WorldWideScience

Sample records for thermal shocks simulation

  1. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  2. Optimizing thermal shock resistance of layered refractories

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Jarno; Kuna, Meinhard [Institute of Mechanics and Fluid Dynamics, Technical University Bergakademie Freiberg, Lampadiusstrasse 4, 09599 Freiberg (Germany)

    2012-06-15

    Severe thermal shocks may cause critical thermal stresses and failure in refractories or ceramic materials. To increase the thermal shock resistance, layered material structures are suggested. In order to optimize properties of these alternative structures, thermo-mechanical simulations are required. In this study, a finite difference method (FDM) is used for solving the partial differential equation of heat conduction with spatially varying parameters. The optimization of the strip's thermal shock resistance is exemplarily done on a 10 layered strip subjected to constant temperature jump on the top surface. Each layer can be set with different porous Al{sub 2}O{sub 3} and MgO ceramics, whose material properties are theoretically determined. In this study, an improved optimization method is developed that consists of a combination and sequence of Monte Carlo simulations and evolution strategies to overcome certain disadvantages of both techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Application of large-eddy simulation to pressurized thermal shock: Assessment of the accuracy

    International Nuclear Information System (INIS)

    Loginov, M.S.; Komen, E.M.J.; Hoehne, T.

    2011-01-01

    Highlights: → We compare large-eddy simulation with experiment on the single-phase pressurized thermal shock problem. → Three test cases are considered, they cover entire range of mixing patterns. → The accuracy of the flow mixing in the reactor pressure vessel is assessed qualitatively and quantitatively. - Abstract: Pressurized Thermal Shock (PTS) is identified as one of the safety issues where Computational Fluid Dynamics (CFD) can bring real benefits. The turbulence modeling may impact overall accuracy of the calculated thermal loads on the vessel walls, therefore advanced methods for turbulent flows are required. The feasibility and mesh resolution of LES for single-phase PTS are assessed earlier in a companion paper. The current investigation deals with the accuracy of LES approach with respect to the experiment. Experimental data from the Rossendorf Coolant Mixing (ROCOM) facility is used as a basis for validation. Three test cases with different flow rates are considered. They correspond to a buoyancy-driven, a momentum-driven, and a transitional coolant mixing pattern in the downcomer. Time- and frequency-domain analysis are employed for comparison of the numerical and experimental data. The investigation shows a good qualitative prediction of the bulk flow patterns. The fluctuations are modeled correctly. A conservative estimate of the temperature drop near the wall can be obtained from the numerical results with safety factor of 1.1-1.3. In general, the current LES gives a realistic and reliable description of the considered coolant mixing experiments. The accuracy of the prediction is definitely improved with respect to earlier CFD simulations.

  4. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Zhou, Qianhong; Dong, Zhiwei; Yang, Wei

    2016-01-01

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.

  5. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  6. Thermal shock investigation of silicon nitride

    International Nuclear Information System (INIS)

    Ziegler, G.; Leucht, R.

    1977-01-01

    In this work, the thermal shock properties of commercial reaction-bonded Si 3 N 4 quality material (RBSN), of commercial hot-pressed Si 3 N 4 (HPSN) and of different laboratory grades of hot-pressed Si 3 N 4 were examined. The thermal shock properties of RBSN quality material differ according to the structure considerably: The critical temperature difference for sample crossections of 5 x 5 or 6 x 6 mm after quenching in oil lies between 730 0 C and over 1400 0 C. The best thermal shock properties are shown by high density RBSN quality material having very fine pores and high initial strength. The results indicate that for RBSN large pores and density inhomogenities are responsible for bad thermal shock properties. Resistance to fast temperature change is higher for hot-pressed Si 3 N 4 than for RBSN quality material. In HPSN, the thermal shock results show dependence on structure. High MgO content and the associated coarse rod-shaped configuration of the β phase and structural inhomogenities affect the thermal shock properties in an adverse way. (orig.) [de

  7. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock

    Directory of Open Access Journals (Sweden)

    Ai Du

    2018-06-01

    Full Text Available Aerogel materials are recognized as promising candidates for the thermal insulator and have achieved great successes for the aerospace applications. However, the harsh environment on the exoplanet, especially for the tremendous temperature difference, tends to affect the tenuous skeleton and performances of the aerogels. In this paper, an evaluation method was proposed to simulate the environment of exoplanet and study the influence on the fiber-reinforced silica aerogels with different supercritical point drying (SPD technology. Thermal conductivity, mechanical property and the microstructure were characterized for understanding the thermal failure mechanism. It was found that structure and thermal property were significantly influenced by the adsorbed water in the aerogels under the thermal shocks. The thermal conductivity of CO2-SPD aerogel increased 35.5% after the first shock and kept in a high value, while that of the ethanol-SPD aerogel increased only 19.5% and kept in a relatively low value. Pore size distribution results showed that after the first shock the peak pore size of the CO2-SPD aerogel increased from 18 nm to 25 nm due to the shrinkage of the skeleton, while the peak pore size of the ethanol-SPD aerogel kept at ~9 nm probably induced by the spring-back effect. An 80 °C treatment under vacuum was demonstrated to be an effective way for retaining the good performance of ethanol-SPD aerogels under the thermal shock. The thermal conductivity increases of the ethanol-SPD aerogels after 5 shocks decreased from ~30 to ~0% via vacuum drying, while the increase of the CO2-SPD aerogels via the same treatments remains ~28%. The high-strain hardening and low-strain soften behaviors further demonstrated the skeleton shrinkage of the CO2-SPD aerogel.

  8. Pressurized thermal shock program sponsored by EPRI

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.

    1983-01-01

    The potential for long term neutron embrittlement of reactor vessels has been recognized for a number of years. Reactor vessel thermal shock is not a new concern, but with a growing number of plants approaching their mid-lives, it is a concern that must be understood and dealt with. Recent attention has focused on the performance of vessels during overcooling transients. This concern was designated as Unresolved Safety Issue A-49 by the Nuclear Regulatory Commission in December 1981. The USNRC staff has identified eight overcooling events of concern in U.S. PWRs. The concern is currently limited to Pressurized Water Reactors. The Electric Power Research Institute (EPRI) has supported research on reactor vessel integrity for a number of years and has supported an extensive effort on reactor vessel pressurized thermal shock (PTS) over the last three years. In addition, EPRI has developed a linked set of computer codes to simulate the pressurized thermal shock transients and assess the integrity of the nuclear reactor vessels for various overcooling transients. This paper focuses on the integrated analysis approach being used by EPRI in performing such analysis. (orig.)

  9. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  10. Influence of recrystallization on thermal shock resistance of various tungsten grades

    International Nuclear Information System (INIS)

    Uytdenhouwen, I.; Decreton, M.; Hirai, T.; Linke, J.; Pintsuk, G.; Oost, G. van

    2007-01-01

    Thermal shock resistance of various tungsten grades (different manufacturing technologies and heat treatments) was examined under plasma disruption conditions, especially in the cracking regime, i.e. below the melting threshold. The tests have been simulated with the electron beam test facility JUDITH. The comparison of the thermal shock resistance showed that sintered tungsten appeared to be better than the deformed tungsten material and clear degradation after recrystallization was found. Damage processes linked to the mechanical properties of W are discussed

  11. Evaluation of the of thermal shock resistance of a castable containing andalusite aggregates by thermal shock cycles

    International Nuclear Information System (INIS)

    Garcia, G.C.R.; Santos, E.M.B.; Ribeiro, S.; Rodrigues, J.A.

    2011-01-01

    The thermal shock resistance of refractory materials is one of the most important characteristics that determine their performance in many applications, since abrupt and drastic differences in temperature can damage them. Resistance to thermal shock damage can be evaluated based on thermal cycles, i.e., successive heating and cooling cycles followed by an analysis of the drop in Young's modulus occurring in each cycle. The aim of this study was to evaluate the resistance to thermal shock damage in a commercial refractory concrete with andalusite aggregate. Concrete samples that were sintered at 1000 deg C and 1450 deg C for 5 hours to predict and were subjected to 30 thermal shock cycles, soaking in the furnace for 20 minutes at a temperature of 1000 deg C, and subsequent cooling in circulating water at 25 deg C. The results showed a decrease in Young's modulus and rupture around 72% for samples sintered at 1000 ° C, and 82% in sintered at 1450 ° C. The refractory sintered at 1450 deg C would show lower thermal shock resistance than the refractory sintered at 1000 deg C. (author)

  12. Thermal shock cracking of GSO single crystal

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Yamamoto, Kazunari; Tamura, Takaharu; Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Susa, Kenzo

    1998-01-01

    The quantitative estimation of the failure stress of a gadolinium orthosilicate (Gd 2 SiO 5 , hereafter abbreviated as GSO) single crystal due to thermal shock was investigated. A cylindrical test specimen was heated in a silicone oil bath, then subjected to thermal shock by pouring room temperature silicone oil. Cracking occurred during cooling. The heat conduction analysis was performed to obtain temperature distribution in a GSO single crystal at cracking, using the surface temperatures measured in the thermal shock cracking test. Then the thermal stress was calculated using temperature profile of the test specimen obtained from the heat conduction analysis. It is found from the results of the thermal stress analysis and the observation of the cracking in test specimens that the thermal shock cracking occurs in a cleavage plane due to the stress normal to the plane. Three-point bending tests were also performed to examine the relationship between the critical stress for thermal shock cracking and the three-point bending strength obtained from small-sized test specimens. (author)

  13. Microstructure Evolution and Impedance Spectroscopy Characterization of Thermal Barrier Coating Exposed to Gas Thermal-shock Environment

    Directory of Open Access Journals (Sweden)

    CHEN Wen-long

    2017-10-01

    Full Text Available Gas thermal-shock experiment of thermal barrier coatings (TBCs was carried out in air up to 1250℃ in order to simulate the thermal cycling process of the engine blades during the start heating and shut down cooling. The growth of thermal growth oxide (TGO layer and microstructure evolution of YSZ layer during thermal cycling process were investigated systematically by electrochemical impedance spectroscopy testing and SEM. The results show that the thickness of TGO layer increases when increasing the frequency of thermal cycling, and the impedance response of middle frequencies is more and more remarkable. Meanwhile, initiation and growth of micro-cracks occur in YSZ layer during the gas thermal-shock experiment. The corresponding impedance characterization of YSZ layer after 100 cycles is similar to the as-sprayed sample, indicating that micro-cracks in short time could heal since the YSZ micro-cracks sinter at high temperature. But after 300 cycles, the impedance spectroscopy of YSZ layer is quite different to the as-sprayed sample, with the corresponding impedance of particle-gap of YSZ more and more remarkable with the increase of the thermal-shock times, indicating that non-healing micro-cracks form in the YSZ layer, which may be the main reason to induce the failure of YSZ layer.

  14. Predictive FEM simulation of thermal shock damage in the refractory lining of steelmaking installations

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    Thermal shock damage in the refractory lining of steelmaking installations is modelled using an experimentally validated constitutive damage framework which is coupled incrementally with a thermo-elastic FE package. Both non-local elasticity-based damage induced by temperature gradients and thermal

  15. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  16. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    damages. Furthermore the grain structure and the recrystallisation of the material have a significant influence on the thermal shock damage, especially the cracking pattern and surface roughening. Beside the thermal shock damage mapping tungsten was also successively exposed to steady state high flux hydrogen-plasma and to cyclic thermal shock events simulated with an electron beam. The induced damages were investigated to determine if the exposure to hydrogen-plasma has an influence on the thermal shock response of tungsten. Special attention was paid to the thermal shock crack parameters such as distance, width and depth. The investigations showed that there is a significant influence on the damage behaviour of tungsten, especially if the tungsten targets are pre-loaded with hydrogen plasma. Beside the sequence of the exposure also the surface temperature during the plasma loading shows a clear influence on the thermal shock behaviour. One of the most obvious changes is that due to the pre-exposure with hydrogen the thermal shock cracks are not limited to the electron beam loaded area anymore. They propagate through the only plasma loaded surface and even penetrate into the unexposed area at the edges of the tungsten targets. Additionally, all crack parameters decrease if the targets are pre-loaded with hydrogen plasma. The combination of these results shows that the thermal shock response of tungsten as a PFM is very complex and depends on a wide range of parameters. It can be very well characterised by electron beam tests, but it has to be taken into account that these tests only simulate thermal loads without any influence of particle exposure. The influence of high flux hydrogen-plasma exposure on the thermal shock behaviour of tungsten can be estimated based on the results obtained from successive loading experiments. They give a good overview of the expected damages on tungsten as a PFM. These damages on the surface of the materials which are induced by high power

  17. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    . Furthermore the grain structure and the recrystallisation of the material have a significant influence on the thermal shock damage, especially the cracking pattern and surface roughening. Beside the thermal shock damage mapping tungsten was also successively exposed to steady state high flux hydrogen-plasma and to cyclic thermal shock events simulated with an electron beam. The induced damages were investigated to determine if the exposure to hydrogen-plasma has an influence on the thermal shock response of tungsten. Special attention was paid to the thermal shock crack parameters such as distance, width and depth. The investigations showed that there is a significant influence on the damage behaviour of tungsten, especially if the tungsten targets are pre-loaded with hydrogen plasma. Beside the sequence of the exposure also the surface temperature during the plasma loading shows a clear influence on the thermal shock behaviour. One of the most obvious changes is that due to the pre-exposure with hydrogen the thermal shock cracks are not limited to the electron beam loaded area anymore. They propagate through the only plasma loaded surface and even penetrate into the unexposed area at the edges of the tungsten targets. Additionally, all crack parameters decrease if the targets are pre-loaded with hydrogen plasma. The combination of these results shows that the thermal shock response of tungsten as a PFM is very complex and depends on a wide range of parameters. It can be very well characterised by electron beam tests, but it has to be taken into account that these tests only simulate thermal loads without any influence of particle exposure. The influence of high flux hydrogen-plasma exposure on the thermal shock behaviour of tungsten can be estimated based on the results obtained from successive loading experiments. They give a good overview of the expected damages on tungsten as a PFM. These damages on the surface of the materials which are induced by high power densities

  18. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    Science.gov (United States)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  19. Thermal shock behaviour of SiC-fibre-reinforced glasses

    International Nuclear Information System (INIS)

    Klug, T.; Reichert, J.; Brueckner, R.

    1992-01-01

    The preparation of two SiC-fibre-reinforced glasses with very different thermal expansion coefficients and glass transition temperatures is described and the influence of long-time temperature and thermal shock behaviour of these composites on the mechanical properties is investigated by means of bending test experiments before and after thermal treatments. It will be shown from experiments and calculations on stresses due to thermal expansion mismatch between fibre and glass matrix that not only best mechanical properties but also best thermal shock behaviour are connected with low tensile intrinsic stresses produced by thermal expansion mismatch during preparation. The thermal shock resistance of the best composite (SiC fibre/DURAN glass) does not show a significant decrease of flexural strength even after 60 shocks from 550 to 25deg C in water, while the bulk glass sample of the same dimension was destroyed by one thermal shock from 350deg C. (orig.) [de

  20. Elastic-plastic fracture mechanics study of thermal shock cracking

    International Nuclear Information System (INIS)

    Hirano, K.; Kobayashi, H.; Nakazawa, H.

    1980-01-01

    This paper describes thermal shock experiments conducted on a nuclear pressure vessel steel (A533 Grade B Class 1), an AISI304 steel and a tool steel (JIS SKD62) using both a new thermal shock test facility and method. Analysis of their quasi-static thermal stress intensity factors is performed on the basis of linear-elastic fracture mechanics; and a thermal shock fracture toughness value, Ksub(tsc) is evaluated. Then elastic-plastic fracture toughness tests are carried out in the same high temperature range of the thermal shock experiment, and a relation between the stretched zone width, SZW, formed as a result of the fatigue precrack tip plastic blunting and the J-integral is clarified. An elastic-plastic thermal shock fracture toughness value, Jsub(tsc), is evaluated from a critical value of the stretched zone width, SZWsub(tsc), at the initiation of the thermal shock cracking by using the relation between SZW and J. The Jsub(tsc) value is compared with an elastic-plastic fracture toughness value, Jsub(Ic), and the difference between these Jsub(tsc) and Jsub(Ic) values is discussed on the basis of fractography. (author)

  1. Thermal shock considerations for the TFCX limiter and first wall

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.

    1983-01-01

    Resistance to thermal shock fracture of limiter and first wall surface material candidates during plasma disruption heating conditions is evaluated. A simple, figure-of-merit type thermal shock parameter which provides a mechanism to rank material candidates is derived. Combining this figure-of-merit parameter with the parameters defining specific heating conditions yields a non-dimensional thermal shock parameter. For values of this parameter below a critical value, a given material is expected to undergo thermal shock damage. Prediction of thermal shock damage with this parameter is shown to exhibit good agreement with test data. Applying this critical parameter value approach, all materials examined in this study are expected to experience thermal shock damage for nominal TFCX plasma disruption conditions. Since the extent of this damage is not clear, tests which explore the range of expected conditions for TFCX are recommended

  2. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  3. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  4. The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock

    Science.gov (United States)

    Giacalone, J.; Lario, D.; Lepri, S. T.

    2017-12-01

    We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.

  5. Numerical simulation of nonequilibrium flow in high-enthalpy shock tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, M.; Men' shov, I.; Nakamura, Y

    2005-03-01

    The flow field of a nozzle starting process with thermal and chemical nonequilibrium has been simulated. This flow is produced in high enthalpy impulse facilities such as the free piston shock tunnel. The governing equations are the axisymmetric, compressible Navier-Stokes equations. In this study, Park's two-temperature model, where air consists of five species, is used for defining the thermodynamic properties of air as a driven gas. The numerical scheme employed here is the hybrid scheme of the explicit and implicit methods, which was developed in our laboratory, along with AUSM{sup +} to evaluate inviscid fluxes. In the present simulation, the Mach number of an incident shock wave is set at M{sub s}=10.0. It corresponds to a specific enthalpy, h{sub 0}, of 12 MJ/kg. The results clearly show the complicated thermal and chemical nonequilibrium flow field around the end of the shock tube section and at the nozzle inlet during the initial stage of the nozzle starting process. They also suggest that the phenomenon of nozzle melting might be associated with a flow separation at the nozzle inlet.

  6. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  7. Reflection of a shock wave from a thermally accommodating wall - Molecular simulation.

    Science.gov (United States)

    Deiwert, G. S.

    1973-01-01

    Reflection of a plane shock wave from a wall has been simulated on a microscopic scale using a direct simulation Monte Carlo technique of the type developed by Bird. A monatomic gas model representing argon was used to describe the fluid medium and a simple one-parameter accommodation coefficient model was used to describe the gas-surface interaction. The influence of surface accommodation was studied parametrically by varying the accommodation coefficient from zero to one. Results are presented showing the temporal variations of flow field density, and mass, momentum, and energy fluxes to the wall during the shock wave reflection process. The energy flux was used to determine the wall temperature history. Comparisons with experiment are found to be satisfactory where data are available.

  8. Thermal shock problems in a plate

    International Nuclear Information System (INIS)

    Takeuti, Y.; Furukawa, T.

    1981-01-01

    The problems considered are coupled dynamic thermoelastic analysis in a plate. First we try to examine a problem of the coupled dynamic thermal stress problem with small time approximation for the finite region. Next, we treatise both effects individually by pursuing rigorous anaylsis without small time approximation. Finally we consider thermal shock problems in a plate against different values of heat transfer coefficient (Biot's number) for the time. In conclusion, for usual materials, the inertia effect may be disregarded in the pure thermal problems in contrast to the coupling effect which brings small lags in the temperature and thermal stress distributions. For the consideration of the maximum thermal stress problems, Manson's uncoupled quasi-static results give enough approximation to the thermal shock problems without significant error from our numerical results. The analysis is developed by the use of Laplace transforms and several useful graphical illustrations are given. (orig./HP)

  9. COLLISIONLESS ELECTRON–ION SHOCKS IN RELATIVISTIC UNMAGNETIZED JET–AMBIENT INTERACTIONS: NON-THERMAL ELECTRON INJECTION BY DOUBLE LAYER

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi

    2016-01-01

    The course of non-thermal electron ejection in relativistic unmagnetized electron–ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ∼1% of electrons and ∼8% of the electron energy. Its power-law index is −2.6. The acceleration efficiency is ∼23% by number and ∼50% by energy, and the power-law index is −1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.

  10. Pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Whitman, G.D.; McCulloch, R.W.

    1982-01-01

    The primary objective of the ORNL pressurized-thermal-shock (PTS) experiments is to verify analytical methods that are used to predict the behavior of pressurized-water-reactor vessels under these accident conditions involving combined pressure and thermal loading. The criteria on which the experiments are based are: scale large enough to attain effective flaw border triaxial restraint and a temperature range sufficiently broad to produce a progression from frangible to ductile behavior through the wall at a given time; use of materials that can be completely characterized for analysis; stress states comparable to the actual vessel in zones of potential flaw extension; range of behavior to include cleavage initiation and arrest, cleavage initiation and arrest on the upper shelf, arrest in a high K/sub I/ gradient, warm prestressing, and entirely ductile behavior; long and short flaws with and without stainless steel cladding; and control of loads to prevent vessel burst, except as desired. A PTS test facility is under construction which will enable the establishment and control of wall temperature, cooling rate, and pressure on an intermediate test vessel (ITV) in order to simulate stress states representative of an actual reactor pressure vessel

  11. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  12. Thermal shock fracture of graphite armor plate under the heat load of plasma disruption

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Seki, Masahiro; Ohmori, Junji

    1989-01-01

    Experiments on the thermal shock brittle fracture of graphite plates were performed. Thermal loading which simulated a plasma disruption was produced by an electron beam facility. Pre-cracks produced on the surface propagated to the inside of the specimen even if the thermal stress on the surface was compressive. Two mechanisms are possible to produce tensile stress around the crack tip under thermal shock conditions. Temperature, thermal stress, and the stress intensity factor for the specimen were analyzed based on the finite element method for various heating conditions. The trend of experimental results under the asymmetric heating agrees qualitatively with the analytical results. This phenomenon is important for the design of plasma facing components made of graphite. Establishment of a lifetime prediction procedure including fatigue, fatigue crack growth, and brittle fracture is needed for graphite armors. (orig.)

  13. Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Youn Ho; Lee, Joon Hyun [Pusan National University, Busan (Korea, Republic of); Oh, Jeong Seok; Lee, Koo Hyun [KIMM, Daejeon (Korea, Republic of)

    2009-10-15

    Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and ZrO{sub 2}-8wt%Y{sub 2}O{sub 3} ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until 1000 .deg. C and cool until 20 .deg. C. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of is Al{sub 2}O{sub 3} formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating

  14. Ductile fracture estimation of reactor pressure vessel under thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Sakai, Shinsuke; Okamura, Hiroyuki

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture of a reactor pressure vessel under thermal shock conditions. First, it is shown that the bending moment applied to the cracked section can be evaluated by considering the plastic deformation of the cracked section and the thermal deformation of the shell. As the contribution of the local thermal stress to the J-value is negligible, the J-value under thermal shock can be easily evaluated by using fully plastic solutions for the cracked part. Next, the phenomena of ductile fracture under thermal shock are expressed on the load-versus-displacement diagram which enables us to grasp the transient phenomena visually. In addition, several parametrical surveys are performed on the above diagram concerning the variation of (1) thermal shock conditions, (2) initial crack length, and (3) J-resistance curve (i.e. embrittlement by neutron irradiation). (author)

  15. Pyro shock simulation: Experience with the MIPS simulator

    Science.gov (United States)

    Dwyer, Thomas J.; Moul, David S.

    1988-01-01

    The Mechanical Impulse Pyro Shock (MIPS) Simulator at GE Astro Space Division is one version of a design that is in limited use throughout the aerospace industry, and is typically used for component shock testing at levels up to 10,000 response g's. Modifications to the force imput, table and component boundary conditions have allowed a range of test conditions to be achieved. Twelve different designs of components with weights up to 23 Kg are in the process or have completed qualification testing in the Dynamic Simulation Lab at GE in Valley Forge, Pa. A summary of the experience gained through the use of this simulator is presented as well as examples of shock experiments that can be readily simulated at the GE Astro MIPS facility.

  16. Strain measurements during pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  17. Thermal Shielding Effects of a Damaged Shock Absorber and an Intact Shock Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    In order to safely transport the radioactive waste arising from the hot test of an ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore, KAERI is developing a shipping package to transport the radioactive waste arising from the ACPF during a hot test. The regulatory requirements for a Type B package are specified in the Korea Most Act 2009-37, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. investigated the thermal protection provided by shock absorbers by using the CAFE computer code. To evaluate the thermal shielding effect of the shock absorber, the thermal test was performed by using a 1/2 scale model with a shock absorber which was damaged by both a 9 m drop test and a 1 m puncture test. For the purpose of comparison, the thermal test was also carried out by using a 1/2 scale model with the intact shock absorber

  18. Numerical simulation of shock absorbers heat load for semi-active vehicle suspension system

    Directory of Open Access Journals (Sweden)

    Demić Miroslav D.

    2016-01-01

    Full Text Available Dynamic simulation, based on modelling, has a significant role during to the process of vehicle development. It is especially important in the first design stages, when relevant parameters are to be defined. Shock absorber, as an executive part of a semi-active suspension system, is exposed to thermal loads which can lead to its damage and degradation of characteristics. Therefore, this paper attempts to analyze a conversion of mechanical work into heat energy by use of a method of dynamic simulation. The issue of heat dissipation from the shock absorber has not been taken into consideration.

  19. Response of beryllium to severe thermal shocks -simulation of disruption and vertical displacement events in future thermonuclear devices

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Duwe, R.; Roedig, M.; Schuster, A. [Association Euratom-Forschungszentrum Juelich GmbH (Germany); Merola, M.; Qian, R.H.

    1998-01-01

    Beryllium will play an important role for plasma facing components in next step thermonuclear fusion devices such as ITER. In particular for the first wall beryllium will be used with an armor thickness of several millimeters. However, during plasma instabilities they will experience severe thermal shocks. Here plasma disruptions with deposited energy densities of several ten MJm{sup -2} are the most essential damaging mechanism. However, a signifant fraction of the incident energy will be absorbed by a dense cloud of ablation vapor, hence reducing the effective energy density at the beryllium surface to values in the order of 10 MJm{sup -2}. To investigate the material response to all these plasma instabilities thermal shock tests on small scale test coupons (disruption effects) and on actively cooled divertor modules (VDEs) have been performed in the electron beam test facility JUDITH at ITER relevant surface heat loads. These tests have been performed on different bulk beryllium grades and on plasma sprayed coatings; the influence of pulse duration, power density, and temperature effects has been investigated experimentally. Detailed in-situ diagnostics (for beam characterization, optical pyrometry etc.) and post mortem analyses (profilometry, metallography, optical and electron microscopy) have been applied to quantify the resulting material damage. 1D- and 2D models have developed to verify the experimental results obtained in the electron beam simulation experiments. (J.P.N.)

  20. 3-D thermal weight function method and multiple virtual crack extension technique for thermal shock problems

    International Nuclear Information System (INIS)

    Lu Yanlin; Zhou Xiao; Qu Jiadi; Dou Yikang; He Yinbiao

    2005-01-01

    An efficient scheme, 3-D thermal weight function (TWF) method, and a novel numerical technique, multiple virtual crack extension (MVCE) technique, were developed for determination of histories of transient stress intensity factor (SIF) distributions along 3-D crack fronts of a body subjected to thermal shock. The TWF is a universal function, which is dependent only on the crack configuration and body geometry. TWF is independent of time during thermal shock, so the whole history of transient SIF distributions along crack fronts can be directly calculated through integration of the products of TWF and transient temperatures and temperature gradients. The repeated determinations of the distributions of stresses (or displacements) fields for individual time instants are thus avoided in the TWF method. An expression of the basic equation for the 3-D universal weight function method for Mode I in an isotropic elastic body is derived. This equation can also be derived from Bueckner-Rice's 3-D WF formulations in the framework of transformation strain. It can be understood from this equation that the so-called thermal WF is in fact coincident with the mechanical WF except for some constants of elasticity. The details and formulations of the MVCE technique are given for elliptical cracks. The MVCE technique possesses several advantages. The specially selected linearly independent VCE modes can directly be used as shape functions for the interpolation of unknown SIFs. As a result, the coefficient matrix of the final system of equations in the MVCE method is a triple-diagonal matrix and the values of the coefficients on the main diagonal are large. The system of equations has good numerical properties. The number of linearly independent VCE modes that can be introduced in a problem is unlimited. Complex situations in which the SIFs vary dramatically along crack fronts can be numerically well simulated by the MVCE technique. An integrated system of programs for solving the

  1. Thermal shock experiment analysis, the use of crack arrest toughness measurements

    International Nuclear Information System (INIS)

    Miannay, D.; Pellissier-Tanon, A.; Chavaillard, J.P.

    1984-06-01

    The main purpose of thermal shock experiment is to assess the procedure codified in the ASME XI appendix 1 or RCC-M-B appendix ZG, and allow comparisons with numerical simulations. The analysis of the integrity of the PWR vessel belt line under accidental transients is based on reference curves. The test-piece is a cylinder of SA 508 cl.3 steel. Arrest toughness measured agrees with reference curve

  2. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  3. Surface flaw in a thermally shocked hollow cylinder

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Polvanich, N.; Love, W.J.

    1975-01-01

    The objective of this paper is to illustrate a procedure for estimating the stress intensity factors of a semi-elliptical crack located in the inner or outer surface of a thermally shocked hollow cylinder. The first step in this procedure is to estimate the transient thermal elastic stresses induced by sudden cooling of an uncracked cylinder by numerically evaluating standard heat transfer and thermal stress formulae. The stresses at the location of the crack surface in the uncracked cylinder are eliminated by the method of superposition in order to obtain a stress free crack surface. The stress intensity factors are then determined by a judicious use of two sets of solutions, one set involving stress intensity factors for a semi-elliptical crack in a flat plate and subjected to a polynomial distribution of pressure loading, and another set involving single-edge notched plates with prescribed edge-displacements and single-edge internally or externally notched cylinders with thermal shock loading. The former solutions are determined by the alternating technique in three-dimensional fracture mechanics with a fourth order polynomial pressure distribution on the crack surface where both the front and back surface effects are accounted for. The latter solutions involve two-dimensional finite element solutions of single-edge notched plates with prescribed edge-displacements and single-edge notched cylinders with thermal shock loading. By comparing these two two-dimensional solutions, an estimate of the effect of the cylindrical curvature on an edge-cracked plate is obtained. The combination of these two sets of solutions thus yields an estimate of the stress intensity factor in an internal and external semi-elliptical crack in a thermally shocked cylinder

  4. Thermal shock resistances of a bonding material of C/C composite and copper

    International Nuclear Information System (INIS)

    Kurumada, Akira; Oku, Tatsuo; Kawamata, Kiyohiro; Motojima, Osamu; Noda, Nobuaki; McEnaney, B.

    1997-01-01

    The purpose of this study is to contribute to the development and the safety design of plasma facing components for fusion reactor devices. We evaluated the thermal shock resistance and the thermal shock fracture toughness of a bonding material which was jointed a carbon-fiber-reinforced carbon composite (C/C composite) to oxygen-free copper. We also examined the microstructures of the bonding layers using a scanning electron microscope before and after thermal shock tests. The bonding material did not fracture during thermal shock tests. However, thermal cracks and delamination cracks were observed in the bonding layers. (author)

  5. Discrimination of Thermal versus Mechanical Effects of Shock on Rock Magnetic Properties of Spherically Shocked up to 10-160 GPa Basalt and Diabase

    Science.gov (United States)

    Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.

    2016-12-01

    Understanding how shock waves generated during hypervelocity impacts affect rock magnetic properties is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Laboratory simulations of impacts show that ultra-high shocks may induce substantial post-shock heating of the target material. At high pressures (>10 GPa), shock heating occurs in tandem with mechanical effects, such as grain fracturing and creation of crystallographic defects and dislocations within magnetic grains. This makes it difficult to conclude whether shock-induced changes in the rock magnetic properties of target materials are primarily associated with mechanical or thermal effects. Here we present novel experimental methods to discriminate between mechanical and thermal effects of shock on magnetic properties and illustrate it with two examples of spherically shocked terrestrial basalt and diabase [1], which were shocked to pressures of 10 to >160 GPa, and investigate possible explanations for the observed shock-induced magnetic hardening (i.e., increase in remanent coercivity Bcr). The methods consist of i) conducting extra heating experiments at temperatures resembling those experienced during high-pressure shock events on untreated equivalents of shocked rocks (with further comparison of Bcr of shocked and heated samples) and ii) quantitative comparison of high-resolution first-order reversal curve (FORC) diagrams (field step: 0.5-0.7 mT) for shocked, heated and untreated specimens. Using this approach, we demonstrated that the shock-induced coercivity hardening in our samples is predominantly due to solid-state, mechanical effects of shock rather than alteration associated with shock heating. Indeed, heating-induced changes in Bcr in the post-shock temperature range were minor. Visual inspection of FORC contours (in addition to detailed analyses) reveals a stretching of the FORC distribution of shocked sample towards higher coercivities

  6. Thermal shock behaviour of mullite-bonded porous silicon carbide ceramics with yttria addition

    International Nuclear Information System (INIS)

    Ding Shuqiang; Zeng Yuping; Jiang Dongliang

    2007-01-01

    Thermal shock resistance of mullite (3Al 2 O 3 · 2SiO 2 )-bonded porous silicon carbide (SiC) ceramics with 3.0 wt% yttria (Y 2 O 3 ) addition was evaluated by a water-quenching technique. The thermal shock damage was investigated as a function of the quenching temperature, quenching cycles and specimen thickness. The residual flexural strength of the quenched specimens decreases with increasing quenching temperature and specimen thickness due to the larger thermal stress caused by thermal shock. However, quenching cycles at the temperature difference of 1200 deg. C have no effect on the residual strength since the same thermal stress was produced in repeated thermal shock processes. The good thermal shock damage resistance of the specimens is contributed mainly by the low strength and moderate elastic modulus. Moreover, the pores prevent the continuous propagation of cracks and alleviate further damage

  7. Non-thermal electron acceleration in low Mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xinyi; Narayan, Ramesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sironi, Lorenzo [NASA Einstein Postdoctoral Fellow. (United States)

    2014-12-10

    Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ≲ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (≳ 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  8. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  9. Evaluation of thermal shock strengths for graphite materials using a laser irradiation method

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Lee, Young Shin; Kim, Duck Hoi; Park, No Seok; Suh, Jeong; Kim, Jeng O.; Il Moon, Soon

    2004-01-01

    Thermal shock is a physical phenomenon that occurs during the exposure to rapidly high temperature and pressure changes or during quenching of a material. The rocket nozzle throat is exposed to combustion gas of high temperature. Therefore, it is important to select suitable materials having the appropriate thermal shock resistance and to evaluate these materials for rocket nozzle design. The material of this study is ATJ graphite, which is the candidate material for rocket nozzle throat. This study presents an experimental method to evaluate the thermal shock resistance and thermal shock fracture toughness of ATJ graphite using laser irradiation. In particular, thermal shock resistance tests are conducted with changes of specimen thickness, with laser source irradiated at the center of the specimen. Temperature distributions on the specimen surface are detected using type K and C thermocouples. Scanning electron microscope (SEM) is used to observe the thermal cracks on specimen surface

  10. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading

    International Nuclear Information System (INIS)

    Hai-Feng, Song; Hai-Feng, Liu; Guang-Cai, Zhang; Yan-Hong, Zhao

    2009-01-01

    We undertake a numerical simulation of shock experiments on tin reported in the literature, by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β, γ and liquid phases. In the MSG model, the Bauschinger effect is considered to better describe the unloading behavior. The phase diagram and Hugoniot of tin are calculated by MEOS, and they agree well with the experimental data. Combined with the MEOS and MSG models, hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment. Moreover, by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin, we further discuss the complex behavior of tin under shock-wave loading. (condensed matter: structure, mechanical and thermal properties)

  11. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  12. Numerical evaluation of stress intensity factor for vessel and pipe subjected to thermal shock

    International Nuclear Information System (INIS)

    Kim, Y.W.; Lee, H.Y.; Yoo, B.

    1994-01-01

    The thermal weight function method and the finite element method were employed in the numerical computation of the stress intensity factor for a cracked vessel and the cracked pipe subjected to thermal shock. A wall subjected to thermal shock was analyzed, and it has been shown that the effect of thermal shock on the stress intensity factor is dominant for the crack with small crack length to thickness ratio. Convection at the crack face had an influence on the stress intensity factor in the early stage of thermal shock. (Author)

  13. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  14. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  15. Molecular dynamics simulation of a piston driven shock wave in a hard sphere gas. Final Contractor ReportPh.D. Thesis

    Science.gov (United States)

    Woo, Myeung-Jouh; Greber, Isaac

    1995-01-01

    Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.

  16. Electrochemical behaviour of a stainless steel coating after thermal fatigue and thermal shocks

    International Nuclear Information System (INIS)

    Boudebane, A.; Darsouni, A.; Chadli, H.; Boudebane, S.

    2012-01-01

    This work aims to study of the influence of thermal fatigue and thermal shock on the corrosion behaviour of coated steel AISI 304L. The coating was welded by TIG welding on specimens in ferritic-pearlitic steel grade AISI 4140. The study concerns three different states of deposit: sensitized, sensitized and strain hardened in surface and no sensitized. We realized electrochemical corrosion in an aqueous solution of NaCl 34 g/l. The corrosion of the specimens were evaluated by comparing the potentiodynamic curves for different states of the coating. Firstly, electrochemical characterization of deposits has shown a localized intergranular corrosion. Furthermore, the increase in the number of cycles of thermal fatigue accelerates the dissolution of deposit. Thermal shocks tend to improve resistance to corrosion. Against, the mechanical treatment of surfaces by burnishing decreases the dissolution rate of deposit cycles in thermal fatigue. (authors)

  17. Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.J. [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Ru, H.Q., E-mail: ruhq@smm.neu.edu.cn [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Zhang, N.; Liang, B. [Key Laboratory of Advanced Materials Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Addition of nano-SiC particles enhances residual strength and critical temperature. Black-Right-Pointing-Pointer Young's modulus decreases with increasing quenching temperature. Black-Right-Pointing-Pointer Linear relationship between residual strength and thermal shock times is obtained. Black-Right-Pointing-Pointer Rougher fracture surfaces in the SiC-AlON composites are observed. - Abstract: Aluminum oxynitride (AlON) has been considered as a potential ceramic material for high-performance structural and advanced refractory applications. Thermal shock resistance is a major concern and an important performance index of high-temperature ceramics. While silicon carbide (SiC) particles have been proven to improve mechanical properties of AlON ceramic, the high-temperature thermal shock behavior was unknown. The aim of this investigation was to identify the thermal shock resistance and underlying mechanisms of AlON ceramic and 8 wt% SiC-AlON composites over a temperature range between 175 Degree-Sign C and 275 Degree-Sign C. The residual strength and Young's modulus after thermal shock decreased with increasing quenching temperature and thermal shock times due to large temperature gradients and thermal stresses caused by abrupt water-quenching. A linear relationship between the residual strength and thermal shock times was observed in both pure AlON and SiC-AlON composites. The addition of nano-sized SiC particles increased both residual strength and critical temperature from 200 Degree-Sign C in the monolithic AlON to 225 Degree-Sign C in the SiC-AlON composites due to the toughening effect, the lower coefficient of thermal expansion and higher thermal conductivity of SiC. The enhancement of the thermal shock resistance in the SiC-AlON composites was directly related to the change of fracture mode from intergranular cracking along with cleavage-type fracture in the AlON to a rougher fracture surface with ridge

  18. Thermal shock effect on Mechanical and Physical properties of pre-moisture treated GRE composite

    Science.gov (United States)

    Chakraverty, A. P.; Panda, A. B.; Mohanty, U. K.; Mishra, S. C.; Biswal, B. B.

    2018-03-01

    Many practical situations may be encountered under which a GFRP (Glass fibre reinforced polymer) composite, during its service life, is exposed to the severities of sudden temperature fluctuations. Moisture absorption of GRE (Glass fibre reinforced epoxy) composites followed by various gradients of temperature fluctuations may cause thermo- mechanical degradation. It is on this context, the hand layed GRE composite samples are exposed to up-thermal shock (-40°C to +50°C) and down-thermal shock (+50°C to -40°C) for various time interval after several periods of moisture (hydrothermal/hygrothermal) conditioning. The thermally shocked GRE specimens are put to 3-point bend test to divulge inter laminar shear strength (ILSS). Least ILSS values are recorded for the samples with maximum period of moisture treatments under with both up-thermal and down-thermal shock conditions. Lower glass transition temperature (Tg) values, as revealed through the low temperature DSC test, are exhibited at maximum durations of both up-thermal and down-thermal shock for the samples with higher periods of hygrothermal/hydrothermal treatments. SEM fractographs of representative GRE specimens after optimum period of moisture treatments and thermal shock show the various modes of failures.

  19. Radiative shocks with electron thermal conduction

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz.

    1988-01-01

    The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs

  20. On-line monitoring on thermal shock damage of ceramics using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Joon Hyun; Song, Sang Hun

    1999-01-01

    The objective of this paper is to investigate the degree of the thermal shock damage on alumina ceramic using acoustic emission technique. For this purpose, alumina ceramic specimen was heated in the elastic furnace and then was quenched into the water tank. When the specimen was quenched into water tank, a lot of micro-cracks were generated on the surface of specimen due to the thermal shock damage. In this study, acoustic emission technique was used to evaluate the elastic waves generated by the crack initiation and propagation on the surface of specimen. It was found that when the micro-crack was initiated on the surface of specimen, AE signals were the higher in amplitude than those of bubbling effect and crack propagation. A lot of AE events were generated at the first thermal shock, the number of AE events decreased gradually as the thermal shock cycle increased.

  1. Evaluation of thermal shock resistance of cordierite honeycombs

    Indian Academy of Sciences (India)

    A comparative study on thermal shock resistance (TSR) of extruded cordierite honeycombs is presented. TSR is an important property that predicts the life of these products in thermal environments used for automobile pollution control as catalytic converter or as diesel particulate filter. TSR was experimentally studied by ...

  2. The elevated temperature and thermal shock fracture toughnesses of nuclear pressure vessel steel

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kobayashi, Hideo; Nakazawa, Hajime; Nara, Atsushi.

    1979-01-01

    Thermal shock experiments were conducted on nuclear pressure vessel steel A533 Grade B Class 1. Elastic-plastic fracture toughness tests were carried out within the same high temperature range of the thermal shock experiment and the relation between stretched zone width, SZW and J-integral was clarified. An elastic-plastic thermal shock fracture toughness value. J sub(tsc) was evaluated from a critical value of stretched zone width, SZW sub(tsc) at the initiation of thermal shock fracture by using the relation between SZW and J. The J sub(tsc) value was compared with elastic-plastic fracture toughness values, J sub( ic), and the difference between the J sub(tsc) and J sub( ic) values was discussed. The results obtained are summarized as follows; (1) The relation between SZW and J before the initiation of stable crack growth in fracture toughness test at a high temperature can be expressed by the following equation regardless of test temperature, SZW = 95(J/E), where E is Young's modulus. (2) Elevated temperature fracture toughness values ranging from room temperature to 400 0 C are nearly constant regardless of test temperature. It is confirmed that upper shelf fracture toughness exists. (3) Thermal shock fracture toughness is smaller than elevated temperature fracture toughness within the same high temperature range of thermal shock experiment. (author)

  3. Experimental and numerical studies of various thermal sleeves subjected to severe cyclic thermal shocks

    International Nuclear Information System (INIS)

    Masson, J.C.; Moinereau, D.

    1990-01-01

    During the first operating years of nuclear power plants of different countries, damage was encountered on thermal sleeves used as nozzle protection. Following this discovery studies were initiated to determine the causes and to find solutions. At first a problem of vibration was found and easily solved by reducing gaps and reinforcing the welding of the sleeves. But preliminary tests with cyclic thermal shocks showed a risk of fatigue crack initiation and propagation both in the sleeve fixation and in the nozzle. Therefore a large research and development program was led principally by EDF laboratories of Les Renardieres, to demonstrate the absence of nocivity of thermal shocks during the plants life time [fr

  4. Thermomechanical fields measurement for fatigue investigation under cyclic thermal shocks

    International Nuclear Information System (INIS)

    Charbal, Ali

    2017-01-01

    Thermal fatigue occurs in nuclear power plant pipes. The temperature variations are due to the turbulent mixing of fluids that have different temperatures. Many experimental setups have been designed but the measured temperatures have only been punctual and out of the zone of interest (e.g., via thermocouples). The equivalent strain variation in the crack initiation region is calculated with numerical thermomechanical simulations. In many cases, the comparisons between numerical and experimental results have shown that the crack initiation predictions in thermal fatigue are non-conservative. a new testing setup is proposed where thermal shocks are applied with a pulsed laser beam while the thermal and kinematic fields on the specimen surface are measured with infrared (IR) and visible cameras, respectively. Experimental testings are performed and different measurement techniques for temperature and kinematic fields are used. IR camera and pyrometers allow to measure the temperature variations in the zone impacted by the laser beam. To estimate the absolute temperature, the surface emissivities at the respective wavelengths are determined by different methods. The absolute temperature field is then used to apply the actual thermal loading in a decoupled FE model after an identification process of the parameters of the laser beam. Once the thermal loading is generated based upon the experimental data, the stress and strain fields can be computed in the region of interest with an elastoplastic law.The experimental strain variations calculated from the DIC measurements are compared with the predictions obtained with the FE simulation. (author) [fr

  5. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  6. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  7. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Science.gov (United States)

    Ogorodnikova, O. V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  8. Modelling of thermal shock experiments of carbon based materials in JUDITH

    International Nuclear Information System (INIS)

    Ogorodnikova, O.V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-01-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments

  9. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)]. E-mail: o.ogorodnikova@fz-juelich.de; Pestchanyi, S. [Forschungszentrum Karlsruhe, EURATOM-Associaton, IHM, 76021 Karlsruhe (Germany); Koza, Y. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  10. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    SI Tingzhi; LIU Ning; ZHANG Qingan; YOU Xianqing

    2008-01-01

    The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt. % TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (N) on fatigue crack growth (Δα). The mechanical properties and thermal fatigue resistance of TiC/Al2O3 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.

  11. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  12. Simulation of turbulent flows containing strong shocks

    International Nuclear Information System (INIS)

    Fryxell, Bruce; Menon, Suresh

    2008-01-01

    Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.

  13. Thermal shock test of TiC and graphite

    International Nuclear Information System (INIS)

    Shirakawa, H.; Okamura, J.; Son, P.; Miyake, M.

    1989-01-01

    Thermal shock tests were performed by pulse electron beam heating on chemically vapor deposited coatings of TiC on Poco graphite, bulk TiC, and several kinds of isotropic graphite. The specimens were heated at various power densities (10-45 MW/m 2 ) for various pulse durations (1-2 s) to examine the dependence of thermal failures on heating conditions. The TiC coating on graphite suffered cracking, surface melting and evaporation by the thermal pulse. The surface melting limit, defined as F τ 1/2 , where F is the minimum power density that causes surface melting for a specified pulse duration τ, was approximately 48 MWs 1/2 /m 2 for the TiC coating. The combined-Carbon/Titanium ratio of the coating after electron beam heating decreased with increasing power density and pulse duration. The bulk TiC specimens were so brittle that they fractured at heat load conditions where the coating showed no damage. The graphite specimens showed sublimation as a principal damage mechanism by the thermal pulse, and the sublimation weight loss decreased with increasing the thermal conductivity of the specimen. It was confirmed that the TiC coating on graphite had favorable resistance to thermal shock as compared to the bulk TiC and that graphite with high thermal conductivity is promising material as a high heat flux component. (orig.)

  14. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    Science.gov (United States)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  15. Pressurized Thermal Shock, Pts

    International Nuclear Information System (INIS)

    Boyd, C.

    2008-01-01

    Pressurized Thermal Shock (Pts) refers to a condition that challenges the integrity of the reactor pressure vessel. The root cause of this problem is the radiation embrittlement of the reactor vessel. This embrittlement leads to an increase in the reference temperature for nil ductility transition (RTNDT). RTNDT can increase to the point where the reactor vessel material can loose fracture toughness during overcooling events. The analysis of the risk of having a Pts for a specific plant is a multi-disciplinary problem involving probabilistic risk analysis (PRA), thermal-hydraulic analysis, and ultimately a structural and fracture analysis of the vessel wall. The PRA effort involves the postulation of overcooling events and ultimately leads to an integrated risk analysis. The thermal-hydraulic effort involves the difficult task of predicting the system behavior during a postulated overcooling scenario with a special emphasis on predicting the thermal and mechanic loadings on the reactor pressure vessel wall. The structural and fracture analysis of the reactor vessel wall relies on the thermal-hydraulic conditions as boundary conditions. The US experience has indicated that medium and large diameter primary system breaks dominate the risk of Pts along with scenarios that involve a stuck open valve (and associated system cooldown) that recloses resulting in system re-pressurization while the vessel wall is cool.

  16. Two dimensional hybrid simulation of a curved bow shock

    International Nuclear Information System (INIS)

    Thomas, V.A.; Winske, D.

    1990-01-01

    Results are presented from two dimensional hybrid simulations of curved collisionless supercritical shocks, retaining both quasi-perpendicular and quasi-parallel sections of the shock in order to study the character and origin of the foreshock ion population. The simulations demonstrate that the foreshock ion population is dominated by ions impinging upon the quasi-parallel side of the shock, while nonlocal transport from the quasi-perpendicular side of the shock into the foreshock region is minimal. Further, it is shown that the ions gain energy by drifting significantly in the direction of the convection electric field through multiple shock encounters

  17. Effects of non-adiabatic walls on shock/boundary-layer interaction using direct numerical simulations

    Science.gov (United States)

    Volpiani, Pedro S.; Bernardini, Matteo; Larsson, Johan

    2017-11-01

    The influence of wall thermal conditions on the properties of an impinging shock wave interacting with a turbulent supersonic boundary layer is a research topic that still remains underexplored. In the present study, direct numerical simulations (DNS) are employed to investigate the flow properties of a shock wave interacting with a turbulent boundary layer at free-stream Mach number M∞ = 2.28 with distinct wall thermal conditions and shock strengths. Instantaneous and mean flow fields, wall quantities and the low-frequency unsteadiness are analyzed. While heating contributes to increase the extent of the interaction zone, wall cooling turns out to be a good candidate for flow control. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. Numerical results indicate that the changes in the interaction length are mainly linked to the incoming boundary layer as suggested in previous studies (Souverein et al., 2013 and Jaunet et al., 2014). This work was supported by the Air Force Office of Scientific Research, Grant FA95501610385.

  18. Study of the response of Zircaloy- 4 cladding to thermal shock during water quenching after double sided steam oxidation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sawarn, Tapan K., E-mail: sawarn@barc.gov.in; Banerjee, Suparna; Kumar, Sunil

    2016-05-15

    This study investigates the failure of embrittled Zircaloy-4 cladding in a simulated loss of coolant accident condition and correlates it with the evolved stratified microstructure. Isothermal steam oxidation of Zircaloy-4 cladding at high temperatures (900–1200 °C) with soaking periods in the range 60–900 s followed by water quenching was carried out. The combined oxide + oxygen stabilized α-Zr layer thickness and the fraction of the load bearing phase (recrystallised α-Zr grains + prior β-Zr or only prior β-Zr) of clad tube specimens were correlated with the %ECR calculated using Baker-Just equation. Average oxygen concentration of the load bearing phase corresponding to different oxidation conditions was calculated from the average microhardness using an empirical correlation. The results of these experiments are presented in this paper. Thermal shock sustainability of the clad was correlated with the %ECR, combined oxide+α-Zr(O) layer thickness, fraction of the load bearing phase and its average oxygen concentration. - Highlights: • Response of the embrittled Zircaloy-4 clad towards thermal shock, simulated under LOCA condition was investigated. • Thermal shock sustainability of the clad was correlated with its evolved stratified microstructure. • Cladding fails at %ECR value ≥ 29. • To resist the thermal shock, clad should have load bearing phase fraction > 0.44 and average oxygen concentration < 0.69 wt%.

  19. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  20. Thermal shock properties of 2D-SiCf/SiC composites

    International Nuclear Information System (INIS)

    Lee, Sang Pill; Lee, Jin Kyung; Son, In Soo; Bae, Dong Su; Kohyama, Akira

    2012-01-01

    This paper dealt with the thermal shock properties of SiC f /SiC composites reinforced with two dimensional SiC fabrics. SiC f /SiC composites were fabricated by a liquid phase sintering process, using a commercial nano-size SiC powder and oxide additive materials. An Al 2 O 3 –Y 2 O 3 –SiO 2 powder mixture was used as a sintering additive for the consolidation of SiC matrix region. In this composite system, Tyranno SA SiC fabrics were also utilized as a reinforcing material. The thermal shock test for SiC f /SiC composites was carried out at the elevated temperature. Both mechanical strength and microstructure of SiC f /SiC composites were investigated by means of optical microscopy, SEM and three point bending test. SiC f /SiC composites represented a dense morphology with a porosity of about 8.2% and a flexural strength of about 160 MPs. The characterization of SiC f /SiC composites was greatly affected by the history of cyclic thermal shock. Especially, SiC f /SiC composites represented a reduction of flexural strength at the thermal shock temperature difference higher than 800 °C.

  1. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.; Lee, M [UNIV OF NEW HAMPSHIRE

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  2. Shock compression of simulated adobe

    Science.gov (United States)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2017-01-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.

  3. Thermal shock testing of TiC-coated molybdenum with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1985-07-01

    Thermal shock testing of molybdenum samples, on which TiC is coated by TP-CVD and CVD methods, has been made by using a pulsed hydrogen beam. The power density applied was 2 kw/cm 2 . The test results showed that TiC coatings did not exfoliate until the melting of the substrate and showed good adhesion under the thermal shock condition. (author)

  4. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  5. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  6. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  7. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  8. A comparative analysis of reticular crack on ceramic plate driven by thermal shock

    Science.gov (United States)

    Xu, XiangHong; Sheng, ShiLong; Tian, Cheng; Yuan, WenJun

    2016-07-01

    Reticular crack is generally found on the surface of ceramic material that has been subjected to a thermal-shock condition. In the present study, a quantitative effect of thermal shock and quench temperature has been studied and investigated. Experimental tests were carried out to characterize the reticular crack that has been found in the Ge Kiln, which is a famous art of the ancient Chinese culture. After comparative analysis between thermal-shock cracks and the glaze crack patterns of the Ge Kiln porcelain, it is found that this study is expected to provide a powerful tool for recurrence of the long-lost firing and cooling process of the Ge Kiln porcelain.

  9. Pressurized thermal shock evaluation of RPV-Stade

    International Nuclear Information System (INIS)

    Blauel, J.G.; Hodulak, L.; Siegele, D.; Nagel, G.; Hertlein, D.

    1997-01-01

    The presentation overviews the following issues: thermal shock analysis (thermohydraulics, temperatures and stresses, crack tip field parameters, cladding influence, methodology of fracture mechanics assessment); EOL safety evaluation for RPV Stade (initial conditions and input data, fracture toughness, load path diagrams, warm prestress effect, crack arrest, remaining load carrying capacity)

  10. Pressurized thermal shock evaluation of RPV-Stade

    Energy Technology Data Exchange (ETDEWEB)

    Blauel, J G; Hodulak, L; Siegele, D [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg im Breisgau (Germany); Nagel, G [PreussenElektra AG, Hannover (Germany); Hertlein, D [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-09-01

    The presentation overviews the following issues: thermal shock analysis (thermohydraulics, temperatures and stresses, crack tip field parameters, cladding influence, methodology of fracture mechanics assessment); EOL safety evaluation for RPV Stade (initial conditions and input data, fracture toughness, load path diagrams, warm prestress effect, crack arrest, remaining load carrying capacity).

  11. Applications of the fundamental solution for a thermal shock on a finite orthotropic cylindrical thin shell

    International Nuclear Information System (INIS)

    Woo, H.K.; Huang, C.L.D.

    1979-01-01

    The authors investigate the temperature variations in a thin cylindrical shell of graphite materials with finite length, subjected to an instantaneous thermal shock. The solutions for the line source and the area source of thermal shock are obtained. Quasi-linear theory for heat transfer is assumed. Grades ATJ and ZTA graphite are used in the numerical examples. As is expected, the orthotropically thermal properties significantly affect the temperature variations in the shell due to the thermal shocks. (Auth.)

  12. An Introduction to the Physics of Collisionless Shocks

    International Nuclear Information System (INIS)

    Russell, C.T.

    2005-01-01

    Collisionless shocks are important in astrophysical, heliospheric and magnetospheric settings. They deflect flows around obstacles; they heat the plasma, and they alter the properties of the flow as it intersects those obstacles. The physical processes occurring at collisionless shocks depend on the Mach number (strength) and beta (magnetic to thermal pressure) of the shocks and the direction of the magnetic field relative to the shock normal. Herein we review how the shock has been modeled in numerical simulations, the basic physical processes at work, including dissipation and thermalization, the electric potential drop at the shock, and the formation of the electron and ion foreshocks

  13. Induction of thermal shock proteins and changes in radiosensitivity after heat treatment of Bombyx mori L. embryos

    International Nuclear Information System (INIS)

    Agaev, F.A.

    1993-01-01

    The method of gel-electrophoresis was used to study thermal shock protein synthesis in Bombyx mori embryos exposed to a mixture of heat and gamma-radiation. Induction of thermal shock protein synthesis was not inhibited by gamma-radiation. It is suggested that thermal shock proteins are involved embryo radiosensitivity modification

  14. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    Directory of Open Access Journals (Sweden)

    Pošarac Milica

    2009-01-01

    Full Text Available The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4 obtained by the modified glycine nitrate procedure (MGNP. Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase between yttria and alumina is formed, which improved thermal shock properties of the spinel refractories. Also densification of samples is enhanced by yttria addition.

  15. Evaluation of the of thermal shock resistance of a castable containing andalusite aggregates by thermal shock cycles; Avaliacao da resistencia ao dano por choque termico por ciclagem de um concreto refratario contendo agregados de andaluzita

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G.C.R.; Santos, E.M.B.; Ribeiro, S., E-mail: girribeiro@yahoo.com.br [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de. Departamento de Engenharia de Materiais; Resende, W.S. [Industrias Brasileiras de Artigos Refratarios (IBAR), Lorena, SP (Brazil); Rodrigues, J.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2011-07-01

    The thermal shock resistance of refractory materials is one of the most important characteristics that determine their performance in many applications, since abrupt and drastic differences in temperature can damage them. Resistance to thermal shock damage can be evaluated based on thermal cycles, i.e., successive heating and cooling cycles followed by an analysis of the drop in Young's modulus occurring in each cycle. The aim of this study was to evaluate the resistance to thermal shock damage in a commercial refractory concrete with andalusite aggregate. Concrete samples that were sintered at 1000 deg C and 1450 deg C for 5 hours to predict and were subjected to 30 thermal shock cycles, soaking in the furnace for 20 minutes at a temperature of 1000 deg C, and subsequent cooling in circulating water at 25 deg C. The results showed a decrease in Young's modulus and rupture around 72% for samples sintered at 1000 ° C, and 82% in sintered at 1450 ° C. The refractory sintered at 1450 deg C would show lower thermal shock resistance than the refractory sintered at 1000 deg C. (author)

  16. Pressurized-thermal-shock technology

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1991-01-01

    It was recognized at the time the original Issues on Pressurized Thermal Shock (IPTS) studies were conducted that distinct vertical plumes of cooling water form beneath the cold leg inlet nozzles during those particular transients that exhibit fluid/thermal stratification. The formation of these plumes (referred to as thermal streaming) induces a time-dependent circumferential temperature variation on the inner surface of the Reactor Pressure Vessel (RPV) wall that creates an axial stress component. This axial stress component is in addition to the axial stress components induced by time-dependent radial temperature variation through the wall thickness and the time-dependent pressure transient. This additional axial stress component will result in a larger axial stress resultant that results in a larger stress-intensity factor acting on circumferential flaws, thus reducing the fracture margin for circumferential flaws. Although this was recognized at the time of the original IPTS study, the contribution appeared to be relatively small; therefore, it was neglected. The original IPTS studies were performed with OCA-P, a computer program developed at ORNL to analyze the cleavage fracture response of a nuclear RPV subjected to PTS loading. OCA-P is a one-dimensional (1-D) finite-element code that analyzes the stresses and stress-intensity factors (axial and tangential) resulting from the pressure and the radial temperature variation through the wall thickness only. The HSST Program is investigating the potential effects of thermal-streaming-induced stresses in circumferential welds on the reactor vessel PTS analyses. The initial phase of this investigation focused on an evaluation of the available thermal-hydraulic data and analyses results. The objective for the initial phase of the investigation is to evaluate thermal-streaming behavior under conditions relevant to the operation of U.S. PWRs and chracterize any predicted thermal-streaming plumes

  17. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  18. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Science.gov (United States)

    Zhang, Xiaoxin; Yan, Qingzhi; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-01

    The potassium doped tungsten (W-K) grade was achieved via swaging + rolling process. The swaged + rolled W-K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W-K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m2 in a step of 0.22 GW/m2. The cracking threshold was in the range of 0.44-0.66 GW/m2. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66-1.1 GW/m2 basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m2 up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  19. Comparison of Hydrocode Simulations with Measured Shock Wave Velocities

    International Nuclear Information System (INIS)

    Hixson, R. S.; Veeser, L. R.

    2014-01-01

    We have conducted detailed 1- and 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly made to understand various shock processes in a sample and to design shock experiments. We began with relatively simple shock experiments, where we examined the effects of the equation of state and the viscoplastic strength models. Eventually we included spallation in copper and iron and a solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations.

  20. Low carbon content and carbon-free refractory materials with high thermal shock resistance; Thermoschockbestaendige feuerfeste Erzeugnisse mit geringerem Kohlenstoffgehalt bzw. kohlenstofffreie Erzeugnisse

    Energy Technology Data Exchange (ETDEWEB)

    Brachhold, Nora; Aneziris, C.G.; Stein, Volker; Roungos, Vasileios; Moritz, Kirsten [TU Bergakademie Freiberg (TUBAF) (DE). Inst. fuer Keramik, Glas- und Baustofftechnik (IKGB)

    2012-07-01

    Carbon bonded refractories are essential for steelmaking due to their excellent thermal shock resistance. The research on carbon reduced and carbon-free materials is necessary to manufacture high quality stainless steels tending carbon pick-up in contact to conventional refractory materials. Further advantages are reduced emissions of CO{sub 2} and energy saving potentials due to better heat insulation properties. The challenge is to develop alternative materials with lower carbon contents but with the necessary thermal shock resistance. The Priority Programme 1418 funded by the German Research Foundation (DFG) concentrates on this problem. In this article two materials are presented. First, the carbon content could be reduced by nanoscaled additives resulting in better bonding between matrix and oxidic components. Second, an AL{sub 2}O{sub 3}-rich carbon-free material is presented showing a very good thermal shock resistance due to its designed microstructure. Finally, a steel casting simulator is introduced to test the new materials under nearly real conditions. (orig.)

  1. Thermal shock studies associated with injection of emergency core coolant in pressurized water reactors

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bolt, S.E.; Iskander, S.K.

    1977-01-01

    Studies to determine the accuracy of calculational techniques for predicting crack initiation and arrest in PWR vessels due to thermal shock from ECC injection are described. The reference calculational model is reviewed, the experimental program and facilities are described, and some thermal shock experiments and results are discussed

  2. STRESSES IN CEMENT-CONCRETE PAVEMENT SURFACING CAUSED BY THERMAL SHOCK

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available It is necessary to mention specially so-called thermal shock among various impacts on highway surface. Ice layer is formed on a concrete surface during the winter period of pavement surfacing operation. Sodium chloride which lowers temperature of water-ice transition temperature and causes ice thawing at negative temperature is usually used to remove ice from the pavement surface. Consequently, temperature in the concrete laying immediately under a thawing ice layer is coming down with a run that leads to significant stresses. Such phenomenon is known as a thermal shock with a meaning of local significant change in temperature. This process is under investigation, it has practical importance for an estimation of strength and longevity of a cement-concrete pavement surfacing and consequently it is considered as rather topical issue. The purpose of investigations is to develop a mathematical model and determination of shock blow permissible gradients for a cementconcrete road covering. Finite difference method has been used in order to determine stressed and deformed condition of the cement-concrete pavement surfacing of highways. A computer program has been compiled and it permits to carry out calculation of a road covering at various laws of temperature distribution in its depth. Regularities in distribution of deformation and stresses in the cement-concrete pavement surfacing of highways at thermal shock have been obtained in the paper. A permissible parameter of temperature distribution in pavement surfacing thickness has been determined in the paper. A strength criterion based on the process of micro-crack formation and development in concrete has been used for making calculations. It has been established that the thermal shock causes significant temperature gradients on the cement-concrete surfacing that lead to rather large normal stresses in the concrete surface layer. The possibility of micro-crack formation in a road covering is

  3. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    International Nuclear Information System (INIS)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. the applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing

  4. Variable flaw shape analysis for a reactor vessel under pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Yang, C.Y.; Bamford, W.H.

    1984-01-01

    A study has been conducted to characterize the response of semi-elliptic surface flaws to thermal shock conditions which can result from safety injection actuation in nuclear reactor vessels. A methodology was developed to predict the behavior of a flaw during sample pressurized thermal shock events. The effects of a number of key variables on the flaw propagation were studied, including fracture toughness of the material and its gradient through the thickness, irradiation effects, effects of warm prestressing, and effects of the stainless steel cladding. The results of these studies show that under thermal shock loading conditions the flaw always tends to elongate along the vessel inside surface from the initial aspect ratio. However, the flaw shape always remains finite rather than becoming continuously long, as has often been assumed in earlier analyses. The final shape and size of the flaws were found to be rather strongly dependent on the effects of warm prestressing and the distribution of neutron flux. The improved methodology results in a more accurate and more realistic treatment of flaw shape changes during thermal shock events and provides the potential for quantifying additional margins for reactor vessel integrity analyses

  5. Thermal-shock experiments with flawed clad cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bryson, J.W.; Alexander, D.J.

    1989-01-01

    The life expectancy of LWR pressure vessels is influenced by a reduction in fracture toughness that is the result of radiation damage. As the fracture toughness decreases, the probability of propagation of preexisting flaws (sharp, crack-like defects) in the wall of the vessel increases. The probability of propagation is also influenced by the type of loading condition and the type of flaws that might exist. A loading condition of particular concern is referred to as pressurized thermal shock (PTS), and a flaw of particular concern for PTS loading conditions is a shallow surface flaw. A sudden cooling (thermal shock) of the inner surface of the vessel results in relatively high tensile stresses and relatively low fracture toughness at the inner surface. In addition, the attenuation of the fast-neutron fluence also results in relatively low fracture toughness at the inner surface. Under some circumstances, this combination of high stress and low toughness at the inner surface makes it possible for very shallow surface flaws to propagate. The PTS issue has been under investigation for quite some time, but thus far possible beneficial effects, other than thermal resistance, of the cladding on the inner surface of the vessel have not been included in the analysis of flaw behavior. This document discusses this effect of cladding on surface flaws and crack propagation

  6. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  7. Mechanical Properties and Thermal Shock Resistance Analysis of BNNT/Si3N4 Composites

    Science.gov (United States)

    Wang, Shouren; Wang, Gaoqi; Wen, Daosheng; Yang, Xuefeng; Yang, Liying; Guo, Peiquan

    2018-04-01

    BNNT/Si3N4 ceramic composites with different weight amount of BNNT fabricated by hot isostatic pressing were introduced. The mechanical properties and thermal shock resistance of the composites were investigated. The results showed that BNNT-added ceramic composites have a finer and more uniform microstructure than that of BNNT-free Si3N4 ceramic because of the retarding effect of BNNT on Si3N4 grain growth. The addition of 1.5 wt.% BNNT results in simultaneous increase in flexural strength, fracture toughness, and thermal shock resistance. The analysis of the results indicates that BNNT brings many thermal transport channels in the microstructure, increasing the efficiency of thermal transport, therefore results in increase of thermal shock resistance. In addition, BNNT improves the residual flexural strength of composites by crack deflection, bridging, branching and pinning, which increase the crack propagation resistance.

  8. Non-local modelling of cyclic thermal shock damage including parameter estimation

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by

  9. Integrated Software Environment for Pressurized Thermal Shock Analysis

    Directory of Open Access Journals (Sweden)

    Dino Araneo

    2011-01-01

    Full Text Available The present paper describes the main features and an application to a real Nuclear Power Plant (NPP of an Integrated Software Environment (in the following referred to as “platform” developed at University of Pisa (UNIPI to perform Pressurized Thermal Shock (PTS analysis. The platform is written in Java for the portability and it implements all the steps foreseen in the methodology developed at UNIPI for the deterministic analysis of PTS scenarios. The methodology starts with the thermal hydraulic analysis of the NPP with a system code (such as Relap5-3D and Cathare2, during a selected transient scenario. The results so obtained are then processed to provide boundary conditions for the next step, that is, a CFD calculation. Once the system pressure and the RPV wall temperature are known, the stresses inside the RPV wall can be calculated by mean a Finite Element (FE code. The last step of the methodology is the Fracture Mechanics (FM analysis, using weight functions, aimed at evaluating the stress intensity factor (KI at crack tip to be compared with the critical stress intensity factor KIc. The platform automates all these steps foreseen in the methodology once the user specifies a number of boundary conditions at the beginning of the simulation.

  10. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  11. Simulations of Shock Wave Interaction with a Particle Cloud

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  12. Microstructural effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories

    International Nuclear Information System (INIS)

    Huger, M; Tessier-Doyen, N; Michaud, P; Chotard, T; Ota, T

    2011-01-01

    This work is devoted to the study of thermomechanical properties of several industrial and model refractory materials in relation with the evolution of their microstructure during thermal treatments. The aim is, in particular, to highlight the role of thermal expansion mismatches existing between phases which can induce damage at local scale. The resulting network of microcracks is well known to improve thermal shock resistance of materials, since it usually involves a significant decrease in elastic properties. Moreover, this network of microcracks can strongly affect the thermal expansion at low temperature and the stress-strain behaviour in tension. Even if these two last aspects are not so much documented in the literature, they certainly also constitute key points for the improvement of the thermal shock resistance of refractory materials. Evolution of damage during thermal cycling has been monitored by a specific ultrasonic device at high temperature. Beyond its influence on Young's modulus, this damage also allows to decrease the thermal expansion and to improve the non-linear character of the stress-strain curves determined in tension. The large increase in strain to rupture, which results from this non-linearity, is of great interest for thermal shock application.

  13. Some numerical approaches of creep, thermal shock, damage

    Indian Academy of Sciences (India)

    Creep can be satisfactorily described by a kinematic hardening, and exhibits different creep rates in tension and compression. Concerning the thermal shock of materials, the numerical approach depends whether or not the material is able to develop a sprayed out damage, leading to micro- or macro-cracking. Finally ...

  14. Pickup protons at quasi-perpendicular shocks: full particle electrodynamic simulations

    Directory of Open Access Journals (Sweden)

    S. Matsukiyo

    2007-02-01

    Full Text Available We have performed 3 one-dimensional full particle electromagnetic simulations of a quasi-perpendicular shock with the same Alfvén Mach number MA~5, shock normal-magnetic field angle ΘBn=87° and ion and electron beta (particle to magnetic field pressure of 0.1. In the first run we used an ion to electron mass ratio close to the physical one (mi/me=1024. As expected from previous high mass ratio simulations the Modified Two-Stream instability develops in the foot of the shock, and the shock periodically reforms itself. We have then self-consistently included in the simulation 10% pickup protons distributed on a shell in velocity space as a third component. In a run with an unrealistically low mass ratios of 200 the shock still reforms itself; reformation is due to accumulation of specularly reflected particles at the upstream edge of the foot. In a third run including pickup protons we used a mass ratio of 1024. The shock reforms periodically as in the low mass ratio run with a somewhat smaller time constant. The specular reflection of pickup protons results in an increase of the shock potential some distance ahead of the shock foot and ramp. The minimum scale of the cross shock potential during reformation is about 7 electron inertial length λe. We do not find any pickup proton acceleration in the ramp or downstream of the shock beyond the energy which specularly reflected ions gain by the motional electric field of the solar wind during their upstream gyration.

  15. Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses

    Science.gov (United States)

    Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.

  16. RETRAN applications in pressurized thermal shock analysis of turkey point units 3 and 4

    International Nuclear Information System (INIS)

    Arpa, J.; Fatemi, A.S.; Mathavan, S.K.

    1985-01-01

    A methodology to assess the impact of overcooling transients on vessel wall integrity with respect to pressurized thermal shock conditions has been developed at Florida Power and Light Company for the Turkey Point Nuclear Units. Small break loss-of-coolant and small steamline break events have been simulated with the RETRAN code. Highly conservative assumptions, such as engineered safeguards with minimum temperature and maximum flow, have been made to maximize cooldown and thermal stress in the vessel wall. Temperatures, pressures, and flows obtained with RETRAN provide input for stress and fracture mechanics analyses that evaluate reactor vessel integrity. The results of the RETRAN analyses compare well with generic calculations performed by the Westinghouse Owners Group for a similar type of plant

  17. Thermal shock behaviour of mullite-cordierite refractory materials

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Leonelli, C.; Romagnoli, M.; Pellacani, G. C.; Veronesi, P.; Dlouhý, Ivo; Boccaccini, A. R.

    2007-01-01

    Roč. 106, č. 3 (2007), s. 142-148 ISSN 1743-6753 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : refraktory materials * thermal shock * fracutre toughness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.074, year: 2007

  18. Experimental analysis of the evolution of thermal shock damage using transit time measurement of ultrasonic waves

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2009-01-01

    Thermal shock is a principal cause of catastrophic wear of the refractory lining of high temperature installations in metal making processes. To investigate thermal shock experimentally with realistic and reproducible heat transfer conditions, chamotte and corund refractory samples of ambient

  19. Pickup protons at quasi-perpendicular shocks: full particle electrodynamic simulations

    Directory of Open Access Journals (Sweden)

    S. Matsukiyo

    2007-02-01

    Full Text Available We have performed 3 one-dimensional full particle electromagnetic simulations of a quasi-perpendicular shock with the same Alfvén Mach number MA~5, shock normal-magnetic field angle ΘBn=87° and ion and electron beta (particle to magnetic field pressure of 0.1. In the first run we used an ion to electron mass ratio close to the physical one (mi/me=1024. As expected from previous high mass ratio simulations the Modified Two-Stream instability develops in the foot of the shock, and the shock periodically reforms itself. We have then self-consistently included in the simulation 10% pickup protons distributed on a shell in velocity space as a third component. In a run with an unrealistically low mass ratios of 200 the shock still reforms itself; reformation is due to accumulation of specularly reflected particles at the upstream edge of the foot. In a third run including pickup protons we used a mass ratio of 1024. The shock reforms periodically as in the low mass ratio run with a somewhat smaller time constant. The specular reflection of pickup protons results in an increase of the shock potential some distance ahead of the shock foot and ramp. The minimum scale of the cross shock potential during reformation is about 7 electron inertial length λe. We do not find any pickup proton acceleration in the ramp or downstream of the shock beyond the energy which specularly reflected ions gain by the motional electric field of the solar wind during their upstream gyration.

  20. Dislocation evolution and properties enhancement of GH2036 by laser shock processing: Dislocation dynamics simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.D., E-mail: renxd@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, W.F.; Ren, Y.P.; Xu, S.D.; Liu, F.F. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, S.Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang 212013 (China); Ren, N.F.; Huang, J.J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-01-27

    This paper systematically investigated the effect of laser shock processing (LSP) on dislocation evolution and microstructure configuration of GH2036 alloy. Surface topography and roughness were tested by Axio CSM 700 microscope. The dislocation configurations were characterized by transmission electron microscope (TEM) and simulated by multi-scale discrete dislocation dynamics (DD) method. The results have confirmed that LSP had a beneficial effect on micro-hardness, which could be increased by 16%, and the surface topography exhibited excellent stability even after thermal cycle. The dislocation density and stress–strain response have strong dependence on laser power intensity. Reasonable agreement between DD simulation and experiments is achieved. The results showed that complex random microstructures can be observed in the shocked surface. The grain refinement mechanism of LSP GH2036 involves dislocation segmentation and twin intersections.

  1. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    Science.gov (United States)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  2. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    International Nuclear Information System (INIS)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee

    2015-01-01

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  3. Release of Bacterial Spores from the Inner Walls of a Stainless Steel Cup Subjected to Thermal Stresses and Mechanical Shock

    Science.gov (United States)

    Wolochow, H.; Chatigny, M.; Hebert, J.

    1973-01-01

    The release and fallout of particulates from surfaces afforded thermal or impact stress is of concern for control of contamination of Mars from planetary landing vehicles. A metal vessel contaminated by aerosols of spores was used as a model system and the fallout of spores as affected by various mechanisms was examined. Thermal stresses simulating those expected on the Mars lander dislodged approximately .01% of the aerosol deposited surface burden as did a landing shock of 8 to 10G deceleration. Spores imprinted by finger or swab contact yielded similar results. In all cases where repeated cycling of temperature, motion, or shock were employed the majority of fallout occurred in the first cycle. Particles released from the surface were predominantly in the size range 1 to 5 microns.

  4. Thermal Shock Experiment (TSEX): a ''proof-of-principle'' evaluation of the use of electron beam heating to simulate the thermal mechanical environment anticipated for the first wall of the Reference Theta-Pinch Reactor (RTPR)

    International Nuclear Information System (INIS)

    Armstrong, P.E.; Krakowski, R.A.

    1977-06-01

    The results of a ''proof-of-principle'' Thermal Shock Experiment (TSEX), designed to simulate the thermal mechanical response of insulator-metal composite first walls anticipated for pulsed high-density fusion reactors, are given. A programmable 10-kV, 1.0-A electron beam was used to pulse repeatedly (0.30-mm)Al 2 O 3 /(1.0-mm) Nb-1Zr composite samples 200 to 300 K, relative to a base-line temperature of 1000 K. The experimental goals of TSEX were established relative to the first-wall environment anticipated for the Reference Theta-Pinch Reactor (RTPR). A detailed description of the TSEX ''proof-of-principle'' apparatus, experimental procedure, and diagnostics is given. The results of extensive thermal analyses are given, which are used to estimate the thermal stresses generated. Although little or no control was exercised over the sample fabrication and thermal history, one sample experienced in excess of 800 thermal cycles of approximately 250 K at approximately 1000 K, and the results of optical and SEM examination of this specimen are presented. The resistance of this sample to macroscopic failure was truly impressive. Recommendations for the construction of an apparatus dedicated to extensive testing of first-wall composites are given on the basis of these ''proof-of-principle'' TSEX results

  5. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    Science.gov (United States)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  6. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    Science.gov (United States)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  7. Orientation Dependence in Molecular Dynamics Simulations of Shocked Single Crystals

    International Nuclear Information System (INIS)

    Germann, Timothy C.; Holian, Brad Lee; Lomdahl, Peter S.; Ravelo, Ramon

    2000-01-01

    We use multimillion-atom molecular dynamics simulations to study shock wave propagation in fcc crystals. As shown recently, shock waves along the direction form intersecting stacking faults by slippage along {111} close-packed planes at sufficiently high shock strengths. We find even more interesting behavior of shocks propagating in other low-index directions: for the case, an elastic precursor separates the shock front from the slipped (plastic) region. Shock waves along the direction generate a leading solitary wave train, followed (at sufficiently high shock speeds) by an elastic precursor, and then a region of complex plastic deformation. (c) 2000 The American Physical Society

  8. Fracture-mechanics data deduced from thermal-shock and related experiments with LWR pressure-vessel material

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Canonico, D.A.; Iskander, S.K.; Bolt, S.E.; Holz, P.P.; Nanstad, R.K.; Stelzman, W.J.

    1982-01-01

    Pressurized water reactors (PWRs) are susceptible to certain types of hypothetical accidents that can subject the reactor pressure vessel to severe thermal shock, that is, a rapid cooling of the inner surface of the vessel wall. The thermal-shock loading, coupled with the radiation-induced reduction in the material fracture toughness, introduces the possibility of propagation of preexistent flaws and what at one time were regarded as somewhat unique fracture-oriented conditions. Several postulated reactor accidents have been analyzed to discover flaw behavior trends; seven intermediate-scale thermal-shock experiments with steel cylinders have been conducted; and corresponding materials characterization studies have been performed. Flaw behavior trends and related fracture-mechanics data deduced from these studies are discussed

  9. Numerical simulation of the structure of collisionless supercritical shocks

    International Nuclear Information System (INIS)

    Lipatov, A.S.

    1990-01-01

    Research on the structure of a collisionless shock wave and on acceleration of charged particles is important for analyzing the processes accompanying solar flares, and also for studying the shock waves which are excited in the interaction of the solar wind with planets, comets and interstellar gas, the mechanisms for the acceleration of cosmic rays, the processes accompanying magnetic field reconnection, explosion of Supernova. The study of the shock is also important for studying the processes in the active experiments in space. In the present report only supercritical shocks are considered, when partial ion reflection plays a controlling roll in shock formation. One- and two-dimensional simulations of the perpendicular shocks are presented. (R.P.) 33 refs.; 4 figs

  10. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    Energy Technology Data Exchange (ETDEWEB)

    Marocchino, A.; Atzeni, S.; Schiavi, A. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Roma 00161 (Italy)

    2014-01-15

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  11. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies

  12. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    Science.gov (United States)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  13. Transport in aluminized RDX under shock compression explored using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Losada, M; Chaudhuri, S

    2014-01-01

    Shock response of energetic materials is controlled by a combination of mechanical response, thermal, transport, and chemical properties. How these properties interplay in condensed-phase energetic materials is of fundamental interest for improving predictive capabilities. Due to unknown nature of chemistry during the evolution and growth of high-temperature regions within the energetic material (so called hot spots), the connection between reactive and unreactive equations of state contain a high degree of empiricism. In particular, chemistry in materials with high degree of heterogeneity such as aluminized HE is of interest. In order to identify shock compression states and transport properties in high-pressure/temperature (HP-HT) conditions, we use molecular dynamics (MD) simulations in conjunction with the multi-scale shock technique (MSST). Mean square displacement calculations enabled us to track the diffusivity of stable gas products. Among decomposition products, H 2 O and CO 2 are found to be the dominant diffusing species under compression conditions. Heat transport and diffusion rates in decomposed RDX are compared and the comparison shows that around 2000 K, transport can be a major contribution during propagation of the reaction front.

  14. Physics of IED blast shock tube simulations for mTBI research

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Philippens, M.M.G.M.; Meijer, S.R.; Berg, A.C. van den; Sibma, P.C.; Bree, J.L.M.J. van; Vries, D.V.W.M. de

    2011-01-01

    Shock tube experiments and simulations are conducted with a spherical gelatin filled skull- brain surrogate, in order to study the mechanisms leading to blast induced mild traumatic brain injury. A shock tube including sensor system is optimized to simulate realistic impro-vised explosive device

  15. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  16. Shock-induced transformations in crystalline RDX: a uniaxial constant-stress Hugoniostat molecular dynamics simulation study.

    Science.gov (United States)

    Bedrov, Dmitry; Hooper, Justin B; Smith, Grant D; Sewell, Thomas D

    2009-07-21

    Molecular dynamics (MD) simulations of uniaxial shock compression along the [100] and [001] directions in the alpha polymorph of hexahydro-1,3,5-trinitro-1,3,5-triazine (alpha-RDX) have been conducted over a wide range of shock pressures using the uniaxial constant stress Hugoniostat method [Ravelo et al., Phys. Rev. B 70, 014103 (2004)]. We demonstrate that the Hugoniostat method is suitable for studying shock compression in atomic-scale models of energetic materials without the necessity to consider the extremely large simulation cells required for an explicit shock wave simulation. Specifically, direct comparison of results obtained using the Hugoniostat approach to those reported by Thompson and co-workers [Phys. Rev. B 78, 014107 (2008)] based on large-scale MD simulations of shocks using the shock front absorbing boundary condition (SFABC) approach indicates that Hugoniostat simulations of systems containing several thousand molecules reproduced the salient features observed in the SFABC simulations involving roughly a quarter-million molecules, namely, nucleation and growth of nanoscale shear bands for shocks propagating along the [100] direction and the polymorphic alpha-gamma phase transition for shocks directed along the [001] direction. The Hugoniostat simulations yielded predictions of the Hugoniot elastic limit for the [100] shock direction consistent with SFABC simulation results.

  17. Numerical simulation of thermal stratification in cold legs by using openFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2010-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  18. Thermal-hydraulic analyses of pressurized-thermal-shock-induced vessel ruptures

    International Nuclear Information System (INIS)

    Dobranich, D.

    1982-05-01

    A severe overcooling transient was postulated to produce vessel wall temperatures below the nil-ductility transition temperature which in conjunction with system repressurization, led to vessel rupture at the core midplane. Such transients are referred to as pressurized-thermal-shock transients. A wide range of vessel rupture sizes were investigated to assess the emergency system's ability to cool the fuel rods. Ruptures greater than approximately 0.015 m 2 produced flows greater than those of the emergency system and resulted in core uncovery and subsequent core damage

  19. Very high Mach number shocks - Theory. [in space plasmas

    Science.gov (United States)

    Quest, Kevin B.

    1986-01-01

    The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.

  20. Laser shocks: A tool for experimental simulation of damage into materials

    Energy Technology Data Exchange (ETDEWEB)

    Boustie, M.; Cuq Lelandais, J. P.; Berthe, L.; Ecault, R. [Institut PPRIME, Departement Physique et Mecanique des Materiaux, CNRS-ENSMA-Universite de Poitiers, 1 av Clement Ader, 86961 FUTUROSCOPE Cedex (France); CEA-DAM Valduc, 21120 Is-sur-Tille (France); Laboratoire Procedes et Ingenierie en Mecanique et Materiaux (CNRS), Arts et Metiers ParisTech, 151 bd de l' Hopital, 75013 PARIS (France); Institut PPRIME, Departement Physique et Mecanique des Materiaux, CNRS-ENSMA-Universite de Poitiers, 1 av Clement Ader, 86961 FUTUROSCOPE Cedex (France)

    2012-07-30

    High power laser irradiation of solids results in a strong shock wave propagation, driving very high amplitude pressure loadings with very short durations. These particular characteristics offer the possibility to study the behaviour of matter under extreme dynamic conditions in continuity with what is possible with the conventional generators of shock (launchers of projectiles, explosives). An advantage of laser shocks is a possible recovery of the shocked samples presenting the metallurgical effects of the shock in most cases. We introduce the principle of the laser shock generation, the characterization of these shocks, the principal mechanisms and effects associated with their propagation in the solids. We show how laser shocks can be a laboratory tool for simulating shock effects at ultra high strain rate, providing a high in information experimental layout for validation of damage modelling on an extended strain rate range compared to conventional shock generators. New data have been obtained with ultra short femtosecond range irradiation. Experimental data gathered through post mortem observation, time resolved velocity measurement are shown along with numerical associated simulations, showing the possibility to predict the damage behaviour of metallic targets under extreme strain rate up to 10{sup 8} s{sup -1}.

  1. Behavior of deep flaws in a thick-wall cylinder under thermal shock loading

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1979-01-01

    Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock

  2. Direct Numerical Simulation of Passive Scalar Mixing in Shock Turbulence Interaction

    Science.gov (United States)

    Gao, Xiangyu; Bermejo-Moreno, Ivan; Larsson, Johan

    2017-11-01

    Passive scalar mixing in the canonical shock-turbulence interaction configuration is investigated through shock-capturing Direct Numerical Simulations (DNS). Scalar fields with different Schmidt numbers are transported by an initially isotropic turbulent flow field passing across a nominally planar shock wave. A solution-adaptive hybrid numerical scheme on Cartesian structured grids is used, that combines a fifth-order WENO scheme near shocks and a sixth-order central-difference scheme away from shocks. The simulations target variations in the shock Mach number, M (from 1.5 to 3), turbulent Mach number, Mt (from 0.1 to 0.4, including wrinkled- and broken-shock regimes), and scalar Schmidt numbers, Sc (from 0.5 to 2), while keeping the Taylor microscale Reynolds number constant (Reλ 40). The effects on passive scalar statistics are investigated, including the streamwise evolution of scalar variance budgets, pdfs and spectra, in comparison with their temporal evolution in decaying isotropic turbulence.

  3. Thermal analysis of a mix up sodium tank and its ebb pipeline for SS-050 circuit during a thermal shock

    International Nuclear Information System (INIS)

    Jesus Miranda, C.A. de; Gebrim, A.N.

    1988-12-01

    In this work a thermo-hydraulic model was developed in order to obtain the sodium temperature time history between the mixup tank (TM) and the drain tank of the SS-050 sodium test loop. Results are presented relative to a thermal shock whith initial and final sodium inlet temperature of 600 0 C and 400 0 C respectively, with a thermal gradient of-200 0 C/s. This sodium loop will be briefly installed in the IEN/RJ area. From the sodium temperature time-history during the thermal shock transient the temperature field for the walls of the TM bottom and outlet nozzle is obtained. (author) [pt

  4. Numerical simulation of shock initiation of Ni/Al multilayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Sraj, Ihab; Knio, Omar M., E-mail: omar.knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall, Durham, North Carolina 27708 (United States); Specht, Paul E.; Thadhani, Naresh N. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Weihs, Timothy P. [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States)

    2014-01-14

    The initiation of chemical reaction in cold-rolled Ni/Al multilayered composites by shock compression is investigated numerically. A simplified approach is adopted that exploits the disparity between the reaction and shock loading timescales. The impact of shock compression is modeled using CTH simulations that yield pressure, strain, and temperature distributions within the composites due to the shock propagation. The resulting temperature distribution is then used as initial condition to simulate the evolution of the subsequent shock-induced mixing and chemical reaction. To this end, a reduced reaction model is used that expresses the local atomic mixing and heat release rates in terms of an evolution equation for a dimensionless time scale reflecting the age of the mixed layer. The computations are used to assess the effect of bilayer thickness on the reaction, as well as the impact of shock velocity and orientation with respect to the layering. Computed results indicate that initiation and evolution of the reaction are substantially affected by both the shock velocity and the bilayer thickness. In particular, at low impact velocity, Ni/Al multilayered composites with thick bilayers react completely in 100 ms while at high impact velocity and thin bilayers, reaction time was less than 100 μs. Quantitative trends for the dependence of the reaction time on the shock velocity are also determined, for different bilayer thickness and shock orientation.

  5. Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...

    Indian Academy of Sciences (India)

    Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.

  6. Shock wave collisions and thermalization in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling. (author)

  7. A new method for testing thermal shock resistance properties of soapstone – Effects of microstructures and mineralogical variables

    Directory of Open Access Journals (Sweden)

    A. Huhta

    2016-09-01

    Full Text Available Soapstone industry utilizes different types of soapstone mainly as a construction material for fireplaces. In this application soapstone has to meet different temperature requirements in different parts of fireplaces. Mineralogical and structural information is needed for placing an appropriate type of soapstone in an appropriate position in the fireplace construction. This allows employment of higher temperatures resulting in more particulate-free combustion, which makes it possible for soapstone industry to develop more efficient and environmentally friendly fireplaces. Of many soapstone types, which differ from each other in their chemical composition and thermal properties, carbonate soapstone and its microstructural variations were investigated in this study. A new method was developed to measure thermal shock resistant of natural stones. By exposing carbonate soapstone samples of different textural types to rapid temperature changes, it was possible to determine the parameters that affect the capacity of the rock to resist thermal shock. The results indicate that the type of microtexture is an important factor in controlling the thermal shock resistance of carbonate soapstone. The soapstone samples with a high thermal shock resistance show deformation textures, such as crenulation cleavage and S/C mylonite. A strong negative correlation was observed between the thermal shock resistance and length of cleavage domains in foliated rocks. Also a slight elevation in the iron concentration of talc and magnesite was discovered to improve the thermal shock resistance of carbonate soapstone. Attention should especially be paid to the length and planarity of cleavage domains of spaced foliation.

  8. Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Pikkarainen, T.; Tourunen, A.; Rasanen, M.; Jantti, T. [VTT Technical Research Center, Jyvaskyla (Finland)

    2008-11-15

    Fragmentation of limestone due to thermal shock and calcination in a fluidised bed was studied through experiments and modelling. The time for heating was estimated by model calculations and the time for calcination by measurements. Fragmentation due to thermal shock was carried out by experiments in a CO{sub 2} atmosphere in order to prevent the effect of calcination. It was found to be much less than fragmentation due to calcination. Average particle sizes before and after fragmentation are presented for several types of limestone. The effects of particle size and gas composition on the primary fragmentation were studied through experiments. Increasing the fluidisation velocity increased the tendency to fragment. The evolution of the particle size distribution (PSD) of limestone particles due to thermal shock and during calcination (or simultaneous calcination and sulphation) were calculated using a population balance model. Fragmentation due to thermal shock is treated as an instantaneous process. The fragmentation frequency during calcination is presented as exponentially decaying over time. In addition to the final PSD, this model also predicts the PSD during the calcination process. The fragmentation was practically found to end after 10 min. Furthermore. a population balance method to calculate the particle size distribution and amount of limestone in fluidised beds in dynamic and steady state, when feeding history is known, is presented.

  9. Hydrodynamic simulations of microjetting from shock-loaded grooves

    Science.gov (United States)

    Roland, C.; de Rességuier, T.; Sollier, A.; Lescoute, E.; Soulard, L.; Loison, D.

    2017-01-01

    The interaction of a shock wave with a free surface which has geometrical defects, such as cavities or grooves, may lead to the ejection of micrometric debris at velocities of km/s. This process can be involved in many applications, like pyrotechnics or industrial safety. Recent laser shock experiments reported elsewhere in this conference have provided some insight into jet formation as well as jet tip velocities for various groove angles and shock pressures. Here, we present hydrodynamic simulations of these experiments, in both 2D and 3D geometries, using both finite element method and smoothed particle hydrodynamics. Numerical results are compared to several theoretical predictions including the Richtmyer-Meshkov instabilities. The role of the elastic-plastic behavior on jet formation is illustrated. Finally, the possibility to simulate the late stage of jet expansion and fragmentation is explored, to evaluate the mass distribution of the ejecta and their ballistic properties, still essentially unknown in the experiments.

  10. Pressurized Thermal Shock Analysis for OPR1000 Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    The study provides a brief understanding of the analysis procedure and techniques using ANSYS, such as the acceptance criteria, selection and categorization of events, thermal analysis, structural analysis including fracture mechanics assessment, crack propagation and evaluation of material properties. PTS may result from instrumentation and control malfunction, inadvertent steam dump, and postulated accidents such as smallbreak (SB) LOCA, large-break (LB) LOCA, main steam line break (MSLB), feedwater line breaks and steam generator overfill. In this study our main focus is to consider only the LB LOCA due to a cold leg break of the Optimized Power Reactor 1000 MWe (OPR1000). Consideration is given as well to the emergency core cooling system (ECCS) specific sequence with the operating parameters like pressure, temperature and time sequences. The static structural and thermal analysis to investigate the effects of PTS on RPV is the main motivation of this study. Specific surface crack effects and its propagation is also considered to measure the integrity of the RPV. This study describes the procedure for pressurized thermal shock analysis due to a loss of coolant accidental condition and emergency core cooling system operation for reactor pressure vessel.. Different accidental events that cause pressurized thermal shock to nuclear RPV that can also be analyzed in the same way. Considering the limitations of low speed computer only the static analysis is conducted. The modified LBLOCA phases and simplified geometry can is utilized to analyze the effect of PTS on RPV for general understanding not for specific specialized purpose. However, by integrating the disciplines of thermal and structural analysis, and fracture mechanics analysis a clearer understanding of the total aspect of the PTS problem has resulted. By adopting the CFD, thermal hydraulics, uncertainties and risk analysis for different type of accidental conditions, events and sequences with proper

  11. Molecular dynamics of shock waves in one-dimensional chains. II. Thermalization

    International Nuclear Information System (INIS)

    Straub, G.K.; Holian, B.L.; Petschek, R.G.

    1979-01-01

    The thermalization behavior behind a shock front in one-dimensional chains has been studied in a series of molecular-dynamics computer experiments. We have found that a shock wave generated in a chain initially at finite temperature has essentially the same characteristics as in a chain initially at zero temperature. We also find that the final velocity distribution function for particles behind the shock front is not the Maxwell-Boltzmann distribution for an equilibrium system of classical particles. For times long after the shock has passed, we propose a nonequilibrium velocity distribution which is based upon behavior in the harmonic and hard-rod limits and agrees with our numerical results. Temperature profiles for both harmonic and anharmonic chains are found to exhibit a long-time tail that decays inversely with time. Finally, we have run a computer experiment to generate what qualitatively resembles solitons in Toda chains by means of shock waves

  12. Numerical simulation of thermal stratification in cold legs by using OpenFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2011-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  13. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    Science.gov (United States)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  14. Numerical Simulation of the SVS 13 Microjet and Bow Shock Bubble

    Science.gov (United States)

    Gardner, Carl L.; Jones, Jeremiah R.; Hodapp, Klaus W.

    2016-10-01

    Numerical simulations of the SVS 13 microjet and bow shock bubble are performed using the WENO method that reproduces the main features and dynamics of data from the Keck Telescope/OSIRIS velocity-resolved integral field spectrograph: an expanding, cooler bow shock bubble, with the bubble center moving at approximately 50 km s-1 with a radial expansion velocity of 11 km s-1, surrounding the fast, hotter jet, which is propagating at 156 km s-1. Contact and bow shock waves are visible in the simulations both from the initial short jet pulse that creates the nearly spherical bow shock bubble and from the fast microjet, while a terminal Mach disk shock is visible near the tip of the continuous microjet, which reduces the velocity of the jet gas down to the flow velocity of the contact discontinuity at the leading edge of the jet. At 21.1 years after the launch of the initial bubble pulse, the jet has caught up with and penetrated almost all the way across the bow shock bubble of the slower initial pulse. At times later than about 22 years, the jet has penetrated through the bubble and thereafter begins to subsume its spherical form. Emission maps from the simulations of the jet—traced by the emission of the shock-excited 1.644 μm [Fe II] line—and the bow shock bubble—traced in the lower excitation 2.122 μm H2 1-0 S(1) line—projected onto the plane of the sky are presented, and are in good agreement with the Keck observations.

  15. Comparison of the thermal shock performance of different tungsten grades and the influence of microstructure on the damage behaviour

    International Nuclear Information System (INIS)

    Wirtz, M; Linke, J; Pintsuk, G; Singheiser, L; Uytdenhouwen, I

    2011-01-01

    The thermal shock performances of two new tungsten grades with 1 and 5 wt% of tantalum were characterized with the electron beam facility JUDITH 1. As a reference material, ultra-high-purity tungsten (W-UHP) with a purity of 99.9999 wt% was used. The induced thermal shock crack networks and surface modifications were analysed by a scanning electron microscope, light microscopy and laser profilometry. Damage and cracking thresholds were defined for all materials as a function of absorbed power density and base temperature. The materials showed significantly different thermal shock behaviour, which is, among others, expressed by differences in cracking patterns, i.e. crack distance and depth. These results allow us to quantify the influence of the materials' mechanical and thermal properties on the thermal shock performance. Furthermore, the specific grain structure of the materials has a significant influence on crack propagation towards the bulk material.

  16. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  17. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  18. An alternative method for performing pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Bishop, B.A.; Meyer, T.A.; Carter, R.G.; Gamble, R.M.

    1997-01-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a c and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab

  19. An alternative method for performing pressurized thermal shock analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B A; Meyer, T A [Westinghouse Energy Systems, Pittsburgh, PA (United States); Carter, R G [Electric Power Research Inst., Charlotte, NC (United States); Gamble, R M [Sartrex Corp., Rockville, MD (United States)

    1997-09-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a{sub c} and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab.

  20. Thermal shock behavior of W-ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation

    Science.gov (United States)

    Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-02-01

    The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.

  1. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    International Nuclear Information System (INIS)

    Peng, Ivy Bo; Markidis, Stefano; Laure, Erwin; Johlander, Andreas; Vaivads, Andris; Khotyaintsev, Yuri; Henri, Pierre; Lapenta, Giovanni

    2015-01-01

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration

  2. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  3. Casting thermal simulation

    International Nuclear Information System (INIS)

    Shamsuddin bin Sulaiman

    1994-01-01

    The whole of this study is concerned with process simulation in casting processes. This study describes the application of the finite element method as an aid to simulating the thermal design of a high pressure die casting die by analysing the cooling transients in the casting cycle. Two types of investigation were carried out to model the linear and non-linear cooling behavior with consideration of a thermal interface effect. The simulated cooling for different stages were presented in temperature contour form. These illustrate the successful application of the Finite Element Method to model the process and they illustrate the significance of the thermal interface at low pressure

  4. High thermal shock resistance of the hot rolled and swaged bulk W–ZrC alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.M.; Liu, R.; Miao, S.; Yang, X.D. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T., E-mail: zhangtao@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F.; Wang, X.P. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Lian, Y.Y. [Southwestern Institute of Physics, Chengdu (China); Liu, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    The thermal shock (single shot) resistance and mechanical properties of the W–0.5wt% ZrC (WZC) alloys manufactured by ordinary sintering followed by swaging or rolling process were investigated. No cracks or surface melting were detected on the surface of the rolled WZC alloy plates after thermal shock at a power density of 0.66 GW/m{sup 2} for 5 ms, while primary intergranular cracks appear on the surface of the swaged WZC samples after thermal shock at a power density of 0.44 GW/m{sup 2} for 5 ms. Three point bending tests indicate that the rolled WZC alloy has a flexural strength of ∼2.4 GPa and a total strain of 1.8% at room temperature, which are 100% and 260% higher than those of the swaged WZC, respectively. The fracture energy density of the rolled WZC alloy is 3.23 × 10{sup 7} J/m{sup 3}, about 10 times higher than that of the swaged WZC (2.9 × 10{sup 6} J/m{sup 3}). The high thermal shock resistance of the rolled WZC alloys can be ascribed to their extraordinary ductility and plasticity. - Graphical abstract: (Left panel) surface morphology observed by optical microscope after a single pulse for 5 ms with various absorbed power densities at RT on the rolled WZC. (Right panel) curves of flexural stress versus strain at RT (a) and the calculated fracture energy (b) for the swaged WZC and rolled WZC alloys. - Highlights: • No cracks or surface melting were detected on the rolled WZC alloy samples after thermal shock at 0.66 GW/m{sup 2} for 5 ms. • Hot rolled WZC alloy plates exhibit a flexural strength of 2.4 GPa and a strain of 1.8% at RT. • The fracture energy of the rolled WZC alloy is 3.23 × 10{sup 7} J/m{sup 3} at RT, about 10 times higher than that of the swaged WZC. • A detailed analysis of the relationships between the mechanical properties and the thermal shock resistance is given.

  5. NUMERICAL SIMULATION OF THE SVS 13 MICROJET AND BOW SHOCK BUBBLE

    International Nuclear Information System (INIS)

    Gardner, Carl L.; Jones, Jeremiah R.; Hodapp, Klaus W.

    2016-01-01

    Numerical simulations of the SVS 13 microjet and bow shock bubble are performed using the WENO method that reproduces the main features and dynamics of data from the Keck Telescope/OSIRIS velocity-resolved integral field spectrograph: an expanding, cooler bow shock bubble, with the bubble center moving at approximately 50 km s −1 with a radial expansion velocity of 11 km s −1 , surrounding the fast, hotter jet, which is propagating at 156 km s −1 . Contact and bow shock waves are visible in the simulations both from the initial short jet pulse that creates the nearly spherical bow shock bubble and from the fast microjet, while a terminal Mach disk shock is visible near the tip of the continuous microjet, which reduces the velocity of the jet gas down to the flow velocity of the contact discontinuity at the leading edge of the jet. At 21.1 years after the launch of the initial bubble pulse, the jet has caught up with and penetrated almost all the way across the bow shock bubble of the slower initial pulse. At times later than about 22 years, the jet has penetrated through the bubble and thereafter begins to subsume its spherical form. Emission maps from the simulations of the jet—traced by the emission of the shock-excited 1.644 μ m [Fe ii] line—and the bow shock bubble—traced in the lower excitation 2.122 μ m H 2 1–0 S(1) line—projected onto the plane of the sky are presented, and are in good agreement with the Keck observations.

  6. Hybrid simulation techniques applied to the earth's bow shock

    Science.gov (United States)

    Winske, D.; Leroy, M. M.

    1985-01-01

    The application of a hybrid simulation model, in which the ions are treated as discrete particles and the electrons as a massless charge-neutralizing fluid, to the study of the earth's bow shock is discussed. The essentials of the numerical methods are described in detail; movement of the ions, solution of the electromagnetic fields and electron fluid equations, and imposition of appropriate boundary and initial conditions. Examples of results of calculations for perpendicular shocks are presented which demonstrate the need for a kinetic treatment of the ions to reproduce the correct ion dynamics and the corresponding shock structure. Results for oblique shocks are also presented to show how the magnetic field and ion motion differ from the perpendicular case.

  7. Thermal shock behavior of W-0.5 wt% Y_2O_3 alloy prepared via a novel chemical method

    International Nuclear Information System (INIS)

    Zhao, Mei-Ling; Luo, Lai-Ma; Lin, Jing-Shan; Zan, Xiang; Zhu, Xiao-Yong; Luo, Guang-Nan; Wu, Yu-Cheng

    2016-01-01

    A wet-chemical method combined with spark plasma sintering was used to prepare W-0.5 wt% Y_2O_3 alloy. The W-0.5 wt% Y_2O_3 precursor was reduced at 800 °C for 4 h under different hydrogen flow rates of 300, 400, 500, 600, and 700 ml/min. The reduced powder was analyzed by X-ray diffraction (XRD), laser particle size analyzer (LPSA), and scanning electron microscopy (SEM). An optimized process for reducing precursor was discussed. After sintering, the specimens were exposed to different laser beam irradiation energies (90, 120, 150, and 180 W) to simulate loads as expected for edge localized modes (ELMs). Top surface and cross-sectional morphology were observed by SEM, and the changes in hardness were evaluated. The changes in microstructural properties (i.e., Y_2O_3-particle distribution, crack propagation direction, depth of thermal shock effect, and grain size of the recrystallization region) after thermal shock were investigated.

  8. High pulse number thermal shock tests on tungsten with steady state particle background

    Science.gov (United States)

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m-2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  9. Atomistic simulation of orientation dependence in shock-induced initiation of pentaerythritol tetranitrate.

    Science.gov (United States)

    Shan, Tzu-Ray; Wixom, Ryan R; Mattsson, Ann E; Thompson, Aidan P

    2013-01-24

    The dependence of the reaction initiation mechanism of pentaerythritol tetranitrate (PETN) on shock orientation and shock strength is investigated with molecular dynamics simulations using a reactive force field and the multiscale shock technique. In the simulations, a single crystal of PETN is shocked along the [110], [001], and [100] orientations with shock velocities in the range 3-10 km/s. Reactions occur with shock velocities of 6 km/s or stronger, and reactions initiate through the dissociation of nitro and nitrate groups from the PETN molecules. The most sensitive orientation is [110], while [100] is the most insensitive. For the [001] orientation, PETN decomposition via nitro group dissociation is the dominant reaction initiation mechanism, while for the [110] and [100] orientations the decomposition is via mixed nitro and nitrate group dissociation. For shock along the [001] orientation, we find that CO-NO(2) bonds initially acquire more kinetic energy, facilitating nitro dissociation. For the other two orientations, C-ONO(2) bonds acquire more kinetic energy, facilitating nitrate group dissociation.

  10. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  11. A Literature Review of Shock Sensitivity Changes of TATB Due to Thermal Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Boyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Mechanical Engineering

    2016-07-15

    Insensitive high explosives (IHEs) based on 1,3,5-triamino 2,4,6-trinitro-benzene (TATB) are the IHEs of choice for use in nuclear warheads over conventional high explosives when safety is the only consideration, because they are very insensitive to thermal or mechanical initiation stimuli. It is this inherent insensitivity to high temperatures, shock, and impact, which provides detonation design challenges when designing TATB explosive systems while at the same time providing a significant level of protection against accidental initiation. Although classified as IHE, over the past few years the focus on explosive safety has demonstrated that the shock sensitivity of TATB is influenced with respect to temperature. A number of studies have been performed on TATB and TATB formulations, plastic bonded explosives (PBX) 9502, and LX-17-01 (LX-17), which demonstrates the increase in shock sensitivity of the explosive after it has been preheated or thermally cycled over various temperature ranges. Many studies suggest the change in sensitivity is partly due to the decomposition rates of the temperature elevated TATB. Others point to the coefficient of thermal expansion, the crystalline structures of TATB and/or the combination of all factors, which create voids which can become active hot spots. During thermal cycling, TATB is known to undergo an irreversible increase in specific volume called ratchet growth. This increase in specific volume correlates to a decrease in density. This decrease in density and increase in volume, demonstrate the creations of additional void spaces which could serve as potential new initiation hot spots thus, increasing the overall sensitivity of the HE. This literature review evaluates the published works to understand why the shock sensitivity of TATB-based plastic bonded explosives (PBXs) changes with temperature.

  12. Large-scale thermal-shock experiments with clad and unclad steel cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1992-01-01

    Flaw behavior trends associated with pressurized-thermal-shock (PTS) loading of pressurized-water-reactor pressure vessels have been under investigation at the Oak Ridge National Laboratory for nearly 20 years. During that time, twelve thermal-shock experiments with thick-walled (152 mm) steel cylinders were conducted as a part of the investigations. The first eight experiments were conducted with unclad cylinders initially containing shallow (8--19 mm) two-dimensional and semicircular inner-surface flaws. These experiments demonstrated, in good agreement with linear elastic fracture mechanics, crack initiation and arrest, a series of initiation/arrest events with deep penetration of the wall, long crack jumps, arrest with the stress intensity factor (K I ) increasing with crack depth, extensive surface extension of an initially short and shallow (semicircular) flaw, and warm prestressing with K I ≤ 0. The remaining four experiments were conducted with clad cylinders containing initially shallow (19--24 mm) semielliptical subclad and surface flaws at the inner surface. In the first of these experiments one of six equally spaced (60 degrees) open-quotes identicalclose quotes subclad flaws extended nearly the length of the cylinder (1,220 mm) beneath the cladding (no crack extension into the cladding) and nearly 50% of the wall, radially. For the final experiment, four of the semielliptical subclad flaws that had not propagated previously were converted to surface flaws, and they experienced extensive extension beneath the cladding with no cracking of the cladding. Information from this series of thermal-shock experiments is being used in the evaluation of the PTS issue

  13. ACCRETION SHOCKS IN CLUSTERS OF GALAXIES AND THEIR SZ SIGNATURE FROM COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Molnar, Sandor M.; Hearn, Nathan; Haiman, Zoltan; Bryan, Greg; Evrard, August E.; Lake, George

    2009-01-01

    Cold dark matter (CDM) hierarchical structure formation models predict the existence of large-scale accretion shocks between the virial and turnaround radii of clusters of galaxies. Kocsis et al. suggest that the Sunyaev-Zel'dovich signal associated with such shocks might be observable with the next generation radio interferometer, ALMA (Atacama Large Millimeter Array). We study the three-dimensional distribution of accretion shocks around individual clusters of galaxies drawn from adaptive mesh refinement (AMR) and smoothed particle hydrodynamics simulations of ΛCDM (dark energy dominated CDM) models. In relaxed clusters, we find two distinct sets of shocks. One set ('virial shocks'), with Mach numbers of 2.5-4, is located at radii 0.9-1.3 R vir , where R vir is the spherical infall estimate of the virial radius, covering about 40%-50% of the total surface area around clusters at these radii. Another set of stronger shocks ( e xternal shocks ) is located farther out, at about 3 R vir , with large Mach numbers (∼100), covering about 40%-60% of the surface area. We simulate SZ surface brightness maps of relaxed massive galaxy clusters drawn from high-resolution AMR runs, and conclude that ALMA should be capable of detecting the virial shocks in massive clusters of galaxies. More simulations are needed to improve estimates of astrophysical noise and to determine optimal observational strategies.

  14. Success and failure of the defibrillation shock: insights from a simulation study.

    Science.gov (United States)

    Skouibine, K; Trayanova, N; Moore, P

    2000-07-01

    This simulation study presents a further inquiry into the mechanisms by which a strong electric shock fails to halt life-threatening cardiac arrhythmias. The research uses a model of the defibrillation process that represents a sheet of myocardium as a bidomain. The tissue consists of nonuniformly curved fibers in which spiral wave reentry is initiated. Monophasic defibrillation shocks are delivered via two line electrodes that occupy opposite tissue boundaries. In some simulation experiments, the polarity of the shock is reversed. Electrical activity in the sheet is compared for failed and successful shocks under controlled conditions. The maps of transmembrane potential and activation times calculated during and after the shock demonstrate that weak shocks fail to terminate the reentrant activity via two major mechanisms. As compared with strong shocks, weak shocks result in (1) smaller extension of refractoriness in the areas depolarized by the shock, and (2) slower or incomplete activation of the excitable gap created by deexcitation of the negatively polarized areas. In its turn, mechanism 2 is associated with one or more of the following events: (a) lack of some break excitations, (b) latency in the occurrence of the break excitations, and (c) slower propagation through deexcited areas. Reversal of shock polarity results in a change of the extent of the regions of deexcitation, and thus, in a change in defibrillation threshold. The results of this study indicate the paramount importance of shock-induced deexcitation in both defibrillation and postshock arrhythmogenesis.

  15. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    Science.gov (United States)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  16. Pressure vessel fracture studies pertaining to a PWR LOCA-ECC thermal shock: experiments TSE-1 and TSE-2

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1976-09-01

    The LOCA-ECC Thermal Shock Program was established to investigate the potential for flaw propagation in pressurized-water reactor (PWR) vessels during injection of emergency core coolant following a loss-of-coolant accident. Studies thus far have included fracture mechanics analyses of typical PWRs, the design and construction of a thermal shock test facility, determination of material properties for test specimens, and two thermal shock experiments with 0.53-m-OD (21-in.) by 0.15-m-wall (6-in.) cylindrical test specimens. The PWR calculations indicated that under some circumstances crack propagation could be expected and that experiments should be conducted for cracks that would have the potential for propagation at least halfway through the wall

  17. CFD transient simulation of an isolator shock train in a scramjet engine

    Science.gov (United States)

    Hoeger, Troy Christopher

    For hypersonic flight, the scramjet engine uses an isolator to contain the pre-combustion shock train formed by the pressure difference between the inlet and the combustion chamber. If this shock train were to reach the inlet, it would cause an engine unstart, disrupting the flow through the engine and leading to a loss of thrust and potential loss of the vehicle. Prior to this work, a Computational Fluid Dynamics (CFD) simulation of the isolator was needed for simulating and characterizing the isolator flow and for finding the relationship between back pressure and changes in the location of the leading edge of the shock train. In this work, the VULCAN code was employed with back pressure as an input to obtain the time history of the shock train leading location. Results were obtained for both transient and steady-state conditions. The simulation showed a relationship between back-to-inlet pressure ratios and final locations of the shock train. For the 2-D runs, locations were within one isolator duct height of experimental results while for 3-D runs, the results were within two isolator duct heights.

  18. Evolution of elastic precursor and plastic shock wave in copper via molecular dynamics simulations

    International Nuclear Information System (INIS)

    Perriot, Romain; Zhakhovsky, Vasily V; Oleynik, Ivan I; Inogamov, Nail A

    2014-01-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate shock propagation in single crystal copper. It is shown that the P-V plastic Hugoniot is unique regardless of the sample's orientation, its microstructure, or its length. However, the P-V pathway to the final state is not, and depends on many factors. Specifically, it is shown that the pressure in the elastic precursor (the Hugoniot elastic limit (HEL)) decreases as the shock wave propagates in a micron-sized sample. The attenuation of the HEL in sufficiently-long samples is the main source of disagreement between previous MD simulations and experiment: while single crystal experiments showed that the plastic shock speed is orientation-independent, the simulated plastic shock speed was observed to be orientation-dependent in relatively short single-crystal samples. Such orientation dependence gradually disappears for relatively long, micrometer-sized, samples for all three low-index crystallographic directions (100), (110), and (111), and the plastic shock velocities for all three directions approach the one measured in experiment. The MD simulations also demonstrate the existence of subsonic plastic shock waves generated by relatively weak supporting pressures.

  19. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    Science.gov (United States)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  20. Basic thermal–mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoxin; Yan, Qingzhi, E-mail: qzyan@ustb.edu.cn; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-15

    Highlights: • The potassium doped tungsten grade was achieved via swaging + rolling process. • The cracking threshold of the W–K alloy was in the range of 0.44–0.66 GW/m{sup 2}. • Recrystallization occurred at 0.66–1.1 GW/m{sup 2} during the thermal shock tests. • No cracks emerged during the thermal fatigue tests (0.44 GW/m{sup 2}, 1000 cycles). • Recrystallization occurred after 1000 cycles during the thermal fatigue tests. - Abstract: The potassium doped tungsten (W–K) grade was achieved via swaging + rolling process. The swaged + rolled W–K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W–K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m{sup 2} in a step of 0.22 GW/m{sup 2}. The cracking threshold was in the range of 0.44–0.66 GW/m{sup 2}. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66–1.1 GW/m{sup 2} basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m{sup 2} up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  1. Young’s modulus evaluation and thermal shock behavior of a porous SiC/cordierite composite material

    Directory of Open Access Journals (Sweden)

    Pošarac-Marković M.

    2015-01-01

    Full Text Available Porous SiC/Cordierite Composite Material with graphite content (10% was synthesized. Evaluation of Young modulus of elasticity and thermal shock behavior of these samples was presented. Thermal shock behavior was monitored using water quench test, and non destructive methods such are UPVT and image analysis were also used for accompaniment the level of destruction of the samples during water quench test. Based on the level of destruction graphical modeling of critical number of cycles was given. This approach was implemented on discussion of the influence of the graphite content on thermal stability behavior of the samples. [Projekat Ministarstva nauke Republike Srbije, br. III 45012

  2. Effect of ion implantation on thermal shock resistance of magnesia and glass

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Williams, J.S.; Watt, A.J.

    1995-01-01

    Monocrystals of magnesia together with glass samples have been subjected to ion implantation prior to thermal shock testing in an impulse plasma of continuously varied intensity. Measurements of the separation between fragments have been used to estimate the surface temperature. Fracture and deformation characteristics of the surface layer are measured in ion implanted and unimplanted samples using optical and scanning electron microscopy. Implantation-induced near-surface damage is analysed by ion channeling using 2 MeV He + ions. Ion implantation is shown to modify the near-surface structure of magnesia samples by introducing damage, which makes crack initiation easier under thermal stresses. The fracture threshold and maximum crack density are shifted towards the lower temperature range. Ion implanted MgO crystals show a ten fold increase in surface crack density. An increased crack density results in a decreased degree of damage characterised by the depth of crack penetration. The thermal stress resistance parameter of glass samples is increased at relatively small doses and decreased at higher doses. The results suggest that crack density and the degree of fracture damage in brittle ceramics operating under thermal shock conditions can be effectively controlled by ion implantation which provides crack initiating defects in the near-surface region. 23 refs., 7 figs

  3. Simulation and Analysis of Converging Shock Wave Test Problems

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  4. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  5. Improvement of thermal shock resistance of isotropic graphite by ti-doping

    International Nuclear Information System (INIS)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C.; Lindig, S.

    2007-01-01

    Full text of publication follows: Carbon fiber reinforced carbon (CFC) is the present candidate material for the strike point area of the ITER divertor due to its ability to withstand excessive heat loads during ELMs and plasma disruptions. However, chemical erosion of carbon under hydrogen bombardment from the plasma involves serious disadvantages for this application (replacement and safety problems due to tritium co-deposition). In addition, the manufacturing process of present CFC candidate materials is long and complex resulting in high costs, and CFC materials are inherently anisotropic. Doping of carbon with small amounts (several at. %) of titanium has proved to be effective in reducing chemical erosion while maintaining or even improving the mechanical properties. furthermore, TiC as dopant contributes to increase significantly the thermal conductivity and consequently the thermal shock resistance, due to the catalytic effect of this carbide on the graphitization. The aim of this work is to improve substantially the thermal shock resistance of fine-grained isotropic graphite by doping it with small amounts of TiC, reducing at the same time the chemical erosion. By this way Ti-doped graphites could be competitive with present CFC candidate materials for next step fusion devices. To achieve this, a synthetic naphthalene-derived mesophase pitch named AR is used as carbon precursor; this raw material exhibits excellent graphitizability, high chemical purity and consistent quality. Due to the low viscosity at the softening point of AR, resulting in swelling during the carbonization treatment, it is necessary to modify the initial viscosity of AR by an adequate oxidative stabilization treatment. As dopant, TiC powder with 130 nm average particle size is added. The influence of several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in

  6. Improvement of thermal shock resistance of isotropic graphite by ti-doping

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C. [Navarrra Univ., CEPT, San Sebastian (Spain); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)

    2007-07-01

    Full text of publication follows: Carbon fiber reinforced carbon (CFC) is the present candidate material for the strike point area of the ITER divertor due to its ability to withstand excessive heat loads during ELMs and plasma disruptions. However, chemical erosion of carbon under hydrogen bombardment from the plasma involves serious disadvantages for this application (replacement and safety problems due to tritium co-deposition). In addition, the manufacturing process of present CFC candidate materials is long and complex resulting in high costs, and CFC materials are inherently anisotropic. Doping of carbon with small amounts (several at. %) of titanium has proved to be effective in reducing chemical erosion while maintaining or even improving the mechanical properties. furthermore, TiC as dopant contributes to increase significantly the thermal conductivity and consequently the thermal shock resistance, due to the catalytic effect of this carbide on the graphitization. The aim of this work is to improve substantially the thermal shock resistance of fine-grained isotropic graphite by doping it with small amounts of TiC, reducing at the same time the chemical erosion. By this way Ti-doped graphites could be competitive with present CFC candidate materials for next step fusion devices. To achieve this, a synthetic naphthalene-derived mesophase pitch named AR is used as carbon precursor; this raw material exhibits excellent graphitizability, high chemical purity and consistent quality. Due to the low viscosity at the softening point of AR, resulting in swelling during the carbonization treatment, it is necessary to modify the initial viscosity of AR by an adequate oxidative stabilization treatment. As dopant, TiC powder with 130 nm average particle size is added. The influence of several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in

  7. DNA extraction in Echinococcus granulosus and Taenia spp. eggs in dogs stool samples applying thermal shock.

    Science.gov (United States)

    Hidalgo, Alejandro; Melo, Angélica; Romero, Fernando; Hidalgo, Víctor; Villanueva, José; Fonseca-Salamanca, Flery

    2018-03-01

    The extraction of DNA in taeniid eggs shows complications attached to the composition of stool samples and the high resistance of eggs to degradation. The objective of this study was to test a method of DNA extraction in taeniid eggs by applying a thermal shock to facilitate the chemical-enzymatic degradation of these elements. A group of six tubes containing 1 ml of dog stool sample was spiked with eggs of Echinococcus granulosus and another group of six with Taenia pisiformis. Samples were floated with supersaturated sugar solution and centrifuged. The upper portion of each tube (500 μl) was aspirated and deposited in 1.5 ml tubes. Three tubes from each group were incubated at -20 °C and then at 90 °C, the remaining three from each group, incubated at room temperature. Proteinase K and lysis buffer were added to each tube and incubated for 12 h at 58 °C. The lysis effect was evaluated by microscopy at 3, 6 and 12 h and integrity by electrophoresis in 1% agarose gels. With the same experimental scheme, the thermal shock effect was evaluated in extractions of 1, 2, 3 and 4 eggs of each species and the DNA was quantified. Additionally, the protocol was applied in samples of 4 dogs diagnosed with natural infection by Taeniidae worms. Finally, all the extractions were tested by PCR amplification. Both E. granulosus and T. pisiformis eggs showed a similar response in the tests. In samples without treatment, the lysis effect was poor and showed no differences over time, but in those subjected to thermal shock, eggs degradation increased with time. In both treatments, there was no DNA loss integrity. The protocol applied to limited amounts of eggs yielded PCR products in 100% of the samples exposed to thermal shock, allowing PCR amplifications up to 1 egg. In non-exposed samples, the results were not replicable. However, DNA quantification showed low values in both treatments. In turn, DNA extractions with thermal shock in infected dog samples

  8. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  9. VISA-2, Reactor Vessel Failure Probability Under Thermal Shock

    International Nuclear Information System (INIS)

    Simonen, F.; Johnson, K.

    1992-01-01

    1 - Description of program or function: VISA2 (Vessel Integrity Simulation Analysis) was developed to estimate the failure probability of nuclear reactor pressure vessels under pressurized thermal shock conditions. The deterministic portion of the code performs heat transfer, stress, and fracture mechanics calculations for a vessel subjected to a user-specified temperature and pressure transient. The probabilistic analysis performs a Monte Carlo simulation to estimate the probability of vessel failure. Parameters such as initial crack size and position, copper and nickel content, fluence, and the fracture toughness values for crack initiation and arrest are treated as random variables. Linear elastic fracture mechanics methods are used to model crack initiation and growth. This includes cladding effects in the heat transfer, stress, and fracture mechanics calculations. The simulation procedure treats an entire vessel and recognizes that more than one flaw can exist in a given vessel. The flaw model allows random positioning of the flaw within the vessel wall thickness, and the user can specify either flaw length or length-to-depth aspect ratio for crack initiation and arrest predictions. The flaw size distribution can be adjust on the basis of different inservice inspection techniques and inspection conditions. The toughness simulation model includes a menu of alternative equations for predicting the shift in the reference temperature of the nil-ductility transition. 2 - Method of solution: The solution method uses closed form equations for temperatures, stresses, and stress intensity factors. A polynomial fitting procedure approximates the specified pressure and temperature transient. Failure probabilities are calculated by a Monte Carlo simulation. 3 - Restrictions on the complexity of the problem: Maxima of 30 welds. VISA2 models only the belt-line (cylindrical) region of a reactor vessel. The stresses are a function of the radial (through-wall) coordinate only

  10. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    International Nuclear Information System (INIS)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C.; Lindig, S.

    2009-01-01

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  11. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Galilea, I. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain)], E-mail: ilopez@ceit.es; Ordas, N.; Garcia-Rosales, C. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2009-04-30

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  12. Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sanjiva Lele

    2012-10-01

    The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNS databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is

  13. Potential effect of fracture technology on IPTS [Integrated Pressurized Thermal Shock] analysis (Fracture toughness: Kla and Klc and warm prestressing)

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1990-01-01

    A major nuclear plant life extension issue to be confronted in the 1990's is pressure vessel integrity for the pressurized thermal shock (PTS) loading condition. Governing criteria associated with PTS are included in ''The PTS Rule'' (10 CFR 50.61) and Regulatory Guide 1.154: Format and Content of Plant-Specific Pressurized Thermal Shock Safety Analysis Reports for Pressurized Water Reactors. The results of the Integrated Pressurized Water Reactors. The results of the Integrated Pressurized Thermal Shock (IPTS) Program, along with risk assessments and fracture analyses performed by the NRC and reactor system vendors, contributed to the derivation of the PTS Rule. Over the last several years, the Heavy Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) has performed a series of large-scale fracture-mechanics experiments. The Thermal Shock Experiments (TSE), Pressurized Thermal Shock Experiments (PTSE), and Wide Plate Experiments (WPE) produced K IC and K Ia data that suggest increased mean K IC and K Ia curves relative to the ones used in the IPTS study. Also, the PTSE and WPE have demonstrated that prototypical nuclear reactor pressure vessel steels are capable of arresting a propagating crack at K I values considerably above 220 MPa√m, the implicit limit of the ASME Code and the limit used in the IPTS studies. This document provides a discussion of the results of these experiments

  14. Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets

    International Nuclear Information System (INIS)

    Landwehr, Sean E.; Hilmas, Gregory E.; Fahrenholtz, William G.; Talmy, Inna G.; Wang Hsin

    2009-01-01

    The linear thermal expansion coefficient (CTE), heat capacity, and thermal conductivity, were investigated as a function of temperature for hot pressed ZrC and liquid phase sintered ZrC-Mo cermets. The ZrC and the ZrC-Mo cermets had the same CTE at 50 deg. C (∼5.1-5.5 ppm deg. C -1 ), but the CTE of ZrC increased to ∼12.2 ppm deg. C -1 at 1000 deg. C compared to ∼7.2-8.5 ppm deg. C -1 for the ZrC-Mo cermets. Heat capacity was calculated using a rule of mixtures and previously reported thermodynamic data. Thermal diffusivity was measured with a laser flash method and was, in turn, used to calculate thermal conductivity. Thermal conductivity increased linearly with increasing temperature for all compositions and was affected by solid solution formation and carbon deficiency of the carbide phases. Hot pressed ZrC had the highest thermal conductivity (∼30-37 W m -1 K -1 ). The nominally 20 and 30 vol% Mo compositions of the ZrC-Mo cermets had a lower thermal conductivity, but the thermal conductivity generally increased with increasing Mo content. Water quench thermal shock testing showed that ZrC-30 vol% Mo had a critical temperature difference of 350 deg. C, which was ∼120 deg. C higher than ZrC. This increase was due to the increased toughness of the cermet compared to ZrC.

  15. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

    Science.gov (United States)

    Yılmaz, Bülent; Çiftçi, Emre

    2013-06-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures

  16. Pressurized-thermal-shock experiments: PTSE-1 results and PTSE-2 plans

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Wanner, R.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1985-01-01

    The first pressurized-thermal-shock experiment (PTSE-1) was performed with a vessel with a 1-m-long flaw in a plug of specially tempered steel having the composition of SA-508 forging steel. The second experiment (PTSE-2) will have a similar arrangement, but the material in which the flaw will be implanted is being prepared to have low tearing resistance. Special tempering of a 2 1/4 Cr - 1 Mo steel plate has been shown to induce a low Charpy impact energy in the upper-shelf temperature range. The purpose of PTSE-2 is to investigate the fracture behavior of low-upper-shelf material in a vessel under the combined loading of concurrent pressure and thermal shock. The primary objective of the experimental plan is to induce a rapidly propagating cleavage fracture under conditions that are likely to induce a ductile tearing instability at the time of arrest of the cleavage fracture. The secondary objective of the test is to extend the range of the investigation of warm prestressing. 11 figs

  17. Simulating shock-bubble interactions at water-gelatin interfaces

    Science.gov (United States)

    Adami, Stefan; Kaiser, Jakob; Bermejo-Moreno, Ivan; Adams, Nikolaus

    2016-11-01

    Biomedical problems are often driven by fluid dynamics, as in vivo organisms are usually composed of or filled with fluids that (strongly) affected their physics. Additionally, fluid dynamical effects can be used to enhance certain phenomena or destroy organisms. As examples, we highlight the benign potential of shockwave-driven kidney-stone lithotripsy or sonoporation (acoustic cavitation of microbubbles) to improve drug delivery into cells. During the CTR SummerProgram 2016 we have performed axisymmetric three-phase simulations of a shock hitting a gas bubble in water near a gelatin interface mimicking the fundamental process during sonoporation. We used our multi-resolution finite volume method with sharp interface representation (level-set), WENO-5 shock capturing and interface scale-separation and compared the results with a diffuse-interface method. Qualitatively our simulation results agree well with the reference. Due to the interface treatment the pressure profiles are sharper in our simulations and bubble collapse dynamics are predicted at shorter time-scales. Validation with free-field collapse (Rayleigh collapse) shows very good agreement. The project leading to this application has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 667483).

  18. The impact of kinetic effects on the properties of relativistic electron–positron shocks

    International Nuclear Information System (INIS)

    Stockem, Anne; Fiúza, Frederico; Fonseca, Ricardo A; Silva, Luis O

    2012-01-01

    We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first-principles particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease in the upstream bulk speed result in deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time. (paper)

  19. Simulations of embedded lateral stress gauge profiles in shocked targets

    International Nuclear Information System (INIS)

    Winter, R E; Harris, E J

    2008-01-01

    In principle, stress gauges mounted to measure lateral stresses in a shocked matrix allow the shear strength of the material to be determined. However, interpreting the resistance profiles from lateral stress gauges is hindered by the fact that the stress field in the vicinity of the insulating layer in which the gauges are embedded can differ significantly from the stress field that would be generated in the sample if no gauge were present. A series of high resolution Eulerian hydrocode simulations have been run which suggest that the stresses in the insulating layer vary with distance and time in a way that depends on the thickness of the layer, the shock strength and the elastic and plastic properties of both the layer and the matrix. In particular, if the shock velocity in the matrix material is high the stress at a typical gauge position initially rises to a sharp peak then falls with time, but when the shock velocity in the matrix is low the stress rises relatively gradually throughout the time of interest. The shapes of the stress versus time profiles predicted by the hydrocode compare well with the results of lateral gauge experiments on several different materials. It is concluded that lateral gauges can be used to measure the dynamic strength of materials provided high resolution computer simulation is used to take account of the perturbation of the stress field in the shocked sample caused by the gauges

  20. Impact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, B., E-mail: b.spilker@fz-juelich.de; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-11-01

    Highlights: • Different surface qualities of S-65 beryllium are tested under high heat flux conditions. • After 1000 thermal shocks, the loaded area exhibits a crucial destruction. • Stress accelerated grain boundary oxidation/dynamic embrittlement effects are linked to the thermal shock performance of beryllium. • Thermally induced cracks form between 1 and 10 pulses and grow wider and deeper between 10 and 100 pulses. • Thermally induced cracks form and propagate independently from surface grooves and the surface quality. - Abstract: Beryllium will be applied as first wall armor material in ITER. The armor has to sustain high steady state and transient power fluxes. For transient events like edge localized modes, these transient power fluxes rise up to 1.0 GW m{sup −2} with a duration of 0.5–0.75 ms in the divertor region and a significant fraction of this power flux is deposited on the first wall as well. In the present work, the reference beryllium grade for the ITER first wall application S-65 was prepared with various surface conditions and subjected to transient power fluxes (thermal shocks) with ITER relevant loading parameters. After 1000 thermal shocks, a crucial destruction of the entire loaded area was observed and linked to the stress accelerated grain boundary oxidation (SAGBO)/dynamic embrittlement (DE) effect. Furthermore, the study revealed that the majority of the thermally induced cracks formed between 1 and 10 pulses and then grew wider and deeper with increasing pulse number. The surface quality did not influence the cracking behavior of beryllium in any detectable way. However, the polished surface demonstrated the highest resistance against the observed crucial destruction mechanism.

  1. Assessment of RANS CFD modelling for pressurised thermal shock analysis

    International Nuclear Information System (INIS)

    Sander M Willemsen; Ed MJ Komen; Sander Willemsen

    2005-01-01

    Full text of publication follows: The most severe Pressurised Thermal Shock (PTS) scenario is a cold water Emergency Core Coolant (ECC) injection into the cold leg during a LOCA. The injected ECC water mixes with the hot fluid present in the cold leg and flows towards the downcomer where further mixing takes place. When the cold mixture comes into contact with the Reactor Pressure Vessel (RPV) wall, it may lead to large temperature gradients and consequently to high stresses in the RPV wall. Knowledge of these thermal loads is important for RPV remnant life assessments. The existing thermal-hydraulic system codes currently applied for this purpose are based on one-dimensional approximations and can, therefore, not predict the complex three-dimensional flows occurring during ECC injection. Computational Fluid Dynamics (CFD) can be applied to predict these phenomena, with the ultimate benefit of improved remnant RPV life assessment. The present paper presents an assessment of various Reynolds Averaged Navier Stokes (RANS) CFD approaches for modeling the complex mixing phenomena occurring during ECC injection. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code in combination with a hybrid meshing strategy with experimental results of the Upper Plenum Test Facility (UPTF). The UPTF was a full-scale 'simulation' of the primary system of the four loop 1300 MWe Siemens/KWU Pressurised Water Reactor at Grafenrheinfeld. The test vessel upper plenum internals, downcomer and primary coolant piping were replicas of the reference plant, while other components, such as core, coolant pump and steam generators were replaced by simulators. From the extensive test programme, a single-phase fluid-fluid mixing experiment in the cold leg and downcomer was selected. Prediction of the mixing and stratification is assessed by comparison with the measured temperature profiles at several locations

  2. DSMC simulations of shock interactions about sharp double cones

    Science.gov (United States)

    Moss, James N.

    2001-08-01

    This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.

  3. Rippled shock front solutions for testing hydrodynamic stability simulations

    International Nuclear Information System (INIS)

    Munro, D.H.

    1989-01-01

    The response of a shock front to arbitrary small perturbations can be calculated analytically. Such rippled shock front solutions are useful for determining the accuracy of hydrodynamic simulation codes such as LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1977)], which are used to compute perturbation growth in inertial fusion targets. The LASNEX fractional errors are of order κ 2 L 2 , where κ is the transverse wavenumber of the perturbation, and L is the largest zone dimension. Numerical errors are about 25% for a calculation using 26 zones per transverse wavelength

  4. Design of blast simulators for nuclear testing

    International Nuclear Information System (INIS)

    Mark, A.; Opalka, K.O.; Kitchens, C.W. Jr.

    1983-01-01

    A quasi-one-dimensional computational technique is used to model the flow of a large, complicated shock tube. The shock tube, or Large Blast Simulator, is used to simulate conventional or nuclear explosions by shaping the pressure history. Results from computations show favorable agreement when compared with data taken in the facility at Gramat, France. Such future shock tubes will include a thermal irradiation capability to better simulate a nuclear event. The computations point to the need for venting of the combustion products since the pressure history will be considerably altered as the shock propagates through these hot gases

  5. Thermal hydraulic-Mechanic Integrated Simulation for Advanced Cladding Thermal Shock Fracture Analysis during Reflood Phase in LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seong Min; Lee, You Ho; Cho, Jae Wan; Lee, Jeong Ik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study suggested thermal hydraulic-mechanical integrated stress based methodology for analyzing the behavior of ATF type claddings by SiC-Duplex cladding LBLOCA simulation. Also, this paper showed that this methodology could predict real experimental result well. That concept for enhanced safety of LWR called Advanced Accident-Tolerance Fuel Cladding (ATF cladding, ATF) is researched actively. However, current nuclear fuel cladding design criteria for zircaloy cannot be apply to ATF directly because those criteria are mainly based on limiting their oxidation. So, the new methodology for ATF design criteria is necessary. In this study, stress based analysis methodology for ATF cladding design criteria is suggested. By simulating LBLOCA scenario of SiC cladding which is the one of the most promising candidate of ATF. Also we'll confirm our result briefly through comparing some facts from other experiments. This result is validating now. Some of results show good performance with 1-D failure analysis code for SiC fuel cladding that already developed and validated by Lee et al,. It will present in meeting. Furthermore, this simulation presented the possibility of understanding the behavior of cladding deeper. If designer can predict the dangerous region and the time precisely, it may be helpful for designing nuclear fuel cladding geometry and set safety criteria.

  6. Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles

    Directory of Open Access Journals (Sweden)

    M. Shoaib

    2011-01-01

    Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.

  7. Thermal shock resistance of thick boron-doped diamond under extreme heat loads

    NARCIS (Netherlands)

    De Temmerman, G.; Dodson, J.; Linke, J.; Lisgo, S.; Pintsuk, G.; Porro, S.; Scarsbrook, G.

    2011-01-01

    Thick free-standing boron-doped diamonds were prepared by microwave plasma assisted chemical vapour deposition. Samples with a final thickness close to 5 mm and with lateral dimensions 25 x 25 mm were produced. The thermal shock resistance of the material was tested by exposure in the JUDITH

  8. The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. C.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2017-03-10

    High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in H α and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.

  9. Molecular dynamics simulation of shock-wave loading of copper and titanium

    Science.gov (United States)

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  10. Thermal shock behavior of W-0.5 wt% Y{sub 2}O{sub 3} alloy prepared via a novel chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei-Ling [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Lai-Ma, E-mail: luolaima@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 (China); Lin, Jing-Shan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zan, Xiang; Zhu, Xiao-Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Yu-Cheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 (China)

    2016-10-15

    A wet-chemical method combined with spark plasma sintering was used to prepare W-0.5 wt% Y{sub 2}O{sub 3} alloy. The W-0.5 wt% Y{sub 2}O{sub 3} precursor was reduced at 800 °C for 4 h under different hydrogen flow rates of 300, 400, 500, 600, and 700 ml/min. The reduced powder was analyzed by X-ray diffraction (XRD), laser particle size analyzer (LPSA), and scanning electron microscopy (SEM). An optimized process for reducing precursor was discussed. After sintering, the specimens were exposed to different laser beam irradiation energies (90, 120, 150, and 180 W) to simulate loads as expected for edge localized modes (ELMs). Top surface and cross-sectional morphology were observed by SEM, and the changes in hardness were evaluated. The changes in microstructural properties (i.e., Y{sub 2}O{sub 3}-particle distribution, crack propagation direction, depth of thermal shock effect, and grain size of the recrystallization region) after thermal shock were investigated.

  11. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves

    International Nuclear Information System (INIS)

    Johnsen, Eric; Larsson, Johan; Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.

    2010-01-01

    Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.

  12. Microstructure in two- and three-dimensional hybrid simulations of perpendicular collisionless shocks

    Czech Academy of Sciences Publication Activity Database

    Burgess, D.; Hellinger, Petr; Gingell, I.; Trávníček, Pavel M.

    2016-01-01

    Roč. 82, č. 4 (2016), 905820401/1-905820401/23 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : ion-acceleration * numerical simulations * bow shock * electron acceleration * cluster observations * self-reformation * magnetic-field * whistler waves * injection * nonstationarity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/ journals /journal-of-plasma-physics/article/microstructure-in-two-and-three-dimensional-hybrid-simulations-of-perpendicular-collisionless-shocks/F964EF89FB14A6504A49CFAD54970E2B

  13. Simulation of shock-induced bubble collapse using a four-equation model

    Science.gov (United States)

    Goncalves, E.; Hoarau, Y.; Zeidan, D.

    2018-02-01

    This paper presents a numerical study of the interaction between a planar incident shock wave with a cylindrical gas bubble. Simulations are performed using an inviscid compressible one-fluid solver based upon three conservation laws for the mixture variables, namely mass, momentum, and total energy along with a supplementary transport equation for the volume fraction of the gas phase. The study focuses on the maximum pressure generated by the bubble collapse. The influence of the strength of the incident shock is investigated. A law for the maximum pressure function of the Mach number of the incident shock is proposed.

  14. Comparing Shock geometry from MHD simulation to that from the Q/A-scaling analysis

    Science.gov (United States)

    Li, G.; Zhao, L.; Jin, M.

    2017-12-01

    In large SEP events, ions can be accelerated at CME-driven shocks to very high energies. Spectra of heavy ions in many large SEP events show features such as roll-overs or spectral breaks. In some events when the spectra are plotted in energy/nucleon they can be shifted relatively to each other so that the spectra align. The amount of shift is charge-to-mass ratio (Q/A) dependent and varies from event to event. In the work of Li et al. (2009), the Q/A dependences of the scaling is related to shock geometry when the CME-driven shock is close to the Sun. For events where multiple in-situ spacecraft observations exist, one may expect that different spacecraft are connected to different portions of the CME-driven shock that have different shock geometries, therefore yielding different Q/A dependence. At the same time, shock geometry can be also obtained from MHD simulations. This means we can compare shock geometry from two completely different approaches: one from MHD simulation and the other from in-situ spectral fitting. In this work, we examine this comparison for selected events.

  15. Temperatures, strains and crack behavior during local thermal shock tests on the RPV-cylinder of the HDR

    International Nuclear Information System (INIS)

    Neubrech, G.E.; Goerner, F.; Siebler, T.

    1987-01-01

    This report summarises and critically discusses the results obtained from thermal shocks locally applied to the inner surface of the RPV-cylinder. This evaluation is based on on-line measurements (temperatures and strains at the RPV-wall during the thermal shock loading, non-destructive-testing), on materials investigations, and on theoretical investigations (finite element calculations, fracture mechanics analyses). The comparison between the corresponding measured and calculated results serves as a basis for subsequent assessments. It was the object of these tests to achieve the following primary aims: - Investigation of the loading conditions produced by local thermal shocks during realistic cooling processes. - A better understanding of the physical processes involved in crack initiation and propagation resulting from thermocyclic loading. - Assessment of non-destructive-testing methods with respect to detection and analysis of cracks as a basis for fracture mechanical evaluations. - Assessment of the reliability of the applied structural analysis methods. - Production of naturally formed deep cracks on the inner surface of the RPV-cylinder by means of excessive cooling processes. (orig./HP)

  16. Cyclic elastic analysis of a PWR nozzle subjected to a repeated thermal shock

    International Nuclear Information System (INIS)

    Locci, J.M.; Prost, J.P.

    1979-01-01

    In the primary piping system of a PWR nuclear power plant, some nozzles are subjected to strong thermal shocks due to sudden thermal variations in the internal water flow. The thermal gradients are sufficiently high to induce general elastic plastic behaviour. The design of these nozzles using the simplified elastic plastic analysis given in the ASME III Code NB-3200 generally leads to a very high usage factor. The aim of this work is to show by giving an example that a complete cyclic elastic plastic analysis makes it possible to considerably reduce the usage factor. (orig.)

  17. MMS Observation of Shock-Reflected He++ at Earth's Quasi-Perpendicular Bow Shock

    Science.gov (United States)

    Broll, Jeffrey Michael; Fuselier, S. A.; Trattner, K. J.; Schwartz, S. J.; Burch, J. L.; Giles, B. L.; Anderson, B. J.

    2018-01-01

    Specular reflection of protons at Earth's supercritical quasi-perpendicular bow shock has long been known to lead to the thermalization of solar wind particles by velocity-space dispersion. The same process has been proposed for He++ but could not be confirmed previously due to insufficient time resolution for velocity distribution measurements. We present observations and simulations of a bow shock crossing by the Magnetospheric Multiscale (MMS) mission on 20 November 2015 indicating that a very similar reflection process for He++ is possible, and further that the part of the incoming distribution with the highest probability of reflecting is the same for H+ and He++. However, the reflection process for He++ is accomplished by deeper penetration into the downstream magnetic fields.

  18. Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout

    Science.gov (United States)

    Wongwathanarat, A.; Müller, E.; Janka, H.-Th.

    2015-05-01

    We present three-dimensional hydrodynamic simulations of the evolution of core-collapse supernovae (SN) from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, using an axis-free Yin-Yang grid and considering two 15 M⊙ red supergiants (RSG) and two blue supergiants (BSG) of 15 M⊙ and 20 M⊙. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximum Ni and minimum H velocities depend not only on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities), but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which leads to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a large global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km s-1 for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 M⊙ BSG shares these properties (maximum Ni speeds up to ~3500 km s-1), the 20 M⊙ BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km s-1) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He

  19. Cracking of a layered medium on an elastic foundation under thermal shock

    Science.gov (United States)

    Rizk, Abd El-Fattah A.; Erdogan, Fazil

    1988-01-01

    The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.

  20. DSMC simulation and experimental validation of shock interaction in hypersonic low density flow.

    Science.gov (United States)

    Xiao, Hong; Shang, Yuhe; Wu, Di

    2014-01-01

    Direct simulation Monte Carlo (DSMC) of shock interaction in hypersonic low density flow is developed. Three collision molecular models, including hard sphere (HS), variable hard sphere (VHS), and variable soft sphere (VSS), are employed in the DSMC study. The simulations of double-cone and Edney's type IV hypersonic shock interactions in low density flow are performed. Comparisons between DSMC and experimental data are conducted. Investigation of the double-cone hypersonic flow shows that three collision molecular models can predict the trend of pressure coefficient and the Stanton number. HS model shows the best agreement between DSMC simulation and experiment among three collision molecular models. Also, it shows that the agreement between DSMC and experiment is generally good for HS and VHS models in Edney's type IV shock interaction. However, it fails in the VSS model. Both double-cone and Edney's type IV shock interaction simulations show that the DSMC errors depend on the Knudsen number and the models employed for intermolecular interaction. With the increase in the Knudsen number, the DSMC error is decreased. The error is the smallest in HS compared with those in the VHS and VSS models. When the Knudsen number is in the level of 10(-4), the DSMC errors, for pressure coefficient, the Stanton number, and the scale of interaction region, are controlled within 10%.

  1. Thermal shock problems of bonded structure for plasma facing components

    International Nuclear Information System (INIS)

    Shibui, M.; Kuroda, T.; Kubota, Y.

    1991-01-01

    Thermal shock tests have been performed on W(Re)/Cu and Mo/Cu duplex structures with a particular emphasis on two failure modes: failure on the heated surface and failure near the bonding interface. The results indicate that failure of the duplex structure largely depends on the constraint of thermal strain on the heated surface and on the ductility changes of armour materials. Rapid debonding of the bonding interface may be attributed to the yielding of armour materials. This leads to a residual bending deformation when the armour cools down. Arguments are also presented in this paper on two parameter characterization of the failure of armour materials and on stress distribution near the free edge of the bonding interface. (orig.)

  2. A fracture mechanics method of evaluating structural integrity of a reactor vessel due to thermal shock effects following LOCA condition

    International Nuclear Information System (INIS)

    Ramani, D.T.

    1977-01-01

    The importance of knowledge of structural integrity of a reactor vessel due to thermal shock effects, is related to safety and operational requirements in assessing the adequacy and flawless functioing of the nuclear power systems. Followig a loss-of-coolant accident (LOCA) condition the integrity of the reactor vessel due to a sudden thermal shock induced by actuation of emergency core cooling system (ECCS), must be maintained to ensure safe and orderly shutdown of the reactor and its components. The paper encompasses criteria underlaying a fracture mechanics method of analysis to evaluate structural integrity of a typical 950 MWe PWR vessel as a result of very drastic changes in thermal and mechanical stress levels in the reactor vessel wall. The main object of this investigation therefore consists in assessing the capability of a PWR vessel to withstand the most critical thermal shock without inpairing its ability to conserve vital coolant owing to probable crack propagation. (Auth.)

  3. Elastic-plastic Fracture Mechanics Assessment of nozzle corners submitted to thermal shock loading

    International Nuclear Information System (INIS)

    Chapuliot, S.; Marie, S.

    2016-01-01

    This paper focuses on the development of a simplified analytical scheme for the elastic-plastic Fracture Mechanics Assessment of large nozzle corners. Within that frame, following the specific numerical effort performed for the definition of a Stress Intensity Factor compendium, complementary elastic-plastic developments are proposed here for the consideration of the thermal shock loading in the elastic-plastic domain: this type of loading is a major loading for massive structures such as nozzle corners of large components. Thus, an important numerical was performed in order to extend the applicability domain of existing analytical schemes to those complex geometries. The final formulation is a simple one, applicable to a large variety of materials and geometrical configurations as long as the structure is large and the defect remains small in comparison to the internal radius of the nozzle. - Highlights: • Fracture Mechanics Assessment of large nozzle corners. • Elastic-plastic Stress Intensity Factor determination under thermal shock loading. • Semi-analytical schemes for J calculation.

  4. Insights into chondrule formation process and shock-thermal history of the Dergaon chondrite (H4-5

    Directory of Open Access Journals (Sweden)

    D. Ray

    2017-05-01

    Full Text Available The Dergaon fall represents a shock-melted H4-5 (S5 ordinary chondrite which includes at least ten textural varieties of chondrules and belongs to the high chondrule-matrix ratio type. Our study reveals that the chondrules are of diverse mineralogy with variable olivine-pyroxene ratios (Type II, igneous melt textures developed under variable cooling rates and formed through melt fractionations from two different melt reservoirs. Based on the experimental analogues, mineralogical associations and phase compositions, it is suggested that the Dergaon chondrules reflect two contrasting environments: a hot, dust-enriched and highly oxidized nebular environment through melting, without significant evaporation, and an arrested reducing environment concomitant with major evaporation loss of alkali and highly volatile trace elements. Coexistence of chlorapatite and merrillite suggests formation of the Dergaon matrix in an acidic accretionary environment. Textural integration and chemical homogenization occurred at ∼1 atmospheric pressure and a mean temperature of 765 °C mark the radiogenic thermal event. Equilibrated shock features (olivine mosaicism, diaplectic plagioclase, polycrystalline troilite due to an impact-induced thermal event reflect a shock pressure >45 GPa and temperature of 600 °C. By contrast, the local disequilibrium shock features (silicate melt veins comprising of olivine crystallites, troilite melt veins and metal droplets correspond to a shock pressure up to 75 GPa and temperature >950 °C.

  5. Injection and acceleration of H+ and He2+ at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    M. Scholer

    1999-05-01

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  6. Injection and acceleration of H+ and He2+ at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    K.-H. Trattner

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  7. Thermal shock testing of ceramics with pulsed laser irradiation

    International Nuclear Information System (INIS)

    Benz, R.; Naoumidis, A.; Nickel, H.

    1986-04-01

    Arguments are presented showing that the resistance to thermal stressing (''thermal shock'') under pulsed thermal energy deposition by various kinds of beam irradiations is approximately proportional to Φ a √tp, where Φ a is the absorbed power density and tp is the pulse length, under conditions of diffusivity controlled spreading of heat. In practical beam irradiation testing, incident power density, Φ, is reported. To evaluate the usefulness of Φ√tp as an approximation to Φ a √tp, damage threshold values are reviewed for different kinds of beams (electron, proton, and laser) for a range of tp values 5x10 -6 to 2 s. Ruby laser beam irradiation tests were made on the following ceramics: AlN, BN, graphite, αSiC, β-SiC coated graphites, (α+β)Si 3 N 4 , CVD (chemical vapor deposition) TiC coated graphite, CVD TiC coated Mo, and CVD TiN coated IN 625. The identified failure mechanisms are: 1. plastic flow followed by tensile and bend fracturing, 2. chemical decomposition, 3. melting, and 4. loss by thermal spallation. In view of the theoretical approximations and the neglect of reflection losses there is reasonable accord between the damage threshold Φ√tp values from the laser, electron, and proton beam tests. (orig./IHOE)

  8. Non-stationarity of the quasi-perpendicular bow shock: comparison between Cluster observations and simulations

    Directory of Open Access Journals (Sweden)

    H. Comişel

    2011-02-01

    Full Text Available We have performed full particle electromagnetic simulations of a quasi-perpendicular shock. The shock parameters have been chosen to be appropriate for the quasi-perpendicular Earth's bow shock observed by Cluster on 24 January 2001 (Lobzin et al., 2007. We have performed two simulations with different ion to electron mass ratio: run 1 with mi/me=1840 and run 2 with mi/me=100. In run 1 the growth rate of the modified two-stream instability (MTSI is large enough to get excited during the reflection and upstream gyration of part of the incident solar wind ions. The waves due to the MTSI are on the whistler mode branch and have downstream directed phase velocities in the shock frame. The Poynting flux (and wave group velocity far upstream in the foot is also directed in the downstream direction. However, in the density and magnetic field compression region of the overshoot the waves are refracted and the Poynting flux in the shock frame is directed upstream. The MTSI is suppressed in the low mass ratio run 2. The low mass ratio run shows more clearly the non-stationarity of the shock with a larger time scale of the order of an inverse ion gyrofrequency (Ωci: the magnetic field profile flattens and steepens with a period of ~1.5Ωci−1. This non-stationarity is different from reformation seen in previous simulations of perpendicular or quasi-perpendicular shocks. Beginning with a sharp shock ramp the large electric field in the normal direction leads to high reflection rate of solar wind protons. As they propagate upstream, the ion bulk velocity decreases and the magnetic field increases in the foot, which results in a flattening of the magnetic field profile and in a decrease of the normal electric field. Subsequently the reflection rate decreases and the whole shock profile steepens again. Superimposed on this 'breathing' behavior are in the realistic mass ratio case the waves due to the MTSI. The simulations lead us to a re-interpretation of

  9. Agricultural greenhouse with storage of sensible and latent heat in the soil. Modeling and simulation of thermal and hydric transfer. Experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Al Cheikh Kassem, N.; Miriel, J.; Roux, A. [Institut National des Sciences Appliquees (INSA), 35 - Rennes (France)

    1993-12-31

    This work presents a simulation model of sensible and latent heat storage in the soil of an agricultural greenhouse. Results recorded by the laboratory device of grounded storage and thermo-physic parameter values of soil experimentally obtained by a three rod thermal shock probe are used for checking the simulation model and thus assessing the performance of such a system and the coupling between the greenhouse and the storage. (Authors). 3 refs., 6 figs.

  10. Thermo-hydraulic-mechanical analysis of the SS-050 sodium loop during a thermal shock of 2000C/s

    International Nuclear Information System (INIS)

    Jesus Miranda, C.A. de; Gebrin, A.N.

    1988-01-01

    An analytical thermo-hydraulic model was developed to obtain the temperature of the sodium flowing between the mixing tank TM of constant volume and the drain tank of the SS-050 sodium test facility. The piping connecting these two tanks is considered in the analysis. The sodium enters in the TM through a tube with lateral holes immersed in the TM's sodium. The model and relative computer program were tested and a typical situation was studied: a thermal shock with -200 0 C/s of thermal gradient in the test section. The sodium temperature time-histories along the piping length are presented. For the thermal shock situation, the temperature field in the TM bottom and outlet nozzle was calculated and the stresses were evaluated. The final thermal stresses will allow a detailed verification of the circuit design. (author) [pt

  11. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  12. Experimental facilities for PEC reactor design central channel test loop: CPC-1 - thermal shocks loop: CEDI

    International Nuclear Information System (INIS)

    Calvaresi, C.; Moreschi, L.F.

    1983-01-01

    PEC (Prova Elementi di Combustibile: Fuel Elements Test) is an experimental fast sodium-cooled reactor with a power of 120 MWt. This reactor aims at studying the behaviour of fuel elements under thermal and neutron conditions comparable with those existing in fast power nuclear facilities. Given the particular structure of the core, the complex operations to be performed in the transfer cell and the strict operating conditions of the central channel, two experimental facilities, CPC-1 and CEDI, have been designed as a support to the construction of the reactor. CPC-1 is a 1:1 scale model of the channel, transfer-cell and loop unit of the channel, whereas CEDI is a sodium-cooled loop which enables to carry out tests of isothermal endurance and thermal shocks on the group of seven forced elements, by simulating the thermo-hydraulic and mechanical conditions existing in the reactor. In this paper some experimental test are briefy discussed and some facilities are listed, both for the CPC-1 and for the CEDI. (Auth.)

  13. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks

    Science.gov (United States)

    Wu, Bao; Wu, FengChao; Zhu, YinBo; Wang, Pei; He, AnMin; Wu, HengAn

    2018-04-01

    Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD) simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.

  14. H/He irradiation on tungsten exposed to ELM-like thermal shocks

    International Nuclear Information System (INIS)

    Lemahieu, Nathan; Balden, Martin; Elgeti, Stefan; Greuner, Henri; Linke, Jochen; Maier, Hans; Pintsuk, Gerald; Wirtz, Marius; Van Oost, Guido; Noterdaeme, Jean-Marie

    2016-01-01

    Highlights: • After ELM-like thermal shocks, tungsten was exposed to H/He particle fluxes. • The influence of combined loading conditions on the damage behaviour was studied. • Roughened surfaces do not alter H/He induced surface modifications. • Cracks interact with the particle flux, resulting in phenomena such as crack bridging. - Abstract: ELM-like thermal shocks and H/He particle exposure were subsequently applied on tungsten samples. Polished test specimens underwent in the JUDITH 1 electron beam facility 100 transient thermal events with a duration of 1 ms. The absorbed heat flux was 0.4 GW m"−"2 and 1.5 GW m"−"2, which is above the material's damage threshold. These experiments were done at room temperature and with the samples heated to 400 °C base temperature. Depending on the loading conditions the test specimens have either a crack network or showed surface roughening. The samples were then loaded in the GLADIS facility at different surface temperatures with a mixed H/He beam with a flux of 3.7 × 10"2"1 m"−"2 s"−"1. Post-mortem analysis showed that the roughened surface did not alter the H/He induced surface modifications. In contrast to that on the test specimens that exhibited crack formation, phenomena such as bubble creation along the crack edge, formation of a shallow layer of nano-structures covering the crack opening, and the emerging of a porous structure which partially fills the crack are observed.

  15. H/He irradiation on tungsten exposed to ELM-like thermal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Lemahieu, Nathan, E-mail: Nathan.Lemahieu@UGent.be [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium); Institute of Interfacial Process Engineering and Plasma Technology IGVP, Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Balden, Martin; Elgeti, Stefan; Greuner, Henri [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Linke, Jochen [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Maier, Hans [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Pintsuk, Gerald; Wirtz, Marius [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Van Oost, Guido [Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium); Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium)

    2016-11-01

    Highlights: • After ELM-like thermal shocks, tungsten was exposed to H/He particle fluxes. • The influence of combined loading conditions on the damage behaviour was studied. • Roughened surfaces do not alter H/He induced surface modifications. • Cracks interact with the particle flux, resulting in phenomena such as crack bridging. - Abstract: ELM-like thermal shocks and H/He particle exposure were subsequently applied on tungsten samples. Polished test specimens underwent in the JUDITH 1 electron beam facility 100 transient thermal events with a duration of 1 ms. The absorbed heat flux was 0.4 GW m{sup −2} and 1.5 GW m{sup −2}, which is above the material's damage threshold. These experiments were done at room temperature and with the samples heated to 400 °C base temperature. Depending on the loading conditions the test specimens have either a crack network or showed surface roughening. The samples were then loaded in the GLADIS facility at different surface temperatures with a mixed H/He beam with a flux of 3.7 × 10{sup 21} m{sup −2} s{sup −1}. Post-mortem analysis showed that the roughened surface did not alter the H/He induced surface modifications. In contrast to that on the test specimens that exhibited crack formation, phenomena such as bubble creation along the crack edge, formation of a shallow layer of nano-structures covering the crack opening, and the emerging of a porous structure which partially fills the crack are observed.

  16. Kinetic instabilities in plasmas: from electromagnetic fluctuations to collisionless shocks

    International Nuclear Information System (INIS)

    Ruyer, Charles

    2014-01-01

    Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between sub-luminal and supra-luminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the sub-luminal regime along with some discrepancy in the supra-luminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energy. We then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle

  17. Numerical simulation of SPH for dynamics effect of multilayer discontinuous structure irradiated by impulse X-ray

    International Nuclear Information System (INIS)

    Xu Binbin; Tang Wenhui; Ran Xianwen; Xu Zhihong; Chen Hua

    2012-01-01

    When high energy X-ray irradiates material, it will cause energy deposition in materials, and generates thermal shock wave. At present, finite difference method is used to the numerical simulation of thermal shock usually, but if considering the inter-space between the multilayer materials, the difference method will be more difficult. This paper used the SPH method to simulate multilayer discontinuous structure irradiated by high energy X-ray, and the results show that the gap between the materials of each layer has a certain influence on the thermal shock wave intensity, but doesn't have any affect to gasification impulse. (authors)

  18. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    International Nuclear Information System (INIS)

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-01-01

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  19. Experiment and numerical analysis of the NPP pressurizer auxiliary spray line submitted to large thermal shocks

    International Nuclear Information System (INIS)

    Couterot, C.; Geyer, P.; Proix, J.M.

    1994-03-01

    The pressurizer auxiliary spray line of PWR nuclear power plants may be submitted to severe temperature transients during upset conditions: a 325 deg C cold thermal shock in one second is followed by a 200 deg C hot thermal shock. For such transients, the RCC-M French design code rules that prevent the ratcheting deformation hazard are not respected for the components with thickness transition. Consequently, Electricite de France has realized twenty thermal cycles under pressure on a representative mock-up. During these tests, many temperature, strain and diametral variations were measured. No significant ratcheting deformation was detected on all components, except on the 6'' x 2'' x 6'' T-piece, where a weak progressive diameter increase was observed during a few cycles. Moreover, computations of a 2'' socket welding were made with the non linear kinematic hardening Chaboche model which also showed a weak progressive deformation behaviour. (authors). 7 figs., 7 refs

  20. TRAC-PF1 analyses of potential pressurized-thermal-shock transients at a Combustion-Engineering PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.; Spriggs, G.D.; Smith, R.C.

    1984-01-01

    Los Alamos is participating in a program to assess the risk of pressurized thermal shock (PTS) to a reactor vessel. Our role is to provide best-estimate thermal-hydraulic analyses of 12 postulated overcooling transients using TRAC-PF1. These transients are hypothetical and include multiple operator/equipment failures. Calvert Cliffs/Unit-1, a Combustion-Engineering plant, is the pressurized water reactor modeled for this study. The utility and the vendor supplied information for the comprehensive TRAC-PF1 model. Secondary and primary breaks from both hot-zero-power and full-power conditions were simulated for 7200 s (2 h). Low bulk temperatures and loop-flow stagnation while the system was at a high pressure were of particular interest for PTS analysis. Three transients produced primary temperatures below 405 K (270 0 F - the NRC screening criterion) with system repressurization. Six transients indicated flow stagnation would occur in one loop but not both. One transient showed flow stagnation might occur in both loops. Oak Ridge National Laboratory will do fracture-mechanics analysis using these TRAC-PF1 results and make the final determination of the risk of PTS

  1. Finite element study of a HDR-RPV-section including a nozzle under thermal shock transient

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E [Stuttgart Univ. (Germany); Katzenmeier, G [Forschungszentrum Juelich GmbH (Germany); Wanner, R; Mercier, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1988-12-31

    This document presents a finite element study of a reactor pressure vessel section under thermal stresses. The strength properties of the vessel walls are studied as well as cracks due to the thermo-shock transient. (TEC). 6 refs.

  2. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Cawkwell, M. J., E-mail: cawkwell@lanl.gov; Niklasson, Anders M. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dattelbaum, Dana M. [Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  3. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N; Dattelbaum, Dana M

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  4. The Crab nebula's ''wisps'' as shocked pulsar wind

    International Nuclear Information System (INIS)

    Gallant, Y.A.; Arons, J.; Langdon, A.B.

    1992-01-01

    The Crab synchrotron nebula has been successfully modelled as the post-shock region of a relativistic, magnetized wind carrying most of the spindown luminosity from the central pulsar. While the Crab is the best-studied example, most of the highest spindown luminosity pulsars are also surrounded by extended synchrotron nebulae, and several additional supernova remnants with ''plerionic'' morphologies similar to the Crab are known where the central object is not seen. All these objects have nonthermal, power-law spectra attributable to accelerated high-energy particles thought to originate in a Crab-like relativistic pulsar wind. However, proposed models have so far treated the wind shock as an infinitesimally thin discontinuity, with an arbitrarily ascribed particle acceleration efficiency. To make further progress, investigations resolving the shock structure seemed in order. Motivated by these considerations, we have performed ''particle-in-cell (PIC) simulations of perpendicularly magnetized shocks in electron-positron and electron-positron-ion plasmas. The shocks in pure electron-positron plasmas were found to produce only thermal distributions downstream, and are thus poor candidates as particle acceleration sites. When the upstream plasma flow also contained a smaller population of positive ions, however, efficient acceleration of positrons, and to a lesser extent of electrons, was observed in the simulations

  5. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks

    Directory of Open Access Journals (Sweden)

    Bao Wu

    2018-04-01

    Full Text Available Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.

  6. Effect of LaB6 on the thermal shock property of MoSi2-SiC coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li Ting; Li Hejun; Shi Xiaohong

    2013-01-01

    Highlights: ► LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC multi-composition coatings were coated on C/C composites by pack cementation. ► The microstructure and thermal shock resistance of both coatings were investigated. ► The addition of LaB 6 can increase the compactness, flexural strength and fracture toughness of the MoSi 2 -SiC coating simultaneously. ► Both coatings bond well with the substrates before and after thermal cycling oxidation between 1773 K and room temperature. ► The LaB 6 -MoSi 2 -SiC coated C/C shows better thermal shock resistance than the MoSi 2 -SiC coated C/C. - Abstract: LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coatings were prepared on the surface of carbon/carbon composites by pack cementation method. The crystal structures of the coatings were measured by X-ray diffraction. The morphologies and element distributions were also analyzed by scanning electron microscopy and energy dispersive spectroscopy, respectively. The effect of LaB 6 on the microstructure and thermal shock resistance of MoSi 2 -SiC coating was investigated. The results indicated that the LaB 6 -MoSi 2 -SiC coating possessed a denser structure and superior thermal shock resistance. After 25 times of thermal cycling oxidation between 1773 K and room temperature, the weight losses of the LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coated samples were 0.627% and 2.019%, respectively.

  7. On the interplay between cosmological shock waves and their environment

    Science.gov (United States)

    Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent

    2017-05-01

    Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.

  8. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  9. Planar radiative shock experiments and their comparison to simulations

    International Nuclear Information System (INIS)

    Reighard, A. B.; Drake, R. P.; Mucino, J. E.; Knauer, J. P.; Busquet, M.

    2007-01-01

    Recent experiments have obtained radiographic data from shock waves driven at >100 km/s in xenon gas, and Thomson scattering data from similar experiments using argon gas. Presented here is a review of these experiments, followed by an outline of the discrepancies between the data and the results of one-dimensional simulations. Simulations using procedures that work well for similar but nonradiative experiments show inconsistencies between the measured position of the interface of the beryllium and xenon and the calculated position for these experiments. Sources of the discrepancy are explored

  10. Shock Initiation of Damaged Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  11. Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene

    International Nuclear Information System (INIS)

    Li, G.C.; Li, Ligeng; Liu, Yunkang; Mak, J.Y.; Chen, Lili; Lee, W.M.F.

    1991-01-01

    The major heat shock protein hsp70 is synthesized by cells of a wide variety of organisms in response to heat shock or other environmental stresses and is assumed to play an important role in protecting cells from thermal stress. The authors have tested this hypothesis directly by transfecting a constitutively expressed recombinant human hsp70-encoding gene into rat fibroblasts and examining the relationship between the levels of human hsp70 expressed and thermal resistance of the stably transfected rat cells. Successful transfection and expression of the gene for human hsp70 were characterized by RNA hybridization analysis, low-dimensional gel electrophoresis, and immunoblot analysis. When individual cloned cell lines were exposed to 45C and their thermal survivals were determined by colony-formation assay, they found that the expression of human hsp70 conferred heat resistance to the rat cells. These results reinforce the hypothesis that hsp70 has a protective function against thermal stress

  12. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    equations with piston -like boundary conditions gives a solution for the shock behavior. • Assumes cold upstream ions, therefore neglecting shock...temperature ratio (>10) – Wave Train Wavelength – Shock-Front Mach Number – Reflected Ion Beam Velocity Gathering Experiment Data – Double Plasma Device...experimental shock data. • Inconsistencies in published 1969 double -plasma device data hampered validation. Future Work: Extension to Moderately

  13. Full particle simulations of quasi-perpendicular shocks

    Science.gov (United States)

    Lembège, B.

    This tutorial-style review is dedicated to the different strategies and constraints used for analysing the dynamics of a collisionless shocks with full particle simulations. Main results obtained with such simulations can be found in published materials (recent references are provided in this text); these will be only quoted herein in order to illustrate a few aspects of these simulations. Thanks to the large improvement of super computers, full particle simulations reveal to be quite helpful for analyzing in details the dynamics of collisionless shocks. The main characteristics of such codes can be shortly reminded as follows: one resolves the full set of Poisson and Maxwell's equations without any approximation. Two approaches are commonly used for resolving this equation's set, more precisely the space derivatives: (i) the finite difference approach and (ii) the use of FFT's (Fast Fourier Transform). Two advantages of approach (ii) are that FFT's are highly optimized in supercomputers libraries, and these allow to separate all fields components into two groups: the longitudinal electrostatic component El (solution of Poisson equation) and the transverse electromagnetic components Et and Bt solutions of the Maxwell's equations (so called "fields pusher"). Such a separation is quite helpful in the post processing stage necessary for the data analysis, as will be explained in the presentation. both ions and electrons populations are treated as individual finite-size particles and suffer the effects of all fields via the Lorentz force, so called "particle pusher", which is applied to each particle. Because of the large number of particles commonly used, the particle pusher represents the most expensive part of the calculations on which most efforts of optimisation needs to be performed (in terms of "vectorisation" or of "parallelism"). Relativistic effects may be included in this force via the use of particle momemtum. Each particle has three velocity components (vx

  14. Pressurized thermal shock (PTS)

    International Nuclear Information System (INIS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2006-01-01

    In the present work, a description of Thermal Shock in Pressurized conditions (PTS), and its influence in the treatment of the integrity of the pressure vessel (RPV) of a Pressurized Water Reactor (PWR) and/or of a Heavy water Pressurized water Reactor (PHWR) is made. Generally, the analysis of PTS involves a process of three stages: a-) Modeling with a System Code of relevant thermohydraulics transients in reference with the thermal shock; b-) The local distribution of temperatures in the downcomer and the heat transference coefficients from the RPV wall to the fluid, are determined; c-) The fracture mechanical analysis. These three stages are included in this work: Results with the thermohydraulics code Relap5/mod.3, are obtained, for a LOCA scenario in the hot leg of the cooling System of the Primary System of the CAN-I reactor. The method used in obtaining results is described. A study on the basis of lumped parameters of the local evolutions of the temperature of the flow is made, in the downcomer of the reactor pressure vessel. The purpose of this study is to determine how the intensification of the stress coefficient, varies in function of the emergency injected water during the thermohydraulic transients that take place under the imposed conditions in the postulated scene. Specially, it is considered a 50 cm 2 break, located in the neighborhoods of the pressurized with the corresponding hot leg connection. This size is considered like the most critical. The method used to obtain the results is described. The fracture mechanical analysis is made. From the obtained results we confirmed that we have a simple tool of easy application in order to analyze phenomena of the type PTS in the postulated scenes by break in the cold and hot legs of the primary system. This methodology of calculus is completely independent of the used ones by the Nucleoelectrica Argentina S.A. (NASA) in the analysis of the PTS phenomena in the CAN-I. The results obtained with the adopted

  15. Thermal simulation and validation of 8W LED lamp

    NARCIS (Netherlands)

    Jakovenko, J.; Werkhoven, R.J.; Formánek, J.; Kunen, J.M.G.; Bolt, P.J.; Kulha, P.

    2011-01-01

    This work deals with thermal simulation and characterization of solid state lightening (SSL) LED Lamp in order to get precise 3D thermal models for further lamp thermal optimization. Simulations are performed with ANSYS-CFX and CoventorWare software tools. The simulated thermal distribution has been

  16. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  17. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  18. Simulation of mechanical shock environments

    International Nuclear Information System (INIS)

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  19. Overview and recent progress of the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.

  20. Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Sean; Longcope, Dana [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-09-01

    Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks produced in this manner drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the 'flow reversal point' or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a one-dimensional hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and transition region temperature ratio) on the FRP properties. We find that both of the evaporation characteristics have scaling-law relationships to the varied flare parameters, and we report the scaling exponents for our model. This provides a means of using spectroscopic observations of the chromosphere as quantitative diagnostics of flare energy release in the corona.

  1. Thermal shock testing of low-Z coatings with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1982-03-01

    Thermal shock testing of candidate low-Z surface coatings for JT-60 application has been made by using a pulsed hydrogen beam apparatus which is operated at a power density of 2KW/cm 2 . The materials tested are PVD (Physical Vapor Deposited) TiC and PVD and CVD (Chemical Vapor Deposited) TiN on molybdenum and Inconel 625. The result shows that CVD TiC on Mo and CVD TiN on Inconel are the most interesting choices for the coating-substrate combinations. (author)

  2. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  3. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  4. Thermal histories of chondrules in solar nebula shocks, including the effect of molecular line cooling

    Science.gov (United States)

    Morris, Melissa A.

    Chondrules are millimeter-sized, silicate (mostly ferromagnesian) igneous spheres found within chondritic meteorites. They are some of the oldest materials in our Solar System, having formed within a few million years of its birth. Chondrules were melted at high temperature (over 1800 K), while they were free-floating objects in the early solar nebula. Their petrology and chemistry constrain their formation, especially their thermal histories. Chondrules provide some of the most powerful constraints on conditions in the solar nebula. Models in which chondrule precursors melted by passage through solar nebula shocks are very promising, and meet most constraints on chondrule formation in broad brush. However, these models have been lacking in some of the relevant physics. Previous shock models have used incorrect approximations to the input radiation boundary condition, and the opacity of solids has been treated simply. Most important, a proper treatment of cooling due to molecular line emission has not been included. In this thesis, the shock model is significantly improved in order to determine if it remains consistent with observational constraints. The appropriate boundary condition for the input radiation and the proper method for calculation of the opacity of solids are determined, and a complete treatment of molecular line cooling due to water is included. Previous estimates of the effect of line cooling predicted chondrule cooling rates in excess of 10,000 K per hour. However, once molecular line cooling due to water was incorporated into the full shock model, it was found that line cooling has a minimal effect on the thermal histories of gas and chondrules. This behavior is attributed mostly to the thermal buffering of the gas due to hydrogen dissociation and recombination, which tends to keep the gas temperature at approximately 2000 K until the column densities of water become optically thick to line emission. Chondrule cooling rates in the range of 10

  5. Preliminary applications of the new Neptune two-phase CFD solver to pressurized thermal shock investigations

    International Nuclear Information System (INIS)

    Boucker, M.; Laviaville, J.; Martin, A.; Bechaud, C.; Bestion, D.; Coste, P.

    2004-01-01

    The objective of this communication is to present some preliminary applications to pressurized thermal shock (PTS) investigations of the CFD (Computational Fluid Dynamics) two-phase flow solver of the new NEPTUNE thermal-hydraulics platform. In the framework of plant life extension, the Reactor Pressure Vessel (RPV) integrity is a major concern, and an important part of RPV integrity assessment is related to PTS analysis. In the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the Emergency Core Cooling (ECC) injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3-dimensional codes. In that purpose, a program has been set up to extend the capabilities of the NEPTUNE two-phase CFD solver. A simple set of turbulence and condensation model for free surface steam-water flow has been tested in simulation of an ECC high pressure injection representing facility, using a full 3-dimensional mesh and the new NEPTUNE solver. Encouraging results have been obtained but it should be noticed that several sources of error can compensate for one another. Nevertheless, the computation presented here allows to be reasonable confident in the use of two-phase CFD in order to carry out refined analysis of two-phase PTS scenarios within the next years

  6. Prevention against fragile fracture in PWR pressure vessel in the presence of pressurized thermal shock

    International Nuclear Information System (INIS)

    Carmo, E.G.D. do; Oliveira, L.F.S. de; Roberty, N.C.

    1984-01-01

    A method for the determination of operational limit curves (primary pressure versus temperature) for PWR is presented. Such curves give the operators indications related to the safety status of the plant concerning the possibility of a pressurized thermal shock. The method begins by a thermal analysis for several postulated transients, followed by the determination of the thermomechanical stresses in the vessel and finally it makes use of the linear elasticity fracture mechanics. Curves are shown for a typical PWR. (Author) [pt

  7. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  8. Thermal shock induced dynamics of a spacecraft with a flexible deploying boom

    Science.gov (United States)

    Shen, Zhenxing; Li, Huijian; Liu, Xiaoning; Hu, Gengkai

    2017-12-01

    The dynamics in the process of deployment of a flexible extendible boom as a deployable structure on the spacecraft is studied. For determining the thermally induced vibrations of the boom subjected to an incident solar heat flux, an axially moving thermal-dynamic beam element based on the absolute nodal coordinate formulation which is able to precisely describe the large displacement, rotation and deformation of flexible body is presented. For the elastic forces formulation of variable-length beam element, the enhanced continuum mechanics approach is adopted, which can eliminate the Poisson locking effect, and take into account the tension-bending-torsion coupling deformations. The main body of the spacecraft, modeled as a rigid body, is described using the natural coordinates method. In the derived nonlinear thermal-dynamic equations of rigid-flexible multibody system, the mass matrix is time-variant, and a pseudo damping matrix which is without actual energy dissipation, and a heat conduction matrix which is relative to the moving speed and the number of beam element are arisen. Numerical results give the dynamic and thermal responses of the nonrotating and spinning spacecraft, respectively, and show that thermal shock has a significant influence on the dynamics of spacecraft.

  9. Two-stream instability in collisionless shocks and foreshock

    International Nuclear Information System (INIS)

    Dieckmann, M E; Eliasson, B; Shukla, P K; Sircombe, N J; Dendy, R O

    2006-01-01

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions

  10. Two-stream instability in collisionless shocks and foreshock

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Eliasson, B [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Shukla, P K [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Sircombe, N J [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom); Dendy, R O [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2006-12-15

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions.

  11. Probabilistic fracture mechanics analysis of reactor vessel for pressurized thermal shock: the effect of residual stress and fracture toughness

    International Nuclear Information System (INIS)

    Jung, Sung Gyu; Jin, Tae Eun; Jhung, Myung Jo; Choi, Young Hwan

    2003-01-01

    The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated

  12. Creys-Malville nuclear plant. Simulation of the cold plenum thermal-hydraulics. 12 zone model presentation

    International Nuclear Information System (INIS)

    Faulot, J.P.

    1990-05-01

    The CRUSIFI code has been developed by SEPTEN (Engineering and Construction Division) with SICLE software during 1983-1985 in order to study the CREYS-MALVILLE dynamic behavior. At the time, the version was based on project data (version 2.3). It includes a 2 zones model for the cold plenum thermal-hydraulics, modelling which does not allow to reproduce accurately dissymetries apt to occur as well in usual operating (hydraulic dissymetries bound to one or many systems out of order), as during incidentally operating (hydraulic dissymetries bound to primary pump working back or thermal dissymetries after a transient on one or many secondary loops). Moreover, a 2 zones model cannot simulate axial temperature gradients which appear during double stratification phenomenon (upper and lower part of the plenum) produced by alternating thermal shock. A 12 zones model (4 sectors with 3 axial zones each) such as model developed by R$DD (Research and Development Division) allows to satisfy correctly these problems. This report is a specification of the chosen modelling. This model is now operational after qualifying with experimental transients on mockup and reactor. It is to-day connected with the EDF general operating code CRUSIFI (calibrating version 3.0). It could be easily integrated in a four loops plant modelling such as the CREYS-MALVILLE simulator in a four loops plant modelling such as the CREYS-MALVILLE simulator under construction at the present time by THOMSON

  13. Experiment Study on Elastic Indicator of Thermal Shock Ceramic Materials——Implementation of Students’ Innovative Research Project of Shandong University of Science and Technology

    Directory of Open Access Journals (Sweden)

    Wang Yanxia

    2017-01-01

    Full Text Available In order to improve the quality of undergraduate education and combine theory and practice, Shandong University of science and technology organized innovative research activities project for undergraduates. Combined with the characteristics of engineering mechanics course, teachers of engineering mechanics teaching and research section guided students to take an active part in scientific research and innovation practice teaching, which has obtained a good teaching effect. This paper introduces the concrete implement process of the college students’ innovative scientific research project “Experiment Study on Elastic Indicator of Thermal Shock Ceramic Materials”, which measures elastic indicator of ceramics using the ultrasonic method. This paper studies elastic indicator change rule of the mullite ceramic samples under different factors such as temperature difference, thermal shock times and so on. Studies have shown that in the condition of air-cooling, with the increase of thermal shock temperature difference and thermal shock times, the elastic modulus value, shear modulus and Poisson’s ratio are in a falling trend. The project implementation have proved that implement undergraduate innovation research projects could effectively arouse students’ learning enthusiasm, cultivate students’ scientific research innovation and analytical abilities to solve practical scientific research problems.

  14. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jie; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Carlsson, Mats, E-mail: dmd@nju.edu.cn [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-08-20

    Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.

  15. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Science.gov (United States)

    Hong, Jie; Carlsson, Mats; Ding, M. D.

    2017-08-01

    Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.

  16. A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows

    Science.gov (United States)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-09-01

    A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.

  17. 2D RADIATION-HYDRODYNAMIC SIMULATIONS OF SUPERNOVA SHOCK BREAKOUT IN BIPOLAR EXPLOSIONS OF A BLUE SUPERGIANT PROGENITOR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Akihiro; Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Shigeyama, Toshikazu [Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-07-10

    A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.

  18. Dosification of a cement-talc-chamotte refractory mortar subjected to thermal shock

    Directory of Open Access Journals (Sweden)

    Kittl, P.

    1992-03-01

    Full Text Available A cement-talc-chamotte refractory mixture was dosified by subjecting the same to thermal shock. To this end, specimens compacted to 350 Kg/cm2 through compression as well as specimens compacted manually were prepared. All the specimens were submitted to an initial working temperature of 1000ºC and then left to cool down to room temperature. The thermal shock was originated by heating the specimens in an oven till reaching a certain temperature T¡ and then quenching the same through immersion in water at 20ºC; temperature T¡ was varied between 170ºC and 970ºC by means of 100ºC increments. The optimum dosification amounting to 90 % cement-talc and 10 % chamotte was obtained by studying mean stress at compression fracture of five cement-talc-chamote mixtures as a function of thermal shock. In addition, thermal fatigue exhibited by the optimum dosification was studied through the determination of mean loss in compressive strength, which amounted to 52% after 7 cycles with ΔT = 500ºC.

    Se dosificó una mezcla refractaria cemento-talco-chamota sometiéndola a un choque térmico. Con este objeto se fabricaron probetas compactadas a 350 kg/cm2 mediante compresión y probetas compactadas manualmente. Se aplicó a todas ellas una temperatura inicial de trabajo a 1.000 ºC, luego se las dejó enfriar hasta que alcanzaran la temperatura de sala del laboratorio. El choque térmico se originó calentando las probetas en un horno hasta una temperatura T¡ y luego se las enfrió súbitamente sumergiéndolas en agua a 20 ºC; la temperatura T¡ varió entre 170 ºC y 970 ºC con incrementos de 100 ºC. La dosificación óptima, 90% cemento-talco y 10% chamota, se obtuvo estudiando la tensión media de fractura a la compresión de cinco mezclas de cemento-talco-chamota en función del choque térmico. Se estudió además la fatiga térmica de la dosificación óptima determinando la

  19. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    Science.gov (United States)

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  20. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.; Luo, S. N.

    2018-04-24

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  1. Simulation-based optimization of thermal systems

    International Nuclear Information System (INIS)

    Jaluria, Yogesh

    2009-01-01

    This paper considers the design and optimization of thermal systems on the basis of the mathematical and numerical modeling of the system. Many complexities are often encountered in practical thermal processes and systems, making the modeling challenging and involved. These include property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions. The paper briefly presents approaches that may be used to accurately simulate these systems. Validation of the numerical model is a particularly critical aspect and is discussed. It is important to couple the modeling with the system performance, design, control and optimization. This aspect, which has often been ignored in the literature, is considered in this paper. Design of thermal systems based on concurrent simulation and experimentation is also discussed in terms of dynamic data-driven optimization methods. Optimization of the system and of the operating conditions is needed to minimize costs and improve product quality and system performance. Different optimization strategies that are currently used for thermal systems are outlined, focusing on new and emerging strategies. Of particular interest is multi-objective optimization, since most thermal systems involve several important objective functions, such as heat transfer rate and pressure in electronic cooling systems. A few practical thermal systems are considered in greater detail to illustrate these approaches and to present typical simulation, design and optimization results

  2. A simulation study of the reaction of human heart to biphasic electrical shocks

    Directory of Open Access Journals (Sweden)

    Seemann Gunnar

    2004-06-01

    Full Text Available Abstract Background This article presents a study, which examines the effects of biphasic electrical shocks on human ventricular tissue. The effects of this type of shock are not yet fully understood. Animal experiments showed the superiority of biphasic shocks over monophasic ones in defibrillation. A mathematical computer simulation can increase the knowledge of human heart behavior. Methods The research presented in this article was done with different models representing a three-dimensional wedge of ventricular myocardium. The electrophysiology was described with Priebe-Beuckelmann model. The realistic fiber twist, which is specific to human myocardium was included. Planar electrodes were placed at the ends of the longest side of the virtual cardiac wedge, in a bath medium. They were sources of electrical shocks, which varied in magnitude from 0.1 to 5 V. In a second arrangement ring electrodes were placed directly on myocardium for getting a better view on secondary electrical sources. The electrical reaction of the tissue was generated with a bidomain model. Results The reaction of the tissue to the electrical shock was specific to the initial imposed characteristics. Depolarization appeared in the first 5 ms in different locations. A further study of the cardiac tissue behavior revealed, which features influence the response of the considered muscle. It was shown that the time needed by the tissue to be totally depolarized is much shorter when a biphasic shock is applied. Each simulation ended only after complete repolarization was achieved. This created the possibility of gathering information from all states corresponding to one cycle of the cardiac rhythm. Conclusions The differences between the reaction of the homogeneous tissue and a tissue, which contains cleavage planes, reveals important aspects of superiority of biphasic pulses. ...

  3. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  4. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  5. A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation

    Science.gov (United States)

    Zhang, Ran; Wang, Xu; Liu, Zhenwei

    2018-03-01

    A novel regenerative shock absorber has been designed and fabricated. The novelty of the presented work is the application of the double speed regenerative shock absorber that utilizes the rack and pinion mechanism to increase the magnet speed with respect to the coils for higher power output. The simulation models with parameters identified from finite element analysis and the experiments are developed. The proposed regenerative shock absorber is compared with the regenerative shock absorber without the rack and pinion mechanism, when they are integrated into the same quarter vehicle suspension system. The sinusoidal wave road profile displacement excitation and the random road profile displacement excitation with peak amplitude of 0.035 m are applied as the inputs in the frequency range of 0-25 Hz. It is found that with the sinusoidal and random road profile displacement input, the proposed innovative design can increase the output power by 4 times comparing to the baseline design. The proposed double speed regenerative shock absorber also presents to be more sensitive to the road profile irregularity than the single speed regenerative shock absorber as suggested by Monte Carlo simulation. Lastly the coil mass and amplification factor are studied for sensitivity analysis and performance optimization, which provides a general design method of the regenerative shock absorbers. It shows that for the system power output, the proposed design becomes more sensitive to either the coil mass or amplification factor depending on the amount of the coil mass. With the specifically selected combination of the coil mass and amplification factor, the optimized energy harvesting performance can be achieved.

  6. Thermal shock behaviour of H and H/He-exposed tungsten at high temperature

    International Nuclear Information System (INIS)

    Lemahieu, N; Linke, J; Pintsuk, G; Wirtz, M; Greuner, H; Maier, H; Oost, G Van; Noterdaeme, J-M

    2016-01-01

    Polycrystalline tungsten samples were characterized and exposed to a pure H beam or mixed H/He beam containing 6% He in GLADIS at a surface temperature of 600 °C, 1000 °C, or 1500 °C. After 5400 s of exposure time with a heat flux of 10.5 MW m −2 , the total accumulated fluence of 2 × 10 25 m −2 was reached. Thereafter, edge localized mode (ELM)-like thermal shocks with a duration of 1 ms and an absorbed power density of 190 MW m −2 and 380 MW m −2 were applied on the samples in JUDITH 1. During the thermal shocks, the base temperature was kept at 1000 °C. The ELM-experiments with the lowest transient power density did not result in any detected damage. The other tests showed the beginning of crack formation for every sample, except the sample pre-exposed with the pure H-beam at 1500 °C in GLADIS. This sample was roughened, but did not show any crack initiation. With exception to the roughened sample, the category of ELM-induced damage for the pre-exposed samples is identical to the reference tests without pre-exposure to a particle flux. (paper)

  7. Documentation of probabilistic fracture mechanics codes used for reactor pressure vessels subjected to pressurized thermal shock loading: Parts 1 and 2. Final report

    International Nuclear Information System (INIS)

    Balkey, K.; Witt, F.J.; Bishop, B.A.

    1995-06-01

    Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980's, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industry efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology

  8. Thermal hydraulic evaluation for an experimental facility to investigate pressurized thermal shock (PTS) in CDTN/CNEN

    International Nuclear Information System (INIS)

    Palmieri, Elcio T.; Navarro, Moyses A.; Aronne, Ivam D.; Terra, Jose L.

    2002-01-01

    The goal of the work presented in this paper is to provide necessary thermal hydraulics information to the design of an experimental installation to investigate the Pressurized Thermal Shock (PTS) to be implemented at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN). The envisaged installation has a test section that represents, in a small scale, a pressure vessel of a nuclear reactor. This test section will be heated and then exposed to a PTS in order to evaluate the appearance and development of cracks. To verify the behavior of the temperatures of the pressure vessel after a sudden flood through the annulus, calculations were made using the RELAP5/MOD 3.2.2 gamma code. Different outer radiuses were studied for the annular region. The results showed that the smaller annulus spacing (20 mm) anticipates the wetting of the surface and produces a higher cooling of the external surface, which stays completely wet for a longer time. (author)

  9. Progressive damage during thermal shock cycling of D-gun sprayed thermal barrier coatings with hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ke, P.L. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China) and School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom)]. E-mail: csun@imr.ac.cn; Wang, Q.M. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gong, J. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhou, Y.C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-11-05

    Thermal shock cycling behaviors of D-gun sprayed TBCs with a hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3} (HSP-YSZ) top coat and NiCrAlY bond coat on directionally solidified Ni-base superalloys DZ125 were investigated at high temperature (1100 deg. C) {r_reversible} room temperature (RT) repeatedly by water quenching. Scanning electron microscopy (SEM) was used to characterize the coating microstructure and failure morphology. The results showed that failure of the D-gun sprayed TBC starts with crack initiation along the splats boundary in the ceramic top coat and the non-alumina oxides. The cracks propagate and coalesce with the increasing thermal cycling. The extensive cracking of the rapidly formed non-alumina oxides, resulting from the depletion of aluminum in the bond coat, aids to delamination of the outer ceramic layer. The stress distributions in TGO layer at different thermal shock cycles was measured by luminescence spectroscopy to investigate the failure mechanism of TBC system.

  10. Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics

    NARCIS (Netherlands)

    Cai, Delong; Jia, Dechang; Yang, Zhihua; Zhu, Qishuai; Ocelik, Vaclav; Vainchtein, Ilia D.; De Hosson, Jeff Th M.; Zhou, Yu

    The effects of magnesium aluminum silicate (MAS) glass on the thermal shock resistance and the oxidation behavior of h-BN matrix composites were systematically investigated at temperature differences from 600 degrees C up to 1400 degrees C. The retained strength rate of the composites rose with the

  11. Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations

    International Nuclear Information System (INIS)

    Krasnoselskikh, V.V.; Lembege, B.; Savoini, P.; Lobzin, V.V.

    2002-01-01

    Whistler waves are an intrinsic feature of the oblique quasiperpendicular collisionless shock waves. For supercritical shock waves, the ramp region, where an abrupt increase of the magnetic field occurs, can be treated as a nonlinear whistler wave of large amplitude. In addition, oblique shock waves can possess a linear whistler precursor. There exist two critical Mach numbers related to the whistler components of the shock wave, the first is known as a whistler critical Mach number and the second can be referred to as a nonlinear whistler critical Mach number. When the whistler critical Much number is exceeded, a stationary linear wave train cannot stand ahead of the ramp. Above the nonlinear whistler critical Mach number, the stationary nonlinear wave train cannot exist anymore within the shock front. This happens when the nonlinear wave steepening cannot be balanced by the effects of the dispersion and dissipation. In this case nonlinear wave train becomes unstable with respect to overturning. In the present paper it is shown that the nonlinear whistler critical Mach number corresponds to the transition between stationary and nonstationary dynamical behavior of the shock wave. The results of the computer simulations making use of the 1D full particle electromagnetic code demonstrate that the transition to the nonstationarity of the shock front structure is always accompanied by the disappearance of the whistler wave train within the shock front. Using the two-fluid MHD equations, the structure of nonlinear whistler waves in plasmas with finite beta is investigated and the nonlinear whistler critical Mach number is determined. It is suggested a new more general proof of the criteria for small amplitude linear precursor or wake wave trains to exist

  12. Numerical and experimental investigation of flow and heat transfer in a T-junction with thermal sleeve

    International Nuclear Information System (INIS)

    Wu Hailing; Chen Tingkuan; Wang Haijun; Luo Yushan; Mao Qing; Zhang Yixiong

    2002-01-01

    Numerical simulations were performed with the commercial computational fluid dynamics (CFD) package FLUENT 5.3 to investigate the thermal-hydraulic phenomena of thermal shock, which is caused by non-isothermal turbulent jet into crossflow in a T-junction with thermal sleeve in the pressurized water reactor (PWR) cooling systems. In allusion to the thermal sleeve configuration with vent holes and lower collar, two typical cases with jet-to-mainstream velocity ratios of 0.05 and 0.5 were computed. Experimental studies were carried out to determine the heat transfer characteristics for the main pipe and the annulus between the nozzle and the thermal sleeve. The calculations well matches the experimental data. The results indicated that the protective action of the thermal sleeve against thermal shock loading is dependent on both the sleeve geometry and the velocity ratio, obtaining improvement with appropriate lower velocity ratios. In addition, optimal flow rates and partial sizes of the thermal sleeve were discussed to reduce the thermal shock

  13. Effect of a transverse plasma jet on a shock wave induced by a ramp

    Directory of Open Access Journals (Sweden)

    Hongyu WANG

    2017-12-01

    Full Text Available We conducted experiments in a wind tunnel with Mach number 2 to explore the evolution of a transverse plasma jet and its modification effect on a shock wave induced by a ramp with an angle of 24°. The transverse plasma jet was created by arc discharge in a small cylindrical cavity with a 2 mm diameter orifice. Three group tests with different actuator arrangements in the spanwise or streamwise direction upstream from the ramp were respectively studied to compare their disturbances to the shock wave. As shown by a time-resolved schlieren system, an unsteady motion of the shock wave by actuation was found: the shock wave was significantly modified by the plasma jet with an upstream motion and a reduced angle. Compared to spanwise actuation, a more intensive impact was obtained with two or three streamwise actuators working together. From shock wave structures, the control effect of the plasma jet on the shock motion based on a thermal effect, a potential cause of shock modification, was discussed. Furthermore, we performed a numerical simulation by using the Improved Delayed Detached Eddy Simulation (IDDES method to simulate the evolution of the transverse plasma jet plume produced by two streamwise actuators. The results show that flow structures are similar to those identified in schlieren images. Two streamwise vortices were recognized, which indicates that the higher jet plume is the result of the overlap of two streamwise jets. Keywords: Flow control, Improved delayed detached eddy simulation (IDDES method, Plasma synthetic jet, Shock wave/boundary layer interaction, Time resolved schlieren system

  14. Development of a higher-order finite volume method for simulation of thermal oil recovery process using moving mesh strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, M. [Heriot Watt Univ., Edinburgh (United Kingdom)

    2008-10-15

    This paper described a project in which a higher order up-winding scheme was used to solve mass/energy conservation equations for simulating steam flood processes in an oil reservoir. Thermal recovery processes are among the most complex because they require a detailed accounting of thermal energy and chemical reaction kinetics. The numerical simulation of thermal recovery processes involves localized phenomena such as saturation and temperatures fronts due to hyperbolic features of governing conservation laws. A second order accurate FV method that was improved by a moving mesh strategy was used to adjust for moving coordinates on a finely gridded domain. The Finite volume method was used and the problem of steam injection was then tested using derived solution frameworks on both mixed and moving coordinates. The benefits of using a higher-order Godunov solver instead of lower-order ones were qualified. This second order correction resulted in better resolution on moving features. Preferences of higher-order solvers over lower-order ones in terms of shock capturing is under further investigation. It was concluded that although this simulation study was limited to steam flooding processes, the newly presented approach may be suitable to other enhanced oil recovery processes such as VAPEX, SAGD and in situ combustion processes. 23 refs., 28 figs.

  15. 3D Simulations of the ``Keyhole'' Hohlraum for Shock Timing on NIF

    Science.gov (United States)

    Robey, H. F.; Marinak, M. M.; Munro, D. H.; Jones, O. S.

    2007-11-01

    Ignition implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of steps, which launch a series of shocks through the ablator and DT fuel. The relative timing of these shocks must be tuned to better than +/- 100ps to maintain the DT fuel on a sufficiently low adiabat. To meet these requirements, pre-ignition tuning experiments using a modified hohlraum geometry are being planned. This modified geometry, known as the ``keyhole'' hohlraum, adds a re-entrant gold cone, which passes through the hohlraum and capsule walls, to provide an optical line-of-sight to directly measure the shocks as they break out of the ablator. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The drive conditions and the resulting effect on shock timing in the keyhole hohlraum will be compared with the corresponding results for the standard ignition hohlraum. [1] M.M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).

  16. INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258 (Japan)

    2016-08-10

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.

  17. Simulation of hypersonic shock wave - laminar boundary layer interactions

    Science.gov (United States)

    Kianvashrad, N.; Knight, D.

    2017-06-01

    The capability of the Navier-Stokes equations with a perfect gas model for simulation of hypersonic shock wave - laminar boundary layer interactions is assessed. The configuration is a hollow cylinder flare. The experimental data were obtained by Calspan-University of Buffalo (CUBRC) for total enthalpies ranging from 5.07 to 21.85 MJ/kg. Comparison of the computed and experimental surface pressure and heat transfer is performed and the computed §ow¦eld structure is analyzed.

  18. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  19. Study of the response of Zircaloy cladding to thermal shock during water quenching after double sided steam oxidation at elevated temperatures

    International Nuclear Information System (INIS)

    Banerjee, Suparna; Sawarn, Tapan K.; Kumar, Sunil

    2015-01-01

    This study investigates the failure of embrittled Zircaloy-4 cladding used in the present generation of Indian pressurized heavy water reactors (IPHWRs) in a simulated LOCA condition and its correlation with the evolved stratified microstructure. Isothermal steam oxidation of Zircaloy-4 cladding at high temperatures (900-1200°C) with soaking periods in the range 60-900 seconds followed by water quenching was carried out. None of the pieces broke during quenching except for those heated at 1100, 1150 and 1200°C for longer durations. The combined oxide + oxygen stabilized α-Zr(O) layer thickness and the fraction of the load bearing phase of clad tube specimens were correlated with the %ECR values calculated using Baker-Just equation. Average oxygen concentration of the load bearing prior β-Zr phase corresponding to different oxidation conditions was calculated from the average microhardness values in Vickers scale using an empirical correlation developed by Leistikow. The results of these experiments are presented in this paper. Thermal shock sustainability of the clad was correlated with the %ECR, combined oxide+α-Zr(O) layer thickness, fraction of the prior β-Zr phase and its average oxygen concentration. The thermal shock boundary was observed to be 29% ECR, 0.29 mm combined thickness of ZrO_2+α-Zr(O), 0.16 mm of β-Zr thickness with an average β phase oxygen content of 0.69 wt%. (author)

  20. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  1. Thermal shock analysis of liquid-mercury spallation target

    CERN Document Server

    Ishikura, S; Futakawa, M; Hino, R; Date, H

    2002-01-01

    The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1 MW-pulsed proton beam was analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress. (author)

  2. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock

    Directory of Open Access Journals (Sweden)

    Pereira, A. H. A.

    2012-06-01

    Full Text Available The work herein verifies the changes of the elastic moduli, damping and modulus of rupture (MOR of a high alumina refractory castable due to heating, cooling and heating-cooling thermal shock damage. Twelve prismatic specimens were prepared for the tests and divided into four groups. The thermal shocks were performed on three groups, each containing three specimens having abrupt temperature changes of 1100°C during heating in the first group, during cooling in the second and during heating followed by cooling in the third group. The fourth group, which was taken as a reference did not receive any thermal shock. The elastic moduli were measured after each thermal shock cycle. After 10 cycles, the MOR, the damping and the damping dependence on excitation amplitude were measured at room temperature for all specimens. The elastic moduli showed a similar decrease and the damping a similar increase due to the cooling and heating-cooling thermal shocks. The heating thermal shocks caused no significant changes on the elastic moduli and damping. However, the MOR appeared to be sensitive to the heating thermal shock. This work also shows that the damping for the studied refractory castable is non-linear (i.e., amplitude of excitation sensitive and that this non-linearity increases when the damage level rises.

    En este trabajo se investigaron las alteraciones de los módulos elásticos dinámicos, del amortiguamiento y del módulo de rotura (MOR de un material refractario moldeable de alta alúmina después de recibir choques térmicos de calentamiento, enfriamiento y calentamiento seguido de enfriamiento (calentamiento-enfriamiento. Para ello se prepararon doce cuerpos prismáticos dividiéndolos en cuatro grupos. Los choques térmicos se le aplicaron a sólo tres grupos, cada uno con tres muestras. Al primer grupo se le aplicó un cambio brusco de temperatura de 1100 °C en calentamiento, en enfriamiento al segundo grupo y calentamiento seguido

  3. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    Science.gov (United States)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  4. A stochastic simulator of a blood product donation environment with demand spikes and supply shocks.

    Science.gov (United States)

    An, Ming-Wen; Reich, Nicholas G; Crawford, Stephen O; Brookmeyer, Ron; Louis, Thomas A; Nelson, Kenrad E

    2011-01-01

    The availability of an adequate blood supply is a critical public health need. An influenza epidemic or another crisis affecting population mobility could create a critical donor shortage, which could profoundly impact blood availability. We developed a simulation model for the blood supply environment in the United States to assess the likely impact on blood availability of factors such as an epidemic. We developed a simulator of a multi-state model with transitions among states. Weekly numbers of blood units donated and needed were generated by negative binomial stochastic processes. The simulator allows exploration of the blood system under certain conditions of supply and demand rates, and can be used for planning purposes to prepare for sudden changes in the public's health. The simulator incorporates three donor groups (first-time, sporadic, and regular), immigration and emigration, deferral period, and adjustment factors for recruitment. We illustrate possible uses of the simulator by specifying input values for an 8-week flu epidemic, resulting in a moderate supply shock and demand spike (for example, from postponed elective surgeries), and different recruitment strategies. The input values are based in part on data from a regional blood center of the American Red Cross during 1996-2005. Our results from these scenarios suggest that the key to alleviating deficit effects of a system shock may be appropriate timing and duration of recruitment efforts, in turn depending critically on anticipating shocks and rapidly implementing recruitment efforts.

  5. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  6. Haptization of molecular dynamics simulation with thermal display

    International Nuclear Information System (INIS)

    Tamura, Yuichi; Fujiwara, Susumu; Nakamura, Hiroaki

    2010-01-01

    Thermal display, which is a type of haptic display, is effective in providing intuitive information of temperature. However, in many studies, the user has assumed a sitting position during the use of these devices. In contrast, the user generally watches 3D objects while standing and walking around in large-scale virtual reality system, In addition, in scientific visualization, the response time is very important for observing physical phenomena, especially for dynamic numerical simulation. One solution is to provide two types of thermal information: information about the rate of thermal change and information about the actual temperature. We propose a thermal display with two Peltier elements which can show above two pairs of information and the result (for example energy and temperature, as thermal information) of numerical simulation. Finally, we represent an example of visualizing and haptizing the result of molecular dynamics simulation. (author)

  7. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration

  8. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/ USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration. (author)

  9. Recent developments in numerical simulation techniques of thermal recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Tamim, M. [Bangladesh University of Engineering and Technology, Bangladesh (Bangladesh); Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain 17555 (United Arab Emirates); Farouq Ali, S.M. [University of Alberta, Alberta (Canada)

    2000-05-01

    Numerical simulation of thermal processes (steam flooding, steam stimulation, SAGD, in-situ combustion, electrical heating, etc.) is an integral part of a thermal project design. The general tendency in the last 10 years has been to use commercial simulators. During the last decade, only a few new models have been reported in the literature. More work has been done to modify and refine solutions to existing problems to improve the efficiency of simulators. The paper discusses some of the recent developments in simulation techniques of thermal processes such as grid refinement, grid orientation, effect of temperature on relative permeability, mathematical models, and solution methods. The various aspects of simulation discussed here promote better understanding of the problems encountered in the simulation of thermal processes and will be of value to both simulator users and developers.

  10. Expansion shock waves in the implosion process from a time-reversible molecular-dynamics simulation of a dual explosion process

    International Nuclear Information System (INIS)

    Komatsu, Nobuyoshi; Abe, Takashi

    2007-01-01

    Why does not an expansion shock wave exist in a gaseous medium in nature? The reason has been widely believed to be the irreversibility in nature, while an obvious demonstration for this belief has not been accomplished yet. In order to resolve the question from a microscopic viewpoint, an implosion process dual to an explosion process was investigated by means of the molecular-dynamics method (MD). To this aim, we employed a ''bit-reversible algorithm (Bit MD)'' that was completely time-reversible in a microscopic viewpoint and was free from any round-off error. Here we show that, through a dual implosion simulation (i.e., a time-reversible simulation of the explosion), a kind of expansion shock wave is successfully formed in the Bit MD simulation. Furthermore, we show that when the controlled noise is intentionally added to the Bit MD, the expansion shock wave disappears dramatically and turns into an isentropic expansion wave, even if the noise is extremely small. Since the controlled noise gives rise to the irreversibility in the Bit MD simulation, it can be concluded that the irreversibility in the system prohibits the expansion shock wave from appearing in the system

  11. Probabilistic structural integrity of reactor vessel under pressurized thermal shock

    International Nuclear Information System (INIS)

    Myung Jo Hhung; Young Hwan Choi; Hho Jung Kim; Changheui Jang

    2005-01-01

    Performed here is a comparative assessment study for the probabilistic fracture mechanics approach of the pressurized thermal shock of the reactor pressure vessel. A round robin consisting of 1 prerequisite study and 5 cases for probabilistic approaches is proposed, and all organizations interested are invited. The problems are solved and their results are compared to issue some recommendation of best practices in this area and to assure an understanding of the key parameters of this type of approach, which will be useful in the justification through a probabilistic approach for the case of a plant over-passing the screening criteria. Six participants from 3 organizations in Korea responded to the problem and their results are compiled in this study. (authors)

  12. Thermal expansion of UO2 and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Ho Kang, Kweon; Jin Ryu, Ho; Chan Song, Kee; Seung Yang, Myung

    2002-01-01

    The lattice parameters of simulated DUPIC fuel and UO 2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO 2 , and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO 2 . For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO 2 and simulated DUPIC fuel are 10.471x10 -6 and 10.751x10 -6 K -1 , respectively

  13. Thermal Fluctuations in Smooth Dissipative Particle Dynamics simulation of mesoscopic thermal systems

    Science.gov (United States)

    Gatsonis, Nikolaos; Yang, Jun

    2013-11-01

    The SDPD-DV is implemented in our work for arbitrary 3D wall bounded geometries. The particle position and momentum equations are integrated with a velocity-Verlet algorithm and the entropy equation is integrated with a Runge-Kutta algorithm. Simulations of nitrogen gas are performed to evaluate the effects of timestep and particle scale on temperature, self-diffusion coefficient and shear viscosity. The hydrodynamic fluctuations in temperature, density, pressure and velocity from the SDPD-DV simulations are evaluated and compared with theoretical predictions. Steady planar thermal Couette flows are simulated and compared with analytical solutions. Simulations cover the hydrodynamic and mesocopic regime and show thermal fluctuations and their dependence on particle size.

  14. Electro-Thermal-Mechanical Simulation Capability Final Report

    International Nuclear Information System (INIS)

    White, D

    2008-01-01

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There are numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R and D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems

  15. Dynamic load synthesis for shock numerical simulation in space structure design

    Science.gov (United States)

    Monti, Riccardo; Gasbarri, Paolo

    2017-08-01

    Pyroshock loads are the most stressing environments that a space equipment experiences during its operating life from a mechanical point of view. In general, the mechanical designer considers the pyroshock analysis as a very demanding constraint. Unfortunately, due to the non-linear behaviour of the structure under such loads, only the experimental tests can demonstrate if it is able to withstand these dynamic loads. By taking all the previous considerations into account, some preliminary information about the design correctness could be done by performing ;ad-hoc; numerical simulations, for example via commercial finite element software (i.e. MSC Nastran). Usually these numerical tools face the shock solution in two ways: 1) a direct mode, by using a time dependent enforcement and by evaluating the time-response and space-response as well as the internal forces; 2) a modal basis approach, by considering a frequency dependent load and of course by evaluating internal forces in the frequency domain. This paper has the main aim to develop a numerical tool to synthetize the time dependent enforcement based on deterministic and/or genetic algorithm optimisers. In particular starting from a specified spectrum in terms of SRS (Shock Response Spectrum) a time dependent discrete function, typically an acceleration profile, will be obtained to force the equipment by simulating the shock event. The synthetizing time and the interface with standards numerical codes will be two of the main topics dealt with in the paper. In addition a congruity and consistency methodology will be presented to ensure that the identified time dependent loads fully match the specified spectrum.

  16. Shocked materials at the intersection of experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzana, H. E.; Belak, J. F.; Bradley, K. S.; Bringa, E. M.; Budil, K. S.; Cazamias, J. U.; El-Dasher, B.; Hawreliak, J. A.; Hessler, J.; Kadau, K.; Kalantar, D. H.; McNaney, J. M.; Milathianaki, D.; Rosolankova, K.; Swift, D. C.; Taravillo, M.; Van Buuren, T. W.; Wark, J. S.; de la Rubia, T. Diaz

    2008-04-01

    Understanding the dynamic lattice response of solids under the extreme conditions of pressure, temperature and strain rate is a scientific quest that spans nearly a century. Critical to developing this understanding is the ability to probe and model the spatial and temporal evolution of the material microstructure and properties at the scale of the relevant physical phenomena-nanometers to micrometers and picoseconds to nanoseconds. While experimental investigations over this range of spatial and temporal scales were unimaginable just a decade ago, new technologies and facilities currently under development and on the horizon have brought these goals within reach for the first time. The equivalent advancements in simulation capabilities now mean that we can conduct simulations and experiments at overlapping temporal and spatial scales. In this article, we describe some of our studies which exploit existing and new generation ultrabright, ultrafast x-ray sources and large scale molecular dynamics simulations to investigate the real-time physical phenomena that control the dynamic response of shocked materials.

  17. Shocked materials at the intersection of experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kadau, Kai [Los Alamos National Laboratory

    2008-01-01

    Understanding the dynamic lattice response of solids under the extreme conditions of pressure, temperature and strain rate is a scientific quest that spans nearly a century. Critical to developing this understanding is the ability to probe and model the spatial and temporal evolution of the material microstructure and properties at the scale of the relevant physical phenomena -- nanometers to micrometers and picoseconds to nanoseconds. While experimental investigations over this range of spatial and temporal scales were unimaginable just a decade ago, new technologies and facilities currently under development and on the horizon have brought these goals within reach for the first time. The equivalent advancements in simulation capabilities now mean that we can conduct simulations and experiments at overlapping temporal and spatial scales. In this article, we describe some of our studies which exploit existing and new generation ultrabright, ultrafast x-ray sources and large scale molecular dynamics simulations to investigate the real-time physical phenomena that control the dynamic response of shocked materials.

  18. The ''injection problem'' for quasiparallel shocks

    International Nuclear Information System (INIS)

    Zank, G. P.; Rice, W. K. M.; le Roux, J. A.; Cairns, I. H.; Webb, G. M.

    2001-01-01

    For a particle to be accelerated diffusively at a shock by the first-order Fermi acceleration mechanism, the particle must be sufficiently energetic that it can scatter across all the micro- and macrostructure of the shock, experiencing compression between the converging upstream and downstream states. This is the well-known ''injection problem.'' Here the interaction of ions with the ramp of a quasiparallel shock is investigated. Some ions incident on the shock experience specular reflection, caused either by the cross-shock electrostatic potential or by mirroring as the magnetic field is bent and compressed through the ramp. Scattering of reflected ions by self-generated and pre-existing turbulence in the region upstream of the shock then acts to trap backstreaming ions and return them to the ramp, where some experience further reflections. Such repeated reflections and scattering energize a subpopulation of ions up to energies sufficiently large that they can be diffusively shock accelerated. Two ion distributions are considered: pickup ions which are assumed to be described by a shell distribution, are thermal solar wind ions which may be described by a kappa distribution. Injection efficiencies are found analytically to be very high for pickup ions and much lower for thermal solar wind ions, suggesting that this injection mechanism, stochastic reflected ion or SRI acceleration, is a natural precursor for the acceleration of the anomalous cosmic ray component at a quasiparallel shock. While significantly less efficient, SRI acceleration is also viable for thermal solar wind ions described by a kappa distribution

  19. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  20. Analytical criterion for shock ignition of fusion reaction in hot spot

    International Nuclear Information System (INIS)

    Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Vallet, A.; Bel, E. L.

    2013-01-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latter phase by using the Guderley self-similar solution for converging flows. Our model accounts for the fusion reaction energy deposition, thermal and radiation losses thus describing the basic physics of hot spot ignition. The ignition criterion derived from the analytical model is successfully compared with full scale hydrodynamic simulations. (authors)

  1. X-ray study of bow shocks in runaway stars

    Science.gov (United States)

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  2. Examining the effects of microstructure and loading on the shock initiation of HMX with mesoscale simulations

    Science.gov (United States)

    Springer, H. Keo; Tarver, Craig; Bastea, Sorin

    2015-06-01

    We perform reactive mesoscale simulations to study shock initiation in HMX over a range of pore morphologies and sizes, porosities, and loading conditions in order to improve our understanding of structure-performance relationships. These relationships are important because they guide the development of advanced macroscale models incorporating hot spot mechanisms and the optimization of novel energetic material microstructures. Mesoscale simulations are performed using the multiphysics hydrocode, ALE3D. Spherical, elliptical, polygonal, and crack-like pore geometries 0.1, 1, 10, and 100 microns in size and 2, 5, 10, and 14% porosity are explored. Loading conditions are realized with shock pressures of 6, 10, 20, 38, and 50 GPa. A Cheetah-based tabular model, including temperature-dependent heat capacity, is used for the unreacted and the product equation-of-state. Also, in-line Cheetah is used to probe chemical species evolution. The influence of microstructure and shock loading on shock-to-detonation-transition run distance, reaction rate and product gas species evolution are discussed. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work is funded by the Joint DoD-DOE Munitions Program.

  3. Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock

    Science.gov (United States)

    Han, Jing; Tan, Shihai; Guo, Fu

    2018-01-01

    Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.

  4. EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS

    International Nuclear Information System (INIS)

    Paul, S.; Mannheim, K.; Iapichino, L.; Miniati, F.; Bagchi, J.

    2011-01-01

    We performed a set of cosmological simulations of major mergers in galaxy clusters, in order to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations have been performed with the grid-based, adaptive mesh refinement hydrodynamical code Enzo, using a refinement criterion especially designed for refining turbulent flows in the vicinity of shocks. When a major merger event occurs, a substantial amount of turbulence energy is injected in the ICM of the newly formed cluster. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is of the order of 300 kpc h -1 , and the turbulent velocity dispersion in this region is larger than 100 km s -1 . We performed a scaling analysis of the turbulence energy within our cluster sample. The best fit for the scaling of the turbulence energy with the cluster mass is consistent with M 5/3 , which is also the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. As for the turbulence in the cluster core, we found that within 2 Gyr after the major merger (the timescale for the shock propagation in the ICM), the ratio of the turbulent to total pressure is larger than 10%, and after about 4 Gyr it is still larger than 5%, a typical value for nearly relaxed clusters. Turbulence at the cluster center is thus sustained for several gigayears, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations and the

  5. Performance of low-upper-shelf material under pressurized-thermal-shock loading (PTSE-2)

    International Nuclear Information System (INIS)

    Bryan, R.H.; Corwin, W.R.; Bass, B.R.; Nanstad, R.K.; Bolt, S.E.; Merkle, J.G.; Bryson, J.W.; Robinson, G.C.

    1988-01-01

    The second pressurized-thermal-shock experiment (Pse-2) of the Heavy-Section Steel Technology Program was conceived to investigate fracture behavior of steel with low ductile-tearing resistance. The experiment was performed in the pressurized-thermal-shock test facility at the Oak Ridge National Laboratory. PTSE-2 was designed primarily to reveal the interaction of ductile and brittle modes of fracture and secondarily to investigate the effects of warm pre-stressing. A test vessel was prepared by inserting a crack-like flaw of well-defined geometry on the outside surface of the vessel. The flaw was 1 m long by ∼ 15 mm deep. The instrumented vessel was placed in the test facility in which it ws initially heated to a uniform temperature and was then concurrently cooled on the outside and pressurized on the inside. These actions produced an evolution of temperature, toughness, and stress gradients relative to the prepared flaw that was appropriate to the planned objectives. The experiment was conducted in two separate transients, each one starting with the vessel nearly isothermal. The first transient induced a warm-prestressed state, during which K I first exceeded K Ic . This was followed by re-pressurization until a cleavage fracture propagated and arrested. The final transient was designed to produce and investigate a cleavage crack propagation followed by unstable tearing. During this transient, the fracture events occurred as had been planned. (author)

  6. Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2015-07-01

    Full Text Available The aim of this paper is to fabricate micro-gears via laser shock punching with Spitlight 2000 Nd-YAG Laser, and to discuss effects of process parameters namely laser energy, soft punch properties and blank-holder on the quality of micro-gears deeply. Results show that dimensional accuracy is the best shocked at 1690 mJ. Tensile fracture instead of shear fracture is the main fracture mode under low laser energy. The soft punch might cause damage to punching quality when too high energy is employed. Appropriate thickness and hardness of soft punch is necessary. Silica gel with 200 µm in thickness is beneficial to not only homogenize energy but also propagate the shock wave. Polyurethane films need more energy than silica gel with the same thickness. In addition, blank-holders with different weight levels are used. A heavier blank-holder is more beneficial to improve the cutting quality. Furthermore, the simulation is conducted to reveal typical stages and the different deformation behavior under high and low pulse energy. The simulation results show that the fracture mode changes under lower energy.

  7. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  8. A geophysical shock and air blast simulator at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, C. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Compton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, O. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shingleton, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, J. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holtmeier, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Loey, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mirkarimi, P. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, W. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guyton, R. L. [National Security Technologies, Livermore, CA (United States); Huffman, E. [National Security Technologies, Livermore, CA (United States)

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  9. A geophysical shock and air blast simulator at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H. [Lawrence Livermore National Laboratory, P.O. Box 808, L-481, Livermore, California 94550 (United States); Guyton, R. L.; Huffman, E. [National Securities Technologies, Vasco Rd., Livermore, California 94551 (United States)

    2014-09-15

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  10. Galaxy Cluster Outskirts from the Thermal SZ and Non-Thermal Synchrotron Link

    Directory of Open Access Journals (Sweden)

    Kaustuv Basu

    2016-11-01

    Full Text Available Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev–Zel’dovich (SZ effect instruments. Additionally, non-thermal electrons (re-energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma and the farthest (El Gordo clusters with known radio relics.

  11. Radiosensitivity of Bombyx mori embryos and its modification by thermal shock

    International Nuclear Information System (INIS)

    Agaev, F.A.; Zakrzhevskaya, D.T.; Yusifov, N.I.; Gaziev, A.I.; AN Azerbajdzhanskoj SSR, Baku

    1991-01-01

    Radiosensitivity of Bombyx mori embryos on days 3-4 of their development is more than 10 times higher than that of 7-9 day embryos. The rate of DNA synthesis in the embryos correlates with their radiosensitivity. Heat treatment (40 deg C, 60 min) of embryos just before γ-irradiation increases their radioresistance (DMF=+1.6), whereas such a treatment immediately after irradiation reduces the survival rate of embryos as compared to the controls irradiated without heat treatment (DMA=-1.5). The radiomodifying effect of the thermal shock on the Bombyx mori embryos is the same with exposure at both the radioresistant and the radiosensitive stage of their development. However, it is more pronounced at the radiosensitive stage

  12. ACCELERATION IN PERPENDICULAR RELATIVISTIC SHOCKS FOR PLASMAS CONSISTING OF LEPTONS AND HADRONS

    International Nuclear Information System (INIS)

    Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-01-01

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law ∝t α with α in the range 1/3 2 . Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.

  13. Thermal simulation of the magnesium thermal of metallic uranium reduction

    International Nuclear Information System (INIS)

    Borges, W.A.; Saliba-Silva, A.M.

    2008-01-01

    Metallic uranium production is vital to fabricate fuel elements for nuclear research reactors and to produce radioisotopes and radiopharmaceuticals. Metallic uranium is got via magnesiothermal reduction of UF 4 . This reaction is carried out inside a closed graphite crucible inserted in a metallic reactor adequately sealed without any outside contact. The assembled set is gradually heated up inside a pit furnace up to reach the reaction ignition temperature (between 600-650 deg C). The optimization of the reactive system depends on the mathematical modeling using simulation by finite elements and computational calculation with specialized programs. In this way, the reactants' thermal behavior is forecast until they reach the ignition temperature. The optimization of the uranium production reaction is based on minimization of thermal losses using better the exo thermal reaction heat. As lower the thermal losses, as higher would be the heat amount to raise the temperature of reaction products. This promotes the adequate melting of uranium and slag, so allowing better metal/slag separation with higher metallic yield. This work shows how the mathematical simulation is made and supplies some preliminary results. (author)

  14. PNL technical review of pressurized thermal-shock issues

    International Nuclear Information System (INIS)

    Pedersen, L.T.; Apley, W.J.; Bian, S.H.; Defferding, L.J.; Morgenstern, M.H.; Pelto, P.J.; Simonen, E.P.; Simonen, F.A.; Stevens, D.L.; Taylor, T.T.

    1982-07-01

    Pacific Northwest Laboratory (PNL) was asked to develop and recommend a regulatory position that the Nuclear Regulatory Commission (NRC) should adopt regarding the ability of reactor pressure vessels to withstand the effects of pressurized thermal shock (PTS). Licensees of eight pressurized water reactors provided NRC with estimates of remaining effective full power years before corrective actions would be required to prevent an unsafe operating condition. PNL reviewed these responses and the results of supporting research and concluded that none of the eight reactors would undergo vessel failure from a PTS event before several more years of operation. Operator actions, however, were often required to terminate a PTS event before it deteriorated to the point where failure could occur. Therefore, the near-term (less than one year) recommendation is to upgrade, on a site-specific basis, operational procedures, training, and control room instrumentation. Also, uniform criteria should be developed by NRC for use during future licensee analyses. Finally, it was recommended that NRC upgrade nondestructive inspection techniques used during vessel examinations and become more involved in the evaluation of annealing requirements

  15. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  16. Thermal shock tests to qualify different tungsten grades as plasma facing material

    Science.gov (United States)

    Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.

    2016-02-01

    The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.

  17. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    International Nuclear Information System (INIS)

    Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A.

    1993-08-01

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117

  18. On Challenges for Hypersonic Turbulent Simulations

    International Nuclear Information System (INIS)

    Yee, H.C.; Sjogreen, B.

    2009-01-01

    This short note discusses some of the challenges for design of suitable spatial numerical schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combustion poses additional computational challenges. Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not well understood. On the other hand, standard and newly developed high order accurate (fourth-order or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hyperbolic and parabolic partial differential equations (PDEs) (without source terms). The majority of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of the source term might not be the best choice for stability, accuracy and minimization of spurious numerics for the overall scheme

  19. The role of ductile ligaments and warm prestress on the re-initiation of fracture from a crack arrested during thermal shock

    International Nuclear Information System (INIS)

    Smith, E.

    1982-01-01

    The protection offered by warm prestress can be important for preserving a nuclear pressure vessel's integrity during a postulated emergency condition involving a loss of coolant, when the emergency core cooling water subjects the pressure vessel to a thermal shock. There are two aspects to the problem: (a) the initial extension of a defect into the vessel wall, and (b) the subsequent re-initiation of fracture at an arrested crack tip. This note considers the effect of warm prestress on the re-initiation of fracture from an arrested crack, and emphasizes the role of ductile ligaments. It is argued that the warm prestress concept is applicable, thus complementing the limited experimental results provided by the HSST Thermal Shock experimental programme. (orig.)

  20. Thermal-hydraulics of the Loviisa reactor pressure vessel overcooling transients

    International Nuclear Information System (INIS)

    Tuomisto, Harri.

    1987-06-01

    In the Loviisa reactor pressure vessel safety analyses, the thermal-hydraulics of various overcooling transients has been evaluated to give pertinent initial data for fracture-mechanics calculations. The thermal-hydraulic simulations of the developed overcooling scenarios have been performed using best-estimate thermal-hydraulic computer codes. Experimental programs have been carried out to study phenomena related to natural circulation interruptions in the reactor coolant system. These experiments include buoyancy-induced phenomena such as thermal mixing and stratification of cold high-pressure safety injection water in the cold legs and the downcomer, and oscillations of the single-phase natural circulation. In the probabilistic pressurized thermal shock study, the Loviisa training simulator and the advanced system code RELAP5/MOD2 were utilized to simulate selected sequences. Flow stagnation cases were separately calculated with the REMIX computer program. The methods employed were assessed for these calculations against the plant data and own experiments

  1. A study on the thermal expansion characteristics of simulated spent fuel and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.

    2001-10-01

    Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g/cm3 (95.35 % of TD) and 10.26 g/cm3 (95.14 % of TD), respectively. Their linear thermal expansions of simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively as temperature increases. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel can hardly be observed. For the temperature range from 298 to 1900 K, the values of the average linear thermal expansion coefficients for simulated spent PWR fuel and simulated DUPIC fuel are 1.391 10-5 and 1.393 10-5 K-1, respectively. As temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.81 and 93.76 % of initial densities at 298 K, respectively

  2. Adaptive implicit method for thermal compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, A.; Tchelepi, H.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Stanford Univ., Palo Alto (United States)

    2008-10-15

    As the global demand for oil increases, thermal enhanced oil recovery techniques are becoming increasingly important. Numerical reservoir simulation of thermal methods such as steam assisted gravity drainage (SAGD) is complex and requires a solution of nonlinear mass and energy conservation equations on a fine reservoir grid. The most currently used technique for solving these equations is the fully IMplicit (FIM) method which is unconditionally stable, allowing for large timesteps in simulation. However, it is computationally expensive. On the other hand, the method known as IMplicit pressure explicit saturations, temperature and compositions (IMPEST) is computationally inexpensive, but it is only conditionally stable and restricts the timestep size. To improve the balance between the timestep size and computational cost, the thermal adaptive IMplicit (TAIM) method uses stability criteria and a switching algorithm, where some simulation variables such as pressure, saturations, temperature, compositions are treated implicitly while others are treated with explicit schemes. This presentation described ongoing research on TAIM with particular reference to thermal displacement processes such as the stability criteria that dictate the maximum allowed timestep size for simulation based on the von Neumann linear stability analysis method; the switching algorithm that adapts labeling of reservoir variables as implicit or explicit as a function of space and time; and, complex physical behaviors such as heat and fluid convection, thermal conduction and compressibility. Key numerical results obtained by enhancing Stanford's General Purpose Research Simulator (GPRS) were also presented along with a list of research challenges. 14 refs., 2 tabs., 11 figs., 1 appendix.

  3. Large-eddy simulation of passive shock-wave/boundary-layer interaction control

    International Nuclear Information System (INIS)

    Pasquariello, Vito; Grilli, Muzio; Hickel, Stefan; Adams, Nikolaus A.

    2014-01-01

    Highlights: • The present study investigates a passive flow-control technique for shock-wave/boundary-layer interaction. • The control configuration consists of local suction and injection through a pressure feedback duct. • Implicit LES have been conducted for three different suction locations. • Suction reduces the size of the separation zone. • Turbulence amplification and reflected shock dynamics can be significantly reduced. - Abstract: We investigate a passive flow-control technique for the interaction of an oblique shock generated by an 8.8° wedge with a turbulent boundary-layer at a free-stream Mach number of Ma ∞ =2.3 and a Reynolds number based on the incoming boundary-layer thickness of Re δ 0 =60.5×10 3 by means of large-eddy simulation (LES). The compressible Navier–Stokes equations in conservative form are solved using the adaptive local deconvolution method (ALDM) for physically consistent subgrid scale modeling. Emphasis is placed on the correct description of turbulent inflow boundary conditions, which do not artificially force low-frequency periodic motion of the reflected shock. The control configuration combines suction inside the separation zone and blowing upstream of the interaction region by a pressure feedback through a duct embedded in the wall. We vary the suction location within the recirculation zone while the injection position is kept constant. Suction reduces the size of the separation zone with strongest effect when applied in the rear part of the separation bubble. The analysis of wall-pressure spectra reveals that all control configurations shift the high-energy low-frequency range to higher frequencies, while the energy level is significantly reduced only if suction acts in the rear part of the separated zone. In that case also turbulence production within the interaction region is significantly reduced as a consequence of mitigated reflected shock dynamics and near-wall flow acceleration

  4. FABRICATION OF MICROPOROUS SILICA CERAMICS WITH VARIED POLYMORPHIC FORMS AND INVESTIGATION OF THEIR THERMAL SHOCK BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Osman ŞAN

    2011-06-01

    Full Text Available In this study; the SiO₂ micro-porous ceramics in the phase α-quartz, α-cristobalite and β-cristobalite were produced and thermal shock resistance of products were compared. In the production of ceramic materials; α-quartz obtained from natural quartz powder, α-cristobalite from pure silica powder which prepared by Stöber technique and β-cristobalite from sol-gel approach. The β-composition was designed as Si₁₋⨯Al⨯Ca⨯/₂O₂ where x=0.05 and obtained gel was calcined at 850 °C. Before shaping, α-quartz powder and calcined β-cristobalite powder were grind in the planetary mill and the powder produced by Stöber technique was shaped directly without any milling process. The prepared powders were shaped by uniaxally press at 50 bars. The samples produced from α-quartz and β-cristobalite powders were sintered at 1150 °C and α-cristobalite obtained by Stöber technique was sintered at 1400 °C. In the defined polymorphic structure, micro-porous materials with pore size ~0.1-5 µm were produced and thermal shock tests were applied. Irrespective of β-cristobalite material, the samples were cracked and the tests could only repeat on the samples with β-cristobalite material. In the result, the β-cristobalite sample is believed to be great potential to use as a membrane filters for harsh thermal environments.

  5. Computer simulation of thermal plant operations

    CERN Document Server

    O'Kelly, Peter

    2012-01-01

    This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.

  6. Thermal expansion study of simulated DUPIC fuel using neutron diffraction

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Bae, J. H.; Kim, H. S.; Song, K. C.; Yang, M. S.; Choi, Y. N.; Han, Y. S.; Oh, H. S.

    2001-07-01

    The lattice parameters of simulated DUPIC fuel and UO2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO2 and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO2. For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO2 and simulated DUPIC fuel are 10.471 ''10-6 and 10.751 ''10-6 K-1, respectively

  7. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  8. Molecular dynamics simulation of thermal conductivities of superlattice nanowires

    Institute of Scientific and Technical Information of China (English)

    YANG; Juekuan(杨决宽); CHEN; Yunfei(陈云飞); YAN; Jingping(颜景平)

    2003-01-01

    Nonequilibrium molecular dynamics simulations were carried out to investigate heat transfer in superlattice nanowires. Results show that for fixed period length superlattice nanowires, the ratio of the total interfacial thermal resistance to the total thermal resistance and the effective thermal conductivities are invariant with the changes in interface numbers. Increasing the period length leads to an increase in the average interfacial thermal resistance, which indicates that the interfacial thermal resistance depends not only on the materials that constitute the alternating segments of superlattice nanowires, but also on the lattice strain throughout the segments. The modification of the lattice structure due to the lattice mismatch should be taken into account in the acoustic mismatch model. Simulation results also demonstrated the size confinement effect on the thermal conductivities for low dimensional structures, i.e. the thermal conductivities and the interfacial thermal resistance increase as the nanowire cross-sectional area increases.

  9. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  10. Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations

    Science.gov (United States)

    Liang, Zhi; Hu, Ming

    2018-05-01

    Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed.

  11. Thermal Shielding of the Shock Absorber to a Seal of a Hot-cell Cask

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    In order to safely transport the radioactive waste arising from the hot test of ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore KAERI is developing a shipping package to transport the radioactive waste arising in the ACPF during a hot test. Regulatory requirements for a Type B package are specified in the Korea MOST Act 2008-69, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. performed a research on the thermal protection provided by shock absorbers by using CAFE computer code. This paper discusses the experimental approach used to simulate the response of the hot cell cask to fire in a furnace with chamber dimensions of 300 cm(W) x 400 cm(L) x 200 cm(H) by using a 1/2 scale model which was damaged by both a 9 m drop test and a 1 m puncture test

  12. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. II. Three-dimensional Global Disk Simulations

    Science.gov (United States)

    Lyra, Wladimir; Richert, Alexander J. W.; Boley, Aaron; Turner, Neal; Mac Low, Mordecai-Mark; Okuzumi, Satoshi; Flock, Mario

    2016-02-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk-planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 ± 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5MJ planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high α values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet’s orbit.

  13. Main factors of thermal fatigue failure induced by thermal striping and total simulation of thermal hydraulic and structural behaviors (research report)

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Muramatsu, Toshiharu

    1999-01-01

    At incomplete mixing area of high temperature and low temperature fluids near the surface of structures, temperature fluctuation of fluid gives thermal fatigue damage to wall structures. This phenomenon is called thermal striping, which becomes sometimes a critical problem in LMFR plants. Since thermal striping phenomenon is characterized by the complex thermohydraulic and thermomechanical coupled problem, conventional evaluation procedures require mock-up experiments. In order to replace them by simulation-base methods, the authors have developed numerical simulation codes and applied them to analyze a tee junction of the PHENIX secondary circuit due to thermal striping phenomenon, in the framework of the IAEA coordinated research program (CRP). Through this analysis, thermohydraulic and thermomechanical mechanism of thermal striping phenomenon was clarified, and main factors on structural integrity was extracted in each stage of thermal striping phenomenon. Furthermore, simulation base evaluation methods were proposed taking above factors of structural integrity into account. Finally, R and D problems were investigated for future development of design evaluation methods. (author)

  14. Acceleration in Perpendicular Relativistic Shocks for Plasmas Consisting of Leptons and Hadrons

    Science.gov (United States)

    Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-08-01

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law vpropt α with α in the range 1/3 Drury and Gargaté & Spitkovsky, which predict an acceleration time vpropγ and the theory for small wavelength scattering by Kirk & Reville, which predicts a behavior rather as vpropγ2. Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.

  15. Effect of molar ratios of MgO/Al{sub 2}O{sub 3} on the sintering behavior and thermal shock resistance of MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Dong, E-mail: 1078155409@qq.com [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Luo, Xudong, E-mail: luoxudongs@aliyun.com [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Guodong [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Xie, Zhipeng [Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-01-01

    In order to determine the relationship between the property of MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics and molar ratios of MgO/Al{sub 2}O{sub 3}, especially the sintering behavior and thermal shock resistance, the MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics were fabricated with micro-size MgO, Al{sub 2}O{sub 3} powder and nano-size SiO{sub 2} as main raw materials. The sample was characterized by phase analysis, densification and thermal shock times. Moreover, field emission scanning electron microscope was also conducted to study microstructure of the samples before and after thermal shock. Effect of different molar ratios of MgO/Al{sub 2}O{sub 3} on the sintering behavior and thermal shock resistance of composite ceramics were investigated. The results showed that the sample possess better sintering behavior and thermal shock resistance with the molar ratio of MgO/Al{sub 2}O{sub 3} equal to 2/1. Grains of periclase and spinel were directly bonded together, resulting in a dense and compact microstructure, and the bulk density of obtained sample reached 3.4 g/cm{sup 3}. The microstructure of sample after thermal shock revealed that the crack propagation path was deflected and bifurcated, the main-crack propagation was restricted and more fracture energy was consumed, the thermal shock resistance of composite ceramics was greatly improved. - Highlights: • Effect of MgO/Al{sub 2}O{sub 3} on the composite ceramic was firstly researched with 1 mol% SiO{sub 2}. • Microcracks for a short distance by interlinking can eliminate the crack propagation. • The composite ceramic have optimal synthetic property with MgO/Al{sub 2}O{sub 3} was 2/1.

  16. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    International Nuclear Information System (INIS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-01-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester

  17. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  18. Thermal simulation of storage in TSS-Galleries

    International Nuclear Information System (INIS)

    Lain Huerta, R.; Martinez Santiago, T.; Ramirez Oyangueren, P.

    1993-01-01

    This report describes the experiment ''thermal simulation of storage in TSS-galleries'' what is been developed in salt mine of Asse, Germany. The report has 3 part: 1) Analysis of objectives and general description of boundary layers. 2) Geomechanics parameters of salt mine. 3) Thermal modelization, thermomechanics modelization and data acquisition

  19. Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhou, Qiang

    2016-09-01

    Previous studies have demonstrated differences in thermotolerance between two wing morphs of Nilaparvata lugens, the most serious pest of rice across the Asia. To reveal the molecular regulatory mechanisms underlying the differential thermal resistance abilities between two wing morphs, a full-length of transcript encoding heat shock cognate protein 70 (Hsc70) was cloned, and its expression patterns across temperature gradients were analyzed. The results showed that the expression levels of NlHsc70 in macropters increased dramatically after heat shock from 32 to 38°C, while NlHsc70 transcripts in brachypters remained constant under different temperature stress conditions. In addition, NlHsc70 expression in the macropters was significantly higher than that in brachypters at 1 and 2h recovery from 40°C heat shock. There was no significant difference in NlHsc70 mRNA expression between brachypters and macropters under cold shock conditions. Therefore, NlHsc70 was indeed a constitutively expressed member of the Hsp70 family in brachypters of N. lugens, while it was heat-inducible in macropters. Furthermore, the survival rates of both morphs injected with NlHsc70 dsRNA were significantly decreased following heat shock at 40°C or cold shock at 0°C for 1h. These results suggested that the up-regulation of NlHsc70 is possibly related to the thermal resistance, and the more effective inducement expression of NlHsc70 in macropters promotes a greater thermal tolerance under temperature stress conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Pressure vessel fracture studies pertaining to a PWR LOCA-ECC thermal shock: experiments TSE-3 and TSE-4 and update of TSE-1 and TSE-2 analysis

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bolt, S.E.

    1977-01-01

    The LOCA-ECC Thermal Shock Program was established to investigate the potential for flaw propagation in pressurized-water reactor (PWR) vessels during injection of emergency core coolant following a loss-of-coolant accident. Studies thus far have included fracture mechanics analyses of typical PWRs, the design and construction of a thermal shock test facility, determination of material properties for test specimens, and four thermal shock experiments with 0.53-m-OD (21-in.) by 0.15-m-wall (6-in.) cylindrical test specimens. In the first experiment, initiation was not expected and did not occur, although there was a small amount of subcritical crack growth. In the second experiment, initiation of a semicircular flaw took place as expected; the final length along the surface was about four times the initial length, but there was no radial growth. The third and fourth experiments were similar, and the long axial flaw initiated in good agreement with predictions

  1. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  2. Mesoscale simulations of shock compaction of a granular ceramic: effects of mesostructure and mixed-cell strength treatment

    Science.gov (United States)

    Derrick, J. G.; LaJeunesse, J. W.; Davison, T. M.; Borg, J. P.; Collins, G. S.

    2018-04-01

    The shock response of granular materials is important in a variety of contexts but the precise dynamics of grains during compaction is poorly understood. Here we use 2D mesoscale numerical simulations of the shock compaction of granular tungsten carbide to investigate the effect of internal structure within the particle bed and ‘stiction’ between grains on the shock response. An increase in the average number of contacts with other particles, per particle, tends to shift the Hugoniot to higher shock velocities, lower particle velocities and lower densities. This shift is sensitive to inter-particle shear resistance. Eulerian shock physics codes approximate friction between, and interlocking of, grains with their treatment of mixed cell strength (stiction) and here we show that this has a significant effect on the shock response. When studying the compaction of particle beds it is not common to quantify the pre-compaction internal structure, yet our results suggest that such differences should be taken into account, either by using identical beds or by averaging results over multiple experiments.

  3. Line emission processes in atomic and molecular shocks

    International Nuclear Information System (INIS)

    Shull, J.M.

    1988-01-01

    The review discusses the observations and theoretical models of interstellar shock waves in diffuse and molecular clouds. After summarizing the relevant gas dynamics, atomic, molecular and grain processes, and physics of radiative and magnetic precursors, the author describes observational diagnostics of shocks. This paper concludes with a discussion of two topics: unstable or non-steady shocks and thermal conduction in metal-rich shocks

  4. Pick-up ion energization at the termination shock

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.

    2009-01-01

    One-dimensional hybrid simulations are used to investigate how pickup ions are energized at the perpendicular termination shock. Contrary to previous models based on pickup ion energy gain by repeated crossings of the shock front (shock surfing) or due to a reforming shock front, the present simulations show that pickup ion energy gain involves a gyro-phasedependent interaction with the inhomogeneous motional electric field at the shock. The process operates at all relative concentrations of pickup ion density.

  5. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  6. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    Science.gov (United States)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  7. Three-dimensional magnetohydrodynamic simulations of in situ shock formation in the coronal streamer belt

    International Nuclear Information System (INIS)

    Zaliznyak, Yu.; Keppens, R.; Goedbloed, J.P.

    2003-01-01

    A numerical study of an idealized magnetohydrodynamic (MHD) configuration consisting of a planar wake flow embedded into a three-dimensional (3D) sheared magnetic field is presented. The simulations investigate the possibility for in situ development of large-scale compressive disturbances at cospatial current sheet-velocity shear regions in the heliosphere. Using a linear MHD solver, the systematical investigation of the destabilized wavenumbers, corresponding growth rates, and physical parameter ranges for dominant 3D sinuous-type instabilities in an equilibrium wake-current sheet system was done. Wakes bounded by sufficiently supersonic (Mach number M s >2.6) flow streams are found to support dominant fully 3D sinuous instabilities when the plasma beta is of order unity. Fully nonlinear, compressible 2.5D and 3D MHD simulations show the self-consistent formation of shock fronts of fast magnetosonic type. They carry density perturbations far away from the wake's center. Shock formation conditions are identified in sonic and Alfvenic Mach number parameter space. Depending on the wake velocity contrast and magnetic field magnitude, as well as on the initial perturbation, the emerging shock patterns can be plane-parallel as well as fully three-dimensionally structured. Similar large-scale transients could therefore originate at distances far above coronal helmet streamers or at the location of the ecliptic current sheet

  8. ON SHOCKS DRIVEN BY HIGH-MASS PLANETS IN RADIATIVELY INEFFICIENT DISKS. II. THREE-DIMENSIONAL GLOBAL DISK SIMULATIONS

    International Nuclear Information System (INIS)

    Lyra, Wladimir; Richert, Alexander J. W.; Boley, Aaron; Turner, Neal; Okuzumi, Satoshi; Flock, Mario; Mac Low, Mordecai-Mark

    2016-01-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk–planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 ± 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5M J planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high α values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet’s orbit

  9. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  10. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z machine

    Science.gov (United States)

    Cochrane, Kyle R.; Ao, T.; Lemke, R. W.; Hamel, S.; Schoff, M. E.; Blue, B. E.; Herrmann, M. C.; Mattsson, T. R.

    2014-03-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - for example regarding the role of chemical dissociation during shock compression, we find that the dissociation regime along the Hugoniot extends from 50 GPa to 250 GPa. The shock pressures calculated from DFT are compared experimental data taken at Sandia's Z-machine. The GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  11. An investigation into the relationship between thermal shock resistance and ballistic performance of ceramic materials

    Science.gov (United States)

    Beaumont, Robert

    Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions

  12. Shallow crack effect on brittle fracture of RPV during pressurised thermal shock

    International Nuclear Information System (INIS)

    Ikonen, K.

    1995-12-01

    This report describes the study on behaviour of postulated shallow surface cracks in embrittled reactor pressure vessel subjected to pressurised thermal shock loading in an emergency core cooling. The study is related to the pressure vessel of a VVER-440 type reactor. Instead of a conventional fracture parameter like stress intensity factor or J integral the maximum principal stress distribution on a crack tip area is used as a fracture criteria. The postulated cracks locate circumferentially at the inner surface of the reactor pressure wall and they penetrate the cladding layer and open to the inner surface. Axisymmetric and semielliptical crack shapes were studied. Load is formed of an internal pressure acting also on crack faces and of a thermal gradient in the pressure vessel wall. Physical properties of material and loading data correspond real conditions in VVER-440 RPV. The study was carried out by making lot of 2D- and 3D- finite element calculations. Analysing principles and computer programs are explained. Except of studying the shallow crack effect, one objective of the study has also been to develop further expertise and the in-house developed computing system to make effectively elastic-plastic fracture mechanical analyses for real structures under complicated loads. Though the study concerns VVER-440 RPV, the results are of more general interest especially related to thermal loads. (orig.) (11 refs.)

  13. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  14. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics.

    Science.gov (United States)

    Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P

    2015-05-01

    When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.

  15. Hybrid simulation of shock formation for super-Alfvénic expansion of laser ablated debris through an ambient, magnetized plasma

    International Nuclear Information System (INIS)

    Clark, S. E.; Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Constantin, C. G.; Niemann, C.; Winske, D.

    2013-01-01

    Two-dimensional hybrid simulations of perpendicular collisionless shocks are modeled after potential laboratory conditions that are attainable in the LArge Plasma Device (LAPD) at the University of California, Los Angeles Basic Plasma Science Facility. The kJ class 1053 nm Nd:Glass Raptor laser will be used to ablate carbon targets in the LAPD with on-target energies of 100-500 J. The ablated debris ions will expand into ambient, partially ionized hydrogen or helium. A parameter study is performed via hybrid simulation to determine possible conditions that could lead to shock formation in future LAPD experiments. Simulation results are presented along with a comparison to an analytical coupling parameter

  16. Overview of the Integrated Pressurized Thermal-Shock (IPTS) study

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1990-01-01

    By the early 1980s, (PTS)-related, deterministic, vessel-integrity studies sponsored by the US Nuclear Regulatory Commission (NRC) indicated a potential for failure of some PWR vessels before design end of life, in the event of a postulated severe PTS transient. In response, the NRC established screening criteria, in the form of limiting values of the reference nil-ductility transition temperature (RT NDT ), and initiated the development of a probabilistic methodology for evaluating vessel integrity. This latter effort, referred to as the Integrated Pressurized Thermal-Shock (IPTS) Program, included development of techniques for postulating PTS transients, estimating their frequencies, and calculating the probability of vessel failure for a specific transient. Summing the products of frequency of transient and conditional probability of failure for each of the many postulated transients provide a calculated value of the frequency of failure. The IPTS Program also included the application of the IPTS methodology to three US PWR plants (Oconee-1, Calvert Cliffs-1, and HBRobinson-2) and the specification of a maximum permissible value of the calculated frequency of vessel failure. Another important purpose of the IPTS study was to determine, through application of the IPTS methodology, which design and operating features, parameters, and PTS transients were dominant in affecting the calculated frequency of failure. The scope of the IPTS Program included the development of a probabilistic fracture-mechanics capability, modification of the TRAC and RELAP5 thermal/hydraulic codes, and development of the methodology for estimating the uncertainty in the calculated frequency of vessel failure

  17. Abrupt reflow enhances cytokine-induced proinflammatory activation of endothelial cells during simulated shock and resuscitation

    NARCIS (Netherlands)

    Li, Ranran; Zijlstra, Jan G.; Kamps, Jan A. A. M.; van Meurs, Matijs; Molema, Grietje

    2014-01-01

    Circulatory shock and resuscitation are associated with systemic hemodynamic changes, which may contribute to the development of MODS (multiple organ dysfunction syndrome). In this study, we used an in vitro flow system to simulate the consecutive changes in blood flow as occurring during

  18. Simulation Study of Shock Reaction on Porous Material

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Pan Xiaofei; Zhu Jianshi

    2009-01-01

    Direct modeling of porous materials under shock is a complex issue. We investigate such a system via the newly developed material-point method. The effects of shock strength and porosity size are the main concerns. For the same porosity, the effects of mean-void-size are checked. It is found that local turbulence mixing and volume dissipation are two important mechanisms for transformation of kinetic energy to heat. When the porosity is very small, the shocked portion may arrive at a dynamical steady state; the voids in the downstream portion reflect back rarefactive waves and result in slight oscillations of mean density and pressure; for the same value of porosity, a larger mean-void-size makes a higher mean temperature. When the porosity becomes large, hydrodynamic quantities vary with time during the whole shock-loading procedure: after the initial stage, the mean density and pressure decrease, but the temperature increases with a higher rate. The distributions of local density, pressure, temperature and particle-velocity are generally non-Gaussian and vary with time. The changing rates depend on the porosity value, mean-void-size and shock strength. The stronger the loaded shock, the stronger the porosity effects. This work provides a supplement to experiments for the very quick procedures and reveals more fundamental mechanisms in energy and momentum transportation. (general)

  19. An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Hun; Sa, Jeong Hwan; Kim, Han Gi; Cho, Keum Won [Korea Institute of Science and Technology Information, Daejeon (Korea, Republic of)

    2017-05-15

    As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R and D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

  20. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  1. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  2. Numerical simulation of laser shock in the presence of the initial state due to welding

    International Nuclear Information System (INIS)

    Julan, Emricka

    2014-01-01

    Surface treatments as laser shock peening offer the possibility to reduce tensile stresses or to generate compressive stresses in order to prevent crack initiation or reduce crack growth rate in particular in the areas where tension weld residual stresses are present. Laser shock peening may be applied on different metallic components to prevent stress corrosion cracking of Inconel 600 and high cycle thermal fatigue of austenitic stainless steels. The main aim of the PhD thesis is to develop the numerical simulation of laser peening. In the first section, axisymmetrical and 3D numerical models for one or several pulses have been developed in Code Aster and Europlexus softwares. These models were validated by experimental tests carried out in PIMM-ENSAM laboratory. Parameters identification of Johnson-Cook constitutive law was carried out for Inconel 600 at high strain rates. Moreover a new test was proposed which allowed proving the isotropic behavior of Inconel 600 at high strain rates. A modification of the Johnson-Cook constitutive law was also proposed, to take into account in a new way the sensitivity of the law to high strain rates. The second section of the thesis concerns a study on the effect of an initial state of welding on residual stresses after application of laser peening. We could conclude that this initial state has no strong influence on final residual stresses. Finally, a qualitative study on the effect of strain hardening induced by laser peening on fatigue life of stainless steels was undertaken, which shows the advantage of laser peening on shot peening due to smaller strain hardening created by laser peening. (author)

  3. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments

    Science.gov (United States)

    Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.

    2011-07-01

    Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.

  4. Analysis of crack behavior in the JRC Ispra pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Jovanovic, A.; Lucia, A.C.

    1990-01-01

    The analytical work performed in the framework of the Pressurized Thermal Shock (PTS) experimental research at the JRC Ispra, Italy, is described in the paper. In particular, the development of the FRAP preprocessor and development and implementation of a methodology for analysis of local non-stationary heat transfer coefficients during a PTS, have been tackled. FRAP is used as a front-end for the finite element code ABAQUS, for the heat transfer, stress and fracture mechanics analyses. The ABAQUS results are used further on, for the probabilistic fatigue crack analysis performed by the JRC Ispra code COVASTOL. Only the preliminary results of application of FRAP, ABAQUS and COVASTOL codes in the experiment are given in this paper, in order to illustrate the applied analytical procedure. (orig.)

  5. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    Science.gov (United States)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  6. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    Science.gov (United States)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  7. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Song, Jiupeng; Yan, Binyou; Wang, Yingmin; Wang, Jianbao; Chen, Jiming

    2017-12-01

    The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GW m-2 at various temperatures between room temperature and 200 °C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 °C.

  8. Study of the thermal and mechanical sensitivity of bitumen/oxygen salt mixtures

    International Nuclear Information System (INIS)

    Backof, E.; Diepold, W.

    1975-07-01

    The safe handling characteristics of radioactive wastes containing nitrate salts to be fixed in bitumen for ultimate storage in salt mines according to a process developed at the Karlsruhe Nuclear Research Center have been examined with respect to their combustibility and shock sensitivity in tests of inactive bitumen/salt mixtures. Samples containing 40% bitumen and 60% nitrates of alkali, alkaline earth, and heavy metals, organic acids and rare earths were used to determine the thermal sensitivity (ignition temperature, duration of burning, heating under contained conditions), the mechanical sensitivity (shock sensitivity) and, in order to simulate major shock stresses, the sensitivity against detonation stresses. A few basic experiments were also performed on some beta-irradiated inactive samples. It appeared that although the addition of nitrates increased the combustibility of bitumen, neither the high thermal nor the detonation stresses resulted in any explosion-type reaction. (orig.) [de

  9. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  10. Model Comparison for Electron Thermal Transport

    Science.gov (United States)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  11. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  12. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    Science.gov (United States)

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  13. Plasma and wave properties downstream of Martian bow shock: Hybrid simulations and MAVEN observations

    Science.gov (United States)

    Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce

    2015-04-01

    Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.

  14. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  15. Material model validation for laser shock peening process simulation

    International Nuclear Information System (INIS)

    Amarchinta, H K; Grandhi, R V; Langer, K; Stargel, D S

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 10 6  s −1 , which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic–plastic behavior of materials. Elastic perfectly plastic, Johnson–Cook and Zerilli–Armstrong models are used, and the performance of each model is compared with available experimental results

  16. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  17. A powerful methodology for reactor vessel pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Boucau, J.; Mager, T.

    1994-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). More specifically, the review of the old WWER-type of reactors (WWER 440/230) has indicated a sensitive behaviour to neutron embrittlement. This led already to some remedial actions including safety injection water preheating or vessel annealing. Such measures are usually taken based on the analysis of a selected number of conservative PTS events. Consideration of all postulated cooldown events would draw attention to the impact of operator action and control system effects on reactor vessel PTS. Westinghouse has developed a methodology which couples event sequence analysis with probabilistic fracture mechanics analyses, to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. Once the event sequences of concern are identified, detailed deterministic thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. The results of these analyses can then be used to better define further modifications in vessel and plant system design and to operating procedures. The purpose of the present paper will be to describe this methodology and to show its benefits for decision making. (author). 1 ref., 3 figs

  18. A combined nonlinear and hysteresis model of shock absorber for quarter car simulation on the basis of experimental data

    Directory of Open Access Journals (Sweden)

    Vijay Barethiye

    2017-12-01

    Full Text Available Modeling dynamic characteristics of an automotive shock absorber is a challenging task due to its complex behavior. In the present paper, the nonparametric and hybrid approach is proposed to represent the nonlinear and hysteresis characteristics of the shock absorber. An experiment is carried out on a car damper utilizing INSTRON to obtain force-velocity characteristics of the shock absorber. The experimental data is used to devise two different models, namely, piecewise linear model and hysteresis model, to capture the damping properties of the absorber and for consequent use in simulations. The complexity involved due to certain physical phenomenon such as oil compressibility, gas entrapment etc. gives rise to hysteresis behavior and the present paper tries to model such behavior with the help of Neural Networks. Finally, a combined (hybrid shock absorber model (including the characteristics of both piecewise linear and hysteresis behavior is developed in Simulink and integrated into a quarter car simulation to verify its feasibility. The results generated by the combined (hybrid model are compared with linear as well as piecewise linear model and the comparison shows that the proposed model substantially a better option to study the vehicle characteristics more accurately and precisely.

  19. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  20. Analysis of Reactor Pressurized Thermal Shock Conditions Considering Upgrading of Systems Important to Safety

    International Nuclear Information System (INIS)

    Mazurok, A.S; Vyshemirskyij, M.P.

    2015-01-01

    The paper analyzes conditions of pressurized thermal shock on the reactor pressure vessel taking into account upgrading of the emergency core cooling system and primary overpressure protection system. For representative accident scenarios, calculation and comparative analysis was carried out. These scenarios include a small leak from the hot leg and PRZ SV stuck opening with re closure after 3600 sec and 3 SG heat transfer tube rupture. The efficiency of mass flow control by valves on the pump head (emergency core cooling systems) and cold overpressure protection (primary overpressure protection system) was analyzed. The thermal hydraulic model for RELAP5/Mod3.2 code with detailed downcomer (DC) model and changes in accordance with upgrades was used for calculations. Detailed (realistic) modeling of piping and equipment was performed. The upgrades prevent excessive primary cooling and, consequently, help to preserve the RPV integrity and to avoid the formation of a through crack, which can lead to a severe accident

  1. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone ( Haliotis discus hannai Ino) and its acute response to thermal exposure

    Science.gov (United States)

    Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.

  2. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  3. 3D numerical modeling of YSO accretion shocks

    Directory of Open Access Journals (Sweden)

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  4. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  5. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany); Jacobs, P.A. [Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering; Thomas, A.; McIntyre, T.J. [Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics

    1999-12-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  6. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany)); Jacobs, P.A. (Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering); Thomas, A.; McIntyre, T.J. (Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics)

    1999-01-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  7. On the stability of rotational discontinuities and intermediate shocks

    International Nuclear Information System (INIS)

    Lee, L.C.; Huang, L.; Chao, J.K.

    1989-01-01

    The stability of rotational discontinuities and intermediate shocks is studied based on a hybrid simulation code. The simulation results show that rotational discontinuities are stable and intermediate shocks are not stationary. Intermediate shocks tend to evolve to rotational discontinuities and waves. The authors employ several different initial profiles for the magnetic field in the transition region and find that the final structure of the discontinuities or shocks is not sensitive to the initial magnetic field profile. The present results are different from those obtained from the resistive MHD simulations. Furthermore, their study indicates that the kinetic effect of particles plays an important role in the structure and stability of rotational discontinuities and intermediate shocks

  8. Effect of nano-ZrO2 addition on microstructure, mechanical property and thermal shock behaviour of dense chromic oxide refractory material

    International Nuclear Information System (INIS)

    Lu, Lixia; Ding, Chunhui; Zhanga, Chi; Yanga, De'an; Di, Lizhi

    2015-01-01

    To obtain a good performance hot-face lining material in gasifier, nano-ZrO 2 , up to 5 wt %, was added into chromic oxide powder with 3 wt % TiO 2 followed by sintering at 1500°C for 2.5 h. The effect of nano-ZrO 2 addition on microstructure, mechanical property and thermal shock behaviour was studied. ZrO 2 promoted densification at contents higher than 1 wt %. Microcracks and phase transformation toughened the dense chromic oxide refractory material. The main reason for decrease of strength was the existence microcracks in specimens and weakening of intergranular fracture. Dense chromic oxide refractory material with 2∼3 wt % nano-ZrO 2 possessed good densification, uniform microstructure, normal mechanical property and proper thermal shock resistance. The rupture strength retention ratio was nearly twice than that of chromic oxide material without ZrO 2 after three cycles of quenching test from 950°C to cold water. (author)

  9. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  10. NUMERICAL SIMULATION OF SHOCK WAVE REFRACTION ON INCLINED CONTACT DISCONTINUITY

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-05-01

    Full Text Available We consider numerical simulation of shock wave refraction on plane contact discontinuity, separating two gases with different density. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes, implemented on unstructured meshes. Integration over time is performed with the use of the third-order Runge–Kutta stepping procedure. The procedure of identification and classification of gas dynamic discontinuities based on conditions of dynamic consistency and image processing methods is applied to visualize and interpret the results of numerical calculations. The flow structure and its quantitative characteristics are defined. The results of numerical and experimental visualization (shadowgraphs, schlieren images, and interferograms are compared.

  11. Shock equation of state of 6LiH to 1.1 TPa

    Science.gov (United States)

    Lazicki, A.; London, R. A.; Coppari, F.; Erskine, D.; Whitley, H. D.; Caspersen, K. J.; Fratanduono, D. E.; Morales, M. A.; Celliers, P. M.; Eggert, J. H.; Millot, M.; Swift, D. C.; Collins, G. W.; Kucheyev, S. O.; Castor, J. I.; Nilsen, J.

    2017-10-01

    Using laser-generated shock waves, we have measured pressure, density, and temperature of LiH on the principal Hugoniot between 260 and 1100 GPa (2.6-11 Mbar) and on a second-shock Hugoniot up to 1400 GPa to near fivefold compression, extending the maximum pressure reached in non-nuclear experiments by a factor of two. We observe the onset of metal-like reflectivity consistent with temperature-induced ionization of the Li 2s electron, and no sign of additional changes in ionization up to the maximum pressure. Our measurements are in good agreement with gas gun, Z-machine, and underground test data and are accurately described by quantum molecular dynamics simulations. The results confirm the validity of equation of state models built on an average-atom description of the electron-thermal contribution to the free energy and a density-dependent Grüneisen parameter to describe shock response of LiH over this pressure range.

  12. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Xiankai Meng

    2017-01-01

    Full Text Available The laser shock wave (LSW generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.

  13. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z-machine

    Science.gov (United States)

    Mattsson, Thomas R.; Cochrane, K. R.; Ao, T.; Lemke, R. W.; Flicker, D. G.; Schoff, M. E.; Blue, B. E.; Hamel, S.; Herrmann, M. C.

    2015-11-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - including the effect of changes in chemical composition. The shock pressures calculated from DFT are compared experimental data taken on magnetically launched flyer plate impact experiments on at Sandia's Z-machine. Large GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  14. Shocks in the Early Universe.

    Science.gov (United States)

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVUniverse as early as 10^{-30}  sec after the big bang.

  15. Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks

    Science.gov (United States)

    Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui

    2018-04-01

    Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).

  16. Modeling and evaluation of HE driven shock effects in copper with the MTS model

    International Nuclear Information System (INIS)

    Murphy, M.J.; Lassila, D.F.

    1997-01-01

    Many experimental studies have investigated the effect of shock pressure on the post-shock mechanical properties of OFHC copper. These studies have shown that significant hardening occurs during shock loading due to dislocation processes and twinning. It has been demonstrated that when an appropriate initial value of the Mechanical Threshold Stress (MTS) is specified, the post-shock flow stress of OFE copper is well described by relationships derived independently for unshocked materials. In this study we consider the evolution of the MTS during HE driven shock loading processes and the effect on the subsequent flow stress of the copper. An increased post shock flow stress results in a higher material temperature due to an increase in the plastic work. An increase in temperature leads to thermal softening which reduces the flow stress. These coupled effects will determine if there is melting in a shaped charge jet or a necking instability in an EFP Ww. 'Me critical factor is the evolution path followed combined with the 'current' temperature, plastic strain, and strain rate. Preliminary studies indicate that in simulations of HE driven shock with very high resolution zoning, the MTS saturates because of the rate dependence in the evolution law. On going studies are addressing this and other issues with the goal of developing a version of the MT'S model that treats HE driven, shock loading, temperature, strain, and rate effects apriori

  17. The acceleration rate of cosmic rays at cosmic ray modified shocks

    Science.gov (United States)

    Saito, Tatsuhiko; Hoshino, Masahiro; Amano, Takanobu

    It is a still controversial matter whether the production efficiency of cosmic rays (CRs) is relatively efficient or inefficient (e.g. Helder et al. 2009; Hughes et al. 2000; Fukui 2013). In upstream region of SNR shocks (the interstellar medium), the energy density of CRs is comparable to a substantial fraction of that of the thermal plasma (e.g. Ferriere 2001). In such a situation, CRs can possibly exert a back-reaction to the shocks and modify the global shock structure. These shocks are called cosmic ray modified shocks (CRMSs). In CRMSs, as a result of the nonlinear feedback, there are almost always up to three steady-state solutions for given upstream parameters, which are characterized by CR production efficiencies (efficient, intermediate and inefficient branch). We evaluate qualitatively the efficiency of the CR production in SNR shocks by considering the stability of CRMS, under the effects of i) magnetic fields and ii) injection, which play significant roles in efficiency of acceleration. By adopting two-fluid model (Drury & Voelk, 1981), we investigate the stability of CRMSs by means of time-dependent numerical simulations. As a result, we show explicitly the bi-stable feature of these multiple solutions, i.e., the efficient and inefficient branches are stable and the intermediate branch is unstable, and the intermediate branch transit to the inefficient one. This feature is independent of the effects of i) shock angles and ii) injection. Furthermore, we investigate the evolution from a hydrodynamic shock to CRMS in a self-consistent manner. From the results, we suggest qualitatively that the CR production efficiency at SNR shocks may be the least efficient.

  18. GOTHIC code simulation of thermal stratification in POOLEX facility

    International Nuclear Information System (INIS)

    Li, H.; Kudinov, P.

    2009-07-01

    Pressure suppression pool is an important element of BWR containment. It serves as a heat sink and steam condenser to prevent containment pressure buildup during loss of coolant accident or safety relief valve opening during normal operations of a BWR. Insufficient mixing in the pool, in case of low mass flow rate of steam, can cause development of thermal stratification and reduction of pressure suppression pool capacity. For reliable prediction of mixing and stratification phenomena validation of simulation tools has to be performed. Data produced in POOLEX/PPOOLEX facility at Lappeenranta University of Technology about development of thermal stratification in a large scale model of a pressure suppression pool is used for GOTHIC lumped and distributed parameter validation. Sensitivity of GOTHIC solution to different boundary conditions and grid convergence study for 2D simulations of POOLEX STB-20 experiment are performed in the present study. CFD simulation was carried out with FLUENT code in order to get additional insights into physics of stratification phenomena. In order to support development of experimental procedures for new tests in the PPOOLEX facility lumped parameter pre-test GOTHIC simulations were performed. Simulations show that drywell and wetwell pressures can be kept within safety margins during a long transient necessary for development of thermal stratification. (au)

  19. GOTHIC code simulation of thermal stratification in POOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Kudinov, P. (Royal Institute of Technology (KTH) (Sweden))

    2009-07-15

    Pressure suppression pool is an important element of BWR containment. It serves as a heat sink and steam condenser to prevent containment pressure buildup during loss of coolant accident or safety relief valve opening during normal operations of a BWR. Insufficient mixing in the pool, in case of low mass flow rate of steam, can cause development of thermal stratification and reduction of pressure suppression pool capacity. For reliable prediction of mixing and stratification phenomena validation of simulation tools has to be performed. Data produced in POOLEX/PPOOLEX facility at Lappeenranta University of Technology about development of thermal stratification in a large scale model of a pressure suppression pool is used for GOTHIC lumped and distributed parameter validation. Sensitivity of GOTHIC solution to different boundary conditions and grid convergence study for 2D simulations of POOLEX STB-20 experiment are performed in the present study. CFD simulation was carried out with FLUENT code in order to get additional insights into physics of stratification phenomena. In order to support development of experimental procedures for new tests in the PPOOLEX facility lumped parameter pre-test GOTHIC simulations were performed. Simulations show that drywell and wetwell pressures can be kept within safety margins during a long transient necessary for development of thermal stratification. (au)

  20. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    International Nuclear Information System (INIS)

    Kuznetsov, E A; Poniaev, S A

    2015-01-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux. (paper)

  1. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    Science.gov (United States)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  2. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bresme, F.; Armstrong, J.

    2014-01-01

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation

  3. TRSM-a thermal-hydraulic real-time simulation model for PWR

    International Nuclear Information System (INIS)

    Zhou Weichang

    1997-01-01

    TRSM (a Thermal-hydraulic Real-time Simulation Model) has been developed for PWR real-time simulation and best-estimate prediction of normal operating and abnormal accident conditions. It is a non-equilibrium two phase flow thermal-hydraulic model based on five basic conservation equations. A drift flux model is used to account for the unequal velocities of liquid and gaseous mixture, with or without the presence of the noncondensibles. Critical flow models are applied for break flow and valve flow calculations. A 5-regime two phase heat convection model is applied for clad-to-coolant as well as fluid-to-tubing heat transfer. A rigorous reactor coolant pump model is used to calculate the pressure drop and rise for the suction and discharge ends with complete pump characteristics curves included. The TRSM model has been adapted in the full-scale training simulator of Qinshan Nuclear Power Plant 300 MW unit to simulate the thermal-hydraulic performance of the NSSS. The simulation results of a cold leg LOCA and a steam generator tube rupture (SGTR) accident are presented

  4. A review of micromachined thermal accelerometers

    Science.gov (United States)

    Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar

    2017-12-01

    A thermal convection based micro-electromechanical accelerometer is a relatively new kind of acceleration sensor that does not require a solid proof mass, yielding unique benefits like high shock survival rating, low production cost, and integrability with CMOS integrated circuit technology. This article provides a comprehensive survey of the research, development, and current trends in the field of thermal acceleration sensors, with detailed enumeration on the theory, operation, modeling, and numerical simulation of such devices. Different reported varieties and structures of thermal accelerometers have been reviewed highlighting key design, implementation, and performance aspects. Materials and technologies used for fabrication of such sensors have also been discussed. Further, the advantages and challenges for thermal accelerometers vis-à-vis other prominent accelerometer types have been presented, followed by an overview of associated signal conditioning circuitry and potential applications.

  5. Ion Dynamics at Shocks: Ion Reflection and Beam Formation at Quasi-perpendicular Shocks

    International Nuclear Information System (INIS)

    Kucharek, Harald; Moebius, Eberhard

    2005-01-01

    The physics of collisionless shocks is controlled by the ion dynamics. The generation of gyrating ions by reflection as well as the formation of field-aligned ion beams are essential parts of this dynamic. On the one hand reflection is most likely the first interaction of ions with the shock before they undergo the downstream thermalization process. On the other hand field-aligned ion beams, predominately found at the quasi-perpendicular bow shock, propagate into the distant foreshock region and may create wave activity. We revisit ion reflection, the source and basic production mechanism of field-aligned ion beams, by using multi-spacecraft measurements and contrast these observations with existing theories. Finally, we propose an alternative production mechanism

  6. Dynamical efficiency of collisionless magnetized shocks in relativistic jets

    Science.gov (United States)

    Aloy, Miguel A.; Mimica, Petar

    2011-09-01

    The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.

  7. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  8. Advances in Integrated Vehicle Thermal Management and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-10-01

    Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.

  9. The effect of thermal shock on morphological characteristics of blood cells in Siberian sturgeon (Acipenser baerii triploids

    Directory of Open Access Journals (Sweden)

    Teresa Wlasow

    2011-01-01

    Full Text Available The aim of the study was to evaluate the effect of thermal shock on morphotic blood elements in Siberian sturgeon Acipenser baerii triploids. The thermal shock (37 °C for 2 min was applied in the 18th min after fertilization. Blood was sampled from parallel cultured ten triploids and ten diploids on day 70 after hatching. Ploidy was assessed with the cytogenetic method and measurements of cellular nuclei. In the blood of triploids, significant dominance of immature red blood cells, erythrocytes with a displaced nucleus, microcytes and erythroplastids were observed. The blood of triploids was also characterized by a reduced number of lymphocytes. The percentage of neutrophil and eosinophil granulocytes was elevated; increased share of neutrophil granulocytes with a 4-, 5- or 6-segmented nucleus and eosinophil granulocytes with a nucleus consisting of three and more segments was observed. Disturbances in the picture of red blood cells can be considered as an expression of intensification of end-stage changes in triploids. The response to these changes in the blood of triploid Siberian sturgeon is an increase in the share of polymorphonuclear PMN, cells counted as microphages. Frequent presence of immature red blood cells in triploid Siberian sturgeon is a process that aims at counterbalancing the loss among these blood cells. It is the first report on morphological changes and proportions among blood cells in triploid Siberian sturgeon.

  10. The simulation of transients in thermal plant. Part II: Applications

    International Nuclear Information System (INIS)

    Morini, G.L.; Piva, S.

    2008-01-01

    This paper deals with the simulation of the transients of thermal plant with control systems. In the companion paper forming part I of this article [G.L. Morini, S. Piva, The simulation of transients in thermal plant. Part I: Mathematical model, Applied Thermal Engineering 27 (2007) 2138-2144] it has been described how a 'thermal-library' of customised blocks can be built and used, in an intuitive way, to study the transients of any kind of thermal plant. Each component of plant such as valves, boilers, and pumps, is represented by a single block. In this paper, the 'thermal-library' approach is demonstrated by the analysis of the dynamic behaviour of a central heating plant of a typical apartment house during a sinusoidal variation of the external temperature. A comparison of the behaviour of such a plant with three way valve working either in flow rate or in temperature control, is presented and discussed. Finally, the results show the delaying effect of the thermal capacity of the building on the performance of the control system

  11. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  12. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  13. A quantitative methodology for reactor vessel pressurized thermal shock decision making

    International Nuclear Information System (INIS)

    Ackerson, D.S.; Balkey, K.R.; Meyer, T.A.; Ofstun, R.P.; Rupprecht, S.D.; Sharp, D.R.

    1983-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). Previous reactor vessel integrity concerns have led to changes in vessel and plant system design and to operating procedures, and increased attention to the PTS issue is causing consideration of further modifications. Events such as excess feedwater, loss of normal feedwater, and steam generator tube rupture have led to significant primary system cooldowns. Each of these cooldown transients occurred concurrently with a relatively high primary system pressure. Considerations of these and other postulated cooldown events has drawn attention to the impact of operator action and control system effects on reactor vessel PTS. A methodology, which couples event sequence analysis with probabilistic fracture mechanics analyses, was developed to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. (orig./RW)

  14. Estimation of fracture conditions of ceramics by thermal shock with laser beams based on the maximum compressive stress criterion

    International Nuclear Information System (INIS)

    Akiyama, Shigeru; Amada, Shigeyasu.

    1992-01-01

    Structural ceramics are attracting attention in the development of space planes, aircraft and nuclear fusion reactors because they have excellent wear-resistant and heat-resistant characteristics. However, in some applications it is anticipated that they will be exposed to very-high-temperature environments of the order of thousands of degrees. Therefore, it is very important to investigate their thermal shock characteristics. In this report, the distributions of temperatures and thermal stresses of cylindrically shaped ceramics under irradiation by laser beams are discussed using the finite-element computer code (MARC) with arbitrary quadrilateral axisymmetric ring elements. The relationships between spot diameters of laser beams and maximum values of compressive thermal stresses are derived for various power densities. From these relationships, a critical fracture curve is obtained, and it is compared with the experimental results. (author)

  15. Energetic ion acceleration at collisionless shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.

  16. Energetic ion acceleration at collisionless shocks

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity

  17. PIC simulations of magnetic field production by cosmic rays drifting upstream of SNR shocks

    International Nuclear Information System (INIS)

    Pohl, M.

    2008-01-01

    Turbulent magnetic-field amplification appears to operate near the forward shocks of young shell-type SNR. I review the observational constraints on the spatial distribution and amplitude of amplified magnetic field in this environment. I also present new PIC simulations of magnetic-field growth due to streaming cosmic rays. While the nature of the initial linear instability is largely determined by the choice of simulation parameters, the saturation always involves changing the bulk motion of cosmic rays and background plasma, which limits the field growth to amplitudes of a few times that of the homogeneous magnetic field. (author)

  18. Thermal Shock Properties of Cladding with SiC{sub f}/SiC Composite Protective Films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghee; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of); Kim, Weonju; Park, Jiyeon; Kim, Daejong; Lee, Hyeon Geun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In general, Zr-4 alloy is used for such nuclear fuel cladding. Zr-4 possesses a very small thermal neutron absorption cross-section and has superior corrosion resistance in the normal operating conditions of a nuclear reactor. However, in the case of a critical accident such as a LOCA (loss-of-coolant accident) in the Fukushima disaster, the risk of hydrogen explosion becomes serious. That is, in the case of coolant leakage, a dramatic reaction between the nuclear fuel cladding and steam can cause a heating reaction accompanied by rapid high-temperature oxidation, while creating a huge amount of hydrogen. Hence, the search for an alternative material for nuclear fuel cladding is being actively undertaken. Ceramic-based nuclear fuel cladding is receiving much attention as a means of improving safety. SiC has excellent properties of resistance to high temperature and high exposure and superior mechanical properties, as well as a very small thermal neutron absorption cross-section (0.09 barns), which causes almost no decrease in mechanical strength or volume change following exposure. This experiment examined the thermal shock properties and microstructure of cladding that has SiCf/SiC composite protective film, using polycarbosilane preceramic polymer.

  19. Combined simulation of energy and thermal management for an electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mohrmann, Bjoern; Jeck, Peter [Institut fuer Kraftfahrzeuge Aachen (Germany); Simon, Carsten [fortiss GmbH, Muenchen (Germany); Ungermann, Jochen [Audi AG, Ingolstadt (Germany)

    2012-11-01

    The project eperformance, which is funded by the BMBF, is conducted by project partners from RWTH Aachen, Audi, Bosch Engineering and fortiss GmbH, in order to demonstrate the concept of an electric vehicle on the basis of a holistic development approach. To support this, several simulation platforms come into use, i.e. CFD Simulation for cooling concepts, electromagnetic simulations for electric machine design, physical simulation of cooling circuits as well as vehicle mechanics and controller design. To develop an energy efficient vehicle management, some of these simulation domains have to be combined, to simulate interdependencies between for example usage of high-voltage batteries, their thermal response and the impact for controller strategies. Within the project it was decided to use the Tool TISC (TLK Inter Software Connector) to combine as well a physical model, based on Modelica/Dymola to simulate thermal behaviours of components with a longitudinal vehicle model and a controller model, both based in MATLAB/Simulink. Advantages of such a coupled simulation are the re-usability of existing models in both tools with their tool-specific benefits as well as the possibility to cluster the models on different computers. The article will explain how the combined simulation is set up and parameterized, and will show two use cases: the thermal management of the two independent battery systems of the demonstrator vehicle and the torque distribution on the three electric machines in the vehicle, depending on the drive situation and the thermal state of the machines. (orig)

  20. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Pedersen, Kristian Bonderup

    2016-01-01

    A basic challenge in the IGBT transient simulation study is to obtain the realistic junction temperature, which demands not only accurate electrical simulations but also precise thermal impedance. This paper proposed a transient thermal model for IGBT junction temperature simulations during short...

  1. Thermal properties of graphene from path-integral simulations

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-03-01

    Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and "real" surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient αp of the in-plane area, which is negative at low temperatures and becomes positive for T ≳ 1000 K.

  2. Electron velocity distributions near the earth's bow shock

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Bame, S.J.; Gary, S.P.; Gosling, J.T.; McComas, D.J.; Thomsen, M.F.; Paschmann, G.; Hoppe, M.M.

    1983-01-01

    A survey of two-dimensional electron velocity distributions, f(V), measured near the earth's bow shock using Los Alamos/Garching plasma instrumentation aboard ISEE 2 is presented. This survey provides clues to the mechanisms of electron thermalization within the shock and the relaxation of both the upsteam and downstream velocity distributions. First, near the foreshock boundary, fluxes of electrons having a power law shape at high energies backstream from the shock. Second, within the shock, cuts through f(V) along B. f(V), often show single maxima offset toward the magnetosheath by speeds comparable to, but larger than, the upstream thermal speed.Third, magnetosheath distributions generally have flat tops out to an energy, E 0 , with maxima substantially lower than that in the solar wind. Occasionally, cuts through f(V) along B show one and sometimes two small peaks at the edge of the flat tops making them appear concave upward. The electron distributions characteristic of these three regions are interpreted as arising from the effects of macroscopic (scale size comparable to or larger than the shock width) electric and magnetic fields and the subsequent effects of microscopic (scale size small in comparison with the shock width) fields. In particular, our results suggest that field-aligned instabilities are likely to be present in the earth's bow shock

  3. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  4. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  5. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  6. Molecular characterization of three heat shock protein 70 genes and their expression profiles under thermal stress in the citrus red mite.

    Science.gov (United States)

    Yang, Li-Hong; Jiang, Hong-Bo; Liu, Yong-Hua; Dou, Wei; Wang, Jin-Jun

    2012-04-01

    Three heat shock protein 70 family transcripts, named PcHsp70-1, PcHsp70-2 and PcHsp70-3, were isolated from the citrus red mite, Panonychus citri. PcHsp70-1, PcHsp70-2, and PcHsp70-3 contained an open reading frame of 1977, 1968, and 2028 nucleotides that encoded 658, 655 and 675 amino acid residues, respectively. Comparison of deduced amino acid sequences of PcHsp70-1 and PcHsp70-2 showed 86.34% identity, while the amino acid sequence of PcHsp70-3 was only 57.39 and 58.75% identical to that of PcHsp70-1 and PcHsp70-2, respectively. Sequences and phylogenetic analyses suggested that PcHsp70-1 and PcHsp70-2 were cytosolic Hsps, whereas PcHsp70-3 was located in ER (endoplasmic reticulum). To accurately validate mRNA expression profiles of the three Hsp70s under thermal stress conditions, seven housekeeping genes were evaluated. Alpha-tubulin and RpII were selected as optimal endogenous references for cold shock and heat shock conditions, respectively. Real-time quantitative RT-PCR revealed that only the mRNA expression of PcHsp70-2 was up-regulated under heat shocks, and all of the three Hsp70s were constitutively expressed under cold shocks. The results suggest that the three Hsp70s were more critical to coping with heat than cold shocks.

  7. Energy improvement of a conventional dwelling in Argentina through thermal simulation

    Energy Technology Data Exchange (ETDEWEB)

    Filippin, C. [CONICET-CC302, Santa Rosa 6300, La Pampa (Argentina); Flores Larsen, S. [INENCO-Instituto de Investigaciones en Energias No Convencionales, Universidad Nacional de Salta, CONICET, Avda. Bolivia 5150, CP 4400 Salta Capital (Argentina); Lopez Gay, E.

    2008-10-15

    This paper analyses the design, technology, thermal behaviour, and energy consumption of both a conventional and a refurbished dwelling located in a region with a temperate-cold climate in central Argentina. The thermal behaviour and the energy consumption of the conventional building were monitored during winter. The experimental data were analysed and included in a simulation of the transient thermal behaviour of the house. Measurements and simulation were in agreement, showing a mean deviation below 0.5{sup o}C. To reduce the heating and cooling loads, the dwelling was refurbished and its thermal behaviour was studied through a computer simulation, for the critical seasons (winter and summer) and for two occupancy schedules (with and without inhabitants). The refurbishment included passive solar heating, shading, and an insulated envelope. These successful changes allowed energy savings of 66% and 52% for winter and summer, respectively. (author)

  8. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    Science.gov (United States)

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  9. Resonant ion acceleration by collisionless magnetosonic shock waves

    International Nuclear Information System (INIS)

    Ohsawa, Y.

    1985-01-01

    Resonant ion acceleration ( the ν/sub rho/xΒ acceleration ) in laminar magnetosonic shock waves is studied by theory and simulation. Theoretical analysis based on a two-fluid model shows that, in laminar shocks, the electric field strength in the direction of the wave normal is about (m/sub i/m/sub e/) 1 2 times large for quasi-perpendicular shocks than that for the quasi-parallel shocks, which is a reflection of the fact that the width of quasi-perpendicular shocks is much smaller than that of the quasi-parallel shocks. Trapped ions can be accelerated up to the speed about ν/sub A/(m/sub i/m/sub e/) 1 2(M/sub A/-1) 3 2 in quasi-perpendicular shocks. Time evolution of self-consistent magnetosonic shock waves is studied by using a 2-12 dimensional fully relativistic, fully electromagnetic particle simulation with full ion and electron dynamics. Even a low-Mach-number shock wave can significantly accelerate trapped ions by the ν/sub rho/xΒ acceleration. The resonant ion acceleration occurs more strongly in quasi-perpendicular shocks, because the magnitude of this acceleration is proportional to the electric field strength

  10. Equipping simulators with an advanced thermal hydraulics model EDF's experience

    International Nuclear Information System (INIS)

    Soldermann, R.; Poizat, F.; Sekri, A.; Faydide, B.; Dumas, J.M.

    1997-01-01

    The development of an accelerated version of the advanced CATHARe-1 thermal hydraulics code designed for EDF training simulators (CATHARE-SIMU) was successfully completed as early as 1991. Its successful integration as the principal model of the SIPA Post-Accident Simulator meant that its use could be extended to full-scale simulators as part of the renovation of the stock of existing simulators. In order to further extend the field of application to accidents occurring in shutdown states requiring action and to catch up with developments in respect of the CATHARE code, EDF initiated the SCAR Project designed to adapt CATHARE-2 to simulator requirements (acceleration, parallelization of the computation and extension of the simulation range). In other respects, the installation of SIPA on workstations means that the authors can envisage the application of this remarkable training facility to the understanding of thermal hydraulics accident phenomena

  11. SUB-PHOTOSPHERIC EMISSION FROM RELATIVISTIC RADIATION MEDIATED SHOCKS IN GRBs

    International Nuclear Information System (INIS)

    Bromberg, Omer; Mikolitzky, Ziv; Levinson, Amir

    2011-01-01

    It is proposed that the prompt emission observed in bursts that exhibit a thermal component originates from relativistic radiation mediated shocks (RRMS) that form below the photosphere of the gamma-ray burst (GRB) outflow. It is argued that such shocks are expected to form in luminous bursts via collisions of shells that propagate with moderate Lorentz factors Γ ∼< 500. Faster shells will collide above the photosphere to form collisionless shocks. We demonstrate that in events like GRB 090902B a substantial fraction of the explosion energy is dissipated below the photosphere, in a region of moderate optical depth τ ∼< 300, whereas in GRB 080916C the major fraction of the energy dissipates above the photosphere. We show that under conditions anticipated in many GRBs, such RRMS convect enough radiation upstream to render photon production in the shock transition negligible, unlike the case of shock breakout in supernovae. The resulting spectrum, as measured in the shock frame, has a relatively low thermal peak, followed by a broad, nonthermal component extending up to the Klein-Nishina limit.

  12. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  13. Multi-fidelity numerical simulations of shock/turbulent-boundary layer interaction with uncertainty quantification

    Science.gov (United States)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Emory, Mike; Bodart, Julien; Palacios, Francisco; Iaccarino, Gianluca; Eaton, John

    2013-11-01

    We study the interaction between an oblique shock wave and the turbulent boundary layers inside a nearly-square duct by combining wall-modeled LES, 2D and 3D RANS simulations, targeting the experiment of Campo, Helmer & Eaton, 2012 (nominal conditions: M = 2 . 05 , Reθ = 6 , 500). A primary objective is to quantify the effect of aleatory and epistemic uncertainties on the STBLI. Aleatory uncertainties considered include the inflow conditions (Mach number of the incoming air stream and thickness of the boundary layers) and perturbations of the duct geometry upstream of the interaction. The epistemic uncertainty under consideration focuses on the RANS turbulence model form by injecting perturbations in the Reynolds stress anisotropy in regions of the flow where the model assumptions (in particular, the Boussinesq eddy-viscosity hypothesis) may be invalid. These perturbations are then propagated through the flow solver into the solution. The uncertainty quantification (UQ) analysis is done through 2D and 3D RANS simulations, assessing the importance of the three-dimensional effects imposed by the nearly-square duct geometry. Wall-modeled LES are used to verify elements of the UQ methodology and to explore the flow features and physics of the STBLI for multiple shock strengths. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  14. Finite-difference time-domain simulation of thermal noise in open cavities

    International Nuclear Information System (INIS)

    Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem; Cao Changqi

    2008-01-01

    A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes

  15. Coupled large-eddy simulation of thermal mixing in a T-junction

    International Nuclear Information System (INIS)

    Kloeren, D.; Laurien, E.

    2011-01-01

    Analyzing thermal fatigue due to thermal mixing in T-junctions is part of the safety assessment of nuclear power plants. Results of two large-eddy simulations of mixing flow in a T-junction with coupled and adiabatic boundary condition are presented and compared. The temperature difference is set to 100 K, which leads to strong stratification of the flow. The main and the branch pipe intersect horizontally in this simulation. The flow is characterized by steady wavy pattern of stratification and temperature distribution. The coupled solution approach shows highly reduced temperature fluctuations in the near wall region due to thermal inertia of the wall. A conjugate heat transfer approach is necessary in order to simulate unsteady heat transfer accurately for large inlet temperature differences. (author)

  16. Evaluation of uranium dioxide thermal conductivity using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kim, Woongkee; Kaviany, Massoud; Shim, J. H.

    2014-01-01

    It can be extended to larger space, time scale and even real reactor situation with fission product as multi-scale formalism. Uranium dioxide is a fluorite structure with Fm3m space group. Since it is insulator, dominant heat carrier is phonon, rather than electrons. So, using equilibrium molecular dynamics (MD) simulation, we present the appropriate calculation parameters in MD simulation by calculating thermal conductivity and application of it to the thermal conductivity of polycrystal. In this work, we investigate thermal conductivity of uranium dioxide and optimize the parameters related to its process. In this process, called Green Kubo formula, there are two parameters i.e correlation length and sampling interval, which effect on ensemble integration in order to obtain thermal conductivity. Through several comparisons, long correlation length and short sampling interval give better results. Using this strategy, thermal conductivity of poly crystal is obtained and comparison with that of pure crystal is made. Thermal conductivity of poly crystal show lower value that that of pure crystal. In further study, we broaden the study to transport coefficient of radiation damaged structures using molecular dynamics. Although molecular dynamics is tools for treating microscopic scale, most macroscopic issues related to nuclear materials such as voids in fuel materials and weakened mechanical properties by radiation are based on microscopic basis. Thus, research on microscopic scale would be expanded in this field and many hidden mechanism in atomic scales will be revealed via both atomic scale simulations and experiments

  17. The effect of thermal velocities on structure formation in N-body simulations of warm dark matter

    Science.gov (United States)

    Leo, Matteo; Baugh, Carlton M.; Li, Baojiu; Pascoli, Silvia

    2017-11-01

    We investigate the impact of thermal velocities in N-body simulations of structure formation in warm dark matter models. Adopting the commonly used approach of adding thermal velocities, randomly selected from a Fermi-Dirac distribution, to the gravitationally-induced velocities of the simulation particles, we compare the matter and velocity power spectra measured from CDM and WDM simulations, in the latter case with and without thermal velocities. This prescription for adding thermal velocities introduces numerical noise into the initial conditions, which influences structure formation. At early times, the noise affects dramatically the power spectra measured from simulations with thermal velocities, with deviations of the order of ~ Script O(10) (in the matter power spectra) and of the order of ~ Script O(102) (in the velocity power spectra) compared to those extracted from simulations without thermal velocities. At late times, these effects are less pronounced with deviations of less than a few percent. Increasing the resolution of the N-body simulation shifts these discrepancies to higher wavenumbers. We also find that spurious haloes start to appear in simulations which include thermal velocities at a mass that is ~3 times larger than in simulations without thermal velocities.

  18. Transient shocks beyond the heliopause

    International Nuclear Information System (INIS)

    Fermo, R L; Pogorelov, N V; Burlaga, L F

    2015-01-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations. (paper)

  19. SN 1987 A: A Unique Laboratory for Shock Physics

    Science.gov (United States)

    Sonneborn, George

    2012-01-01

    Supernova 1987 A has given us an unprecedented view of the evolution of the explosion debris and its interaction with circumstellar matter. The outer supernova debris, now expanding with velocities approx.8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss in the early 1990s. The shock interaction is manifested by UV-optical "hotspots", an expanding X-ray ring, an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust Recent ultraviolet observations of the emissions from the reverse shock and the ring with the HST/COS reveal new details about the shock interaction. Lyman alpha emission from the reverse shock is much stronger than H alpha and they have different emission morphologies, pointing to different emission mechanisms. The reverse shock was detected for the first time in C IV 1550. The N V to C IV brightness ratio indicates the N/C abundance ratio in the expanding debris is about 100X solar, about 3X N/C in the inner ring.

  20. Standard Practice for Solar Simulation for Thermal Balance Testing of Spacecraft

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1973-01-01

    1.1 Purpose: 1.1.1 The primary purpose of this practice is to provide guidance for making adequate thermal balance tests of spacecraft and components where solar simulation has been determined to be the applicable method. Careful adherence to this practice should ensure the adequate simulation of the radiation environment of space for thermal tests of space vehicles. 1.1.2 A corollary purpose is to provide the proper test environment for systems-integration tests of space vehicles. An accurate space-simulation test for thermal balance generally will provide a good environment for operating all electrical and mechanical systems in their various mission modes to determine interferences within the complete system. Although adherence to this practice will provide the correct thermal environment for this type of test, there is no discussion of the extensive electronic equipment and procedures required to support systems-integration testing. 1.2 Nonapplicability—This practice does not apply to or provide inco...

  1. Simulation of Thermal-hydraulic Process in Reactor of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2014-01-01

    This paper provides the physical process in the reactor of High Temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM) and introduces the standard operation conditions. The FORTRAN code developed for the thermal hydraulic module of Full-Scale Simulator (FSS) of HTR-PM is used to simulate two typical operation transients including cold startup process and cold shutdown process. And the results were compared to the safety analysis code, namely TINTE. The good agreement indicates that the code is applicable for simulating the thermal-hydraulic process in reactor of HTR-PM. And for long time transient process, the code shows good stability and convergence. (author)

  2. Numerical Study of Richtmyer-Meshkov Instability with Re-Shock

    Science.gov (United States)

    Wong, Man Long; Livescu, Daniel; Lele, Sanjiva

    2017-11-01

    The interaction of a Mach 1.45 shock wave with a perturbed planar interface between two gases with an Atwood number 0.68 is studied through 2D and 3D shock-capturing adaptive mesh refinement (AMR) simulations with physical diffusive and viscous terms. The simulations have initial conditions similar to those in the actual experiment conducted by Poggi et al. [1998]. The development of the flow and evolution of mixing due to the interactions with the first shock and the re-shock are studied together with the sensitivity of various global parameters to the properties of the initial perturbation. Grid resolutions needed for fully resolved and 2D and 3D simulations are also evaluated. Simulations are conducted with an in-house AMR solver HAMeRS built on the SAMRAI library. The code utilizes the high-order localized dissipation weighted compact nonlinear scheme [Wong and Lele, 2017] for shock-capturing and different sensors including the wavelet sensor [Wong and Lele, 2016] to identify regions for grid refinement. First and third authors acknowledge the project sponsor LANL.

  3. Analysis of Z Pinch Shock Wave Experiments

    International Nuclear Information System (INIS)

    Asay, James; Budge, Kent G.; Chandler, Gordon; Fleming, Kevin; Hall, Clint; Holland, Kathleen; Konrad, Carl; Lawrence, Jeffery; Trott, Wayne; Trucano, Timothy

    1999-01-01

    In this paper, we report details of our computational study of two shock wave physics experiments performed on the Sandia Z machine in 1998. The novelty of these particular experiments is that they represent the first successful application of VISAR interferometry to diagnose shock waves generated in experimental payloads by the primary X-ray pulse of the machine. We use the Sandia shock-wave physics code ALEGRA to perform the simulations reported in this study. Our simulations are found to be in fair agreement with the time-resolved VISAR experimental data. However, there are also interesting and important discrepancies. We speculate as to future use of time-resolved shock wave data to diagnose details of the Z machine X-ray pulse in the future

  4. Two-phase pressurized thermal shock investigations using a 3D two-fluid modeling of stratified flow with condensation

    International Nuclear Information System (INIS)

    Yao, W.; Coste, P.; Bestion, D.; Boucker, M.

    2003-01-01

    In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow

  5. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    International Nuclear Information System (INIS)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  6. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Masters, A.; Dougherty, M. K. [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, A. H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Sergis, N. [Office of Space Research and Technology, Academy of Athens, Soranou Efesiou 4, 11527 Athens (Greece); Stawarz, L. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Coates, A. J., E-mail: a.masters@imperial.ac.uk [Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom)

    2016-07-20

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  7. Design and simulation of a low concentrating photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Rosell, J.I.; Vallverdu, X.; Lechon, M.A.; Ibanez, M.

    2005-01-01

    The advantages of photovoltaic/thermal (PV/T) collectors and low solar concentration technologies are combined into a photovoltaic/thermal system to increase the solar energy conversion efficiency. This paper presents a prototype 11X concentration rate and two axis tracking system. The main novelty is the coupling of a linear Fresnel concentrator with a channel photovoltaic/thermal collector. An analytical model to simulate the thermal behaviour of the prototype is proposed and validated. Measured thermal performance of the solar system gives values above 60%. Theoretical analysis confirms that thermal conduction between the PV cells and the absorber plate is a critical parameter

  8. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  9. A Fast Electro-Thermal Co-Simulation Modeling Approach for SiC Power MOSFETs

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Bahman, Amir Sajjad; Iannuzzo, Francesco

    2017-01-01

    The purpose of this work is to propose a novel electro-thermal co-simulation approach for the new generation of SiC MOSFETs, by development of a PSpice-based compact and physical SiC MOSFET model including temperature dependency of several parameters and a Simulink-based thermal network. The PSpice...... the FEM simulation of the DUT’s structure, performed in ANSYS Icepack. A MATLAB script is used to process the simulation data and feed the needed settings and parameters back into the simulation. The parameters for a CREE 1.2 kV/30 A SiC MOSFET have been identified and the electro-thermal model has been...

  10. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    Science.gov (United States)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  11. Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks

    International Nuclear Information System (INIS)

    Dieckmann, M E; Sarri, G; Kourakis, I; Borghesi, M; Bret, A; Perez Alvaro, E

    2012-01-01

    The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low. (paper)

  12. Buoyancy effects in overcooling transients calculated for the NRC pressurized thermal shock study

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Iyer, K.; Nourbakhsh, H.P.; Gherson, P.

    1986-05-01

    The thermal-hydraulic responses of three PWRs (Oconee, Calvert Cliffs, and H.B. Robinson), to postulated Pressurized Thermal Shock (PTS) scenarios, which were originally determined by RELAP5 and TRAC calculations, are being further developed here with regard to buoyancy/stratification effects. These three PWRs were the subject of the NRC PTS study, and the present results helped define the thermal-hydraulic conditions utilized in the fracture mechanics calculations carried out at ORNL. The computer program REMIX, which is based on the Regional Mixing Model (RMM), was the analytical tool employed, while Purdue's 1/2-Scale HPI Thermal Mixing facility provided the basis for experimental support. Important mixing and wall heat transfer regimes are delineated on the basis of these results. We conclude that stratification is important only in cases of complete loop stagnation and that mixed-convection effects are important for downcomer flow velocities below approx.0.25 m/s. The stratification is small in magnitude, however it is important in creating a recirculating flow pattern which activates the lower plenum, pump and loop seal volumes, to participate in the mixing process. This mixing process together with the heat input from the wall metal significantly impact the cooldown rates. Heat transfer in the plume region is dominated by forced convection. On the other hand, the presence of the Reactor Pressure Vessel (RPV) wall cladding and wall conduction significantly dampen the free convection effects in the low velocity, mixed-convection, regime. For the stagnant loop cases, all locations outside the plume region are included in this regime. In the presence of natural loop circulation and a uniformly distributed downcomer flow, the mixed convection regime is also expected, however, the forced convection regime can also be observed in highly asymmetric flow behavior

  13. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  14. Quantification of Uncertainty in Thermal Building Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Haghighat, F.; Frier, Christian

    In order to quantify uncertainty in thermal building simulation stochastic modelling is applied on a building model. An application of stochastic differential equations is presented in Part 1 comprising a general heat balance for an arbitrary number of loads and zones in a building to determine...

  15. A fractographic study of cracks produced by thermal shocks in 20MnMoNi55 and comparable weld material in water environment

    International Nuclear Information System (INIS)

    Toerroenen, K.; Rintamaa, R.; Kemppainen, M.

    1983-04-01

    This report gives the results of a fractographic study of cracks produced by thermal shocks in 20MnMoNi55 and comparable weld material in water environment. The basic crack growth mechanism is shown to be by mechanical fatigue, but after some crack growth indications of environmentally assisted cyclic crack growth is seen. (author)

  16. Monte Carlo simulation of a coded-aperture thermal neutron camera

    International Nuclear Information System (INIS)

    Dioszegi, I.; Salwen, C.; Forman, L.

    2011-01-01

    We employed the MCNPX Monte Carlo code to simulate image formation in a coded-aperture thermal-neutron camera. The camera, developed at Brookhaven National Laboratory (BNL), consists of a 20 x 17 cm"2 active area "3He-filled position-sensitive wire chamber in a cadmium enclosure box. The front of the box is a coded-aperture cadmium mask (at present with three different resolutions). We tested the detector experimentally with various arrangements of moderated point-neutron sources. The purpose of using the Monte Carlo modeling was to develop an easily modifiable model of the device to predict the detector's behavior using different mask patterns, and also to generate images of extended-area sources or large numbers (up to ten) of them, that is important for nonproliferation and arms-control verification, but difficult to achieve experimentally. In the model, we utilized the advanced geometry capabilities of the MCNPX code to simulate the coded aperture mask. Furthermore, the code simulated the production of thermal neutrons from fission sources surrounded by a thermalizer. With this code we also determined the thermal-neutron shadow cast by the cadmium mask; the calculations encompassed fast- and epithermal-neutrons penetrating into the detector through the mask. Since the process of signal production in "3He-filled position-sensitive wire chambers is well known, we omitted this part from our modeling. Simplified efficiency values were used for the three (thermal, epithermal, and fast) neutron-energy regions. Electronic noise and the room's background were included as a uniform irradiation component. We processed the experimental- and simulated-images using identical LabVIEW virtual instruments. (author)

  17. Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    Directory of Open Access Journals (Sweden)

    T. J. Barton

    2012-12-01

    Full Text Available Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K. R. Samokhvalova, J. Zhou, and C. Chen, Phys. Plasmas 14, 103102 (2007PHPAEN1070-664X10.1063/1.2779281; J. Zhou, K. R. Samokhvalova, and C. Chen, Phys. Plasmas 15, 023102 (2008PHPAEN1070-664X10.1063/1.2837891]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  18. TO THE QUESTION ABOUT THE SIMULATION OF TURBULENT THERMAL FLOWS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The main purpose of this work was the simulation of turbulent thermal flows, which is aimed at improving the visualization and the modeling of the flow fields of wind flows, which are necessary for aviation. The physical-mathematical model of gas flow in thermal is proposed on the basis of thermodynamic model and dynamic model under the assumption that the condensation energy, when the movement of the thermal is upward, becomes the turbulent fluctuations. A thermal is an air mass, which goes up and is capable to intermix with ambient air. In the work the thermodynamic model of thermal is presented, the equations and the system of equations are derived, that describe the main characteristics of wind flow, which are required for the modeling of airflows. The generation of vertical turbulent gust with von Karman spectrum is shown. The basic assumption in the construction of the dynamic model of generation was that the energy, which is stood out in the thermal due to the condensation of steam, is converted into the energy of turbulent pulsations. Some examples of numerical simulation are given in the article. The visualizations of the generation of the vertical velocity of random wind gust are given depending on the size of the considered space and depending on the pitch of cell partition. The analysis and comparison of the obtained results of the calculation are presented. The conducted studies are aimed at the simulation of the atmospheric background and atmospheric processes and, in the final result, at the increasing of flight safety.

  19. High-Mach number, laser-driven magnetized collisionless shocks

    International Nuclear Information System (INIS)

    Schaeffer, Derek B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.

    2017-01-01

    Collisionless shocks are ubiquitous in space and astrophysical systems, and the class of supercritical shocks is of particular importance due to their role in accelerating particles to high energies. While these shocks have been traditionally studied by spacecraft and remote sensing observations, laboratory experiments can provide reproducible and multi-dimensional datasets that provide complementary understanding of the underlying microphysics. We present experiments undertaken on the OMEGA and OMEGA EP laser facilities that show the formation and evolution of high-Mach number collisionless shocks created through the interaction of a laser-driven magnetic piston and magnetized ambient plasma. Through time-resolved, 2-D imaging we observe large density and magnetic compressions that propagate at super-Alfvenic speeds and that occur over ion kinetic length scales. Electron density and temperature of the initial ambient plasma are characterized using optical Thomson scattering. Measurements of the piston laser-plasma are modeled with 2-D radiation-hydrodynamic simulations, which are used to initialize 2-D particle-in-cell simulations of the interaction between the piston and ambient plasmas. The numerical results show the formation of collisionless shocks, including the separate dynamics of the carbon and hydrogen ions that constitute the ambient plasma and their effect on the shock structure. Furthermore, the simulations also show the shock separating from the piston, which we observe in the data at late experimental times.

  20. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  1. Reactor pressure vessel failure probability following through-wall cracks due to pressurized thermal shock events

    International Nuclear Information System (INIS)

    Simonen, F.A.; Garnich, M.R.; Simonen, E.P.; Bian, S.H.; Nomura, K.K.; Anderson, W.E.; Pedersen, L.T.

    1986-04-01

    A fracture mechanics model was developed at the Pacific Northwest Laboratory (PNL) to predict the behavior of a reactor pressure vessel following a through-wall crack that occurs during a pressurized thermal shock (PTS) event. This study, which contributed to a US Nuclear Regulatory Commission (NRC) program to study PTS risk, was coordinated with the Integrated Pressurized Thermal Shock (IPTS) Program at Oak Ridge National Laboratory (ORNL). The PNL fracture mechanics model uses the critical transients and probabilities of through-wall cracks from the IPTS Program. The PNL model predicts the arrest, reinitiation, and direction of crack growth for a postulated through-wall crack and thereby predicts the mode of vessel failure. A Monte-Carlo type of computer code was written to predict the probabilities of the alternative failure modes. This code treats the fracture mechanics properties of the various welds and plates of a vessel as random variables. Plant-specific calculations were performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 reactor pressure vessels for the conditions of postulated transients. The model predicted that 50% or more of the through-wall axial cracks will turn to follow a circumferential weld. The predicted failure mode is a complete circumferential fracture of the vessel, which results in a potential vertically directed missile consisting of the upper head assembly. Missile arrest calculations for the three nuclear plants predict that such vertical missiles, as well as all potential horizontally directed fragmentation type missiles, will be confined to the vessel enclosre cavity. The PNL failure mode model is recommended for use in future evaluations of other plants, to determine the failure modes that are most probable for postulated PTS events

  2. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, Y. Y.; Dröge, W. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Gedalin, M. [Department of Physics, Ben-Gurion Unversity of the Negev, Beer-Sheva (Israel)

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.

  3. Kinetic and energetic approaches to analysis of scabbing fracture of structural steels under thermal shock

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2002-01-01

    The regularities of the scabbing fracture of nine brands of structural steels under the conditions of the impact of the nuclear explosion X-ray irradiation are studied. The time dependences of the scabbing strength of the structural materials under thermal shock, initiated by the X-ray irradiation, are established within the frames of the approach to the problem on the scabbing fracture. The time dependences of the critical specific energy of the steels fracture under the conditions of the X-ray irradiation effect are determined within the frames of the energetic approach to the problem on the scabbing fracture, based on the comparison of the sample energy reserve and fracture work [ru

  4. The Development of Dispatcher Training Simulator in a Thermal Energy Generation System

    Science.gov (United States)

    Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.

    2018-01-01

    A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.

  5. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    Science.gov (United States)

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can

  6. Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions

    Directory of Open Access Journals (Sweden)

    Riconda C.

    2013-11-01

    Full Text Available Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS, and Brillouin- (SBS, side/backscattering as well as Two-Plasmon-Decay (TPD are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.

  7. Micromagnetic simulation of thermally activated switching in fine particles

    International Nuclear Information System (INIS)

    Scholz, Werner; Schrefl, Thomas; Fidler, J.

    2001-01-01

    Effects of thermal activation are included in micromagnetic simulations by adding a random thermal field to the effective magnetic field. As a result, the Landau-Lifshitz equation is converted into a stochastic differential equation of Langevin type with multiplicative noise. The Stratonovich interpretation of the stochastic Landau-Lifshitz equation leads to the correct thermal equilibrium properties. The proper generalization of Taylor expansions to stochastic calculus gives suitable time integration schemes. For a single rigid magnetic moment the thermal equilibrium properties are investigated. It is found, that the Heun scheme is a good compromise between numerical stability and computational complexity. Small cubic and spherical ferromagnetic particles are studied

  8. A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS

    International Nuclear Information System (INIS)

    Savani, N. P.; Shiota, D.; Kusano, K.; Vourlidas, A.; Lugaz, N.

    2012-01-01

    We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, Δ, as a fraction of the CME radial half-width, D OB (i.e., Δ/D OB ). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; ρ u /ρ d ) measured across the bow shock. The DR coefficient, k dr , which is the proportionality constant between the relative standoff distance (Δ/D OB ) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 ± 0.1 is more appropriate for small heliocentric distances ( dr value increases linearly with heliocentric distance, such that k dr = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k dr = 1.8 ± 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.

  9. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  10. Contribution for the improvement of pressurized thermal shock assessment methodologies in PWR pressure vessels

    International Nuclear Information System (INIS)

    Gomes, Paulo de Tarso Vida

    2005-01-01

    The structural integrity assessment of nuclear reactor pressure vessel, concerned to Pressurized Thermal Shock (PTS) accidents, became a necessity and has been investigated since the eighty's. The recognition of the importance of PTS assessment has led the international nuclear technology community to devote a considerable research effort directed to the complete integrity assessment process of the Reactor Pressure Vessels (VPR). Researchers in Europe, Japan and U.S.A. have concentrated efforts in the VPR structural and fracture analysis, conducting experiments to best understand how specific factors act on the behavior of discontinuities, under PTS loading conditions. The main goal of this work is to study de structural behavior of an 'in scale' PWR nuclear reactor pressure vessel model, containing actual discontinuities, under loading conditions generated by a pressurized thermal shock. To construct the pressure vessel model utilized in this research, the approach developed by Barroso (1995) and based on likelihood studies, related to thermal-hydraulic behavior during the PTS was employed. To achieve the objective of this research, a new methodology to generate cracks, with known geometry and localization in the vessel model wall was developed. Additionally, an hydraulic circuit, able to flood the vessel model, heated to 300 deg C, with 10 m 3 of water at 8 deg C, in 170 seconds, was built. Thermo-hydraulic calculations using RELAP5/M0D 3.2.2γ computational code were done, to estimate the temperature profiles during the cooling time. The resulting data subsidized the thermo-structural calculations that were accomplished using ANSYS 7.01 computational code, for both 2D and 3D models. So, the stress profiles obtained with these calculations were associated with fracture mechanics concepts, to assess the crack growth behavior in the VPR model wall. After the PTS test, the VPR model was submitted to destructive and non-destructive inspections. The results

  11. High-Gain Shock Ignition on the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K.; Bailey, D.; Lambert, M.; MacKinnon, A.; Blackfield, D.; Comley, A.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.; Craxton, R. S.; Betti, R.; McKenty, P.; Anderson, K.; Theobald, W.; Schmitt, A.; Atzeni, S.; Schiavi, A.

    2010-11-01

    Shock ignition offers the possibility for a near-term test of high-gain ICF on the NIF at less than 1MJ drive energy and with day-1 laser hardware. We will summarize the status of target performance simulations, delineate the critical issues and describe the R&D program to be performed in order to test the potential of a shock-ignited target on NIF. In shock ignition, compressed fuel is separately ignited by a late-time laser-driven shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, simulations indicate that fusion energy gains of 60 may be achievable at laser energies around 0.5MJ. Like fast ignition, shock ignition offers high gain but requires only a single laser with less demanding timing and focusing requirements. Conventional symmetry and stability constraints apply, thus a key immediate step towards attempting shock ignition on NIF is to demonstrate adequacy of low-mode uniformity and shock symmetry under polar drive

  12. Assessment of margins with respect to pressurized thermal shock for the 3 loop plants of the French program

    International Nuclear Information System (INIS)

    Buchalet, C.; Haussaire, P.; Houssin, B.; Vagner, J.

    1983-08-01

    Presentation of the FRAMATOME and EDF program on pressurized thermal shock which objectives are to demonstrate that present and older French reactor vessels have adequate safety margins and to provide recommendations of feasible plant specific modifications, both technically and economically. Phase I consists in a thorough analysis of pressure and temperature transients that the R.P.V. beltine could undergo during plant operations; phase II is the fracture mechanics analysis; phase III estimates the safety margins available during normal, upset, emergency and faulted conditions

  13. Experiments and numerical simulations of fluctuating thermal stratification in a branch pipe

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akira; Murase, Michio; Sasaki, Toru [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Takenaka, Nobuyuki; Hamatani, Daisuke [Kobe Univ. (Japan)

    2002-09-01

    Many pipes branch off from the main pipe in plants. When the main flow in the main pipe is hotter than a branch pipe that branches off downward, the hot water penetrates into the branch pipe with the cavity flow that is induced by the main flow and causes thermal stratification. If the interface of the stratification fluctuates in an occluded branch pipe, thermal fatigue may occur in pipe wall. Some experiments and numerical simulations were conducted to elucidate the mechanism of this fluctuating thermal stratification. The vortex structures were observed in the experiments of straight or bent branch pipes. When the main flow was heated and the thermal stratification interface was at the elbow, a ''burst'' phenomenon occurred in the interface in connection with large heat fluctuation. The effects of pipe shape on the length of penetration were investigated in order to modify simulation conditions. The vortex structures and the fluctuating thermal stratification at elbow in the numerical simulation showed good agreement with experiments. (author)

  14. Thermal boundary resistance at Si/Ge interfaces by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Tianzhuo Zhan

    2015-04-01

    Full Text Available In this study, we investigated the temperature dependence and size effect of the thermal boundary resistance at Si/Ge interfaces by non-equilibrium molecular dynamics (MD simulations using the direct method with the Stillinger-Weber potential. The simulations were performed at four temperatures for two simulation cells of different sizes. The resulting thermal boundary resistance decreased with increasing temperature. The thermal boundary resistance was smaller for the large cell than for the small cell. Furthermore, the MD-predicted values were lower than the diffusion mismatch model (DMM-predicted values. The phonon density of states (DOS was calculated for all the cases to examine the underlying nature of the temperature dependence and size effect of thermal boundary resistance. We found that the phonon DOS was modified in the interface regions. The phonon DOS better matched between Si and Ge in the interface region than in the bulk region. Furthermore, in interface Si, the population of low-frequency phonons was found to increase with increasing temperature and cell size. We suggest that the increasing population of low-frequency phonons increased the phonon transmission coefficient at the interface, leading to the temperature dependence and size effect on thermal boundary resistance.

  15. Thermal-hydraulic simulation and analysis of Research Reactor Cooling Systems

    International Nuclear Information System (INIS)

    EL Khatib, H.H.A.

    2013-01-01

    The objective of the present study is to formulate a model to simulate the thermal hydraulic behavior of integrated cooling system in a typical material testing reactor (MTR) under loss of ultimate heat sink, the model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The developed model predicts the temperature profiles in addition it predicts inlet and outlet temperatures of the hot and cold stream as well as the heat exchangers and cooling tower. The model is validated against PARET code for steady-state operation and also verified by the reactor operational records, and then the model is used to simulate the thermal-hydraulic behavior of the reactor under a loss of ultimate heat sink. The simulation is performed for two operational regimes named regime I of (11 MW) thermal power and three operated cooling tower cells and regime II of (22 MW) thermal power and six operated cooling tower cells. In regime I, the simulation is performed for 1, 2 and 3 cooling tower failed cells while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower failed cells. The safety action is conducted by the reactor protection system (RPS) named power reduction safety action, it is triggered to decrease the reactor power by amount of 20% of the present power when the water inlet temperature to the core reaches 43 degree C and a scram (emergency shutdown) is triggered in case of the inlet temperature reaches 44 degree C. The model results are analyzed and discussed. The temperature profiles of fuel, clad and coolant are predicted during transient where its maximum values are far from thermal hydraulic limits.

  16. Engineering-Based Thermal CFD Simulations on Massive Parallel Systems

    KAUST Repository

    Frisch, Jérôme

    2015-05-22

    The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC) simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.

  17. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  18. Hydrodynamic modeling and simulations of shock ignition thresholds

    Directory of Open Access Journals (Sweden)

    Lafon M.

    2013-11-01

    Full Text Available The Shock Ignition (SI scheme [1] offers to reduce the laser requirements by relaxing the implosion phase to sub-ignition velocities and later adding an intense laser spike. Depending on laser energy, target characteristics and implosion velocity, high gains are expected [2,3]. Relevant intensities for scaled targets imploded in the velocity range from 150 to 400 km/s are defined at ignition thresholds. A range of moderate implosion velocities is specified to match safe implosions. These conditions for target design are then inferred for relevant NIF and LMJ shock-ignited targets.

  19. Numerical simulation of the interaction of charged particles with oblique magnetohydrodynamic shocks

    International Nuclear Information System (INIS)

    Chen, G.L.

    1975-01-01

    The motion of high energy charged particles in ideal oblique MHD shocks, characteristic of the interplanetary medium, has been studied extensively. The shock is treated as a plane surface across which the tangential component of magnetic field changes discontinuously. The orbits of charged particles can be solved exactly from Lorentz force equation and initial conditions of particles in each region, pre- and post-shock, separately. The essential procedure is to determine the crossings and that has been achieved by solving numerically for the times when the particle meets the shock. The position and velocity vectors are continuous across the shock. An ensemble of 1972 monoenergetic particles distributed isotropically in the shock frame are chosen to obtain collective results

  20. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    Science.gov (United States)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.