coatings.

  14. The role of nano-particles in the field of thermal spray coating technology

    Science.gov (United States)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  15. Neutron Thermalization and Reactor Spectra. Vol. II. Proceedings of the Symposium on Neutron Thermalization and Reactor Spectra

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held at Ann Arbor, Michigan, USA, 17 - 21 July 1967. The meeting was attended by 143 participants from 24 Member States and one international organization. Contents: (Vol.I) Theory of neutron thermalization (15 papers); Scattering law (20 papers); Angular, space, temperature and time dependence of neutron spectra (9 papers). (Vol.II) Measurement of thermal neutron spectra and spectral indices, and comparison with theory (17 papers); Time-dependent problems in neutron thermalization (12 papers). Each paper is in its original language (61 English, 1 French and 11 Russian) and is preceded by an abstract in English with one in the original language if this is not English. Discussions are in English.

  16. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  17. Modeling of droplet dynamic and thermal behaviour during spray ...

    Indian Academy of Sciences (India)

    Unknown

    Supersonic atomization; droplets; thermal history; solid fraction; secondary dendrite arm spacing. 1. Introduction .... velocity with distance as illustrated in (1) (Eon-Sik Lee and Ahn ...... Uhlenwinkel and U Fritsching (Bremen, Germany: Univer-.

  18. Thermal stability study of crystalline and novel spray-dried amorphous nilotinib hydrochloride.

    Science.gov (United States)

    Herbrink, Maikel; Vromans, Herman; Schellens, Jan; Beijnen, Jos; Nuijen, Bastiaan

    2018-01-30

    The thermal characteristics and the thermal degradation of crystalline and amorphous nilotinib hydrochloride (NH) were studied. The spray drying technique was successfully utilized for the amorphization of NH and was evaluated by spectroscopic techniques and differential scanning calorimetry (DSC). The ethanolic spray drying process yielded amorphous NH with a glass transition temperature (T g ) of 147°C. Thermal characterization of the amorphous phase was performed by heat capacity measurements using modulated DSC (mDSC). Thermal degradation was studied by thermogravimetric analysis (TGA). The derived thermodynamic properties of the amorphous NH indicate fragile behaviour and a low crystallization tendency. NH was found to be molecularly stable up to 193°C. After which, the thermal degradation displayed two phases. The values of the thermal degradation parameters were estimated using the Ozawa-Flynn-Wall and Friedman non-isothermal, model-free, isoconversional methods The results indicate the two phases to be single-step reactions. The examination of the physical stability of amorphous NH during storage and at elevated temperatures showed stability at 180°C for at least 5h and at 20-25°C/60% RH for at least 6 months. During these periods, no crystallization was observed. This study is the first to report the thermal characteristics of NH. Additionally, it is also the first to describe the full thermal analysis of a spray-dried amorphous drug. The thermal data may be used in the projection of future production processes and storage conditions of amorphous NH. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  20. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  1. Experimental evidence of the thermal effect of lubricating oil sprayed in sliding-vane air compressors

    Directory of Open Access Journals (Sweden)

    Gianluca Valenti

    2014-11-01

    Full Text Available A way to increase the efficiency of positive-displacement air compressor is spraying the lube oil to exploit it not only as lubricating and sealing agent but also as thermal ballast. This work seeks the experimental evidence in sliding-vane compressors by measuring the air standard volume flow rate and the electrical power input of three diverse configurations. The first configuration, taken as the reference, employs a conventional injection system comprising calibrated straight orifices. The other two, referred to as advanced, adopt smaller orifices and pressure-swirl full-cone nozzles designed for the purpose; the third configuration utilizes a pump to boost the oil pressure. The laser imagining technique shows that the nozzles generate sprays that break-up within a short distance into spherical droplets, ligaments, ramifications and undefined structures. Tests on the packaged compressors reveal that the advanced configurations provide almost the same air flow rate while utilizing half of the oil because the sprays generate a good sealing. Moreover, the sprayed oil is acting as a thermal ballast because the electrical input is reduced by 3.5% and 3.0%, respectively, if the pump is present or not , while the specific energy requirement, accounting for the slightly reduced air flow, by 2.4% and 2.9%, respectively.

  2. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    Science.gov (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  3. Failure Analysis of Multilayered Suspension Plasma-Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.

    2018-02-01

    Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.

  4. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    Science.gov (United States)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  5. Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying

    Science.gov (United States)

    Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  6. The structure and thermal properties of plasma-sprayed beryllium for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Bartlett, A.; Elliott, K.E.; Hollis, K.J.

    1996-01-01

    Plasma spraying is being studied for in situ repair of damaged Be and W plasma facing surfaces for ITER, the next generation magnetic fusion energy device, and is also being considered for fabricating Be and W plasma-facing components for the first wall of ITER. Investigators at LANL's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure-property relation between as-deposited microstructures of plasma sprayed Be coatings and resulting thermal properties. In this study, the effect of initial substrate temperature on resulting thermal diffusivity of Be coatings and the thermal diffusivity at the coating/Be substrate interface (interface thermal resistance) was investigated. Results show that initial Be substrate temperatures above 600 C can improve the thermal diffusivity of the Be coatings and minimize any thermal resistance at the interface between the Be coating and Be substrate

  7. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  8. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  9. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    International Nuclear Information System (INIS)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon; Lee, Young Min

    2011-01-01

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al 2 O 3 +40TiO 2 powder with a particle size of 20 μm and Al 2 O 3 (98%+)powder with a particle size of 45 μm. The metal filters were filter-grade 20 μm, 30 μm, and 50 μm sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 μm sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters

  10. Validation of HVOF WC/Co Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Aircraft Landing Gear

    National Research Council Canada - National Science Library

    Sartwell, Bruce

    2004-01-01

    .... This document constitutes the final report on a project to quality high-velocity oxygen-fuel (HVOF) thermal spray WC/Co coatings as a replacement for hard chrome plating on landing gear components...

  11. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    OpenAIRE

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resis...

  12. Evaluation of thermal sprayed metallic coatings for use on the structures at Launch Complex 39

    Science.gov (United States)

    Welch, Peter J.

    1990-01-01

    The current status of the evaluation program is presented. The objective was to evaluate the applicability of Thermal Sprayed Coatings (TSC) to protect the structures in the high temperature acid environment produced by exhaust of the Solid Rocket Boosters during the launches of the Shuttle Transportation System. Only the relatively low cost aluminum TSC which provides some cathodic protection for steel appears to be a practical candidate for further investigation.

  13. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.

    Science.gov (United States)

    Jiménez-Saelices, Clara; Seantier, Bastien; Cathala, Bernard; Grohens, Yves

    2017-02-10

    Nanofibrillated cellulose (NFC) aerogels were prepared by spray freeze-drying (SFD). Their structural, mechanical and thermal insulation properties were compared to those of NFC aerogels prepared by conventional freeze-drying (CFD). The purpose of this investigation is to develop superinsulating bioaerogels by reducing their pore size. Severe reduction of the aerogel pore size and skeleton architecture were observed by SEM, aerogels prepared by SFD method show a fibril skeleton morphology, which defines a mesoporous structure. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, the thermal insulation properties were significantly improved for SFD materials compared to CFD aerogel, reaching values of thermal conductivity as low as 0.018W/(mK). Moreover, NFC aerogels have a thermal conductivity below that of air in ambient conditions, making them one of the best cellulose based thermal superinsulating material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Study on modernization processes in the coating metal surfaces (plain bearings by thermal spraying

    Directory of Open Access Journals (Sweden)

    Elena IRIMIE

    2011-09-01

    Full Text Available Knowledge accumulated within the metal coating through thermal spraying allows the understanding of aspects related to the coat structure phenomena, in this case of the routs that need to be followed in order to create strong and stabile connections between the coats subsided through thermal spraying, between the particles that compose those coats, respectively. However, all this knowledge does not ensure the understanding of some practical situations that are apparently paradoxes, as for instance the absence of tin bronze adherence to ignobly steel holders, the perfect adherence of bronze to the aluminum on the same types of holders, in the context in which both elements, tin and aluminum, respectively are found in equal quantity in the two type of bonze that maintain them in solid solutions (below 10%.The parallel study in the sinter antifriction domain has offered information regarding the optimal correlation between the composition of antifriction material and the required type of application, the optimal pinches level and the way that this morphological characteristic may be influenced. By experimental research it is necessary to determine the conditions under which such coverage can be obtained by thermal spraying of the metal coatings.

  15. Integrated thermal control and system assessment in plug-chip spray cooling enclosure

    International Nuclear Information System (INIS)

    Zhang, Wei-Wei; Cheng, Wen-Long; Shao, Shi-Dong; Jiang, Li-Jia; Hong, Da-Liang

    2016-01-01

    Highlights: • A novel multi-heat source plug-chip spray cooling enclosure was designed. • Enhanced surfaces with different geometric were analyzed in integrated enclosure. • Overall thermal control with adjustable parameters in enclosure was studied. • Temperature disequilibrium of multi-heat source in enclosure was tested. • A comprehensive assessment system used to evaluate the practicality was proposed. - Abstract: Practical and integrated spray cooling system is urgently needed for the cooling of high-performance electronic chips due to the growth requirements of thermal management in workstation. The integration of multi heat sources and the management of integral system are particularly lacking. In order to fill the vacancies in the study of plug-chip spray cooling, an integrated cooling enclosure was designed in this paper. Multi heat sources were placed in sealed space and the heat was removed by spray. The printed circuit board plug-ins and radio frequency resistors were used as analog motherboards and chips, respectively. The enhanced surfaces with four different geometries and the plain surface were studied under the conditions of different inclination angles. The results were compared and the maximum critical heat flux (CHF) was obtained. Moreover, with the intention of the overall management of multi-heat source in integrated enclosure, the effect of the flow rate and the temperature disequilibrium, and the pulse heating in the process of transient cooling were also analyzed. In addition, a comprehensive assessment system, used to evaluate the practicality of spray cooling experimental devices, was proposed and the performance of enclosure was evaluated.

  16. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    Science.gov (United States)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  17. Analytical methods to characterize heterogeneous raw material for thermal spray process: cored wire Inconel 625

    Science.gov (United States)

    Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.

    2016-03-01

    In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.

  18. Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications

    Science.gov (United States)

    Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.

    2006-12-01

    Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.

  19. Thermal Conductivity and Wear Behavior of HVOF-Sprayed Fe-Based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    Haihua Yao

    2017-10-01

    Full Text Available To protect aluminum parts in vehicle engines, metal-based thermal barrier coatings in the form of Fe59Cr12Nb5B20Si4 amorphous coatings were prepared by high velocity oxygen fuel (HVOF spraying under two different conditions. The microstructure, thermal transport behavior, and wear behavior of the coatings were characterized simultaneously. As a result, this alloy shows high process robustness during spraying. Both Fe-based coatings present dense, layered structure with porosities below 0.9%. Due to higher amorphous phase content, the coating H-1 exhibits a relatively low thermal conductivity, reaching 2.66 W/(m·K, two times lower than the reference stainless steel coating (5.85 W/(m·K, indicating a good thermal barrier property. Meanwhile, the thermal diffusivity of amorphous coatings display a limited increase with temperature up to 500 °C, which guarantees a steady and wide usage on aluminum alloy. Furthermore, the amorphous coating shows better wear resistance compared to high carbon martensitic GCr15 steel at different temperatures. The increased temperature accelerating the tribological reaction, leads to the friction coefficient and wear rate of coating increasing at 200 °C and decreasing at 400 °C.

  20. Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings

    Science.gov (United States)

    Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay

    2018-02-01

    Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.

  1. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  2. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  3. Evaluation of bond strength of isothermally aged plasma sprayed thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jin; Lee, Dong Hoon; Koo, Jae Mean; Song, Sung Jin; Seok, Chang Sung [Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Mun Young [Korea Plant Service and Engineering Co., Ltd., Seongnam (Korea, Republic of)

    2008-07-15

    In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

  4. Thermal conductivity of spray-on foam insulations for aerospace applications

    Science.gov (United States)

    Barrios, Matt; Vanderlaan, Mark; Van Sciver, Steven

    2012-06-01

    A guarded-hot-plate apparatus [1] has been developed to measure the thermal conductivity of spray-on foam insulations (SOFI) at temperatures ranging from 30 K to 300 K. The foam tested in the present study is NCFI 24-124, a polyisocyanurate foam used on the External Tanks of the Space Shuttle. The foam was tested first in ambient pressure air, then evacuated and tested once more. These thermal conductivities were compared to the thermal conductivity taken from a sample immediately after being subjected to conditions similar to those experienced by the foam while on the launch pad at Kennedy Space Center. To mimic the conditions experienced on the launch pad, an apparatus was built to enclose one side of the foam sample in a warm, humid environment while the other side of the sample contacts a stainless steel surface held at 77 K. The thermal conductivity data obtained is also compared to data found in the literature.

  5. Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review

    Science.gov (United States)

    Toma, Filofteia-Laura; Potthoff, Annegret; Berger, Lutz-Michael; Leyens, Christoph

    2015-10-01

    Research and development work for about one decade have demonstrated many unique thermal spray coating properties, particularly for oxide ceramic coatings by using suspensions of fine powders as feedstock in APS and HVOF processes. Some particular advantages are direct feeding of fine nano- and submicron-scale particles avoiding special feedstock powder preparation, ability to produce coating thicknesses ranging from 10 to 50 µm, homogeneous microstructure with less anisotropy and lower surface roughness compared to conventional coatings, possibility of retention of the initial crystalline phases, and others. This paper discusses the main aspects of thermal spraying with suspensions which have been taken into account in order to produce these coatings on an economical way. The economic efficiency of the process depends on the availability of suitable additional system components (suspension feeder, injectors), on the development and handling of stable suspensions, as well as on the high process stability for acceptance at industrial scale. Special focus is made on the development and processability of highly concentrated water-based suspensions. While costs and operational safety clearly speak for use of water as a liquid media for preparing suspensions on an industrial scale, its use is often critically discussed due to the required higher heat input during spraying compared to alcoholic suspensions.

  6. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  7. An investigation of the effects of droplet impact angle in thermal spray deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Neiser, R.A.; Dykhuizen, R.C.

    1994-01-01

    It is widely held that spraying at off-normal angles can influence deposition efficiency and the properties of the deposited material. However, little quantitative information on such effects has been published. This paper reports on a series of experiments to investigate the angular dependence of deposition efficiency, surface roughness, and porosity for several thermal spray materials and processes at incidence angles ranging from 90 degree to 30 degree relative to the substrate surface. At incidence angles from 90 degree out to 60 degree, the observed changes were small and often statistically insignificant. Some significant changes began to appear at 45 degree, and at 30 degree significant changes were observed for nearly all materials and processes: deposition efficiency decreased while surface roughness and porosity increased. It is proposed that droplet splashing may cause some of the observed effects

  8. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    Science.gov (United States)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  9. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    International Nuclear Information System (INIS)

    Salman, A; Gabbitas, B; Zhang, D; Li, J

    2009-01-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al 2 O 3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al 2 O 3 composite powder was produced from a mixture of Al and TiO 2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700 deg. C). The results showed that the composite coating has lower wear rate at high temperature (700deg. C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  10. Experiment and numerical analysis of the NPP pressurizer auxiliary spray line submitted to large thermal shocks

    International Nuclear Information System (INIS)

    Couterot, C.; Geyer, P.; Proix, J.M.

    1994-03-01

    The pressurizer auxiliary spray line of PWR nuclear power plants may be submitted to severe temperature transients during upset conditions: a 325 deg C cold thermal shock in one second is followed by a 200 deg C hot thermal shock. For such transients, the RCC-M French design code rules that prevent the ratcheting deformation hazard are not respected for the components with thickness transition. Consequently, Electricite de France has realized twenty thermal cycles under pressure on a representative mock-up. During these tests, many temperature, strain and diametral variations were measured. No significant ratcheting deformation was detected on all components, except on the 6'' x 2'' x 6'' T-piece, where a weak progressive diameter increase was observed during a few cycles. Moreover, computations of a 2'' socket welding were made with the non linear kinematic hardening Chaboche model which also showed a weak progressive deformation behaviour. (authors). 7 figs., 7 refs

  11. PREFACE: 1st International Symposium on Electrical Arc and Thermal Plasmas in Africa (ISAPA)

    Science.gov (United States)

    Andre, Pascal; Koalaga, Zacharie

    2012-02-01

    Logos of the University of Ouagadougou, ISAPA and Universite Blaise Pascal Africa (especially Sub-Saharan Africa) is a continent where electrification is at a low level. However, the development of the electrical power sector is a prerequisite for the growth of other industrial activities, that is to say for the social and economic development of African countries. Consequently, a large number of electrification projects (rural electrification, interconnection of different country's grids) takes place in many countries. These projects need expertise and make Africa a continent of opportunity for companies in different domains for business and research: energy; energetic production, transmission, distribution and protection of electricity; the supply of cable; the construction, engineering and expertise in the field of solar and wind power. The first International Symposium on electrical Arc and thermal Plasma in Africa (ISAPA) was held for the first time in Ouagadougou, Burkina Faso to progress and develop the research of new physical developments, technical breakthroughs, and ideas in the fields of electrical production and electrical applications. The ISAPA aims to encourage the advancement of the science and applications of electrical power transformation in Africa by bringing together specialists from many areas in Africa and the rest of the world. Such considerations have led us to define a Scientific Committee including representatives from many countries. This first meeting was an innovative opportunity for researchers and engineers from academic and industrial sectors to exchange views and knowledge. Both fundamental aspects such as thermal plasma, electrical arc, diagnostics and applied aspects as circuit breakers, ICP analyses, photovoltaic energy conversion and alternative energies, as well as space applications were covered. The Laboratory of Material and Environment (LAME) from Ouagadougou University and the Laboratory of Electric Arc and Thermal

  12. Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002)

    Science.gov (United States)

    Zhang, Lianxin; Zhang, Xuefeng; Chu, P. C.; Guan, Changlong; Fu, Hongli; Chao, Guofang; Han, Guijun; Li, Wei

    2017-10-01

    Strong winds lead to large amounts of sea spray in the lowest part of the atmospheric boundary layer. The spray droplets affect the air-sea heat fluxes due to their evaporation and the momentum due to the change of sea surface, and in turn change the upper ocean thermal structure. In this study, impact of sea spray on upper ocean temperatures in the Yellow and East China Seas (YES) during typhoon Rammasun's passage is investigated using the POMgcs ocean model with a sea spray parameterization scheme, in which the sea spray-induced heat fluxes are based on an improved Fairall's sea spray heat fluxes algorithm, and the sea spray-induced momentum fluxes are derived from an improved COARE version 2.6 bulk model. The distribution of the sea spray mediated turbulent fluxes was primarily located at Rammasun eye-wall region, in accord with the maximal wind speeds regions. When Rammasun enters the Yellow sea, the sea spray mediated latent (sensible) heat flux maximum is enhanced by 26% (13.5%) compared to that of the interfacial latent (sensible) heat flux. The maximum of the total air-sea momentum fluxes is enhanced by 43% compared to the counterpart of the interfacial momentum flux. Furthermore, the sea spray plays a key role in enhancing the intensity of the typhoon-induced "cold suction" and "heat pump" processes. When the effect of sea spray is considered, the maximum of the sea surface cooling in the right side of Rammasun's track is increased by 0.5°C, which is closer to the available satellite observations.

  13. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    Energy Technology Data Exchange (ETDEWEB)

    Pakseresht, A.H., E-mail: amirh_pak@yahoo.com [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Rahimipour, M.R. [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, M.R. [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, P.O. Box 84156-83111, Isfahan (Iran, Islamic Republic of)

    2016-04-15

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO{sub 3} powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  14. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    International Nuclear Information System (INIS)

    Pakseresht, A.H.; Rahimipour, M.R.; Vaezi, M.R.; Salehi, M.

    2016-01-01

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO_3 powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  15. Thermal-fluid assessment of multijet atomization for spray cooling applications

    International Nuclear Information System (INIS)

    Panao, Miguel R.O.; Moreira, Antonio L.N.; Durao, Diamantino F.G.

    2011-01-01

    Thermal management is a particularly difficult challenge to the miniaturization of electronic components because it requires high performance cooling systems capable of removing large heat loads at fast rates in order to keep the operating temperature low and controlled. To meet this challenge, the Intermittent Spray Cooling (ISC) concept has been suggested as a promising technology which uses a proper match between the frequency and duration of consecutive injection cycles to control heat transfer. This concept also depends on: the atomization strategy; a homogeneous dispersion of droplets impinging on the hot surface; and the quantitative control of the liquid deposited, avoiding excessive secondary atomization or pre-impingement-evaporation. In this work, the use of liquid atomization by multiple jets impact, also referred as multijet atomization, is the subject of a thermal-fluid assessment using heat transfer correlations previously derived for intermittent sprays. Simultaneous measurements of droplet size and velocity are provided as input for the correlations and the analysis explores the influence of the number of impinging jets on the heat removal pattern and magnitude. Emphasis is put on the promising applicability of multijet atomization for promoting an intelligent use of energy in the thermal management of electronic devices.

  16. Validation of HVOF Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Hydraulic/Pneumatic Actuators

    Science.gov (United States)

    2007-12-01

    Projects Agency (DARPA). The program evaluated HVOF, physical vapor deposition (PVD) and laser cladding , and concluded that HVOF was the best overall...components such as titanium flap tracks. 5 2.0 TECHNOLOGY DESCRIPTION 2.1 TECHNOLOGY DEVELOPMENT AND APPLICATION Technology background and...theory of operation: High-velocity oxygen-fuel (HVOF) is a standard commercial thermal spray process in which a powder of the material to be sprayed

  17. Corrosion characteristics of several thermal spray cermet-coating/alloy systems

    International Nuclear Information System (INIS)

    Ashary, A.A.; Tucker, R.C. Jr.

    1991-01-01

    The corrosion characteristics of a thermal spray multiphase cermet coating can be quite complex. Factors such as porosity and galvanic effects between different phases in the coating and the substrate, as well as the inherent general and localized corrosion resistance of each phase, can play an important role. The present paper describes the corrosion of several cermet-coating/alloy systems as studied by a potentiodynamic cyclic polarization technique. The corrosion of these coating systems was found to be most often dominated by corrosion of the metallic phases in the coating or of the substrate alloy. (orig.)

  18. Production of nanocrystalline cermet thermal spray powders for wear resistant coatings by high-energy milling

    International Nuclear Information System (INIS)

    Eigen, N.; Klassen, T.; Aust, E.; Bormann, R.; Gaertner, F.

    2003-01-01

    TiC-Ni based nanocrystalline cermet powders for thermal spraying were produced by high-energy milling. Milling experiments were performed in an attrition mill and a vibration mill in kilogram scale, and powder morphologies and microstructures were characterized using scanning electron microscopy, X-ray diffraction, and laser scattering for particle size analysis. Milling time and powder input were optimized with respect to the desired microstructure and particle sizes, and the results using both types of mill were compared. Powders with homogeneously dispersed hard phase particles below 300 nm could be produced in both mills. Additional processes for the refinement of powder morphology and particle size distribution are discussed

  19. Numerical analysis of partially molten splat during thermal spray process using the finite element method

    Science.gov (United States)

    Zirari, M.; Abdellah El-Hadj, A.; Bacha, N.

    2010-03-01

    A finite element method is used to simulate the deposition of the thermal spray coating process. A set of governing equations is solving by a volume of fluid method. For the solidification phenomenon, we use the specific heat method (SHM). We begin by comparing the present model with experimental and numerical model available in the literature. In this study, completely molten or semi-molten aluminum particle impacts a H13 tool steel substrate is considered. Next we investigate the effect of inclination of impact of a partially molten particle on flat substrate. It was found that the melting state of the particle has great effects on the morphologies of the splat.

  20. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    Science.gov (United States)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  1. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    Science.gov (United States)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  2. Metal-Matrix Hardmetal/Cermet Reinforced Composite Powders for Thermal Spray

    Directory of Open Access Journals (Sweden)

    Dmitri GOLJANDIN

    2012-03-01

    Full Text Available Recycling of materials is becoming increasingly important as industry response to public demands, that resources must be preserved and environment protected. To produce materials competitive in cost with primary product, secondary producers have to pursue new technologies and other innovations. For these purposes different recycling technologies for composite materials (oxidation, milling, remelting etc are widely used. The current paper studies hardmetal/cermet powders produced by mechanical milling technology. The following composite materials were studied: Cr3C2-Ni cermets and WC-Co hardmetal. Different disintegrator milling systems for production of powders with determined size and shape were used. Chemical composition of produced powders was analysed.  To estimate the properties of recycled hardmetal/cermet powders, sieving analysis, laser granulometry and angularity study were conducted. To describe the angularity of milled powders, spike parameter–quadric fit (SPQ was used and experiments for determination of SPQ sensitivity and precision to characterize particles angularity were performed. Images used for calculating SPQ were taken by SEM processed with Omnimet Image Analyser 22. The graphs of grindability and angularity were composed. Composite powders based on Fe- and Ni-self-fluxing alloys for thermal spray (plasma and HVOF were produced. Technological properties of powders and properties of thermal sprayed coatings from studied powders were investigated. The properties of spray powders reinforced with recycled hardmetal and cermet particles as alternatives for cost-sensitive applications were demonstrated.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1348

  3. Thermal spraying of corrosion protection layers in biogas plants; Erzeugung von Korrosionsschutzschichten fuer Bioenergieanlagen mittels Thermischen Spritzens

    Energy Technology Data Exchange (ETDEWEB)

    Crimmann, P.; Dimaczek, G.; Faulstich, M. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2004-07-01

    Corrosion in plants for the energetic conversion of biomass is a severe problem that often causes premature damage of components. Thermal spraying is a process for the creation of corrosion protection layer. An advantage of thermal spraying is that as well as each material can be used as layer material. First practical results demonstrated that thermal spraying has the potential to create coatings to protect components against high temperature corrosion as well as biocorrosion. Layer materials are for example nickel base alloys (high temperature corrosion) and titan alloys (biocorrosion). Further investigations are necessary in order to examine whether cost-efficient coatings also contribute to the corrosion protection (e.g. polymer materials against biocorrosion). (orig.)

  4. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  5. Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock

    International Nuclear Information System (INIS)

    Lima, R.S.; Marple, B.R.

    2005-01-01

    Nanostructured and conventional titania (TiO 2 ) feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF). The microstructure, porosity, Vickers hardness, crack propagation resistance, bond strength (ASTM C633), abrasion behavior (ASTM G65) and the wear scar characteristics of these two types of coatings were analyzed and compared. The coating made from the nanostructured feedstock exhibited a bimodal microstructure, with regions containing particles that were fully molten (conventional matrix) and regions with embedded particles that were semi-molten (nanostructured zones) during the thermal spraying process. The bimodal coating also exhibited higher bond strength and higher wear resistance when compared to the conventional coating. By comparing the wear scars of both coatings (via scanning electron microscopy and roughness measurements) it was observed that when the coatings were subjected to the same abrasive conditions the wear scar of the bimodal coating was smoother, with more plastically deformed regions than the conventional coating. It was concluded that this enhanced ductility of the bimodal coating was caused by its higher toughness. The results suggest that nanostructured zones randomly distributed in the microstructure of the bimodal coating act as crack arresters, thereby enhancing toughness and promoting higher critical depth of cut, which provides a broader plastic deformation range than that exhibited by the conventional coating. This work provides evidence that the enhanced ductility of the bimodal coating is a nanostructured-related property, not caused by any other microstructural artifact

  6. DURABILITY AND TRIBOLOGICAL PROPERTIES OF THERMALLY SPRAYED WC CERMET COATING IN LUBRICATED ROLLING WITH SLIDING CONTACT

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2010-09-01

    Full Text Available Durability and tribological properties of thermally sprayed WC-Cr-Ni cermet coating were investigated experimentally in lubricated rolling with sliding contact conditions. By means of the high energy type flame spraying (Hi-HVOF method, the coating was formed onto the axially ground and circumferentially ground roller specimens made of a thermally refined carbon steel. In the experiments, the WC cermet coated steel roller was mated with the carburized hardened steel roller without coating in line contact condition. The coated roller was mated with the smooth non-coated roller under a contact pressure of 1.0 or 1.2 GPa, and it was mated with the rough non-coated roller under a contact pressure of 0.6 or 0.8 GPa. As a result, it was found that in general, the coating on the circumferentially ground substrate shows a lower durability compared with that on the axially ground substrate and this difference appears more distinctly for the higher contact pressure for both smooth mating surface and rough mating surface. It was also found that there are significant differences in the tribological properties of WC cermet coating depending on the contact pressure. In addition, depending on the smooth or rough mating surface, remarkable differences in the tribological properties were found.

  7. Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs

    Science.gov (United States)

    Silber, Martin; Wenzelburger, Martin; Gadow, Rainer

    2007-04-01

    Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.

  8. Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.

    2017-12-01

    The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.

  9. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon [Keimyung University, Daegu (Korea, Republic of); Lee, Young Min [Korea Polytechincs VI, Daegu (Korea, Republic of)

    2011-09-15

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al{sub 2}O{sub 3}+40TiO{sub 2} powder with a particle size of 20 {mu}m and Al{sub 2}O{sub 3} (98%+)powder with a particle size of 45 {mu}m. The metal filters were filter-grade 20 {mu}m, 30 {mu}m, and 50 {mu}m sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 {mu}m sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters.

  10. Thermal interaction between WC-Co coating and steel substrate in process of HVOF spraying

    International Nuclear Information System (INIS)

    Guilemany, J.M.; Sobolev, V.V.; Nutting, J.; Dong, Z.; Calero, J.A.

    1994-01-01

    The WC-Co powders can be used to produce good adhesive and wear resistant HVOF thermal spray coatings on steel and light alloys substrates. In order to understand the properties of this kind of coating, the phases which are present in the coatings and structure changes during post heat treatments have been investigated. Although the coating properties depend very much on the structure developed in the substrate-coating interfacial region it has not been yet investigated in detail. The present study is devoted to the experimental and theoretical analysis of this interfacial region. The structure characterization has been performed mainly through the use of transmission electron microscopy. To provide a theoretical investigation a realistic prediction model of the process has been developed and on its base the mathematical simulation of the substrate-coating thermal interaction has been undertaken

  11. Modification of Bonding Strength Test of WC HVOF Thermal Spray Coating on Rocket Nozzle

    Directory of Open Access Journals (Sweden)

    Bondan Sofyan

    2010-10-01

    Full Text Available One way to reduce structural weight of RX-100 rocket is by modifying the nozzle material and processing. Nozzle is the main target in weight reduction due to the fact that it contributes 30 % to the total weight of the structur. An alternative for this is by substitution of massive graphite, which is currently used as thermal protector in the nozzle, with thin layer of HVOF (High Velocity Oxy-Fuel thermal spray layer. This paper presents the characterization of nozzle base material as well as the modification of bonding strength test, by designing additional jig to facilitate testing processes while maintaining level of test accuracy. The results showed that the material used for  RX-100 rocket nozzle is confirmed to be S45C steel. Modification of the bonding strength test was conducted by utilizing chains, which improve test flexibility and maintains level of accuracy of the test.

  12. Characteristics and Thermal Efficiency of a Non-transferred DC Plasma Spraying Torch Under Low Pressure

    International Nuclear Information System (INIS)

    Bao Shicong; Ye Minyou; Zhang Xiaodong; Guo Wenkang; Xu Ping

    2008-01-01

    Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, flat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3∼4 V/100 A at a gas flow rate of about 1∼1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate, and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65∼78%. (low temperature plasma)

  13. Calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray and post-deposition thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ctibor, Pavel [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Pala, Zdenek [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Sedlacek, Josef [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Hajkova, Zuzana; Grygar, Tomas Matys [Institute of Inorganic Chemistry ASCR, v.v.i., Husinec-Rez 1001, Rez (Czech Republic)

    2015-12-15

    Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-ray diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.

  14. UNA REVISIÓN DEL SPRAY TÉRMICO COMO TÉCNICA DE DEPOSICIÓN PARA CAPAS DE BARRERAS TÉRMICAS // THE THERMAL SPRAY AS A DEPOSITION TECHNIQUE FOR THERMAL BARRIER COATING: A REVIEW

    Directory of Open Access Journals (Sweden)

    Eduardo Rondón Briceño

    2015-06-01

    Full Text Available It is important to know the thermal barrier deposition techniques since materials with low thermal conductivity in the barrier can be obtained from them. The dependence of the thermal conductivity with the temperature can be divided into four regions. In this work, we were interested in the study of used techniques for the manufacture of materials with a desirable low thermal conductivity that will be exposed to high temperatures that is to say, materials found in the III and IV region. In these regions the thermal conductivity can be reduced increasing the porosity of the material. Through the study of the thermal barrier deposition techniques we found that the thermal spray produces a coat with high porosity, being the low velocity flame spray technique the best to produce coat of La2Zr2O7 with a minimal thermal conductivity. The thermal spray technique is low cost and almost any material can be thermally sprayed, so this can be considered a very attractive technique for industrial applications. // RESUMEN Es importante conocer las técnicas de deposición de barreras térmicas ya que de ellas depende la obtención de materiales con baja conductividad térmica en la barrera. La dependencia de la conductividad térmica con la temperatura puede dividirse en cuatro regiones. En este trabajo estuvimos interesados en el estudio de las técnicas que se utilizan para la fabricación de materiales sometidos a muy altas temperaturas y donde se desea que su conductividad térmica sea baja, es decir, materiales que se encuentran en la región III y IV. En estas regiones se puede disminuir la conductividad térmica aumentando la porosidad del material. A través del estudio de las técnicas de deposición de barreras térmica, hemos encontrado que la técnica del spray térmico produce una alta porosidad en el recubrimiento, siendo el método de rociado con baja velocidad el mejor método para producir capas de La2Zr2O7 con mínima conductividad t

  15. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  16. Thermal decomposition study of uranyl nitrate and cerium hydroxide in a spray dryer

    International Nuclear Information System (INIS)

    Silva Wildhagen, G.R. da.

    1993-05-01

    A study, in a spray dryer system based on drying and thermal decomposition of uranyl nitrate solutions aiming the production of uranium trioxide adequate for the use in posterior steps of reduction and hydro fluorination in nuclear fuel cycle; and cerium hydroxide suspensions for the production of cerium oxide with high surface area is presented. Thus, the project and construction of a countercurrent spray dryer was elaborated for capacity of 10 Kg U O 3 /h and 3,5 k Ce O 2 /h. The methodology used in these experiments consisted in the analysis of several parameters (concentration and flow rate of the feed, atomization pressure and inlet temperature of the dryer) over the physical and chemical properties of the products. Using the obtained results, with the help of a mathematical model, it was developed the project of a continuous pilot unity for the production of uranium trioxide or cerium oxide, with capacity of 20 Kg U O 3 /h or 10 Kg Ce O 2 /h, respectively. (author)

  17. Thermal response of plasma sprayed tungsten coating to high heat flux

    International Nuclear Information System (INIS)

    Liu, X.; Yang, L.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Xu, Z.

    2004-01-01

    In order to investigate the thermal response of tungsten coating on carbon and copper substrates by vacuum plasma spray (VPS) or inert gas plasma spray (IPS), annealing and cyclic heat load experiments of these coatings were conducted. It is indicated that the multi-layered tungsten and rhenium interface of VPS-W/CFC failed to act as a diffusion barrier at elevated temperature and tungsten carbides were developed after 1 h incubation time when annealing temperature was higher than 1600 deg. C. IPS-W/Cu and W/C without an intermediate bonding layer were failed by the detachment of the tungsten coating at 900 and 1200 deg. C annealing for several hours, respectively. Cyclic heat load of electron beam with 35 MW/m 2 and 3-s pulse duration indicated that IPS-W/Cu samples failed with local detachment of the tungsten coating within 200 cycles and IPS-W/C showed local cracks by 300 cycles, but VPS-W/CFC withstood 1000 cycles without visible damages. However, crack creation and propagation in VPS-W/CFC were also observed under higher heat load

  18. Study of thermal and electrical parameters of workpieces during spray coating by electrolytic plasma jet

    International Nuclear Information System (INIS)

    Khafizov, A A; Shakirov, Yu I; Valiev, R A; Valiev, R I; Khafizova, G M

    2016-01-01

    In this paper the results are presented of thermal and electrical parameters of products in the system bottom layer - intermediate layer when applying protective coatings of ferromagnetic powder by plasma spray produced in an electric discharge with a liquid cathode, on steel samples. Temperature distribution and gradients in coating and intermediate coating were examined. Detailed descriptions of spray coating with ferromagnetic powder by plasma jet obtained in electrical discharge with liquid cathode and the apparatus for obtaining thereof is provided. Problem has been solved by using of Fourier analysis. Initial data for calculations is provided. Results of numerical analysis are provided as temporal functions of temperature in contiguity between coating and intermediate coating as well as temporal function of the value Q=q-φ; where q is density of heat current directed to the free surface of intermediate coating, φ is density of heat current in contiguity between coating and intermediate coating. The analysis of data given shows that in the systems of contact heat exchange bottom layer-intermediate layer with close values of the thermophysical characteristics of constituting materials is observed a slow increase of the temperature of the contact as a function of time. (paper)

  19. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  20. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  1. Experimental Comparison of the Tribological Properties of Selected Surfaces Created by Thermal Spraying Technology

    Directory of Open Access Journals (Sweden)

    František Tóth

    2016-01-01

    Full Text Available The scientific article titled “Experimental comparison of the tribological properties of selected surfaces created by thermal spraying technology” deals with the surface condition of selected pairs working within the mixed friction before and after experimental tests. Based on the chosen methodology, the experimental tests were performed on the Tribotestor M’06 testing machine. The ecological oil MOGUL HEES 46 (manufactured by Paramo was used as a lubricant. The tests were performed on selected material pairs. The first friction element was a shaft of steel 14 220. The second friction element was a steel plate of steel 11 373 with a friction surface created by two materials, i.e. CuSn10 and NP 40. The results are statistically elaborated and illustrated in figures and tables.

  2. Comparison of performance coatings thermally sprayed subject to testing adhesive wear

    International Nuclear Information System (INIS)

    Marangoni, G.F.; Arnt, A.B.C.; Rocha, M.R. da

    2014-01-01

    In this work, the microstructural changes and wear resistance adhesive coatings obtained from powders thermally sprayed by high velocity oxy-fuel (HVOF) were evaluated. Based coatings chrome-nickel and tungsten-cobalt are applied in conditions subject to intense wear especially abrasive. With the aim of evaluate the performance of these coatings under conditions of adhesive wear, these coatings samples were tested by the standard ASTM G99. As test parameters were used: Tungsten carbide pin (SAE 52100) with 6 mm diameter, normal load of 50N and a tangential velocity of 0.5 m / s. The worn surfaces of the coatings were characterized by optical and scanning electron microscopy and X-ray diffraction. Results indicate that the performance front wear is related to the conditions of adhesion and uniformity of the coating applied. (author)

  3. Thermally Sprayed Aluminum Coatings for the Protection of Subsea Risers and Pipelines Carrying Hot Fluids

    Directory of Open Access Journals (Sweden)

    Nataly Ce

    2016-11-01

    Full Text Available This paper reports the effect of boiling synthetic seawater on the performance of damaged Thermally Sprayed Aluminum (TSA on carbon steel. Small defects (4% of the sample’s geometric surface area were drilled, exposing the steel, and the performance of the coating was analyzed for corrosion potential for different exposure times (2 h, 335 h, and 5000 h. The samples were monitored using linear polarization resistance (LPR in order to obtain their corrosion rate. Scanning electron microscopy (SEM/energy dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD were used for post-test characterization. The results showed that a protective layer of Mg(OH2 formed in the damaged area, which protected the underlying steel. Additionally, no coating detachment from the steel near the defect region was observed. The corrosion rate was found to be 0.010–0.015 mm/year after 5000 h in boiling synthetic seawater.

  4. Positioning system of a torch used in thermal spray coatings applications

    Directory of Open Access Journals (Sweden)

    Edgar Absalón Torres-Barahona

    2016-07-01

    Full Text Available This paper presents the design, construction and performance evaluation of a positioning system used for the deposition of coatings with molten particles, by using a torch CastoDyn Ds 8000 thermal spray with oxyacetylene combustion. The design has been done with parameters obtained in the laboratory of materials of the Universidad Pedagógica y Tecnológica de Colombia, and the information determined from the evaluation of the device, allows to control the main process variables as the projection distance, flow powder, torch speed and rotation speed of the sample holder; this has been seen in coatings made in application tests zirconia / nickel on a carbon steel substrate and analyzed with Scanning Electron Microscopy - SEM.

  5. Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification

    Science.gov (United States)

    Chen, Xiuyong; Gong, Yongfeng; Suo, Xinkun; Huang, Jing; Liu, Yi; Li, Hua

    2015-11-01

    Here we report a simple and cost-effective technical route for constructing superhydrophobic surfaces with excellent abrasion resistance on various substrates. Rough surface structures were fabricated by thermal spray deposition of a variety of inorganic materials, and further surface modification was made by applying a thin layer of polytetrafluoroethylene. Results show that the Al, Cu, or NiCrBSi coatings with the surface roughness of up to 13.8 μm offer rough surface profile to complement the topographical morphology in micro-/nano-scaled sizes, and the hydrophobic molecules facilitate the hydrophobicity. The contact angles of water droplets of ∼155° with a sliding angle of up to 3.5° on the samples have been achieved. The newly constructed superhydrophobic coatings tolerate strong abrasion, giving clear insight into their long-term functional applications.

  6. Constrained sintering of an air-plasma-sprayed thermal barrier coating

    International Nuclear Information System (INIS)

    Cocks, A.C.F.; Fleck, N.A.

    2010-01-01

    A micromechanical model is presented for the constrained sintering of an air-plasma-sprayed, thermal barrier coating upon a thick superalloy substrate. The coating comprises random splats with intervening penny-shaped cracks. The crack faces make contact at asperities, which progressively sinter in-service by interfacial diffusion, accommodated by bulk creep. Diffusion is driven by the reduction in interfacial energy at the developing contacts and by the local asperity contact stress. At elevated operating temperature, both sintering and creep strains accumulate within the plane of the coating. The sensitivities of sintering rate and microstructure evolution rate to the kinetic parameters and thermodynamic driving forces are explored. It is demonstrated that the sintering response is governed by three independent timescales, as dictated by the material and geometric properties of the coating. Finally, the role of substrate constraint is assessed by comparing the rate of constrained sintering with that for free sintering.

  7. Measurement of the non-thermal properties in a low-pressure spraying plasma

    International Nuclear Information System (INIS)

    Jung, Yong Ho; Chung, Kyu Sun

    2002-01-01

    The non-thermal properties of a low-pressure spraying plasma have been characterized by using optical emission spectroscopy and single probes installed in a fast scanning probe system. A two-temperature model of the electrons is introduced to explain their non-isothermal properties, which are measured using single probes. The excitation temperatures of the atomic and the ionic lines are calculated from measurements of the emission intensities of Ar (I) and Ar (II), and those temperatures can be explained by using a local thermodynamic equilibrium (LTE) or a non-local thermodynamic equilibrium (non-LTE) model. In order to deduce more reasonable values (excitation temperatures), we introduce a multi-thermodynamic equilibrium (MTE) model, which gives different temperatures, depending upon the atomic excitation states

  8. WC-Co coatings deposited by the electro-thermal chemical spray method

    Energy Technology Data Exchange (ETDEWEB)

    Zhitomirsky, V.N. [Tel Aviv Univ. (Israel). Faculty of Engineering; Wald, S.; Rabani, L.; Zoler, D. [Propulsion Physics Division, SOREQ NRC, 81800, Yavne (Israel); Factor, M.; Roman, I. [School of Applied Sciences, The Hebrew University, 91904, Jerusalem (Israel); Cuperman, S.; Bruma, C. [School of Physics and Astronomy, Tel-Aviv University, 69978, Tel-Aviv (Israel)

    2000-10-02

    A novel thermal spray technology - an electro-thermal chemical spray (ETCS) for producing hard coatings is presented. The experimental coating apparatus consists of a machine gun barrel, a cartridge containing the coating material in powder form, a solid propellant, and a plasma ignition system. The plasma ignition system produces plasma in pulsed mode to ignite the solid propellant. On ignition, the drag force exerted by the combustion gases accelerates the powder particles towards the substrate. Using the ETCS technique, the process of single-shot WC-Co coating deposition on stainless steel substrate was studied. The influence of process parameters (plasma energy, mass of the solid propellant and the coated powder, distance between the gun muzzle and the substrate) on the coating structure and some of its properties were investigated. It was shown that ECTS technique effectively deposited the WC-Co coating with deposition thicknesses of 100-200 {mu}m per shot, while deposition yield of {proportional_to}70% was attained. The WC-Co coatings consisted of carbide particles distributed in amorphous matrix. The powder particle velocity was found to depend on the solid propellant mass and was weakly dependent on the plasma energy, while the particle processing temperature was strongly dependent on the plasma energy and almost independent of the solid propellant mass. Whilst increasing the solid propellant mass from 5 to 7 g, the deposition rate and yield correspondingly increased. When increasing the plasma energy, the temperature of the powder particles increased, the average carbide particle size decreased and their shape became more rounded. The deposition yield and microhardness at first increased and then achieved saturation by increasing the plasma energy. (orig.)

  9. X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625

    Energy Technology Data Exchange (ETDEWEB)

    Bakare, M.S. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Voisey, K.T., E-mail: Katy.voisey@nottingham.ac.uk [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Roe, M.J.; McCartney, D.G. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-15

    There is a well known performance gap in corrosion resistance between thermally sprayed corrosion resistant coatings and the equivalent bulk materials. Interconnected porosity has an important and well known effect, however there are additional relevant microstructural effects. Previous work has shown that a compositional difference exists between the regions of resolidified and non-melted material that exist in the as-sprayed coatings. The resolidified regions are depleted in oxide forming elements due to formation of oxides during coating deposition. Formation of galvanic cells between these different regions is believed to decrease the corrosion resistance of the coating. In order to increase understanding of the details of this effect, this work uses X-ray photoelectron spectroscopy (XPS) to study the passive films formed on thermally sprayed coatings (HVOF) and bulk Inconel 625, a commercially available corrosion resistant Ni-Cr-Mo-Nb alloy. Passive films produced by potentiodynamic scanning to 400 mV in 0.5 M sulphuric acid were compared with air-formed films. The poorer corrosion performance of the thermally sprayed coatings was attributed to Ni(OH){sub 2}, which forms a loose, non-adherent and therefore non-protective film. The good corrosion resistance of wrought Inconel 625 is due to formation of Cr, Mo and Nb oxides.

  10. Effect of thermal spray processing techniques on the microstructure and properties of Ni-based amorphous coatings

    International Nuclear Information System (INIS)

    Lee, S.M.; Moon, B.M.; Fleury, E.; Ahn, H.S.; Kim, D.H.; Kim, W.T.; Sordelet, D.J.

    2005-01-01

    Metallic amorphous materials have been widely developed thanks to the outstanding properties including high chemical stability, mechanical strength, and magnetic properties. However, with the exception of a few compositions, the limiting factor is the critical cooling rate for the formation of the amorphous phase. For many applications, it is only the contact surface properties that are important, thus the use, of coating techniques such as thermal sprayings has several attractive features. In this paper, we present the microstructure of Ni-based amorphous coatings prepared by laser cladding and vacuum plasma spraying. The utilization of plasma spraying to deposit atomized powder enabled the formation of fully amorphous coating, laser cladding resulted in mostly crystallized structures. Glass forming ability and wear properties of the coatings were discussed as a function of the coating microstructure. (orig.)

  11. Spatially-resolved velocities of thermally-produced spray droplets using a velocity-divided Abel inversion of photographed streaks

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Muraoka, K.

    2017-10-01

    Droplet velocities of thermal spray are known to have profound effects on important coating qualities, such as adhesive strength, porosity, and hardness, for various applications. For obtaining the droplet velocities, therefore, the TOF (time-of-flight) technique has been widely used, which relies on observations of emitted radiation from the droplets, where all droplets along the line-of-sight contribute to signals. Because droplets at and near the flow axis mostly contribute coating layers, it has been hoped to get spatially resolved velocities. For this purpose, a velocity-divided Abel inversion was devised from CMOS photographic data. From this result, it has turned out that the central velocity is about 25% higher than that obtained from the TOF technique for the case studied (at the position 150 mm downstream of the plasma spray gun, where substrates for spray coatings are usually placed). Further implications of the obtained results are discussed.

  12. The evaluation of integrity and elasticity of thermally sprayed ceramic coatings by ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, P. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-12-31

    Thermally sprayed ceramic coatings are widely used in industrial applications where the coated component is subject to, e.g. high thermal loads or mechanical wear. The mechanical properties of the coating are finally created in the coating process and the chemical composition of the powder used as raw material can only give some hints about the properties of the final coating. Several non-destructive testing techniques are available for the detection of defects in ceramic materials or for the evaluation of density and density variations. In addition to this, ultrasonic techniques can be used for quantitative evaluation of elastic properties of materials. This evaluation is based on the measurement of sound velocities of different wave modes in the material and is normally applied only to relatively simple-shaped specimens having parallel surfaces. Acoustic microscopy operating at very high (> 100 MHz) frequencies has been used to measure the sound velocities in homogeneous and thin coatings. With this type of equipment, reliable and accurate results have been achieved in laboratory measurements. A lot of development work has been carried out world-wide to develop the measurement techniques and acoustic lenses (transducers) used in acoustic microscopy. However, less attention has been paid on the development of techniques for industrial applications on-site. The present work was focused on the development of measurement techniques for industrial applications. A new type of large-aperture low-frequency transducer was designed and constructed for the measurement of sound velocities in thermally sprayed ceramic coatings. The major difference to the lenses used in acoustic microscopy is that in the new transducer no separate lens is needed for focusing the sound beam. The piezoelectric element in the new transducer is a plastic (PVDF)-film that can be shaped to create the required focus. The practical measurement of the sound velocity is based on a modification of the V

  13. Characterization of thermally sprayed coatings for high-temperature wear-protection applications

    International Nuclear Information System (INIS)

    Li, C.C.

    1980-03-01

    Under normal high-temperature gas-cooled reactor (HTGR) operating conditions, faying surfaces of metallic components under high contact pressure are prone to friction, wear, and self-welding damage. Component design calls for coatings for the protection of the mating surfaces. Anticipated operating temperatures up to 850 to 950 0 C (1562 to 1742 0 F) and a 40-y design life require coatings with excellent thermal stability and adequate wear and spallation resistance, and they must be compatible with the HTGR coolant helium environment. Plasma and detonation-gun (D-gun) deposited chromium carbide-base and stabilized zirconia coatings are under consideration for wear protection of reactor components such as the thermal barrier, heat exchangers, control rods, and turbomachinery. Programs are under way to address the structural integrity, helium compatibility, and tribological behavior of relevant sprayed coatings. In this paper, the need for protection of critical metallic components and the criteria for selection of coatings are discussed. The technical background to coating development and the experience with the steam cycle HTGR (HTGR-SC) are commented upon. Coating characterization techniques employed at General Atomic Company (GA) are presented, and the progress of the experimental programs is briefly reviewed. In characterizing the coatings for HTGR applications, it is concluded that a systems approach to establish correlation between coating process parameters and coating microstructural and tribological properties for design consideration is required

  14. Comparison between alkali heat treatment and sprayed hydroxyapatite coating on thermally-sprayed rough Ti surface in rabbit model: Effects on bone-bonding ability and osteoconductivity.

    Science.gov (United States)

    Kawai, Toshiyuki; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Tanaka, Masashi; Akiyama, Haruhiko; Nakamura, Takashi; Matsuda, Shuichi

    2015-07-01

    In this study, we investigated the effect of different surface treatments (hydroxyapatite (HA) coating, alkali heat treatment, and no treatment) on the ability of bone to bond to a rough arc-sprayed Ti metal surface, using rabbit models. The bone-to-implant contacts for untreated, HA-coated, and alkali heat-treated implants were 21.2%, 72.1%, and 33.8% at 4 weeks, 21.8%, 70.9%, and 30.0% at 8 weeks, and 16.3%, 70.2%, and 29.9% at 16 weeks, respectively (n = 8). HA -coated implants showed significantly higher bone-to-implant contacts than the untreated and alkali heat-treated implants at all the time point, whereas alkali heat-treated implants showed significantly higher bone-to-implant contacts than untreated implants at 4 and 16 weeks. The failure loads in a mechanical test for untreated, HA coated, alkali heat-treated plates were 65.4 N, 70.7 N, and 90.8 N at 4 weeks, 76.1 N, 64.7 N, and 104.8 N at 8 weeks and 88.7 N, 92.6 N, and 118.5 N at 16 weeks, respectively (n = 8). The alkali heat-treated plates showed significantly higher failure loads than HA-coated plates at 8 and 16 weeks. The difference between HA-coated plates and untreated plates were not statistically significant at any time point. Thus HA coating, although it enables high bone-to-implant contact, may not enhance the bone-bonding properties of thermally-sprayed rough Ti metal surfaces. In contrast, alkali heat treatment can be successfully applied to thermally-sprayed Ti metal to enhance both bone-to-implant contact and bone-bonding strength. © 2014 Wiley Periodicals, Inc.

  15. Review and evaluation of information on the thermal performance of ultimate heat sinks: spray ponds and cooling ponds

    International Nuclear Information System (INIS)

    Drake, R.L.

    1975-09-01

    A report is presented which identifies and evaluates available information and data useful in validating and improving existing models for the thermal performance of ultimate heat sinks. Included are discussions of the thermal elements of cooling ponds and spray ponds, the available information and data pertinent to the problem, and the requirements and needs for further research and performance data. An outline is presented of the necessary elements required for a performance test of an ultimate heat sink before the system is thermally approved. (auth)

  16. Study by X-ray diffraction and mechanical analysis of the residual stress generation during thermal spraying

    International Nuclear Information System (INIS)

    Pina, J.; Dias, A.; Lebrun, J.L.

    2003-01-01

    Thermally sprayed coatings are formed by the deposition of molten or partially molten particles, propelled onto a substrate where they impact, spread and solidify rapidly. Residual stresses are expected within the sprayed deposit as a consequence of the release of thermal and kinetic energies. A wide range of materials and two spraying techniques are considered in this study, namely atmospheric plasma spraying (APS) and high-velocity oxygen fuel. Stresses were determined by the X-ray diffraction (XRD) method. The results were compared with those calculated by mechanical analysis of stress relief in coatings detached from the substrate. Comparison of the results for adherent and free-standing coatings shows that the residual stress state can be resolved in terms of the components suggested by models that propose two stages of stress generation: quenching stresses and secondary-cooling stresses. The in-depth distribution of residual stresses, through the coating thickness, is discussed in terms of the nature of the coating system

  17. Physical chemistry of WC-12 %Co coatings deposited by thermal spraying at different standoff distances

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Muhammad; Ahmed, Furqan; Anwar, Muhammad Yousaf; Ali, Liaqat; Ajmal, Muhammad [Univ. of Engineering and Technology, Metallurgical and Materials Engineering, Lahore (Pakistan); Khan, Aamer Nusair [Institute of Industrial and Control System, Rawalpindi (Pakistan)

    2015-09-15

    In the present research, WC-12 %Co cermet coatings were deposited on AISI-321 stainless steel substrate using air plasma spraying. During the deposition process, the standoff distance was varied from 80 to 130 mm with 10 mm increments. Other parameters such as current, voltage, time, carrier gas flow rate and powder feed rate etc. were kept constant. The objective was to study the effects of spraying distance on the microstructure of as-sprayed coatings. The microscopic analyses revealed that the band of spraying distance ranging from 90 to 100 mm was the threshold distance for optimum results, provided that all the other spraying parameters were kept constant. In this range of threshold distance, minimum percentages of porosity and defects were observed. Further, the formation of different phases, at six spraying distances, was studied using X-ray diffraction, and the phase analysis was correlated with hardness results.

  18. Preparation of the Wire of ZChSnSb11-6 Used for Remanufacturing Thermal Spraying

    Science.gov (United States)

    Zhang, B.; Yang, Z. Y.; Fu, D. X.; Li, X. F.; Chen, W.

    Tin base Babbitt alloy widely used in bearing bush production and repair, the performance of ZChSnSb11-6 is better than ZChSnSb8-4.But as a result of as-cast structure of ZChSnSb11-6 is rich in big hard phase, its processing performance is bad, in this paper, through the optimization of smelting, casting, extrusion, drawing and other processes we have been successfully prepared ZChSnSb11-6 wire suitable for thermal spraying. Through metallographic examination, micro hardness, bond strength and porosity testing, it was proved that the wire meet the requirements of bearing manufacturing thermal spraying.

  19. Replacement of Chromium Electroplating on C-2, E-2, P-3 and C-130 Propeller Hub Components Using HVOF Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce

    2004-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) thermal spray coatings as a replacement for hard chrome plating on propeller hub components from various military aircraft...

  20. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  1. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    Science.gov (United States)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  2. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J

    2007-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  3. Study of different biocomposite coatings on Ti alloy by a subsonic thermal spraying technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Muqin [Provincial Key Laboratory of Biomaterials, Jiamusi University, Heilongjiang Province, 154007 (China); Zhang Rui [College of Stomatology, Jiamusi University, Heilongjiang Province, 154003 (China); Wang Jianping [College of Stomatology, Jiamusi University, Heilongjiang Province, 154003 (China); Yang Shiqin [State Key Laboratory Advanced Welding Production Technology, Harbin Institute of Technology, 150001 (China)

    2007-03-01

    A subsonic thermal spraying technique (STS) was used to make different biocomposite coatings on titanium alloys for preparing three kinds of implants: 8Ti2G, HA and 8H2B, respectively. The implants were embedded in a region of jaw of dogs whose teeth were pulled out three months previously. The dogs, in two groups, were killed 30 days and 90 days, respectively, after they were operated on. Osteointegration between the implants and host bone was investigated by x-ray, histology and the SEM technique. The results showed that the three kinds of coatings all exhibited good biocompatibility and synostosis, but their osteointegration capability showed a difference and decreased in the sequence of 8H2B, HA and 8Ti2G. The activity of coating, which promoted the reactions between implants and bone tissue, was further increased by the addition of bioglass in the 8H2B coating. Subsequently, chemical bonding was formed, and the osteointegration strength was increased. The study provided a new approach to prepare biocomposite coatings. The 8H2B implants, which formed an integral functional biocomposite coating on Ti alloys, showed a better osteointegration capability with bioactivity and pore gradient variation. A theoretical base was provided for the biocomposite coating application.

  4. Mitigating Localized Corrosion Using Thermally Sprayed Aluminum (TSA) Coatings on Welded 25% Cr Superduplex Stainless Steel

    Science.gov (United States)

    Paul, S.; Lu, Q.; Harvey, M. D. F.

    2015-04-01

    Thermally sprayed aluminum (TSA) coating has been increasingly used for the protection of carbon steel offshore structures, topside equipment, and flowlines/pipelines exposed to both marine atmospheres and seawater immersion conditions. In this paper, the effectiveness of TSA coatings in preventing localized corrosion, such as pitting and crevice corrosion of 25% Cr superduplex stainless steel (SDSS) in subsea applications, has been investigated. Welded 25% Cr SDSS (coated and uncoated) with and without defects, and surfaces coated with epoxy paint were also examined. Pitting and crevice corrosion tests, on welded 25% Cr SDSS specimens with and without TSA/epoxy coatings, were conducted in recirculated, aerated, and synthetic seawater at 90 °C for 90 days. The tests were carried out at both the free corrosion potentials and an applied cathodic potential of -1100 mV saturated calomel electrode. The acidity (pH) of the test solution was monitored daily and adjusted to between pH 7.5 and 8.1, using dilute HCl solution or dilute NaOH, depending on the pH of the solution measured during the test. The test results demonstrated that TSA prevented pitting and crevice corrosion of 25% Cr SDSS in artificial seawater at 90 °C, even when 10-mm-diameter coating defect exposing the underlying steel was present.

  5. The corrosion resistance of 140MXC, 530AS and 560AS coatings produced by thermal spraying

    Directory of Open Access Journals (Sweden)

    Edwin Alexis López Covaleda

    2013-01-01

    Full Text Available Three commercial materials were deposited using electric arc thermal spraying: 140MXC (with Fe, W, Cr, Nb, 530AS (AISI 1015 steel and 560AS (AISI 420 steel on AISI 4340 steel. The aim of this paper was to evaluate the best strategy for improving a coating-substrate system’s corrosion resistance, using the following combinations: homogeneous single coatings, bilayers consisting of 530AS or 560AS under 140MXC and 140MXC + 530AS and 140MXC + 560AS coatings deposited simultaneously. The coatings were characterised using optical microscopy, scanning electron microscopy and X-ray diffraction. Corrosion resistance was evaluated through potentiodynamic polarisation and hardness by using the Vickers test. Corrosion resistance depends on the amount of microstructure defects, the deposition strategy and the alloy elements. However, corrosion resistance was similar in single coatings of 140MXC and bilayers, having -630 V corrosion potential and 708 nA corrosion current. The details and corrosion mechanism of the coatings so produced are described in this paper.

  6. Preparing Al-Mg Substrate for Thermal Spraying: Evaluation of Surface State After Different Pretreatments

    Science.gov (United States)

    Lukauskaitė, R.; Valiulis, A. V.; Černašėjus, O.; Škamat, J.; Rębiś, J. A.

    2016-08-01

    The article deals with the pretreatment technique for preparing the surface of aluminum alloy EN AW 5754 before thermal spray. The surface after different pretreatments, including degreasing with acetone, chemical etching with acidic and alkali solutions, grit-blasting, cathodic cleaning, and some combinations of these techniques, has been studied. The investigation of pre-treated surfaces covered the topographical study (using scanning electron microscopy, atomic force microscopy, and 3D profilometry), the chemical analysis by x-ray photoelectron spectroscopy, the evaluation of surface wettability (sessile drop method), and the assessment of surface free energy. Compared with all the techniques used in present work, the cathodic cleaning and its combination with grit-blasting provide the most preferable chemistry of the surface. Due to the absence of hydroxides at the surface and, possible, due to the diffusion of magnesium to the surface of substrate, the surface wettability and the surface free energy have been significantly improved. No direct correlation between the surface topography and the surface wettability has been established.

  7. Stress analysis of thermal sprayed coatings using a semi-destructive hole-drilling strain gauge method

    International Nuclear Information System (INIS)

    Dolhof, V.; Musil, J.; Cepera, M.; Zeman, J.

    1995-01-01

    Residual stress is an important parameter in coating technology since it often relates to the maximum coating thickness which can be deposited without spallation, and this applies to coatings produced by different thermal spray and thin film technologies. Indeed, the mechanisms by which residual stress is built up or locked into a coating depends markedly on the deposition process and coating structure (growth structure, phase composition) in the same way too. Methods for determining residual stresses in materials include both destructive and non-destructive methods. This contribution describes semi-destructive hole-drilling strain gauge method modified for measurement of residual stresses in thermal sprayed coatings. This method of stress analysis was used for determination of stress levels in thermal sprayed WC-17% Co coatings onto 13% Cr steel substrates. Results show that deposition conditions and final coating structure influence directly the residual stress level in the coatings. It is proved that semi-destructive hole-tube drilling measurement is effective reproducible method of coating stress analysis and good solution for optimization of deposition process

  8. A two-wavelength imaging pyrometer for measuring particle temperature, velocity and size in thermal spray processes

    International Nuclear Information System (INIS)

    Craig, J.E.; Parker, R.A.; Lee, D.Y.; Biancaniello, F.; Ridder, S.

    1999-01-01

    An imaging pyrometer has been developed to measure the surface temperature of hot metal objects and to measure particle temperature, velocity and size in thermal spray, spray-fonning and atomization processes. The two-wavelength surface imaging pyrometer provides true temperature measurement with high resolution, even when the surface has emissivity variation caused by roughness or oxidation. The surface imaging pyrometer has been calibrated for use in a material processing lab calibration over the range of 1000 to 3000 deg K, and these results are described. The particle imaging pyrometer has a field of view that spans the entire particle stream in typical thermal spray devices, and provides continuous measurement of the entire particle stream. Particle temperature and velocity are critical parameters for producing high quality spray coatings efficiently and reliably. The software locates the particle streaks in the image, and determines the intensity ratio for each particle streak pair to obtain the temperature. The dimensions of the particle streak image are measured to determine the velocity and size. Because the vision-based sensor samples the entire particle stream in every video frame, the particle temperature, velocity and size data are updated at 30 Hz at all points in the particle stream. Particle measurements in a plasma spray at NIST are described. In this paper, we will describe our experiments with ceramic powders, in which measurements have been made at several positions along the particle stream. The particle data are represented as profiles across the particle stream, histograms of the full particle stream or time histories of the full-stream average. The results are compared and calibrated with other temperature and diagnostic measurement systems. (author)

  9. The history and future of thermal sprayed galvanically active metallic anticorrosion coatings used on pipelines and steel structures in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Rodijnen, Fred van [Sulzer Metco, Duisburg (Germany)

    2008-07-01

    Since its invention by M. U. Schoop in the beginning of the 20th century, thermal spray has been used for corrosion protection applications in naval, on-shore, submerged and atmospheric environments. Thermally sprayed coatings of zinc, zinc alloys, aluminum and aluminum alloys are currently the most popular materials used for active corrosion protection of steel and concrete, which can be applied using either of the widely known thermal spray processes of combustion wire or electric arc wire. In the oil and gas exploration and production industry, corrosion protection applications using these technologies have evolved since the early sixties. Thermal spray technology has successfully been used to protect steel-based materials from corrosion in many different fields of application like platforms and pipelines. The most used material in the oil and gas industry is TSA (Thermally Sprayed Aluminum) coating. TSA coatings, with a lifetime of 25 to 30 years, require no maintenance except for cosmetic reasons when painted. The surface temperature of a TSA can go as high as 480 deg C. Although TS (Thermal Spray) is an older process, the number of applications and the number of m{sup 2} it is applied to is still increasing resulting from its maintenance-free and reliable active corrosion-protection features. (author)

  10. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  11. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.

    Science.gov (United States)

    Pehlivaner Kara, Meryem O; Ekenseair, Adam K

    2016-10-01

    In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.

  12. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    Science.gov (United States)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips

  13. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying

    International Nuclear Information System (INIS)

    Wang, Chaohui; Wang, You; Fan, Shan; You, Yuan; Wang, Liang; Yang, Changlong; Sun, Xiaoguang; Li, Xuewei

    2015-01-01

    In this paper, an optimized functionally graded coating (OFGC) was successfully fabricated by suspension plasma spraying (SPS) with feedstocks of the suspension of nanoparticles. La 2 Zr 2 O 7 /8YSZ OFGC with gradual compositional variation along the through-thickness direction is proposed to mitigate spallation and crack formation owing to the high residual stresses caused by frequent thermal cycling for TBCs. The single ceramic layer coatings (SCLC) of LZ and double ceramic layer coatings (DCLC) of LZ/8YSZ were fabricated by SPS as comparison. The phase composition and microstructure of the SCLC, OFGC and DCLC were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS). Moreover, the thermal cycling tests were carried out to evaluate their thermal shock behavior. Changes in weight and morphology of specimens were analyzed during thermal cycling tests. The results showed that OFGC has extended lifetime compared with SCLC and DCLC. The failure of DCLC with clear interface between different ceramic layers occurred via delamination mode, as a result of crack initiation and propagation generated by thermal mismatch between LZ and 8YSZ. While the failure of OFGC occurred in thermally grown oxide (TGO) layers, indicating that the gradual compositional variation avoided thermal stress concentration in the top ceramic layers. - Highlights: • Optimized functionally graded coatings and double ceramic layer coatings were deposited by suspension plasma spray. • The graded area of OFGC is continuously changed from inner 8YSZ to outer La 2 Zr 2 O 7 (LZ). • The OFGC shows a more extended thermal cycling life than the LZ SCLC and LZ/8YSZ DCLC. • Various failure mechanisms were proposed to explain thermal cycling behavior

  14. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review

    International Nuclear Information System (INIS)

    Fauchais, P; Montavon, G; Lima, R S; Marple, B R

    2011-01-01

    From the pioneering works of McPherson in 1973 who identified nanometre-sized features in thermal spray conventional alumina coatings (using sprayed particles in the tens of micrometres size range) to the most recent and most advanced work aimed at manufacturing nanostructured coatings from nanometre-sized feedstock particles, the thermal spray community has been involved with nanometre-sized features and feedstock for more than 30 years. Both the development of feedstock (especially through cryo-milling, and processes able to manufacture coatings structured at the sub-micrometre or nanometre sizes, such as micrometre-sized agglomerates made of nanometre-sized particles for feedstock) and the emergence of thermal spray processes such as suspension and liquid precursor thermal spray techniques have been driven by the need to manufacture coatings with enhanced properties. These techniques result in two different types of coatings: on the one hand, those with a so-called bimodal structure having nanometre-sized zones embedded within micrometre ones, for which the spray process is similar to that of conventional coatings and on the other hand, sub-micrometre or nanostructured coatings achieved by suspension or solution spraying. Compared with suspension spraying, solution precursor spraying uses molecularly mixed precursors as liquids, avoiding a separate processing route for the preparation of powders and enabling the synthesis of a wide range of oxide powders and coatings. Such coatings are intended for use in various applications ranging from improved thermal barrier layers and wear-resistant surfaces to thin solid electrolytes for solid oxide fuel cell systems, among other numerous applications. Meanwhile these processes are more complex to operate since they are more sensitive to parameter variations compared with conventional thermal spray processes. Progress in this area has resulted from the unique combination of modelling activities, the evolution of

  15. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review

    Science.gov (United States)

    Fauchais, P.; Montavon, G.; Lima, R. S.; Marple, B. R.

    2011-03-01

    From the pioneering works of McPherson in 1973 who identified nanometre-sized features in thermal spray conventional alumina coatings (using sprayed particles in the tens of micrometres size range) to the most recent and most advanced work aimed at manufacturing nanostructured coatings from nanometre-sized feedstock particles, the thermal spray community has been involved with nanometre-sized features and feedstock for more than 30 years. Both the development of feedstock (especially through cryo-milling, and processes able to manufacture coatings structured at the sub-micrometre or nanometre sizes, such as micrometre-sized agglomerates made of nanometre-sized particles for feedstock) and the emergence of thermal spray processes such as suspension and liquid precursor thermal spray techniques have been driven by the need to manufacture coatings with enhanced properties. These techniques result in two different types of coatings: on the one hand, those with a so-called bimodal structure having nanometre-sized zones embedded within micrometre ones, for which the spray process is similar to that of conventional coatings and on the other hand, sub-micrometre or nanostructured coatings achieved by suspension or solution spraying. Compared with suspension spraying, solution precursor spraying uses molecularly mixed precursors as liquids, avoiding a separate processing route for the preparation of powders and enabling the synthesis of a wide range of oxide powders and coatings. Such coatings are intended for use in various applications ranging from improved thermal barrier layers and wear-resistant surfaces to thin solid electrolytes for solid oxide fuel cell systems, among other numerous applications. Meanwhile these processes are more complex to operate since they are more sensitive to parameter variations compared with conventional thermal spray processes. Progress in this area has resulted from the unique combination of modelling activities, the evolution of

  16. Structural and photocatalytic characteristics of TiO2 coatings produced by various thermal spray techniques

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Štengl, Václav; Pala, Zdeněk

    2013-01-01

    Roč. 2, č. 3 (2013), s. 218-226 ISSN 2226-4108 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 ; RVO:61388980 Keywords : plasma spraying * high velocity oxy–fuel (HVOF) spraying * flame spraying * titanium dioxide (TiO2) * photocatalysis * band gap Subject RIV: BL - Plasma and Gas Discharge Physics; CA - Inorganic Chemistry (UACH-T) http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s40145-013-0063-z

  17. Improved methods for testing bond and intrinsic strength and fatigue of thermally sprayed metallic and ceramic coatings

    International Nuclear Information System (INIS)

    Schweitzer, K.K.; Ziehl, M.H.; Schwaminger, C.

    1991-01-01

    Conventional bond strength tests for thermally sprayed coatings represent only a rough means of obtaining overall strength values, with no differentiation between adhesion at the interface and intrinsic coating properties. In order to obtain information about the influence of substrate surface preparation on the adhesion of a Tribaloy T700 coating, tensile bond strength and modified crack-opening displacement (COD) specimens were tested by deliberate crack initiation at the interface. Crack initiation was achieved by weakening of the interface at the outer diameter in the case of bond strength specimens or at the notch root in the case of COD specimens. This made it possible to look at the influence of surface roughness and grit contamination on the coating adhesion separately. Modified COD specimens with the notch in the centre of the coating were used to determine crack-opening energies and critical stress intensity factors of atmospheric plasma-sprayed NiAl and low pressure plasma-sprayed CoNiCrAlY bond coatings and a ZrO 2 7Y 2 O 3 thermal barrier coating (TBC). Additionally, bond strength specimens were stressed dynamically, and it could be demonstrated that Woehler (S/N) diagrams can be established for a metallic NiAl bond coating and even for a ceramic ZrO 2 7Y 2 O 3 TBC. (orig.)

  18. Electrochemical corrosion behaviour of Mg-Al alloys with thermal spray Al/SiCp composite coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Feliu Jr, S.; Merino, M. C.; Mohedano, M.; Casajus, P.; Arrabal, R.

    2010-01-01

    The corrosion protection of Mg-Al alloys by flame thermal spraying of Al/SiCp composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiC particles (SiCp) varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of micro-channels, largely in the vicinity of the SiC particles, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5-30 vol.% SiCp compared with the un reinforced thermal spray aluminium coatings. (Author) 31 refs.

  19. Corrosion And Thermal Processing In Cold Gas Dynamic Spray Deposited Austenitic Stainless Steel Coatings

    Science.gov (United States)

    2016-06-01

    Champagne have demonstrated this use of the cold spray technique in the repair of helicopter mast supports in U.S. Army aircraft, with over 50...Process: Fundamentals and Applications, Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 3. [3] Schiel, J. F., 2014, “The cold gas-dynamic spray... Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 2. [15] Han, W., Meng, X. M., Zhang, J. B., and Zhao, J., 2012, “Elastic modulus of 304 stainless

  20. Non-Thermal Plasma (NTP) session overview: Second International Symposium on Environmental Applications of Advanced Oxidation Technologies (AOTs)

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1996-01-01

    Advanced Oxidation Technologies (used in pollution control and treating hazardous wastes) has expanded from using hydroxyl radicals to treat organic compounds in water, to using reductive free radicals as well, and to application to pollutants in both gases and aqueous media. Non-Thermal Plasma (NTP) is created in a gas by an electrical discharge or energetic electron injection. Highly reactive species (O atoms, OH, N radicals, plasma electrons) react with entrained hazardous organic chemicals in the gas, converting them to CO2, H2O, etc. NTP can be used to simultaneously remove different kinds of pollutants (eg, VOCs, SOx, NOx in flue gases). This paper presents an overview of NTP technology for pollution control and hazardous waste treatment; it is intended as an introduction to the NTP session of the symposium

  1. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  2. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  3. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    International Nuclear Information System (INIS)

    Bakan, Emine

    2015-01-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y 2 O 3 -ZrO 2 , YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La) 2 Zr 2 O 7 ) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al 2 O 3 ) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La 2 Zr 2 O 7 . Hence, the goal of this research was to investigate plasma-sprayed Gd 2 Zr 2 O 7 (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as thermal conductivity, coefficient of thermal expansion as well

  4. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-02-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  5. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-04-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  6. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  7. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  8. Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method

    Science.gov (United States)

    Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.

    2018-06-01

    Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.

  9. Application of thermal spray coatings for jet engines. Kokuki sangyo eno yosha no oyo

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Y [All Nippon Airways Co. Ltd., Tokyo (Japan)

    1992-10-31

    Application condition of spray coating on jet engine parts and characteristics of spray reparing process are explained. Spray coating used for jet engine is classified as recovery of dimension, crevice adjustment, improvement of resistance to friction, improvement of fretting resistance and heat resistance. Titanium alloy having better adhesion and acid resistance, is used as coating for dimensional recovery, where as nickel-crome-aluminium coating is used for the improvement of heat resistance of stainless steel, etc. Crevice adjustment coatings are used in rotating parts of jet engines, and they are of two types are; gel-double coating of aluminium, nickel-aluminium, etc., abrasive coating of aluminium oxide. Tungsten carbide and cobalt are used as coatings for the friction improvement. Nickel and indium, etc., are used as fretting resistance coating. Various types of ceramics together with heat resistance steels like HS-188 are used as coating for heat resistance improvement. 4 figs., 3 tabs.

  10. Structure and properties of plasma sprayed BaTiO3 coatings after thermal posttreatment

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Pala, Zdeněk

    2015-01-01

    Roč. 41, č. 6 (2015), s. 7453-7460 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Electrical properties * BaTiO3 * Plasma spraying * Annealing * Microstructure Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015 http://dx.doi.org/10.1016/j.ceramint.2015.02.065

  11. Review of Thermal Spray Coating Applications in the Steel Industry: Part 2—Zinc Pot Hardware in the Continuous Galvanizing Line

    Science.gov (United States)

    Matthews, S.; James, B.

    2010-12-01

    This two-part article series reviews the application of thermal spray coating technology in the production of steel and steel sheet products. Part 2 of this article series is dedicated to coating solutions in the continuous galvanizing line. The corrosion mechanisms of Fe- and Co-based bulk materials are briefly reviewed as a basis for the development of thermal spray coating solutions. WC-Co thermal spray coatings are commonly applied to low Al-content galvanizing hardware due to their superior corrosion resistance compared to Fe and Co alloys. The effect of phase degradation, carbon content, and WC grain size are discussed. At high Al concentrations, the properties of WC-Co coatings degrade significantly, leading to the application of oxide-based coatings and corrosion-resistant boride containing coatings. The latest results of testing are summarized, highlighting the critical coating parameters.

  12. Comparative of the Tribological Performance of Hydraulic Cylinders Coated by the Process of Thermal Spray HVOF and Hard Chrome Plating

    Directory of Open Access Journals (Sweden)

    R.M. Castro

    2014-03-01

    Full Text Available Due to the necessity of obtaining a surface that is resistant to wear and oxidation, hydraulic cylinders are typically coated with hard chrome through the process of electroplating process. However, this type of coating shows an increase of the area to support sealing elements, which interferes directly in the lubrication of the rod, causing damage to the seal components and bringing oil leakage. Another disadvantage in using the electroplated hard chromium process is the presence of high level hexavalent chromium Cr+6 which is not only carcinogenic, but also extremely contaminating to the environment. Currently, the alternative process of high-speed thermal spraying (HVOF - High Velocity Oxy-Fuel, uses composite materials (metal-ceramic possessing low wear rates. Research has shown that some mechanical properties are changed positively with the thermal spray process in industrial applications. It is evident that a coating based on WC has upper characteristics as: wear resistance, low friction coefficient, with respect to hard chrome coatings. These characteristics were analyzed by optical microscopy, roughness measurements and wear test.

  13. Implementation and Development of the Incremental Hole Drilling Method for the Measurement of Residual Stress in Thermal Spray Coatings

    Science.gov (United States)

    Valente, T.; Bartuli, C.; Sebastiani, M.; Loreto, A.

    2005-12-01

    The experimental measurement of residual stresses originating within thick coatings deposited by thermal spray on solid substrates plays a role of fundamental relevance in the preliminary stages of coating design and process parameters optimization. The hole-drilling method is a versatile and widely used technique for the experimental determination of residual stress in the most superficial layers of a solid body. The consolidated procedure, however, can only be implemented for metallic bulk materials or for homogeneous, linear elastic, and isotropic materials. The main objective of the present investigation was to adapt the experimental method to the measurement of stress fields built up in ceramic coatings/metallic bonding layers structures manufactured by plasma spray deposition. A finite element calculation procedure was implemented to identify the calibration coefficients necessary to take into account the elastic modulus discontinuities that characterize the layered structure through its thickness. Experimental adjustments were then proposed to overcome problems related to the low thermal conductivity of the coatings. The number of calculation steps and experimental drilling steps were finally optimized.

  14. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    International Nuclear Information System (INIS)

    Baig, M N; Khalid, F A

    2014-01-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate and coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD and optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating

  15. Corrosion prevention of the rail by thermal spray coating of Zn-Al alloy; Zn-Al gokin yosha hifuku ni yoru reru no boshoku

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, S. [Nippon Steel Corp., Kitakyushu (Japan)] Urashima, C. [Kyushu Techno Research Corp., Fukuoka (Japan); Itai, K. [Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works; Ichiriki, T.; Nishiki, M. [Kyushu Rail way comdany, Fukuoka (Japan)

    1997-03-30

    Replacement of the rail in under-sea tunnel such as the Kammon Tunnel is carried out very five years because of the severe corrosion caused by the humid state due to the leakage of sea water or the mist of sea water swept up by the passing trains. In this study, salt water spraying or sea water spraying test is carried out using Zn-Al alloy with the corrosion resistance and thermal spray efficiency even higher than those of Zn or Al. A rail coated by thermal spray of Zn-15mass%Al alloy has been laid by trial in the practical rail road of Kammon Tunnel for 5 years and 3 months, the deterioration degree of the coating, pitting depth, actual fatigue strength, etc. are evaluated. Further, these factors of a rail re-coated by Zincrich Primer+Tar Epoxy and a bare rail laid at the same time are evaluated for comparison. It is presumed by the results of the examination about the service life of a rail coated by the thermal spray of Zn-Al alloy based on the pitting depth in the rail base that the service life of such coated rail is more than twice as that of the bare rails used currently. 5 refs., 14 figs., 3 tabs.

  16. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.; Chrissafis, K.

    2008-01-01

    Flame spraying is a widely used technique for depositing a great variety of materials in order to enforce the mechanical or the anticorrosion characteristics of the substrate. Its high rate application is due to the rapidity of the process, its effectiveness and its low cost. In this work, flame-sprayed Al coatings are deposited on low carbon steels in order to enhance their anticorrosion performance. The main adhesion mechanism of the coating is mechanical anchorage, which can provide the necessary protection to steel used in several industrial and constructive applications. To evaluate the corrosion resistance of the coating, the as-coated samples are subjected in a salt spray chamber and in elevated temperature environments. The examination and characterization of the corroded samples is done by scanning electron microscopy and X-ray diffraction analysis. The as-formed coatings are extremely rough and have a lamellic homogeneous morphology. It is also found that Al coatings provide better protection in marine atmospheres, while at elevated temperatures a thick oxide layer is formed, which can delaminate after long oxidation periods due to its low adherence to the underlying coating, thus eliminating the substrate protection

  17. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  18. Effect of Microstructure on the Thermal Conductivity of Plasma Sprayed Y2O3 Stabilized Zirconia (8% YSZ

    Directory of Open Access Journals (Sweden)

    Ningning Hu

    2017-11-01

    Full Text Available In this paper, the effect of microstructure on the thermal conductivity of plasma-sprayed Y2O3 stabilized ZrO2 (YSZ thermal barrier coatings (TBCs is investigated. Nine freestanding samples deposited on aluminum alloys are studied. Cross-section morphology such as pores, cracks, m-phase content, grain boundary density of the coated samples are examined by scanning electron microscopy (SEM and electron back-scattered diffraction (EBSD. Multiple linear regressions are used to develop quantitative models that describe the relationship between the particle parameters, m-phase content and features of the microstructure such as porosity, crack-porosity, and the length density of small and big angle-cracks. Moreover, the relationship between the microstructure and thermal conductivity is investigated. Results reveal that the thermal conductivity of the coating is mainly determined by the microstructure and grain boundary density at room temperature (25 °C, and by the length density of big-angle-crack, monoclinic phase content and grain boundary density at high temperature (1200 °C.

  19. Y2O3-MgO Nano-Composite Synthesized by Plasma Spraying and Thermal Decomposition of Solution Precursors

    Science.gov (United States)

    Muoto, Chigozie Kenechukwu

    This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic

  20. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  1. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    Science.gov (United States)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  2. Role of thermal spray processing method on the microstructure, residual stress and properties of coatings:an integrated study for Ni-5wt.% Al bond coats

    Czech Academy of Sciences Publication Activity Database

    Sampath, S.; Jiang, X.; Matějíček, Jiří; Prchlík, L.; Kulkarni, A.; Vaidya, A.

    2004-01-01

    Roč. 364, 1-2 (2004), s. 216-231 ISSN 0921-5093 Grant - others:NSF(US) DMR9632570 Institutional research plan: CEZ:AV0Z2043910 Keywords : bond coats, thermal spraying, microstructure Subject RIV: JG - Metallurgy Impact factor: 1.445, year: 2004

  3. INFLUENCE OF TECHNOLOGICAL MODES OF MAGNETIC-ELECTRIC GRINDING ON MICROSTRUCTURE OF GAS-THERMAL SPRAYED NI–CR–B–SI-COATINGS

    Directory of Open Access Journals (Sweden)

    N. V. Spiridonov

    2009-01-01

    Full Text Available Influence of technological modes of magnetic-electric grinding on structural changes in a surface layer of gas-thermal sprayed coatings is investigated in the paper. The paper presents optimum modes of  coating roughing and finishing processes.

  4. Tribological Behavior of Thermal Spray Coatings, Deposited by HVOF and APS Techniques, and Composite Electrodeposits Ni/SiC at Both Room Temperature and 300 °C

    Directory of Open Access Journals (Sweden)

    A. Lanzutti

    2013-06-01

    Full Text Available The Both the thermal spray and the electroplating coatings are widely used because of their high wear resistance combined with good corrosion resistance. In particular the addition of both micro particles or nano‐particles to the electro deposited coatings could lead to an increase of the mechanical properties, caused by the change of the coating microstructure. The thermal spray coatings were deposited following industrial standards procedures, while the Ni/SiC composite coatings were produced at laboratory scale using both micro‐and nano‐sized ceramic particles. All the produced coatings were characterized regarding their microstructure,mechanical properties and the wear resistance. The tribological properties were analyzed using a tribometer under ball on disk configuration at both room temperature and 300oC. The results showed that the cermet thermal spray coatings have a high wear resistance, while the Ni nano‐composite showed good anti wear properties compared to the harder ceramic/cermet coatings deposited by thermal spray technique.

  5. Impact of probing volume from different mechanical measurement methods on elastic properties of thermally sprayed Ni-based coatings on a mesoscopic scale

    Czech Academy of Sciences Publication Activity Database

    Margadant, N.; Neuenschwander, J.; Stauss, S.; Kaps, H.; Kulkarni, A.; Matějíček, Jiří; Rössler, G.

    2006-01-01

    Roč. 200, č. 8 (2006), s. 2805-2820 ISSN 0257-8972 Grant - others:Evropská unie Eureka 1973 “Thermetcoat” (EU) Institutional research plan: CEZ:AV0Z20430508 Keywords : Elastic Pro perties * Defects * Thermal spraying * Nickel alloy Subject RIV: JG - Metallurgy Impact factor: 1.559, year: 2006

  6. Assessment of properties thermal sprayed coatings realised using cermet blend powder

    Directory of Open Access Journals (Sweden)

    J. Brezinová

    2014-10-01

    Full Text Available The article deals with the assessment of selected properties of plasma sprayed coatings based on ZrSiO4 doped with different volume fractions of metal dopant (Ni. Mixed powders are cermet blends. Aim of the work consists of verificating the possibility to replace the application of Ni interlayer by adding Ni directly to the ceramic powder and apply them together in a single technological operation. The coatings were studied from point of view of their structure, porosity, adhesion of the coatings in relation to the volume of dopant added and wear resistance. The best properties reached composite coating doped with 12 % Ni.

  7. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Science.gov (United States)

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  8. In-situ observation of crack propagation in thermally sprayed coatings

    Czech Academy of Sciences Publication Activity Database

    Mušálek, R.; Kovářík, O.; Matějíček, Jiří

    2010-01-01

    Roč. 205, č. 7 (2010), s. 1807-1811 ISSN 0257-8972 R&D Projects: GA MŠk ME 901 Institutional research plan: CEZ:AV0Z20430508 Keywords : coating fracture * in-situ observation * alumina * stainless steel * plasma spraying Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.135, year: 2010 http://www.sciencedirect.com/science?_ob=GatewayURL&_method=citationSearch&_uoikey=B6TVV-4YTFBCY-5&_origin=SDEMFRHTML&_version=1&md5=896533bcc989ebaa374ff209558fbcf1

  9. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    Science.gov (United States)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  10. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  11. Thermal performance experiments on ultimate heat sinks, spray ponds, and cooling ponds

    International Nuclear Information System (INIS)

    Hadlock, R.K.

    1976-12-01

    A program of measurement on a Battelle-Northwest (BNW) spray pond has been completed to prove an integrated instrumentation system for application in future field experiments. The measurement programs in the field will produce data of relevance to the design and understanding of performance for ultimate heat sinks as components of emergency core cooling systems. In the absence of active emergency cooling systems, the data will be obtained on analog systems--prime candidates among these are the naturally-occurring hot ponds at Yellowstone National Park and man-made hot cooling ponds at Savannah River National Laboratory as well as spray ponds at various industrial facilities. The proof experiment has provided data that not only illustrate the effectiveness of the instrumentation system but also display interesting site-specific heat transfer processes. The data to be obtained in the field will also be site specific but must be of generic applicability in modeling for design and performance purposes. The integrated instrumentation system will evolve, through modest modifications and substantial supplementation, to provide the requisite data for the more demanding situation of work in and about hot water

  12. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  13. Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method

    Directory of Open Access Journals (Sweden)

    L. Wang

    2014-06-01

    Full Text Available The first prerequisite for fabricating the thermal barrier coatings (TBCs with excellent performance is to find an optimized coating structure with high thermal insulation effect and low residual stress. This paper discusses the design and optimization of a suitable coating structure for the TBCs prepared by atmospheric plasma spraying (APS using the finite element method. The design and optimization processes comply with the rules step by step, as the structure develops from a simple to a complex one. The research results indicate that the suitable thicknesses of the bond-coating and top-coating are 60–120 μm and 300–420 μm, respectively, for the single ceramic layer YSZ/NiCoCrAlY APS-TBC. The embedded interlayer (50 wt.%YSZ + 50 wt.%NiCoCrAlY will further reduce the residual stress without sacrificing the thermal insulation effect. The double ceramic layer was further considered which was based on the single ceramic layer TBC. The embedded interlayer and the upper additional ceramic layer will have a best match between the low residual stress and high thermal insulation effect. Finally, the optimized coating structure was obtained, i.e., the La2Ce2O7(LC/YSZ/Interlayer/NiCoCrAlY coating structure with appropriate layer thickness is the best choice. The effective thermal conductivity of this optimized LC/YSZ/IL/BL TBC is 13.2% lower than that of the typical single ceramic layer YSZ/BL TBC.

  14. Aspects of industrial production of solid electrolyte fuel cells (SOFC) by thermal spraying technology; Aspekte industrieller Fertigung von Festelektrolyt-Brennstoffzellen (SOFC) mittels thermischer Beschichtungsverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Weckmann, Hannes

    2010-07-01

    The present thesis deals with measures to optimize the large-volume production of Solid Oxide Fuel Cells (SOFC) based on thermal spraying technology. Based on the well-established Vacuum Plasma Spraying (VPS) at DLR the potential of alternative thermal spraying techniques as well as alternative base materials was investigated in order to deposit SOFC-anode, electrolyte and insulating layers. Production costs, reproducibility and long-term stability of the production process as well as the fuel cell performance were major target criteria. Depending on the parameter set applied when using the cost efficient Atmospheric Plasma Spraying (APS) in combination with Nickel-Graphite as base material a significant improvement of gas permeability and electrical conductivity was achieved in comparison to the VPS sprayed reference anode. The power density of a fuel cell with an APS-Nickel-Graphite anode (184 mW/cm{sup 2}) was slightly better than the performance with a VPS reference anode (159 mW/cm{sup 2}). In comparison to the VPS process, ceramic electrolyte layers of fully stabilized Zirconia (YSZ) with significantly higher gas tightness could be demonstrated when high energy processes such as Low Pressure Plasma Spraying (LPPS). Thin-film Low Pressure Plasma Spraying (LPPS-Thin-film) and High Velocity Oxy Fuel Spraying (HVOF) were applied. The power density of a fuel cell equipped with an HVOF electrolyte was significantly improved to 234 mW/cm{sup 2} as compared to 187 mW/cm{sup 2} with the VPS sprayed reference cell. Further improvement of the power density was achieved with an LPPS-electrolyte (273 mW/cm{sup 2}). HVOF and VPS sprayed layers of pure Spinel in composite with metallic active braze (equivalent to the sealing between individual layers in the fuel cell stack) could exceed the demanded charge transfer resistance of >1 k{omega}cm{sup 2} at 800 C operating temperature only in few cases. When blended base powder of Spinel and Magnesia in combination with the VPS

  15. Report on the symposium and workshop on the 5 MWt solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Design concepts and applications for the 5 MWt Solar Thermal Test Facility at Albuquerque are discussed in 43 papers. Session topics include central receivers, solar collectors, solar energy storage, high temperature materials and chemistry. A program overview and individual contractor reports for the test facility project are included, along with reports on conference workshop sessions and users group recommendations. A list of conference attendees is appended. Separate abstracts are prepared for 39 papers.

  16. IUTAM Symposium

    CERN Document Server

    Bui, Huy

    1993-01-01

    Inverse problems occur in a wide variey of fields. In general, the inverse problem can be defined as one where one should estimate the cause from the result, while the direct problem is concerned with how to obtain the result from the cause. The aim of this symposium was to gather scientists and researchers in engineering mechanics concerned with inverse problems in order to exchange research result and develop computational and experimentalapproaches to solve inverse problems. The contributions in this volume cover the following subjects: mathematical and computational aspects of inverse problems, parameter or system identification, shape determination, sensitivity analysis, optimization, material property characterization, ultrasonic nondestructive testing, elastodynamic inverse problems, thermal inverse problems, and other miscellaneous engineering applications.

  17. Intermetallic Al-, Fe-, Co- and Ni-Based Thermal Barrier Coatings Prepared by Cold Spray for Applications on Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Leshchinsky, E.; Sobiesiak, A.; Maev, R.

    2018-02-01

    Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bond coat and a ceramic heat insulating topcoat. They possess the desired low thermal conductivity, but at the same time they are very brittle and sensitive to thermal shock and thermal cycling due to the inherently low coefficient of thermal expansion. Recent research activities are focused on the developing of multilayer TBC structures obtained using cold spraying and following annealing. Aluminum intermetallics have demonstrated thermal and mechanical properties that allow them to be used as the alternative TBC materials, while the intermetallic layers can be additionally optimized to achieve superior thermal physical properties. One example is the six layer TBC structure in which cold sprayed Al-based intermetallics are synthesized by annealing in nitrogen atmosphere. These multilayer coating systems demonstrated an improved thermal fatigue capability as compared to conventional ceramic TBC. The microstructures and properties of the coatings were characterized by SEM, EDS and mechanical tests to define the TBC material properties and intermetallic formation mechanisms.

  18. Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants

    Science.gov (United States)

    Wang, Y.; Khor, K. A.; Cheang, P.

    1998-03-01

    Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.

  19. High-temperature resistant, thermally sprayed diffusion barrier coatings on CFC lightweight materials; Hochtemperaturbestaendige, thermisch gespritzte Diffusionsbarriereschichten auf CFC-Leichtbauchargiergestellen

    Energy Technology Data Exchange (ETDEWEB)

    Drehmann, Rico; Rupprecht, Christian; Wielage, Bernhard; Lampke, Thomas [Technische Univ. Chemnitz (Germany). Inst. fuer Werkstoffwissenschaft und Werkstofftechnik (IWW); Gilbert, Maria; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik (IWTT); Heuer, Volker [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2013-03-15

    In heat treating processes as well as in high temperature brazing processes, charge carriers enable the positioning and transport of work pieces. Recently, charge carriers consisting of graphite or carbon fibre reinforced carbon (CFC) are used. The main disadvantage of charge carriers based on CFC is the undesirable carburization of the overlying components due to diffusion processes. Under this aspect, thermally sprayed coatings are applied on CFC and tested with respect to their suitability as a high-temperature diffusion barrier. The ceramic powders aluminium oxide, aluminium oxide/chromium oxide, aluminium oxide/titanium oxide and zirconium oxide/yttrium oxide are used as a coating material which is processed by means of the powder flame spraying as well as atmospheric plasma spraying. Molybdenum and silicon carbide are used as an adhesive layer. The coating materials aluminium oxide and aluminium oxide/chromium oxide on siliconized CFC presented excellent results. This supplies a large potential of application for thermally sprayed ceramic coatings on carbon-based lightweight materials.

  20. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  1. Thermal and structural properties of spray pyrolysed CdS thin film

    Indian Academy of Sciences (India)

    Unknown

    Thermal diffusivity and conductivity in these films decrease at least two orders compared with bulk. ... Afifi et al. (1986) prepared evaporated thin film on glass substrate. ... phase of CdS and the identification of the peaks indicate that the film is ...

  2. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    International Nuclear Information System (INIS)

    1995-01-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  3. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. Mikrostruktur dan Karakterisasi Sifat Mekanik Lapisan Cr3C2-NiAl-Al2O3 Hasil Deposisi Dengan Menggunakan High Velocity Oxygen Fuel Thermal Spray Coating

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-03-01

    Full Text Available Surface coating processing of industrial component with thermal spray coatings have been applied in many industrial fields. Ceramic matrix composite coating which consists of Cr3C2-Al2O3-NiAl had been carried out to obtain layers of material that has superior mechanical properties to enhance component performance. Deposition of CMC with High Velocity Oxygen Fuel (HVOF thermal spray coating has been employed. This study aims to determine the effect of powder particle size on the microstructure, surface roughness and hardness of the layer, by varying the NiAl powder particle size. Test results show NiAl powder particle size has an influence on the mechanical properties of CMC coating. Hardness of coating increases and surface roughness values of coating decrease with smaller NiAl particle size.  

  5. High-speed flame spraying, an alternative process for producing thermal insulation layers; Hochgeschwindigkeitsflammspritzen - Ein alternatives Verfahren zum Herstellen von Waermedaemmschichten

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, H.D.; Wilden, J.; Josefiak, L.; Moebus, S. [Dortmund Univ. (Germany). Lehrstuhl fuer Werkstofftechnologie

    1996-12-31

    Ceramic thermal insulation layers on a ZrO{sub 2} basis produced by high-speed flame spraying differ in their structure from layers produced by atmospheric plasma spraying. If suitable powder modifications are chosen, the reulting layer structure can compensate thermally induced stresses efficiently. The layers also had a higher thermoshock resistance than APS layers. [Deutsch] Mittels Hochgeschwindigkeitsflammspritzens erzeugte keramische Waermedaemmschichten auf Basis von ZrO{sub 2} unterscheiden sich bezueglich ihrer Gefuegestruktur deutlich von atmosphaerisch plasmagespritzten WDS. Bei der Wahl geeigneter Pulvermodifikationen ermoeglicht die entstehende Schichtstruktur in hohem Mass den Ausgleich thermisch induzierter Spannungen. In vergleichenden Thermoschockversuchen erreichten HGFS-gespritzte WDS bei gleicher thermischer Isolationsfaehigkeit bessere Werte der Thermoschockbestaendigkeit als ASP-gespritzte. (orig.)

  6. Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jae Mean; Seok, Chang Sung; Kang, Min Sung; Kim, Dae Jin [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Dong Hoon [HYUNDAI STEEL CO., Incheon (Korea, Republic of); Kim, Mun Young [KPS Gas Turbine Technology Service Center, Seongnam (Korea, Republic of)

    2010-04-15

    The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature: delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature 1,151 .deg. C.

  7. Application of Structure-Based Models of Mechanical and Thermal Properties on Plasma Sprayed Coatings

    Czech Academy of Sciences Publication Activity Database

    Vilémová, Monika; Matějíček, Jiří; Mušálek, Radek; Nohava, J.

    2012-01-01

    Roč. 21, 3-4 (2012), s. 372-382 ISSN 1059-9630 R&D Projects: GA MŠk ME 901 Institutional research plan: CEZ:AV0Z20430508 Keywords : analytical model * elastic modulus * finite element modeling * image analysis * modeling of properties * thermal conductivity * water stabilized plasma Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.481, year: 2012 http://www.springerlink.com/content/3m24812367315142/fulltext. pdf

  8. A contribution to understanding the results of instrumented indentation on thermal spray coatings - Case study on Al2O3 and stainless steel

    Czech Academy of Sciences Publication Activity Database

    Nohava, J.; Mušálek, Radek; Matějíček, Jiří; Vilémová, Monika

    2014-01-01

    Roč. 240, February (2014), s. 243-249 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GAP108/12/1872; GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : Thermal spray coating * Instrumented indentation * Al2O3 * Stainless steel * Scale effect Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.998, year: 2014 http://www.sciencedirect.com/science/article/pii/S0257897213011869#

  9. On the Fracture Toughness and Crack Growth Resistance of Bio-Inspired Thermal Spray Hybrid Composites

    Science.gov (United States)

    Resnick, Michael Murray

    Surface exploration of the Moon and Asteroids can provide important information to scientists regarding the origins of the solar-system and life . Small robots and sensor modules can enable low-cost surface exploration. In the near future, they are the main machines providing these answers. Advanced in electronics, sensors and actuators enable ever smaller platforms, with compromising functionality. However similar advances haven't taken place for power supplies and thermal control system. The lunar south pole has temperatures in the range of -100 to -150 °C. Similarly, asteroid surfaces can encounter temperatures of -150 °C. Most electronics and batteries do not work below -40 °C. An effective thermal control system is critical towards making small robots and sensors module for extreme environments feasible. In this work, the feasibility of using thermochemical storage materials as a possible thermal control solution is analyzed for small robots and sensor modules for lunar and asteroid surface environments. The presented technology will focus on using resources that is readily generated as waste product aboard a spacecraft or is available off-world through In-Situ Resource Utilization (ISRU). In this work, a sensor module for extreme environment has been designed and prototyped. Our intention is to have a network of tens or hundreds of sensor modules that can communicate and interact with each other while also gathering science data. The design contains environmental sensors like temperature sensors and IMU (containing accelerometer, gyro and magnetometer) to gather data. The sensor module would nominally contain an electrical heater and insulation. The thermal heating effect provided by this active heater is compared with the proposed technology that utilizes thermochemical storage chemicals. Our results show that a thermochemical storage-based thermal control system is feasible for use in extreme temperatures. A performance increase of 80% is predicted for

  10. Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Franzen, P.; Plank, H.; Roth, J.; Gauthier, E.

    1996-01-01

    The trapping and release of deuterium implanted with an energy of 100 eV in wrought and in plasma sprayed tungsten of different manufacture and structure has been investigated by means of re-emission as well as thermal and isothermal desorption spectroscopy. The experimental data for wrought tungsten are compared with model calculations with the PIDAT code in order to estimate the parameters governing diffusion, surface recombination and trapping in tungsten. The amount of retained deuterium in tungsten is of the same order of magnitude as in graphite for the implantation parameters used in this work. The mobile hydrogen concentration in tungsten during the implantation is of the same order of magnitude than the trapped one, being released after the termination of the implantation. The fraction of deuterium trapped to defects increases strongly with the porosity of the samples. The temperature needed for the release of the trapped deuterium (∝600 K) are considerably lower than for graphite, due to the smaller trapping energy (≤1.5 eV). (orig.)

  11. Corrosion Resistance Properties of Aluminum Coating Applied by Arc Thermal Metal Spray in SAE J2334 Solution with Exposure Periods

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-03-01

    Full Text Available Arc thermal metal spray coating provides excellent corrosion, erosion and wear resistance to steel substrates. This paper incorporates some results of aluminum coating applied by this method on plain carbon steel. Thereafter, coated panels were exposed to an environment known to form stable corrosion products with aluminum. The coated panels were immersed in Society of Automotive Engineers (SAE J2334 for different periods of time. This solution consists of an aqueous solution of NaCl, CaCl2 and NaHCO3. Various electrochemical techniques, i.e., corrosion potential-time, electrochemical impedance spectroscopy (EIS and the potentiodynamic were used to determine the performance of stimulants in improving the properties of the coating. EIS studies revealed the kinetics and mechanism of corrosion and potentiodynamic attributed the formation of a passive film, which stifles the penetration of aggressive ions towards the substrate. The corrosion products that formed on the coating surface, identified using Raman spectroscopy, were Dawsonite (NaAlCO3(OH2 and Al(OH3. These compounds of aluminum are very sparingly soluble in aqueous solution and protect the substrate from pitting and uniform corrosion. The morphology and composition of corrosion products determined by scanning electron microscopy and energy dispersive X-ray analyses indicated that the environment plays a decisive role in improving the corrosion resistance of aluminum coating.

  12. Fabrication of samarium strontium aluminate ceramic and deposition of thermal barrier coatings by air plasma spray process

    Directory of Open Access Journals (Sweden)

    Baskaran T

    2018-01-01

    Full Text Available Thermal barrier coatings (TBC with the metallic NiCrAlY bond coat are often used in many aircraft engines to protect superalloy components from high-temperature corrosion thereby to improve the life of gas turbine components. The search for new TBC material has been intensified in recent years due to lack of thermo-physical properties of conventionally used Yttria stabilized Zirconia (YSZ TBCs. Recently, the rare earth containing Samarium Strontium Aluminate (SSA based ceramic was proposed as a new TBC material due to its matching thermo-physical properties with the substrate. The present work focused on the synthesis of SSA ceramics for TBCs application and its coatings development on Ni-based superalloy Inconel 718 substrate by air plasma spray process. The X-ray photoelectron spectroscopy (XPS result confirmed the formation of single phase SSA ceramic after synthesis. The surface morphology of SSA TBCs is mainly composed of melted splats, semi and un-melted particles. The cross-sectional SEM micrographs did not show any spallation at the interface which indicated good mechanical interlocking between the bond coat and ceramic top coat. The Young’s modulus and hardness of SSA TBCs were found to be 80 and 6.1 GPa, respectively. The load-depth curve of SSA TBC showed good elastic recovery about 47 %.

  13. Optimization of the Deposition Parameters of HVOF FeMnCrSi+Ni+B Thermally Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Gustavo Bavaresco Sucharski

    2015-06-01

    Full Text Available AbstractHVOF thermal spray process produces coatings with low porosity and low oxide content, as well as high substrate adhesion. Small variations on the parameters of the HVOF process can generate coatings with different characteristics and properties, which also is chemical composition depended of the alloy. FeMnCrSi alloy is a cavitation resistant class of material with a great potential for HVOF deposition use. The main goal of this article is to study the influence of some HVOF parameters deposition, as standoff distance, powder feed rate and carrier gas pressure on three different alloys. FeMnCrSi experimental alloys with some variations in nickel and boron content were studied. Taguchi experimental design with L9 orthogonal array was used in this work. Porosity, oxide content, tensile adhesion strength and microhardness of the coatings were evaluated. The results indicated that all factors have significant influence on these properties. Chemical composition of the alloys was the most important factor, followed by the carrier gas pressure, standoff distance and powder feed rate. The addition of Ni, produces coatings with lower levels of oxide content and porosity. An experiment with improved parameters was conducted, and a great improvement on the coating properties was observed.

  14. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Di Peng

    2016-09-01

    Full Text Available Yttria-stabilized zirconia (YSZ-based thermal barrier coating (TBC has been integrated with thermographic phosphors through air plasma spray (APS for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm; a photo-multiplier tube (PMT and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature.

  15. Structural, optical and thermal properties of {beta}-SnS{sub 2} thin films prepared by the spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Khelia, C.; Ben Nasrallah, T.; Amlouk, M.; Belgacem, S. [Faculte des Sciences, Tunis (Tunisia). Lab. de Physique de la Matiere Condensee; Maiz, F. [Equipe de Photothermique de Nabeul, Inst. Preparatoire aux Etudes d' Ingenieur de Nabeul (Tunisia); Mnari, M. [Lab. de Chimie Analytique, Campus Univ., Tunis (Tunisia)

    2000-03-01

    Tin disulfide {beta}-SnS{sub 2} thin films have been prepared on pyrex substrates by the spray pyrolysis technique using tin tetrachloride and thiourea as starting materials. The depositions were carried out in the range of substrate temperatures from 240 to 400 C. Highly c-axis oriented {beta}-SnS{sub 2} films, having a strong (001) X-ray diffraction line are obtained at temperature 280 C and using concentration ratio in solution R = [S]/[Sn] = 2.5. Films surfaces were analyzed by contact atomic force microscopy (AFM) and by scanning electron microscopy (SEM) in order to understand the effect of the deposited temperature on the surface structure. On the other hand, from transmission and reflection spectra, the band gap energy determined is about 2.71 eV. Finally using the photodeflection spectroscopy technique, the thermal conductivity K{sub c} and diffusivity D{sub c} were obtained. Their values are 10 Wm{sup -1}K{sup -1} and 10{sup -5} m{sup 2}s{sup -1} respectively. (orig.)

  16. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  17. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings

    Science.gov (United States)

    Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-08-01

    This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.

  18. Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties

    International Nuclear Information System (INIS)

    Gruenling, H.W.; Mannsmann, W.

    1993-01-01

    Thermal barrier coatings out of fully or partially stabilized zirconia offer a unique chance in gas turbines to increase the gas inlet temperature significantly while keeping the temperature of the structural material of the component within conventional limits. The protection of combustor parts and transition pieces as well as of some stationary gas turbine parts however is state of the art. As a consequence of still insufficient reliability, the application for hot rotating parts is very limited. The introduction as a design element requires safe life within defined time intervals. These depend on the overhaul and repair intervals of the engines. For large land based industrial or utility gas turbines, for example, coating life between 25.000 and 30.000 hrs. is a minimum requirement. Premature failure of a coating by e.g. local spalling causes local overheating of the component with the consequence of its total destruction or even more expensive secondary damages. Life limiting is the corrosion rate at the ceramic-metal interface and the behavior of the coated system under transient operating conditions, where multiaxial strain and stress distributions are generated. Sufficient strain tolerance of the coating both under tensile as well as compressive conditions is required. The properties of thermal barrier coating systems depend strongly on the structure and phase composition of the coating layers and the morphology of and the adhesion at the ceramic-metal interface. They have to be controlled by the process itself, the process parameters and the characteristics of the applied materials (e.g. chemical composition, processing, morphology, particle size and size distribution). It will be reviewed, how properties and structures of coating systems correlate and how structures can be modified by careful control of the process parameters. (orig.)

  19. Optimized functionally graded La{sub 2}Zr{sub 2}O{sub 7}/8YSZ thermal barrier coatings fabricated by suspension plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaohui [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wang, You, E-mail: wangyou@hit.edu.cn [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Fan, Shan; You, Yuan [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wang, Liang [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899 (China); Yang, Changlong [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Sun, Xiaoguang [National Engineering Research Center for High-speed EMU, CSR Qingdao Sifang Co. Ltd., Qingdao 266111 (China); Li, Xuewei [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    In this paper, an optimized functionally graded coating (OFGC) was successfully fabricated by suspension plasma spraying (SPS) with feedstocks of the suspension of nanoparticles. La{sub 2}Zr{sub 2}O{sub 7}/8YSZ OFGC with gradual compositional variation along the through-thickness direction is proposed to mitigate spallation and crack formation owing to the high residual stresses caused by frequent thermal cycling for TBCs. The single ceramic layer coatings (SCLC) of LZ and double ceramic layer coatings (DCLC) of LZ/8YSZ were fabricated by SPS as comparison. The phase composition and microstructure of the SCLC, OFGC and DCLC were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS). Moreover, the thermal cycling tests were carried out to evaluate their thermal shock behavior. Changes in weight and morphology of specimens were analyzed during thermal cycling tests. The results showed that OFGC has extended lifetime compared with SCLC and DCLC. The failure of DCLC with clear interface between different ceramic layers occurred via delamination mode, as a result of crack initiation and propagation generated by thermal mismatch between LZ and 8YSZ. While the failure of OFGC occurred in thermally grown oxide (TGO) layers, indicating that the gradual compositional variation avoided thermal stress concentration in the top ceramic layers. - Highlights: • Optimized functionally graded coatings and double ceramic layer coatings were deposited by suspension plasma spray. • The graded area of OFGC is continuously changed from inner 8YSZ to outer La{sub 2}Zr{sub 2}O{sub 7} (LZ). • The OFGC shows a more extended thermal cycling life than the LZ SCLC and LZ/8YSZ DCLC. • Various failure mechanisms were proposed to explain thermal cycling behavior.

  20. Evaluation of tribological wear and corrosion in coatings of diamalloy 4060NS deposited by thermal spray

    Science.gov (United States)

    Acuña R, S. M.; Moreno T, C. M.; Espinosa C, E. J.

    2017-12-01

    Surface engineering seeks the development of new techniques to improve the performance and life of components of machines or industrial facilities, always looking for low costs and the least possible environmental damage. Thermal projection is one of the techniques that is based on the projection of particles of compounds and alloys on properly prepared and heated substrates, these particles are driven by a stream of air passing through an oxyacetylene flame which gives the energy to the process; These coatings give the possibility to improve the properties of the materials or the maintenance of components to maximize the availability of service. In order to reduce the damage caused by wear and corrosion of a low carbon AISI 1020 steel, they were coated with a metal based alloy, studying the effect of the cobalt-chromium-silicon-tungsten carbide alloy coating (DIAMALLLOY 4060 NS). The coating was deposited with two different pressures in the gases supplied to the torch, obtaining two flames and working three thicknesses of coating that oscillate between 100-500μm, according to the number of deposited layers, making use of a projection gun Castolin Eutectic. Powder and substrate characterization was performed using X-Ray Diffraction (XRD) techniques, X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), spark emission spectroscopy and metallographic analysis. The results confirm the chemical nature and structure of the powder of the alloy and the substrate to be used, in addition, the thermal stability of the system was verified. The evaluation of the adhesion of the deposited layers was carried out by the implementation of pull-off tests according to ASTM D4541, in order to determine the type of failure that is presented. Mechanical wear was determined using a MT/60/NI microtest tribometer while electrochemical tests were performed using a suitable experimental unit for this purpose, confirming that the substrate exhibits lower wear levels when coated with

  1. Corrosion characteristics of thermal sprayed coating of stainless alloys in chloride solution; Taishoku gokin yosha himaku no enkabutsu yoekichu ni okeru fushoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan); Ishikawa, K. [Tokyo Metallikon Co. Ltd., Tokyo (Japan); Kitamura, Y. [Kitamura Technical Consultant Office, Kanagawa (Japan)

    1994-12-15

    With an objective to develop a thermal sprayed coating of environment interruption type that can be sprayed at sites, electrochemical discussions, SEM observation, and EPMA surface analysis were performed on corrosion characteristics in chloride solution of coatings of SUS 304, 316 and Hastelloy C thermally sprayed onto test pieces made of structural steel SS400, as well as the effect of improvement in corrosion resistance by means of a coating reforming treatment. The following conclusions were obtained: the degradation in corrosion resistance of the coatings is attributable to increase in anodic solubility due to appearance of innumerable crevices as a result of deposited particles forming porous structure and due to drop of Cr content in the matrix caused by generation of oxides on the surface of the crevices, by which the corrosion progresses in the form of crevice corrosion; and denseness of the passive coating is lost on the surface of the deposited particles, accelerating the cathodic reaction. A suitable means that could be used practically in chloride solution would be a method to use a material with less crevice susceptibility such as Hastelloy C as a base material, and seal the crevice structure with epoxy resin, etc. 7 refs., 10 figs., 3 tabs.

  2. Electrical characteristics and preparation of (Ba0.5Sr0.5)TiO3 films by spray pyrolysis and rapid thermal annealing

    International Nuclear Information System (INIS)

    Koo, Horngshow; Ku, Hongkou; Kawai, Tomoji; Chen Mi

    2007-01-01

    Functional films of (Ba 0.5 Sr 0.5 )TiO 3 on Pt (1000 A)/Ti (100 A)/SiO 2 (2000 A)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Barium nitrate, strontium nitrate and titanium isopropoxide are used as starting materials with ethylene glycol as solvent. For (Ba 0.5 Sr 0.5 )TiO 3 functional thin film, thermal characteristics of the precursor powder scratched from as-sprayed films show a remarkable peak around 300-400degC and 57.7% weight loss up to 1000degC. The as-sprayed precursor film with coffee-like color and amorphous-like phase is transformed into the resultant film with white, crystalline perovskite phase and characteristic peaks (110) and (100). The resultant films show correspondent increases of dielectric constant, leakage current and dissipation factor with increasing annealing temperatures. The dielectric constant is 264 and tangent loss is 0.21 in the resultant films annealed at 750degC for 5 min while leakage current density is 1.5x10 -6 A/cm 2 in the film annealed at 550degC for 5 min. (author)

  3. International Thermal Physiology Symposium

    National Research Council Canada - National Science Library

    Taylor, Nigel

    2001-01-01

    Partial Contents: THE EFFECT OF SLEEP DEPRIVATION UNDER BRIGHT LIGHT CONDITION ON THERMOREGURATOLY RESPONSES TO HYPERTHERMIA, ADENOSINE AND DOPAMINE AS NEUROMODULATORS IN HYPOXIC HYPOTHERMIA IN CONSCIOUS RATS, ROLE...

  4. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  5. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  6. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    Science.gov (United States)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  7. The use of electrochemical measurement techniques towards quality control and optimisation of corrosion properties of thermal spray coatings

    NARCIS (Netherlands)

    Vreijling, M.P.W.; Hofman, R.; Westing, E.P.M. van; Ferrari, G.M.; Wit, J.H.W. de

    1998-01-01

    Metal spray coatings are ever more recognised as a possible superior means of corrosion protection in many environments. Extended service life combined with little or no maintenance provides interesting opportunities for both environmentalists and corrosion engineers. Although many successful

  8. Proceedings of ITOHOS 2008 : The 2008 SPE/PS/CHOA International Thermal Operations and Heavy Oil Symposium : Heavy Oil : Integrating the Pieces

    International Nuclear Information System (INIS)

    2008-10-01

    This multi-disciplinary conference and exhibition combined the Society of Petroleum Engineers (SPE) and the Petroleum Society's (PS) international thermal operations and heavy oil symposium, and the Canadian Heavy Oil Association's (CHOA) annual business meeting. The conference provided a forum to examine emerging technologies and other critical issues affecting the global heavy oil and bitumen industry. The most current technologies from around the world that enhance the recovery of heavy oil and bitumen from oil sand deposits were also showcased. The technical program encompassed the economic, technical, and environmental challenges that the petroleum industry is currently facing. The sessions of the conference were entitled: artificial lift; mining, extraction and cold production; simulation; solvent processes; reservoir characterization; steam generation and water treatment; and, in-situ combustion in Canada. The conference also featured a series of short courses and tutorials on heavy oil wellbore completions and design; drilling horizontal heavy oil wells and steam assisted gravity drainage (SAGD) wells; geomechanical based reservoir monitoring; thermal well design; fiber optic thermal monitoring; heavy oil thermal recovery and economics; wellbore slotting; advanced geomechanics; and, an overview of cold heavy oil production with sand (CHOPS). All 91 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs

  9. Proceedings of ITOHOS 2008 : The 2008 SPE/PS/CHOA International Thermal Operations and Heavy Oil Symposium : Heavy Oil : Integrating the Pieces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    This multi-disciplinary conference and exhibition combined the Society of Petroleum Engineers (SPE) and the Petroleum Society's (PS) international thermal operations and heavy oil symposium, and the Canadian Heavy Oil Association's (CHOA) annual business meeting. The conference provided a forum to examine emerging technologies and other critical issues affecting the global heavy oil and bitumen industry. The most current technologies from around the world that enhance the recovery of heavy oil and bitumen from oil sand deposits were also showcased. The technical program encompassed the economic, technical, and environmental challenges that the petroleum industry is currently facing. The sessions of the conference were entitled: artificial lift; mining, extraction and cold production; simulation; solvent processes; reservoir characterization; steam generation and water treatment; and, in-situ combustion in Canada. The conference also featured a series of short courses and tutorials on heavy oil wellbore completions and design; drilling horizontal heavy oil wells and steam assisted gravity drainage (SAGD) wells; geomechanical based reservoir monitoring; thermal well design; fiber optic thermal monitoring; heavy oil thermal recovery and economics; wellbore slotting; advanced geomechanics; and, an overview of cold heavy oil production with sand (CHOPS). All 91 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  10. High temperature corrosion of thermally sprayed NiCr- and amorphous Fe-based coatings covered with a KCl-K{sub 2}SO{sub 4} salt

    Energy Technology Data Exchange (ETDEWEB)

    Varis, T.; Suhonen, T.; Tuurna, S.; Ruusuvuori, K.; Holmstroem, S.; Salonen, J. [VTT, Espoo (Finland); Bankiewicz, D.; Yrjas, P. [Aabo Akademi Univ., Turku (Finland)

    2010-07-01

    New process conditions due to the requirement of higher efficiency together with the use of high-chlorine and alkali containing fuels such as biomass and waste fuels for heat and electricity production will challenge the resistance and life of tube materials. In conventional materials the addition of alloying elements to increase the corrosion resistance in aggressive combustion conditions increases costs relatively rapidly. Thermally sprayed coating offer promising, effective, flexible and cost efficient solutions to fulfill the material needs for the future. Some heat exchanger design alteractions before global commercialization have to be overcome, though. High temperature corrosion in combustion plants can occur by a variety of mechanisms including passive scale degradation with subsequent rapid scaling, loss of adhesion and scale detachment, attack by melted or partly melted deposits via fluxing reactions and intergranular-/interlamellar corrosion. A generally accepted model of the ''active oxidation'' attributes the responsibility for inducing corrosion to chlorine. The active oxidation mechanism plays a key role in the thermally sprayed coatings due to their unique lamellar structure. In this study, the corrosion behaviour of NiCr (HVOF and Wire Arc), amorphous Fe-based, and Fe13Cr (Wire Arc) thermally sprayed coatings, were tested in the laboratory under simplified biomass combustion conditions. The tests were carried out by using a KCl-K{sub 2}SO{sub 4} salt mixture as a synthetic biomass ash, which was placed on the materials and then heat treated for one week (168h) at two different temperatures (550{sup 0}C and 600 C) and in two different gas atmospheres (air and air+30%H{sub 2}O). After the exposures, the metallographic cross sections of the coatings were studied with SEM/EDX analyzer. The results showed that the coatings behaved relatively well at the lower test temperature while critical corrosion through the lamella boundaries

  11. India Symposium

    Indian Academy of Sciences (India)

    JNCASR

    Impact of Women's research in Science and Technology in the new millennium'. The. Symposium will showcase the work done by young Indian Women Scientists in different branches of Science and Engineering, at a wide spectrum of Research ...

  12. IUTAM Symposium

    CERN Document Server

    1995-01-01

    The International Union of Theoretical and Applied Mechanics (IUTAM) decided in 1992 to sponsor the fourth Symposium on Laminar-Turbulent Transition, Sendai/Japan, 1994. The objectives of the present Symposium were to deepen the fundamental knowledge of stability and laminar­ turbulent transition in three-dimensional and compressible flows and to contribute to recent developing technologies in the field. This Symposium followed the three previous IUTAM-Symposia (Stuttgart 1979, Novosibirsk 1984 and Toulouse 1989). The Scientific Committee selected two keynote lectures and 62 technical papers. The Symposium was held on the 5th to 9th of September, 1994, at the Sendai International Center in Sendai. The participants were 82 scientists from 10 countries. The keynote lectures have critically reviewed recent development of researches concerning the laminar-to-turbulent transition phenomena from the fundamental and the application aspects. Many papers presented were concerned about the detailed mechanism of the bo...

  13. A Symposium.

    Science.gov (United States)

    Rachal, John R.

    2003-01-01

    Uses the framework of a symposium to present an imagined discussion by historical figures about whether and how knowledge might be acquired. Discussants include Democritus, Protagoras, Heraclitus, Socrates, Jesus, Gorgias, Nietzsche, Buddha, and Kierkegaard. (Contains 40 endnotes.) (SK)

  14. Measurement of the non-thermal properties of a low pressure spraying plasma by electric and spectroscopic methods

    International Nuclear Information System (INIS)

    Jung, Yong Ho

    2003-02-01

    For the case of an atmospheric plasma, the local thermodynamic equilibrium (LTE) model can be applied to plasmas at a nozzle entrance and to those on the axis of the plasma flame, but it is not easy to justify applying the LTE model to off-center plasma and to a low-pressure spraying plasma. Although the energy distribution of the electrons is assumed to be Maxwellian for the most of spraying plasmas, the non-Maxwellian distribution is possible for the case of low-pressure spaying plasma and edge plasma of atmospheric spraying plasma. In this work, the non-Maxwellian distribution of electrons was measured by using an electric probe installed on the fast scanning probe system, and non-LTE effects were measured by using the optical emission spectroscopy system. Distribution of the electrons of a low-pressure spraying plasma is observed not as Maxwellian but as bi-Maxwellian by the measurement of the single probe. Bi-Maxwellian distribution appears in the edge of a low pressure spraying plasma and seems to be due to the reduction of the collisonality by the drastic variation of the plasma density. Non-LTE characteristics of a low-pressure spraying plasma can be deuced from the measured results of the optical emission spectroscopy and is analyzed by the collisional radiative equilibrium (CRE) model, where the Maxwellian and the non-Maxwellian distributions are assumed for comparison. For the electron temperature, the results from optical emission spectroscopy were similar to the results from the single probe (3∼5 % in error)

  15. Improving dielectric properties of plasma sprayed calcium titanate (CaTiO3) coatings by thermal annealing

    Czech Academy of Sciences Publication Activity Database

    Kotlan, Jiří; Ctibor, Pavel; Pala, Zdeněk; Homola, P.; Nehasil, V.

    2014-01-01

    Roč. 40, č. 8 (2014), s. 13049-13055 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : X-raymethods * Dielectricproperties * Perovskites * Plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.605, year: 2014 http://www.sciencedirect.com/science/article/pii/S027288421400724X

  16. In situ Measurements of Residual Stresses and Elelastic Moduli in Thermal Sprayed Coatings. Part 1: Apparatus and Analysis

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Sampath, S.

    2003-01-01

    Roč. 51, č. 3 (2003), s. 863-872 ISSN 1359-6454 Grant - others:NSF(US) DMR9632570 Institutional research plan: CEZ:AV0Z2043910 Keywords : coatings plasma spraying, mechanical properties testing, elastic modulus Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.059, year: 2003

  17. Protection of 310l Stainless Steel from Wear at Elevated Temperatures using Conicraly Thermal Spray Coatings with and without Sic Addition

    Science.gov (United States)

    Zhang, Yan; Zhang, Tao; Li, Kaiyang; Li, Dongyang

    2017-10-01

    Due to its high oxidation resistance, 310L stainless steel is often used for thermal facilities working at high-temperatures. However, the steel may fail prematurely at elevated temperatures when encounter surface mechanical attacks such as wear. Thermal spray coatings have been demonstrated to be effective in protecting the steel from wear at elevated temperatures. In this study, we investigated the effectiveness of high velocity oxy-fuel(HVOF) spraying CoNiCrAlY/SiC coatings in resisting wear of 310L stainless steel at elevated temperature using a pin-on-disc wear tester. In order to further improve the performance of the coating, 5%SiC was added to the coating. It was demonstrated that the CoNiCrAlY/SiC coating after heat treatment markedly suppressed wear. However, the added SiC particles did not show benefits to the wear resistance of the coating. Microstructures of CoNiCrAlY coatings with and without the SiC addition were characterized in order to understand the mechanism responsible for the observed phenomena.

  18. Wear behaviour of coating of aluminium matrix composites fabricated by thermal spray method; Comportamiento a desgaste de recubrimientos de material compuesto de matriz de aluminio fabricados por proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Campo, M.; Escalera, M. D.; Torres, B.; Rams, J.; Urena, A.

    2007-07-01

    In this work, the wear behaviour of coatings made of aluminium matrix composites reinforced with 20% of SiC particles and manufactured by thermal spray method with oxyacetylene flame has been investigated. the wear behaviour between coating with uncoated particles and sol-gel silica coated ones heat treated at 500 degree centigree and 725 degree centigree have been compared. The sprayed coatings with silica coated particles are more homogeneous and less porous due to increase of wettability by molten aluminium that takes place on coated particles. The microstructure of the sprayed coatings, the wear surfaces and the wear debris have been analysed using optical microscopy, scanning electron microscopy and micro-analysis techniques (EDX). The results show a smaller wear rate, a lower friction coefficient and more reduced loss of mass for the coatings sprayed with particles with sol-gel silica coatings than those made with uncoated particles. (Author) 15 refs.

  19. IUTAM Symposium

    CERN Document Server

    Whitelaw, James; Wung, T

    1992-01-01

    A Symposium on Aerothermodynamics of Combustors was held at the Institute of Applied Mechanics of the National Taiwan University from 3 to 5 June 1991 and was attended by 130 delegates from eight countries. The topics of the forty formal presentations included measurements and calculations of isothermal simulations and of combusting flows with one and two phases, and with consideration of configurations ranging from simple diffusion to gas-turbine flows. The discussions inside and outside of the Symposium Hall were lively and an open forum session demonstrated the range of opinions currently and strongly held. The International Union of Theoretical and Applied Mechanics initiated the Symposium under the chairmanship of Professor R S L Lee and with the Scientific Committee listed below. It benefited from sponsorship, again as listed below, and from contributors who presented interesting and up-to-date descriptions of their research. Invited lectures were delivered by Professors R Bilger and F Weinberg and set ...

  20. Progressive damage during thermal shock cycling of D-gun sprayed thermal barrier coatings with hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ke, P.L. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China) and School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom)]. E-mail: csun@imr.ac.cn; Wang, Q.M. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gong, J. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhou, Y.C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-11-05

    Thermal shock cycling behaviors of D-gun sprayed TBCs with a hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3} (HSP-YSZ) top coat and NiCrAlY bond coat on directionally solidified Ni-base superalloys DZ125 were investigated at high temperature (1100 deg. C) {r_reversible} room temperature (RT) repeatedly by water quenching. Scanning electron microscopy (SEM) was used to characterize the coating microstructure and failure morphology. The results showed that failure of the D-gun sprayed TBC starts with crack initiation along the splats boundary in the ceramic top coat and the non-alumina oxides. The cracks propagate and coalesce with the increasing thermal cycling. The extensive cracking of the rapidly formed non-alumina oxides, resulting from the depletion of aluminum in the bond coat, aids to delamination of the outer ceramic layer. The stress distributions in TGO layer at different thermal shock cycles was measured by luminescence spectroscopy to investigate the failure mechanism of TBC system.

  1. Fuel wood symposium; Symposium Energieholz

    Energy Technology Data Exchange (ETDEWEB)

    Wild, C.; Wauer, A. (comps.)

    2001-07-01

    The Bavarian State Institute of Forestry (LWF) organised a 'Fuel Wood Symposium' in Freising-Weihenstephan on 17.11.2000. The purpose of this specialist conference was to give an overview of the use of biomass, especially wood, as an source of energy. (orig.) [German] Die Bayerische Landesanstalt fuer Wald und Forstwirtschaft richtete am 17.11.2000 in Freising-Weihenstephan das 'Symposium Energieholz' aus. Ziel der Fachtagung war es, einen Ueberblick ueber die energetische Nutzung von Biomasse, insbesondere Holz, zu geben. (orig.)

  2. Study of thermal phenomena in niobium superconducting cavities when stiffened by thermal spray coating; Etude des phenomenes thermiques dans les cavites acceleratrices supraconductrices en niobium rigidifiees par projection thermique

    Energy Technology Data Exchange (ETDEWEB)

    Bousson, S

    2000-02-01

    The first objective of this thesis is to study a new superconducting cavity stiffening method based on thermal spraying. The principle is to add on the cavity external walls a copper layer using the thermal spraying process. Several tests on samples allowed to measure the thermal and mechanical properties of the layers deposited by several different processes. Measurements performed on 3 and 1.3 GHz niobium cavities, before and after copper deposition, proved the interest and feasibility of the method. The study showed the need to have very dense layers (porosity reduced to the minimum in order to have good mechanical characteristics), and not oxidised (to reduce the coating thermal resistance). As a conclusion, the spraying process performed under controlled atmosphere seems to be the most suited for superconducting cavity stiffening. The tools and analysing methods which have been developed for this study allowed to investigate other phenomena involved in the cavity thermal stability, and particularly the quench, a phenomenon often studied but not in its dynamic. A model is proposed in this thesis to analyse the quench dynamic behaviour using only the fast RF signal measurement during a quench. It has been shown that the quench propagation velocity depends essentially on the accelerating field and the niobium thermal conductivity. A study on the thermometer response time used as diagnostics on cavities proved that the transients during a quench are not efficiently measured with Allen-Bradley sensors: for this application Cernox thermometers are to be preferred due to their lower time response. The development of a thermometer acquisition device for the 3 GHz cavities, used for the study on cavity stiffening, has been adapted for anomalous heating measurements on high gradient 1.3 GHz cavities. It has been possible to prove that anomalous RF losses are responsible of the quality factor degradation, that they are not localised in a small of the cavity, but

  3. Laser-assisted selective fusing of thermal sprayed Ni-based self-fluxing alloys by using high-power diode lasers

    Science.gov (United States)

    Chun, Eun-Joon; Kim, Min-Su; Nishikawa, Hiroshi; Park, Changkyoo; Suh, Jeong

    2018-03-01

    Fusing treatment of Ni-based self-fluxing alloys (Metco-16C and 1276F) was performed using high-power diode lasers to control the temperature of the substrate's surface in real time. The effects of the fusing treatment temperature on the microstructural change and hardness distribution were also investigated. For Metco-16C and 1276F, the macrostructural inhomogeneity (voids) within the thermal sprayed layer decreased considerably as the fusing temperature increased. For both self-fluxing alloys, the optimal temperature for fusing was approximately 1423 K (for Metco-16C) and 1373 K (for 1276F), both of which are within the solid state temperature range; these temperatures maximize the alloy hardness together with the macrostructural homogeneity. In this temperature range, the microstructure consists of a lamellar-structured matrix phase with fine (diode laser system.

  4. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-09-01

    Full Text Available Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.

  5. Symposium Highlights

    International Nuclear Information System (INIS)

    Owen-Whitred, K.

    2015-01-01

    Overview/Highlights: To begin, I'd like to take a moment to highlight some of the novel elements of this Symposium as compared to those that have been held in the past. For the first time ever, this Symposium was organized around five concurrent sessions, covering over 300 papers and presentations. These sessions were complemented by an active series of exhibits put on by vendors, universities, ESARDA, INMM, and Member State Support Programmes. We also had live demonstrations throughout the week on everything from software to destructive analysis to instrumentation, which provided the participants the opportunity to see recent developments that are ready for implementation. I'm sure you all had a chance to observe - and, more importantly, interact with - the electronic Poster, or ePoster format used this past week. This technology was used here for the first time ever by the IAEA, and I'm sure was a first for many of us as well. The ePoster format allowed participants to interact with the subject matter, and the subject matter experts, in a dynamic, engaging way. In addition to the novel technology used here, I have to say that having the posters strategically embedded in the sessions on the same topic, by having each poster author introduce his or her topic to the assembled group in order to lure us to the poster area during the breaks, was also a novel and highly effective technique. A final highlight I'd like to touch on in terms of the Symposium organization is the diversity of participation. This chart shows the breakdown by geographical distribution for the Symposium, in terms of participants. There are no labels, so don't try to read any, I simply wanted to demonstrate that we had great representation in terms of both the Symposium participants in general and the session chairs more specifically-and on that note, I would just mention here that 59 Member States participated in the Symposium. But what I find especially interesting and

  6. A laser-treatment condition of plasma-sprayed zirconia thermal barrier coatings on nickel-base superalloy substrate

    International Nuclear Information System (INIS)

    Kondo, Yasuo; Fukaya, Kiyoshi; Miyamoto, Yoshiaki

    1987-06-01

    In order to seal the surface pores, two plasma-sprayed zirconia coatings (containing 8 wt.% CaC 2 and 8 wt.% Y 2 O 3 ) of about 200 microns thickness were partially melted with a CO 2 laser. Preliminary experiment had shown that the laser beam with a power density of 35 W/mm 2 could melt plasma-sprayed zirconia to depth of 50 to 80 microns at a scanning speed of about 300 mm/min. There was little porosity in the laser-treated region. However, straiations and mud-flat cracking of about 50 microns in depth were produced by the laser-treatment. Numerous fine particles of a few microns diameter were formed on the laser-treated surface, and microcracks were propagated between these fine particles. In the CaC 2 /ZrO 2 ceramic coating system, calcium content of the laser-treated region became less compared with that of the nontreated region. While, in the Y 2 O 3 /ZrO 2 system, yttrium distribution in the laser-treated area was more uniform than that in the nontreated area. This indicates that Y 2 O 3 /ZrO 2 system is more stable than CaC 2 /ZrO 2 system to laser treatment. (author)

  7. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  8. Spin symposium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-01-15

    The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.

  9. IUTAM Symposium

    CERN Document Server

    Stefanou, George

    2014-01-01

    This book contains the proceedings of the IUTAM Symposium on Multiscale Modeling and Uncertainty Quantification of Materials and Structures that was held at Santorini, Greece, September 9 – 11, 2013. It consists of 20 chapters which are divided in five thematic topics: Damage and fracture, homogenization, inverse problems–identification, multiscale stochastic mechanics and stochastic dynamics. Over the last few years, the intense research activity at microscale and nanoscale reflected the need to account for disparate levels of uncertainty from various sources and across scales. As even over-refined deterministic approaches are not able to account for this issue, an efficient blending of stochastic and multiscale methodologies is required to provide a rational framework for the analysis and design of materials and structures. The purpose of this IUTAM Symposium was to promote achievements in uncertainty quantification combined with multiscale modeling and to encourage research and development in this grow...

  10. IUTAM Symposium

    CERN Document Server

    Shioiri, Jumpei

    1996-01-01

    The IUTAM Symposium on Constitutive Relation in High/Very High Strain Rates (CRHVHSR) was held October 16 - 19, 1995, at Seminar House, Science University of Tokyo, under the sponsorship of IUTAM, Japan Society for the Promotion of Science, The Commemorative Association for the Japan World Exposition (1970), Inoue Foundation for Science, The Japan Society for Aeronautical and Space Sciences, and Science University of Tokyo. The proposal to hold the symposium was accepted by the General Assembly of IUT AM held in Haifa, Israel, in August 1992, and the scientists mentioned below were appointed by the Bureau of IUTAM to serve as members of the Scientific Committee. The main object of the symposium was to make a general survey of recent developments in the research of constitutive relations in high and very high strain rates and related problems in high velocity solid mechanics, and to explore further new ideas for dealing with unresolved problems of a fundamental nature as well as of practical importance. The su...

  11. Post-deposition thermal treatment of sprayed ZnO:Al thin films for enhancing the conductivity

    Science.gov (United States)

    Devasia, Sebin; Athma, P. V.; Shaji, Manu; Kumar, M. C. Santhosh; Anila, E. I.

    2018-03-01

    Here, we report the enhanced conductivity of Aluminium doped (2at.%) zinc oxide thin films prepared by simple spray pyrolysis technique. The structural, optical, electrical, morphological and compositional investigations confirm the better quality of films that can be a potential candidate for application in transparent electronics. Most importantly, the film demonstrates an average transmittance of 90 percent with a low resistivity value which was dropped from 1.39 × 10-2 to 5.10 × 10-3 Ω .cm, after annealing, and a very high carrier concentration in the order of 10 × 20cm-3. Further, we have used the Swanepoel envelop method to calculate thickness, refractive index and extinction coefficient from the interference patterns observed in the transmission spectra. The calculated figure of merit of the as-deposited sample was 1.4 × 10-3Ω-1 which was improved to 2.5 × 10-3Ω-1 after annealing.

  12. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  13. Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites for Extrusion-Based Additive Manufacturing: Nonisothermal Crystallization Kinetics and Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2018-02-01

    Full Text Available Isotactic polypropylene (iPP is a versatile polymer. It accounts for the second-largest polymer consumption worldwide. However, iPP is difficult to 3D print via extrusion-based processing. This is attributable to its rapid crystallization rate. In this study, spray-dried cellulose nanofibrils (SDCNF and maleic anhydride polypropylene (MAPP were investigated to reveal their effects on the nonisothermal crystallization kinetics and thermal expansion of iPP. SDCNF at 3 wt % and 30 wt % accelerated the crystallization rate of iPP, while SDCNF at 10 wt % retarded the crystallization rate by restricting crystal growth and moderately increasing the nucleation density of iPP. Additionally, adding MAPP into iPP/SDCNF composites accelerated the crystallization rate of iPP. The effective activation energy of iPP increased when more than 10 wt % SDCNF was added. Scanning electron microscopy and polarized light microscopy results indicated that high SDCNF content led to a reduced gap size among SDCNF, which hindered the iPP crystal growth. The coefficient of thermal expansion of iPP/SDCNF10% was 11.7% lower than the neat iPP. In summary, SDCNF, at 10 wt %, can be used to reduce the warping of iPP during extrusion-based additive manufacturing.

  14. Symposium Summary

    Science.gov (United States)

    Levesque, Emily M.

    2017-11-01

    This proceeding summarizes the highlights of IAU 329, ``The Lives and Death-Throes of Massive Stars'', held in Auckland, NZ from 28 Nov - 2 Dec. I consider the progress that has been made in the field over the course of these ``beach symposia'', outline the overall content of the conference, and discuss how the current subfields in massive stellar astrophysics have evolved in recent years. I summarize some of the new results and innovative approaches that were presented during the symposium, and conclude with a discussion of how current and future resources in astronomy can serve as valuable tools for studying massive stars in the coming years.

  15. Erosion-oxidation behavior of thermal sprayed Ni20Cr alloy and WC and Cr3C2 cermet coatings

    Directory of Open Access Journals (Sweden)

    Clarice Terui Kunioshi

    2005-06-01

    Full Text Available An apparatus to conduct high temperature erosion-oxidation studies up to 850 °C and with particle impact velocities up to 15 m.s-1 was designed and constructed in the Corrosion Laboratories of IPEN. The erosion-oxidation behavior of high velocity oxy fuel (HVOF sprayed alloy and cermet coatings of Ni20Cr, WC 20Cr7Ni and Cr3C2 Ni20Cr on a steel substrate has been studied. Details of this apparatus and the erosion-oxidation behavior of these coatings are presented and discussed. The erosion-oxidation behavior of HVOF coated Cr3C2 25(Ni20Cr was better than that of WC 20Cr7Ni, and the erosion-oxidation regimes have been identified for these coatings at particle impact velocity of 3.5 m.s-1, impact angle of 90° and temperatures in the range 500 to 850 °C.

  16. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    Science.gov (United States)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  17. IUTAM Symposium

    CERN Document Server

    Pedley, Timothy

    2003-01-01

    The IUTAM Symposium on Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries was held on 26-30 March, 2001, at the University of Warwick. As this was the first scientific meeting of its kind we considered it important to mark the occasion by producing a book. Accordingly, at the end of the Symposium the Scientific Committee met to discuss the most appropriate format for the book. We wished to avoid the format of the conventional conference book consisting of a large number of short articles of varying quality. It was agreed that instead we should produce a limited number of rigorously refereed and edited articles by selected participants who would aim to sum up the state of the art in their particular research area. The outcome is the present book. Peter W. Ca rpenter, Warwick Timothy J. Pedley, Cambridge May, 2002. VB SCIENTIFIC COMMITTEE Co-Chair: P.W. Carpenter, Engineering, Warwiek, UK Co-Chair: TJ. Pedley, DAMTP, Cambridge, UK V.V. Babenko, Hydromechanics, Kiev, Ukraine R. Bannasch, Bionik...

  18. Proceedings of the 2002 Petroleum Society of CIM/SPE/CHOA International Thermal Operations and Heavy Oil Symposium, International Conference on Horizontal Well Technology, and Canadian Heavy Oil Association Business Conference : Resources 2 Reserves 2 Results. CD ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This three day conference combined the Petroleum Society's International Horizontal Well and Technology Conference, the Society of Petroleum Engineer's (SPE) International Thermal Operations and Heavy Oil Symposium, and the Canadian Heavy Oil Association's (CHOA) Annual Business Meeting. The 87 presentations covered all aspects of heavy oil, thermal, and horizontal well technology from geosciences and drilling to economics and environment. The themes included financing, turning projects into results, eliminating the downstream barriers to oil sand development in North America and the world, and emerging technologies for horizontal or heavy oil applications. The conference included the following 20 sessions: (1) thermal operations/engineering, (2) well testing/productivity of horizontal wells, (3) heavy oil operations, (4) environmental aspects of heavy oil projects, (5) upgrading/pipelines, (6) economics and project appraisal, (7) simulation studies of thermal projects, (8) multilaterals, (9) horizontal wells in conventional reservoirs, (10) cold production of heavy oil, (11) horizontal drilling in thermal projects, (12) simulation studies of horizontal wells, (13) horizontal drilling technology, (14) thermal field studies and horizontal wells in heavy oil, (15) completion/production technology of horizontal and thermal wells, (16) physics and PVT of heavy oil recovery processes, (17) reservoir characterization/geosciences, (18) horizontal injectors/produced water technology, (19) emerging technologies, and (20) reservoir geomechanics/fracturing. Tutorials were also organized to provide opportunity to review areas that have undergone major changes. A total of 73 papers were indexed separately for inclusion in the database. refs., tabs., figs.

  19. Study of the tribological properties of ZrO2 obtained by thermal spraying using the interferometric microscopy

    International Nuclear Information System (INIS)

    Guilemany, J. M.; Armada, S.; Miguel, J. M.

    2001-01-01

    Thermal barrier coatings have a limited mechanical and tribological properties. The sintering thermal treatments can be used to improve these properties. in the present paper the evolution of some mechanical and tribological properties with different time of sintering at 1000 degree centigree is evaluated. It was observed that the sintering thermal treatment produce an increase of the wear resistance, the hardness and the Young modulus. The Ball on disk test were done using a sliding pair of ZrO 2 and steel and the main wear mechanisms for each case were studied. It was observed that the intersplat delamination and the brittle fracture where the main wear mechanisms during sliding process. The wear tracks were studied with scanning electron microscopy (SEM) and scanning white light interferometry (SWLI) so as to quantify the wear for each case. It was necessary to do a gold sputtering to increase the electric conductivity and reflection of the ZrO 2 samples for their study by SEM and SWLI respectively. (Author) 6 refs

  20. Overview (this manuscript is an overview of an ASTM symposium. The authors, John Sebroski and Mark Mason, of the overview were the co-chairs of the symposium and co-editors of the manuscripts submitted for ASTM peer review and subsequent publication in the technical proceedings for the symposium)

    Science.gov (United States)

    The Symposium on Developing Consensus Standards for Measuring Chemical Emissions from Spray Polyurethane Foam (SPF) Insulation was held on April 30th and May 1, 2015. Sponsored by ASTM Committee D22 on Air Quality, the symposium was held in Anaheim, CA, in conjunction with the st...

  1. Solvent-free preparation of polylactic acid fibers by melt electrospinning using umbrella-like spray head and alleviation of problematic thermal degradation

    Directory of Open Access Journals (Sweden)

    Liu Yong

    2012-01-01

    Full Text Available Melt electrospinning is an even simpler and safer method compared with the solution electrospinning in the production of ultra-fine fibers. Polylactic acid (PLA is a biodegradable and resorbable aliphatic ester that has received significant attention in recent years. PLA is easily degradable at high temperature in the process of melt electrospinning. High efficient fibers were made using our designed umbrella-like spray head spinning facility in this work. To find how to alleviate the problematic degradation and what factors could be relevant to degradation, temperature, relative molecular mass, Differential Scanning Calorimeter and X-ray Diffraction patterns before and after spinning were investigated and compared with each other. Results showed that fibers were facile shorten and fractured when spun at 245°C while the relative molecular mass of PLA fibers decreased markedly as compared with that spun at 210°C. To hinder the degradation, couple of experimental efforts were implemented with adding antioxidants, raising spinning voltage, lowering temperature, and reducing residence time. After such efforts, it was observed that the relative molecular mass of the PLA fibers was higher than those without inputting any efforts. The effect of antioxidant 1010 was found the most promising on the alleviation of PLA problematic thermal degradation.

  2. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki

    2015-10-01

    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  3. SPPEXA Symposium

    CERN Document Server

    Neumann, Philipp; Nagel, Wolfgang

    2016-01-01

    The research and its outcomes presented in this collection focus on various aspects of high-performance computing (HPC) software and its development which is confronted with various challenges as today's supercomputer technology heads towards exascale computing. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The collection thereby highlights pioneering research findings as well as innovative concepts in exascale software development that have been conducted under the umbrella of the priority programme "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) and that have been presented at the SPPEXA Symposium, Jan 25-27 2016, in Munich. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest...

  4. Seventh International Beaver Symposium

    OpenAIRE

    Yuri A. Gorshkov

    2016-01-01

    The paper presents data on the seventh international Beaver Symposium. Brief historical background about previous Beaver Symposia beaver is shown. Data on the sections of symposium, number of participants and reports are presented.

  5. Seventh International Beaver Symposium

    Directory of Open Access Journals (Sweden)

    Yuri A. Gorshkov

    2016-05-01

    Full Text Available The paper presents data on the seventh international Beaver Symposium. Brief historical background about previous Beaver Symposia beaver is shown. Data on the sections of symposium, number of participants and reports are presented.

  6. Protection by high velocity thermal spraying coatings on thick walled permanent and interim store components for the diminution of repairs, corrosion and costs 'SHARK'. Overview at the end of the project

    International Nuclear Information System (INIS)

    Behrens, Sabine; Hassel, Thomas; Bach, Friedrich-Wilhelm

    2012-01-01

    The corrosion protection of the internal space of thick-walled interim and permanent storage facility components, such as Castor copyright containers, are ensured nowadays by a galvanic nickel layer. The method has proved itself and protects the base material of the containers at the underwater loading in the Nuclear power station from a corrosive attack. Although, the galvanic nickel plating is a relatively time consuming method, it lasts for several days for each container, and is with a layer thickness of 1,000 μm also expensive. To develop an alternative, faster and more economical method, a BMBF research project named - 'SHARK - protection by high velocity thermal spraying layers on thick-walled permanent and interim store components for the diminution of repairs, corrosion and costs' in cooperation between Siempelkamp Nukleartechnik GmbH and the Institute of Materials Science of the Leibniz University of Hanover was established to investigate the suitability of the high velocity oxy fuel spraying technology (HVOF) for the corrosion protective coating of thickwalled interim and permanent storage facility components. Since the permanent storage depot components are manufactured from cast iron with globular graphite, this material was exclusively used as a base material in this project. The evaluation of the economical features of the application of different nickel base spraying materials on cast iron substratum was in focus, as well as the scientific characterization of the coating systems with regard to the corrosion protective properties. Furthermore, the feasibility of the transfer of the laboratory results on a large industrial setup as well as a general suitability of the coating process for a required repair procedure was to be investigated. The preliminary examination program identified chromium containing spraying materials as successful. Results of the preliminary examination program have been used for investigations with the CASOIK demonstration

  7. Electrochemical corrosion behaviour of Mg-Al alloys with thermal spray Al/SiCp composite coatings; Comportamiento a la corrosion electroquimica de aleaciones MgAl con recubrimientos de materiales compuestos Al/SiCp mediante proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Feliu Jr, S.; Merino, M. C.; Mohedano, M.; Casajus, P.; Arrabal, R.

    2010-07-01

    The corrosion protection of Mg-Al alloys by flame thermal spraying of Al/SiCp composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiC particles (SiCp) varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of micro-channels, largely in the vicinity of the SiC particles, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5-30 vol.% SiCp compared with the un reinforced thermal spray aluminium coatings. (Author) 31 refs.

  8. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  9. Symposium summary

    International Nuclear Information System (INIS)

    Lawford, R.G.; Hubbard, K.G.

    1991-01-01

    For the purposes of the symposium, the Great Plains area was defined as the three Canadian Prairie provinces of Alberta, Saskatchewan and Manitoba, and eight north central states including North and South Dakota, Nebraska, Montana, Minnesota, Wyoming, Colorado and Kansas, covering over 3.5 million square kilometers. The presentations during the plenary sessions provided a comprehensive overview of the climate change subject and uncertainties, and the resource base and socio-economic structure which it will impact. There was a high degree of unanimity concerning research needs, which fell into seven areas: lack of understanding and models of linkages between climate, the resource base, and socio-economic structures; need for better regional climate change scenarios for use in impact studies; inadequate understanding of natural processes, particularly where physical, biophysical and biogeochemical parameters are operating; need for policy research to enable change of policies and informed decisions; readily available common databases for use in joint U.S./Canada climate studies; an information base and mechanisms to enable more effective communications; and networks to monitor the progress of global warming and its impact on resources

  10. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds

    International Nuclear Information System (INIS)

    Mimouni, R.; Kamoun, O.; Yumak, A.; Mhamdi, A.; Boubaker, K.; Petkova, P.; Amlouk, M.

    2015-01-01

    Highlights: • Proposing an original explanation to the difference between manganese-doped zinc oxide and undoped behavior. • Presenting an original effective electrical and fluorescence-related calculation scheme. • Outlining original AC–DC investigation protocol. - Abstract: Manganese-doped zinc oxide thin films (ZnO:Mn) at different percentages (0–3%) were deposited on glass substrates using a chemical spray technique. The effects of manganese element content on structural, optical, opto-thermal and electrical conductivity of ZnO:Mn thin films were investigated by means of X-ray diffraction, optical measurement, Photoluminescence spectroscopy and impedance spectroscopy. XRD analysis revealed that all films consist of single phase ZnO and were well crystallized in würtzite phase with the crystallites preferentially oriented towards (0 0 2) direction parallel to c-axis. Doping manganese resulted in a slight decrease in the optical band gap energy of the films and a noticeably change in optical constants. The UV peak positions for ZnO:Mn samples slightly red shift to the longer wavelength in comparison with the pure ZnO which can be attributed to the change in the acceptor level induced by the substitutional Mn 2+ and the band-gap narrowing of ZnO with the Mn dopant. We have performed original AC and DC conductivity studies inspired from Jonscher and small polaron models. These studies helped establishing significant correlation between temperature and activation energy and Mn content. From the spectroscopy impedance analysis we investigated the frequency relaxation phenomenon and the circuit equivalent circuit of such thin films. Finally, all results have been discussed, as an objective of the actual work, in terms of the manganese doping concentration

  11. Cold Spray for Repair of Magnesium Components

    Science.gov (United States)

    2011-11-01

    Readiness Center East GM General Motors He helium hex-Cr hexavalent chromium HP-Al High Purity Aluminum HVOF High Velocity Oxygen Fuel ID inner...process is the hexavalent chromium (hex-Cr) permissible exposure limit (PEL) as established by the Occupational Safety and Health Administration (OSHA...project related to replacement of hard chrome plating on helicopter dynamic components using HVOF thermal spray coatings. FRC-E has a thermal spray

  12. Temporal frequency of knockdown resistance mutations, F1534C and V1016G, in Aedes aegypti in Chiang Mai city, Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids.

    Science.gov (United States)

    Plernsub, Suriya; Saingamsook, Jassada; Yanola, Jintana; Lumjuan, Nongkran; Tippawangkosol, Pongsri; Walton, Catherine; Somboon, Pradya

    2016-10-01

    In Thailand, control of dengue outbreaks is currently attained by the use of space sprays, particularly thermal fogging using pyrethroids, with the aim of killing infected Aedes mosquito vectors in epidemic areas. However, the principal dengue vector, Aedes aegypti, is resistant to pyrethroids conferred mainly by mutations in the voltage-gated sodium channel gene, F1534C and V1016G, termed knockdown resistance (kdr). The objectives of this study were to determine the temporal frequencies of F1534C and V1016G in Ae. aegypti populations in relation to pyrethroid resistance in Chiang Mai city, and to evaluate the impact of the mutations on the efficacy of thermal fogging with the pyrethroid deltamethrin. Larvae and pupae were collected from several areas around Chiang Mai city during 2011-2015 and reared to adulthood for bioassays for deltamethrin susceptibility. These revealed no trend of increasing deltamethrin resistance during the study period (mortality 58.0-69.5%, average 62.8%). This corresponded to no overall change in the frequencies of the C1534 allele (0.55-0.66, average 0.62) and G1016 allele (0.34-0.45, average 0.38), determined using allele specific amplification. Only three genotypes of kdr mutations were detected: C1534 homozygous (VV/CC); G1016/C1534 double heterozygous (VG/FC); and G1016 homozygous (GG/FF) indicating that the F1534C and V1016G mutations occurred on separate haplotypic backgrounds and a lack of recombination between them to date. The F1 progeny females were used to evaluate the efficacy of thermal fogging spray with Damthrin-SP(®) (deltamethrin+S-bioallethrin+piperonyl butoxide) using a caged mosquito bioassay. The thermal fogging spray killed 100% and 61.3% of caged mosquito bioassay placed indoors and outdoors, respectively. The outdoor spray had greater killing effect on C1534 homozygous and had partially effect on double heterozygous mosquitoes, but did not kill any G1016 homozygous mutants living outdoors. As this selection

  13. Effect of heat treatment on the wear and corrosion behaviors of a gray cast iron coated with a COLMONOY 88 alloy deposited by high velocity oxygen fuel (HVOF thermal spray

    Directory of Open Access Journals (Sweden)

    A. Öz

    2013-07-01

    Full Text Available The present work has been conducted in order to determine the influence of heat treatment on the wear and corrosion behaviours of a gray cast iron substrate coated with a Ni base coating deposited by HVOF thermal spray. The wear resistance of the coatings was obtained using a reciprocating wear tester by rubbing a 10 mm diameter steel ball on the coatings at normal atmospheric conditions. Corrosion tests were performed using potentiodynamic polarization measurements in a 3,5 % NaCl solution. It was observed that the corrosion and wear resistance of the coatings increased along with the reduction of porosity and roughness by the heat treatment.

  14. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  15. Eleventh symposium on energy engineering sciences: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases

  16. HVOF Thermal Spray TiC/TiB2 Coatings for AUSC Boiler/Turbine Components for Enhanced Corrosion Protection

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kanchan [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Koc, Rasit [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Fan, Chinbay [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-07

    The high temperatures of operations still pose significant risk of degradation and fatigue from oxidizing, corroding and eroding environment. In addition to unused O2, water from combustion and SOx from the coal sulfur oxidation that result in highly corrosive environment, acid gases such as HCl and other sulfur compounds may also be present. These adverse effects are further accelerated due to the elevated temperatures. In addition, ash particulates and unburnt carbon and pyritic sulfur can cause erosion of the surface and thus loss of material. Unburnt carbon and pyritic sulfur may also cause localized reduction sites. Thus, fireside corrosion protection and steam oxidation protection alternatives to currently used Ni-Cr overlays need to be identified and evaluated. Titanium carbide (TiC) is a suitable alternative on account of the material features such as the high hardness, the high melting point, the high strength and the low density for the substitution or to be used in conjunction with NiCr for enhancing the fireside corrosion and erosion of the materials. Another alternative is the use of titanium boride as a coating for chemical stability required for long-term service and high erosion resistance over the state-of-the-art, high fracture toughness (K1C ~12 MPam1/2) and excellent corrosion resistance (kp~1.9X10-11 g2/cm4/s at 800°C in air). The overarching aim of the research endeavor was to synthesize oxidation, corrosion and wear resistant TiC and TiB2 coating powders, apply thermal spray coating on existing boiler materials and characterize the coated substrates for corrosion resistance for applications at high temperatures (500 -750 °C) and high pressures (~350 bars) using the HVOF process and to demonstrate the feasibility of these coating to be used in AUSC boilers and turbines.

  17. Spray characteristics and spray cooling heat transfer in the non-boiling regime

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Han, Feng-Yun; Liu, Qi-Nie; Fan, Han-Lin

    2011-01-01

    Spray cooling is an effective method for dissipating high heat fluxes in the field of electronics thermal control. In this study, experiments were performed with distilled water as a test liquid to study the spray cooling heat transfer in non-boiling regime. A Phase Doppler Anemometry (PDA) was used to study the spray characteristics. The effects of spray flow rate, spray height, and inlet temperature on spray cooling heat transfer were investigated. It was found that the parameters affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and working fluid thermophysical properties. Then the corresponding droplet axial velocity and Sauter mean diameter (SMD) were successfully correlated with mean absolute error of 15%, which were based upon the orifice diameter, the Weber and Reynolds numbers of the orifice flow prior to liquid breakup, dimensionless spray height and spray cross-section radius. The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%, which was mainly associated with the working fluid thermophysical properties, the Weber and Reynolds numbers hitting the heating surface, dimensionless heating surface temperature and diameter. -- Highlights: → The spray flow rate, spray height, and inlet temperature affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and the working fluid thermophysical properties. → Then the corresponding droplet axial velocity and Sauer mean diameter (SMD) were successfully correlated with mean absolute error of 15%. → The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%.

  18. 4th Abel Symposium

    CERN Document Server

    Friedlander, Eric; Jahren, Björn; Østvær, Paul

    2009-01-01

    The 2007 Abel Symposium took place at the University of Oslo in August 2007. The goal of the symposium was to bring together mathematicians whose research efforts have led to recent advances in algebraic geometry, algebraic K-theory, algebraic topology, and mathematical physics. A common theme of this symposium was the development of new perspectives and new constructions with a categorical flavor. As the lectures at the symposium and the papers of this volume demonstrate, these perspectives and constructions have enabled a broadening of vistas, a synergy between once-differentiated subjects, and solutions to mathematical problems both old and new.

  19. Influence of process parameters on the cavitation resistance of arc thermally sprayed cobalt stainless steel; Influencia dos parametros de processo na resistencia a cavitacao de uma liga inoxidavel com cobalto aspergido a arco

    Energy Technology Data Exchange (ETDEWEB)

    Pukasiewicz, A. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Capra, A.R.; Chandelier, J. da L. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], e-mail: anderson.geraldo@lactec.org.br; Paredes, R.S.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    In this work the influence of the arc thermal spraying process on the microstructure, oxide volumetric fraction, porosity and cavitation resistance was studied. The characterization was performed by optical and electrical microscopy, microhardness and ultrasonic cavitation test, ASTM G32-96 in AS895HY cobalt stainless steel. The increase in air pressure, 280 to 410 kPa, modified the oxide fraction from 17,2 +- 3,6% to 10,9 +-1,8%, in the samples without pre-heating treatment. With 120 deg C pre-heating treatment the oxide fraction increase from 24,1 +- 2,8% to 12,8 +- 1,9% when the air pressure was modified from 280 to 550 kPa. The mass loss in vibration-induced cavitation were 1,55 and 1,42 mg/h for 410 kPa AS895HY samples, with and without pre heating treatment, and 2,12 mg/h for 280 kPa samples without pre heating treatment. The results showed that the process parameters modified the microstructure and the cavitation resistance of the arc thermal spraying coatings. (author)

  20. Symposium on neutron scattering

    International Nuclear Information System (INIS)

    Lehmann, M.S.; Saenger, W.; Hildebrandt, G.; Dachs, H.

    1984-01-01

    Extended abstracts of the named symposium are presented. The first part of this report contains the abstracts of the lectures, the second those of the posters. Topics discussed on the symposium include neutron diffraction and neutron scattering studies in magnetism, solid state chemistry and physics, materials research. Some papers discussing instruments and methods are included too. (GSCH)

  1. Spray deposition using impulse atomization technique

    International Nuclear Information System (INIS)

    Ellendt, N.; Schmidt, R.; Knabe, J.; Henein, H.; Uhlenwinkel, V.

    2004-01-01

    A novel technique, impulse atomization, has been used for spray deposition. This single fluid atomization technique leads to different spray characteristics and impact conditions of the droplets compared to gas atomization technique which is the common technique used for spray deposition. Deposition experiments with a Cu-6Sn alloy were conducted to evaluate the appropriateness of impulse atomization to produce dense material. Based on these experiments, a model has been developed to simulate the thermal history and the local solidification rates of the deposited material. A numerical study shows how different cooling conditions affect the solidification rate of the material

  2. Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings

    Science.gov (United States)

    Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Wang, Y.; Lima, R. S.; Moreau, C.

    2010-01-01

    Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.

  3. CONTEXT 2015 Doctorial Symposium

    DEFF Research Database (Denmark)

    Eklund, Peter; wegener, rebekah

    2015-01-01

    What is the CONTEXT 2015 Doctoral Symposium? The CONTEXT 2015 Doctoral Symposium is an opportunity for doctoral researchers to showcase their work and discuss problems, challenges, and ideas in an open and collegial environment with expert feedback. The Doctoral Symposium is a workshop for doctoral...... feedback and general advice in a constructive atmosphere. Doctoral researchers will present and discuss their research in a supportive atmosphere with other doctoral researchers and an international panel of established researchers that provide expert feedback. The workshop will take place on a single full...... day, Monday November 2, 2015, the day prior to the start of the main CONTEXT 2015 conference....

  4. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  5. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  6. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  7. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    Science.gov (United States)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  8. XXth symposium neuroradiologicum 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-09-15

    The volume includes abstracts from lectures and poster presentations during the XXth symposium neuroradiologicum 2014 covering the following issues: Stroke, head and neck, pediatric diagnostic neuroradiology, spine and interventional neuroradiology, adult diagnostic neuroradiology, intravascular interventional neuroradiology.

  9. COST 516 Tribology Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Ronkainen, H.; Holmberg, K. [eds.

    1998-11-01

    Cost 516 Tribology action is the first joint European research action focusing on tribology, which originates in the approval of its Memorandum of understanding in February 1994. The COST 516 Tribology Symposium took place in Espoo, Finland from 14th to 15th May 1998. This was the first Symposium of the COST 516 Tribology action. The large number of research contributions at the Symposium, altogether almost SO, and their scientific and technical level, is an indication of the importance and significance of tribology research. The symposium proceedings contain papers in a wide variety of subjects, covering the three categories of the COST 516 Tribology action, namely Grease lubrication (GRIT), Tribology of renewable environmentally adapted lubricants (REAL) and Coatings and surface treatments (CAST). (orig.)

  10. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    Science.gov (United States)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  11. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  12. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  13. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  14. LSPRAY-IV: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  15. Development of Nb2O5|Cu composite as AISI 1020 steel thermal spray coating for protection against corrosion by soil in buried structures

    International Nuclear Information System (INIS)

    Regis Junior, Oscar; Silva, Jose Maurilio da; Portella, Kleber Franke; Paredes, Ramon Sigifredo Cortes

    2012-01-01

    An Nb 2 O|Cu corrosion-resistant coating was developed and applied onto AISI 1020 steel substrate by Powder Flame Spray. A galvanostatic electrochemical technique was employed, with and without ohmic drop, in four different soils (two corrosively aggressive and two less aggressive). Behavior of coatings in different soils was compared using a cathodic hydrogen reduction reaction (equilibrium potential, overvoltage and exchange current density) focusing on the effect of ohmic drop. Results allow recommendation of Nb 2 O 5 |Cu composite for use in buried structure protection. (author)

  16. Plasma-sprayed tantalum/alumina cermets

    International Nuclear Information System (INIS)

    Kramer, C.M.

    1977-12-01

    Cermets of tantalum and alumina were fabricated by plasma spraying, with the amount of alumina varied from 0 to 65 percent (by volume). Each of four compositions was then measured for tensile strength, elastic modulus, and coefficient of thermal expansion. In general, strength and strain to failure decreased with increasing alumina content: 62 MPa for 100 percent Ta to 19 MPa for 35 v percent Ta. A maximum of 0.1 percent strain was observed for the sprayed 100 percent Ta specimens. The coefficient of thermal expansion measured for the pure Ta was 6.2 (10 -6 )/K

  17. LSPRAY-V: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2015-01-01

    LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.

  18. The paediatric cardiac centre for Africa--proceedings of the March 2012 symposium.

    Science.gov (United States)

    Kinsley, Robin H; Edwin, Frank; Entsua-Mensah, Kow

    2013-04-01

    The Pediatric Cardiac Centre for Africa (PCCA) was opened by national patron Mr Nelson Mandela on November 7, 2003. In 2008, the Centre's international pediatric cardiac symposium was introduced as a learning forum for pediatric cardiac surgeons and cardiologists in the continent. The symposium has consistently grown in attendance and attracted distinguished leaders in the field. The 2012 symposium featured Dr. Thomas Spray of Children's Hospital of Philadelphia, Dr. David Barron of Birmingham Children's Hospital, and Dr. John Brown of Indiana University School of Medicine as guest speakers. Experience of the Fontan procedure, the small aortic root, hypoplastic left heart syndrome, right ventricular outflow tract reconstruction, transposition of the great arteries, and interrupted aortic arch were the highlights of the symposium. In the "African Corner," centers in South Africa, Ghana, and Angola presented work done from across the African continent.

  19. 7th international symposium on internal combustion diagnostics. Proceedings; 7. Internationales Symposium fuer Verbrennungsdiagnostik. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At one time combustion pressure indicating was the ''trigger'' for this symposium, and today it still serves as the basis for continued investigation of combustion phenomena. It now finds application throughout the development process, as more sophisticated analysis of conventional signals is possible. Understanding of localized combustion phenomena is substantially simplified by means of optical diagnostic methods, the application of which has reached a certain level of standardization. The presentations will cover specific topics including fuel spray analysis, ignition events and information about gas mixtures. The comparison and combination of results from measurement and simulation shed light on the complex processes in the combustion chamber. What's more, the linkage of two complementary methods offers substantial cost savings through reductions in test hardware and shorter development times. Focused application of all of the available tools allows us better to understand combustion processes, recognize the influential parameters and derive control algorithms. The latter are subsequently to be found in engines that fulfill both regulatory requirements and customer expectations. So it is that the symposium captures the current state of the art in combustion diagnostics through a combination of indicating, optical diagnostics and simulation, and offers both the methodology expert and the engine developer the ideal platform for discussion of today's issues - and to form their own opinions on them. Anyone wanting to keep up to date in this continuously developing and ever more complex area of activity certainly can't afford to miss our symposium. (orig.)

  20. Heat jettisoning from solar-thermal driven LiBr-H{sub 2}O absorber cooling units by pulsed spraying a dry cooler with water; Waermeabwurf aus einer solarthermisch getriebenen LiBr- H{sub 2}O Absorptionskaeltemaschine durch gepulstes Bespruehen eines Trockenkuehlers mit Wasser

    Energy Technology Data Exchange (ETDEWEB)

    Gantenbein, P.; Helfenberger, R.; Frank, E.

    2010-07-01

    This short, illustrated final report discusses the removal of heat from solar-thermal driven LiBr-H{sub 2}O absorber cooling units by pulsed spraying a dry cooler with water. The reduction of electricity consumption for room cooling using conventional chillers is examined. Heat dissipation using open cooling towers and the disadvantages encountered are compared with heat dissipation using a dry cooler with heat-exchanger and fans. Additional evaporation cooling achieved by spraying the heat exchanger with water is described and discussed. The results of measurements made at the Institute for Solar Technology in Rapperswil, Switzerland, are presented and discussed.

  1. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  2. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  3. Proceedings of the ninth symposium on thermophysical properties: special symposium Issue 5

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Among the topics discussed in this volume of the symposium are: the establishment of accuracy limits and standards for comparative thermal conductivity measurements; thermal conductivity and electrical resistivity of cadmium arsenide in the temperature range 4.2-40 K; suggestions regarding thermal diffusivity measurements on pyrolytic graphite and pyrolytic boron nitride by the laser pulse method; experimental study of the viscosity of lithium vapor at high temperatures and pressures; transport coefficients of fluid mixtures; an equation of state for isobutane-isopentane mixtures with corrections for impurities, and the importance of thermophysical data in process simulation

  4. Babbitt Casting and Babbitt Spraying Processes Case Study

    OpenAIRE

    M. Jalali Azizpour; S.Norouzi H. Mohammadi Majd

    2011-01-01

    In this paper, the babbitting of a bearing in boiler feed pump of an electromotor has been studied. These bearings have an important role in reducing the shut down times in the pumps, compressors and turbines. The most conventional method in babbitting is casting as a melting method. The comparison between thermal spray and casting methods in babbitting shows that the thermal spraying babbitt layer has better performance and tribological behavior. The metallurgical and tribological analysis s...

  5. Effects of substrate temperature on sprayed ZnO thin films optical and morphological properties in terms of Amlouk-Boubaker opto-thermal expansivity psi{sub AB}

    Energy Technology Data Exchange (ETDEWEB)

    Amlouk, A.; Boubaker, K. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia)

    2009-08-12

    In this study, ZnO thin films have been grown using spray pyrolysis technique on glass substrates under various substrate temperature (400, 420, 440, 460, 480 and 500 deg. C). The Precursors were Propan-2-ol C{sub 3}H{sub 8}O and zinc acetate zinc Zn(CH{sub 3}CO{sub 2}){sub 2} in acidified medium (acetic acid CH{sub 3}CO{sub 2}H, pH = 5). XRD analyses yielded a strong (0 0 2) X-ray diffraction line for low substrate temperatures (400-420 deg. C). This c-axis preferential orientation was not observed for substrate temperature beyond 440 deg. C. Atomic Force Microscopy (AFM) analyses monitored clusters with variable shapes (pyramidal for high temperatures and rounded concentrated ones for temperatures below 440 deg. C). Finally, the optical measurements were carried out via transmittance T(lambda) and reflectance R(lambda) spectra inside 250-2500 nm domain. Thanks to optical measurements, the conjoint optical and thermal properties were deduced using the Amlouk-Boubaker opto-thermal expansively psi{sub AB}.

  6. Fullerene monolayer formation by spray coating

    NARCIS (Netherlands)

    Cervenka, J.; Flipse, C.F.J.

    2010-01-01

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method

  7. Plasma Sprayed Coatings for RF Wave Absorption

    Czech Academy of Sciences Publication Activity Database

    Nanobashvili, S.; Matějíček, Jiří; Žáček, František; Stöckel, Jan; Chráska, Pavel; Brožek, Vlastimil

    307-311, - (2002), s. 1334-1338 ISSN 0022-3115 Grant - others: COST (XE) Euratom DV4/04(TWO) Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide, thermal spray coatings, fusion materials, RF wave absorption Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.730, year: 2002

  8. Consolidation of tungsten disilicide by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Matějíček, Jiří; Rohan, Pavel; Janča, J.

    2007-01-01

    Roč. 52, č. 3 (2007), s. 311-320 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : Water stabilized plasma * tungsten disilicide * plasma deposition * thermal spray coatings Subject RIV: JJ - Other Materials

  9. Abel Symposium 2015

    CERN Document Server

    Larsen, Nadia; Neshveyev, Sergey; Skau, Christian

    2016-01-01

    Like the first Abel Symposium, held in 2004, the Abel Symposium 2015 focused on operator algebras. It is interesting to see the remarkable advances that have been made in operator algebras over these years, which strikingly illustrate the vitality of the field. A total of 26 talks were given at the symposium on a variety of themes, all highlighting the richness of the subject. The field of operator algebras was created in the 1930s and was motivated by problems of quantum mechanics. It has subsequently developed well beyond its initial intended realm of applications and expanded into such diverse areas of mathematics as representation theory, dynamical systems, differential geometry, number theory and quantum algebra. One branch, known as “noncommutative geometry”, has become a powerful tool for studying phenomena that are beyond the reach of classical analysis. This volume includes research papers that present new results, surveys that discuss the development of a specific line of research, and articles ...

  10. 8th International symposium on transport phenomena in combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  11. Effects of load and thermal histories on mechanical behavior of materials; Proceedings of the Symposium, Denver, CO, Feb. 25, 26, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, P.K.; Nicholas, T.

    1987-01-01

    This volume includes topics on fatigue crack propagation; isothermal and thermal-mechanical fatigue; and microstructure, fracture, and damage. Papers are presented on transients in fatigue crack growth, elevated-temperature fatigue crack propagation, the role of crack closure in crack retardation in P/M and I/M aluminum alloys, the acoustic interrogation of fatigue overload effects, and the effects of frequency and environment on crack growth in Inconel 718. Special attention is given to isothermal fatigue failure mechanisms in low-tin lead-based solder, the stress and strain controlled low-cycle fatigue of Pb-Sn solder for electronic packaging applications, load sequence effects on the deformation of isolated microplastic grains, and thermal fatigue of stainless steel. Other papers are on the influence of thermal aging on the creep crack growth behavior of a Cr-Mo steel, the effect of cyclic loading on the fracture toughness of a modified 4340 steel, and the effects of hot rolling condition and boron microalloying on phase transformation and microstructure in niobium-bearing interstitial free steel.

  12. The Abel Symposium 2013

    CERN Document Server

    Irgens, Marius; Wold, Erlend

    2015-01-01

    This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world’s leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.

  13. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  14. High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing

    Energy Technology Data Exchange (ETDEWEB)

    Sanjib, Das [University of Tennessee, Knoxville (UTK); Yang, Bin [ORNL; Gu, Gong [University of Tennessee, Knoxville (UTK); Joshi, Pooran C [ORNL; Ivanov, Ilia N [ORNL; Rouleau, Christopher [ORNL; Aytug, Tolga [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL

    2015-01-01

    Realizing the commercialization of high-performance and robust perovskite solar cells urgently requires the development of economically scalable processing techniques. Here we report a high-throughput ultrasonic spray-coating (USC) process capable of fabricating perovskite film-based solar cells on glass substrates with power conversion efficiency (PCE) as high as 13.04%. Perovskite films with high uniformity, crystallinity, and surface coverage are obtained in a single step. Moreover, we report USC processing on TiOx/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible perovskite solar cells with PCE as high as 8.02% that are robust under mechanical stress. In this case, an optical curing technique was used to achieve a highly-conductive TiOx layer on flexible PET substrates for the first time. The high device performance and reliability obtained by this combination of USC processing with optical curing appears very promising for roll-to-roll manufacturing of high-efficiency, flexible perovskite solar cells.

  15. Birch symposium proceedings

    Science.gov (United States)

    W.T. Doolittle; P.E. Bruns

    1969-01-01

    This symposium on yellow and paper birch is the third in a series of meetings devoted to discussion of our fine hardwood timber species. The first meeting, held at Carbondale, Illinois, in 1966, dealt with black walnut. The second, held at Houghton, Michigan, in 1968, dealt with sugar maple. The purpose of this third meeting is to bring together our present knowledge...

  16. Symposium summary and prognosis

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1975-11-01

    The summary of the symposium on high energy physics experiments includes phenomena at low energies, the foundations of physics (considered to be mainly gravitation and quantum electrodynamics), standards of reference used for interpretation of experimental data, the new physics, particle proliferation, theoretical development, and a prognosis for the future

  17. European Cosmic Ray Symposium

    CERN Multimedia

    Pattison,B

    1992-01-01

    13me Symposium qui se déroule du 27 au 31 juillet pour la première fois au Cern. Brian Pattison ouvre la cérémonie et donne la parole à Dr.Ugland (qui représente le DG C.Rubbia excusé) et d'autres intervenants

  18. Issues of HRD. Symposium.

    Science.gov (United States)

    2002

    This document contains three papers from a symposium on issues of human resource development (HRD). "The Complex Roots of Human Resource Development" (Monica Lee) discusses the roots of HRD within the framework of the following views of management: (1) classic (the view that managers must be able to create appropriate rules and…

  19. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  20. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  1. International symposium 'Energetics 2006'. Symposium proceedings

    International Nuclear Information System (INIS)

    2006-01-01

    ZEMAK as a civil association, created in the term positive legitimate regulations of our country, presents non party, non political and non profitable association, which primary goal is animation of eperts and other scientific and non scientific workers in the function of permanent following, studying and giving directives for solve the energy problems for a long temporal period. Behind us are fourteen successful years of fertile and wealthy work, which is bringing maimal penetration in domestic as well as foreign scientific field. This successful work of ZEMAK deserves by all members which professional work is in the institutions like: MANU (Macedonian academy of science and art), Technical faculties from the Universities, state and private company from energy field and other civil persons. The main goal of this 9-th International Symposium traditionally is to collect all engineers and eperts from the field of energy, and those which professional life is energy. During this International Symposium will be present, analyze and discuss about 100 incoming papers, prepared by 100th or more authors and coauthors, divided in the following topics: Basic energy and ecology, Renewable energy sources, Energy efficiency and energy saving and Management in energy and regulations.

  2. Rewetting of a hot metallic wall by liquid spray

    International Nuclear Information System (INIS)

    Castiglia, F.; Giardina, M.; Lombardo, C.

    2005-01-01

    Full text of publication follows: Rewetting is the re-establishment of liquid in contact with a hot dried surface, whose initial temperature is higher than the so-called 'rewetting temperature'. This phenomenology is of interest in many industrial processes, for example: in metallurgical quenching, in electronic equipments cooling, in cryogenic processes, in preserving the integrity of toxic and dangerous substances metallic containers endangered by a hypothetical fire. Moreover it is essential for the re-establishment of normal and safe temperature levels following rod cluster dryout or hypothesized loss of coolant accidents (LOCAs) in nuclear reactors. In spite of the large amount of experimental and theoretical work done in the past decades, the above depicted phenomenology still deserves further clarifications and deepening. For this reason, recently at the Institute of Energetic Thermal-Fluid Dynamics of ENEA (Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, at Casaccia, Italy), experimental researches have been carried out on the rewetting of vertical surfaces, at ambient pressure and various water flow rates by spraying subcooled water at the top. Spraying devices of various configuration, able to supply water drops of uniform diameter, have been used [1]. As it is known when, following the drops impact in some region at the top of the surface the temperature is lowered below the rewetting temperature, a liquid falling film forms, the front of which advances with a velocity ( the so called 'rewetting velocity'), limited by the rapidity by which the heat is conducted into the solid (conduction controlled rewetting). In the past, about the rewetting the researchers of Department of Nuclear Engineering of the University of Palermo have carried out an extensive theoretical work and more recently, have proposed a semi-theoretical model which proved successful in correlating a lot of experimental data [2]. This model has been suitably modified in order to

  3. Rewetting of a hot metallic wall by liquid spray

    Energy Technology Data Exchange (ETDEWEB)

    Castiglia, F.; Giardina, M.; Lombardo, C. [University of Palermo, Department of Nuclear Engineering, V.le delle Scienze, 90128 Palermo (Italy)

    2005-07-01

    Full text of publication follows: Rewetting is the re-establishment of liquid in contact with a hot dried surface, whose initial temperature is higher than the so-called 'rewetting temperature'. This phenomenology is of interest in many industrial processes, for example: in metallurgical quenching, in electronic equipments cooling, in cryogenic processes, in preserving the integrity of toxic and dangerous substances metallic containers endangered by a hypothetical fire. Moreover it is essential for the re-establishment of normal and safe temperature levels following rod cluster dryout or hypothesized loss of coolant accidents (LOCAs) in nuclear reactors. In spite of the large amount of experimental and theoretical work done in the past decades, the above depicted phenomenology still deserves further clarifications and deepening. For this reason, recently at the Institute of Energetic Thermal-Fluid Dynamics of ENEA (Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, at Casaccia, Italy), experimental researches have been carried out on the rewetting of vertical surfaces, at ambient pressure and various water flow rates by spraying subcooled water at the top. Spraying devices of various configuration, able to supply water drops of uniform diameter, have been used [1]. As it is known when, following the drops impact in some region at the top of the surface the temperature is lowered below the rewetting temperature, a liquid falling film forms, the front of which advances with a velocity ( the so called 'rewetting velocity'), limited by the rapidity by which the heat is conducted into the solid (conduction controlled rewetting). In the past, about the rewetting the researchers of Department of Nuclear Engineering of the University of Palermo have carried out an extensive theoretical work and more recently, have proposed a semi-theoretical model which proved successful in correlating a lot of experimental data [2]. This model has been

  4. Symposium on Electrochemical and Thermal Modeling of Battery, Fuel Cell, and Photoenergy Conversion Systems, San Diego, CA, Oct. 20-22, 1986, Proceedings

    Science.gov (United States)

    Selman, J. Robert; Maru, Hans C.

    Papers are presented on modeling of the zinc chlorine battery, design modeling of zinc/bromine battery systems, the modeling of aluminum-air battery systems, and a point defect model for a nickel electrode structure. Also considered are the impedance of a tubular electrode under laminar flow, mathematical modeling of a LiAl/Cl2 cell with a gas diffusion Cl2 electrode, ultrahigh power batteries, and battery thermal modeling. Other topics include an Na/beta-alumina/NaAlCl4, Cl2/C circulating cell, leakage currents in electrochemical systems having common electrodes, modeling for CO poisoning of a fuel cell anode, electrochemical corrosion of carbonaceous materials, and electrolyte management in molten carbonate fuel cells.

  5. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  6. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  7. Quality characteristic of spray-drying egg white powders.

    Science.gov (United States)

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  8. Fourth Tennessee water resources symposium

    International Nuclear Information System (INIS)

    Sale, M.J.; Presley, P.M.

    1991-01-01

    The annual Tennessee Water Resources Symposium was initiated in 1988 as a means to bring together people with common interests in the state's important water-related resources at a technical, professional level. Initially the symposium was sponsored by the American Institute of Hydrology and called the Hydrology Symposium, but the Tennessee Section of the American Water Resources Association (AWRA) has taken on the primary coordination role for the symposium over the last two years and the symposium name was changed in 1990 to water resources to emphasize a more inter-disciplinary theme. This year's symposium carries on the successful tradition of the last three years. Our goal is to promote communication and cooperation among Tennessee's water resources professionals: scientists, engineers, and researchers from federal, state, academic, and private institutions and organizations who have interests and responsibilities for the state's water resources. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  9. Proceedings of the eleventh Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    Vidovszky, Istvan

    2001-12-01

    The present volume contains 57 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Csopak, Hungary, 24-28 September 2001. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Improvement of Neutron Physical Codes and Methods, Reactor Kinetics and Dynamics, Thermal-Hydraulics, Spent Fuel - Criticality Radiation, Fuel Behaviour, Spent Fuel Transmutation, Evaluation of Reactor Physical Measurements, Core Design-Core Calculations-according to the presentation sequence on the Symposium (Author)

  10. Proceedings of the 16. Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    Vidovszky, Istvan

    2006-10-01

    The present volume contains 56 papers, presented on the sixteenth Symposium of Atomic Energy Research, held in Bratislava, Slovakia, 25-29 September 2006. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation, Core Operation Experiments and Code Validation, Fuel Management, Core Surveillance and Monitoring, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning, and Radwaste, Actinide Transmutation and Spent Fuel Disposal - according to the presentation sequence on the Symposium (Author)

  11. Proceedings of the twentieth symposium of atomic energy research

    International Nuclear Information System (INIS)

    Vidovszky, I.

    2010-10-01

    The present volume contains 69 papers, presented on the twentieth symposium of atomic energy research, held in Hanasaari, Espoo, Finland, 20-24 September 2010. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  12. International Symposium on Interfacial Joining and Surface Technology (IJST2013)

    Science.gov (United States)

    Takahashi, Yasuo

    2014-08-01

    Interfacial joining (bonding) is a widely accepted welding process and one of the environmentally benign technologies used in industrial production. As the bonding temperature is lower than the melting point of the parent materials, melting of the latter is kept to a minimum. The process can be based on diffusion bonding, pressure welding, friction welding, ultrasonic bonding, or brazing-soldering, all of which offer many advantages over fusion welding. In addition, surface technologies such as surface modification, spraying, coating, plating, and thin-film formation are necessary for advanced manufacturing, fabrication, and electronics packaging. Together, interfacial joining and surface technology (IJST) will continue to be used in various industrial fields because IJST is a very significant form of environmentally conscious materials processing. The international symposium of IJST 2013 was held at Icho Kaikan, Osaka University, Japan from 27-29 November, 2013. A total of 138 participants came from around the world to attend 56 oral presentations and 36 posters presented at the symposium, and to discuss the latest research and developments on interfacial joining and surface technologies. This symposium was also held to commemorate the 30th anniversary of the Technical Commission on Interfacial Joining of the Japan Welding Society. On behalf of the chair of the symposium, it is my great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering (MSE). Among the presentations, 43 papers are published here, and I believe all of the papers have provided the welding community with much useful information. I would like to thank the authors for their enthusiastic and excellent contributions. Finally, I would like to thank all members of the committees, secretariats, participants, and everyone who contributed to this symposium through their support and invaluable effort for the success of IJST 2013. Yasuo Takahashi Chair of IJST 2013

  13. International Symposium on Interfacial Joining and Surface Technology (IJST2013)

    International Nuclear Information System (INIS)

    Takahashi, Yasuo

    2014-01-01

    Interfacial joining (bonding) is a widely accepted welding process and one of the environmentally benign technologies used in industrial production. As the bonding temperature is lower than the melting point of the parent materials, melting of the latter is kept to a minimum. The process can be based on diffusion bonding, pressure welding, friction welding, ultrasonic bonding, or brazing-soldering, all of which offer many advantages over fusion welding. In addition, surface technologies such as surface modification, spraying, coating, plating, and thin-film formation are necessary for advanced manufacturing, fabrication, and electronics packaging. Together, interfacial joining and surface technology (IJST) will continue to be used in various industrial fields because IJST is a very significant form of environmentally conscious materials processing. The international symposium of IJST 2013 was held at Icho Kaikan, Osaka University, Japan from 27–29 November, 2013. A total of 138 participants came from around the world to attend 56 oral presentations and 36 posters presented at the symposium, and to discuss the latest research and developments on interfacial joining and surface technologies. This symposium was also held to commemorate the 30th anniversary of the Technical Commission on Interfacial Joining of the Japan Welding Society. On behalf of the chair of the symposium, it is my great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering (MSE). Among the presentations, 43 papers are published here, and I believe all of the papers have provided the welding community with much useful information. I would like to thank the authors for their enthusiastic and excellent contributions. Finally, I would like to thank all members of the committees, secretariats, participants, and everyone who contributed to this symposium through their support and invaluable effort for the success of IJST 2013. Yasuo Takahashi Chair of IJST 2013

  14. Study of the mechanical stability of superconducting cavities and stiffening of these cavities by copper coating performed with thermal spray techniques; Etudes de la stabilite mecanique des cavites supraconductrices et de la methode de rigidification par projection thermique de cuivre

    Energy Technology Data Exchange (ETDEWEB)

    Gassot, H

    2001-12-01

    Today's research in nuclear physics and in particle physics needs high energy or high intensity accelerators; the use of superconducting cavities constitutes a very important technological advance for the design of such facilities, allowing high accelerating gradient with few dissipation. One of the major problems is the frequency shift under Lorentz forces: since the quality factor of the superconducting cavities is much higher than the external factor depending on the beam charge, their bandwidths are very narrow (several Hertz). Even very small mechanical deformations under Lorentz forces could induce a frequency shift which exceeds the bandwidth when the accelerating gradient becomes very high. The contribution of this thesis consists at first in a numerical analysis of this problem, then in a mechanical study of a new method for stiffening superconducting cavities: a copper coating over their external surface by thermal spray techniques. As it was a new experiment, the choice of the process and the optimization of the parameters have been carried out. An important part of this thesis has been dedicated to the systematic mechanical characterizations of the copper coatings since they are indispensable for the evaluation of the stiffening efficiency, some links between copper coating properties and thermal projection parameters have been established. The mechanical calculations are a prerequisite to obtain an effective reduction of mechanical deformations under Lorentz forces: they permit to localize the maximum deformations, to find the ideal position and the optimised shape of the stiffener. The methods implemented in this thesis allow to compare the different kinds of coating design and then to propose an interesting solution. Finally, an original approach concerning the frequency shift in pulsed mode has been developed recently, allowing to interpret some experimental observations. (author)

  15. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  16. Reactor container spray device

    International Nuclear Information System (INIS)

    Yanai, Ryoichi.

    1980-01-01

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  17. Thermal analysis simulation for a spin-motor used in the advanced main combustion chamber vacuum plasma spray project using the SINDA computer program

    Science.gov (United States)

    Mcdonald, Gary H.

    1990-01-01

    One of the many design challenges of this project is predicting the thermal effects due to the environment inside the vacuum chamber on the turntable and spin motor spindle assembly. The objective of the study is to model the spin motor using the computer program System Improved Numerical Differencing Analyzer (SINDA). By formulating the appropriate input information concerning the motor's geometry, coolant flow path, material composition, and bearing and motor winding characteristics, SINDA should predict temperatures at various predefined nodes. From these temperatures, hopefully, one can predict if the coolant flow rate is sufficient or if certain mechanical elements such as bearings, O ring seals, or motor windings will exceed maximum design temperatures.

  18. Isotope hydrology 1983. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1984-01-01

    These proceedings contain the papers and poster presentations from the Symposium on Isotope Hydrology held 12-16 September 1983 in Vienna, Austria. The topics of the sessions were as follows: Thermal water studies, groundwater dating, hydrology of arid and semi-arid areas, field studies with environmental isotopes, precipitation-surface-groundwater relationships, pollution, artificial tracers and sediment transport. Twenty poster presentations in English have been indexed here separately. All other articles from this Proceedings Series are available under ISBN 92-0-040087-6

  19. Resistencia al desgaste de recubrimientos de bronce al aluminio producidos con técnica de proyección térmica//Wear resistance of aluminum bronze coatings produced by thermal spray

    Directory of Open Access Journals (Sweden)

    Dayan Carolina Cárdenas-Feria

    2015-09-01

    Full Text Available Se estudió la resistencia al desgaste adhesivo de recubrimientos de bronce al aluminio depositados con la técnica de proyección térmica por llama sobre bronce fosforado SAE 62. Los recubrimientos fueron fabricados variando las presiones parciales de los gases de combustión, oxígeno y acetileno. El material utilizado fue caracterizado estructuralmente mediante difracción de rayosX (X-ray diffraction, XRD y el estudio morfológico mediante microscopía electrónica de barrido (Scanning electron microscopy, SEM. La resistencia al desgaste adhesivo de los recubrimientos se determinó por medio del ensayo de bola sobre disco, utilizando como bola una esférica de acero 100Cr6. Los resultados obtenidos permiten establecer que los recubrimientos proyectados con una presión de oxigeno de 78 psi y una presión de acetileno de 8 psi presentan la mejor resistencia al desgaste en comparación a los tratamientos producidos. El modo de falla de desgaste en los recubrimientos producidos es discutido en esta investigación.Palabras clave: desgaste abrasivo y adhesivo,  proyección térmica,  recubrimientos.______________________________________________________________________________AbstractWe studied the adhesive wear resistance of aluminum bronze coatings deposited by thermal spray on phosphor bronze SAE 62 substrates. The coatings were deposited by varying the partial pressures of the combustion gases: oxygen and acetylene. The structural characterization was made through X-ray diffraction (XRD and the morphological analysis was performed by scanning electron microscopy (SEM. The adhesive wear resistance of the coatings was determined by the bole on disc test using a spherical ball made of steel 100Cr6 and with a diameter of 6 mm. The results obtained show that the coating projected with an oxygen pressure of 78 psi and an acetylene pressure of 8 psi have the better wear resistance compared with the substrate and the others treatments deposited

  20. Study of ytterbium doping effects on structural, mechanical and opto-thermal properties of sprayed ZnO thin films using the Boubaker Polynomials Expansion Scheme (BPES)

    Energy Technology Data Exchange (ETDEWEB)

    Amlouk, A. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Boubaker, K., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Bouhafs, M. [Unite de Recherche MA2I, Ecole Nationale d' Ingenieurs de Tunis, B.P. 37 Le Belvedere, 1002 Tunis (Tunisia)

    2009-10-19

    In this work, ZnO thin films have been grown on glass substrates by using a solution of propanol (C{sub 3}H{sub 8}O), water (H{sub 2}O) and zinc acetate (Z{sub n}(CH{sub 3}CO{sub 2}){sub 2}) in acidified medium (pH 5). The obtained films were n doped with ytterbium (Yb) at the rates of 100, 200 and 300 ppm. The structural features of the doped films were investigated using XRD, atomic force microscopy and scanning electronic microscopy techniques. XRD analysis shows a strong (0 0 2) X-ray diffraction line for increasing Yb-doping amounts. This c-axis preferential orientation of ZnO crystallites is naturally required to use this oxide as transparent conductor in optoelectronic applications. Atomic force microscopy (AFM) analysis shows an enhancement in the surface roughness of the doped ZnO:Yb thin films. Optical measurements were performed in 300-1800 nm domain via transmittance T(lambda) and reflectance R(lambda) spectra. Conjoint optical and thermal properties were deduced from the optical measurements in reference to the Amlouk-Boubaker opto-thermal expansivity psi{sub AB}. Optically relevant ytterbium doping effects have been discussed. Finally, mechanical measurements have been carried out using Vickers standard disposal. The results confirmed the structural and functional changes that several recent studies attributed to ytterbium doping.

  1. COMPUTING: International symposium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Recent Developments in Computing, Processor, and Software Research for High Energy Physics, a four-day international symposium, was held in Guanajuato, Mexico, from 8-11 May, with 112 attendees from nine countries. The symposium was the third in a series of meetings exploring activities in leading-edge computing technology in both processor and software research and their effects on high energy physics. Topics covered included fixed-target on- and off-line reconstruction processors; lattice gauge and general theoretical processors and computing; multiprocessor projects; electron-positron collider on- and offline reconstruction processors; state-of-the-art in university computer science and industry; software research; accelerator processors; and proton-antiproton collider on and off-line reconstruction processors

  2. International RILEM Symposium

    CERN Document Server

    Birgisson, Björn; Frost, David; Wang, Linbing

    2013-01-01

    The micro- and nano-modification of infrastructure materials and the associated multi-scale characterization and simulation has the potential to open up whole new uses and classes of materials, with wide-ranging implications for society. The use of multi-scale characterization and simulation brings the ability to target changes at the very small scale that predictably effect the bulk behavior of the material and thus allowing for the optimization of material behavior and performance.   The International RILEM Symposium on Multi-Scale Modeling and Characterization of Infrastructure Materials (Stockholm, June 10-12, 2013) brought together key researchers from around the world to present their findings and ongoing research in this field in a focused environment with extended discussion times. From asphalt to concrete, from chemistry to mechanics, from nano- to macro-scale: the collection of topics covered by the Symposium represents the width and depth of the currently ongoing efforts of developing more sustain...

  3. Symposium 2 of JENAM

    CERN Document Server

    Pasquali, Anna; Environment and the Formation of Galaxies : 30 years later

    2011-01-01

    The publication of the morphology - density relation by Alan Dressler in 1980 brought into the limelight the role played by environment in the formation and evolution of galaxies. The symposium Environment and the Formation of Galaxies: 30 years later, was organised with the purpose of establishing the environmental impact on the evolution of galaxies and its dependence on look-back time. Special emphasis was placed on the physical mechanisms that are responsible for transforming galaxies once they are accreted by a group or a cluster, including the observable imprint left in the galaxy HI distribution. Other major topics of the symposium were the environmental dependence of galaxy properties at z ≥ 1 and the implementation of environmental effects in cosmological models of galaxy formation and evolution. This book presents the edited proceedings of this stimulating meeting.

  4. Space 2000 Symposium

    Science.gov (United States)

    1999-01-01

    The purpose of the Space 2000 Symposium is to present the creativity and achievements of key figures of the 20th century. It offers a retrospective discussion on space exploration. It considers the future of the enterprise, and the legacy that will be left for future generations. The symposium includes panel discussions, smaller session meetings with some panelists, exhibits, and displays. The first session entitled "From Science Fiction to Science Facts" commences after a brief overview of the symposium. The panel discussions include talks on space exploration over many decades, and the missions of the millennium to search for life on Mars. The second session, "Risks and Rewards of Human Space Exploration," focuses on the training and health risks that astronauts face on their exploratory mission to space. Session three, "Messages and Messengers Informing and Inspire Space Exploration and the Public," focuses on the use of TV medium by educators and actors to inform and inspire a wide variety of audiences with adventures of space exploration. Session four, "The Legacy of Carl Sagan," discusses the influences made by Sagan to scientific research and the general public. In session five, "Space Exploration for a new Generation," two student speakers and the NASA Administrator Daniel S. Goldin address the group. Session six, "Destiny or Delusion? -- Humankind's Place in the Cosmos," ends the symposium with issues of space exploration and some thought provoking questions. Some of these issues and questions are: what will be the societal implications if we discover the origin of the universe, stars, or life; what will be the impact if scientists find clear evidence of life outside the domains of the Earth; should there be limits to what humans can or should learn; and what visionary steps should space-faring people take now for future generations.

  5. SYMPOSIUM: Rare decays

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-04-15

    Late last year, a symposium entitled 'Rare Decays' attracted 115 participants to a hotel in Vancouver, Canada. These participants were particle physicists interested in checking conventional selection rules to look for clues of possible new behaviour outside today's accepted 'Standard Model'. For physicists, 'rare decays' include processes that have so far not been seen, explicitly forbidden by the rules of the Standard Model, or processes highly suppressed because the decay is dominated by an easier route, or includes processes resulting from multiple transitions.

  6. 1979 DOE statistical symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D.A.; Truett T. (comps. and eds.)

    1980-09-01

    The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation.

  7. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  8. 1979 DOE statistical symposium

    International Nuclear Information System (INIS)

    Gardiner, D.A.; Truett, T.

    1980-09-01

    The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation

  9. 7th international symposium on internal combustion diagnostics. Proceedings; 7. Internationales Symposium fuer Verbrennungsdiagnostik. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At one time combustion pressure indicating was the ''trigger'' for this symposium, and today it still serves as the basis for continued investigation of combustion phenomena. It now finds application throughout the development process, as more sophisticated analysis of conventional signals is possible. Understanding of localized combustion phenomena is substantially simplified by means of optical diagnostic methods, the application of which has reached a certain level of standardization. The presentations will cover specific topics including fuel spray analysis, ignition events and information about gas mixtures. The comparison and combination of results from measurement and simulation shed light on the complex processes in the combustion chamber. What's more, the linkage of two complementary methods offers substantial cost savings through reductions in test hardware and shorter development times. Focused application of all of the available tools allows us better to understand combustion processes, recognize the influential parameters and derive control algorithms. The latter are subsequently to be found in engines that fulfill both regulatory requirements and customer expectations. So it is that the symposium captures the current state of the art in combustion diagnostics through a combination of indicating, optical diagnostics and simulation, and offers both the methodology expert and the engine developer the ideal platform for discussion of today's issues - and to form their own opinions on them. Anyone wanting to keep up to date in this continuously developing and ever more complex area of activity certainly can't afford to miss our symposium. (orig.)

  10. XV ESLAB Symposium

    CERN Document Server

    1981-01-01

    The 15th ESLAB symposium was held at the end of June 1981 in Amsterdam with the topic being X-ray astronomy. The aim of this symposium was to bring together the international astrophysical community in order to 1. review the present state of X-ray astronomy in the light of new observations gathered in recent missions and to review data on interesting objects in correlated wavelen8th regions; 2. discuss theoretical models describing the phenomena observed; 3. present ESA's European X-ray Observatory Satellite (EXOSAT) and to discuss future X-ray missions and their associated instrumenta­ tion. These topics seemed to be so interesting for the scientific community that more than 120 contributions were submitted. Of these, 94 were finally accepted and approximately 200 participants attended the 5-day meeting. The symposium was organised in nine sessions covering the whole field. Every main topic was introduced by a review lecture covering the state­ of-the-art. The aim of the meeting was to assess the impact of...

  11. LHC Nobel Symposium Proceedings

    Science.gov (United States)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  12. Dynamics of flare sprays

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Hansen, R.T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable pass-band filters, multi-slit spectroscopy and extended angular field coronographs). From combined analysis of 13 well-observed sprays which occured between 1969-1974 we conclude that (i) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (ii) the spray material is confined within a steadily expanding, loop-shaped (presumably magnetically controlled) envelope with part of the material draining back down along one or both legs of the loop. (orig.)

  13. Triamcinolone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... 5 sprays into the air away from the face. If you have not used it for 2 ...

  14. Beclomethasone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  15. Flunisolide Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  16. Protection by high velocity thermal spraying coatings on thick walled permanent and interim store components for the diminution of repairs, corrosion and costs 'SHARK'. Overview at the end of the project; Schutz durch Hochgeschwindigkeitsflammspritzschichten auf dickwandigen End- und Zwischenlagerbauteilen zur Reduktion von Reparaturen, Korrosion und Kosten 'SHARK'. Ein Ueberblick zum Abschluss des Projektes

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Sabine; Hassel, Thomas; Bach, Friedrich-Wilhelm [Unterwassertechnikum Hannover, Garbsen (Germany). Inst. fuer Werkstoffkunde; Steinwarz, Wolfgang; Dyllong, Nobert; Tragsdorf, Inga Maren [Siempelkamp Nukleartechnik GmbH, Krefeld (Germany)

    2012-04-15

    The corrosion protection of the internal space of thick-walled interim and permanent storage facility components, such as Castor {sup copyright} containers, are ensured nowadays by a galvanic nickel layer. The method has proved itself and protects the base material of the containers at the underwater loading in the Nuclear power station from a corrosive attack. Although, the galvanic nickel plating is a relatively time consuming method, it lasts for several days for each container, and is with a layer thickness of 1,000 {mu}m also expensive. To develop an alternative, faster and more economical method, a BMBF research project named - 'SHARK - protection by high velocity thermal spraying layers on thick-walled permanent and interim store components for the diminution of repairs, corrosion and costs' in cooperation between Siempelkamp Nukleartechnik GmbH and the Institute of Materials Science of the Leibniz University of Hanover was established to investigate the suitability of the high velocity oxy fuel spraying technology (HVOF) for the corrosion protective coating of thickwalled interim and permanent storage facility components. Since the permanent storage depot components are manufactured from cast iron with globular graphite, this material was exclusively used as a base material in this project. The evaluation of the economical features of the application of different nickel base spraying materials on cast iron substratum was in focus, as well as the scientific characterization of the coating systems with regard to the corrosion protective properties. Furthermore, the feasibility of the transfer of the laboratory results on a large industrial setup as well as a general suitability of the coating process for a required repair procedure was to be investigated. The preliminary examination program identified chromium containing spraying materials as successful. Results of the preliminary examination program have been used for investigations with the CASOIK

  17. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    International Nuclear Information System (INIS)

    Moreira, Antonio L.N.; Carvalho, Joao; Panao, Miguel R.O.

    2007-01-01

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  18. ROTARY SPRAY DUSTER

    Directory of Open Access Journals (Sweden)

    E. S. Nechaeva

    2013-01-01

    Full Text Available Results of researches of hydraulic resistance, ablation of splashes and efficiency of dedusting in the rotor spray dust collector are given. Influence of frequency of rotation of the spray, the specified speed of gas and diameter of spattering holes on hydraulic resistance, size ablation of splashes and efficiency of a dedusting the device by diameter 0,25 m is investigated. As model liquid water is used. Results of mathematical processing are presented.

  19. Welcome and introduction to symposium

    OpenAIRE

    humanities, Symposium on Information and technology in the arts and; McLaughlin, Jeremy Lee; Matusiak, Krystyna; Hirsh, Sandra

    2015-01-01

    Welcome and introduction slides used for presentation at the Virtual Symposium on Information and Technology in the Arts and Humanities, held April 22 and 23, 2015. The Symposium was co-sponsored by the ASIS&T (Association for Information Science and Technology) Special Interest Group for Arts and Humanities (SIG AH) and the Special Interest Group for Visualization, Images, and Sound (SIG VIS).

  20. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    OpenAIRE

    D. Thirumalaikumarasamy; K. Shanmugam; V. Balasubramanian

    2014-01-01

    Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 w...

  1. Proceedings of the High Consequence Operations Safety Symposium

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Many organizations face high consequence safety situations where unwanted stimuli due to accidents, catastrophes, or inadvertent human actions can cause disasters. In order to improve interaction among such organizations and to build on each others` experience, preventive approaches, and assessment techniques, the High Consequence Operations Safety Symposium was held July 12--14, 1994 at Sandia National Laboratories, Albuquerque, New Mexico. The symposium was conceived by Dick Schwoebel, Director of the SNL Surety Assessment Center. Stan Spray, Manager of the SNL System Studies Department, planned strategy and made many of the decisions necessary to bring the concept to fruition on a short time scale. Angela Campos and about 60 people worked on the nearly limitless implementation and administrative details. The initial symposium (future symposia are planned) was structured around 21 plenary presentations in five methodology-oriented sessions, along with a welcome address, a keynote address, and a banquet address. Poster papers addressing the individual session themes were available before and after the plenary sessions and during breaks.

  2. Vapor generator steam drum spray heat

    International Nuclear Information System (INIS)

    Fasnacht, F.A. Jr.

    1978-01-01

    A typical embodiment of the invention provides a combination feedwater and cooldown water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure

  3. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO and DOE OCRWM Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  4. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  5. SYMPOSIUM: Rare decays

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Late last year, a symposium entitled 'Rare Decays' attracted 115 participants to a hotel in Vancouver, Canada. These participants were particle physicists interested in checking conventional selection rules to look for clues of possible new behaviour outside today's accepted 'Standard Model'. For physicists, 'rare decays' include processes that have so far not been seen, explicitly forbidden by the rules of the Standard Model, or processes highly suppressed because the decay is dominated by an easier route, or includes processes resulting from multiple transitions

  6. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    Science.gov (United States)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  7. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation proc...

  8. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  9. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  10. NIC symposium 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, Gernot [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Wolf, Dietrich [Duisburg-Essen Univ., Duisburg (Germany). Fakultaet fuer Physik; Kremer, Manfred (eds.) [Forschungszentrum Juelich GmbH (DE). Juelich Supercomputing Centre (JSC)

    2012-06-21

    The fifth NIC-Symposium gave an overview of the activities of the John von Neumann Institute for Computing (NIC) and of the results obtained in the last two years by research groups supported by the NIC. The large recent progress in supercomputing is highlighted by the fact that the newly installed Blue Gene/P system in Juelich - with a peak performance of 1 Petaflop/s - currently ranks number four in the TOP500 list. This development opens new dimensions in simulation science for researchers in Germany and Europe. NIC - a joint foundation of Forschungszentrum Juelich, Deutsches Elektronen-Synchrotron (DESY) and Gesellschaft fuer Schwerionenforschung (GSI) - supports with its members' supercomputer facilities about 130 research groups at universities and national labs working on computer simulations in various fields of science. Fifteen invited lectures covered selected topics in the following fields: Astrophysics Biophysics Chemistry Elementary Particle Physics Condensed Matter Materials Science Soft Matter Science Environmental Research Hydrodynamics and turbulence Plasma Physics Computer Science The talks are intended to inform a broad audience of scientists and the interested public about the research activities at NIC. The proceedings of the symposium cover projects that have been supported by the IBM supercomputers JUMP and IBM Blue Gene/P in Juelich and the APE topical computer at DESY-Zeuthen in an even wider range than the lectures.

  11. NIC symposium 2010. Proceedings

    International Nuclear Information System (INIS)

    Muenster, Gernot

    2012-01-01

    The fifth NIC-Symposium gave an overview of the activities of the John von Neumann Institute for Computing (NIC) and of the results obtained in the last two years by research groups supported by the NIC. The large recent progress in supercomputing is highlighted by the fact that the newly installed Blue Gene/P system in Juelich - with a peak performance of 1 Petaflop/s - currently ranks number four in the TOP500 list. This development opens new dimensions in simulation science for researchers in Germany and Europe. NIC - a joint foundation of Forschungszentrum Juelich, Deutsches Elektronen-Synchrotron (DESY) and Gesellschaft fuer Schwerionenforschung (GSI) - supports with its members' supercomputer facilities about 130 research groups at universities and national labs working on computer simulations in various fields of science. Fifteen invited lectures covered selected topics in the following fields: Astrophysics Biophysics Chemistry Elementary Particle Physics Condensed Matter Materials Science Soft Matter Science Environmental Research Hydrodynamics and turbulence Plasma Physics Computer Science The talks are intended to inform a broad audience of scientists and the interested public about the research activities at NIC. The proceedings of the symposium cover projects that have been supported by the IBM supercomputers JUMP and IBM Blue Gene/P in Juelich and the APE topical computer at DESY-Zeuthen in an even wider range than the lectures.

  12. NIC symposium 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, Gernot [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Wolf, Dietrich [Duisburg-Essen Univ., Duisburg (Germany). Fakultaet fuer Physik; Kremer, Manfred [Forschungszentrum Juelich GmbH (DE). Juelich Supercomputing Centre (JSC)

    2012-06-21

    The fifth NIC-Symposium gave an overview of the activities of the John von Neumann Institute for Computing (NIC) and of the results obtained in the last two years by research groups supported by the NIC. The large recent progress in supercomputing is highlighted by the fact that the newly installed Blue Gene/P system in Juelich - with a peak performance of 1 Petaflop/s - currently ranks number four in the TOP500 list. This development opens new dimensions in simulation science for researchers in Germany and Europe. NIC - a joint foundation of Forschungszentrum Juelich, Deutsches Elektronen-Synchrotron (DESY) and Gesellschaft fuer Schwerionenforschung (GSI) - supports with its members' supercomputer facilities about 130 research groups at universities and national labs working on computer simulations in various fields of science. Fifteen invited lectures covered selected topics in the following fields: Astrophysics Biophysics Chemistry Elementary Particle Physics Condensed Matter Materials Science Soft Matter Science Environmental Research Hydrodynamics and turbulence Plasma Physics Computer Science The talks are intended to inform a broad audience of scientists and the interested public about the research activities at NIC. The proceedings of the symposium cover projects that have been supported by the IBM supercomputers JUMP and IBM Blue Gene/P in Juelich and the APE topical computer at DESY-Zeuthen in an even wider range than the lectures.

  13. International Evoked Potentials Symposium

    CERN Document Server

    1980-01-01

    The past decade has seen great progress in the measurement of evoked potentials in man; a steady increase in our understanding of their charac­ teristics, their origins and their usefulness; and a growing application in the field of clinical diagnosis. The topic is a truly multidisciplinary one. Important research contributions have been made by workers of many different backgrounds and clinical applications span the specialities. This book represents a revised and updated version of the work originally presented at the international evoked potential symposium held in Nottingham 4-6 1978. The Nottingham Symposium provided a forum for a state-of-the-art discussion amongst workers from many different disciplines and from many different countries. For each major topic in the field an expert review set the scene for discussion of current research presentations. This format is retained in the book: the chapters in Part A provide the context in which the research presented in Part B is set. The task of selecting m...

  14. Symposium Gyro Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    Sorg, H [ed.; Stuttgart Univ. (Germany). Inst. A fuer Mechanik

    1997-10-01

    This volume includes the twenty papers which were presented at the Symposium Gyro Technology 1997. The subjects that have been treated during the symposium were as follows: Performance and design of silicon micromachined gyro; improved rate gyroscope designs designated for fabrication by modern deep silicon etching; micromechanical vibratory rate gyroscopes fabricated in conventional CMOS; error modelling of silicon angular rate sensor; a capacitive accelerometer as an example for surface micromachined inertial sensors; initial production results of a new family of fiber optic gyroscopes; dual-axis multiplexed open loop fiber optic gyroscope; flattely supported vibratory gyro-sensor using a Trident-type tuning fork resonator; innovative mechanizations to optimize inertial sensors for high or low rate operations; design of a planar vibratory gyroscope using electrostatic actuation and electromanetic detection; fiber optic gyro based land navigation system; FOG AHRS and AHRS/GPS navigation system: the low cost solution; GPS/GLONASS/INS-navigation (GLOGINAV); small-sized integrated system of the sea mobile objects attitude and navigation; concepts for hybrid positioning; preliminary results from a large ring laser gyroscope for fundamental physics and geophysics; a `sense of balance` - AHRS with low-cost vibrating-gyroscopes for medical diagnostics; application of strapdown inertial systems of orientation and navigation in intrapipe moving diagnostic apparatus; investigation of a digital readout system for laser gyro; the use of angular rate multiple integrals as input signals for strapdown attitude algorithms. (AKF)

  15. Atrito e desgaste de recobrimentos de PET, politeraftalato de etileno, pós-consumo processados por aspersão térmica Friction and wear of a thermal sprayed PET - poly(ethylene teraphthalate coating

    Directory of Open Access Journals (Sweden)

    Rogério A. X. Nunes

    2007-09-01

    Full Text Available A aspersão térmica envolve processos de recobrimentos que podem utilizar materiais cerâmicos, poliméricos, metálicos ou misturas destes. O material a ser depositado é fundido total ou parcialmente. As partículas aquecidas são aceleradas e projetadas em direção a uma superfície devidamente preparada, onde se formam camadas com estrutura lamelar. Os efeitos das variáveis do processo de aspersão, pressão dos gases de combustão, taxa de alimentação e gás de arraste no transporte do material, sobre a resistência ao desgaste e atrito de filmes PET foram investigados. Os recobrimentos de PET foram caracterizados através do desgaste micro-abrasivo, utilizando o ensaio de caloteste, e da medida dos coeficientes de atrito, com o ensaio de pino-sobre-disco. Os valores do coeficiente de desgaste abrasivo e do coeficiente de atrito dos recobrimentos são comparados com os valores da garrafa PET utilizada como referência. Os coeficientes de desgaste encontrados foram similares aos valores de garrafas PET da ordem de 10-5. As análises estatísticas dos resultados deste trabalho indicam que os efeitos das interações das três variáveis, pressão dos gases de combustão, taxa de alimentação e gás de arraste foram significativos para o coeficiente de desgaste e não significativos para o coeficiente de atrito.The thermal spray technique involves coating processes that can use ceramic, polymers, metallic materials or a blend of these. The material to be deposited is melted totally or partially, where the heated particles are accelerated and projected toward a prepared surface forming layers with a lamellar structure. The effect of the spray process parameters such as, combustion pressure, feed rate and carrier gas, on the wear resistance and friction of PET films was evaluated. The PET coatings were characterized by measuring the wear coefficient through the calowear type testing and the friction coefficients using pin-on-disk testing

  16. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  17. SPRAY code user's report

    International Nuclear Information System (INIS)

    Shire, P.R.

    1977-03-01

    The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume

  18. Research symposium proceedings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    THE research symposium was organized to present the cutting edge research for PET by individuals from leading institutions throughout the world. The Institute for Clinical PET (ICP) has focused its annual meeting on the clinical applications of PET.

  19. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  20. Proceedings Forest & Field Fuels Symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The purpose of the symposium is to examine two specific renewable resources, forest and field fuels, to pinpoint areas where funding of RD&D would be effective in expanding their marketability and use as substitutes for imported oil.

  1. Third Symposium on Macrocyclic Compounds

    International Nuclear Information System (INIS)

    1979-01-01

    At the Third Symposium on Macrocyclic Compounds there were sessions on facilitated transport, analytical applications, organic synthesis and reactions, phase transfer catalysis, and metal complexation. Abstracts of the individual presentations are included

  2. VIII international electric vehicle symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The proceedings from the symposium are presented. Major topics discussed include: battery technology, powertrains; hybrid vehicles, marketing and economics, propulsion, and electric vehicle design and performance. Each paper has been separately indexed for inclusion in the Energy Data Base.

  3. Fourth symposium on macrocyclic compounds

    International Nuclear Information System (INIS)

    Christensen, J.J.; Izatt, R.M.

    1980-01-01

    Both theoretical and experimental aspects of the properties and behavior of synthetic and naturally occurring macrocyclic compounds are covered in this symposium. This document contains abstracts of the papers

  4. ACS Symposium on Molecular Tribology

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2002-01-01

    .... The aspects of tribology covered by the symposium were quite broad but included a number of areas of importance to Air Force technologies including vapor phase lubrication, lubrication of MEMS...

  5. Analysis of inadvertent containment spray actuation for NPP Krsko

    International Nuclear Information System (INIS)

    Grgic, D.; Spalj, S.; Fancev, T.

    2000-01-01

    Refueling Water Storage Tank (RWST) supplies borated water to the Chemical and Volume Control System, Emergency Core Cooling System and Containment Spray System. In the analyses of the containment external pressure the spray temperature is assumed to be equal to the RWST lower temperature limit. This value ensures that the design negative containment pressure will not be exceeded in the event of inadvertent actuation of the Containment Spray. For NPP Kriko the negative containment pressure has to be kept below 0.1 kp/cm2 to avoid the loss of containment integrity. This paper pursuents the analysis of Inadvertent Containment Spray Actuation in order to check the influence of change in RWST water temperature on containment negative pressure. GOTHIC computer code was used for calculation of containment thermal hydraulic behavior during this accident. (author)

  6. Development of Process for Plasma Spray:Case Study for Molybdenum

    Czech Academy of Sciences Publication Activity Database

    Sampath, S.; Jiang, X.; Kulkarni, A.; Matějíček, Jiří; Gilmore, D. L.; Neiser, R. A.

    2003-01-01

    Roč. 348, 1-2 (2003), s. 54-66 ISSN 0921-5093 Grant - others:NSF(US) DMR9632570 Institutional research plan: CEZ:AV0Z2043910 Keywords : process maps, plasma spray, thermal spray Subject RIV: JG - Metallurgy Impact factor: 1.365, year: 2003

  7. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  8. 10th Schaeffler Symposium

    CERN Document Server

    2014-01-01

    Every four years, Schaeffler provides an insight into its latest developments and technologies from the engine, transmission and chassis as well as hybridization and electric mobility sectors. In 2014 the Schaeffler Symposium with the motto “Solving the Powertrain Puzzle” took place from 3th to 4th of April in Baden-Baden. Mobility for tomorrow is the central theme of this proceeding. The authors are discussing the different requirements, which are placed on mobility in different regions of the world. In addition to the company's work in research and development, a comprehensive in-house mobility study also provides a reliable basis for the discussion. The authors are convinced that there will be a paradigm shift in the automotive industry. Issues such as increasing efficiency and advancing electrification of the powertrain, automatic and semi-automatic driving, as well as integration in information networks will define the automotive future. In addition, the variety of solutions available worldwide will ...

  9. NATO Telecommunications Symposium

    CERN Document Server

    Lucas, William; Conrath, David

    1978-01-01

    This book contains the proceedings of the first international symposium devoted to research on the evaluation and planning of new person-to-person telecommunication systems. It was sponsored by NATO's Special Programme Panel on Systems Science and took place, in September 1977, at the University of Bergamo in the north of Italy. Telecommunication systems which provide for communication be­ tween people, rather than computers or other instruments, are of two kinds. There are mass communication systems (broadcast radio and television) and interpersonal systems (for example, the telephone and Telex) which join together individuals or small groups. Here we have included in the interpersonal category certain systems for re­ trieving information from computers, essentially those systems in which the role of the computer 1s primarily to act as a store and to identify that information which best fits a user's request. (This excludes management information systems in which the computer performs important transformat...

  10. Objectives of the symposium

    International Nuclear Information System (INIS)

    Genter, N.E.

    1996-01-01

    The objective of this symposium was to discuss the sorts of evidence of molecular alterations in DNA which can be used to study causation of the stochastic effects of importance in radiation protection. Specifically, the aim was to address the following: what sort of indications might show whether a cancer was caused by radiation; whether there is a radiogenic signature to distinguish damage caused by ionizing radiation; whether bio-markers might be available for susceptibility, for exposure, for biological consequences. Despite a number of epidemiological studies (referred to), there is no clear, credible, defensible answer as to whether low-level radiation increases the risk of cancer. A new ethical question is, what rules should be in place for identifying and protecting genetically sensitive individuals. 1 tab

  11. Objectives of the symposium

    International Nuclear Information System (INIS)

    Osborne, R.V.

    1992-01-01

    The author defined the objectives of the symposium as follows: to present and examine the recent evidence associating clusters of leukemia with sources of ionizing radiation; to examine the statistical basis for the analysis of clustering; to examine the underlying assumptions in epidemiological studies that clusters must have an environmental cause; to examine the extent to which we can take into account the biological causes of non-randomness in populations, particularly those of geographic and genetic origin; to evaluate the relative merits of different kinds of epidemiological studies for yielding significant information concerning clustering; to consider the potential utility of combining the results from existing studies, and whether new epidemiological studies might be helpful; to consider what other directions, including application of the technologies of molecular biology, are likely to help clarify the underlying mechanisms or causes

  12. SYMPOSIUM: Particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-07-15

    Typical elementary particle experiments consist of a source of interactions (an external beam and a fixed target or two colliding beams) and a detector system including most of the following components: a tracking system and analysis magnet, calorimetry (measurement of energy deposition), hadron and electron identification, muon detection, trigger counters and processors, and data acquisition electronics. Experiments aimed at future high luminosity hadron collider (proton-proton or proton-antiproton) projects such as an upgraded Tevatron at Fermilab, the Large Hadron Collider (LHC) idea at CERN, and the proposed US Superconducting Supercollider (SSC), must ideally cover the entire solid angle and be capable of not only surviving the collisions, but also providing high resolution event information at incredible interaction rates. The Symposium on Particle Identification at High Luminosity Hadron Colliders held at Fermilab from 5-7 April (sponsored by Fermilab, the US Department of Energy, and the SSC Central Design Group) focused on this single facet of detector technology.

  13. Design Modelling Symposium 2015

    CERN Document Server

    Tamke, Martin; Gengnagel, Christoph; Faircloth, Billie; Scheurer, Fabian

    2015-01-01

    This book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while posing new challenges in all areas of the industry from material and structural to the urban scale. Contributions from invited experts, papers and case studies provide the reader with a comprehensive overview of the field, as well as perspectives from related disciplines, such as computer science. The chapter authors were invited speakers at the 5th Symposium "Modelling Behaviour", which took place at the CITA in Copenhagen in September 2015.

  14. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  15. 2nd Abel Symposium

    CERN Document Server

    Nunno, Giulia; Lindstrøm, Tom; Øksendal, Bernt; Zhang, Tusheng

    2007-01-01

    Kiyosi Ito, the founder of stochastic calculus, is one of the few central figures of the twentieth century mathematics who reshaped the mathematical world. Today stochastic calculus is a central research field with applications in several other mathematical disciplines, for example physics, engineering, biology, economics and finance. The Abel Symposium 2005 was organized as a tribute to the work of Kiyosi Ito on the occasion of his 90th birthday. Distinguished researchers from all over the world were invited to present the newest developments within the exciting and fast growing field of stochastic analysis. The present volume combines both papers from the invited speakers and contributions by the presenting lecturers. A special feature is the Memoirs that Kiyoshi Ito wrote for this occasion. These are valuable pages for both young and established researchers in the field.

  16. SYMPOSIUM: Multiparticle 82

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The thirteenth symposium in the successful series on multiparticle dynamics was held from 6-11 June in the picturesque North Holland village of Volendam. While originally confined to hadron-hadron interactions, multiparticle dynamics is now of interest in all types of particle collision. Results on proton-antiproton collisions at CERN, both in the SPS and the ISR, are a talking point wherever particle physicists meet, and Volendam was no exception. Also prominent at Volendam were ultrarelativistic effects in nucleus-nucleus collisions. However the main aim of this year's meeting was to review the common features of hadrons produced in different types of collision (lepton-lepton, lepton-hadron and hadron-hadron)

  17. Renewable Energy Symposium

    International Nuclear Information System (INIS)

    2016-01-01

    Representatives of state universities, public institutions and Costa Rican private sector, and American experts have exposed projects or experiences about the use and generation of renewable energy in different fields. The thematics presented have been about: development of smart grids and design of electrical energy production systems that allow money saving and reducing emissions to the environment; studies on the use of non-traditional plants and agricultural waste; sustainable energy model in the process of coffee production; experiments from biomass for the fabrication of biodiesel, biogas production and storage; and the use of non-conventional energy. Researches were presented at the Renewable Energy Symposium, organized by the Centro de Investigacion en Estructuras Microscopicas and support of the Vicerrectoria de Investigacion, both from the Universidad de Costa Rica [es

  18. 3rd Abel Symposium

    CERN Document Server

    Owren, Brynjulf

    2008-01-01

    The 2006 Abel symposium is focusing on contemporary research involving interaction between computer science, computational science and mathematics. In recent years, computation has been affecting pure mathematics in fundamental ways. Conversely, ideas and methods of pure mathematics are becoming increasingly important within computational and applied mathematics. At the core of computer science is the study of computability and complexity for discrete mathematical structures. Studying the foundations of computational mathematics raises similar questions concerning continuous mathematical structures. There are several reasons for these developments. The exponential growth of computing power is bringing computational methods into ever new application areas. Equally important is the advance of software and programming languages, which to an increasing degree allows the representation of abstract mathematical structures in program code. Symbolic computing is bringing algorithms from mathematical analysis into the...

  19. SYMPOSIUM: Multiparticle Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-09-15

    How is the seemingly simple world of quarks and leptons related to the complicated phenomena that particle physicists see in their detectors? This was the theme of the 15th Symposium on multiparticle dynamics held in Lund, Sweden, from 11-16 June. Apart from the many results from the CERN proton-antiproton Collider, a recurrent theme during the conference was the growing awareness of the importance of quark 'hadronization'. Everyone knows that isolated quarks have never been found in Nature. Only those combinations of quarks and antiquarks that form hadrons have been detected. The dressing of the quarks to become hadrons goes under the name 'hadronization' and this process is very difficult to describe theoretically from first principles. Even the currently accepted theory for strong quark interactions — quantum chromodynamics, QCD — has difficulties. QCD has been shown to be a good theory describing 'small distance phenomena' — small compared to a hadron.

  20. Crack growth in thermally sprayed ceramic coatings

    Czech Academy of Sciences Publication Activity Database

    Kroupa, František; Náhlík, Luboš; Knésl, Zdeněk

    2004-01-01

    Roč. 49, č. 2 (2004), s. 149-168 ISSN 0001-7043 R&D Projects: GA ČR GP106/04/P084; GA ČR GA101/03/0331 Institutional research plan: CEZ:AV0Z2043910 Keywords : ceramic coatings, fracture mechanics, crack extension Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  1. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    Science.gov (United States)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  2. Plasma sprayed alumina-titania coatings

    International Nuclear Information System (INIS)

    Steeper, T.J.; Rotolico, A.J.; Nerz, J.E.; Riggs, W.L. II; Varacalle, D.J. Jr.; Wilson, G.C.

    1992-01-01

    This paper presents an experimental study of the air plasma spraying (APS) of alumina-titania powder using argon-hydrogen working gases. This powder system is being used in the fabrication of heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coatings. The coatings were characterized by hardness and electrical tests, surface profilometry, image analysis, optical metallography, and x-ray diffraction. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. attempts are made to correlate the features of the coatings with the changes in operating parameters

  3. Symposium Promotes Technological Literacy through STEM

    Science.gov (United States)

    Havice, Bill; Marshall, Jerry

    2009-01-01

    This article describes a symposium which promotes technological literacy through science, technology, engineering, and mathematics (STEM). The three-day symposium titled, "The Anderson, Oconee, Pickens Symposium on Teaching and Learning STEM Standards for the 21st Century," was held August 4-6, 2008 at the Tri-County Technical College…

  4. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  5. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  6. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    Science.gov (United States)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  7. Plasma sprayed thermoregulating coatings

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  8. Emulsions from Aerosol Sprays

    Science.gov (United States)

    Hengelmolen; Vincent; Hassall

    1997-12-01

    An electrostatic emulsification apparatus has been designed for the purpose of studying diffusion from oil droplets which have a mean size in the range of approximately 1.5-3.5 &mgr;m, with standard deviations of 40-50%. The emulsification technique involves the collection of a spray of electrically charged oil droplets onto a rotating water film which is sustained from a reservoir. In this way, emulsions with volume fractions of approximately 10(-3) are produced within several minutes at oil flow rates of around 10(-2) ml min-1. Phase-Doppler anemometry (PDA) was used to assess droplet size distributions for the sprays and emulsions. Results show that the mean emulsion droplet size was smaller than the mean spray droplet size by several orders of magnitude. At flow rates around 10(-2) ml min-1, the spray droplet size distribution was little affected by the applied potential between about -4.20 and -4.65 kV (mean droplet size between approximately 7.6 and 7.8 &mgr;m, with standard deviations of approximately 20%), whereas the mean droplet size of the corresponding emulsion decreased more rapidly with applied potential. Above an applied potential of approximately -4.30 kV, which corresponded to an emulsion droplet size below approximately 2 &mgr;m, the measured volume fraction of the emulsion decreased with respect to the volume fraction as calculated on the basis of total amount of injected oil. Copyright 1997 Academic Press. Copyright 1997Academic Press

  9. Radiolysis of spray solutions

    International Nuclear Information System (INIS)

    Habersbergerova, A.; Janovsky, I.

    1985-01-01

    The factors were studied affecting thiosulfate radiolysis in the so-called spray solution for nuclear power plant containments. The reaction mechanism of primary radiolytic reactions leading to thiosulfate decomposition was studied using pulse radiolysis. Also measured was hydrazine loss in the irradiation of the bubbling solution intended for the capture of volatile chemical forms of radioiodine. Pulse radiolysis was used to study the kinetics of hydrazine reaction with elemental iodine. (author)

  10. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Da Sol; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of); Lee, Hyun Seop [Tongmyong University, Busan (Korea, Republic of)

    2015-12-15

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  11. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    International Nuclear Information System (INIS)

    Lee, Da Sol; Jeong, Hae Do; Lee, Hyun Seop

    2015-01-01

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  12. International Symposium on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-03-01

    Nuclear Regulatory Authority of the Slovak Republic and the Embassy of Japan in the Slovak Republic, under the auspices of the Deputy Prime Minister and Minister of Foreign and European Affairs Mr Lajcak organized International Symposium on Nuclear Safety on 14 and 15 March 2013. The symposium took place almost exactly two years after the occurrence of accidents at the Japanese nuclear power plant Fukushima Daichi. The main mission of the symposium was an attempt to contribute to the improvement of nuclear safety by sharing information and lessons presented by Japanese experts with experts from the region, the International Atomic Energy Agency (IAEA) and the European Commission. The aim of the symposium, unlike many other events organized in connection with the events in Fukushima Daichi NPP, was a summary of the results of stress tests and measures update adopted by the international community, especially within Europe. Panel discussion was included to the program of the symposium for this aim was, mainly focused on the current state of implementation of the National Action Plan of the Slovak Republic, the Czech Republic, Poland, Ukraine and Switzerland and the IAEA Action Plan.

  13. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  14. Reactor Containment Spray Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Row, T. H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1968-12-15

    The design basis accident in water moderated power reactors is a loss-of-coolant accident in which water sprays are generally employed to control the containment pressure transient by condensing the released steam-air mixture. Additives to the spray have been proposed as a way to increase their usefulness by enhancing the removal of various forms of radioiodine from the containment atmosphere. A program to investigate the gas-liquid systems involved is co-ordinated by ORNL for the US Atomic Energy Commission. A basic part of the program is the search for various chemical additives that will increase the spray affinity for molecular iodine and methyl iodide. A method for evaluating additives was developed that measures equilibrium distribution coefficients for iodine between air and aqueous solutions. Additives selected are used in single drop-wind tunnel experiments where the circulating gas contains iodine or CH{sub 3}I. Mass transfer coefficients and transient distribution coefficients have been determined as a function of relative humidity, temperature, drop size, and solution pH and concentration. Tests have shown that surfactants and organic amines increase the solution ability to getter CH{sub 3}l. Results from single drop tests help in planning spray experiments in the Nuclear Safety Pilot Plant, a large ({approx}38 m{sup 3}) facility, where accident conditions are closely simulated. Iodine and CH{sub 3}I removal rates have been determined for a number of solutions, including 1 wt% Na{sub 2}S{sub 2}O{sub 3} + 3000 ppm B + 0.153 M NaOH and 3000 ppm B + 0.153 M NaOH. The additive has very little effect in removal of I{sub 2} with half-lives of less than 1 mm typical for any aqueous solution. These same solutions remove CH{sub 3}I with a half-life of one hour. Analytical models for the removal processes have been developed. Consideration is also being given to corrosion, thermal and radiation stability of the solutions. Radiation studies have indicated the loss

  15. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  16. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    International Nuclear Information System (INIS)

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-10-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface

  17. Status of emergency spray modelling in the integral code ASTEC

    International Nuclear Information System (INIS)

    Plumecocq, W.; Passalacqua, R.

    2001-01-01

    Containment spray systems are emergency systems that would be used in very low probability events which may lead to severe accidents in Light Water Reactors. In most cases, the primary function of the spray would be to remove heat and condense steam in order to reduce pressure and temperature in the containment building. Spray would also wash out fission products (aerosols and gaseous species) from the containment atmosphere. The efficiency of the spray system in the containment depressurization as well as in the removal of aerosols, during a severe accident, depends on the evolution of the spray droplet size distribution with the height in the containment, due to kinetic and thermal relaxation, gravitational agglomeration and mass transfer with the gas. A model has been developed taking into account all of these phenomena. This model has been implemented in the ASTEC code with a validation of the droplets relaxation against the CARAIDAS experiment (IPSN). Applications of this modelling to a PWR 900, during a severe accident, with special emphasis on the effect of spray on containment hydrogen distribution have been performed in multi-compartment configuration with the ASTEC V0.3 code. (author)

  18. Process development for synthesis and plasma spray deposition of LaPO4 and YPO4 for nuclear applications

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Sreekumar, K.P.; Jayakumar, S.; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Gantayet, L.M.; Krishnan, K.

    2009-01-01

    Rare earth phosphates are geologically very stable and considered as potential matrix material for nuclear waste disposal and also for many high temperature thermal barrier and corrosion barrier applications involving molten metals. This paper focuses on developmental studies related to synthesis, thermal stability and plasma spray deposition of LaPO 4 and YPO 4 . The rare earth phosphates were synthesized by chemical method from their respective oxide materials using ortho phosphoric acid. The as-precipitated powders were converted to thermal spray grade powder by compaction, sintering and crushing. Thermal stability of these phosphates up to their melting point was determined by arc plasma melting, followed by X-ray diffraction. Results indicate that LaPO 4 and YPO 4 melt congruently without decomposition. Plasma spray deposition was carried out using the in-house 40 kW atmospheric plasma spray system. Adherent coatings could be deposited on various substrates by optimizing the plasma spray parameters. (author)

  19. Memorial Symposium for Willibald Jentschke

    CERN Multimedia

    2002-01-01

    Willibald 'Willi' Jentschke, Director General of CERN from 1971 to 1975 and founder of the DESY Laboratory in Hamburg, died last March, just a few months after celebrating his 90th birthday. At that time, the Bulletin dedicated an article to him (Bulletin n°19-20/2002). Now, CERN has organised a Memorial Symposium for next Thursday 31 October, where you are cordially invited. This tribute will include the following speechs: L. Maiani : Welcome E. Lohrmann : Message from DESY H. Schopper : Willi Jentschke M. Veltman and D. Perkins : The Neutral Currents K. Johnsen : The ISR in Jentschke's time K. Winter : Some recollections of Jentschke The Memorial Symposium will take place in the Council Chamber, Thursday 31 October at 15 hrs. Drinks will be served at 17:30 hrs following the symposium.

  20. The 1956 CERN Symposium

    CERN Document Server

    Jarlskog, Cecilia

    2014-01-01

    CERN, currently the largest organization in the world for particle physics, was founded in 1954. Originally located in Meyrin, at the outskirts of the city of Geneva in Switzerland, it has with time extended into neighboring France. The Theoretical Study Division of CERN, however, was created already in 1952, i.e., before the official inauguration of CERN. It was situated in Copenhagen. Christian Møller [1] was appointed (part-time) as the Director and there were two full time senior staff members, Gunnar Källén and Ben R. Mottelson. While constructing buildings and accelerators were in progress, an international conference was organized by CERN in the city of Geneva. This “CERN Symposium on High Energy Accelerators and Pion Physics”, 11–23 June 1956, attracted about 250 participants from outside CERN, among them at least 18 Nobel Laureates or future Laureates. Unfortunately, the participants from CERN are not listed in the Proceedings [2]. The conference focused on measuring devices such as bubbl...

  1. New generation of plasma-sprayed mullite coatings on silicon carbide

    Science.gov (United States)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  2. Characteristics of wetting temperature during spray cooling

    International Nuclear Information System (INIS)

    Mitsutake, Yuichi; Monde, Masanori; Hidaka, Shinichirou

    2006-01-01

    An experimental study has been done to elucidate the effects of mass flux and subcooling of liquid and thermal properties of solid on the wetting temperature during cooling of a hot block with spray. A water spray was impinged at one of the end surfaces of a cylindrical block initially heated at 400 or 500degC. The experimental condition was mass fluxes G=1-9 kg/m 2 s and degrees of subcooling ΔT sub =20, 50, 80 K. Three blocks of copper, brass and carbon steel were prepared. During spray cooling internal block temperature distribution and sputtering sound pressure level were recorded and the surface temperature and heat flux were evaluated with 2D inverse heat conducting analysis. Cooling process on cooling curves is divided into four regimes categorized by change in a flow situation and the sound level. The wetting temperature defined as the wall temperature at a minimum heat flux point was measured over an extensive experimental range. The wetting wall temperature was correlated well with the parameter of GΔT sub . The wetting wall temperature increases as GΔT sub increases and reaches a constant value depending on the material of the surface at higher region of GΔT sub . (author)

  3. 43rd Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  4. Eighteenth annual risk reduction engineering laboratory research symposium

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Eighteenth Annual Risk Reduction Engineering Laboratory Research Symposium was held in Cincinnati, Ohio, April 14-16, 1992. The purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects funded by the Risk Reduction Engineering Laboratory (RREL). These Proceedings are organized into two sections. Sessions A and B, which contain extended abstracts of the paper presentations. A list of poster displays is also included. Subjects include remedial action, treatment, and control technologies for waste disposal, landfill liner and cover systems, underground storage tanks, and demonstration and development of innovative/alternative treatment technologies for hazardous waste. Alternative technology subjects include thermal destruction of hazardous wastes, field evaluations, existing treatment options, emerging treatment processes, waste minimization, and biosystems for hazardous waste destruction

  5. Mining and Reclamation Technology Symposium

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    1999-06-24

    The Mining and Reclamation Technology Symposium was commissioned by the Mountaintop Removal Mining/Valley Fill Environmental Impact Statement (EIS) Interagency Steering Committee as an educational forum for the members of the regulatory community who will participate in the development of the EIS. The Steering Committee sought a balanced audience to ensure the input to the regulatory community reflected the range of perspectives on this complicated and emotional issue. The focus of this symposium is on mining and reclamation technology alternatives, which is one of eleven topics scheduled for review to support development of the EIS. Others include hydrologic, environmental, ecological, and socio-economic issues.

  6. Influence of powder and spray parameters on erosion and corrosion properties of HVOF sprayed WC-Co-Cr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Berget, John

    1998-07-01

    Thermal spraying is a generic term including various processes used to deposit coatings on surfaces. The coating material is in the form of powder or a wire and is melted or softened by means of a heat source. A gas stream accelerates the material towards a prepared surface and deposits it there to form the coating. Examples of components being maintained by application of thermal spray coatings are gate valves and ball valves for the offshore industry and turbine blades in power generations installations. Recent investigation has shown that the commonly used coating material WC-Co is not corrosion resistant. But it can be improved by the addition of Cr. The main objective of this thesis is to study the influence of spray process control variables and powder characteristics on the erosion and erosion-corrosion properties of the coatings. Spray process variables investigated include energy input, powder feed rate and spray distance. Powder characteristics studied are average size of the WC particles, relative proportions of Co and Cr in the metal phase and powder grain size distribution.

  7. The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    Science.gov (United States)

    1992-01-01

    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques.

  8. Spray-formed tooling

    Science.gov (United States)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  9. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  10. Thermophysical properties of YSZ and YCeSZ suspension plasma sprayed coatings having different microstructures

    Czech Academy of Sciences Publication Activity Database

    Sokołowski, P.; Björklund, S.; Mušálek, Radek; Candidato, Jr., R.T.; Pawłowski, L.; Nait-Ali, B.; Smith, D.

    2017-01-01

    Roč. 318, May (2017), s. 28-38 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Thermal Barrier Coatings (TBC) * Suspension Plasma Spraying * Thermal conductivity * Specific heat * Thermal dilatation * Response function method Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897217302086

  11. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  12. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  13. Characterization of Sodium Spray Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. T.; Koontz, R. L.; Silberberg, M. [Atomics International, North American Rockwell Corporation, Canoga Park, CA (United States)

    1968-12-15

    The consequences of pool and spray fires require evaluation in the safety analysis of liquid metal-cooled fast breeder reactors. Sodium spray fires are characterized by high temperature and pressure, produced during the rapid combustion of sodium in air. Following the initial energy release, some fraction of the reaction products are available as aerosols which follow the normal laws of agglomeration, growth, settling, and plating. An experimental study is underway at Atomics International to study the characteristics of high concentration sprays of liquid sodium in reduced oxygen atmospheres and in air. The experiments are conducted in a 31.5 ft{sup 3} (2 ft diam. by 10 ft high) vessel, certified for a pressure of 100 lb/in{sup 2} (gauge). The spray injection apparatus consists of a heated sodium supply pot and a spray nozzle through which liquid sodium is driven by nitrogen pressure. Spray rate and droplet size can be varied by the injection velocity (nozzle size, nitrogen pressure, and sodium temperature). Aerosols produced in 0, 4, and 10 vol. % oxygen environments have been studied. The concentration and particle size distribution of the material remaining in the air after the spray injection and reaction period are measured. Fallout rates are found to be proportional to the concentration of aerosol which remains airborne following the spray period. (author)

  14. Symposium: What Is College English?

    Science.gov (United States)

    Bloom, Lynn Z.; White, Edward M.; Enoch, Jessica; Hawk, Byron

    2013-01-01

    This symposium explores the role(s) College English has (or has not) had in the scholarly work of four scholars. Lynn Bloom explores the many ways College English influenced her work and the work of others throughout their scholarly lives. Edward M. White examines four articles he has published in College English and draws connections between…

  15. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    Energy Technology Data Exchange (ETDEWEB)

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  16. Diversity in the Workplace. Symposium.

    Science.gov (United States)

    2002

    Three papers comprise this symposium on diversity in the workplace. "Factors That Assist and Barriers That Hinder the Success of Diversity Initiatives in Multinational Corporations" (Rose Mary Wentling) reports that factors that assisted in the success were classified under diversity department, human, and work environment; barriers were…

  17. Indian symposium reviews tsunami response

    Directory of Open Access Journals (Sweden)

    Paula Banerjee

    2005-07-01

    Full Text Available A symposium of academics and human rights activists organised by the Calcutta Research Group assessed the extent to which relief and rehabilitation initiatives in Tamil Nadu and the Andaman and Nicobar islands have recognised the rights of those affected to receive aid without discrimination based on caste, religion or gender.

  18. National symposium on food irradiation

    International Nuclear Information System (INIS)

    Beyers, M.; Brodrick, H.T.; Van Niekerk, W.C.A.

    1980-01-01

    This report contains proceedings of papers delivered at the national symposium on food irradiation held in Pretoria. The proceedings have been grouped into the following sections: general background; meat; agricultural products; marketing; and radiation facilities - cost and plant design. Each paper has been submitted separately to INIS. Tables listing irradiated food products cleared for human consumption in different countries are given

  19. 44th Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A. (Compiler)

    2018-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms.

  20. 2016 Gilbert W. Beebe symposium

    Science.gov (United States)

    The National Academies of Sciences, Engineering, and Medicine is hosting the 2016 Gilbert W. Beebe Symposium. Its focus will be on commemorating the 1986 Chernobyl nuclear reactor accident and discussing the achievements of 30 years of studies on the radiation health effects following the accident and future research directions.

  1. AAAI 1993 Fall Symposium Reports

    OpenAIRE

    Levinson, Robert; Epstein, Susan; Terveen, Loren; Bonasso, R. Peter; Miller, David P.; Bowyer, Kevin; Hall, Lawrence

    1994-01-01

    The Association for the Advancement of Artificial Intelligence held its 1993 Fall Symposium Series on October 22-24 in Raleigh, North Carolina. This article contains summaries of the six symposia that were conducted: Automated Deduction in Nonstandard Logics; Games: Planning and Learning; Human-Computer Collaboration: Reconciling Theory, Synthesizing Practice; Instantiating Intelligent Agents; and Machine Learning and Computer Vision: What, Why, and How?

  2. 11. European cosmic ray symposium

    International Nuclear Information System (INIS)

    1989-03-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific programme was organized under three main headings: Cosmic rays in the heliosphere, Cosmic rays in the interstellar and extragalactic space, Properties of high-energy interactions as studied by cosmic rays. Seven invited talks were indexed seprately for the INIS database. (R.P.)

  3. Seventeenth symposium on biotechnology for fuels and chemicals. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This volume contains the abstracts of oral and poster presentations made at the Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Session titles include Thermal, Chemical, and Biological Processing; Applied Biological Research; Bioprocessing Research; Special Topics Discussion Groups; Process Economics and Commercialization; and Environmental Biotechnology.

  4. The VLT Opening Symposium

    Science.gov (United States)

    1999-02-01

    Scientists Meet in Antofagasta to Discuss Front-Line Astrophysics To mark the beginning of the VLT era, the European Southern Observatory is organizing a VLT Opening Symposium which will take place in Antofagasta (Chile) on 1-4 March 1999, just before the start of regular observations with the ESO Very Large Telescope on April 1, 1999. The Symposium occupies four full days and is held on the campus of the Universidad Catolica del Norte. It consists of plenary sessions on "Science in the VLT Era and Beyond" and three parallel Workshops on "Clusters of Galaxies at High Redshift" , "Star-way to the Universe" and "From Extrasolar Planets to Brown Dwarfs" . There will be many presentations of recent work at the major astronomical facilities in the world. The meeting provides a very useful forum to discuss the latest developments and, in this sense, contributes to the planning of future research with the VLT and other large telescopes. The symposium will be opened with a talk by the ESO Director General, Prof. Riccardo Giacconi , on "Paranal - an observatory for the 21st century". It will be followed by reports about the first scientific results from the main astronomical instruments on VLT UT1, FORS1 and ISAAC. The Symposium participants will see the VLT in operation during special visits to the Paranal Observatory. Press conferences are being arranged each afternoon to inform about the highlights of the conference. After the Symposium, there will be an Official Inauguration Ceremony at Paranal on 5 March Contributions from ESO ESO scientists will make several presentations at the Symposium. They include general reviews of various research fields as well as important new data and results from the VLT that show the great potential of this new astronomical facility. Some of the recent work is described in this Press Release, together with images and spectra of a large variety of objects. Note that all of these data will soon become publicly available via the VLT Archive

  5. Heat removal tests for pressurized water reactor containment spray by largescale facility

    International Nuclear Information System (INIS)

    Motoki, Y.; Hashimoto, K.; Kitani, S.; Naritomi, M.; Nishio, G.; Tanaka, M.

    1983-01-01

    Heat removal tests for pressurized water reactor (PWR) containment spray were carried out to investigate effectiveness of the depressurization by Japan Atomic Energy Research Institute model containment (7-m diameter, 20 m high, and 708-m 3 volume) with PWR spray nozzles. The depressurization rate is influenced by the spray heat transfer efficiency and the containment wall surface heat transfer coefficient. The overall spray heat transfer efficiency was investigated with respect to spray flow rate, weight ratio of steam/air, and spray height. The spray droplet heat transfer efficiency was investigated whether the overlapping of spray patterns gives effect or not. The effect was not detectable in the range of large value of steam/air, however, it was better in the range of small value of it. The experimental results were compared with the calculated results by computer code CONTEMPT-LT/022. The overall spray heat transfer efficiency was almost 100% in the containment pressure, ranging from 2.5 to 0.9 kg/cm 2 X G, so that the code was useful on the prediction of the thermal hydraulic behavior of containment atmosphere in a PWR accident condition

  6. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  7. Strontium Zirconate TBC Sprayed by a High Feed-Rate Water-Stabilized Plasma Torch

    Science.gov (United States)

    Ctibor, P.; Nevrla, B.; Cizek, J.; Lukac, F.

    2017-12-01

    A novel thermal barrier coating (TBC) material, strontium zirconate SrZrO3, was sprayed by a high feed-rate water-stabilized plasma torch WSP 500. Stainless steel coupons were used as substrates. Coatings with a thickness of about 1.2 mm were produced, whereas the substrates were preheated over 450 °C. The torch worked at 150 kW power and was able to spray SrZrO3 with a high spray rate over 10 kg per hour. Microstructure and microhardness, phase composition, adhesion, thermal conductivity and thermal expansion were evaluated. The coating has low thermal conductivity under 1 W/m K in the interval from room temperature up to 1200 °C. Its crystallite size is slightly over 400 nm and thermal expansion 12.3 µm K-1 in the similar temperature range.

  8. Gene Expression, Bacteria Viability and Survivability Following Spray Drying of Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Elizabeth Hunter Lauten

    2010-04-01

    Full Text Available We find that Mycobacterium smegmatis survives spray drying and retains cell viability in accelerated temperature stress (40 °C conditions with a success rate that increases with increasing thermal, osmotic, and nutrient-restriction stresses applied to the mycobacterium prior to spray drying. M.smegmatis that are spray dried during log growth phase, where they suffer little or no nutrient-reduction stress, survive for less than 7 days in the dry powder state at accelerated temperature stress conditions, whereas M. smegmatis that are spray dried during stationary phase, where cells do suffer nutrient reduction, survive for up to 14 days. M. smegmatis that are spray dried from stationary phase, subjected to accelerated temperature stress conditions, regrown to stationary phase, spray dried again, and resubmitted to this same process four consecutive times, display, on the fourth spray drying iteration, an approximate ten-fold increase in stability during accelerated temperature stress testing, surviving up to 105 days. Microarray tests revealed significant differences in genetic expression of M. smegmatis between log phase and stationary phase conditions, between naïve (non spray-dried and multiply cycled dried M. smegmatis (in log and stationary phase, and between M. smegmatis in the dry powder state following a single spray drying operation and after four consecutive spray drying operations. These differences, and other phenotypical differences, point to the carotenoid biosynthetic pathway as a probable pathway contributing to bacteria survival in the spray-dried state and suggests strategies for spray drying that may lead to significantly greater room-temperature stability of mycobacteria, including mycobacterium bovis bacille Calmette-Guerin (BCG, the current TB vaccine.

  9. Spray deposition and spray drift in orchard spraying by multiple row sprayers

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van P.

    2016-01-01

    The evaluation of the latest data on spray drift in orchard spraying in the Netherlands, and measurements of surface water quality parameters show that the current legislation and measures are insufficient to protect the surface water. To meet the national and European objectives regarding surface

  10. PREFACE: Fullerene Nano Materials (Symposium of IUMRS-ICA2008)

    Science.gov (United States)

    Miyazawa, Kun'ichi; Fujita, Daisuke; Wakahara, Takatsugu; Kizuka, Tokushi; Matsuishi, Kiyoto; Ochiai, Yuichi; Tachibana, Masaru; Ogata, Hironori; Mashino, Tadahiko; Kumashiro, Ryotaro; Oikawa, Hidetoshi

    2009-07-01

    This volume contains peer-reviewed invited and contributed papers that were presented in Symposium N 'Fullerene Nano Materials' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Over twenty years have passed since the discovery of C60 in 1985. The discovery of superconductivity of C60 in 1991 suggested infinite possibilities for fullerenes. On the other hand, a new field of nanocarbon has been developed recently, based on novel functions of the low-dimensional fullerene nanomaterials that include fullerene nanowhiskers, fullerene nanotubes, fullerene nanosheets, chemically modified fullerenes, endohedral fullerenes, thin films of fullerenes and so forth. Electrical, electrochemical, optical, thermal, mechanical and various other properties of fullerene nanomaterials have been investigated and their novel and anomalous nature has been reported. Biological properties of fullerene nanomaterials also have been investigated both in medical applications and toxicity aspects. The recent research developments of fullerene nanomaterials cover a variety of categories owing to their functional diversity. This symposium aimed to review the progress in the state-of-the-art technology based on fullerenes and to offer the forum for active interdisciplinary discussions. 24 oral papers containing 8 invited papers and 22 poster papers were presented at the two-day symposium. Topics on the social acceptance of nanomaterials including fullerene were presented on the first day of the symposium. Biological impacts of nanomaterials and the importance of standardization of nanomaterials characterization were also shown. On the second day, the synthesis, properties, functions and applications of various fullerene nanomaterials were shown in both the oral and poster presentations. We are grateful to all invited speakers and many participants for valuable contributions and active discussions

  11. Development & characterization of alumina coating by atmospheric plasma spraying

    Science.gov (United States)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  12. Preface to the Special Issue on TOUGH Symposium 2015

    Science.gov (United States)

    Blanco-Martín, Laura

    2017-11-01

    The TOUGH Symposium 2015 was held in Berkeley, California, September 28-30, 2015. The TOUGH family of codes, developed at the Energy Geosciences Division of Lawrence Berkeley National Laboratory (LBNL), is a suite of computer programs for the simulation of multiphase and multicomponent fluid and heat flows in porous and fractured media with applications in many geosciences fields, such as geothermal reservoir engineering, nuclear waste disposal, geological carbon sequestration, oil and gas reservoirs, gas hydrate research, vadose zone hydrology and environmental remediation. Since the first release in the 1980s, many modifications and enhancements have been continuously made to TOUGH and its various descendants (iTOUGH2, TOUGH+, TOUGH-MP, TOUGHREACT, TOUGH+HYDRATE, TMVOC...), at LBNL and elsewhere. Today, these codes are used worldwide in academia, government organizations and private companies in problems involving coupled hydrological, thermal, biogeochemical and geomechanical processes. The Symposia, organized every 2-3 years, bring together developers and users for an open exchange on recent code enhancements and applications. In 2015, the Symposium was attended by one hundred participants, representing thirty-four nationalities. This Special Issue in Computers & Geosciences gathers extended versions of selected Symposium proceedings related to (i) recent enhancements to the TOUGH family of codes and (ii) coupled flow and geomechanics processes modeling.

  13. A Real-Time Systems Symposium Preprint.

    Science.gov (United States)

    1983-09-01

    Real - Time Systems Symposium Preprint Interim Tech...estimate of the occurence of the error. Unclassii ledSECUqITY CLASSIF’ICA T" NO MI*IA If’ inDI /’rrd erter for~~ble. ’Corrputnqg A REAL - TIME SYSTEMS SYMPOSIUM...ABSTRACT This technical report contains a preprint of a paper accepted for presentation at the REAL - TIME SYSTEMS SYMPOSIUM, Arlington,

  14. Eleventh symposium on energy engineering sciences: Proceedings. Solid mechanics and processing: Analysis, measurement and characterization

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases.

  15. Twelfth symposium on biotechnology for fuels and chemicals: Program and abstracts

    International Nuclear Information System (INIS)

    Scheitlin, F.M.

    1990-01-01

    This report is the program and abstracts of the twelfth symposium on biotechnology for fuels and chemicals, held on May 7--11, 1990, at Gatlinburg, Tennessee. The symposium, sponsored by the Department of Energy, Oak Ridge National Laboratory, Solar Energy Research Institute, Badger Engineers, Inc., Gas Research Institute, and American Chemical Society, consists of five sessions: Session 1, thermal, chemical, and biological processing; Session 2 and 3, applied biological research; Session 4, bioengineering research; and Session 5, biotechnology, bioengineering, and the solution of environmental problems. It also consists of a poster session of the same five subject categories

  16. Proceedings of the nineteenth symposium of atomic energy research on WWER reactor physics and reactor safety

    International Nuclear Information System (INIS)

    Vidovszky, I.

    2009-10-01

    The present volume contains 55 papers, presented on the nineteenth symposium of atomic energy research, held in Varna, Bulgaria, 21-25 September 2009. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  17. Twelfth symposium on biotechnology for fuels and chemicals: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Scheitlin, F.M. (ed.)

    1990-01-01

    This report is the program and abstracts of the twelfth symposium on biotechnology for fuels and chemicals, held on May 7--11, 1990, at Gatlinburg, Tennessee. The symposium, sponsored by the Department of Energy, Oak Ridge National Laboratory, Solar Energy Research Institute, Badger Engineers, Inc., Gas Research Institute, and American Chemical Society, consists of five sessions: Session 1, thermal, chemical, and biological processing; Session 2 and 3, applied biological research; Session 4, bioengineering research; and Session 5, biotechnology, bioengineering, and the solution of environmental problems. It also consists of a poster session of the same five subject categories.

  18. Proceedings of the seventeenth Symposium of Atomic Energy Research, Vol. I

    International Nuclear Information System (INIS)

    Vidovszky, Istvan

    2007-10-01

    The present volume contains 83 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Yalta, Ukraine, 23-29 September 2007. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation, History of TIC/AER - according to the presentation sequence on the Symposium (Author)

  19. Proceedings of the seventeenth Symposium of Atomic Energy Research, Vol. II

    International Nuclear Information System (INIS)

    Vidovszky, Istvan

    2007-11-01

    The present volume contains 83 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Yalta, Ukraine, 23-29 September 2007. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation, History of TIC/AER - according to the presentation sequence on the Symposium (Author)

  20. NACOM - a code for sodium spray fire analysis

    International Nuclear Information System (INIS)

    Rao, P.M.; Kannan, S.E.

    2002-01-01

    Full text: In liquid metal fast breeder reactors (LMFBR), leakage of sodium can result in a spray fire. Because of higher burning rates in droplet form combustion of sodium in spray fire, thermal consequences are more severe than that in a sodium pool fire. The code NACOM was developed for the analysis of sodium spray fires in LMFBRs facilities. The code uses the validated model for estimating the falling droplet burning rates in pre-ignition and vapour phase combustion stages. It uses a distribution system to generate the droplet groups of different diameters that represent the spray. The code requires about 20 input parameters like sodium leak rates, sodium temperature, initial cell conditions like oxygen concentration, temperature and dimensions. NACOM is a validated code based on experiments with sodium inventory up to 650 kg in 0 to 21 % O 2 atmospheres. The paper brings out the salient features of the code along with the sensitivity analysis of the main input parameters like spray volume mean diameter, oxygen concentration etc. based on the results obtained. The limitations of the code and the confidence margins applicable to results obtained are also brought out