WorldWideScience

Sample records for thermal shock answer

  1. Thermal shock investigation of silicon nitride

    International Nuclear Information System (INIS)

    Ziegler, G.; Leucht, R.

    1977-01-01

    In this work, the thermal shock properties of commercial reaction-bonded Si 3 N 4 quality material (RBSN), of commercial hot-pressed Si 3 N 4 (HPSN) and of different laboratory grades of hot-pressed Si 3 N 4 were examined. The thermal shock properties of RBSN quality material differ according to the structure considerably: The critical temperature difference for sample crossections of 5 x 5 or 6 x 6 mm after quenching in oil lies between 730 0 C and over 1400 0 C. The best thermal shock properties are shown by high density RBSN quality material having very fine pores and high initial strength. The results indicate that for RBSN large pores and density inhomogenities are responsible for bad thermal shock properties. Resistance to fast temperature change is higher for hot-pressed Si 3 N 4 than for RBSN quality material. In HPSN, the thermal shock results show dependence on structure. High MgO content and the associated coarse rod-shaped configuration of the β phase and structural inhomogenities affect the thermal shock properties in an adverse way. (orig.) [de

  2. Evaluation of the of thermal shock resistance of a castable containing andalusite aggregates by thermal shock cycles

    International Nuclear Information System (INIS)

    Garcia, G.C.R.; Santos, E.M.B.; Ribeiro, S.; Rodrigues, J.A.

    2011-01-01

    The thermal shock resistance of refractory materials is one of the most important characteristics that determine their performance in many applications, since abrupt and drastic differences in temperature can damage them. Resistance to thermal shock damage can be evaluated based on thermal cycles, i.e., successive heating and cooling cycles followed by an analysis of the drop in Young's modulus occurring in each cycle. The aim of this study was to evaluate the resistance to thermal shock damage in a commercial refractory concrete with andalusite aggregate. Concrete samples that were sintered at 1000 deg C and 1450 deg C for 5 hours to predict and were subjected to 30 thermal shock cycles, soaking in the furnace for 20 minutes at a temperature of 1000 deg C, and subsequent cooling in circulating water at 25 deg C. The results showed a decrease in Young's modulus and rupture around 72% for samples sintered at 1000 ° C, and 82% in sintered at 1450 ° C. The refractory sintered at 1450 deg C would show lower thermal shock resistance than the refractory sintered at 1000 deg C. (author)

  3. Thermal shock cracking of GSO single crystal

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Yamamoto, Kazunari; Tamura, Takaharu; Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Susa, Kenzo

    1998-01-01

    The quantitative estimation of the failure stress of a gadolinium orthosilicate (Gd 2 SiO 5 , hereafter abbreviated as GSO) single crystal due to thermal shock was investigated. A cylindrical test specimen was heated in a silicone oil bath, then subjected to thermal shock by pouring room temperature silicone oil. Cracking occurred during cooling. The heat conduction analysis was performed to obtain temperature distribution in a GSO single crystal at cracking, using the surface temperatures measured in the thermal shock cracking test. Then the thermal stress was calculated using temperature profile of the test specimen obtained from the heat conduction analysis. It is found from the results of the thermal stress analysis and the observation of the cracking in test specimens that the thermal shock cracking occurs in a cleavage plane due to the stress normal to the plane. Three-point bending tests were also performed to examine the relationship between the critical stress for thermal shock cracking and the three-point bending strength obtained from small-sized test specimens. (author)

  4. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  5. Thermal shock behaviour of SiC-fibre-reinforced glasses

    International Nuclear Information System (INIS)

    Klug, T.; Reichert, J.; Brueckner, R.

    1992-01-01

    The preparation of two SiC-fibre-reinforced glasses with very different thermal expansion coefficients and glass transition temperatures is described and the influence of long-time temperature and thermal shock behaviour of these composites on the mechanical properties is investigated by means of bending test experiments before and after thermal treatments. It will be shown from experiments and calculations on stresses due to thermal expansion mismatch between fibre and glass matrix that not only best mechanical properties but also best thermal shock behaviour are connected with low tensile intrinsic stresses produced by thermal expansion mismatch during preparation. The thermal shock resistance of the best composite (SiC fibre/DURAN glass) does not show a significant decrease of flexural strength even after 60 shocks from 550 to 25deg C in water, while the bulk glass sample of the same dimension was destroyed by one thermal shock from 350deg C. (orig.) [de

  6. Elastic-plastic fracture mechanics study of thermal shock cracking

    International Nuclear Information System (INIS)

    Hirano, K.; Kobayashi, H.; Nakazawa, H.

    1980-01-01

    This paper describes thermal shock experiments conducted on a nuclear pressure vessel steel (A533 Grade B Class 1), an AISI304 steel and a tool steel (JIS SKD62) using both a new thermal shock test facility and method. Analysis of their quasi-static thermal stress intensity factors is performed on the basis of linear-elastic fracture mechanics; and a thermal shock fracture toughness value, Ksub(tsc) is evaluated. Then elastic-plastic fracture toughness tests are carried out in the same high temperature range of the thermal shock experiment, and a relation between the stretched zone width, SZW, formed as a result of the fatigue precrack tip plastic blunting and the J-integral is clarified. An elastic-plastic thermal shock fracture toughness value, Jsub(tsc), is evaluated from a critical value of the stretched zone width, SZWsub(tsc), at the initiation of the thermal shock cracking by using the relation between SZW and J. The Jsub(tsc) value is compared with an elastic-plastic fracture toughness value, Jsub(Ic), and the difference between these Jsub(tsc) and Jsub(Ic) values is discussed on the basis of fractography. (author)

  7. Thermal shock considerations for the TFCX limiter and first wall

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.

    1983-01-01

    Resistance to thermal shock fracture of limiter and first wall surface material candidates during plasma disruption heating conditions is evaluated. A simple, figure-of-merit type thermal shock parameter which provides a mechanism to rank material candidates is derived. Combining this figure-of-merit parameter with the parameters defining specific heating conditions yields a non-dimensional thermal shock parameter. For values of this parameter below a critical value, a given material is expected to undergo thermal shock damage. Prediction of thermal shock damage with this parameter is shown to exhibit good agreement with test data. Applying this critical parameter value approach, all materials examined in this study are expected to experience thermal shock damage for nominal TFCX plasma disruption conditions. Since the extent of this damage is not clear, tests which explore the range of expected conditions for TFCX are recommended

  8. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  9. Thermal shock problems in a plate

    International Nuclear Information System (INIS)

    Takeuti, Y.; Furukawa, T.

    1981-01-01

    The problems considered are coupled dynamic thermoelastic analysis in a plate. First we try to examine a problem of the coupled dynamic thermal stress problem with small time approximation for the finite region. Next, we treatise both effects individually by pursuing rigorous anaylsis without small time approximation. Finally we consider thermal shock problems in a plate against different values of heat transfer coefficient (Biot's number) for the time. In conclusion, for usual materials, the inertia effect may be disregarded in the pure thermal problems in contrast to the coupling effect which brings small lags in the temperature and thermal stress distributions. For the consideration of the maximum thermal stress problems, Manson's uncoupled quasi-static results give enough approximation to the thermal shock problems without significant error from our numerical results. The analysis is developed by the use of Laplace transforms and several useful graphical illustrations are given. (orig./HP)

  10. Optimizing thermal shock resistance of layered refractories

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Jarno; Kuna, Meinhard [Institute of Mechanics and Fluid Dynamics, Technical University Bergakademie Freiberg, Lampadiusstrasse 4, 09599 Freiberg (Germany)

    2012-06-15

    Severe thermal shocks may cause critical thermal stresses and failure in refractories or ceramic materials. To increase the thermal shock resistance, layered material structures are suggested. In order to optimize properties of these alternative structures, thermo-mechanical simulations are required. In this study, a finite difference method (FDM) is used for solving the partial differential equation of heat conduction with spatially varying parameters. The optimization of the strip's thermal shock resistance is exemplarily done on a 10 layered strip subjected to constant temperature jump on the top surface. Each layer can be set with different porous Al{sub 2}O{sub 3} and MgO ceramics, whose material properties are theoretically determined. In this study, an improved optimization method is developed that consists of a combination and sequence of Monte Carlo simulations and evolution strategies to overcome certain disadvantages of both techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Youn Ho; Lee, Joon Hyun [Pusan National University, Busan (Korea, Republic of); Oh, Jeong Seok; Lee, Koo Hyun [KIMM, Daejeon (Korea, Republic of)

    2009-10-15

    Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and ZrO{sub 2}-8wt%Y{sub 2}O{sub 3} ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until 1000 .deg. C and cool until 20 .deg. C. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of is Al{sub 2}O{sub 3} formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating

  12. Ductile fracture estimation of reactor pressure vessel under thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Sakai, Shinsuke; Okamura, Hiroyuki

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture of a reactor pressure vessel under thermal shock conditions. First, it is shown that the bending moment applied to the cracked section can be evaluated by considering the plastic deformation of the cracked section and the thermal deformation of the shell. As the contribution of the local thermal stress to the J-value is negligible, the J-value under thermal shock can be easily evaluated by using fully plastic solutions for the cracked part. Next, the phenomena of ductile fracture under thermal shock are expressed on the load-versus-displacement diagram which enables us to grasp the transient phenomena visually. In addition, several parametrical surveys are performed on the above diagram concerning the variation of (1) thermal shock conditions, (2) initial crack length, and (3) J-resistance curve (i.e. embrittlement by neutron irradiation). (author)

  13. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock

    Directory of Open Access Journals (Sweden)

    Ai Du

    2018-06-01

    Full Text Available Aerogel materials are recognized as promising candidates for the thermal insulator and have achieved great successes for the aerospace applications. However, the harsh environment on the exoplanet, especially for the tremendous temperature difference, tends to affect the tenuous skeleton and performances of the aerogels. In this paper, an evaluation method was proposed to simulate the environment of exoplanet and study the influence on the fiber-reinforced silica aerogels with different supercritical point drying (SPD technology. Thermal conductivity, mechanical property and the microstructure were characterized for understanding the thermal failure mechanism. It was found that structure and thermal property were significantly influenced by the adsorbed water in the aerogels under the thermal shocks. The thermal conductivity of CO2-SPD aerogel increased 35.5% after the first shock and kept in a high value, while that of the ethanol-SPD aerogel increased only 19.5% and kept in a relatively low value. Pore size distribution results showed that after the first shock the peak pore size of the CO2-SPD aerogel increased from 18 nm to 25 nm due to the shrinkage of the skeleton, while the peak pore size of the ethanol-SPD aerogel kept at ~9 nm probably induced by the spring-back effect. An 80 °C treatment under vacuum was demonstrated to be an effective way for retaining the good performance of ethanol-SPD aerogels under the thermal shock. The thermal conductivity increases of the ethanol-SPD aerogels after 5 shocks decreased from ~30 to ~0% via vacuum drying, while the increase of the CO2-SPD aerogels via the same treatments remains ~28%. The high-strain hardening and low-strain soften behaviors further demonstrated the skeleton shrinkage of the CO2-SPD aerogel.

  14. Thermal Shielding Effects of a Damaged Shock Absorber and an Intact Shock Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    In order to safely transport the radioactive waste arising from the hot test of an ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore, KAERI is developing a shipping package to transport the radioactive waste arising from the ACPF during a hot test. The regulatory requirements for a Type B package are specified in the Korea Most Act 2009-37, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. investigated the thermal protection provided by shock absorbers by using the CAFE computer code. To evaluate the thermal shielding effect of the shock absorber, the thermal test was performed by using a 1/2 scale model with a shock absorber which was damaged by both a 9 m drop test and a 1 m puncture test. For the purpose of comparison, the thermal test was also carried out by using a 1/2 scale model with the intact shock absorber

  15. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Zhou, Qianhong; Dong, Zhiwei; Yang, Wei

    2016-01-01

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.

  16. Surface flaw in a thermally shocked hollow cylinder

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Polvanich, N.; Love, W.J.

    1975-01-01

    The objective of this paper is to illustrate a procedure for estimating the stress intensity factors of a semi-elliptical crack located in the inner or outer surface of a thermally shocked hollow cylinder. The first step in this procedure is to estimate the transient thermal elastic stresses induced by sudden cooling of an uncracked cylinder by numerically evaluating standard heat transfer and thermal stress formulae. The stresses at the location of the crack surface in the uncracked cylinder are eliminated by the method of superposition in order to obtain a stress free crack surface. The stress intensity factors are then determined by a judicious use of two sets of solutions, one set involving stress intensity factors for a semi-elliptical crack in a flat plate and subjected to a polynomial distribution of pressure loading, and another set involving single-edge notched plates with prescribed edge-displacements and single-edge internally or externally notched cylinders with thermal shock loading. The former solutions are determined by the alternating technique in three-dimensional fracture mechanics with a fourth order polynomial pressure distribution on the crack surface where both the front and back surface effects are accounted for. The latter solutions involve two-dimensional finite element solutions of single-edge notched plates with prescribed edge-displacements and single-edge notched cylinders with thermal shock loading. By comparing these two two-dimensional solutions, an estimate of the effect of the cylindrical curvature on an edge-cracked plate is obtained. The combination of these two sets of solutions thus yields an estimate of the stress intensity factor in an internal and external semi-elliptical crack in a thermally shocked cylinder

  17. Thermal shock resistances of a bonding material of C/C composite and copper

    International Nuclear Information System (INIS)

    Kurumada, Akira; Oku, Tatsuo; Kawamata, Kiyohiro; Motojima, Osamu; Noda, Nobuaki; McEnaney, B.

    1997-01-01

    The purpose of this study is to contribute to the development and the safety design of plasma facing components for fusion reactor devices. We evaluated the thermal shock resistance and the thermal shock fracture toughness of a bonding material which was jointed a carbon-fiber-reinforced carbon composite (C/C composite) to oxygen-free copper. We also examined the microstructures of the bonding layers using a scanning electron microscope before and after thermal shock tests. The bonding material did not fracture during thermal shock tests. However, thermal cracks and delamination cracks were observed in the bonding layers. (author)

  18. Thermal shock behaviour of mullite-bonded porous silicon carbide ceramics with yttria addition

    International Nuclear Information System (INIS)

    Ding Shuqiang; Zeng Yuping; Jiang Dongliang

    2007-01-01

    Thermal shock resistance of mullite (3Al 2 O 3 · 2SiO 2 )-bonded porous silicon carbide (SiC) ceramics with 3.0 wt% yttria (Y 2 O 3 ) addition was evaluated by a water-quenching technique. The thermal shock damage was investigated as a function of the quenching temperature, quenching cycles and specimen thickness. The residual flexural strength of the quenched specimens decreases with increasing quenching temperature and specimen thickness due to the larger thermal stress caused by thermal shock. However, quenching cycles at the temperature difference of 1200 deg. C have no effect on the residual strength since the same thermal stress was produced in repeated thermal shock processes. The good thermal shock damage resistance of the specimens is contributed mainly by the low strength and moderate elastic modulus. Moreover, the pores prevent the continuous propagation of cracks and alleviate further damage

  19. Pressurized thermal shock program sponsored by EPRI

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.

    1983-01-01

    The potential for long term neutron embrittlement of reactor vessels has been recognized for a number of years. Reactor vessel thermal shock is not a new concern, but with a growing number of plants approaching their mid-lives, it is a concern that must be understood and dealt with. Recent attention has focused on the performance of vessels during overcooling transients. This concern was designated as Unresolved Safety Issue A-49 by the Nuclear Regulatory Commission in December 1981. The USNRC staff has identified eight overcooling events of concern in U.S. PWRs. The concern is currently limited to Pressurized Water Reactors. The Electric Power Research Institute (EPRI) has supported research on reactor vessel integrity for a number of years and has supported an extensive effort on reactor vessel pressurized thermal shock (PTS) over the last three years. In addition, EPRI has developed a linked set of computer codes to simulate the pressurized thermal shock transients and assess the integrity of the nuclear reactor vessels for various overcooling transients. This paper focuses on the integrated analysis approach being used by EPRI in performing such analysis. (orig.)

  20. Evaluation of thermal shock strengths for graphite materials using a laser irradiation method

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Lee, Young Shin; Kim, Duck Hoi; Park, No Seok; Suh, Jeong; Kim, Jeng O.; Il Moon, Soon

    2004-01-01

    Thermal shock is a physical phenomenon that occurs during the exposure to rapidly high temperature and pressure changes or during quenching of a material. The rocket nozzle throat is exposed to combustion gas of high temperature. Therefore, it is important to select suitable materials having the appropriate thermal shock resistance and to evaluate these materials for rocket nozzle design. The material of this study is ATJ graphite, which is the candidate material for rocket nozzle throat. This study presents an experimental method to evaluate the thermal shock resistance and thermal shock fracture toughness of ATJ graphite using laser irradiation. In particular, thermal shock resistance tests are conducted with changes of specimen thickness, with laser source irradiated at the center of the specimen. Temperature distributions on the specimen surface are detected using type K and C thermocouples. Scanning electron microscope (SEM) is used to observe the thermal cracks on specimen surface

  1. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  2. Numerical evaluation of stress intensity factor for vessel and pipe subjected to thermal shock

    International Nuclear Information System (INIS)

    Kim, Y.W.; Lee, H.Y.; Yoo, B.

    1994-01-01

    The thermal weight function method and the finite element method were employed in the numerical computation of the stress intensity factor for a cracked vessel and the cracked pipe subjected to thermal shock. A wall subjected to thermal shock was analyzed, and it has been shown that the effect of thermal shock on the stress intensity factor is dominant for the crack with small crack length to thickness ratio. Convection at the crack face had an influence on the stress intensity factor in the early stage of thermal shock. (Author)

  3. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  4. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  5. Electrochemical behaviour of a stainless steel coating after thermal fatigue and thermal shocks

    International Nuclear Information System (INIS)

    Boudebane, A.; Darsouni, A.; Chadli, H.; Boudebane, S.

    2012-01-01

    This work aims to study of the influence of thermal fatigue and thermal shock on the corrosion behaviour of coated steel AISI 304L. The coating was welded by TIG welding on specimens in ferritic-pearlitic steel grade AISI 4140. The study concerns three different states of deposit: sensitized, sensitized and strain hardened in surface and no sensitized. We realized electrochemical corrosion in an aqueous solution of NaCl 34 g/l. The corrosion of the specimens were evaluated by comparing the potentiodynamic curves for different states of the coating. Firstly, electrochemical characterization of deposits has shown a localized intergranular corrosion. Furthermore, the increase in the number of cycles of thermal fatigue accelerates the dissolution of deposit. Thermal shocks tend to improve resistance to corrosion. Against, the mechanical treatment of surfaces by burnishing decreases the dissolution rate of deposit cycles in thermal fatigue. (authors)

  6. Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.J. [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Ru, H.Q., E-mail: ruhq@smm.neu.edu.cn [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Zhang, N.; Liang, B. [Key Laboratory of Advanced Materials Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Addition of nano-SiC particles enhances residual strength and critical temperature. Black-Right-Pointing-Pointer Young's modulus decreases with increasing quenching temperature. Black-Right-Pointing-Pointer Linear relationship between residual strength and thermal shock times is obtained. Black-Right-Pointing-Pointer Rougher fracture surfaces in the SiC-AlON composites are observed. - Abstract: Aluminum oxynitride (AlON) has been considered as a potential ceramic material for high-performance structural and advanced refractory applications. Thermal shock resistance is a major concern and an important performance index of high-temperature ceramics. While silicon carbide (SiC) particles have been proven to improve mechanical properties of AlON ceramic, the high-temperature thermal shock behavior was unknown. The aim of this investigation was to identify the thermal shock resistance and underlying mechanisms of AlON ceramic and 8 wt% SiC-AlON composites over a temperature range between 175 Degree-Sign C and 275 Degree-Sign C. The residual strength and Young's modulus after thermal shock decreased with increasing quenching temperature and thermal shock times due to large temperature gradients and thermal stresses caused by abrupt water-quenching. A linear relationship between the residual strength and thermal shock times was observed in both pure AlON and SiC-AlON composites. The addition of nano-sized SiC particles increased both residual strength and critical temperature from 200 Degree-Sign C in the monolithic AlON to 225 Degree-Sign C in the SiC-AlON composites due to the toughening effect, the lower coefficient of thermal expansion and higher thermal conductivity of SiC. The enhancement of the thermal shock resistance in the SiC-AlON composites was directly related to the change of fracture mode from intergranular cracking along with cleavage-type fracture in the AlON to a rougher fracture surface with ridge

  7. Thermal shock effect on Mechanical and Physical properties of pre-moisture treated GRE composite

    Science.gov (United States)

    Chakraverty, A. P.; Panda, A. B.; Mohanty, U. K.; Mishra, S. C.; Biswal, B. B.

    2018-03-01

    Many practical situations may be encountered under which a GFRP (Glass fibre reinforced polymer) composite, during its service life, is exposed to the severities of sudden temperature fluctuations. Moisture absorption of GRE (Glass fibre reinforced epoxy) composites followed by various gradients of temperature fluctuations may cause thermo- mechanical degradation. It is on this context, the hand layed GRE composite samples are exposed to up-thermal shock (-40°C to +50°C) and down-thermal shock (+50°C to -40°C) for various time interval after several periods of moisture (hydrothermal/hygrothermal) conditioning. The thermally shocked GRE specimens are put to 3-point bend test to divulge inter laminar shear strength (ILSS). Least ILSS values are recorded for the samples with maximum period of moisture treatments under with both up-thermal and down-thermal shock conditions. Lower glass transition temperature (Tg) values, as revealed through the low temperature DSC test, are exhibited at maximum durations of both up-thermal and down-thermal shock for the samples with higher periods of hygrothermal/hydrothermal treatments. SEM fractographs of representative GRE specimens after optimum period of moisture treatments and thermal shock show the various modes of failures.

  8. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  9. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  10. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm -2 at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced damages

  11. Radiative shocks with electron thermal conduction

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz.

    1988-01-01

    The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs

  12. On-line monitoring on thermal shock damage of ceramics using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Joon Hyun; Song, Sang Hun

    1999-01-01

    The objective of this paper is to investigate the degree of the thermal shock damage on alumina ceramic using acoustic emission technique. For this purpose, alumina ceramic specimen was heated in the elastic furnace and then was quenched into the water tank. When the specimen was quenched into water tank, a lot of micro-cracks were generated on the surface of specimen due to the thermal shock damage. In this study, acoustic emission technique was used to evaluate the elastic waves generated by the crack initiation and propagation on the surface of specimen. It was found that when the micro-crack was initiated on the surface of specimen, AE signals were the higher in amplitude than those of bubbling effect and crack propagation. A lot of AE events were generated at the first thermal shock, the number of AE events decreased gradually as the thermal shock cycle increased.

  13. Evaluation of thermal shock resistance of cordierite honeycombs

    Indian Academy of Sciences (India)

    A comparative study on thermal shock resistance (TSR) of extruded cordierite honeycombs is presented. TSR is an important property that predicts the life of these products in thermal environments used for automobile pollution control as catalytic converter or as diesel particulate filter. TSR was experimentally studied by ...

  14. Microstructure Evolution and Impedance Spectroscopy Characterization of Thermal Barrier Coating Exposed to Gas Thermal-shock Environment

    Directory of Open Access Journals (Sweden)

    CHEN Wen-long

    2017-10-01

    Full Text Available Gas thermal-shock experiment of thermal barrier coatings (TBCs was carried out in air up to 1250℃ in order to simulate the thermal cycling process of the engine blades during the start heating and shut down cooling. The growth of thermal growth oxide (TGO layer and microstructure evolution of YSZ layer during thermal cycling process were investigated systematically by electrochemical impedance spectroscopy testing and SEM. The results show that the thickness of TGO layer increases when increasing the frequency of thermal cycling, and the impedance response of middle frequencies is more and more remarkable. Meanwhile, initiation and growth of micro-cracks occur in YSZ layer during the gas thermal-shock experiment. The corresponding impedance characterization of YSZ layer after 100 cycles is similar to the as-sprayed sample, indicating that micro-cracks in short time could heal since the YSZ micro-cracks sinter at high temperature. But after 300 cycles, the impedance spectroscopy of YSZ layer is quite different to the as-sprayed sample, with the corresponding impedance of particle-gap of YSZ more and more remarkable with the increase of the thermal-shock times, indicating that non-healing micro-cracks form in the YSZ layer, which may be the main reason to induce the failure of YSZ layer.

  15. The elevated temperature and thermal shock fracture toughnesses of nuclear pressure vessel steel

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kobayashi, Hideo; Nakazawa, Hajime; Nara, Atsushi.

    1979-01-01

    Thermal shock experiments were conducted on nuclear pressure vessel steel A533 Grade B Class 1. Elastic-plastic fracture toughness tests were carried out within the same high temperature range of the thermal shock experiment and the relation between stretched zone width, SZW and J-integral was clarified. An elastic-plastic thermal shock fracture toughness value. J sub(tsc) was evaluated from a critical value of stretched zone width, SZW sub(tsc) at the initiation of thermal shock fracture by using the relation between SZW and J. The J sub(tsc) value was compared with elastic-plastic fracture toughness values, J sub( ic), and the difference between the J sub(tsc) and J sub( ic) values was discussed. The results obtained are summarized as follows; (1) The relation between SZW and J before the initiation of stable crack growth in fracture toughness test at a high temperature can be expressed by the following equation regardless of test temperature, SZW = 95(J/E), where E is Young's modulus. (2) Elevated temperature fracture toughness values ranging from room temperature to 400 0 C are nearly constant regardless of test temperature. It is confirmed that upper shelf fracture toughness exists. (3) Thermal shock fracture toughness is smaller than elevated temperature fracture toughness within the same high temperature range of thermal shock experiment. (author)

  16. Experimental and numerical studies of various thermal sleeves subjected to severe cyclic thermal shocks

    International Nuclear Information System (INIS)

    Masson, J.C.; Moinereau, D.

    1990-01-01

    During the first operating years of nuclear power plants of different countries, damage was encountered on thermal sleeves used as nozzle protection. Following this discovery studies were initiated to determine the causes and to find solutions. At first a problem of vibration was found and easily solved by reducing gaps and reinforcing the welding of the sleeves. But preliminary tests with cyclic thermal shocks showed a risk of fatigue crack initiation and propagation both in the sleeve fixation and in the nozzle. Therefore a large research and development program was led principally by EDF laboratories of Les Renardieres, to demonstrate the absence of nocivity of thermal shocks during the plants life time [fr

  17. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  18. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    SI Tingzhi; LIU Ning; ZHANG Qingan; YOU Xianqing

    2008-01-01

    The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt. % TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (N) on fatigue crack growth (Δα). The mechanical properties and thermal fatigue resistance of TiC/Al2O3 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.

  19. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  20. Thermal shock test of TiC and graphite

    International Nuclear Information System (INIS)

    Shirakawa, H.; Okamura, J.; Son, P.; Miyake, M.

    1989-01-01

    Thermal shock tests were performed by pulse electron beam heating on chemically vapor deposited coatings of TiC on Poco graphite, bulk TiC, and several kinds of isotropic graphite. The specimens were heated at various power densities (10-45 MW/m 2 ) for various pulse durations (1-2 s) to examine the dependence of thermal failures on heating conditions. The TiC coating on graphite suffered cracking, surface melting and evaporation by the thermal pulse. The surface melting limit, defined as F τ 1/2 , where F is the minimum power density that causes surface melting for a specified pulse duration τ, was approximately 48 MWs 1/2 /m 2 for the TiC coating. The combined-Carbon/Titanium ratio of the coating after electron beam heating decreased with increasing power density and pulse duration. The bulk TiC specimens were so brittle that they fractured at heat load conditions where the coating showed no damage. The graphite specimens showed sublimation as a principal damage mechanism by the thermal pulse, and the sublimation weight loss decreased with increasing the thermal conductivity of the specimen. It was confirmed that the TiC coating on graphite had favorable resistance to thermal shock as compared to the bulk TiC and that graphite with high thermal conductivity is promising material as a high heat flux component. (orig.)

  1. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    Science.gov (United States)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  2. Pressurized Thermal Shock, Pts

    International Nuclear Information System (INIS)

    Boyd, C.

    2008-01-01

    Pressurized Thermal Shock (Pts) refers to a condition that challenges the integrity of the reactor pressure vessel. The root cause of this problem is the radiation embrittlement of the reactor vessel. This embrittlement leads to an increase in the reference temperature for nil ductility transition (RTNDT). RTNDT can increase to the point where the reactor vessel material can loose fracture toughness during overcooling events. The analysis of the risk of having a Pts for a specific plant is a multi-disciplinary problem involving probabilistic risk analysis (PRA), thermal-hydraulic analysis, and ultimately a structural and fracture analysis of the vessel wall. The PRA effort involves the postulation of overcooling events and ultimately leads to an integrated risk analysis. The thermal-hydraulic effort involves the difficult task of predicting the system behavior during a postulated overcooling scenario with a special emphasis on predicting the thermal and mechanic loadings on the reactor pressure vessel wall. The structural and fracture analysis of the reactor vessel wall relies on the thermal-hydraulic conditions as boundary conditions. The US experience has indicated that medium and large diameter primary system breaks dominate the risk of Pts along with scenarios that involve a stuck open valve (and associated system cooldown) that recloses resulting in system re-pressurization while the vessel wall is cool.

  3. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  4. Thermal shock properties of 2D-SiCf/SiC composites

    International Nuclear Information System (INIS)

    Lee, Sang Pill; Lee, Jin Kyung; Son, In Soo; Bae, Dong Su; Kohyama, Akira

    2012-01-01

    This paper dealt with the thermal shock properties of SiC f /SiC composites reinforced with two dimensional SiC fabrics. SiC f /SiC composites were fabricated by a liquid phase sintering process, using a commercial nano-size SiC powder and oxide additive materials. An Al 2 O 3 –Y 2 O 3 –SiO 2 powder mixture was used as a sintering additive for the consolidation of SiC matrix region. In this composite system, Tyranno SA SiC fabrics were also utilized as a reinforcing material. The thermal shock test for SiC f /SiC composites was carried out at the elevated temperature. Both mechanical strength and microstructure of SiC f /SiC composites were investigated by means of optical microscopy, SEM and three point bending test. SiC f /SiC composites represented a dense morphology with a porosity of about 8.2% and a flexural strength of about 160 MPs. The characterization of SiC f /SiC composites was greatly affected by the history of cyclic thermal shock. Especially, SiC f /SiC composites represented a reduction of flexural strength at the thermal shock temperature difference higher than 800 °C.

  5. Thermal shock testing of TiC-coated molybdenum with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1985-07-01

    Thermal shock testing of molybdenum samples, on which TiC is coated by TP-CVD and CVD methods, has been made by using a pulsed hydrogen beam. The power density applied was 2 kw/cm 2 . The test results showed that TiC coatings did not exfoliate until the melting of the substrate and showed good adhesion under the thermal shock condition. (author)

  6. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  7. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  8. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  9. A comparative analysis of reticular crack on ceramic plate driven by thermal shock

    Science.gov (United States)

    Xu, XiangHong; Sheng, ShiLong; Tian, Cheng; Yuan, WenJun

    2016-07-01

    Reticular crack is generally found on the surface of ceramic material that has been subjected to a thermal-shock condition. In the present study, a quantitative effect of thermal shock and quench temperature has been studied and investigated. Experimental tests were carried out to characterize the reticular crack that has been found in the Ge Kiln, which is a famous art of the ancient Chinese culture. After comparative analysis between thermal-shock cracks and the glaze crack patterns of the Ge Kiln porcelain, it is found that this study is expected to provide a powerful tool for recurrence of the long-lost firing and cooling process of the Ge Kiln porcelain.

  10. Pressurized thermal shock evaluation of RPV-Stade

    International Nuclear Information System (INIS)

    Blauel, J.G.; Hodulak, L.; Siegele, D.; Nagel, G.; Hertlein, D.

    1997-01-01

    The presentation overviews the following issues: thermal shock analysis (thermohydraulics, temperatures and stresses, crack tip field parameters, cladding influence, methodology of fracture mechanics assessment); EOL safety evaluation for RPV Stade (initial conditions and input data, fracture toughness, load path diagrams, warm prestress effect, crack arrest, remaining load carrying capacity)

  11. Pressurized thermal shock evaluation of RPV-Stade

    Energy Technology Data Exchange (ETDEWEB)

    Blauel, J G; Hodulak, L; Siegele, D [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg im Breisgau (Germany); Nagel, G [PreussenElektra AG, Hannover (Germany); Hertlein, D [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-09-01

    The presentation overviews the following issues: thermal shock analysis (thermohydraulics, temperatures and stresses, crack tip field parameters, cladding influence, methodology of fracture mechanics assessment); EOL safety evaluation for RPV Stade (initial conditions and input data, fracture toughness, load path diagrams, warm prestress effect, crack arrest, remaining load carrying capacity).

  12. Applications of the fundamental solution for a thermal shock on a finite orthotropic cylindrical thin shell

    International Nuclear Information System (INIS)

    Woo, H.K.; Huang, C.L.D.

    1979-01-01

    The authors investigate the temperature variations in a thin cylindrical shell of graphite materials with finite length, subjected to an instantaneous thermal shock. The solutions for the line source and the area source of thermal shock are obtained. Quasi-linear theory for heat transfer is assumed. Grades ATJ and ZTA graphite are used in the numerical examples. As is expected, the orthotropically thermal properties significantly affect the temperature variations in the shell due to the thermal shocks. (Auth.)

  13. Influence of recrystallization on thermal shock resistance of various tungsten grades

    International Nuclear Information System (INIS)

    Uytdenhouwen, I.; Decreton, M.; Hirai, T.; Linke, J.; Pintsuk, G.; Oost, G. van

    2007-01-01

    Thermal shock resistance of various tungsten grades (different manufacturing technologies and heat treatments) was examined under plasma disruption conditions, especially in the cracking regime, i.e. below the melting threshold. The tests have been simulated with the electron beam test facility JUDITH. The comparison of the thermal shock resistance showed that sintered tungsten appeared to be better than the deformed tungsten material and clear degradation after recrystallization was found. Damage processes linked to the mechanical properties of W are discussed

  14. Induction of thermal shock proteins and changes in radiosensitivity after heat treatment of Bombyx mori L. embryos

    International Nuclear Information System (INIS)

    Agaev, F.A.

    1993-01-01

    The method of gel-electrophoresis was used to study thermal shock protein synthesis in Bombyx mori embryos exposed to a mixture of heat and gamma-radiation. Induction of thermal shock protein synthesis was not inhibited by gamma-radiation. It is suggested that thermal shock proteins are involved embryo radiosensitivity modification

  15. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    Directory of Open Access Journals (Sweden)

    Pošarac Milica

    2009-01-01

    Full Text Available The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4 obtained by the modified glycine nitrate procedure (MGNP. Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase between yttria and alumina is formed, which improved thermal shock properties of the spinel refractories. Also densification of samples is enhanced by yttria addition.

  16. Evaluation of the of thermal shock resistance of a castable containing andalusite aggregates by thermal shock cycles; Avaliacao da resistencia ao dano por choque termico por ciclagem de um concreto refratario contendo agregados de andaluzita

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G.C.R.; Santos, E.M.B.; Ribeiro, S., E-mail: girribeiro@yahoo.com.br [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de. Departamento de Engenharia de Materiais; Resende, W.S. [Industrias Brasileiras de Artigos Refratarios (IBAR), Lorena, SP (Brazil); Rodrigues, J.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2011-07-01

    The thermal shock resistance of refractory materials is one of the most important characteristics that determine their performance in many applications, since abrupt and drastic differences in temperature can damage them. Resistance to thermal shock damage can be evaluated based on thermal cycles, i.e., successive heating and cooling cycles followed by an analysis of the drop in Young's modulus occurring in each cycle. The aim of this study was to evaluate the resistance to thermal shock damage in a commercial refractory concrete with andalusite aggregate. Concrete samples that were sintered at 1000 deg C and 1450 deg C for 5 hours to predict and were subjected to 30 thermal shock cycles, soaking in the furnace for 20 minutes at a temperature of 1000 deg C, and subsequent cooling in circulating water at 25 deg C. The results showed a decrease in Young's modulus and rupture around 72% for samples sintered at 1000 ° C, and 82% in sintered at 1450 ° C. The refractory sintered at 1450 deg C would show lower thermal shock resistance than the refractory sintered at 1000 deg C. (author)

  17. Pressurized-thermal-shock technology

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1991-01-01

    It was recognized at the time the original Issues on Pressurized Thermal Shock (IPTS) studies were conducted that distinct vertical plumes of cooling water form beneath the cold leg inlet nozzles during those particular transients that exhibit fluid/thermal stratification. The formation of these plumes (referred to as thermal streaming) induces a time-dependent circumferential temperature variation on the inner surface of the Reactor Pressure Vessel (RPV) wall that creates an axial stress component. This axial stress component is in addition to the axial stress components induced by time-dependent radial temperature variation through the wall thickness and the time-dependent pressure transient. This additional axial stress component will result in a larger axial stress resultant that results in a larger stress-intensity factor acting on circumferential flaws, thus reducing the fracture margin for circumferential flaws. Although this was recognized at the time of the original IPTS study, the contribution appeared to be relatively small; therefore, it was neglected. The original IPTS studies were performed with OCA-P, a computer program developed at ORNL to analyze the cleavage fracture response of a nuclear RPV subjected to PTS loading. OCA-P is a one-dimensional (1-D) finite-element code that analyzes the stresses and stress-intensity factors (axial and tangential) resulting from the pressure and the radial temperature variation through the wall thickness only. The HSST Program is investigating the potential effects of thermal-streaming-induced stresses in circumferential welds on the reactor vessel PTS analyses. The initial phase of this investigation focused on an evaluation of the available thermal-hydraulic data and analyses results. The objective for the initial phase of the investigation is to evaluate thermal-streaming behavior under conditions relevant to the operation of U.S. PWRs and chracterize any predicted thermal-streaming plumes

  18. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  19. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Science.gov (United States)

    Zhang, Xiaoxin; Yan, Qingzhi; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-01

    The potassium doped tungsten (W-K) grade was achieved via swaging + rolling process. The swaged + rolled W-K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W-K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m2 in a step of 0.22 GW/m2. The cracking threshold was in the range of 0.44-0.66 GW/m2. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66-1.1 GW/m2 basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m2 up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  20. Thermal shock studies associated with injection of emergency core coolant in pressurized water reactors

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bolt, S.E.; Iskander, S.K.

    1977-01-01

    Studies to determine the accuracy of calculational techniques for predicting crack initiation and arrest in PWR vessels due to thermal shock from ECC injection are described. The reference calculational model is reviewed, the experimental program and facilities are described, and some thermal shock experiments and results are discussed

  1. STRESSES IN CEMENT-CONCRETE PAVEMENT SURFACING CAUSED BY THERMAL SHOCK

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available It is necessary to mention specially so-called thermal shock among various impacts on highway surface. Ice layer is formed on a concrete surface during the winter period of pavement surfacing operation. Sodium chloride which lowers temperature of water-ice transition temperature and causes ice thawing at negative temperature is usually used to remove ice from the pavement surface. Consequently, temperature in the concrete laying immediately under a thawing ice layer is coming down with a run that leads to significant stresses. Such phenomenon is known as a thermal shock with a meaning of local significant change in temperature. This process is under investigation, it has practical importance for an estimation of strength and longevity of a cement-concrete pavement surfacing and consequently it is considered as rather topical issue. The purpose of investigations is to develop a mathematical model and determination of shock blow permissible gradients for a cementconcrete road covering. Finite difference method has been used in order to determine stressed and deformed condition of the cement-concrete pavement surfacing of highways. A computer program has been compiled and it permits to carry out calculation of a road covering at various laws of temperature distribution in its depth. Regularities in distribution of deformation and stresses in the cement-concrete pavement surfacing of highways at thermal shock have been obtained in the paper. A permissible parameter of temperature distribution in pavement surfacing thickness has been determined in the paper. A strength criterion based on the process of micro-crack formation and development in concrete has been used for making calculations. It has been established that the thermal shock causes significant temperature gradients on the cement-concrete surfacing that lead to rather large normal stresses in the concrete surface layer. The possibility of micro-crack formation in a road covering is

  2. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    International Nuclear Information System (INIS)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. the applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing

  3. Variable flaw shape analysis for a reactor vessel under pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Yang, C.Y.; Bamford, W.H.

    1984-01-01

    A study has been conducted to characterize the response of semi-elliptic surface flaws to thermal shock conditions which can result from safety injection actuation in nuclear reactor vessels. A methodology was developed to predict the behavior of a flaw during sample pressurized thermal shock events. The effects of a number of key variables on the flaw propagation were studied, including fracture toughness of the material and its gradient through the thickness, irradiation effects, effects of warm prestressing, and effects of the stainless steel cladding. The results of these studies show that under thermal shock loading conditions the flaw always tends to elongate along the vessel inside surface from the initial aspect ratio. However, the flaw shape always remains finite rather than becoming continuously long, as has often been assumed in earlier analyses. The final shape and size of the flaws were found to be rather strongly dependent on the effects of warm prestressing and the distribution of neutron flux. The improved methodology results in a more accurate and more realistic treatment of flaw shape changes during thermal shock events and provides the potential for quantifying additional margins for reactor vessel integrity analyses

  4. Thermal-shock experiments with flawed clad cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bryson, J.W.; Alexander, D.J.

    1989-01-01

    The life expectancy of LWR pressure vessels is influenced by a reduction in fracture toughness that is the result of radiation damage. As the fracture toughness decreases, the probability of propagation of preexisting flaws (sharp, crack-like defects) in the wall of the vessel increases. The probability of propagation is also influenced by the type of loading condition and the type of flaws that might exist. A loading condition of particular concern is referred to as pressurized thermal shock (PTS), and a flaw of particular concern for PTS loading conditions is a shallow surface flaw. A sudden cooling (thermal shock) of the inner surface of the vessel results in relatively high tensile stresses and relatively low fracture toughness at the inner surface. In addition, the attenuation of the fast-neutron fluence also results in relatively low fracture toughness at the inner surface. Under some circumstances, this combination of high stress and low toughness at the inner surface makes it possible for very shallow surface flaws to propagate. The PTS issue has been under investigation for quite some time, but thus far possible beneficial effects, other than thermal resistance, of the cladding on the inner surface of the vessel have not been included in the analysis of flaw behavior. This document discusses this effect of cladding on surface flaws and crack propagation

  5. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  6. Mechanical Properties and Thermal Shock Resistance Analysis of BNNT/Si3N4 Composites

    Science.gov (United States)

    Wang, Shouren; Wang, Gaoqi; Wen, Daosheng; Yang, Xuefeng; Yang, Liying; Guo, Peiquan

    2018-04-01

    BNNT/Si3N4 ceramic composites with different weight amount of BNNT fabricated by hot isostatic pressing were introduced. The mechanical properties and thermal shock resistance of the composites were investigated. The results showed that BNNT-added ceramic composites have a finer and more uniform microstructure than that of BNNT-free Si3N4 ceramic because of the retarding effect of BNNT on Si3N4 grain growth. The addition of 1.5 wt.% BNNT results in simultaneous increase in flexural strength, fracture toughness, and thermal shock resistance. The analysis of the results indicates that BNNT brings many thermal transport channels in the microstructure, increasing the efficiency of thermal transport, therefore results in increase of thermal shock resistance. In addition, BNNT improves the residual flexural strength of composites by crack deflection, bridging, branching and pinning, which increase the crack propagation resistance.

  7. Non-local modelling of cyclic thermal shock damage including parameter estimation

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by

  8. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  9. Microstructural effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories

    International Nuclear Information System (INIS)

    Huger, M; Tessier-Doyen, N; Michaud, P; Chotard, T; Ota, T

    2011-01-01

    This work is devoted to the study of thermomechanical properties of several industrial and model refractory materials in relation with the evolution of their microstructure during thermal treatments. The aim is, in particular, to highlight the role of thermal expansion mismatches existing between phases which can induce damage at local scale. The resulting network of microcracks is well known to improve thermal shock resistance of materials, since it usually involves a significant decrease in elastic properties. Moreover, this network of microcracks can strongly affect the thermal expansion at low temperature and the stress-strain behaviour in tension. Even if these two last aspects are not so much documented in the literature, they certainly also constitute key points for the improvement of the thermal shock resistance of refractory materials. Evolution of damage during thermal cycling has been monitored by a specific ultrasonic device at high temperature. Beyond its influence on Young's modulus, this damage also allows to decrease the thermal expansion and to improve the non-linear character of the stress-strain curves determined in tension. The large increase in strain to rupture, which results from this non-linearity, is of great interest for thermal shock application.

  10. Some numerical approaches of creep, thermal shock, damage

    Indian Academy of Sciences (India)

    Creep can be satisfactorily described by a kinematic hardening, and exhibits different creep rates in tension and compression. Concerning the thermal shock of materials, the numerical approach depends whether or not the material is able to develop a sprayed out damage, leading to micro- or macro-cracking. Finally ...

  11. Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses

    Science.gov (United States)

    Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.

  12. Thermal shock behaviour of mullite-cordierite refractory materials

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Leonelli, C.; Romagnoli, M.; Pellacani, G. C.; Veronesi, P.; Dlouhý, Ivo; Boccaccini, A. R.

    2007-01-01

    Roč. 106, č. 3 (2007), s. 142-148 ISSN 1743-6753 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : refraktory materials * thermal shock * fracutre toughness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.074, year: 2007

  13. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    Science.gov (United States)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  14. Experimental analysis of the evolution of thermal shock damage using transit time measurement of ultrasonic waves

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2009-01-01

    Thermal shock is a principal cause of catastrophic wear of the refractory lining of high temperature installations in metal making processes. To investigate thermal shock experimentally with realistic and reproducible heat transfer conditions, chamotte and corund refractory samples of ambient

  15. 3-D thermal weight function method and multiple virtual crack extension technique for thermal shock problems

    International Nuclear Information System (INIS)

    Lu Yanlin; Zhou Xiao; Qu Jiadi; Dou Yikang; He Yinbiao

    2005-01-01

    An efficient scheme, 3-D thermal weight function (TWF) method, and a novel numerical technique, multiple virtual crack extension (MVCE) technique, were developed for determination of histories of transient stress intensity factor (SIF) distributions along 3-D crack fronts of a body subjected to thermal shock. The TWF is a universal function, which is dependent only on the crack configuration and body geometry. TWF is independent of time during thermal shock, so the whole history of transient SIF distributions along crack fronts can be directly calculated through integration of the products of TWF and transient temperatures and temperature gradients. The repeated determinations of the distributions of stresses (or displacements) fields for individual time instants are thus avoided in the TWF method. An expression of the basic equation for the 3-D universal weight function method for Mode I in an isotropic elastic body is derived. This equation can also be derived from Bueckner-Rice's 3-D WF formulations in the framework of transformation strain. It can be understood from this equation that the so-called thermal WF is in fact coincident with the mechanical WF except for some constants of elasticity. The details and formulations of the MVCE technique are given for elliptical cracks. The MVCE technique possesses several advantages. The specially selected linearly independent VCE modes can directly be used as shape functions for the interpolation of unknown SIFs. As a result, the coefficient matrix of the final system of equations in the MVCE method is a triple-diagonal matrix and the values of the coefficients on the main diagonal are large. The system of equations has good numerical properties. The number of linearly independent VCE modes that can be introduced in a problem is unlimited. Complex situations in which the SIFs vary dramatically along crack fronts can be numerically well simulated by the MVCE technique. An integrated system of programs for solving the

  16. Pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Whitman, G.D.; McCulloch, R.W.

    1982-01-01

    The primary objective of the ORNL pressurized-thermal-shock (PTS) experiments is to verify analytical methods that are used to predict the behavior of pressurized-water-reactor vessels under these accident conditions involving combined pressure and thermal loading. The criteria on which the experiments are based are: scale large enough to attain effective flaw border triaxial restraint and a temperature range sufficiently broad to produce a progression from frangible to ductile behavior through the wall at a given time; use of materials that can be completely characterized for analysis; stress states comparable to the actual vessel in zones of potential flaw extension; range of behavior to include cleavage initiation and arrest, cleavage initiation and arrest on the upper shelf, arrest in a high K/sub I/ gradient, warm prestressing, and entirely ductile behavior; long and short flaws with and without stainless steel cladding; and control of loads to prevent vessel burst, except as desired. A PTS test facility is under construction which will enable the establishment and control of wall temperature, cooling rate, and pressure on an intermediate test vessel (ITV) in order to simulate stress states representative of an actual reactor pressure vessel

  17. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    International Nuclear Information System (INIS)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee

    2015-01-01

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  18. Fracture-mechanics data deduced from thermal-shock and related experiments with LWR pressure-vessel material

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Canonico, D.A.; Iskander, S.K.; Bolt, S.E.; Holz, P.P.; Nanstad, R.K.; Stelzman, W.J.

    1982-01-01

    Pressurized water reactors (PWRs) are susceptible to certain types of hypothetical accidents that can subject the reactor pressure vessel to severe thermal shock, that is, a rapid cooling of the inner surface of the vessel wall. The thermal-shock loading, coupled with the radiation-induced reduction in the material fracture toughness, introduces the possibility of propagation of preexistent flaws and what at one time were regarded as somewhat unique fracture-oriented conditions. Several postulated reactor accidents have been analyzed to discover flaw behavior trends; seven intermediate-scale thermal-shock experiments with steel cylinders have been conducted; and corresponding materials characterization studies have been performed. Flaw behavior trends and related fracture-mechanics data deduced from these studies are discussed

  19. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  20. Thermal-hydraulic analyses of pressurized-thermal-shock-induced vessel ruptures

    International Nuclear Information System (INIS)

    Dobranich, D.

    1982-05-01

    A severe overcooling transient was postulated to produce vessel wall temperatures below the nil-ductility transition temperature which in conjunction with system repressurization, led to vessel rupture at the core midplane. Such transients are referred to as pressurized-thermal-shock transients. A wide range of vessel rupture sizes were investigated to assess the emergency system's ability to cool the fuel rods. Ruptures greater than approximately 0.015 m 2 produced flows greater than those of the emergency system and resulted in core uncovery and subsequent core damage

  1. Behavior of deep flaws in a thick-wall cylinder under thermal shock loading

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1979-01-01

    Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock

  2. Thermal analysis of a mix up sodium tank and its ebb pipeline for SS-050 circuit during a thermal shock

    International Nuclear Information System (INIS)

    Jesus Miranda, C.A. de; Gebrim, A.N.

    1988-12-01

    In this work a thermo-hydraulic model was developed in order to obtain the sodium temperature time history between the mixup tank (TM) and the drain tank of the SS-050 sodium test loop. Results are presented relative to a thermal shock whith initial and final sodium inlet temperature of 600 0 C and 400 0 C respectively, with a thermal gradient of-200 0 C/s. This sodium loop will be briefly installed in the IEN/RJ area. From the sodium temperature time-history during the thermal shock transient the temperature field for the walls of the TM bottom and outlet nozzle is obtained. (author) [pt

  3. Discrimination of Thermal versus Mechanical Effects of Shock on Rock Magnetic Properties of Spherically Shocked up to 10-160 GPa Basalt and Diabase

    Science.gov (United States)

    Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.

    2016-12-01

    Understanding how shock waves generated during hypervelocity impacts affect rock magnetic properties is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Laboratory simulations of impacts show that ultra-high shocks may induce substantial post-shock heating of the target material. At high pressures (>10 GPa), shock heating occurs in tandem with mechanical effects, such as grain fracturing and creation of crystallographic defects and dislocations within magnetic grains. This makes it difficult to conclude whether shock-induced changes in the rock magnetic properties of target materials are primarily associated with mechanical or thermal effects. Here we present novel experimental methods to discriminate between mechanical and thermal effects of shock on magnetic properties and illustrate it with two examples of spherically shocked terrestrial basalt and diabase [1], which were shocked to pressures of 10 to >160 GPa, and investigate possible explanations for the observed shock-induced magnetic hardening (i.e., increase in remanent coercivity Bcr). The methods consist of i) conducting extra heating experiments at temperatures resembling those experienced during high-pressure shock events on untreated equivalents of shocked rocks (with further comparison of Bcr of shocked and heated samples) and ii) quantitative comparison of high-resolution first-order reversal curve (FORC) diagrams (field step: 0.5-0.7 mT) for shocked, heated and untreated specimens. Using this approach, we demonstrated that the shock-induced coercivity hardening in our samples is predominantly due to solid-state, mechanical effects of shock rather than alteration associated with shock heating. Indeed, heating-induced changes in Bcr in the post-shock temperature range were minor. Visual inspection of FORC contours (in addition to detailed analyses) reveals a stretching of the FORC distribution of shocked sample towards higher coercivities

  4. Shock wave collisions and thermalization in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling. (author)

  5. Strain measurements during pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  6. A new method for testing thermal shock resistance properties of soapstone – Effects of microstructures and mineralogical variables

    Directory of Open Access Journals (Sweden)

    A. Huhta

    2016-09-01

    Full Text Available Soapstone industry utilizes different types of soapstone mainly as a construction material for fireplaces. In this application soapstone has to meet different temperature requirements in different parts of fireplaces. Mineralogical and structural information is needed for placing an appropriate type of soapstone in an appropriate position in the fireplace construction. This allows employment of higher temperatures resulting in more particulate-free combustion, which makes it possible for soapstone industry to develop more efficient and environmentally friendly fireplaces. Of many soapstone types, which differ from each other in their chemical composition and thermal properties, carbonate soapstone and its microstructural variations were investigated in this study. A new method was developed to measure thermal shock resistant of natural stones. By exposing carbonate soapstone samples of different textural types to rapid temperature changes, it was possible to determine the parameters that affect the capacity of the rock to resist thermal shock. The results indicate that the type of microtexture is an important factor in controlling the thermal shock resistance of carbonate soapstone. The soapstone samples with a high thermal shock resistance show deformation textures, such as crenulation cleavage and S/C mylonite. A strong negative correlation was observed between the thermal shock resistance and length of cleavage domains in foliated rocks. Also a slight elevation in the iron concentration of talc and magnesite was discovered to improve the thermal shock resistance of carbonate soapstone. Attention should especially be paid to the length and planarity of cleavage domains of spaced foliation.

  7. Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Pikkarainen, T.; Tourunen, A.; Rasanen, M.; Jantti, T. [VTT Technical Research Center, Jyvaskyla (Finland)

    2008-11-15

    Fragmentation of limestone due to thermal shock and calcination in a fluidised bed was studied through experiments and modelling. The time for heating was estimated by model calculations and the time for calcination by measurements. Fragmentation due to thermal shock was carried out by experiments in a CO{sub 2} atmosphere in order to prevent the effect of calcination. It was found to be much less than fragmentation due to calcination. Average particle sizes before and after fragmentation are presented for several types of limestone. The effects of particle size and gas composition on the primary fragmentation were studied through experiments. Increasing the fluidisation velocity increased the tendency to fragment. The evolution of the particle size distribution (PSD) of limestone particles due to thermal shock and during calcination (or simultaneous calcination and sulphation) were calculated using a population balance model. Fragmentation due to thermal shock is treated as an instantaneous process. The fragmentation frequency during calcination is presented as exponentially decaying over time. In addition to the final PSD, this model also predicts the PSD during the calcination process. The fragmentation was practically found to end after 10 min. Furthermore. a population balance method to calculate the particle size distribution and amount of limestone in fluidised beds in dynamic and steady state, when feeding history is known, is presented.

  8. Pressurized Thermal Shock Analysis for OPR1000 Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    The study provides a brief understanding of the analysis procedure and techniques using ANSYS, such as the acceptance criteria, selection and categorization of events, thermal analysis, structural analysis including fracture mechanics assessment, crack propagation and evaluation of material properties. PTS may result from instrumentation and control malfunction, inadvertent steam dump, and postulated accidents such as smallbreak (SB) LOCA, large-break (LB) LOCA, main steam line break (MSLB), feedwater line breaks and steam generator overfill. In this study our main focus is to consider only the LB LOCA due to a cold leg break of the Optimized Power Reactor 1000 MWe (OPR1000). Consideration is given as well to the emergency core cooling system (ECCS) specific sequence with the operating parameters like pressure, temperature and time sequences. The static structural and thermal analysis to investigate the effects of PTS on RPV is the main motivation of this study. Specific surface crack effects and its propagation is also considered to measure the integrity of the RPV. This study describes the procedure for pressurized thermal shock analysis due to a loss of coolant accidental condition and emergency core cooling system operation for reactor pressure vessel.. Different accidental events that cause pressurized thermal shock to nuclear RPV that can also be analyzed in the same way. Considering the limitations of low speed computer only the static analysis is conducted. The modified LBLOCA phases and simplified geometry can is utilized to analyze the effect of PTS on RPV for general understanding not for specific specialized purpose. However, by integrating the disciplines of thermal and structural analysis, and fracture mechanics analysis a clearer understanding of the total aspect of the PTS problem has resulted. By adopting the CFD, thermal hydraulics, uncertainties and risk analysis for different type of accidental conditions, events and sequences with proper

  9. Molecular dynamics of shock waves in one-dimensional chains. II. Thermalization

    International Nuclear Information System (INIS)

    Straub, G.K.; Holian, B.L.; Petschek, R.G.

    1979-01-01

    The thermalization behavior behind a shock front in one-dimensional chains has been studied in a series of molecular-dynamics computer experiments. We have found that a shock wave generated in a chain initially at finite temperature has essentially the same characteristics as in a chain initially at zero temperature. We also find that the final velocity distribution function for particles behind the shock front is not the Maxwell-Boltzmann distribution for an equilibrium system of classical particles. For times long after the shock has passed, we propose a nonequilibrium velocity distribution which is based upon behavior in the harmonic and hard-rod limits and agrees with our numerical results. Temperature profiles for both harmonic and anharmonic chains are found to exhibit a long-time tail that decays inversely with time. Finally, we have run a computer experiment to generate what qualitatively resembles solitons in Toda chains by means of shock waves

  10. Thermal shock fracture of graphite armor plate under the heat load of plasma disruption

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Seki, Masahiro; Ohmori, Junji

    1989-01-01

    Experiments on the thermal shock brittle fracture of graphite plates were performed. Thermal loading which simulated a plasma disruption was produced by an electron beam facility. Pre-cracks produced on the surface propagated to the inside of the specimen even if the thermal stress on the surface was compressive. Two mechanisms are possible to produce tensile stress around the crack tip under thermal shock conditions. Temperature, thermal stress, and the stress intensity factor for the specimen were analyzed based on the finite element method for various heating conditions. The trend of experimental results under the asymmetric heating agrees qualitatively with the analytical results. This phenomenon is important for the design of plasma facing components made of graphite. Establishment of a lifetime prediction procedure including fatigue, fatigue crack growth, and brittle fracture is needed for graphite armors. (orig.)

  11. Comparison of the thermal shock performance of different tungsten grades and the influence of microstructure on the damage behaviour

    International Nuclear Information System (INIS)

    Wirtz, M; Linke, J; Pintsuk, G; Singheiser, L; Uytdenhouwen, I

    2011-01-01

    The thermal shock performances of two new tungsten grades with 1 and 5 wt% of tantalum were characterized with the electron beam facility JUDITH 1. As a reference material, ultra-high-purity tungsten (W-UHP) with a purity of 99.9999 wt% was used. The induced thermal shock crack networks and surface modifications were analysed by a scanning electron microscope, light microscopy and laser profilometry. Damage and cracking thresholds were defined for all materials as a function of absorbed power density and base temperature. The materials showed significantly different thermal shock behaviour, which is, among others, expressed by differences in cracking patterns, i.e. crack distance and depth. These results allow us to quantify the influence of the materials' mechanical and thermal properties on the thermal shock performance. Furthermore, the specific grain structure of the materials has a significant influence on crack propagation towards the bulk material.

  12. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  13. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  14. An alternative method for performing pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Bishop, B.A.; Meyer, T.A.; Carter, R.G.; Gamble, R.M.

    1997-01-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a c and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab

  15. An alternative method for performing pressurized thermal shock analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B A; Meyer, T A [Westinghouse Energy Systems, Pittsburgh, PA (United States); Carter, R G [Electric Power Research Inst., Charlotte, NC (United States); Gamble, R M [Sartrex Corp., Rockville, MD (United States)

    1997-09-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a{sub c} and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab.

  16. Thermal shock behavior of W-ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation

    Science.gov (United States)

    Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-02-01

    The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.

  17. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  18. High thermal shock resistance of the hot rolled and swaged bulk W–ZrC alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.M.; Liu, R.; Miao, S.; Yang, X.D. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T., E-mail: zhangtao@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F.; Wang, X.P. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Lian, Y.Y. [Southwestern Institute of Physics, Chengdu (China); Liu, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    The thermal shock (single shot) resistance and mechanical properties of the W–0.5wt% ZrC (WZC) alloys manufactured by ordinary sintering followed by swaging or rolling process were investigated. No cracks or surface melting were detected on the surface of the rolled WZC alloy plates after thermal shock at a power density of 0.66 GW/m{sup 2} for 5 ms, while primary intergranular cracks appear on the surface of the swaged WZC samples after thermal shock at a power density of 0.44 GW/m{sup 2} for 5 ms. Three point bending tests indicate that the rolled WZC alloy has a flexural strength of ∼2.4 GPa and a total strain of 1.8% at room temperature, which are 100% and 260% higher than those of the swaged WZC, respectively. The fracture energy density of the rolled WZC alloy is 3.23 × 10{sup 7} J/m{sup 3}, about 10 times higher than that of the swaged WZC (2.9 × 10{sup 6} J/m{sup 3}). The high thermal shock resistance of the rolled WZC alloys can be ascribed to their extraordinary ductility and plasticity. - Graphical abstract: (Left panel) surface morphology observed by optical microscope after a single pulse for 5 ms with various absorbed power densities at RT on the rolled WZC. (Right panel) curves of flexural stress versus strain at RT (a) and the calculated fracture energy (b) for the swaged WZC and rolled WZC alloys. - Highlights: • No cracks or surface melting were detected on the rolled WZC alloy samples after thermal shock at 0.66 GW/m{sup 2} for 5 ms. • Hot rolled WZC alloy plates exhibit a flexural strength of 2.4 GPa and a strain of 1.8% at RT. • The fracture energy of the rolled WZC alloy is 3.23 × 10{sup 7} J/m{sup 3} at RT, about 10 times higher than that of the swaged WZC. • A detailed analysis of the relationships between the mechanical properties and the thermal shock resistance is given.

  19. High pulse number thermal shock tests on tungsten with steady state particle background

    Science.gov (United States)

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m-2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  20. Predictive FEM simulation of thermal shock damage in the refractory lining of steelmaking installations

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    Thermal shock damage in the refractory lining of steelmaking installations is modelled using an experimentally validated constitutive damage framework which is coupled incrementally with a thermo-elastic FE package. Both non-local elasticity-based damage induced by temperature gradients and thermal

  1. A Literature Review of Shock Sensitivity Changes of TATB Due to Thermal Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Boyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Mechanical Engineering

    2016-07-15

    Insensitive high explosives (IHEs) based on 1,3,5-triamino 2,4,6-trinitro-benzene (TATB) are the IHEs of choice for use in nuclear warheads over conventional high explosives when safety is the only consideration, because they are very insensitive to thermal or mechanical initiation stimuli. It is this inherent insensitivity to high temperatures, shock, and impact, which provides detonation design challenges when designing TATB explosive systems while at the same time providing a significant level of protection against accidental initiation. Although classified as IHE, over the past few years the focus on explosive safety has demonstrated that the shock sensitivity of TATB is influenced with respect to temperature. A number of studies have been performed on TATB and TATB formulations, plastic bonded explosives (PBX) 9502, and LX-17-01 (LX-17), which demonstrates the increase in shock sensitivity of the explosive after it has been preheated or thermally cycled over various temperature ranges. Many studies suggest the change in sensitivity is partly due to the decomposition rates of the temperature elevated TATB. Others point to the coefficient of thermal expansion, the crystalline structures of TATB and/or the combination of all factors, which create voids which can become active hot spots. During thermal cycling, TATB is known to undergo an irreversible increase in specific volume called ratchet growth. This increase in specific volume correlates to a decrease in density. This decrease in density and increase in volume, demonstrate the creations of additional void spaces which could serve as potential new initiation hot spots thus, increasing the overall sensitivity of the HE. This literature review evaluates the published works to understand why the shock sensitivity of TATB-based plastic bonded explosives (PBXs) changes with temperature.

  2. Large-scale thermal-shock experiments with clad and unclad steel cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1992-01-01

    Flaw behavior trends associated with pressurized-thermal-shock (PTS) loading of pressurized-water-reactor pressure vessels have been under investigation at the Oak Ridge National Laboratory for nearly 20 years. During that time, twelve thermal-shock experiments with thick-walled (152 mm) steel cylinders were conducted as a part of the investigations. The first eight experiments were conducted with unclad cylinders initially containing shallow (8--19 mm) two-dimensional and semicircular inner-surface flaws. These experiments demonstrated, in good agreement with linear elastic fracture mechanics, crack initiation and arrest, a series of initiation/arrest events with deep penetration of the wall, long crack jumps, arrest with the stress intensity factor (K I ) increasing with crack depth, extensive surface extension of an initially short and shallow (semicircular) flaw, and warm prestressing with K I ≤ 0. The remaining four experiments were conducted with clad cylinders containing initially shallow (19--24 mm) semielliptical subclad and surface flaws at the inner surface. In the first of these experiments one of six equally spaced (60 degrees) open-quotes identicalclose quotes subclad flaws extended nearly the length of the cylinder (1,220 mm) beneath the cladding (no crack extension into the cladding) and nearly 50% of the wall, radially. For the final experiment, four of the semielliptical subclad flaws that had not propagated previously were converted to surface flaws, and they experienced extensive extension beneath the cladding with no cracking of the cladding. Information from this series of thermal-shock experiments is being used in the evaluation of the PTS issue

  3. Pressure vessel fracture studies pertaining to a PWR LOCA-ECC thermal shock: experiments TSE-1 and TSE-2

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1976-09-01

    The LOCA-ECC Thermal Shock Program was established to investigate the potential for flaw propagation in pressurized-water reactor (PWR) vessels during injection of emergency core coolant following a loss-of-coolant accident. Studies thus far have included fracture mechanics analyses of typical PWRs, the design and construction of a thermal shock test facility, determination of material properties for test specimens, and two thermal shock experiments with 0.53-m-OD (21-in.) by 0.15-m-wall (6-in.) cylindrical test specimens. The PWR calculations indicated that under some circumstances crack propagation could be expected and that experiments should be conducted for cracks that would have the potential for propagation at least halfway through the wall

  4. Basic thermal–mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoxin; Yan, Qingzhi, E-mail: qzyan@ustb.edu.cn; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-15

    Highlights: • The potassium doped tungsten grade was achieved via swaging + rolling process. • The cracking threshold of the W–K alloy was in the range of 0.44–0.66 GW/m{sup 2}. • Recrystallization occurred at 0.66–1.1 GW/m{sup 2} during the thermal shock tests. • No cracks emerged during the thermal fatigue tests (0.44 GW/m{sup 2}, 1000 cycles). • Recrystallization occurred after 1000 cycles during the thermal fatigue tests. - Abstract: The potassium doped tungsten (W–K) grade was achieved via swaging + rolling process. The swaged + rolled W–K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W–K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m{sup 2} in a step of 0.22 GW/m{sup 2}. The cracking threshold was in the range of 0.44–0.66 GW/m{sup 2}. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66–1.1 GW/m{sup 2} basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m{sup 2} up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  5. Young’s modulus evaluation and thermal shock behavior of a porous SiC/cordierite composite material

    Directory of Open Access Journals (Sweden)

    Pošarac-Marković M.

    2015-01-01

    Full Text Available Porous SiC/Cordierite Composite Material with graphite content (10% was synthesized. Evaluation of Young modulus of elasticity and thermal shock behavior of these samples was presented. Thermal shock behavior was monitored using water quench test, and non destructive methods such are UPVT and image analysis were also used for accompaniment the level of destruction of the samples during water quench test. Based on the level of destruction graphical modeling of critical number of cycles was given. This approach was implemented on discussion of the influence of the graphite content on thermal stability behavior of the samples. [Projekat Ministarstva nauke Republike Srbije, br. III 45012

  6. Effect of ion implantation on thermal shock resistance of magnesia and glass

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Williams, J.S.; Watt, A.J.

    1995-01-01

    Monocrystals of magnesia together with glass samples have been subjected to ion implantation prior to thermal shock testing in an impulse plasma of continuously varied intensity. Measurements of the separation between fragments have been used to estimate the surface temperature. Fracture and deformation characteristics of the surface layer are measured in ion implanted and unimplanted samples using optical and scanning electron microscopy. Implantation-induced near-surface damage is analysed by ion channeling using 2 MeV He + ions. Ion implantation is shown to modify the near-surface structure of magnesia samples by introducing damage, which makes crack initiation easier under thermal stresses. The fracture threshold and maximum crack density are shifted towards the lower temperature range. Ion implanted MgO crystals show a ten fold increase in surface crack density. An increased crack density results in a decreased degree of damage characterised by the depth of crack penetration. The thermal stress resistance parameter of glass samples is increased at relatively small doses and decreased at higher doses. The results suggest that crack density and the degree of fracture damage in brittle ceramics operating under thermal shock conditions can be effectively controlled by ion implantation which provides crack initiating defects in the near-surface region. 23 refs., 7 figs

  7. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  8. Improvement of thermal shock resistance of isotropic graphite by ti-doping

    International Nuclear Information System (INIS)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C.; Lindig, S.

    2007-01-01

    Full text of publication follows: Carbon fiber reinforced carbon (CFC) is the present candidate material for the strike point area of the ITER divertor due to its ability to withstand excessive heat loads during ELMs and plasma disruptions. However, chemical erosion of carbon under hydrogen bombardment from the plasma involves serious disadvantages for this application (replacement and safety problems due to tritium co-deposition). In addition, the manufacturing process of present CFC candidate materials is long and complex resulting in high costs, and CFC materials are inherently anisotropic. Doping of carbon with small amounts (several at. %) of titanium has proved to be effective in reducing chemical erosion while maintaining or even improving the mechanical properties. furthermore, TiC as dopant contributes to increase significantly the thermal conductivity and consequently the thermal shock resistance, due to the catalytic effect of this carbide on the graphitization. The aim of this work is to improve substantially the thermal shock resistance of fine-grained isotropic graphite by doping it with small amounts of TiC, reducing at the same time the chemical erosion. By this way Ti-doped graphites could be competitive with present CFC candidate materials for next step fusion devices. To achieve this, a synthetic naphthalene-derived mesophase pitch named AR is used as carbon precursor; this raw material exhibits excellent graphitizability, high chemical purity and consistent quality. Due to the low viscosity at the softening point of AR, resulting in swelling during the carbonization treatment, it is necessary to modify the initial viscosity of AR by an adequate oxidative stabilization treatment. As dopant, TiC powder with 130 nm average particle size is added. The influence of several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in

  9. Improvement of thermal shock resistance of isotropic graphite by ti-doping

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C. [Navarrra Univ., CEPT, San Sebastian (Spain); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)

    2007-07-01

    Full text of publication follows: Carbon fiber reinforced carbon (CFC) is the present candidate material for the strike point area of the ITER divertor due to its ability to withstand excessive heat loads during ELMs and plasma disruptions. However, chemical erosion of carbon under hydrogen bombardment from the plasma involves serious disadvantages for this application (replacement and safety problems due to tritium co-deposition). In addition, the manufacturing process of present CFC candidate materials is long and complex resulting in high costs, and CFC materials are inherently anisotropic. Doping of carbon with small amounts (several at. %) of titanium has proved to be effective in reducing chemical erosion while maintaining or even improving the mechanical properties. furthermore, TiC as dopant contributes to increase significantly the thermal conductivity and consequently the thermal shock resistance, due to the catalytic effect of this carbide on the graphitization. The aim of this work is to improve substantially the thermal shock resistance of fine-grained isotropic graphite by doping it with small amounts of TiC, reducing at the same time the chemical erosion. By this way Ti-doped graphites could be competitive with present CFC candidate materials for next step fusion devices. To achieve this, a synthetic naphthalene-derived mesophase pitch named AR is used as carbon precursor; this raw material exhibits excellent graphitizability, high chemical purity and consistent quality. Due to the low viscosity at the softening point of AR, resulting in swelling during the carbonization treatment, it is necessary to modify the initial viscosity of AR by an adequate oxidative stabilization treatment. As dopant, TiC powder with 130 nm average particle size is added. The influence of several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in

  10. DNA extraction in Echinococcus granulosus and Taenia spp. eggs in dogs stool samples applying thermal shock.

    Science.gov (United States)

    Hidalgo, Alejandro; Melo, Angélica; Romero, Fernando; Hidalgo, Víctor; Villanueva, José; Fonseca-Salamanca, Flery

    2018-03-01

    The extraction of DNA in taeniid eggs shows complications attached to the composition of stool samples and the high resistance of eggs to degradation. The objective of this study was to test a method of DNA extraction in taeniid eggs by applying a thermal shock to facilitate the chemical-enzymatic degradation of these elements. A group of six tubes containing 1 ml of dog stool sample was spiked with eggs of Echinococcus granulosus and another group of six with Taenia pisiformis. Samples were floated with supersaturated sugar solution and centrifuged. The upper portion of each tube (500 μl) was aspirated and deposited in 1.5 ml tubes. Three tubes from each group were incubated at -20 °C and then at 90 °C, the remaining three from each group, incubated at room temperature. Proteinase K and lysis buffer were added to each tube and incubated for 12 h at 58 °C. The lysis effect was evaluated by microscopy at 3, 6 and 12 h and integrity by electrophoresis in 1% agarose gels. With the same experimental scheme, the thermal shock effect was evaluated in extractions of 1, 2, 3 and 4 eggs of each species and the DNA was quantified. Additionally, the protocol was applied in samples of 4 dogs diagnosed with natural infection by Taeniidae worms. Finally, all the extractions were tested by PCR amplification. Both E. granulosus and T. pisiformis eggs showed a similar response in the tests. In samples without treatment, the lysis effect was poor and showed no differences over time, but in those subjected to thermal shock, eggs degradation increased with time. In both treatments, there was no DNA loss integrity. The protocol applied to limited amounts of eggs yielded PCR products in 100% of the samples exposed to thermal shock, allowing PCR amplifications up to 1 egg. In non-exposed samples, the results were not replicable. However, DNA quantification showed low values in both treatments. In turn, DNA extractions with thermal shock in infected dog samples

  11. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  12. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    International Nuclear Information System (INIS)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C.; Lindig, S.

    2009-01-01

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  13. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Galilea, I. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain)], E-mail: ilopez@ceit.es; Ordas, N.; Garcia-Rosales, C. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2009-04-30

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  14. Potential effect of fracture technology on IPTS [Integrated Pressurized Thermal Shock] analysis (Fracture toughness: Kla and Klc and warm prestressing)

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1990-01-01

    A major nuclear plant life extension issue to be confronted in the 1990's is pressure vessel integrity for the pressurized thermal shock (PTS) loading condition. Governing criteria associated with PTS are included in ''The PTS Rule'' (10 CFR 50.61) and Regulatory Guide 1.154: Format and Content of Plant-Specific Pressurized Thermal Shock Safety Analysis Reports for Pressurized Water Reactors. The results of the Integrated Pressurized Water Reactors. The results of the Integrated Pressurized Thermal Shock (IPTS) Program, along with risk assessments and fracture analyses performed by the NRC and reactor system vendors, contributed to the derivation of the PTS Rule. Over the last several years, the Heavy Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) has performed a series of large-scale fracture-mechanics experiments. The Thermal Shock Experiments (TSE), Pressurized Thermal Shock Experiments (PTSE), and Wide Plate Experiments (WPE) produced K IC and K Ia data that suggest increased mean K IC and K Ia curves relative to the ones used in the IPTS study. Also, the PTSE and WPE have demonstrated that prototypical nuclear reactor pressure vessel steels are capable of arresting a propagating crack at K I values considerably above 220 MPa√m, the implicit limit of the ASME Code and the limit used in the IPTS studies. This document provides a discussion of the results of these experiments

  15. Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets

    International Nuclear Information System (INIS)

    Landwehr, Sean E.; Hilmas, Gregory E.; Fahrenholtz, William G.; Talmy, Inna G.; Wang Hsin

    2009-01-01

    The linear thermal expansion coefficient (CTE), heat capacity, and thermal conductivity, were investigated as a function of temperature for hot pressed ZrC and liquid phase sintered ZrC-Mo cermets. The ZrC and the ZrC-Mo cermets had the same CTE at 50 deg. C (∼5.1-5.5 ppm deg. C -1 ), but the CTE of ZrC increased to ∼12.2 ppm deg. C -1 at 1000 deg. C compared to ∼7.2-8.5 ppm deg. C -1 for the ZrC-Mo cermets. Heat capacity was calculated using a rule of mixtures and previously reported thermodynamic data. Thermal diffusivity was measured with a laser flash method and was, in turn, used to calculate thermal conductivity. Thermal conductivity increased linearly with increasing temperature for all compositions and was affected by solid solution formation and carbon deficiency of the carbide phases. Hot pressed ZrC had the highest thermal conductivity (∼30-37 W m -1 K -1 ). The nominally 20 and 30 vol% Mo compositions of the ZrC-Mo cermets had a lower thermal conductivity, but the thermal conductivity generally increased with increasing Mo content. Water quench thermal shock testing showed that ZrC-30 vol% Mo had a critical temperature difference of 350 deg. C, which was ∼120 deg. C higher than ZrC. This increase was due to the increased toughness of the cermet compared to ZrC.

  16. Pressurized-thermal-shock experiments: PTSE-1 results and PTSE-2 plans

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Wanner, R.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1985-01-01

    The first pressurized-thermal-shock experiment (PTSE-1) was performed with a vessel with a 1-m-long flaw in a plug of specially tempered steel having the composition of SA-508 forging steel. The second experiment (PTSE-2) will have a similar arrangement, but the material in which the flaw will be implanted is being prepared to have low tearing resistance. Special tempering of a 2 1/4 Cr - 1 Mo steel plate has been shown to induce a low Charpy impact energy in the upper-shelf temperature range. The purpose of PTSE-2 is to investigate the fracture behavior of low-upper-shelf material in a vessel under the combined loading of concurrent pressure and thermal shock. The primary objective of the experimental plan is to induce a rapidly propagating cleavage fracture under conditions that are likely to induce a ductile tearing instability at the time of arrest of the cleavage fracture. The secondary objective of the test is to extend the range of the investigation of warm prestressing. 11 figs

  17. Impact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, B., E-mail: b.spilker@fz-juelich.de; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-11-01

    Highlights: • Different surface qualities of S-65 beryllium are tested under high heat flux conditions. • After 1000 thermal shocks, the loaded area exhibits a crucial destruction. • Stress accelerated grain boundary oxidation/dynamic embrittlement effects are linked to the thermal shock performance of beryllium. • Thermally induced cracks form between 1 and 10 pulses and grow wider and deeper between 10 and 100 pulses. • Thermally induced cracks form and propagate independently from surface grooves and the surface quality. - Abstract: Beryllium will be applied as first wall armor material in ITER. The armor has to sustain high steady state and transient power fluxes. For transient events like edge localized modes, these transient power fluxes rise up to 1.0 GW m{sup −2} with a duration of 0.5–0.75 ms in the divertor region and a significant fraction of this power flux is deposited on the first wall as well. In the present work, the reference beryllium grade for the ITER first wall application S-65 was prepared with various surface conditions and subjected to transient power fluxes (thermal shocks) with ITER relevant loading parameters. After 1000 thermal shocks, a crucial destruction of the entire loaded area was observed and linked to the stress accelerated grain boundary oxidation (SAGBO)/dynamic embrittlement (DE) effect. Furthermore, the study revealed that the majority of the thermally induced cracks formed between 1 and 10 pulses and then grew wider and deeper with increasing pulse number. The surface quality did not influence the cracking behavior of beryllium in any detectable way. However, the polished surface demonstrated the highest resistance against the observed crucial destruction mechanism.

  18. Thermal shock resistance of thick boron-doped diamond under extreme heat loads

    NARCIS (Netherlands)

    De Temmerman, G.; Dodson, J.; Linke, J.; Lisgo, S.; Pintsuk, G.; Porro, S.; Scarsbrook, G.

    2011-01-01

    Thick free-standing boron-doped diamonds were prepared by microwave plasma assisted chemical vapour deposition. Samples with a final thickness close to 5 mm and with lateral dimensions 25 x 25 mm were produced. The thermal shock resistance of the material was tested by exposure in the JUDITH

  19. COLLISIONLESS ELECTRON–ION SHOCKS IN RELATIVISTIC UNMAGNETIZED JET–AMBIENT INTERACTIONS: NON-THERMAL ELECTRON INJECTION BY DOUBLE LAYER

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi

    2016-01-01

    The course of non-thermal electron ejection in relativistic unmagnetized electron–ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ∼1% of electrons and ∼8% of the electron energy. Its power-law index is −2.6. The acceleration efficiency is ∼23% by number and ∼50% by energy, and the power-law index is −1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.

  20. Temperatures, strains and crack behavior during local thermal shock tests on the RPV-cylinder of the HDR

    International Nuclear Information System (INIS)

    Neubrech, G.E.; Goerner, F.; Siebler, T.

    1987-01-01

    This report summarises and critically discusses the results obtained from thermal shocks locally applied to the inner surface of the RPV-cylinder. This evaluation is based on on-line measurements (temperatures and strains at the RPV-wall during the thermal shock loading, non-destructive-testing), on materials investigations, and on theoretical investigations (finite element calculations, fracture mechanics analyses). The comparison between the corresponding measured and calculated results serves as a basis for subsequent assessments. It was the object of these tests to achieve the following primary aims: - Investigation of the loading conditions produced by local thermal shocks during realistic cooling processes. - A better understanding of the physical processes involved in crack initiation and propagation resulting from thermocyclic loading. - Assessment of non-destructive-testing methods with respect to detection and analysis of cracks as a basis for fracture mechanical evaluations. - Assessment of the reliability of the applied structural analysis methods. - Production of naturally formed deep cracks on the inner surface of the RPV-cylinder by means of excessive cooling processes. (orig./HP)

  1. Cyclic elastic analysis of a PWR nozzle subjected to a repeated thermal shock

    International Nuclear Information System (INIS)

    Locci, J.M.; Prost, J.P.

    1979-01-01

    In the primary piping system of a PWR nuclear power plant, some nozzles are subjected to strong thermal shocks due to sudden thermal variations in the internal water flow. The thermal gradients are sufficiently high to induce general elastic plastic behaviour. The design of these nozzles using the simplified elastic plastic analysis given in the ASME III Code NB-3200 generally leads to a very high usage factor. The aim of this work is to show by giving an example that a complete cyclic elastic plastic analysis makes it possible to considerably reduce the usage factor. (orig.)

  2. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  3. Non-thermal electron acceleration in low Mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xinyi; Narayan, Ramesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sironi, Lorenzo [NASA Einstein Postdoctoral Fellow. (United States)

    2014-12-10

    Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ≲ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (≳ 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  4. Thermal shock problems of bonded structure for plasma facing components

    International Nuclear Information System (INIS)

    Shibui, M.; Kuroda, T.; Kubota, Y.

    1991-01-01

    Thermal shock tests have been performed on W(Re)/Cu and Mo/Cu duplex structures with a particular emphasis on two failure modes: failure on the heated surface and failure near the bonding interface. The results indicate that failure of the duplex structure largely depends on the constraint of thermal strain on the heated surface and on the ductility changes of armour materials. Rapid debonding of the bonding interface may be attributed to the yielding of armour materials. This leads to a residual bending deformation when the armour cools down. Arguments are also presented in this paper on two parameter characterization of the failure of armour materials and on stress distribution near the free edge of the bonding interface. (orig.)

  5. A fracture mechanics method of evaluating structural integrity of a reactor vessel due to thermal shock effects following LOCA condition

    International Nuclear Information System (INIS)

    Ramani, D.T.

    1977-01-01

    The importance of knowledge of structural integrity of a reactor vessel due to thermal shock effects, is related to safety and operational requirements in assessing the adequacy and flawless functioing of the nuclear power systems. Followig a loss-of-coolant accident (LOCA) condition the integrity of the reactor vessel due to a sudden thermal shock induced by actuation of emergency core cooling system (ECCS), must be maintained to ensure safe and orderly shutdown of the reactor and its components. The paper encompasses criteria underlaying a fracture mechanics method of analysis to evaluate structural integrity of a typical 950 MWe PWR vessel as a result of very drastic changes in thermal and mechanical stress levels in the reactor vessel wall. The main object of this investigation therefore consists in assessing the capability of a PWR vessel to withstand the most critical thermal shock without inpairing its ability to conserve vital coolant owing to probable crack propagation. (Auth.)

  6. Elastic-plastic Fracture Mechanics Assessment of nozzle corners submitted to thermal shock loading

    International Nuclear Information System (INIS)

    Chapuliot, S.; Marie, S.

    2016-01-01

    This paper focuses on the development of a simplified analytical scheme for the elastic-plastic Fracture Mechanics Assessment of large nozzle corners. Within that frame, following the specific numerical effort performed for the definition of a Stress Intensity Factor compendium, complementary elastic-plastic developments are proposed here for the consideration of the thermal shock loading in the elastic-plastic domain: this type of loading is a major loading for massive structures such as nozzle corners of large components. Thus, an important numerical was performed in order to extend the applicability domain of existing analytical schemes to those complex geometries. The final formulation is a simple one, applicable to a large variety of materials and geometrical configurations as long as the structure is large and the defect remains small in comparison to the internal radius of the nozzle. - Highlights: • Fracture Mechanics Assessment of large nozzle corners. • Elastic-plastic Stress Intensity Factor determination under thermal shock loading. • Semi-analytical schemes for J calculation.

  7. Insights into chondrule formation process and shock-thermal history of the Dergaon chondrite (H4-5

    Directory of Open Access Journals (Sweden)

    D. Ray

    2017-05-01

    Full Text Available The Dergaon fall represents a shock-melted H4-5 (S5 ordinary chondrite which includes at least ten textural varieties of chondrules and belongs to the high chondrule-matrix ratio type. Our study reveals that the chondrules are of diverse mineralogy with variable olivine-pyroxene ratios (Type II, igneous melt textures developed under variable cooling rates and formed through melt fractionations from two different melt reservoirs. Based on the experimental analogues, mineralogical associations and phase compositions, it is suggested that the Dergaon chondrules reflect two contrasting environments: a hot, dust-enriched and highly oxidized nebular environment through melting, without significant evaporation, and an arrested reducing environment concomitant with major evaporation loss of alkali and highly volatile trace elements. Coexistence of chlorapatite and merrillite suggests formation of the Dergaon matrix in an acidic accretionary environment. Textural integration and chemical homogenization occurred at ∼1 atmospheric pressure and a mean temperature of 765 °C mark the radiogenic thermal event. Equilibrated shock features (olivine mosaicism, diaplectic plagioclase, polycrystalline troilite due to an impact-induced thermal event reflect a shock pressure >45 GPa and temperature of 600 °C. By contrast, the local disequilibrium shock features (silicate melt veins comprising of olivine crystallites, troilite melt veins and metal droplets correspond to a shock pressure up to 75 GPa and temperature >950 °C.

  8. Thermal shock testing of ceramics with pulsed laser irradiation

    International Nuclear Information System (INIS)

    Benz, R.; Naoumidis, A.; Nickel, H.

    1986-04-01

    Arguments are presented showing that the resistance to thermal stressing (''thermal shock'') under pulsed thermal energy deposition by various kinds of beam irradiations is approximately proportional to Φ a √tp, where Φ a is the absorbed power density and tp is the pulse length, under conditions of diffusivity controlled spreading of heat. In practical beam irradiation testing, incident power density, Φ, is reported. To evaluate the usefulness of Φ√tp as an approximation to Φ a √tp, damage threshold values are reviewed for different kinds of beams (electron, proton, and laser) for a range of tp values 5x10 -6 to 2 s. Ruby laser beam irradiation tests were made on the following ceramics: AlN, BN, graphite, αSiC, β-SiC coated graphites, (α+β)Si 3 N 4 , CVD (chemical vapor deposition) TiC coated graphite, CVD TiC coated Mo, and CVD TiN coated IN 625. The identified failure mechanisms are: 1. plastic flow followed by tensile and bend fracturing, 2. chemical decomposition, 3. melting, and 4. loss by thermal spallation. In view of the theoretical approximations and the neglect of reflection losses there is reasonable accord between the damage threshold Φ√tp values from the laser, electron, and proton beam tests. (orig./IHOE)

  9. Thermal shock experiment analysis, the use of crack arrest toughness measurements

    International Nuclear Information System (INIS)

    Miannay, D.; Pellissier-Tanon, A.; Chavaillard, J.P.

    1984-06-01

    The main purpose of thermal shock experiment is to assess the procedure codified in the ASME XI appendix 1 or RCC-M-B appendix ZG, and allow comparisons with numerical simulations. The analysis of the integrity of the PWR vessel belt line under accidental transients is based on reference curves. The test-piece is a cylinder of SA 508 cl.3 steel. Arrest toughness measured agrees with reference curve

  10. Thermo-hydraulic-mechanical analysis of the SS-050 sodium loop during a thermal shock of 2000C/s

    International Nuclear Information System (INIS)

    Jesus Miranda, C.A. de; Gebrin, A.N.

    1988-01-01

    An analytical thermo-hydraulic model was developed to obtain the temperature of the sodium flowing between the mixing tank TM of constant volume and the drain tank of the SS-050 sodium test facility. The piping connecting these two tanks is considered in the analysis. The sodium enters in the TM through a tube with lateral holes immersed in the TM's sodium. The model and relative computer program were tested and a typical situation was studied: a thermal shock with -200 0 C/s of thermal gradient in the test section. The sodium temperature time-histories along the piping length are presented. For the thermal shock situation, the temperature field in the TM bottom and outlet nozzle was calculated and the stresses were evaluated. The final thermal stresses will allow a detailed verification of the circuit design. (author) [pt

  11. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  12. H/He irradiation on tungsten exposed to ELM-like thermal shocks

    International Nuclear Information System (INIS)

    Lemahieu, Nathan; Balden, Martin; Elgeti, Stefan; Greuner, Henri; Linke, Jochen; Maier, Hans; Pintsuk, Gerald; Wirtz, Marius; Van Oost, Guido; Noterdaeme, Jean-Marie

    2016-01-01

    Highlights: • After ELM-like thermal shocks, tungsten was exposed to H/He particle fluxes. • The influence of combined loading conditions on the damage behaviour was studied. • Roughened surfaces do not alter H/He induced surface modifications. • Cracks interact with the particle flux, resulting in phenomena such as crack bridging. - Abstract: ELM-like thermal shocks and H/He particle exposure were subsequently applied on tungsten samples. Polished test specimens underwent in the JUDITH 1 electron beam facility 100 transient thermal events with a duration of 1 ms. The absorbed heat flux was 0.4 GW m"−"2 and 1.5 GW m"−"2, which is above the material's damage threshold. These experiments were done at room temperature and with the samples heated to 400 °C base temperature. Depending on the loading conditions the test specimens have either a crack network or showed surface roughening. The samples were then loaded in the GLADIS facility at different surface temperatures with a mixed H/He beam with a flux of 3.7 × 10"2"1 m"−"2 s"−"1. Post-mortem analysis showed that the roughened surface did not alter the H/He induced surface modifications. In contrast to that on the test specimens that exhibited crack formation, phenomena such as bubble creation along the crack edge, formation of a shallow layer of nano-structures covering the crack opening, and the emerging of a porous structure which partially fills the crack are observed.

  13. H/He irradiation on tungsten exposed to ELM-like thermal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Lemahieu, Nathan, E-mail: Nathan.Lemahieu@UGent.be [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium); Institute of Interfacial Process Engineering and Plasma Technology IGVP, Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Balden, Martin; Elgeti, Stefan; Greuner, Henri [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Linke, Jochen [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Maier, Hans [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Pintsuk, Gerald; Wirtz, Marius [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Van Oost, Guido [Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium); Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium)

    2016-11-01

    Highlights: • After ELM-like thermal shocks, tungsten was exposed to H/He particle fluxes. • The influence of combined loading conditions on the damage behaviour was studied. • Roughened surfaces do not alter H/He induced surface modifications. • Cracks interact with the particle flux, resulting in phenomena such as crack bridging. - Abstract: ELM-like thermal shocks and H/He particle exposure were subsequently applied on tungsten samples. Polished test specimens underwent in the JUDITH 1 electron beam facility 100 transient thermal events with a duration of 1 ms. The absorbed heat flux was 0.4 GW m{sup −2} and 1.5 GW m{sup −2}, which is above the material's damage threshold. These experiments were done at room temperature and with the samples heated to 400 °C base temperature. Depending on the loading conditions the test specimens have either a crack network or showed surface roughening. The samples were then loaded in the GLADIS facility at different surface temperatures with a mixed H/He beam with a flux of 3.7 × 10{sup 21} m{sup −2} s{sup −1}. Post-mortem analysis showed that the roughened surface did not alter the H/He induced surface modifications. In contrast to that on the test specimens that exhibited crack formation, phenomena such as bubble creation along the crack edge, formation of a shallow layer of nano-structures covering the crack opening, and the emerging of a porous structure which partially fills the crack are observed.

  14. The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock

    Science.gov (United States)

    Giacalone, J.; Lario, D.; Lepri, S. T.

    2017-12-01

    We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.

  15. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Science.gov (United States)

    Ogorodnikova, O. V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  16. Modelling of thermal shock experiments of carbon based materials in JUDITH

    International Nuclear Information System (INIS)

    Ogorodnikova, O.V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-01-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments

  17. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)]. E-mail: o.ogorodnikova@fz-juelich.de; Pestchanyi, S. [Forschungszentrum Karlsruhe, EURATOM-Associaton, IHM, 76021 Karlsruhe (Germany); Koza, Y. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  18. Experiment and numerical analysis of the NPP pressurizer auxiliary spray line submitted to large thermal shocks

    International Nuclear Information System (INIS)

    Couterot, C.; Geyer, P.; Proix, J.M.

    1994-03-01

    The pressurizer auxiliary spray line of PWR nuclear power plants may be submitted to severe temperature transients during upset conditions: a 325 deg C cold thermal shock in one second is followed by a 200 deg C hot thermal shock. For such transients, the RCC-M French design code rules that prevent the ratcheting deformation hazard are not respected for the components with thickness transition. Consequently, Electricite de France has realized twenty thermal cycles under pressure on a representative mock-up. During these tests, many temperature, strain and diametral variations were measured. No significant ratcheting deformation was detected on all components, except on the 6'' x 2'' x 6'' T-piece, where a weak progressive diameter increase was observed during a few cycles. Moreover, computations of a 2'' socket welding were made with the non linear kinematic hardening Chaboche model which also showed a weak progressive deformation behaviour. (authors). 7 figs., 7 refs

  19. Finite element study of a HDR-RPV-section including a nozzle under thermal shock transient

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E [Stuttgart Univ. (Germany); Katzenmeier, G [Forschungszentrum Juelich GmbH (Germany); Wanner, R; Mercier, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1988-12-31

    This document presents a finite element study of a reactor pressure vessel section under thermal stresses. The strength properties of the vessel walls are studied as well as cracks due to the thermo-shock transient. (TEC). 6 refs.

  20. Effect of LaB6 on the thermal shock property of MoSi2-SiC coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li Ting; Li Hejun; Shi Xiaohong

    2013-01-01

    Highlights: ► LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC multi-composition coatings were coated on C/C composites by pack cementation. ► The microstructure and thermal shock resistance of both coatings were investigated. ► The addition of LaB 6 can increase the compactness, flexural strength and fracture toughness of the MoSi 2 -SiC coating simultaneously. ► Both coatings bond well with the substrates before and after thermal cycling oxidation between 1773 K and room temperature. ► The LaB 6 -MoSi 2 -SiC coated C/C shows better thermal shock resistance than the MoSi 2 -SiC coated C/C. - Abstract: LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coatings were prepared on the surface of carbon/carbon composites by pack cementation method. The crystal structures of the coatings were measured by X-ray diffraction. The morphologies and element distributions were also analyzed by scanning electron microscopy and energy dispersive spectroscopy, respectively. The effect of LaB 6 on the microstructure and thermal shock resistance of MoSi 2 -SiC coating was investigated. The results indicated that the LaB 6 -MoSi 2 -SiC coating possessed a denser structure and superior thermal shock resistance. After 25 times of thermal cycling oxidation between 1773 K and room temperature, the weight losses of the LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coated samples were 0.627% and 2.019%, respectively.

  1. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  2. Shock Initiation of Damaged Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  3. Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene

    International Nuclear Information System (INIS)

    Li, G.C.; Li, Ligeng; Liu, Yunkang; Mak, J.Y.; Chen, Lili; Lee, W.M.F.

    1991-01-01

    The major heat shock protein hsp70 is synthesized by cells of a wide variety of organisms in response to heat shock or other environmental stresses and is assumed to play an important role in protecting cells from thermal stress. The authors have tested this hypothesis directly by transfecting a constitutively expressed recombinant human hsp70-encoding gene into rat fibroblasts and examining the relationship between the levels of human hsp70 expressed and thermal resistance of the stably transfected rat cells. Successful transfection and expression of the gene for human hsp70 were characterized by RNA hybridization analysis, low-dimensional gel electrophoresis, and immunoblot analysis. When individual cloned cell lines were exposed to 45C and their thermal survivals were determined by colony-formation assay, they found that the expression of human hsp70 conferred heat resistance to the rat cells. These results reinforce the hypothesis that hsp70 has a protective function against thermal stress

  4. Pressurized thermal shock (PTS)

    International Nuclear Information System (INIS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2006-01-01

    In the present work, a description of Thermal Shock in Pressurized conditions (PTS), and its influence in the treatment of the integrity of the pressure vessel (RPV) of a Pressurized Water Reactor (PWR) and/or of a Heavy water Pressurized water Reactor (PHWR) is made. Generally, the analysis of PTS involves a process of three stages: a-) Modeling with a System Code of relevant thermohydraulics transients in reference with the thermal shock; b-) The local distribution of temperatures in the downcomer and the heat transference coefficients from the RPV wall to the fluid, are determined; c-) The fracture mechanical analysis. These three stages are included in this work: Results with the thermohydraulics code Relap5/mod.3, are obtained, for a LOCA scenario in the hot leg of the cooling System of the Primary System of the CAN-I reactor. The method used in obtaining results is described. A study on the basis of lumped parameters of the local evolutions of the temperature of the flow is made, in the downcomer of the reactor pressure vessel. The purpose of this study is to determine how the intensification of the stress coefficient, varies in function of the emergency injected water during the thermohydraulic transients that take place under the imposed conditions in the postulated scene. Specially, it is considered a 50 cm 2 break, located in the neighborhoods of the pressurized with the corresponding hot leg connection. This size is considered like the most critical. The method used to obtain the results is described. The fracture mechanical analysis is made. From the obtained results we confirmed that we have a simple tool of easy application in order to analyze phenomena of the type PTS in the postulated scenes by break in the cold and hot legs of the primary system. This methodology of calculus is completely independent of the used ones by the Nucleoelectrica Argentina S.A. (NASA) in the analysis of the PTS phenomena in the CAN-I. The results obtained with the adopted

  5. Thermomechanical fields measurement for fatigue investigation under cyclic thermal shocks

    International Nuclear Information System (INIS)

    Charbal, Ali

    2017-01-01

    Thermal fatigue occurs in nuclear power plant pipes. The temperature variations are due to the turbulent mixing of fluids that have different temperatures. Many experimental setups have been designed but the measured temperatures have only been punctual and out of the zone of interest (e.g., via thermocouples). The equivalent strain variation in the crack initiation region is calculated with numerical thermomechanical simulations. In many cases, the comparisons between numerical and experimental results have shown that the crack initiation predictions in thermal fatigue are non-conservative. a new testing setup is proposed where thermal shocks are applied with a pulsed laser beam while the thermal and kinematic fields on the specimen surface are measured with infrared (IR) and visible cameras, respectively. Experimental testings are performed and different measurement techniques for temperature and kinematic fields are used. IR camera and pyrometers allow to measure the temperature variations in the zone impacted by the laser beam. To estimate the absolute temperature, the surface emissivities at the respective wavelengths are determined by different methods. The absolute temperature field is then used to apply the actual thermal loading in a decoupled FE model after an identification process of the parameters of the laser beam. Once the thermal loading is generated based upon the experimental data, the stress and strain fields can be computed in the region of interest with an elastoplastic law.The experimental strain variations calculated from the DIC measurements are compared with the predictions obtained with the FE simulation. (author) [fr

  6. Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Sean; Longcope, Dana [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-09-01

    Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks produced in this manner drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the 'flow reversal point' or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a one-dimensional hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and transition region temperature ratio) on the FRP properties. We find that both of the evaporation characteristics have scaling-law relationships to the varied flare parameters, and we report the scaling exponents for our model. This provides a means of using spectroscopic observations of the chromosphere as quantitative diagnostics of flare energy release in the corona.

  7. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  8. Thermal shock testing of low-Z coatings with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1982-03-01

    Thermal shock testing of candidate low-Z surface coatings for JT-60 application has been made by using a pulsed hydrogen beam apparatus which is operated at a power density of 2KW/cm 2 . The materials tested are PVD (Physical Vapor Deposited) TiC and PVD and CVD (Chemical Vapor Deposited) TiN on molybdenum and Inconel 625. The result shows that CVD TiC on Mo and CVD TiN on Inconel are the most interesting choices for the coating-substrate combinations. (author)

  9. Thermal histories of chondrules in solar nebula shocks, including the effect of molecular line cooling

    Science.gov (United States)

    Morris, Melissa A.

    Chondrules are millimeter-sized, silicate (mostly ferromagnesian) igneous spheres found within chondritic meteorites. They are some of the oldest materials in our Solar System, having formed within a few million years of its birth. Chondrules were melted at high temperature (over 1800 K), while they were free-floating objects in the early solar nebula. Their petrology and chemistry constrain their formation, especially their thermal histories. Chondrules provide some of the most powerful constraints on conditions in the solar nebula. Models in which chondrule precursors melted by passage through solar nebula shocks are very promising, and meet most constraints on chondrule formation in broad brush. However, these models have been lacking in some of the relevant physics. Previous shock models have used incorrect approximations to the input radiation boundary condition, and the opacity of solids has been treated simply. Most important, a proper treatment of cooling due to molecular line emission has not been included. In this thesis, the shock model is significantly improved in order to determine if it remains consistent with observational constraints. The appropriate boundary condition for the input radiation and the proper method for calculation of the opacity of solids are determined, and a complete treatment of molecular line cooling due to water is included. Previous estimates of the effect of line cooling predicted chondrule cooling rates in excess of 10,000 K per hour. However, once molecular line cooling due to water was incorporated into the full shock model, it was found that line cooling has a minimal effect on the thermal histories of gas and chondrules. This behavior is attributed mostly to the thermal buffering of the gas due to hydrogen dissociation and recombination, which tends to keep the gas temperature at approximately 2000 K until the column densities of water become optically thick to line emission. Chondrule cooling rates in the range of 10

  10. Prevention against fragile fracture in PWR pressure vessel in the presence of pressurized thermal shock

    International Nuclear Information System (INIS)

    Carmo, E.G.D. do; Oliveira, L.F.S. de; Roberty, N.C.

    1984-01-01

    A method for the determination of operational limit curves (primary pressure versus temperature) for PWR is presented. Such curves give the operators indications related to the safety status of the plant concerning the possibility of a pressurized thermal shock. The method begins by a thermal analysis for several postulated transients, followed by the determination of the thermomechanical stresses in the vessel and finally it makes use of the linear elasticity fracture mechanics. Curves are shown for a typical PWR. (Author) [pt

  11. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  12. Thermal shock induced dynamics of a spacecraft with a flexible deploying boom

    Science.gov (United States)

    Shen, Zhenxing; Li, Huijian; Liu, Xiaoning; Hu, Gengkai

    2017-12-01

    The dynamics in the process of deployment of a flexible extendible boom as a deployable structure on the spacecraft is studied. For determining the thermally induced vibrations of the boom subjected to an incident solar heat flux, an axially moving thermal-dynamic beam element based on the absolute nodal coordinate formulation which is able to precisely describe the large displacement, rotation and deformation of flexible body is presented. For the elastic forces formulation of variable-length beam element, the enhanced continuum mechanics approach is adopted, which can eliminate the Poisson locking effect, and take into account the tension-bending-torsion coupling deformations. The main body of the spacecraft, modeled as a rigid body, is described using the natural coordinates method. In the derived nonlinear thermal-dynamic equations of rigid-flexible multibody system, the mass matrix is time-variant, and a pseudo damping matrix which is without actual energy dissipation, and a heat conduction matrix which is relative to the moving speed and the number of beam element are arisen. Numerical results give the dynamic and thermal responses of the nonrotating and spinning spacecraft, respectively, and show that thermal shock has a significant influence on the dynamics of spacecraft.

  13. Probabilistic fracture mechanics analysis of reactor vessel for pressurized thermal shock: the effect of residual stress and fracture toughness

    International Nuclear Information System (INIS)

    Jung, Sung Gyu; Jin, Tae Eun; Jhung, Myung Jo; Choi, Young Hwan

    2003-01-01

    The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated

  14. Integrated Software Environment for Pressurized Thermal Shock Analysis

    Directory of Open Access Journals (Sweden)

    Dino Araneo

    2011-01-01

    Full Text Available The present paper describes the main features and an application to a real Nuclear Power Plant (NPP of an Integrated Software Environment (in the following referred to as “platform” developed at University of Pisa (UNIPI to perform Pressurized Thermal Shock (PTS analysis. The platform is written in Java for the portability and it implements all the steps foreseen in the methodology developed at UNIPI for the deterministic analysis of PTS scenarios. The methodology starts with the thermal hydraulic analysis of the NPP with a system code (such as Relap5-3D and Cathare2, during a selected transient scenario. The results so obtained are then processed to provide boundary conditions for the next step, that is, a CFD calculation. Once the system pressure and the RPV wall temperature are known, the stresses inside the RPV wall can be calculated by mean a Finite Element (FE code. The last step of the methodology is the Fracture Mechanics (FM analysis, using weight functions, aimed at evaluating the stress intensity factor (KI at crack tip to be compared with the critical stress intensity factor KIc. The platform automates all these steps foreseen in the methodology once the user specifies a number of boundary conditions at the beginning of the simulation.

  15. Experiment Study on Elastic Indicator of Thermal Shock Ceramic Materials——Implementation of Students’ Innovative Research Project of Shandong University of Science and Technology

    Directory of Open Access Journals (Sweden)

    Wang Yanxia

    2017-01-01

    Full Text Available In order to improve the quality of undergraduate education and combine theory and practice, Shandong University of science and technology organized innovative research activities project for undergraduates. Combined with the characteristics of engineering mechanics course, teachers of engineering mechanics teaching and research section guided students to take an active part in scientific research and innovation practice teaching, which has obtained a good teaching effect. This paper introduces the concrete implement process of the college students’ innovative scientific research project “Experiment Study on Elastic Indicator of Thermal Shock Ceramic Materials”, which measures elastic indicator of ceramics using the ultrasonic method. This paper studies elastic indicator change rule of the mullite ceramic samples under different factors such as temperature difference, thermal shock times and so on. Studies have shown that in the condition of air-cooling, with the increase of thermal shock temperature difference and thermal shock times, the elastic modulus value, shear modulus and Poisson’s ratio are in a falling trend. The project implementation have proved that implement undergraduate innovation research projects could effectively arouse students’ learning enthusiasm, cultivate students’ scientific research innovation and analytical abilities to solve practical scientific research problems.

  16. Dosification of a cement-talc-chamotte refractory mortar subjected to thermal shock

    Directory of Open Access Journals (Sweden)

    Kittl, P.

    1992-03-01

    Full Text Available A cement-talc-chamotte refractory mixture was dosified by subjecting the same to thermal shock. To this end, specimens compacted to 350 Kg/cm2 through compression as well as specimens compacted manually were prepared. All the specimens were submitted to an initial working temperature of 1000ºC and then left to cool down to room temperature. The thermal shock was originated by heating the specimens in an oven till reaching a certain temperature T¡ and then quenching the same through immersion in water at 20ºC; temperature T¡ was varied between 170ºC and 970ºC by means of 100ºC increments. The optimum dosification amounting to 90 % cement-talc and 10 % chamotte was obtained by studying mean stress at compression fracture of five cement-talc-chamote mixtures as a function of thermal shock. In addition, thermal fatigue exhibited by the optimum dosification was studied through the determination of mean loss in compressive strength, which amounted to 52% after 7 cycles with ΔT = 500ºC.

    Se dosificó una mezcla refractaria cemento-talco-chamota sometiéndola a un choque térmico. Con este objeto se fabricaron probetas compactadas a 350 kg/cm2 mediante compresión y probetas compactadas manualmente. Se aplicó a todas ellas una temperatura inicial de trabajo a 1.000 ºC, luego se las dejó enfriar hasta que alcanzaran la temperatura de sala del laboratorio. El choque térmico se originó calentando las probetas en un horno hasta una temperatura T¡ y luego se las enfrió súbitamente sumergiéndolas en agua a 20 ºC; la temperatura T¡ varió entre 170 ºC y 970 ºC con incrementos de 100 ºC. La dosificación óptima, 90% cemento-talco y 10% chamota, se obtuvo estudiando la tensión media de fractura a la compresión de cinco mezclas de cemento-talco-chamota en función del choque térmico. Se estudió además la fatiga térmica de la dosificación óptima determinando la

  17. Low carbon content and carbon-free refractory materials with high thermal shock resistance; Thermoschockbestaendige feuerfeste Erzeugnisse mit geringerem Kohlenstoffgehalt bzw. kohlenstofffreie Erzeugnisse

    Energy Technology Data Exchange (ETDEWEB)

    Brachhold, Nora; Aneziris, C.G.; Stein, Volker; Roungos, Vasileios; Moritz, Kirsten [TU Bergakademie Freiberg (TUBAF) (DE). Inst. fuer Keramik, Glas- und Baustofftechnik (IKGB)

    2012-07-01

    Carbon bonded refractories are essential for steelmaking due to their excellent thermal shock resistance. The research on carbon reduced and carbon-free materials is necessary to manufacture high quality stainless steels tending carbon pick-up in contact to conventional refractory materials. Further advantages are reduced emissions of CO{sub 2} and energy saving potentials due to better heat insulation properties. The challenge is to develop alternative materials with lower carbon contents but with the necessary thermal shock resistance. The Priority Programme 1418 funded by the German Research Foundation (DFG) concentrates on this problem. In this article two materials are presented. First, the carbon content could be reduced by nanoscaled additives resulting in better bonding between matrix and oxidic components. Second, an AL{sub 2}O{sub 3}-rich carbon-free material is presented showing a very good thermal shock resistance due to its designed microstructure. Finally, a steel casting simulator is introduced to test the new materials under nearly real conditions. (orig.)

  18. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  19. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  20. Thermal shock behaviour of H and H/He-exposed tungsten at high temperature

    International Nuclear Information System (INIS)

    Lemahieu, N; Linke, J; Pintsuk, G; Wirtz, M; Greuner, H; Maier, H; Oost, G Van; Noterdaeme, J-M

    2016-01-01

    Polycrystalline tungsten samples were characterized and exposed to a pure H beam or mixed H/He beam containing 6% He in GLADIS at a surface temperature of 600 °C, 1000 °C, or 1500 °C. After 5400 s of exposure time with a heat flux of 10.5 MW m −2 , the total accumulated fluence of 2 × 10 25 m −2 was reached. Thereafter, edge localized mode (ELM)-like thermal shocks with a duration of 1 ms and an absorbed power density of 190 MW m −2 and 380 MW m −2 were applied on the samples in JUDITH 1. During the thermal shocks, the base temperature was kept at 1000 °C. The ELM-experiments with the lowest transient power density did not result in any detected damage. The other tests showed the beginning of crack formation for every sample, except the sample pre-exposed with the pure H-beam at 1500 °C in GLADIS. This sample was roughened, but did not show any crack initiation. With exception to the roughened sample, the category of ELM-induced damage for the pre-exposed samples is identical to the reference tests without pre-exposure to a particle flux. (paper)

  1. Application of large-eddy simulation to pressurized thermal shock: Assessment of the accuracy

    International Nuclear Information System (INIS)

    Loginov, M.S.; Komen, E.M.J.; Hoehne, T.

    2011-01-01

    Highlights: → We compare large-eddy simulation with experiment on the single-phase pressurized thermal shock problem. → Three test cases are considered, they cover entire range of mixing patterns. → The accuracy of the flow mixing in the reactor pressure vessel is assessed qualitatively and quantitatively. - Abstract: Pressurized Thermal Shock (PTS) is identified as one of the safety issues where Computational Fluid Dynamics (CFD) can bring real benefits. The turbulence modeling may impact overall accuracy of the calculated thermal loads on the vessel walls, therefore advanced methods for turbulent flows are required. The feasibility and mesh resolution of LES for single-phase PTS are assessed earlier in a companion paper. The current investigation deals with the accuracy of LES approach with respect to the experiment. Experimental data from the Rossendorf Coolant Mixing (ROCOM) facility is used as a basis for validation. Three test cases with different flow rates are considered. They correspond to a buoyancy-driven, a momentum-driven, and a transitional coolant mixing pattern in the downcomer. Time- and frequency-domain analysis are employed for comparison of the numerical and experimental data. The investigation shows a good qualitative prediction of the bulk flow patterns. The fluctuations are modeled correctly. A conservative estimate of the temperature drop near the wall can be obtained from the numerical results with safety factor of 1.1-1.3. In general, the current LES gives a realistic and reliable description of the considered coolant mixing experiments. The accuracy of the prediction is definitely improved with respect to earlier CFD simulations.

  2. Documentation of probabilistic fracture mechanics codes used for reactor pressure vessels subjected to pressurized thermal shock loading: Parts 1 and 2. Final report

    International Nuclear Information System (INIS)

    Balkey, K.; Witt, F.J.; Bishop, B.A.

    1995-06-01

    Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980's, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industry efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology

  3. Thermal hydraulic evaluation for an experimental facility to investigate pressurized thermal shock (PTS) in CDTN/CNEN

    International Nuclear Information System (INIS)

    Palmieri, Elcio T.; Navarro, Moyses A.; Aronne, Ivam D.; Terra, Jose L.

    2002-01-01

    The goal of the work presented in this paper is to provide necessary thermal hydraulics information to the design of an experimental installation to investigate the Pressurized Thermal Shock (PTS) to be implemented at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN). The envisaged installation has a test section that represents, in a small scale, a pressure vessel of a nuclear reactor. This test section will be heated and then exposed to a PTS in order to evaluate the appearance and development of cracks. To verify the behavior of the temperatures of the pressure vessel after a sudden flood through the annulus, calculations were made using the RELAP5/MOD 3.2.2 gamma code. Different outer radiuses were studied for the annular region. The results showed that the smaller annulus spacing (20 mm) anticipates the wetting of the surface and produces a higher cooling of the external surface, which stays completely wet for a longer time. (author)

  4. Progressive damage during thermal shock cycling of D-gun sprayed thermal barrier coatings with hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ke, P.L. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China) and School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom)]. E-mail: csun@imr.ac.cn; Wang, Q.M. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gong, J. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhou, Y.C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-11-05

    Thermal shock cycling behaviors of D-gun sprayed TBCs with a hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3} (HSP-YSZ) top coat and NiCrAlY bond coat on directionally solidified Ni-base superalloys DZ125 were investigated at high temperature (1100 deg. C) {r_reversible} room temperature (RT) repeatedly by water quenching. Scanning electron microscopy (SEM) was used to characterize the coating microstructure and failure morphology. The results showed that failure of the D-gun sprayed TBC starts with crack initiation along the splats boundary in the ceramic top coat and the non-alumina oxides. The cracks propagate and coalesce with the increasing thermal cycling. The extensive cracking of the rapidly formed non-alumina oxides, resulting from the depletion of aluminum in the bond coat, aids to delamination of the outer ceramic layer. The stress distributions in TGO layer at different thermal shock cycles was measured by luminescence spectroscopy to investigate the failure mechanism of TBC system.

  5. Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics

    NARCIS (Netherlands)

    Cai, Delong; Jia, Dechang; Yang, Zhihua; Zhu, Qishuai; Ocelik, Vaclav; Vainchtein, Ilia D.; De Hosson, Jeff Th M.; Zhou, Yu

    The effects of magnesium aluminum silicate (MAS) glass on the thermal shock resistance and the oxidation behavior of h-BN matrix composites were systematically investigated at temperature differences from 600 degrees C up to 1400 degrees C. The retained strength rate of the composites rose with the

  6. Study of the response of Zircaloy- 4 cladding to thermal shock during water quenching after double sided steam oxidation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sawarn, Tapan K., E-mail: sawarn@barc.gov.in; Banerjee, Suparna; Kumar, Sunil

    2016-05-15

    This study investigates the failure of embrittled Zircaloy-4 cladding in a simulated loss of coolant accident condition and correlates it with the evolved stratified microstructure. Isothermal steam oxidation of Zircaloy-4 cladding at high temperatures (900–1200 °C) with soaking periods in the range 60–900 s followed by water quenching was carried out. The combined oxide + oxygen stabilized α-Zr layer thickness and the fraction of the load bearing phase (recrystallised α-Zr grains + prior β-Zr or only prior β-Zr) of clad tube specimens were correlated with the %ECR calculated using Baker-Just equation. Average oxygen concentration of the load bearing phase corresponding to different oxidation conditions was calculated from the average microhardness using an empirical correlation. The results of these experiments are presented in this paper. Thermal shock sustainability of the clad was correlated with the %ECR, combined oxide+α-Zr(O) layer thickness, fraction of the load bearing phase and its average oxygen concentration. - Highlights: • Response of the embrittled Zircaloy-4 clad towards thermal shock, simulated under LOCA condition was investigated. • Thermal shock sustainability of the clad was correlated with its evolved stratified microstructure. • Cladding fails at %ECR value ≥ 29. • To resist the thermal shock, clad should have load bearing phase fraction > 0.44 and average oxygen concentration < 0.69 wt%.

  7. Extracorporeal shock wave lithotripsy of biliary and pancreatic stones

    NARCIS (Netherlands)

    R. den Toom (Rene)

    1993-01-01

    textabstractThe aim of the study was to answer the following questions: Is extracorporeal shock wave lithotripsy for gallbladder stones a safe and effective therapy? (Chapter 2) Is simultaneous treatment with extracorporeal shock wave lithotripsy and the solvent methyl te.rt-butyl ether feasible,

  8. An Introduction to the Physics of Collisionless Shocks

    International Nuclear Information System (INIS)

    Russell, C.T.

    2005-01-01

    Collisionless shocks are important in astrophysical, heliospheric and magnetospheric settings. They deflect flows around obstacles; they heat the plasma, and they alter the properties of the flow as it intersects those obstacles. The physical processes occurring at collisionless shocks depend on the Mach number (strength) and beta (magnetic to thermal pressure) of the shocks and the direction of the magnetic field relative to the shock normal. Herein we review how the shock has been modeled in numerical simulations, the basic physical processes at work, including dissipation and thermalization, the electric potential drop at the shock, and the formation of the electron and ion foreshocks

  9. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  10. Thermal shock analysis of liquid-mercury spallation target

    CERN Document Server

    Ishikura, S; Futakawa, M; Hino, R; Date, H

    2002-01-01

    The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1 MW-pulsed proton beam was analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress. (author)

  11. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock

    Directory of Open Access Journals (Sweden)

    Pereira, A. H. A.

    2012-06-01

    Full Text Available The work herein verifies the changes of the elastic moduli, damping and modulus of rupture (MOR of a high alumina refractory castable due to heating, cooling and heating-cooling thermal shock damage. Twelve prismatic specimens were prepared for the tests and divided into four groups. The thermal shocks were performed on three groups, each containing three specimens having abrupt temperature changes of 1100°C during heating in the first group, during cooling in the second and during heating followed by cooling in the third group. The fourth group, which was taken as a reference did not receive any thermal shock. The elastic moduli were measured after each thermal shock cycle. After 10 cycles, the MOR, the damping and the damping dependence on excitation amplitude were measured at room temperature for all specimens. The elastic moduli showed a similar decrease and the damping a similar increase due to the cooling and heating-cooling thermal shocks. The heating thermal shocks caused no significant changes on the elastic moduli and damping. However, the MOR appeared to be sensitive to the heating thermal shock. This work also shows that the damping for the studied refractory castable is non-linear (i.e., amplitude of excitation sensitive and that this non-linearity increases when the damage level rises.

    En este trabajo se investigaron las alteraciones de los módulos elásticos dinámicos, del amortiguamiento y del módulo de rotura (MOR de un material refractario moldeable de alta alúmina después de recibir choques térmicos de calentamiento, enfriamiento y calentamiento seguido de enfriamiento (calentamiento-enfriamiento. Para ello se prepararon doce cuerpos prismáticos dividiéndolos en cuatro grupos. Los choques térmicos se le aplicaron a sólo tres grupos, cada uno con tres muestras. Al primer grupo se le aplicó un cambio brusco de temperatura de 1100 °C en calentamiento, en enfriamiento al segundo grupo y calentamiento seguido

  12. On Maximally Dissipative Shock Waves in Nonlinear Elasticity

    OpenAIRE

    Knowles, James K.

    2010-01-01

    Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...

  13. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  14. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration

  15. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/ USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration. (author)

  16. Probabilistic structural integrity of reactor vessel under pressurized thermal shock

    International Nuclear Information System (INIS)

    Myung Jo Hhung; Young Hwan Choi; Hho Jung Kim; Changheui Jang

    2005-01-01

    Performed here is a comparative assessment study for the probabilistic fracture mechanics approach of the pressurized thermal shock of the reactor pressure vessel. A round robin consisting of 1 prerequisite study and 5 cases for probabilistic approaches is proposed, and all organizations interested are invited. The problems are solved and their results are compared to issue some recommendation of best practices in this area and to assure an understanding of the key parameters of this type of approach, which will be useful in the justification through a probabilistic approach for the case of a plant over-passing the screening criteria. Six participants from 3 organizations in Korea responded to the problem and their results are compiled in this study. (authors)

  17. The ''injection problem'' for quasiparallel shocks

    International Nuclear Information System (INIS)

    Zank, G. P.; Rice, W. K. M.; le Roux, J. A.; Cairns, I. H.; Webb, G. M.

    2001-01-01

    For a particle to be accelerated diffusively at a shock by the first-order Fermi acceleration mechanism, the particle must be sufficiently energetic that it can scatter across all the micro- and macrostructure of the shock, experiencing compression between the converging upstream and downstream states. This is the well-known ''injection problem.'' Here the interaction of ions with the ramp of a quasiparallel shock is investigated. Some ions incident on the shock experience specular reflection, caused either by the cross-shock electrostatic potential or by mirroring as the magnetic field is bent and compressed through the ramp. Scattering of reflected ions by self-generated and pre-existing turbulence in the region upstream of the shock then acts to trap backstreaming ions and return them to the ramp, where some experience further reflections. Such repeated reflections and scattering energize a subpopulation of ions up to energies sufficiently large that they can be diffusively shock accelerated. Two ion distributions are considered: pickup ions which are assumed to be described by a shell distribution, are thermal solar wind ions which may be described by a kappa distribution. Injection efficiencies are found analytically to be very high for pickup ions and much lower for thermal solar wind ions, suggesting that this injection mechanism, stochastic reflected ion or SRI acceleration, is a natural precursor for the acceleration of the anomalous cosmic ray component at a quasiparallel shock. While significantly less efficient, SRI acceleration is also viable for thermal solar wind ions described by a kappa distribution

  18. X-ray study of bow shocks in runaway stars

    Science.gov (United States)

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  19. Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock

    Science.gov (United States)

    Han, Jing; Tan, Shihai; Guo, Fu

    2018-01-01

    Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.

  20. Performance of low-upper-shelf material under pressurized-thermal-shock loading (PTSE-2)

    International Nuclear Information System (INIS)

    Bryan, R.H.; Corwin, W.R.; Bass, B.R.; Nanstad, R.K.; Bolt, S.E.; Merkle, J.G.; Bryson, J.W.; Robinson, G.C.

    1988-01-01

    The second pressurized-thermal-shock experiment (Pse-2) of the Heavy-Section Steel Technology Program was conceived to investigate fracture behavior of steel with low ductile-tearing resistance. The experiment was performed in the pressurized-thermal-shock test facility at the Oak Ridge National Laboratory. PTSE-2 was designed primarily to reveal the interaction of ductile and brittle modes of fracture and secondarily to investigate the effects of warm pre-stressing. A test vessel was prepared by inserting a crack-like flaw of well-defined geometry on the outside surface of the vessel. The flaw was 1 m long by ∼ 15 mm deep. The instrumented vessel was placed in the test facility in which it ws initially heated to a uniform temperature and was then concurrently cooled on the outside and pressurized on the inside. These actions produced an evolution of temperature, toughness, and stress gradients relative to the prepared flaw that was appropriate to the planned objectives. The experiment was conducted in two separate transients, each one starting with the vessel nearly isothermal. The first transient induced a warm-prestressed state, during which K I first exceeded K Ic . This was followed by re-pressurization until a cleavage fracture propagated and arrested. The final transient was designed to produce and investigate a cleavage crack propagation followed by unstable tearing. During this transient, the fracture events occurred as had been planned. (author)

  1. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  2. Galaxy Cluster Outskirts from the Thermal SZ and Non-Thermal Synchrotron Link

    Directory of Open Access Journals (Sweden)

    Kaustuv Basu

    2016-11-01

    Full Text Available Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev–Zel’dovich (SZ effect instruments. Additionally, non-thermal electrons (re-energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma and the farthest (El Gordo clusters with known radio relics.

  3. Radiosensitivity of Bombyx mori embryos and its modification by thermal shock

    International Nuclear Information System (INIS)

    Agaev, F.A.; Zakrzhevskaya, D.T.; Yusifov, N.I.; Gaziev, A.I.; AN Azerbajdzhanskoj SSR, Baku

    1991-01-01

    Radiosensitivity of Bombyx mori embryos on days 3-4 of their development is more than 10 times higher than that of 7-9 day embryos. The rate of DNA synthesis in the embryos correlates with their radiosensitivity. Heat treatment (40 deg C, 60 min) of embryos just before γ-irradiation increases their radioresistance (DMF=+1.6), whereas such a treatment immediately after irradiation reduces the survival rate of embryos as compared to the controls irradiated without heat treatment (DMA=-1.5). The radiomodifying effect of the thermal shock on the Bombyx mori embryos is the same with exposure at both the radioresistant and the radiosensitive stage of their development. However, it is more pronounced at the radiosensitive stage

  4. RETRAN applications in pressurized thermal shock analysis of turkey point units 3 and 4

    International Nuclear Information System (INIS)

    Arpa, J.; Fatemi, A.S.; Mathavan, S.K.

    1985-01-01

    A methodology to assess the impact of overcooling transients on vessel wall integrity with respect to pressurized thermal shock conditions has been developed at Florida Power and Light Company for the Turkey Point Nuclear Units. Small break loss-of-coolant and small steamline break events have been simulated with the RETRAN code. Highly conservative assumptions, such as engineered safeguards with minimum temperature and maximum flow, have been made to maximize cooldown and thermal stress in the vessel wall. Temperatures, pressures, and flows obtained with RETRAN provide input for stress and fracture mechanics analyses that evaluate reactor vessel integrity. The results of the RETRAN analyses compare well with generic calculations performed by the Westinghouse Owners Group for a similar type of plant

  5. PNL technical review of pressurized thermal-shock issues

    International Nuclear Information System (INIS)

    Pedersen, L.T.; Apley, W.J.; Bian, S.H.; Defferding, L.J.; Morgenstern, M.H.; Pelto, P.J.; Simonen, E.P.; Simonen, F.A.; Stevens, D.L.; Taylor, T.T.

    1982-07-01

    Pacific Northwest Laboratory (PNL) was asked to develop and recommend a regulatory position that the Nuclear Regulatory Commission (NRC) should adopt regarding the ability of reactor pressure vessels to withstand the effects of pressurized thermal shock (PTS). Licensees of eight pressurized water reactors provided NRC with estimates of remaining effective full power years before corrective actions would be required to prevent an unsafe operating condition. PNL reviewed these responses and the results of supporting research and concluded that none of the eight reactors would undergo vessel failure from a PTS event before several more years of operation. Operator actions, however, were often required to terminate a PTS event before it deteriorated to the point where failure could occur. Therefore, the near-term (less than one year) recommendation is to upgrade, on a site-specific basis, operational procedures, training, and control room instrumentation. Also, uniform criteria should be developed by NRC for use during future licensee analyses. Finally, it was recommended that NRC upgrade nondestructive inspection techniques used during vessel examinations and become more involved in the evaluation of annealing requirements

  6. Thermal shock tests to qualify different tungsten grades as plasma facing material

    Science.gov (United States)

    Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.

    2016-02-01

    The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.

  7. Release of Bacterial Spores from the Inner Walls of a Stainless Steel Cup Subjected to Thermal Stresses and Mechanical Shock

    Science.gov (United States)

    Wolochow, H.; Chatigny, M.; Hebert, J.

    1973-01-01

    The release and fallout of particulates from surfaces afforded thermal or impact stress is of concern for control of contamination of Mars from planetary landing vehicles. A metal vessel contaminated by aerosols of spores was used as a model system and the fallout of spores as affected by various mechanisms was examined. Thermal stresses simulating those expected on the Mars lander dislodged approximately .01% of the aerosol deposited surface burden as did a landing shock of 8 to 10G deceleration. Spores imprinted by finger or swab contact yielded similar results. In all cases where repeated cycling of temperature, motion, or shock were employed the majority of fallout occurred in the first cycle. Particles released from the surface were predominantly in the size range 1 to 5 microns.

  8. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    International Nuclear Information System (INIS)

    Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A.

    1993-08-01

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117

  9. The role of ductile ligaments and warm prestress on the re-initiation of fracture from a crack arrested during thermal shock

    International Nuclear Information System (INIS)

    Smith, E.

    1982-01-01

    The protection offered by warm prestress can be important for preserving a nuclear pressure vessel's integrity during a postulated emergency condition involving a loss of coolant, when the emergency core cooling water subjects the pressure vessel to a thermal shock. There are two aspects to the problem: (a) the initial extension of a defect into the vessel wall, and (b) the subsequent re-initiation of fracture at an arrested crack tip. This note considers the effect of warm prestress on the re-initiation of fracture from an arrested crack, and emphasizes the role of ductile ligaments. It is argued that the warm prestress concept is applicable, thus complementing the limited experimental results provided by the HSST Thermal Shock experimental programme. (orig.)

  10. FABRICATION OF MICROPOROUS SILICA CERAMICS WITH VARIED POLYMORPHIC FORMS AND INVESTIGATION OF THEIR THERMAL SHOCK BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Osman ŞAN

    2011-06-01

    Full Text Available In this study; the SiO₂ micro-porous ceramics in the phase α-quartz, α-cristobalite and β-cristobalite were produced and thermal shock resistance of products were compared. In the production of ceramic materials; α-quartz obtained from natural quartz powder, α-cristobalite from pure silica powder which prepared by Stöber technique and β-cristobalite from sol-gel approach. The β-composition was designed as Si₁₋⨯Al⨯Ca⨯/₂O₂ where x=0.05 and obtained gel was calcined at 850 °C. Before shaping, α-quartz powder and calcined β-cristobalite powder were grind in the planetary mill and the powder produced by Stöber technique was shaped directly without any milling process. The prepared powders were shaped by uniaxally press at 50 bars. The samples produced from α-quartz and β-cristobalite powders were sintered at 1150 °C and α-cristobalite obtained by Stöber technique was sintered at 1400 °C. In the defined polymorphic structure, micro-porous materials with pore size ~0.1-5 µm were produced and thermal shock tests were applied. Irrespective of β-cristobalite material, the samples were cracked and the tests could only repeat on the samples with β-cristobalite material. In the result, the β-cristobalite sample is believed to be great potential to use as a membrane filters for harsh thermal environments.

  11. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  12. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    Science.gov (United States)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  13. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  14. Effect of molar ratios of MgO/Al{sub 2}O{sub 3} on the sintering behavior and thermal shock resistance of MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Dong, E-mail: 1078155409@qq.com [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Luo, Xudong, E-mail: luoxudongs@aliyun.com [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Guodong [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Xie, Zhipeng [Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-01-01

    In order to determine the relationship between the property of MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics and molar ratios of MgO/Al{sub 2}O{sub 3}, especially the sintering behavior and thermal shock resistance, the MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics were fabricated with micro-size MgO, Al{sub 2}O{sub 3} powder and nano-size SiO{sub 2} as main raw materials. The sample was characterized by phase analysis, densification and thermal shock times. Moreover, field emission scanning electron microscope was also conducted to study microstructure of the samples before and after thermal shock. Effect of different molar ratios of MgO/Al{sub 2}O{sub 3} on the sintering behavior and thermal shock resistance of composite ceramics were investigated. The results showed that the sample possess better sintering behavior and thermal shock resistance with the molar ratio of MgO/Al{sub 2}O{sub 3} equal to 2/1. Grains of periclase and spinel were directly bonded together, resulting in a dense and compact microstructure, and the bulk density of obtained sample reached 3.4 g/cm{sup 3}. The microstructure of sample after thermal shock revealed that the crack propagation path was deflected and bifurcated, the main-crack propagation was restricted and more fracture energy was consumed, the thermal shock resistance of composite ceramics was greatly improved. - Highlights: • Effect of MgO/Al{sub 2}O{sub 3} on the composite ceramic was firstly researched with 1 mol% SiO{sub 2}. • Microcracks for a short distance by interlinking can eliminate the crack propagation. • The composite ceramic have optimal synthetic property with MgO/Al{sub 2}O{sub 3} was 2/1.

  15. Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhou, Qiang

    2016-09-01

    Previous studies have demonstrated differences in thermotolerance between two wing morphs of Nilaparvata lugens, the most serious pest of rice across the Asia. To reveal the molecular regulatory mechanisms underlying the differential thermal resistance abilities between two wing morphs, a full-length of transcript encoding heat shock cognate protein 70 (Hsc70) was cloned, and its expression patterns across temperature gradients were analyzed. The results showed that the expression levels of NlHsc70 in macropters increased dramatically after heat shock from 32 to 38°C, while NlHsc70 transcripts in brachypters remained constant under different temperature stress conditions. In addition, NlHsc70 expression in the macropters was significantly higher than that in brachypters at 1 and 2h recovery from 40°C heat shock. There was no significant difference in NlHsc70 mRNA expression between brachypters and macropters under cold shock conditions. Therefore, NlHsc70 was indeed a constitutively expressed member of the Hsp70 family in brachypters of N. lugens, while it was heat-inducible in macropters. Furthermore, the survival rates of both morphs injected with NlHsc70 dsRNA were significantly decreased following heat shock at 40°C or cold shock at 0°C for 1h. These results suggested that the up-regulation of NlHsc70 is possibly related to the thermal resistance, and the more effective inducement expression of NlHsc70 in macropters promotes a greater thermal tolerance under temperature stress conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Pressure vessel fracture studies pertaining to a PWR LOCA-ECC thermal shock: experiments TSE-3 and TSE-4 and update of TSE-1 and TSE-2 analysis

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bolt, S.E.

    1977-01-01

    The LOCA-ECC Thermal Shock Program was established to investigate the potential for flaw propagation in pressurized-water reactor (PWR) vessels during injection of emergency core coolant following a loss-of-coolant accident. Studies thus far have included fracture mechanics analyses of typical PWRs, the design and construction of a thermal shock test facility, determination of material properties for test specimens, and four thermal shock experiments with 0.53-m-OD (21-in.) by 0.15-m-wall (6-in.) cylindrical test specimens. In the first experiment, initiation was not expected and did not occur, although there was a small amount of subcritical crack growth. In the second experiment, initiation of a semicircular flaw took place as expected; the final length along the surface was about four times the initial length, but there was no radial growth. The third and fourth experiments were similar, and the long axial flaw initiated in good agreement with predictions

  17. Line emission processes in atomic and molecular shocks

    International Nuclear Information System (INIS)

    Shull, J.M.

    1988-01-01

    The review discusses the observations and theoretical models of interstellar shock waves in diffuse and molecular clouds. After summarizing the relevant gas dynamics, atomic, molecular and grain processes, and physics of radiative and magnetic precursors, the author describes observational diagnostics of shocks. This paper concludes with a discussion of two topics: unstable or non-steady shocks and thermal conduction in metal-rich shocks

  18. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  19. An investigation into the relationship between thermal shock resistance and ballistic performance of ceramic materials

    Science.gov (United States)

    Beaumont, Robert

    Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions

  20. Shallow crack effect on brittle fracture of RPV during pressurised thermal shock

    International Nuclear Information System (INIS)

    Ikonen, K.

    1995-12-01

    This report describes the study on behaviour of postulated shallow surface cracks in embrittled reactor pressure vessel subjected to pressurised thermal shock loading in an emergency core cooling. The study is related to the pressure vessel of a VVER-440 type reactor. Instead of a conventional fracture parameter like stress intensity factor or J integral the maximum principal stress distribution on a crack tip area is used as a fracture criteria. The postulated cracks locate circumferentially at the inner surface of the reactor pressure wall and they penetrate the cladding layer and open to the inner surface. Axisymmetric and semielliptical crack shapes were studied. Load is formed of an internal pressure acting also on crack faces and of a thermal gradient in the pressure vessel wall. Physical properties of material and loading data correspond real conditions in VVER-440 RPV. The study was carried out by making lot of 2D- and 3D- finite element calculations. Analysing principles and computer programs are explained. Except of studying the shallow crack effect, one objective of the study has also been to develop further expertise and the in-house developed computing system to make effectively elastic-plastic fracture mechanical analyses for real structures under complicated loads. Though the study concerns VVER-440 RPV, the results are of more general interest especially related to thermal loads. (orig.) (11 refs.)

  1. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  2. Answering without answering

    DEFF Research Database (Denmark)

    Gabrielsen, Jonas; Jønch-Clausen, Heidi; Pontoppidan, Christina

    2017-01-01

    In the context of political press conferences, the authors explore a particular category of subtle evasions they term shifting. When shifting, the interviewee seemingly accepts to answer the journalist’s question. However, in providing the answer, the interviewee refocuses the question replacing...

  3. Overview of the Integrated Pressurized Thermal-Shock (IPTS) study

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1990-01-01

    By the early 1980s, (PTS)-related, deterministic, vessel-integrity studies sponsored by the US Nuclear Regulatory Commission (NRC) indicated a potential for failure of some PWR vessels before design end of life, in the event of a postulated severe PTS transient. In response, the NRC established screening criteria, in the form of limiting values of the reference nil-ductility transition temperature (RT NDT ), and initiated the development of a probabilistic methodology for evaluating vessel integrity. This latter effort, referred to as the Integrated Pressurized Thermal-Shock (IPTS) Program, included development of techniques for postulating PTS transients, estimating their frequencies, and calculating the probability of vessel failure for a specific transient. Summing the products of frequency of transient and conditional probability of failure for each of the many postulated transients provide a calculated value of the frequency of failure. The IPTS Program also included the application of the IPTS methodology to three US PWR plants (Oconee-1, Calvert Cliffs-1, and HBRobinson-2) and the specification of a maximum permissible value of the calculated frequency of vessel failure. Another important purpose of the IPTS study was to determine, through application of the IPTS methodology, which design and operating features, parameters, and PTS transients were dominant in affecting the calculated frequency of failure. The scope of the IPTS Program included the development of a probabilistic fracture-mechanics capability, modification of the TRAC and RELAP5 thermal/hydraulic codes, and development of the methodology for estimating the uncertainty in the calculated frequency of vessel failure

  4. Thermal shock behavior of W-0.5 wt% Y_2O_3 alloy prepared via a novel chemical method

    International Nuclear Information System (INIS)

    Zhao, Mei-Ling; Luo, Lai-Ma; Lin, Jing-Shan; Zan, Xiang; Zhu, Xiao-Yong; Luo, Guang-Nan; Wu, Yu-Cheng

    2016-01-01

    A wet-chemical method combined with spark plasma sintering was used to prepare W-0.5 wt% Y_2O_3 alloy. The W-0.5 wt% Y_2O_3 precursor was reduced at 800 °C for 4 h under different hydrogen flow rates of 300, 400, 500, 600, and 700 ml/min. The reduced powder was analyzed by X-ray diffraction (XRD), laser particle size analyzer (LPSA), and scanning electron microscopy (SEM). An optimized process for reducing precursor was discussed. After sintering, the specimens were exposed to different laser beam irradiation energies (90, 120, 150, and 180 W) to simulate loads as expected for edge localized modes (ELMs). Top surface and cross-sectional morphology were observed by SEM, and the changes in hardness were evaluated. The changes in microstructural properties (i.e., Y_2O_3-particle distribution, crack propagation direction, depth of thermal shock effect, and grain size of the recrystallization region) after thermal shock were investigated.

  5. Analysis of crack behavior in the JRC Ispra pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Jovanovic, A.; Lucia, A.C.

    1990-01-01

    The analytical work performed in the framework of the Pressurized Thermal Shock (PTS) experimental research at the JRC Ispra, Italy, is described in the paper. In particular, the development of the FRAP preprocessor and development and implementation of a methodology for analysis of local non-stationary heat transfer coefficients during a PTS, have been tackled. FRAP is used as a front-end for the finite element code ABAQUS, for the heat transfer, stress and fracture mechanics analyses. The ABAQUS results are used further on, for the probabilistic fatigue crack analysis performed by the JRC Ispra code COVASTOL. Only the preliminary results of application of FRAP, ABAQUS and COVASTOL codes in the experiment are given in this paper, in order to illustrate the applied analytical procedure. (orig.)

  6. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Song, Jiupeng; Yan, Binyou; Wang, Yingmin; Wang, Jianbao; Chen, Jiming

    2017-12-01

    The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GW m-2 at various temperatures between room temperature and 200 °C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 °C.

  7. Shock resistance testing

    International Nuclear Information System (INIS)

    Pouard, M.

    1984-03-01

    In the framework of mechanical tests and to answer the different requests for tests, the T.C.R (Transport Conditionnement et Retraitement) laboratory got test facilities. These installations allow to carry out tests of resistance to shocks, mainly at the safety level of components of nuclear power plants, mockups of transport casks for fuel elements and transport containers for radioactive materials. They include a tower and a catapult. This paper give a decription of the facilities and explain their operation way [fr

  8. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  9. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    Science.gov (United States)

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  10. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  11. A powerful methodology for reactor vessel pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Boucau, J.; Mager, T.

    1994-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). More specifically, the review of the old WWER-type of reactors (WWER 440/230) has indicated a sensitive behaviour to neutron embrittlement. This led already to some remedial actions including safety injection water preheating or vessel annealing. Such measures are usually taken based on the analysis of a selected number of conservative PTS events. Consideration of all postulated cooldown events would draw attention to the impact of operator action and control system effects on reactor vessel PTS. Westinghouse has developed a methodology which couples event sequence analysis with probabilistic fracture mechanics analyses, to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. Once the event sequences of concern are identified, detailed deterministic thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. The results of these analyses can then be used to better define further modifications in vessel and plant system design and to operating procedures. The purpose of the present paper will be to describe this methodology and to show its benefits for decision making. (author). 1 ref., 3 figs

  12. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  13. Analysis of Reactor Pressurized Thermal Shock Conditions Considering Upgrading of Systems Important to Safety

    International Nuclear Information System (INIS)

    Mazurok, A.S; Vyshemirskyij, M.P.

    2015-01-01

    The paper analyzes conditions of pressurized thermal shock on the reactor pressure vessel taking into account upgrading of the emergency core cooling system and primary overpressure protection system. For representative accident scenarios, calculation and comparative analysis was carried out. These scenarios include a small leak from the hot leg and PRZ SV stuck opening with re closure after 3600 sec and 3 SG heat transfer tube rupture. The efficiency of mass flow control by valves on the pump head (emergency core cooling systems) and cold overpressure protection (primary overpressure protection system) was analyzed. The thermal hydraulic model for RELAP5/Mod3.2 code with detailed downcomer (DC) model and changes in accordance with upgrades was used for calculations. Detailed (realistic) modeling of piping and equipment was performed. The upgrades prevent excessive primary cooling and, consequently, help to preserve the RPV integrity and to avoid the formation of a through crack, which can lead to a severe accident

  14. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone ( Haliotis discus hannai Ino) and its acute response to thermal exposure

    Science.gov (United States)

    Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.

  15. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany); Jacobs, P.A. [Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering; Thomas, A.; McIntyre, T.J. [Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics

    1999-12-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  16. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany)); Jacobs, P.A. (Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering); Thomas, A.; McIntyre, T.J. (Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics)

    1999-01-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  17. Effect of nano-ZrO2 addition on microstructure, mechanical property and thermal shock behaviour of dense chromic oxide refractory material

    International Nuclear Information System (INIS)

    Lu, Lixia; Ding, Chunhui; Zhanga, Chi; Yanga, De'an; Di, Lizhi

    2015-01-01

    To obtain a good performance hot-face lining material in gasifier, nano-ZrO 2 , up to 5 wt %, was added into chromic oxide powder with 3 wt % TiO 2 followed by sintering at 1500°C for 2.5 h. The effect of nano-ZrO 2 addition on microstructure, mechanical property and thermal shock behaviour was studied. ZrO 2 promoted densification at contents higher than 1 wt %. Microcracks and phase transformation toughened the dense chromic oxide refractory material. The main reason for decrease of strength was the existence microcracks in specimens and weakening of intergranular fracture. Dense chromic oxide refractory material with 2∼3 wt % nano-ZrO 2 possessed good densification, uniform microstructure, normal mechanical property and proper thermal shock resistance. The rupture strength retention ratio was nearly twice than that of chromic oxide material without ZrO 2 after three cycles of quenching test from 950°C to cold water. (author)

  18. Shocks in the Early Universe.

    Science.gov (United States)

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVUniverse as early as 10^{-30}  sec after the big bang.

  19. Ion Dynamics at Shocks: Ion Reflection and Beam Formation at Quasi-perpendicular Shocks

    International Nuclear Information System (INIS)

    Kucharek, Harald; Moebius, Eberhard

    2005-01-01

    The physics of collisionless shocks is controlled by the ion dynamics. The generation of gyrating ions by reflection as well as the formation of field-aligned ion beams are essential parts of this dynamic. On the one hand reflection is most likely the first interaction of ions with the shock before they undergo the downstream thermalization process. On the other hand field-aligned ion beams, predominately found at the quasi-perpendicular bow shock, propagate into the distant foreshock region and may create wave activity. We revisit ion reflection, the source and basic production mechanism of field-aligned ion beams, by using multi-spacecraft measurements and contrast these observations with existing theories. Finally, we propose an alternative production mechanism

  20. Dynamical efficiency of collisionless magnetized shocks in relativistic jets

    Science.gov (United States)

    Aloy, Miguel A.; Mimica, Petar

    2011-09-01

    The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.

  1. The effect of thermal shock on morphological characteristics of blood cells in Siberian sturgeon (Acipenser baerii triploids

    Directory of Open Access Journals (Sweden)

    Teresa Wlasow

    2011-01-01

    Full Text Available The aim of the study was to evaluate the effect of thermal shock on morphotic blood elements in Siberian sturgeon Acipenser baerii triploids. The thermal shock (37 °C for 2 min was applied in the 18th min after fertilization. Blood was sampled from parallel cultured ten triploids and ten diploids on day 70 after hatching. Ploidy was assessed with the cytogenetic method and measurements of cellular nuclei. In the blood of triploids, significant dominance of immature red blood cells, erythrocytes with a displaced nucleus, microcytes and erythroplastids were observed. The blood of triploids was also characterized by a reduced number of lymphocytes. The percentage of neutrophil and eosinophil granulocytes was elevated; increased share of neutrophil granulocytes with a 4-, 5- or 6-segmented nucleus and eosinophil granulocytes with a nucleus consisting of three and more segments was observed. Disturbances in the picture of red blood cells can be considered as an expression of intensification of end-stage changes in triploids. The response to these changes in the blood of triploid Siberian sturgeon is an increase in the share of polymorphonuclear PMN, cells counted as microphages. Frequent presence of immature red blood cells in triploid Siberian sturgeon is a process that aims at counterbalancing the loss among these blood cells. It is the first report on morphological changes and proportions among blood cells in triploid Siberian sturgeon.

  2. A quantitative methodology for reactor vessel pressurized thermal shock decision making

    International Nuclear Information System (INIS)

    Ackerson, D.S.; Balkey, K.R.; Meyer, T.A.; Ofstun, R.P.; Rupprecht, S.D.; Sharp, D.R.

    1983-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). Previous reactor vessel integrity concerns have led to changes in vessel and plant system design and to operating procedures, and increased attention to the PTS issue is causing consideration of further modifications. Events such as excess feedwater, loss of normal feedwater, and steam generator tube rupture have led to significant primary system cooldowns. Each of these cooldown transients occurred concurrently with a relatively high primary system pressure. Considerations of these and other postulated cooldown events has drawn attention to the impact of operator action and control system effects on reactor vessel PTS. A methodology, which couples event sequence analysis with probabilistic fracture mechanics analyses, was developed to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. (orig./RW)

  3. Estimation of fracture conditions of ceramics by thermal shock with laser beams based on the maximum compressive stress criterion

    International Nuclear Information System (INIS)

    Akiyama, Shigeru; Amada, Shigeyasu.

    1992-01-01

    Structural ceramics are attracting attention in the development of space planes, aircraft and nuclear fusion reactors because they have excellent wear-resistant and heat-resistant characteristics. However, in some applications it is anticipated that they will be exposed to very-high-temperature environments of the order of thousands of degrees. Therefore, it is very important to investigate their thermal shock characteristics. In this report, the distributions of temperatures and thermal stresses of cylindrically shaped ceramics under irradiation by laser beams are discussed using the finite-element computer code (MARC) with arbitrary quadrilateral axisymmetric ring elements. The relationships between spot diameters of laser beams and maximum values of compressive thermal stresses are derived for various power densities. From these relationships, a critical fracture curve is obtained, and it is compared with the experimental results. (author)

  4. Thermal Shock Properties of Cladding with SiC{sub f}/SiC Composite Protective Films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghee; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of); Kim, Weonju; Park, Jiyeon; Kim, Daejong; Lee, Hyeon Geun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In general, Zr-4 alloy is used for such nuclear fuel cladding. Zr-4 possesses a very small thermal neutron absorption cross-section and has superior corrosion resistance in the normal operating conditions of a nuclear reactor. However, in the case of a critical accident such as a LOCA (loss-of-coolant accident) in the Fukushima disaster, the risk of hydrogen explosion becomes serious. That is, in the case of coolant leakage, a dramatic reaction between the nuclear fuel cladding and steam can cause a heating reaction accompanied by rapid high-temperature oxidation, while creating a huge amount of hydrogen. Hence, the search for an alternative material for nuclear fuel cladding is being actively undertaken. Ceramic-based nuclear fuel cladding is receiving much attention as a means of improving safety. SiC has excellent properties of resistance to high temperature and high exposure and superior mechanical properties, as well as a very small thermal neutron absorption cross-section (0.09 barns), which causes almost no decrease in mechanical strength or volume change following exposure. This experiment examined the thermal shock properties and microstructure of cladding that has SiCf/SiC composite protective film, using polycarbosilane preceramic polymer.

  5. Cracking of a layered medium on an elastic foundation under thermal shock

    Science.gov (United States)

    Rizk, Abd El-Fattah A.; Erdogan, Fazil

    1988-01-01

    The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.

  6. Nuclear power in Canada: questions and answers

    International Nuclear Information System (INIS)

    1975-01-01

    To further public understanding of nuclear power generation, the Canadian Nuclear Association commissioned a special task force to coordinate contributions of experts in all parts of the nuclear industry. These contributions have been arranged in a question and answer format and are aimed at the average Canadian reader who is genuinely seeking factual information on nuclear power. Areas covered include electricity demand, comparison of nuclear generation with other forms of thermal electricity production, radiation sources and effects on man and his environment; features of different reactor types, thermal discharges and waste management. (O.T.)

  7. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bolme, Cindy B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, David S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  8. Electron velocity distributions near the earth's bow shock

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Bame, S.J.; Gary, S.P.; Gosling, J.T.; McComas, D.J.; Thomsen, M.F.; Paschmann, G.; Hoppe, M.M.

    1983-01-01

    A survey of two-dimensional electron velocity distributions, f(V), measured near the earth's bow shock using Los Alamos/Garching plasma instrumentation aboard ISEE 2 is presented. This survey provides clues to the mechanisms of electron thermalization within the shock and the relaxation of both the upsteam and downstream velocity distributions. First, near the foreshock boundary, fluxes of electrons having a power law shape at high energies backstream from the shock. Second, within the shock, cuts through f(V) along B. f(V), often show single maxima offset toward the magnetosheath by speeds comparable to, but larger than, the upstream thermal speed.Third, magnetosheath distributions generally have flat tops out to an energy, E 0 , with maxima substantially lower than that in the solar wind. Occasionally, cuts through f(V) along B show one and sometimes two small peaks at the edge of the flat tops making them appear concave upward. The electron distributions characteristic of these three regions are interpreted as arising from the effects of macroscopic (scale size comparable to or larger than the shock width) electric and magnetic fields and the subsequent effects of microscopic (scale size small in comparison with the shock width) fields. In particular, our results suggest that field-aligned instabilities are likely to be present in the earth's bow shock

  9. Molecular characterization of three heat shock protein 70 genes and their expression profiles under thermal stress in the citrus red mite.

    Science.gov (United States)

    Yang, Li-Hong; Jiang, Hong-Bo; Liu, Yong-Hua; Dou, Wei; Wang, Jin-Jun

    2012-04-01

    Three heat shock protein 70 family transcripts, named PcHsp70-1, PcHsp70-2 and PcHsp70-3, were isolated from the citrus red mite, Panonychus citri. PcHsp70-1, PcHsp70-2, and PcHsp70-3 contained an open reading frame of 1977, 1968, and 2028 nucleotides that encoded 658, 655 and 675 amino acid residues, respectively. Comparison of deduced amino acid sequences of PcHsp70-1 and PcHsp70-2 showed 86.34% identity, while the amino acid sequence of PcHsp70-3 was only 57.39 and 58.75% identical to that of PcHsp70-1 and PcHsp70-2, respectively. Sequences and phylogenetic analyses suggested that PcHsp70-1 and PcHsp70-2 were cytosolic Hsps, whereas PcHsp70-3 was located in ER (endoplasmic reticulum). To accurately validate mRNA expression profiles of the three Hsp70s under thermal stress conditions, seven housekeeping genes were evaluated. Alpha-tubulin and RpII were selected as optimal endogenous references for cold shock and heat shock conditions, respectively. Real-time quantitative RT-PCR revealed that only the mRNA expression of PcHsp70-2 was up-regulated under heat shocks, and all of the three Hsp70s were constitutively expressed under cold shocks. The results suggest that the three Hsp70s were more critical to coping with heat than cold shocks.

  10. SUB-PHOTOSPHERIC EMISSION FROM RELATIVISTIC RADIATION MEDIATED SHOCKS IN GRBs

    International Nuclear Information System (INIS)

    Bromberg, Omer; Mikolitzky, Ziv; Levinson, Amir

    2011-01-01

    It is proposed that the prompt emission observed in bursts that exhibit a thermal component originates from relativistic radiation mediated shocks (RRMS) that form below the photosphere of the gamma-ray burst (GRB) outflow. It is argued that such shocks are expected to form in luminous bursts via collisions of shells that propagate with moderate Lorentz factors Γ ∼< 500. Faster shells will collide above the photosphere to form collisionless shocks. We demonstrate that in events like GRB 090902B a substantial fraction of the explosion energy is dissipated below the photosphere, in a region of moderate optical depth τ ∼< 300, whereas in GRB 080916C the major fraction of the energy dissipates above the photosphere. We show that under conditions anticipated in many GRBs, such RRMS convect enough radiation upstream to render photon production in the shock transition negligible, unlike the case of shock breakout in supernovae. The resulting spectrum, as measured in the shock frame, has a relatively low thermal peak, followed by a broad, nonthermal component extending up to the Klein-Nishina limit.

  11. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  12. Very high Mach number shocks - Theory. [in space plasmas

    Science.gov (United States)

    Quest, Kevin B.

    1986-01-01

    The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.

  13. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    Science.gov (United States)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  14. SN 1987 A: A Unique Laboratory for Shock Physics

    Science.gov (United States)

    Sonneborn, George

    2012-01-01

    Supernova 1987 A has given us an unprecedented view of the evolution of the explosion debris and its interaction with circumstellar matter. The outer supernova debris, now expanding with velocities approx.8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss in the early 1990s. The shock interaction is manifested by UV-optical "hotspots", an expanding X-ray ring, an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust Recent ultraviolet observations of the emissions from the reverse shock and the ring with the HST/COS reveal new details about the shock interaction. Lyman alpha emission from the reverse shock is much stronger than H alpha and they have different emission morphologies, pointing to different emission mechanisms. The reverse shock was detected for the first time in C IV 1550. The N V to C IV brightness ratio indicates the N/C abundance ratio in the expanding debris is about 100X solar, about 3X N/C in the inner ring.

  15. Response of beryllium to severe thermal shocks -simulation of disruption and vertical displacement events in future thermonuclear devices

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Duwe, R.; Roedig, M.; Schuster, A. [Association Euratom-Forschungszentrum Juelich GmbH (Germany); Merola, M.; Qian, R.H.

    1998-01-01

    Beryllium will play an important role for plasma facing components in next step thermonuclear fusion devices such as ITER. In particular for the first wall beryllium will be used with an armor thickness of several millimeters. However, during plasma instabilities they will experience severe thermal shocks. Here plasma disruptions with deposited energy densities of several ten MJm{sup -2} are the most essential damaging mechanism. However, a signifant fraction of the incident energy will be absorbed by a dense cloud of ablation vapor, hence reducing the effective energy density at the beryllium surface to values in the order of 10 MJm{sup -2}. To investigate the material response to all these plasma instabilities thermal shock tests on small scale test coupons (disruption effects) and on actively cooled divertor modules (VDEs) have been performed in the electron beam test facility JUDITH at ITER relevant surface heat loads. These tests have been performed on different bulk beryllium grades and on plasma sprayed coatings; the influence of pulse duration, power density, and temperature effects has been investigated experimentally. Detailed in-situ diagnostics (for beam characterization, optical pyrometry etc.) and post mortem analyses (profilometry, metallography, optical and electron microscopy) have been applied to quantify the resulting material damage. 1D- and 2D models have developed to verify the experimental results obtained in the electron beam simulation experiments. (J.P.N.)

  16. Two-phase pressurized thermal shock investigations using a 3D two-fluid modeling of stratified flow with condensation

    International Nuclear Information System (INIS)

    Yao, W.; Coste, P.; Bestion, D.; Boucker, M.

    2003-01-01

    In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow

  17. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    International Nuclear Information System (INIS)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  18. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Masters, A.; Dougherty, M. K. [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, A. H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Sergis, N. [Office of Space Research and Technology, Academy of Athens, Soranou Efesiou 4, 11527 Athens (Greece); Stawarz, L. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Coates, A. J., E-mail: a.masters@imperial.ac.uk [Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom)

    2016-07-20

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  19. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  20. Buoyancy effects in overcooling transients calculated for the NRC pressurized thermal shock study

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Iyer, K.; Nourbakhsh, H.P.; Gherson, P.

    1986-05-01

    The thermal-hydraulic responses of three PWRs (Oconee, Calvert Cliffs, and H.B. Robinson), to postulated Pressurized Thermal Shock (PTS) scenarios, which were originally determined by RELAP5 and TRAC calculations, are being further developed here with regard to buoyancy/stratification effects. These three PWRs were the subject of the NRC PTS study, and the present results helped define the thermal-hydraulic conditions utilized in the fracture mechanics calculations carried out at ORNL. The computer program REMIX, which is based on the Regional Mixing Model (RMM), was the analytical tool employed, while Purdue's 1/2-Scale HPI Thermal Mixing facility provided the basis for experimental support. Important mixing and wall heat transfer regimes are delineated on the basis of these results. We conclude that stratification is important only in cases of complete loop stagnation and that mixed-convection effects are important for downcomer flow velocities below approx.0.25 m/s. The stratification is small in magnitude, however it is important in creating a recirculating flow pattern which activates the lower plenum, pump and loop seal volumes, to participate in the mixing process. This mixing process together with the heat input from the wall metal significantly impact the cooldown rates. Heat transfer in the plume region is dominated by forced convection. On the other hand, the presence of the Reactor Pressure Vessel (RPV) wall cladding and wall conduction significantly dampen the free convection effects in the low velocity, mixed-convection, regime. For the stagnant loop cases, all locations outside the plume region are included in this regime. In the presence of natural loop circulation and a uniformly distributed downcomer flow, the mixed convection regime is also expected, however, the forced convection regime can also be observed in highly asymmetric flow behavior

  1. A fractographic study of cracks produced by thermal shocks in 20MnMoNi55 and comparable weld material in water environment

    International Nuclear Information System (INIS)

    Toerroenen, K.; Rintamaa, R.; Kemppainen, M.

    1983-04-01

    This report gives the results of a fractographic study of cracks produced by thermal shocks in 20MnMoNi55 and comparable weld material in water environment. The basic crack growth mechanism is shown to be by mechanical fatigue, but after some crack growth indications of environmentally assisted cyclic crack growth is seen. (author)

  2. Thermal shock behavior of W-0.5 wt% Y{sub 2}O{sub 3} alloy prepared via a novel chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei-Ling [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Lai-Ma, E-mail: luolaima@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 (China); Lin, Jing-Shan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zan, Xiang; Zhu, Xiao-Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Yu-Cheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 (China)

    2016-10-15

    A wet-chemical method combined with spark plasma sintering was used to prepare W-0.5 wt% Y{sub 2}O{sub 3} alloy. The W-0.5 wt% Y{sub 2}O{sub 3} precursor was reduced at 800 °C for 4 h under different hydrogen flow rates of 300, 400, 500, 600, and 700 ml/min. The reduced powder was analyzed by X-ray diffraction (XRD), laser particle size analyzer (LPSA), and scanning electron microscopy (SEM). An optimized process for reducing precursor was discussed. After sintering, the specimens were exposed to different laser beam irradiation energies (90, 120, 150, and 180 W) to simulate loads as expected for edge localized modes (ELMs). Top surface and cross-sectional morphology were observed by SEM, and the changes in hardness were evaluated. The changes in microstructural properties (i.e., Y{sub 2}O{sub 3}-particle distribution, crack propagation direction, depth of thermal shock effect, and grain size of the recrystallization region) after thermal shock were investigated.

  3. Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...

    Indian Academy of Sciences (India)

    Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.

  4. Reactor pressure vessel failure probability following through-wall cracks due to pressurized thermal shock events

    International Nuclear Information System (INIS)

    Simonen, F.A.; Garnich, M.R.; Simonen, E.P.; Bian, S.H.; Nomura, K.K.; Anderson, W.E.; Pedersen, L.T.

    1986-04-01

    A fracture mechanics model was developed at the Pacific Northwest Laboratory (PNL) to predict the behavior of a reactor pressure vessel following a through-wall crack that occurs during a pressurized thermal shock (PTS) event. This study, which contributed to a US Nuclear Regulatory Commission (NRC) program to study PTS risk, was coordinated with the Integrated Pressurized Thermal Shock (IPTS) Program at Oak Ridge National Laboratory (ORNL). The PNL fracture mechanics model uses the critical transients and probabilities of through-wall cracks from the IPTS Program. The PNL model predicts the arrest, reinitiation, and direction of crack growth for a postulated through-wall crack and thereby predicts the mode of vessel failure. A Monte-Carlo type of computer code was written to predict the probabilities of the alternative failure modes. This code treats the fracture mechanics properties of the various welds and plates of a vessel as random variables. Plant-specific calculations were performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 reactor pressure vessels for the conditions of postulated transients. The model predicted that 50% or more of the through-wall axial cracks will turn to follow a circumferential weld. The predicted failure mode is a complete circumferential fracture of the vessel, which results in a potential vertically directed missile consisting of the upper head assembly. Missile arrest calculations for the three nuclear plants predict that such vertical missiles, as well as all potential horizontally directed fragmentation type missiles, will be confined to the vessel enclosre cavity. The PNL failure mode model is recommended for use in future evaluations of other plants, to determine the failure modes that are most probable for postulated PTS events

  5. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  6. Ion species stratification within strong shocks in two-ion plasmas

    Science.gov (United States)

    Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.; Chacón, Luis

    2018-03-01

    Strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likely contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Additionally, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M4 for M ≫ 1.

  7. Kinetic and energetic approaches to analysis of scabbing fracture of structural steels under thermal shock

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2002-01-01

    The regularities of the scabbing fracture of nine brands of structural steels under the conditions of the impact of the nuclear explosion X-ray irradiation are studied. The time dependences of the scabbing strength of the structural materials under thermal shock, initiated by the X-ray irradiation, are established within the frames of the approach to the problem on the scabbing fracture. The time dependences of the critical specific energy of the steels fracture under the conditions of the X-ray irradiation effect are determined within the frames of the energetic approach to the problem on the scabbing fracture, based on the comparison of the sample energy reserve and fracture work [ru

  8. Contribution for the improvement of pressurized thermal shock assessment methodologies in PWR pressure vessels

    International Nuclear Information System (INIS)

    Gomes, Paulo de Tarso Vida

    2005-01-01

    The structural integrity assessment of nuclear reactor pressure vessel, concerned to Pressurized Thermal Shock (PTS) accidents, became a necessity and has been investigated since the eighty's. The recognition of the importance of PTS assessment has led the international nuclear technology community to devote a considerable research effort directed to the complete integrity assessment process of the Reactor Pressure Vessels (VPR). Researchers in Europe, Japan and U.S.A. have concentrated efforts in the VPR structural and fracture analysis, conducting experiments to best understand how specific factors act on the behavior of discontinuities, under PTS loading conditions. The main goal of this work is to study de structural behavior of an 'in scale' PWR nuclear reactor pressure vessel model, containing actual discontinuities, under loading conditions generated by a pressurized thermal shock. To construct the pressure vessel model utilized in this research, the approach developed by Barroso (1995) and based on likelihood studies, related to thermal-hydraulic behavior during the PTS was employed. To achieve the objective of this research, a new methodology to generate cracks, with known geometry and localization in the vessel model wall was developed. Additionally, an hydraulic circuit, able to flood the vessel model, heated to 300 deg C, with 10 m 3 of water at 8 deg C, in 170 seconds, was built. Thermo-hydraulic calculations using RELAP5/M0D 3.2.2γ computational code were done, to estimate the temperature profiles during the cooling time. The resulting data subsidized the thermo-structural calculations that were accomplished using ANSYS 7.01 computational code, for both 2D and 3D models. So, the stress profiles obtained with these calculations were associated with fracture mechanics concepts, to assess the crack growth behavior in the VPR model wall. After the PTS test, the VPR model was submitted to destructive and non-destructive inspections. The results

  9. Assessment of margins with respect to pressurized thermal shock for the 3 loop plants of the French program

    International Nuclear Information System (INIS)

    Buchalet, C.; Haussaire, P.; Houssin, B.; Vagner, J.

    1983-08-01

    Presentation of the FRAMATOME and EDF program on pressurized thermal shock which objectives are to demonstrate that present and older French reactor vessels have adequate safety margins and to provide recommendations of feasible plant specific modifications, both technically and economically. Phase I consists in a thorough analysis of pressure and temperature transients that the R.P.V. beltine could undergo during plant operations; phase II is the fracture mechanics analysis; phase III estimates the safety margins available during normal, upset, emergency and faulted conditions

  10. The impact of kinetic effects on the properties of relativistic electron–positron shocks

    International Nuclear Information System (INIS)

    Stockem, Anne; Fiúza, Frederico; Fonseca, Ricardo A; Silva, Luis O

    2012-01-01

    We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first-principles particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease in the upstream bulk speed result in deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time. (paper)

  11. Thermal physics kinetic theory and thermodynamics

    CERN Document Server

    Singh, Devraj; Yadav, Raja Ram

    2016-01-01

    THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions

  12. Electric Power Lines : Questions and Answers on Research into Health Effects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1994-05-01

    Most people know that electric power lines, like the wiring in our homes, can cause serious electric shocks if we`re not careful. Many people also want to know whether the electric and magnetic fields (EMF) produced by power lines and other electrical devices cause health effects. The purpose of this booklet is to answer some common questions that the Bonneville Power Administration (BPA) receives about the possible effects of power lines on health. First, some basic electrical terms are defined, and electric and magnetic fields are debed. Next, answers are given to several questions about recent scientific studies. Some important information about electrical safety follows. We then describe how BPA is addressing public concerns about potential health effects of power lines. The last section tells you how to obtain more detailed information about the health and safety issues summarized in this booklet.

  13. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  14. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    Science.gov (United States)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  15. Particle acceleration at shocks in the inner heliosphere

    Science.gov (United States)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  16. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-09-01

    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci

  17. Assessment of RANS CFD modelling for pressurised thermal shock analysis

    International Nuclear Information System (INIS)

    Sander M Willemsen; Ed MJ Komen; Sander Willemsen

    2005-01-01

    Full text of publication follows: The most severe Pressurised Thermal Shock (PTS) scenario is a cold water Emergency Core Coolant (ECC) injection into the cold leg during a LOCA. The injected ECC water mixes with the hot fluid present in the cold leg and flows towards the downcomer where further mixing takes place. When the cold mixture comes into contact with the Reactor Pressure Vessel (RPV) wall, it may lead to large temperature gradients and consequently to high stresses in the RPV wall. Knowledge of these thermal loads is important for RPV remnant life assessments. The existing thermal-hydraulic system codes currently applied for this purpose are based on one-dimensional approximations and can, therefore, not predict the complex three-dimensional flows occurring during ECC injection. Computational Fluid Dynamics (CFD) can be applied to predict these phenomena, with the ultimate benefit of improved remnant RPV life assessment. The present paper presents an assessment of various Reynolds Averaged Navier Stokes (RANS) CFD approaches for modeling the complex mixing phenomena occurring during ECC injection. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code in combination with a hybrid meshing strategy with experimental results of the Upper Plenum Test Facility (UPTF). The UPTF was a full-scale 'simulation' of the primary system of the four loop 1300 MWe Siemens/KWU Pressurised Water Reactor at Grafenrheinfeld. The test vessel upper plenum internals, downcomer and primary coolant piping were replicas of the reference plant, while other components, such as core, coolant pump and steam generators were replaced by simulators. From the extensive test programme, a single-phase fluid-fluid mixing experiment in the cold leg and downcomer was selected. Prediction of the mixing and stratification is assessed by comparison with the measured temperature profiles at several locations

  18. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  19. Laser shock ignition of porous silicon based nano-energetic films

    International Nuclear Information System (INIS)

    Plummer, A.; Gascooke, J.; Shapter, J.; Kuznetsov, V. A.; Voelcker, N. H.

    2014-01-01

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity

  20. Laser shock ignition of porous silicon based nano-energetic films

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, A.; Gascooke, J.; Shapter, J. [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Kuznetsov, V. A., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Weapons and Combat Systems Division, Defence Science and Technology Organisation, Edinburgh 5111 (Australia); Voelcker, N. H., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [Mawson Institute, University of South Australia, 5095, Mawson Lakes (Australia)

    2014-08-07

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity.

  1. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    Science.gov (United States)

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

  2. Quasi-periodic oscillations from post-shock accretion column of polars

    Science.gov (United States)

    Bera, Prasanta; Bhattacharya, Dipankar

    2018-02-01

    A set of strongly magnetized accreting white dwarfs (polars) shows quasi-periodic oscillations (QPOs) with frequency about a Hz in their optical luminosity. These Hz-frequency QPOs are thought to be generated by intensity variations of the emitted radiation originating at the post-shock accretion column. Thermal instability in the post-shock region, triggered by efficient cooling process at the base, is believed to be the primary reason behind the temporal variability. Here, we study the structure and the dynamical properties of the post-shock accretion column including the effects of bremsstrahlung and cyclotron radiation. We find that the presence of significant cyclotron emission in optical band reduces the overall variability of the post-shock region. In the case of a larger post-shock region above the stellar surface, the effects of stratification due to stellar gravity become important. An accretion column, influenced by the strong gravity, has a smaller variability as the strength of the thermal instability at the base of the column is reduced. On the other hand, the cool, dense plasma, accumulated just above the stellar surface, may enhance the post-shock variability due to the propagation of magnetic perturbations. These characteristics of the post-shock region are consistent with the observed properties of V834 Cen and in general with cataclysmic variable sources that exhibit QPO frequency of about a Hz.

  3. An integrity evaluation method of the pressure vessel of nuclear reactors under pressurized thermal shock

    International Nuclear Information System (INIS)

    Matsubara, Masaaki; Okamura, Hiroyuki.

    1987-01-01

    Present paper proposes a new algorithm of the integrity evaluation of the pressure vessel of nuclear reactors under pressurized thermal shock, PTS. This method enables us to do an effective evaluation by superimposing proposed ''PTS state-transient curves'' and ''toughness transient curves'', and is superior to a conventional one in the following points; (1) easy to get an overall view of the result of PTS event for the variations of several parameters, (2) possible to evaluate a safety margin for irradiation embrittlement, and (3) enable to construct an Expert-friendly evaluation system. In addition, the paper shows that we can execute a safety assurance test by using a flat plate model with the same thickness as that of real plant. (author)

  4. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells.

    Science.gov (United States)

    Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M

    2018-03-16

    Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.

  5. Electric Power Lines : Questions and Answers on Research into Health Effects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-11-01

    Most people know that electric power lines, like the wiring in our homes, can cause serious electric shocks if we`re not careful. Many people also want to know whether the electric and magnetic fields (EMF) produced by power lines and other electrical devices cause health effects. The purpose of this pamphlet is to answer some common questions that the Bonneville Power Administration (BPA) receives about the possible effects of power lines on health. (BPA is the Pacific Northwest`s Federal electric power marketing agency.) First, some basic electrical terms are defined, and electric and magnetic fields are described. Next, answers are given to several questions about recent scientific studies. We then describe how BPA is addressing public concerns raised by these studies. Some important information about electrical safety follows. The last section tells you how to obtain more detailed information about the health and safety issues summarized in this pamphlet.

  6. Magnetic field amplification in interstellar collisionless shock waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1977-01-01

    It is stated that it is commonly assumed that a simple compression of the magnetic field occurs in interstellar shock waves. Recent space observations of the Earth's bow shock have shown that turbulent amplification of the magnetic field can occur in a collisionless shock. It is shown here that radio observations of Tycho's supernova remnant indicate the presence of a shock wave with such magnetic field amplification. There is at present no theory for the microinstabilities that give rise to turbulent amplification of the magnetic field. Despite the lack of theoretical understanding the possibility of field amplification in interstellar shock waves is here considered. In Tycho's supernova remnant there is evidence for the presence of a collisionless shock, and this is discussed. On the basis of observations of the Earth's bow shock, it is expected that turbulent magnetic field amplification occurs in the shock wave of this remnant, and this is supported by radio observations of the remnant. Consideration is given as to what extent the magnetic field is amplified in the shock wave on the basis of the non-thermal radio flux. (U.K.)

  7. Effect of sequential heat and cold shocks on nuclear phenotypes of the blood-sucking insect, Panstrongylus megistus (Burmeister (Hemiptera, Reduviidae

    Directory of Open Access Journals (Sweden)

    Garcia Simone L

    2002-01-01

    Full Text Available Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion or death (apoptosis, necrosis responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40°C, 1 h or cold (5 or 0°C, 1 h shock and then subjected to a second shock for 12 h at 40 or 0°C, respectively, after 8, 18, 24 and 72 h at 28°C (control temperature. As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0ºC were more effective than the temperatures of 35 and 5ºC in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.

  8. Experimental facilities for PEC reactor design central channel test loop: CPC-1 - thermal shocks loop: CEDI

    International Nuclear Information System (INIS)

    Calvaresi, C.; Moreschi, L.F.

    1983-01-01

    PEC (Prova Elementi di Combustibile: Fuel Elements Test) is an experimental fast sodium-cooled reactor with a power of 120 MWt. This reactor aims at studying the behaviour of fuel elements under thermal and neutron conditions comparable with those existing in fast power nuclear facilities. Given the particular structure of the core, the complex operations to be performed in the transfer cell and the strict operating conditions of the central channel, two experimental facilities, CPC-1 and CEDI, have been designed as a support to the construction of the reactor. CPC-1 is a 1:1 scale model of the channel, transfer-cell and loop unit of the channel, whereas CEDI is a sodium-cooled loop which enables to carry out tests of isothermal endurance and thermal shocks on the group of seven forced elements, by simulating the thermo-hydraulic and mechanical conditions existing in the reactor. In this paper some experimental test are briefy discussed and some facilities are listed, both for the CPC-1 and for the CEDI. (Auth.)

  9. TRAC-PF1 analyses of potential pressurized-thermal-shock transients at a Combustion-Engineering PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.; Spriggs, G.D.; Smith, R.C.

    1984-01-01

    Los Alamos is participating in a program to assess the risk of pressurized thermal shock (PTS) to a reactor vessel. Our role is to provide best-estimate thermal-hydraulic analyses of 12 postulated overcooling transients using TRAC-PF1. These transients are hypothetical and include multiple operator/equipment failures. Calvert Cliffs/Unit-1, a Combustion-Engineering plant, is the pressurized water reactor modeled for this study. The utility and the vendor supplied information for the comprehensive TRAC-PF1 model. Secondary and primary breaks from both hot-zero-power and full-power conditions were simulated for 7200 s (2 h). Low bulk temperatures and loop-flow stagnation while the system was at a high pressure were of particular interest for PTS analysis. Three transients produced primary temperatures below 405 K (270 0 F - the NRC screening criterion) with system repressurization. Six transients indicated flow stagnation would occur in one loop but not both. One transient showed flow stagnation might occur in both loops. Oak Ridge National Laboratory will do fracture-mechanics analysis using these TRAC-PF1 results and make the final determination of the risk of PTS

  10. Pressurized thermal shocks: the JRC Ispra experimental test rig and analytical results

    International Nuclear Information System (INIS)

    Jovanovic, A.; Lucia, A.C.

    1990-01-01

    The paper tackles some issues of particular interest for the remanent (remaining) life prediction for the pressurized components exposed to pressurized thermal shock (PTS) loads, that have been tackled in analytical work performed in the framework of the MPA - JRC collaboration for the PTS experimental research at the JRC Ispra. These issues regard in general application of damage mechanics, fracture mechanics and artificial intelligence (including the treatment of uncertainties in the PTS analysis and experiments). The considered issues are essential for further understanding and modelling of the crack behaviour and of the component response in PTS conditions. In particular, the development of the FRAP preprocessor and development and implementation of a methodology for analysis of local non-stationary heat transfer coefficients during a PTS, have been explained more in detail. FRAP is used as a frontend, for the finite element code ABAQUS, for the heat transfer, stress and fracture mechanics analyses. The ABAQUS results are used further on, for the probabilistic fatigue crack growth analysis performed by the COVASTOL code. (author)

  11. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L [ed.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  12. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Abbott, L.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures

  13. Some techniques and results from high-pressure shock-wave experiments utilizing the radiation from shocked transparent materials

    International Nuclear Information System (INIS)

    McQueen, R.G.; Fritz, J.N.

    1981-01-01

    It has been known for many years that some transparent materials emit radiation when shocked to high pressures. This property was used to determine the temperature of shocked fused and crystal quartz, which in turn allowed the thermal expansion of SiO 2 at high pressure and also the specific heat to be calculated. Once the radiative energy as a function of pressure is known for one material it is shown how this can be used to determine the temperature of other transparent materials. By the nature of the experiments very accurate shock velocities can be measured and hence high quality equation of state data obtained. Some techniques and results are presented on measuring sound velocities from symmetrical impact of nontransparent materials using radiation emitting transparent analyzers, and on nonsymmetrical impact experiments on transparent materials. Because of special requirements in the later experiments, techniques were developed that lead to very high-precision shock-wave data. Preliminary results, using these techniques are presented for making estimates of the melting region and the yield strength of some metals under strong shock conditions

  14. Preliminary applications of the new Neptune two-phase CFD solver to pressurized thermal shock investigations

    International Nuclear Information System (INIS)

    Boucker, M.; Laviaville, J.; Martin, A.; Bechaud, C.; Bestion, D.; Coste, P.

    2004-01-01

    The objective of this communication is to present some preliminary applications to pressurized thermal shock (PTS) investigations of the CFD (Computational Fluid Dynamics) two-phase flow solver of the new NEPTUNE thermal-hydraulics platform. In the framework of plant life extension, the Reactor Pressure Vessel (RPV) integrity is a major concern, and an important part of RPV integrity assessment is related to PTS analysis. In the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the Emergency Core Cooling (ECC) injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3-dimensional codes. In that purpose, a program has been set up to extend the capabilities of the NEPTUNE two-phase CFD solver. A simple set of turbulence and condensation model for free surface steam-water flow has been tested in simulation of an ECC high pressure injection representing facility, using a full 3-dimensional mesh and the new NEPTUNE solver. Encouraging results have been obtained but it should be noticed that several sources of error can compensate for one another. Nevertheless, the computation presented here allows to be reasonable confident in the use of two-phase CFD in order to carry out refined analysis of two-phase PTS scenarios within the next years

  15. MMS Observation of Shock-Reflected He++ at Earth's Quasi-Perpendicular Bow Shock

    Science.gov (United States)

    Broll, Jeffrey Michael; Fuselier, S. A.; Trattner, K. J.; Schwartz, S. J.; Burch, J. L.; Giles, B. L.; Anderson, B. J.

    2018-01-01

    Specular reflection of protons at Earth's supercritical quasi-perpendicular bow shock has long been known to lead to the thermalization of solar wind particles by velocity-space dispersion. The same process has been proposed for He++ but could not be confirmed previously due to insufficient time resolution for velocity distribution measurements. We present observations and simulations of a bow shock crossing by the Magnetospheric Multiscale (MMS) mission on 20 November 2015 indicating that a very similar reflection process for He++ is possible, and further that the part of the incoming distribution with the highest probability of reflecting is the same for H+ and He++. However, the reflection process for He++ is accomplished by deeper penetration into the downstream magnetic fields.

  16. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  17. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    Science.gov (United States)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  18. Answer selection in a multi-stream open domain question answering system

    NARCIS (Netherlands)

    Jijkoun, V.; de Rijke, M.; McDonald, S.; Tait, J.

    2004-01-01

    Question answering systems aim to meet users' information needs by returning exact answers in response to a question. Traditional open domain question answering systems are built around a single pipeline architecture. In an attempt to exploit multiple resources as well as multiple answering

  19. The acceleration of particles at propagating interplanetary shocks

    Science.gov (United States)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  20. Application of the French codes to the pressurized thermal shocks assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingya; Wang, Rong Shan; Yu, Weiwei; Lu, Feng; Zhang, Guo Dong; Xue, Fei; Chen, Zhilin [Suzhou Nuclear Power Research Institute, Life Management Center, Suzhou (China); Qian, Guian [Paul Scherrer Institute, Nuclear Energy and Safety Department, Villigen (Switzerland); Shi, Jinhua [Amec Foster Wheeler, Clean Energy Department, Gloucester (United Kingdom)

    2016-12-15

    The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the 'screening criterion' for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no 'screening criterion'. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

  1. Application of the French Codes to the Pressurized Thermal Shocks Assessment

    Directory of Open Access Journals (Sweden)

    Mingya Chen

    2016-12-01

    Full Text Available The integrity of a reactor pressure vessel (RPV related to pressurized thermal shocks (PTSs has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the “screening criterion” for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no “screening criterion”. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

  2. Application of the French codes to the pressurized thermal shocks assessment

    International Nuclear Information System (INIS)

    Chen, Mingya; Wang, Rong Shan; Yu, Weiwei; Lu, Feng; Zhang, Guo Dong; Xue, Fei; Chen, Zhilin; Qian, Guian; Shi, Jinhua

    2016-01-01

    The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the 'screening criterion' for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no 'screening criterion'. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed

  3. Development of a thermal fatigue test method for thermal barrier coatings by laser excitation using a laser thermal shock facility; Entwicklung eines Pruefverfahrens zur laserinduzierten thermischen Ermuedung thermischer Schutzschichten mittels einer Laser-Thermoschockpruefeinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Nies, Daniel

    2012-07-13

    The finite nature of fossil fuel supply and the growing environmental awareness become increasingly stronger motivations for the development of efficient gas turbines and jet engines for power generation or as engines for land-, sea- and water-based vehicles. One concept developed for this purpose are thermal barrier coatings, where the thermal load of components is reduced by applying a ceramic coating onto the components. In this work the possibility to use a laser thermal shock facility for thermo-cyclic testing of thermal barrier coatings is examined. A focused laser beam is used for heating the sample and a homogeneous temperature distribution on the sample surface is achieved by the used trajectory and radial adjusted laser power. The required improvements of the existing testing facility are explained, including the development of a new sample holder and of the testing and evaluation routines for the experiments. For the assessment of the initiation and evolution of damages, acoustic emission and thermographic methods are used. The possibilities and limits of these methods are assessed during the experiments. The work also includes an extensive temperature dependent characterisation of the ceramic material used for the thermal barrier coating. In this part, the measurement of the Young's modulus by a dynamic method is to be highlighted, as this is a rarely used technique. The characterisations show the expected values, except for a lower porosity as expected by the manufacturer and no significant phase changes during isothermal heat treatments. To reach sample surface temperatures above 1000 C, it is necessary to increase the absorption by an additional coating of magnetite. The temperature distribution on the surface is measured by an infrared camera, which is calibrated for this purpose. With the incorporated active air cooling of the sample backside, the temperature gradient can be controlled, but still leaves room for improvements. Already without

  4. Nuclear power and the environment: questions and answers

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The purpose of this book is to present information and answers to questions about nuclear power and the environment, e.g., questions on its effects on public health, safety, and welfare. Information on the overall U.S. energy outlook, with emphasis on nuclear power generation, is provided. Although proponents of nuclear power, the authors have attempted to present factual information and to maintain objectivity. Included are answers to questions on these aspects of nuclear power: the energy situation and nuclear power; economics and reliability; alternative technologies; radioactivity; biological effects of radiation; transportation in the nuclear fuel cycle; fuel reprocessing and nuclear waste disposal; plutonium toxicity; nuclear plant security; thermal pollution; nuclear power plant siting--earthquakes; nuclear reactor safety; public risk and benefits; nuclear liability and insurance; breeder reactors; and thermonuclear fusion. (232 references)

  5. Laboratory studies of stagnating plasma flows with applications to inner solar system and stellar bow shocks

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2016-10-01

    Supercritical magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe by converting flow kinetic energy to other forms such as thermal and supra-thermal populations, magnetic field enhancement, turbulence, and energetic particles. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those of inner solar system and stellar bow shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to 100s of km/s; resulting in β 1, collisionless plasma flows with Msonic and MAlfvén 10. The drifting FRC can be made to impinge upon a variety of static obstacles including: a strong mirror or cusp magnetic field (mimicking magnetically excited shocks such as the Earth's bow shock), plasma pileup from a solid obstacle (similar to the bow shocks of Mercury and the Moon), and a neural gas puff (bow shocks of Venus or the comets). Characteristic shock length and time scales that are both large enough to observe yet small enough to fit within the experiment, enabling study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental program will be presented, including recent results. This work is supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-AC52-06NA25369.

  6. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  7. Pool fire upon a balsa-filled shock absorber

    International Nuclear Information System (INIS)

    Fry, C.J.

    1990-07-01

    When performing a safety assessment of a transport flask with balsa-filled shock absorbers it is important to know how the shock absorbers, which may have the outer skin punctured by an impact, will perform in a fire. A 30 minute pool test, which satisfied all the requirements of a thermal test under the IAEA regulations, was carried out upon a small, balsa-filled shock absorber. The outer steel shell was partly cut away exposing the wood to the fire and the air. The balsa wood prevented 90% of the heat from the fire from being transferred through the shock absorber, even though the balsa was only 133 mm thick. The maximum heat flux through to the inside of the shock absorber due to the burning of the balsa wood was relatively low, 2.8 kW/m 2 , and occurred 2 to 3 hours after the end of the pool fire. (author)

  8. Two-stream instability in collisionless shocks and foreshock

    International Nuclear Information System (INIS)

    Dieckmann, M E; Eliasson, B; Shukla, P K; Sircombe, N J; Dendy, R O

    2006-01-01

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions

  9. Two-stream instability in collisionless shocks and foreshock

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Eliasson, B [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Shukla, P K [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Sircombe, N J [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom); Dendy, R O [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2006-12-15

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions.

  10. Non-LTE radiating acoustic shocks and Ca II K2V bright points

    Science.gov (United States)

    Carlsson, Mats; Stein, Robert F.

    1992-01-01

    We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.

  11. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  12. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    Science.gov (United States)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Higginson, D. P.; Wilks, S. C.; Haberberger, D.; Katz, J.; Froula, D. H.; Hoffman, N. M.; Kagan, G.; Keenan, B. D.; Vold, E. L.

    2018-03-01

    The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M ˜11 ) propagating through a low-density (ρ ˜0.01 mg /cc ) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

  13. Boundary element analysis of stress due to thermal shock loading or reactor pressure vessel nozzle; Napetostna analiza pri nestacionarni termicni obremenitvi cevnega prikljucka reaktorske tlacne posode z metodo robnih elementov

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, J; Potrc, I [Tehniska fakulteta, Maribor (Yugoslavia)

    1989-07-01

    Apart from being exposed to the primary loading of internal pressure and steady temperature field, the reactor pressure vessel is also subject to various thermal transients (thermal shocks). Theoretical and experimental stress analyses show that severe material stresses occur in the nozzle area of the pressure vessel which may lead to defects (cracks). It has been our aim to evaluate these stresses by the use of the Boundary Element method. (author)

  14. Various continuum approaches for studying shock wave structure in carbon dioxide

    Science.gov (United States)

    Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.

    2018-05-01

    Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.

  15. Injection and acceleration of H+ and He2+ at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    M. Scholer

    1999-05-01

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  16. Injection and acceleration of H+ and He2+ at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    K.-H. Trattner

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  17. Flash photolysis-shock tube studies

    Energy Technology Data Exchange (ETDEWEB)

    Michael, J.V. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  18. Fluid dynamics of the shock wave reactor

    Science.gov (United States)

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter

  19. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances.

    Science.gov (United States)

    Mir, A H; Qamar, A

    2017-09-27

    Organisms, in nature, are often subjected to multiple stressors, both biotic and abiotic. Temperature and starvation are among the main stressors experienced by organisms in their developmental cycle and the responses to these stressors may share signaling pathways, which affects the way these responses are manifested. Temperature is a major factor governing the performance of ectothermic organisms in ecosystems worldwide and, therefore, the thermal tolerance is a central issue in the thermobiology of these organisms. Here, we investigated the effects of starvation as well as mild heat and cold shocks on the thermal tolerance of the larvae of silkworm, Bombyx mori (Linnaeus). Starvation acted as a meaningful or positive stressor as it improved cold tolerance, measured as chill coma recovery time (CCRT), but, at the same time, it acted as a negative stressor and impaired the heat tolerance, measured as heat knockdown time (HKT). In the case of heat tolerance, starvation negated the positive effects of both mild cold as well as mild heat shocks and thus indicated the existence of trade-off between these stressors. Both mild heat and cold shocks improved the thermal tolerance, but the effects were more prominent when the indices were measured in response to a stressor of same type, i.e., a mild cold shock improved the cold tolerance more than the heat tolerance and vice versa. This improvement in thermal tolerance by both mild heat as well as cold shocks indicated the possibility of cross-tolerance between these stressors.

  20. IMPACT OF THERMAL FATIGUE ON YOUNG’S MODULUS OF EPOXY ADHESIVES

    Directory of Open Access Journals (Sweden)

    Mariusz Kłonica

    2015-11-01

    Full Text Available The following paper presents a comparative analysis of two epoxy-based adhesives: Hysol 9466 and Hysol 3421, prior to and after thermal shock testing. The tests focused on determining Young’s modulus. Epoxy-based materials are among the most widespread adhesive materials used as universal structural adhesives. The prepared epoxy samples (Hysol 9466 and Hysol 3421 were subjected to thermal shock cycling tests, according to a specified programme, in a thermal shock testing chamber, at a temperature range –40 °C to +60 °C and in the number of 200 cycles. Conclusions from the tests are presented at the final stage of the paper.

  1. Study of the response of Zircaloy cladding to thermal shock during water quenching after double sided steam oxidation at elevated temperatures

    International Nuclear Information System (INIS)

    Banerjee, Suparna; Sawarn, Tapan K.; Kumar, Sunil

    2015-01-01

    This study investigates the failure of embrittled Zircaloy-4 cladding used in the present generation of Indian pressurized heavy water reactors (IPHWRs) in a simulated LOCA condition and its correlation with the evolved stratified microstructure. Isothermal steam oxidation of Zircaloy-4 cladding at high temperatures (900-1200°C) with soaking periods in the range 60-900 seconds followed by water quenching was carried out. None of the pieces broke during quenching except for those heated at 1100, 1150 and 1200°C for longer durations. The combined oxide + oxygen stabilized α-Zr(O) layer thickness and the fraction of the load bearing phase of clad tube specimens were correlated with the %ECR values calculated using Baker-Just equation. Average oxygen concentration of the load bearing prior β-Zr phase corresponding to different oxidation conditions was calculated from the average microhardness values in Vickers scale using an empirical correlation developed by Leistikow. The results of these experiments are presented in this paper. Thermal shock sustainability of the clad was correlated with the %ECR, combined oxide+α-Zr(O) layer thickness, fraction of the prior β-Zr phase and its average oxygen concentration. The thermal shock boundary was observed to be 29% ECR, 0.29 mm combined thickness of ZrO_2+α-Zr(O), 0.16 mm of β-Zr thickness with an average β phase oxygen content of 0.69 wt%. (author)

  2. Overview and recent progress of the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.

  3. Electric Power Lines : Questions and Answers on Research into Health Effects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-06-01

    Most people know that electric power lines, like the wiring in our homes, can cause serious electric shocks if we`re not careful. Many people also want to know whether the EMF (electric and magnetic fields) produced by power lines and other electrical devices affect our health. Although no adverse health effects of electric power EMF have been confirmed, there is continued scientific uncertainty about this issue. Research on EMF is ongoing throughout the world. The purpose of this booklet is to answer some common questions that the BPA (Bonneville Power Administration) receives about the possible effects of power lines on health. First, some basic electrical terms are defined, and electric and magnetic fields are debed. Next, answers are given to several questions about recent scientific studies. Some important information about electrical safety follows. We then describe how BPA is addressing public concerns about potential health effects of power lines. The last section tells you how to obtain more detailed information about the health and safety issues summarized in this booklet.

  4. A critical analysis of shock models for chondrule formation

    Science.gov (United States)

    Stammler, Sebastian M.; Dullemond, Cornelis P.

    2014-11-01

    In recent years many models of chondrule formation have been proposed. One of those models is the processing of dust in shock waves in protoplanetary disks. In this model, the dust and the chondrule precursors are overrun by shock waves, which heat them up by frictional heating and thermal exchange with the gas. In this paper we reanalyze the nebular shock model of chondrule formation and focus on the downstream boundary condition. We show that for large-scale plane-parallel chondrule-melting shocks the postshock equilibrium temperature is too high to avoid volatile loss. Even if we include radiative cooling in lateral directions out of the disk plane into our model (thereby breaking strict plane-parallel geometry) we find that for a realistic vertical extent of the solar nebula disk the temperature decline is not fast enough. On the other hand, if we assume that the shock is entirely optically thin so that particles can radiate freely, the cooling rates are too high to produce the observed chondrules textures. Global nebular shocks are therefore problematic as the primary sources of chondrules.

  5. Interfacial Characteristics of TiN Coatings on SUS304 and Silicon Wafer Substrates with Pulsed Laser Thermal Shock

    International Nuclear Information System (INIS)

    Seo, Nokun; Jeon, Seol; Choi, Youngkue; Shin, Hyun-Gyoo; Lee, Heesoo; Jeon, Min-Seok

    2014-01-01

    TiN coatings prepared on different substrates that had different coefficients of thermal expansion were subjected to pulsed laser thermal shock and observed by using FIB milling to compare the deterioration behaviors. TiN coating on SUS304, which had a larger CTE (⁓17.3 × 10 - 6 /℃) than the coating was degraded with pores and cracks on the surface and showed significant spalling of the coating layer over a certain laser pulses. TiN coating on silicon wafer with a smaller CTE value, ⁓4.2 × 10‒6 /℃, than the coating exhibited less degradation of the coating layer at the same ablation condition. Cracks propagated at the interface were observed in the coating on the silicon wafer, which induced a compressive stress to the coating. The coating on the SUS304 showed less interface cracks while the tensile stress was applied to the coating. Delamination of the coating layer related to the intercolumnar cracks at the interface was observed in both coatings through bright-field TEM analysis.

  6. Optical diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.

  7. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-01-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  8. Interplanetary fast shock diagnosis with the radio receiver on Ulysses

    Science.gov (United States)

    Hoang, S.; Pantellini, F.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Meuer-Vernet, N.; Perche, C.; Steinberg, J.-L.; Lengyel-Frey, D.; Macdowall, R. J.

    1992-01-01

    The radio receiver on Ulysses records the quasi-thermal noise which allows a determination of the density and temperature of the cold (core) electrons of the solar wind. Seven interplanetary fast forward or reverse shocks are identified from the density and temperature profiles, together with the magnetic field profile from the Magnetometer experiment. Upstream of the three strongest shocks, bursts of nonthermal waves are observed at the electron plasma frequency f(peu). The more perpendicular the shock, the longer the time interval during which these upstream bursts are observed. For one of the strongest shocks we also observe two kinds of upstream electromagnetic radiation: radiation at 2 f(peu), and radiation at the downstream electron plasma frequency, which propagates into the less dense upstream regions.

  9. Efficient question answering with question decomposition and multiple answer streams

    OpenAIRE

    Hartrumpf, Sven; Glöckner, Ingo; Leveling, Johannes

    2009-01-01

    The German question answering (QA) system IRSAW (formerly: InSicht) participated in QA@CLEF for the fth time. IRSAW was introduced in 2007 by integrating the deep answer producer InSicht, several shallow answer producers, and a logical validator. InSicht builds on a deep QA approach: it transforms documents to semantic representations using a parser, draws inferences on semantic representations with rules, and matches semantic representations derived from questions and documents. InS...

  10. Thermal hydraulic evaluation for an experimental facility to investigate pressurized thermal shock (PTS) in CDTN/CNEN; Avaliacao termo-hidraulica da montagem experimental de choque termico pressurizado do CDTN/CNEN

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Elcio T.; Navarro, Moyses A.; Aronne, Ivam D.; Terra, Jose L. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    2002-07-01

    The goal of the work presented in this paper is to provide necessary thermal hydraulics information to the design of an experimental installation to investigate the Pressurized Thermal Shock (PTS) to be implemented at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN). The envisaged installation has a test section that represents, in a small scale, a pressure vessel of a nuclear reactor. This test section will be heated and then exposed to a PTS in order to evaluate the appearance and development of cracks. To verify the behavior of the temperatures of the pressure vessel after a sudden flood through the annulus, calculations were made using the RELAP5/MOD 3.2.2 gamma code. Different outer radiuses were studied for the annular region. The results showed that the smaller annulus spacing (20 mm) anticipates the wetting of the surface and produces a higher cooling of the external surface, which stays completely wet for a longer time. (author)

  11. Thermal Shock Experiment (TSEX): a ''proof-of-principle'' evaluation of the use of electron beam heating to simulate the thermal mechanical environment anticipated for the first wall of the Reference Theta-Pinch Reactor (RTPR)

    International Nuclear Information System (INIS)

    Armstrong, P.E.; Krakowski, R.A.

    1977-06-01

    The results of a ''proof-of-principle'' Thermal Shock Experiment (TSEX), designed to simulate the thermal mechanical response of insulator-metal composite first walls anticipated for pulsed high-density fusion reactors, are given. A programmable 10-kV, 1.0-A electron beam was used to pulse repeatedly (0.30-mm)Al 2 O 3 /(1.0-mm) Nb-1Zr composite samples 200 to 300 K, relative to a base-line temperature of 1000 K. The experimental goals of TSEX were established relative to the first-wall environment anticipated for the Reference Theta-Pinch Reactor (RTPR). A detailed description of the TSEX ''proof-of-principle'' apparatus, experimental procedure, and diagnostics is given. The results of extensive thermal analyses are given, which are used to estimate the thermal stresses generated. Although little or no control was exercised over the sample fabrication and thermal history, one sample experienced in excess of 800 thermal cycles of approximately 250 K at approximately 1000 K, and the results of optical and SEM examination of this specimen are presented. The resistance of this sample to macroscopic failure was truly impressive. Recommendations for the construction of an apparatus dedicated to extensive testing of first-wall composites are given on the basis of these ''proof-of-principle'' TSEX results

  12. Analysis of Siderite Thermal Decomposition by Differential Scanning Calorimetry

    Science.gov (United States)

    Bell, M. S.; Lin, I.-C.; McKay, D. S.

    2000-01-01

    Characterization of carbonate devolitilization has important implications for atmospheric interactions and climatic effects related to large meteorite impacts in platform sediments. On a smaller scale, meteorites contain carbonates which have witnessed shock metamorphic events and may record pressure/temperature histories of impact(s). ALH84001 meteorite contains zoned Ca-Mg-Fe-carbonates which formed on Mars. Magnetite crystals are found in the rims and cores of these carbonates and some are associated with void spaces leading to the suggestion by Brearley et al. that the crystals were produced by thermal decomposition of the carbonate at high temperature, possibly by incipient shock melting or devolitilization. Golden et al. recently synthesized spherical Mg-Fe-Ca-carbonates from solution under mild hydrothermal conditions that have similar carbonate compositional zoning to those of ALH84001. They have shown experimental evidence that the carbonate-sulfide-magnetite assemblage in ALH84001 can result from a multistep inorganic process involving heating possibly due to shock events. Experimental shock studies on calcium carbonate prove its stability to approx. 60 GPa, well in excess of the approx. 45 GPa peak pressures indicated by other shock features in ALH84001. In addition, Raman spectroscopy of carbonate globules in ALH84001 indicates no presence of CaO and MgO. Such oxide phases should be found associated with the magnetites in voids if these magnetites are high temperature shock products, the voids resulting from devolitilization of CO2 from calcium or magnesium carbonate. However, if the starting material was siderite (FeCO3), thermal breakdown of the ALH84001 carbonate at 470 C would produce iron oxide + CO2. As no documentation of shock effects in siderite exists, we have begun shock experiments to determine whether or not magnetite is produced by the decomposition of siderite within the < 45GPa pressure window and by the resultant thermal pulse to approx

  13. Time development of a blast wave with shock heated electrons

    International Nuclear Information System (INIS)

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  14. Effect of Thermal Shock During Legionella Bacteria Removal on the Corrosion Properties of Zinc-Coated Steel Pipes

    Science.gov (United States)

    Orlikowski, Juliusz; Ryl, Jacek; Jazdzewska, Agata; Krakowiak, Stefan

    2016-07-01

    The purpose of this investigation was to conduct the failure analysis of a water-supply system made from zinc-coated steel. The observed corrosion process had an intense and complex character. The brownish deposits and perforations were present after 2-3 years of exploitation. The electrochemical study based on the Tafel polarization, corrosion potential monitoring, and electrochemical impedance spectroscopy together with microscopic analysis via SEM and EDX were performed in order to identify the cause of such intense corrosion. The performed measurements allowed us to determine that thermal shock was the source of polarity-reversal phenomenon. This process had begun the corrosion of steel which later led to the formation of deposits and perforations in the pipes. The work includes appropriate action in order to efficiently identify the described corrosion threat.

  15. Effect of thermal shock on mechanical properties of injection-molded thermoplastic denture base resins.

    Science.gov (United States)

    Takahashi, Yutaka; Hamanaka, Ippei; Shimizu, Hiroshi

    2012-07-01

    This study investigated the effect of thermal shock on the mechanical properties of injection-molded thermoplastic denture base resins. Four thermoplastic resins (two polyamides, one polyethylene terephthalate, one polycarbonate) and, as a control, a conventional heat-polymerized polymethyl methacrylate (PMMA), were tested. Specimens of each denture base material were fabricated according to ISO 1567 and were either thermocycled or not thermocycled (n = 10). The flexural strength at the proportional limit (FS-PL), the elastic modulus and the Charpy impact strength of the denture base materials were estimated. Thermocycling significantly decreased the FS-PL of one of the polyamides and the PMMA and it significantly increased the FS-PL of one of the polyamides. In addition, thermocycling significantly decreased the elastic modulus of one of the polyamides and significantly increased the elastic moduli of one of the polyamides, the polyethylene terephthalate, polycarbonate and PMMA. Thermocycling significantly decreased the impact strength of one of the polyamides and the polycarbonate. The mechanical properties of injection-molded thermoplastic denture base resins changed after themocycling.

  16. Fuel-coolant interaction in a shock tube with initially-established film boiling

    International Nuclear Information System (INIS)

    Sharon, A.; Bankoff, S.G.

    1979-01-01

    A new mode of thermal interaction has been employed, in which liquid metal is melted in a crucible within a shock tube; the coolant level is raised to overflow the crucible and establish subcooled film boiling with known bulk metal temperature; and a pressure shock is then initiated. With water and lead-tin alloy an initial splash of metal may be obtained after the vapor film has collapsed, due primarily to thermal interaction, followed by a successive cycle of bubble growth and collapse. To obtain large interactions, the interfacial contact temperature must exceed the spontaneous nucleation temperature of the coolant. Other cutoff behavior is observed with respect to the initial system pressure and temperatures and with the shock pressure and rise time. Experiments with butanol and lead-tin alloy show only relatively mild interactions. Qualitative explanations are proposed for the different behaviors of the two liquids

  17. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  18. Application of the REMIX thermal mixing calculation program for the Loviisa reactor

    International Nuclear Information System (INIS)

    Kokkonen, I.; Tuomisto, H.

    1987-08-01

    The REMIX computer program has been validated to be used in the pressurized thermal shock study of the Loviisa reactor pressure vessel. The program has been verified against the data from the thermal and fluid mixing experiments. These experiments have been carried out in Imatran voima Oy to study thermal mixing of the high-pressure safety injection water in the Loviisa VVER-440 type pressurized water reactor. The verified REMIX-versions were applied to reactor calculations in the probabilistic pressurized thermal shock study of the Loviisa Plant

  19. On the interplay between cosmological shock waves and their environment

    Science.gov (United States)

    Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent

    2017-05-01

    Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.

  20. Carbothermal shock synthesis of high-entropy-alloy nanoparticles

    Science.gov (United States)

    Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing

    2018-03-01

    The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

  1. Radiative relativistic shock adiabate

    International Nuclear Information System (INIS)

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  2. MICROSTRUCTURE OF THE HELIOSPHERIC TERMINATION SHOCK: IMPLICATIONS FOR ENERGETIC NEUTRAL ATOM OBSERVATIONS

    International Nuclear Information System (INIS)

    Zank, G. P.; Heerikhuisen, J.; Pogorelov, N. V.; Burrows, R.; McComas, D.

    2010-01-01

    The Voyager 2 plasma observations of the proton distribution function downstream of the quasi-perpendicular heliospheric termination shock (TS) showed that upstream thermal solar wind ions played little role in the shock dissipation mechanism, being essentially transmitted directly through the shock. Instead, the hot supra-thermal pickup ion (PUI) component is most likely responsible for the dissipation at the TS. Consequently, the downstream proton distribution function will be a complicated superposition of relatively cool thermal solar wind protons and hot PUIs that have experienced either direct transmission or reflection at the TS cross-shock potential. We develop a simple model for the TS microstructure that allows us to construct approximate proton distribution functions for the inner heliosheath. The distribution function models are compared to κ-distributions, showing the correspondence between the two. Since the interpretation of energetic neutral atom (ENA) fluxes measured at 1 AU by IBEX will depend sensitively on the form of the underlying proton distribution function, we use a three-dimensional MHD-kinetic global model to model ENA spectra at 1 AU and ENA skymaps across the IBEX energy range. We consider both solar minimum and solar maximum-like global models, showing how ENA skymap structure can be related to global heliospheric structure. We suggest that the ENA spectra may allow us to probe the directly the microphysics of the TS, while the ENA skymaps reveal heliospheric structure and, at certain energies, are distinctly different during solar minimum and maximum.

  3. Effects of low upper shelf fracture toughness on reactor vessel integrity during pressurized thermal shock events

    International Nuclear Information System (INIS)

    Bamford, W.H.; Heinecke, C.C.; Balkey, K.R.

    1988-01-01

    For the past decade, significant attention has been focused on the subject of nuclear rector vessel integrity during pressurized thermal shock (PTS) events. The issue of low upper shelf fracture toughness at operating temperatures has been a consideration for some reactor vessel materials since the early 1970's. Deterministic and probabilistic fracture mechanics sensitivity studies have been completed to evaluate the interaction between the PTS and lower upper shelf toughness issues that result from neutron embrittlement of the critical beltline region materials. This paper presents the results of these studies to show the interdependency of these fracture considerations in certain instances and to identify parameters that need to be carefully treated in reactor vessel integrity evaluations for these subjects. This issue is of great importance to those vessels which have low upper shelf toughness, both for demonstrating safety during the original design life and in life extension assessments

  4. What do we mean by the word ''Shock''?

    International Nuclear Information System (INIS)

    Runnels, Scott Robert

    2015-01-01

    From one vantage point, a shock is a continuous but drastic change in state variables that occurs over very small time and length scales. These scales and associated changes in state variables can be measured experimentally. From another vantage point, a shock is a mathematical singularity consisting of instantaneous changes in state variables. This more mathematical view gives rise to analytical solutions to idealized problems. And from a third vantage point, a shock is a structure in a hydrocode prediction. Its width depends on the simulation's grid resolution and artificial viscosity. These three vantage points can be in conflict when ideas from the associated fields are combined, and yet combining them is an important goal of an integrated modeling program. This presentation explores an example of how models for real materials in the presence of real shocks react to a hydrocode's numerical shocks of finite width. The presentation will include an introduction to plasticity for the novice, an historical view of plasticity algorithms, a demonstration of how pursuing the meaning of ''shock'' has resulted in hydrocode improvements, and will conclude by answering some of the questions that arise from that pursuit. After the technical part of the presentation, a few slides advertising LANL's Computational Physics Student Summer Workshop will be shown.

  5. Thermoluminescence of annealed and shock-loaded feldspar

    International Nuclear Information System (INIS)

    Hartmetz, C.P.

    1988-01-01

    Samples of oligoclase and bytownite were shock-loaded to a variety of pressures, and annealed for a variety of temperatures and times. The effect of Mrad doses of gamma-rays on oligoclase TL were also studied. After these treatments, thermoluminescence (TL) and X-ray diffraction (XRD) measurements were made to: (1) determine the effects of shock on terrestrial feldspar and compare with variations in the TL emission of ordinary chondrites (OCs); (2) determine if disordering in feldspar was responsible for any related changes in TL properties of OCs; (3) determine if the combined effect of shock plus annealing causes the changes in TL properties; (4) see if radiation damage from cosmic ray exposure plays a role in the TL variations; (5) examine the implications of this work to the thermal and shock histories of OCs. The lightly shock-loaded and annealed oligoclase samples have a dominant peak temperature of 120-140 C, identical to type 3.3-3.5 OCs. The heavily shocked samples dominant peak is at 230C, similar to type > 3.5 OCs . While the heavily annealed/disordered oligoclase samples have a peak at 280C, this peak is rarely observed in OCs. Radiation damage from Mrad doses of gamma-rays produced no change in peak temperature, but facilitated the shift to higher peak temperatures. The TL sensitivity of the shocked samples decreased by a factor of 25. Samples annealed at low temperatures (438-533C) showed a factor of 2 decrease in TL, but at the highest temperatures, the TL was a factor of 8 higher

  6. Shock velocity in weakly ionized nitrogen, air, and argon

    International Nuclear Information System (INIS)

    Siefert, Nicholas S.

    2007-01-01

    The goal of this research was to determine the principal mechanism(s) for the shock velocity increase in weakly ionized gases. This paper reports experimental data on the propagation of spark-generated shock waves (1< Mach<3) into weakly ionized nitrogen, air, and argon glow discharges (1 < p<20 Torr). In order to distinguish between effects due solely to the presence of electrons and effects due to heating of the background gas via elastic collisions with electrons, the weakly ionized discharge was pulsed on/off. Laser deflection methods determined the shock velocity, and the electron number density was collected using a microwave hairpin resonator. In the afterglow of nitrogen, air, and argon discharges, the shock velocity first decreased, not at the characteristic time for electrons to diffuse to the walls, but rather at the characteristic time for the centerline gas temperature to equilibrate with the wall temperature. These data support the conclusion that the principal mechanism for the increase in shock velocity in weakly ionized gases is thermal heating of the neutral gas species via elastic collisions with electrons

  7. Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    Science.gov (United States)

    Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.

    2018-04-01

    Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.

  8. Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress.

    Science.gov (United States)

    Sivan, Arun; Shriram, Ananganallur Nagarajan; Muruganandam, Nagarajan; Thamizhmani, Ramanathan

    2017-03-01

    Climatic changes are responsible, to a certain extent for the occurrence and spread of arboviral pathogens world over. Temperature is one of the important abiotic factors influencing the physiological processes of mosquitoes. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes, which aid in overcoming stress induced by elevated temperature. In order to understand expression of HSP family genes in the Andaman population of Aedes aegypti and Aedes albopictus, we used quantitative real-time polymerase chain reaction (qPCR) to examine expression levels of HSPs in response to thermal stress under laboratory and in actual field conditions. HSP genes AeaHsp26, AeaHsp83 and AeaHsc70 were examined by comparing relative transcript expression levels at 31°C, 33°C, 34°C, 37°C and 39°C respectively. Enhanced up-regulation of HSPs was evident in third instar larvae of Ae. aegypti with rise in water temperatures (31°C, 33°C, 34°C) in the containers in the nature and thermally stressed (37°C and 39°C) in laboratory conditions. In Ae. albopictus up-regulation of HSPs was observed in field conditions at 34°C only and when thermally treated at 37°C, while down regulation was evident in larvae subjected to thermal stress in laboratory at 39°C. Data on expression levels revealed that larvae of Ae. aegypti was tolerant to thermal stress, while Ae. albopictus larvae was sensitive to heat shock treatment. Statistical analysis indicated that AeaHsp83 genes were significantly up-regulated in Ae. aegypti larvae after 360min exposure to high temperature (39°C). The difference in expression levels of AeaHsp26, AeaHsc70 and AeaHsp83 genes in Ae. albopictus larvae was statistically significant between different exposure temperatures. All of these genes were significantly up-regulated at 37°C. These results indicate that AeaHsp26, AeaHsc70 and AeaHsp83 are important markers of stress and perhaps function as proteins conferring protection and

  9. Numerical and experimental investigation of flow and heat transfer in a T-junction with thermal sleeve

    International Nuclear Information System (INIS)

    Wu Hailing; Chen Tingkuan; Wang Haijun; Luo Yushan; Mao Qing; Zhang Yixiong

    2002-01-01

    Numerical simulations were performed with the commercial computational fluid dynamics (CFD) package FLUENT 5.3 to investigate the thermal-hydraulic phenomena of thermal shock, which is caused by non-isothermal turbulent jet into crossflow in a T-junction with thermal sleeve in the pressurized water reactor (PWR) cooling systems. In allusion to the thermal sleeve configuration with vent holes and lower collar, two typical cases with jet-to-mainstream velocity ratios of 0.05 and 0.5 were computed. Experimental studies were carried out to determine the heat transfer characteristics for the main pipe and the annulus between the nozzle and the thermal sleeve. The calculations well matches the experimental data. The results indicated that the protective action of the thermal sleeve against thermal shock loading is dependent on both the sleeve geometry and the velocity ratio, obtaining improvement with appropriate lower velocity ratios. In addition, optimal flow rates and partial sizes of the thermal sleeve were discussed to reduce the thermal shock

  10. Condensation shocks in high momentum two-phase flows in condensing injectors

    International Nuclear Information System (INIS)

    Anand, G.; Christensen, R.N.

    1993-01-01

    This study presents a phenomenological and mathematical model of condensation shocks in high momentum two-phase flows in condensing injectors. The characteristics of the shock were related to the mode of vapor bubble collapse. Using cavitation terminology, the bubble collapse can be classified as inertially controlled or thermally controlled. Inertial bubble collapse occurs rapidly whereas, a thermally controlled collapse results in a significantly longer collapse time. The interdependence between the bubble collapse mode and the momentum and pressure of the flow, was analyzed in this study. For low-temperature-high-velocity flows a steep pressure rise with complete condensation was obtained. For a high-temperature-low velocity flow with noncondensables, low pressure recovery with incomplete condensation was observed. These trends are in agreement with previous experimental observations

  11. Shock wave compression and metallization of simple molecules

    International Nuclear Information System (INIS)

    Ross, M.; Radousky, H.B.

    1988-03-01

    In this paper we combine shock wave studies and metallization of simple molecules in a single overview. The unifying features are provided by the high shock temperatures which lead to a metallic-like state in the rare gases and to dissociation of diatomic molecules. In the case of the rare gases, electronic excitation into the conduction band leads to a metallic-like inert gas state at lower than metallic densities and provides information regarding the closing of the band gap. Diatomic dissociation caused by thermal excitation also leads to a final metallic-like or monatomic state. Ina ddition, shock wave data can provide information concerning the short range intermolecular force of the insulator that can be useful for calculating the metallic phase transition as for example in the case of hydrogen. 69 refs., 36 figs., 2 tabs

  12. Experimental Shock Damage Risk Assessment for New Generation TAS-B Plasmic Propulsion Unit

    Science.gov (United States)

    Garnier, J.; De Fruytier, C.

    2014-06-01

    This paper presents the methodology and the results of the shock test campaign conducted by TAS-B to qualify the PPU Mk2 unit in regards of increased shock levels.This unit supplies and controls two Plasma Thrusters used for satellite orbit keeping and attitude control. The PPU Mk2 unit mechanical design is based on a modular architecture. The different modules are mounted on a baseplate insuring thermal spreading and improved equipment flatness. The unit dimensions are 390 x 190 x 190 mm3 for a total mass of 11.5 kg.The PPU Mk2 contains several components sensitive to shock like specific inductors, transformers and relays. Due to an increasing of the shock specification in regards of the previous generation of PPU, it has been proposed to assess the good withstanding of these components and in order to mitigate the risks on the Qualification Model, a preliminary shock test has been performed on a Structural Model. This model is fully representative of the flight equipment in terms of mechanical interfaces and has been designed to have the same mechanical behaviour (same mass and main modes). Critical components have been embedded in this structural model in order to test their shock withstanding. Preliminary to this Structural Model, qualification at sensitive components levels has been performed through vibrations, shocks (half-sine) and thermal cycling. Evolution of the electrical main parameters has been followed to detect any degradation of the performance during this test campaigns.Then, the structural model has been instrumented to acquire the global behaviour of the equipment. Success criteria have been defined concerning mechanical behaviour before and after shocks, admissible electrical variations, visual inspections.After calibration phasis of the test bench, the shock test of the PPU Mk2 SM has been successfully conducted. The good test results allowed applying these shock levels confidently on the PPU Mk2 EQM model.

  13. Validation of the Large Interface Method of NEPTUNE{sub C}FD 1.0.8 for Pressurized Thermal Shock (PTS) applications

    Energy Technology Data Exchange (ETDEWEB)

    Coste, P., E-mail: pierre.coste@cea.fr [CEA, DEN, DER/SSTH, F-38054 Grenoble (France); Lavieville, J. [Electricite de France, Chatou (France); Pouvreau, J. [CEA, DEN, DER/SSTH, F-38054 Grenoble (France); Baudry, C.; Guingo, M.; Douce, A. [Electricite de France, Chatou (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The two-phase Pressurized Thermal Shock (PTS) is a key thermohydraulics issue for PWR safety. Black-Right-Pointing-Pointer The dynamic and condensation models are firstly validated separately. Black-Right-Pointing-Pointer Then the global validation is done with the COSI experiment. Black-Right-Pointing-Pointer All the calculations performed with the same set of models both in the Large Interface Method and in the k-{epsilon} approach for turbulence substantiate the application of the tool to PTS. - Abstract: NEPTUNE{sub C}FD is a code based on a 3D transient Eulerian two-fluid model. One of the main application targets is the two-phase Pressurized Thermal Shock (PTS), which is related to PWR Reactor Pressure Vessel (RPV) lifetime safety studies, when sub-cooled water from Emergency Core Cooling (ECC) system is injected into the possibly uncovered cold leg and penetrates into the RPV downcomer. Five experiments were selected for the validation, a selection reviewed by a panel of European experts. The dynamic models are validated with a co-current smooth and wavy air-water stratified flow in a rectangular channel with detailed measurements of turbulence and velocities. The condensation models are validated with a co-current smooth and wavy steam-water stratified flow in a rectangular channel with measurements of the steam flow rates. The dynamic models are validated in the situation of a jet impinging a pool free surface with two experiments dealing with a water jet impingement on a water pool free surface in air environment. Finally, all the models involved in the reactor conditions are validated with the COSI experiment. The calculations are done with the same set of Large Interface Method models and a RANS (k-{epsilon}) approach for turbulence. They substantiate the application of the tool to PTS studies.

  14. Numerical simulation of nonequilibrium flow in high-enthalpy shock tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, M.; Men' shov, I.; Nakamura, Y

    2005-03-01

    The flow field of a nozzle starting process with thermal and chemical nonequilibrium has been simulated. This flow is produced in high enthalpy impulse facilities such as the free piston shock tunnel. The governing equations are the axisymmetric, compressible Navier-Stokes equations. In this study, Park's two-temperature model, where air consists of five species, is used for defining the thermodynamic properties of air as a driven gas. The numerical scheme employed here is the hybrid scheme of the explicit and implicit methods, which was developed in our laboratory, along with AUSM{sup +} to evaluate inviscid fluxes. In the present simulation, the Mach number of an incident shock wave is set at M{sub s}=10.0. It corresponds to a specific enthalpy, h{sub 0}, of 12 MJ/kg. The results clearly show the complicated thermal and chemical nonequilibrium flow field around the end of the shock tube section and at the nozzle inlet during the initial stage of the nozzle starting process. They also suggest that the phenomenon of nozzle melting might be associated with a flow separation at the nozzle inlet.

  15. Question, answer, compare: a cross-category comparison of answers on question and answer websites

    Science.gov (United States)

    Ocepek, Melissa G.; Westbrook, Lynn

    2015-10-01

    Online information seekers make heavy use of websites that accept their natural language questions. This study compared the three types of such websites: social question and answer (Q&A), digital reference services, and ask-an-expert services. Questions reflecting daily life, research, and crisis situations were posed to high use websites of all three types. The resulting answers' characteristics were analyzed in terms of speed, transparency, formality, and intimacy. The results indicate that social Q&A websites excel in speed, ask-an-expert websites in intimacy, and digital reference services in transparency and formality.

  16. VISA-2, Reactor Vessel Failure Probability Under Thermal Shock

    International Nuclear Information System (INIS)

    Simonen, F.; Johnson, K.

    1992-01-01

    1 - Description of program or function: VISA2 (Vessel Integrity Simulation Analysis) was developed to estimate the failure probability of nuclear reactor pressure vessels under pressurized thermal shock conditions. The deterministic portion of the code performs heat transfer, stress, and fracture mechanics calculations for a vessel subjected to a user-specified temperature and pressure transient. The probabilistic analysis performs a Monte Carlo simulation to estimate the probability of vessel failure. Parameters such as initial crack size and position, copper and nickel content, fluence, and the fracture toughness values for crack initiation and arrest are treated as random variables. Linear elastic fracture mechanics methods are used to model crack initiation and growth. This includes cladding effects in the heat transfer, stress, and fracture mechanics calculations. The simulation procedure treats an entire vessel and recognizes that more than one flaw can exist in a given vessel. The flaw model allows random positioning of the flaw within the vessel wall thickness, and the user can specify either flaw length or length-to-depth aspect ratio for crack initiation and arrest predictions. The flaw size distribution can be adjust on the basis of different inservice inspection techniques and inspection conditions. The toughness simulation model includes a menu of alternative equations for predicting the shift in the reference temperature of the nil-ductility transition. 2 - Method of solution: The solution method uses closed form equations for temperatures, stresses, and stress intensity factors. A polynomial fitting procedure approximates the specified pressure and temperature transient. Failure probabilities are calculated by a Monte Carlo simulation. 3 - Restrictions on the complexity of the problem: Maxima of 30 welds. VISA2 models only the belt-line (cylindrical) region of a reactor vessel. The stresses are a function of the radial (through-wall) coordinate only

  17. OBSERVATIONAL SIGNATURES OF SUB-PHOTOSPHERIC RADIATION-MEDIATED SHOCKS IN THE PROMPT PHASE OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levinson, Amir

    2012-01-01

    A shock that forms below the photosphere of a gamma-ray burst (GRB) outflow is mediated by Compton scattering of radiation advected into the shock by the upstream fluid. The characteristic scale of such a shock, a few Thomson depths, is larger than any kinetic scale involved by several orders of magnitude. Hence, unlike collisionless shocks, radiation-mediated shocks cannot accelerate particles to nonthermal energies. The spectrum emitted by a shock that emerges from the photosphere of a GRB jet reflects the temperature profile downstream of the shock, with a possible contribution at the highest energies from the shock transition layer itself. We study the properties of radiation-mediated shocks that form during the prompt phase of GRBs and compute the time-integrated spectrum emitted by the shocked fluid following shock breakout. We show that the time-integrated emission from a single shock exhibits a prominent thermal peak, with the location of the peak depending on the shock velocity profile. We also point out that multiple shock emission can produce a spectrum that mimics a Band spectrum.

  18. Effect of Rotation for Two-Temperature Generalized Thermoelasticity of Two-Dimensional under Thermal Shock Problem

    Directory of Open Access Journals (Sweden)

    Kh. Lotfy

    2013-01-01

    Full Text Available The theory of two-temperature generalized thermoelasticity based on the theory of Youssef is used to solve boundary value problems of two-dimensional half-space. The governing equations are solved using normal mode method under the purview of the Lord-Şhulman (LS and the classical dynamical coupled theory (CD. The general solution obtained is applied to a specific problem of a half-space subjected to one type of heating, the thermal shock type. We study the influence of rotation on the total deformation of thermoelastic half-space and the interaction with each other under the influence of two temperature theory. The material is homogeneous isotropic elastic half-space. The methodology applied here is use of the normal mode analysis techniques that are used to solve the resulting nondimensional coupled field equations for the two theories. Numerical results for the displacement components, force stresses, and temperature distribution are presented graphically and discussed. The conductive temperature, the dynamical temperature, the stress, and the strain distributions are shown graphically with some comparisons.

  19. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  20. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  1. DEFINITION OF TYPOS IN ANSWER OF STUDENT IN KNOWN CORRECT ANSWER

    Directory of Open Access Journals (Sweden)

    Maria V. Biryukova

    2015-01-01

    Full Text Available The paper describes method of typo detection in the answers for the questions with open answers. In such questions we know one or several correct answers defining relatively small dictionary of correct words contrasting the usual case of looking for typos in arbitrary text. This fact allows using more complex analysis methods and finding more possible typos, such as extra or missing separators. A typo correction module for the Correct Writing question type (for Moodle LMS was developed using proposed methods. 

  2. Hard X-ray emission from accretion shocks around galaxy clusters

    Science.gov (United States)

    Kushnir, Doron; Waxman, Eli

    2010-02-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being lesssim0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  3. Hard X-ray emission from accretion shocks around galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kushnir, Doron; Waxman, Eli, E-mail: doron.kushnir@weizmann.ac.il, E-mail: eli.waxman@weizmann.ac.il [Physics Faculty, Weizmann Institute of Science, PO Box 26, Rehovot (Israel)

    2010-02-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being ∼<0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  4. Hard X-ray emission from accretion shocks around galaxy clusters

    International Nuclear Information System (INIS)

    Kushnir, Doron; Waxman, Eli

    2010-01-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being ∼<0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed

  5. Stress intensity factors for underclad and through clad defects in a reactor pressure vessel submitted to a pressurised thermal shock

    International Nuclear Information System (INIS)

    Marie, S.; Menager, Y.; Chapuliot, S.

    2005-01-01

    CEA has launched important work on the development of a Stress Intensity Factors compendium for cracks in a Reactor Pressure Vessel (RPV) taking into account the cladding. The work is performed by Finite Element analysis with a parametric mesh for two types of defects (under clad defect and through clad defect) and a wide range of geometrical and material parameters. In addition, an analytical stress solution for Pressurised Thermal Shock (PTS) on the RPV is proposed to allow a complete analytical estimation of the stress intensity factor K I for the PTS problem. The results are validated by comparison with a complete 3D finite element calculation performed on a complex and realistic case study

  6. The Crab nebula's ''wisps'' as shocked pulsar wind

    International Nuclear Information System (INIS)

    Gallant, Y.A.; Arons, J.; Langdon, A.B.

    1992-01-01

    The Crab synchrotron nebula has been successfully modelled as the post-shock region of a relativistic, magnetized wind carrying most of the spindown luminosity from the central pulsar. While the Crab is the best-studied example, most of the highest spindown luminosity pulsars are also surrounded by extended synchrotron nebulae, and several additional supernova remnants with ''plerionic'' morphologies similar to the Crab are known where the central object is not seen. All these objects have nonthermal, power-law spectra attributable to accelerated high-energy particles thought to originate in a Crab-like relativistic pulsar wind. However, proposed models have so far treated the wind shock as an infinitesimally thin discontinuity, with an arbitrarily ascribed particle acceleration efficiency. To make further progress, investigations resolving the shock structure seemed in order. Motivated by these considerations, we have performed ''particle-in-cell (PIC) simulations of perpendicularly magnetized shocks in electron-positron and electron-positron-ion plasmas. The shocks in pure electron-positron plasmas were found to produce only thermal distributions downstream, and are thus poor candidates as particle acceleration sites. When the upstream plasma flow also contained a smaller population of positive ions, however, efficient acceleration of positrons, and to a lesser extent of electrons, was observed in the simulations

  7. Gamma-ray emission from internal shocks in novae

    Science.gov (United States)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main

  8. Geomorphology: the Shock of the Familiar

    Science.gov (United States)

    Dietrich, W. E.

    2008-12-01

    Everyone experiences landscapes and has a sense about how they work: water runs down hill, it erodes and carries sediments, and that's about it, right? Introductory earth science text books are uniformly qualitative about the field, and leave one with little sense of wonder, and certainly not "shock". But four shocks occur if one peels away the first impressions. First, landscapes are surprisingly similar: the same forms are repeated in virtually all environments, including under the ocean and on other planets. Second, we lack theory and mechanistic observations to answer many simple first-order questions, e.g. what controls the width of a river, how does rock type control hillslope form and erosion rate, or, is there a topographic signature of life. Third, there are unexpected connections between surface erosion, deep earth processes, and climate. And fourth, the field itself, despite having been a subject of study for well over 100 years, is currently experiencing a revolution of ideas and discoveries through new tools, observatories, centers, journals, books, contributions of researchers from other disciplines, and from a significant hiring of young researchers in geomorphology. Deep messages await discovery in the simple landforms surrounding us.

  9. Fuel-coolant interactions in a shock-tube geometry

    International Nuclear Information System (INIS)

    Segev, A.; Henry, R.E.; Bankoff, S.G.

    1978-01-01

    Thermal interactions were studied in a shock tube configuration using different pairs of liquids. Large pressures were obtained for systems of water-Wood's metal and butanol-Wood's metal. Different types of interactions were observed, depending on the hot liquid temperature. It was found that thehydrodynamic component alone may account for the measured pressure in the lower temperature range. A combination of thermal and hydrodynamic interactions accounts for the pressures at high temperatures. Experiments with water and molten salt (LiCl + KCl) produced small scale explosions. All interactions were suppressed when driving pressure increased. (author)

  10. Shock waves in P-bar target

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed.

  11. Shock waves in P-bar target

    International Nuclear Information System (INIS)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed

  12. Pressurized thermal shock. CNA-I behavior when a hot leg breaks of 50 cm2 is produced

    International Nuclear Information System (INIS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2002-01-01

    Pressurized thermal shock (PTS) phenomena in the CNA-I pressurize heavy water reactor is analyzed in this paper. The initiating event is a hypothetical 50 cm 2 break of the line connecting the pressurizer and the primary system. The calculation procedure for obtaining the local thermal-hydraulic parameters in the reactor pressure vessel downcomer is described firstly. Results obtained lead to conclusions in different subjects. The first conclusion is that a simple tool of easy application is available to analyze PTS phenomena in cases of breaks in the primary system in cold and hot legs. This methodology is fully independent of the methodology utilized by the Utility. Another important conclusion comes from the analysis of the temperature evolution of the fluid below the cold leg level in the RPV downcomer, as a function of the T HPI temperature of the TJ system injected water from. It is also concluded that the results obtained with the methodology adopted agree with the ones obtained with the methodologies validated against experiments in the UPTF facility. It is possible to observe that when T HPI increase, the conditions suitable for PTS occurrence in a LOCA accident tend to diminish. The maximum value to the T HPI may be fixed from the maximum temperature allowed to preserve the structural integrity of the fuel cladding. (author)

  13. Radiating shocks and condensations in flares

    International Nuclear Information System (INIS)

    Fisher, G.H.

    1985-01-01

    Rapid energy release (by either ''thick target'' (beam) or ''thermal'' models of heating) in solar flare loop models usually leads to ''chromospheric evaporation,'' the process of heating cool chromospheric material to coronal temperatures, and the resulting increase in hot soft x-ray emitting plasma. The evaporated plasma flows up into the coronal portion of the loop because of the increased pressure in the evaporated region. However, the pressure increase also leads to a number of interesting phenomena in the flare chromosphere, which will be the subject of this paper. The sudden pressure increase in the evaporated plasma initiates a downward moving ''chromospheric condensation,'' an overdense region which gradually decelerates as it accretes material and propagates into the gravitationally stratified chromosphere. Solutions to an equation of motion for this condensation shows that its motion decays after about one minute of propagation into the chromosphere. When the front of this downflowing region is supersonic relative to the atmosphere ahead of it, a radiating shock will form. If the downflow is rapid enough, the shock strength should be sufficient to excite uv radiation normally associated with the transition region, and furthermore, the radiating shock will be brighter than the transition region. These results lead to a number of observationally testable relationships between the optical and ultraviolet spectra from the condensation and radiating shock

  14. IPTS [Integrated Pressurized-Thermal-Shock] study for H.B. Robinson (HBR-HYPO)

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1990-01-01

    A primary purpose of the US Nuclear Regulatory Commission (NRC) Integrated Pressurized-Thermal-Shock (IPTS) Program, completed in 1985, was to develop an integrated probabilistic approach for evaluating pressurized water reactor (PWR) pressure vessel integrity; and the scope included the application of the methodology to three ''high risk'' PWR plants. The three plants selected were Oconee Unit 1, Calvert Cliffs Unit 1, and HBRobinson Unit 2 (HBR-2); and the plant studies were conducted in that order. As a result of this sequence and the developmental nature of the program, the HBR-2 study was the more complete and state-of-the-art. However, by the time the HBR-2 study was conducted, a reevaluation of vessel chemistry and reference nil-ductility transition temperature (RT NDT ) had indicated relatively low concentrations of copper and nickel and low values of initial RT NDT (RT NDT 0 ), resulting in very low probabilities of failure. Thus, for illustrative purposes, copper, nickel, and RT NDT 0 were increased so that RT NDT (2σ) = 270 degree F for the critical weld at 32 EFPY. This value of RT NDT corresponds, of course, to the NRC PTS-Rule screening criteria (10 CFR 5.61). This hypothetical ''plant'' was referred to as HBR-HYPO, and it was identical to HBR-2 in every respect except for the concentrations of copper and nickel and the value of RT NDT 0 for the welds. 3 refs

  15. TRANSPORT OF SOLAR WIND H{sup +} AND He{sup ++} IONS ACROSS EARTH’S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Parks, G. K.; Lin, N. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lee, E. [School of Space Research and Institute of Natural Sciences, Kyung Hee University, Yongin (Korea, Republic of); Fu, S. Y.; Ma, Y. Q. [Institute of Space Science, Peking University, Beijing (China); Kim, H. E.; Hong, J. [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Yang, Z. W.; Liu, Y. [Key Laboratory for Space Weather, Chinese Academy of Sciences, Beijing (China); Canu, P. [Plasma Physics Laboratory, Ecole Polytechnique, Paris (France); Dandouras, I.; Rème, H. [IRAP, Paul Sabatier University and CNRS, Toulouse (France); Goldstein, M. L., E-mail: parks@ssl.berkeley.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-10

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was <400 km s{sup −1}. The shock potential of a typical supercritical quasi-perpendicular shock estimated from deceleration of the SW and cutoff energy of electron flat top distribution is ∼50 Volts. We find that the temperatures of H{sup +} and He{sup ++} beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.

  16. Shock melting and vaporization of lunar rocks and minerals.

    Science.gov (United States)

    Ahrens, T. J.; O'Keefe, J. D.

    1972-01-01

    The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.

  17. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  18. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    Full Text Available Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.

  19. Reflection of a shock wave from a thermally accommodating wall - Molecular simulation.

    Science.gov (United States)

    Deiwert, G. S.

    1973-01-01

    Reflection of a plane shock wave from a wall has been simulated on a microscopic scale using a direct simulation Monte Carlo technique of the type developed by Bird. A monatomic gas model representing argon was used to describe the fluid medium and a simple one-parameter accommodation coefficient model was used to describe the gas-surface interaction. The influence of surface accommodation was studied parametrically by varying the accommodation coefficient from zero to one. Results are presented showing the temporal variations of flow field density, and mass, momentum, and energy fluxes to the wall during the shock wave reflection process. The energy flux was used to determine the wall temperature history. Comparisons with experiment are found to be satisfactory where data are available.

  20. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David, E-mail: schakraborti@fas.harvard.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2012-12-20

    Type IIP (Plateau) supernovae are the most commonly observed variety of core-collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a Type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work, we analyze archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass-loss rate, blastwave velocity, electron acceleration, and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.

  1. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  2. Pressurized thermal shock. Thermo-hydraulic conditions in the CNA-I reactor pressure vessel

    International Nuclear Information System (INIS)

    Ventura, Mirta A.; Rosso, Ricardo D.

    2002-01-01

    In this paper we analyze several reports issued by the Utility (Nucleo Electrica S.A.) and related to Reactor Pressure Vessel (RPV) phenomena in the CNA-I Nuclear Power Plant. These analyses are aimed at obtaining conclusions and establishing criteria ensuring the RPV integrity. Special attention was given to the effects ECCS cold-water injection at the RPV down-comer leading to pressurized thermal shock scenarios. The results deal with hypothetical primary system pipe breaks of different sizes, the inadvertent opening of the pressurizer safety valve, the double guillotine break of a live steam line in the containment and the inadvertent actuation pressurizer heaters. Modeling conditions were setup to represent experiments performed at the UPTF, under the hypothesis that they are representative of those that, hypothetically, may occur at the CNA-I. No system scaling analysis was performed, so this assertion and the inferred conclusions are no fully justified, at least in principle. The above mentioned studies, indicate that the RPV internal wall surface temperature will be nearly 40 degree. It was concluded that they allowed a better approximation of PTS phenomena in the RPV of the CNA-I. Special emphasis was made on the influence of the ECCS systems on the attained RPV wall temperature, particularly the low-pressure TJ water injection system. Some conservative hypothesis made, are discussed in this report. (author)

  3. Polymerization, shock cooling and ionization of liquid nitrogen

    International Nuclear Information System (INIS)

    Ross, M; Rogers, F

    2005-01-01

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10 6 GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T ∼ 3.5 10 5 K) and at 400 Mbar (T ∼ 2.3 10 6 K) from K shell ionization. Near a pressure of 10 6 GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit

  4. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    Science.gov (United States)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  5. Thermal Shielding of the Shock Absorber to a Seal of a Hot-cell Cask

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    In order to safely transport the radioactive waste arising from the hot test of ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore KAERI is developing a shipping package to transport the radioactive waste arising in the ACPF during a hot test. Regulatory requirements for a Type B package are specified in the Korea MOST Act 2008-69, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. performed a research on the thermal protection provided by shock absorbers by using CAFE computer code. This paper discusses the experimental approach used to simulate the response of the hot cell cask to fire in a furnace with chamber dimensions of 300 cm(W) x 400 cm(L) x 200 cm(H) by using a 1/2 scale model which was damaged by both a 9 m drop test and a 1 m puncture test

  6. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    Science.gov (United States)

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  7. The jumps of physical quantities at fast shocks under pressure anisotropy: theory versus observations at the bow shock

    International Nuclear Information System (INIS)

    Vogl, D.F.

    2000-10-01

    The interaction of the solar wind with magnetized planets leads to the formation of the so-called magnetosphere, a cavity generated by the geomagnetic field. The supersonic, superalfvenic, and magnetized solar wind flow interacting with blunt bodies produces a detached bow shock, separating the solar wind from the magnetosheath, the region between the shock wave and the magnetopause. On approach to a planetary obstacle, the solar wind becomes subsonic at the bow shock and then flows past the planet in the magnetosheath. At the bow shock, the plasma parameters and the magnetic field strength change from upstream to downstream, i.e., an increase of plasma density, temperature, pressure, and magnetic field strength, and a decrease of the velocity across the shock. In this PhD thesis we mainly concentrate on the variations of all physical quantities across the bow shock taking into account pressure anisotropy, which is an important feature in space plasma physics and observed by various spacecraft missions in the solar wind as well as in the magnetosheath. Dealing with anisotropic plasma conditions, one has to introduce the so-called pressure tensor, characterized by two scalar pressures, the pressure perpendicular (P p erp) and the pressure parallel (P p arallel) with respect to the magnetic field and in general one speaks of anisotropic conditions for P p erp is not P p arallel. Many spacecraft observations of the solar wind show P p arallel > P p erp, whereas observations of the magnetosheath show the opposite case, P p arallel p erp. Therefore, dissipation of kinetic energy into thermal energy plays an important role in studying the variations of the relevant physical quantities across the shock. It has to be mentioned that planetary bow shocks are good examples for fast MHD shock waves. Therefore, the basic equations for describing the changes across the shock can be obtained by integrating the MHD equations in conservative form. We note that these equations, the

  8. Prediction of thermal fatigue life of ceramics

    International Nuclear Information System (INIS)

    Kamiya, N.; Kamigaito, O.

    1979-01-01

    On the assumption that the thermal fatigue life of ceramics is determined mainly by the duration over which a crack reaches a small critical length, a prediction of the life was made by application of fracture mechanics to ceramics based on subcritical crack growth. Approximated formulae were derived. Experimental examination showed that the formulae proved to be valid for glass, sintered mullite under moderate shock severity, and zirconia. Data given by other authors also prove their validity. The deviation of the life from the formulae for sintered mullite under a thermal shock of extremely low severty, suggests that a certain mechanism, for example strengthening, is needed to understand the life of the sintered mullite. (author)

  9. Relativistic shock waves and the excitation of plerions

    Energy Technology Data Exchange (ETDEWEB)

    Arons, J. (California Univ., Berkeley, CA (USA)); Gallant, Y.A. (California Univ., Berkeley, CA (USA). Dept. of Physics); Hoshino, Masahiro; Max, C.E. (California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics); Langdon, A.B. (Lawrence Livermore National Lab., CA (USA))

    1991-01-07

    The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.

  10. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  11. Special problems: LBB, thermal effects

    International Nuclear Information System (INIS)

    Lin Chiwen

    2001-01-01

    This section presents the discussion of special problems in the reactor coolant system design, including LBB and thermal effects. First, the categories of fracture mechanics technology applicable to LBB is discussed. Two categories of fracture mechanics, namely: linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM) are discussed specifically. Next, basic concepts of LEFM are discussed. This will be followed by a discussion of EPFM, with more specific discussion of the methodology currently acceptable to NRC, with the emphasis on the J-integral approach. This is followed by a discussion of the NRC position and recommendations and basic requirements laid out by NRC. A specific example of LBB application to WPWR piping is used to identify the key steps to be followed, in order to satisfy the recommendations and requirements of NRC. An application of LBB to the WPWR reactor coolant loop piping is provided as further illustration of the methodology. This section focuses on the thermal effects which have not been addressed earlier, and the thermal effects which have caused particular concerns on potential reactor degradations, such as pressurized thermal shocks. The organization of this section is divided into the following subsections: linear-elastic fracture mechanics (LEFM); elastic-plastic fracture mechanics (EPFM); J concepts; NRC recommendations and requirements on the application of LBB; two specific applications of LBB to WPWR piping; PWR internals degradation; thermal fatigue considerations; a case study of pressurized thermal shock

  12. Shock tube experiments on nitromethane and Promotion of chemical reactions by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Seljeskog, Morten

    2002-06-01

    This dissertation was undertaken to study two different subjects both related to molecular decomposition by applying a shock tube and non-thermal plasma to decompose selected hydrocarbons. The first approach to molecular decomposition concerned thermal decomposition and oxidation of highly diluted nitromethane (NM) in a shock tube. Reflected shock tube experiments on NM decomposition, using mixtures of 0.2 to 1.5 vol% NM in nitrogen or argon were performed over the temperature range 850-1550 K and pressure range 190-900 kPa, with 46 experiments diluted in nitrogen and 44 diluted in argon. By residual error analysis of the measured decomposition profiles it was found that NM decomposition (CH{sub 3}NO{sub 2} + M {yields} CH{sub 3} + NO{sub 2} + M, where M = N{sub 2} /Ar) corresponds well to a law of first order. Arrhenius expressions corresponding to NM diluted either in N{sub 2} or in Ar were found as k{sub N2} = 10{sup 17.011} * exp(- 182.6 kJ/mole / R*T) and k{sub Ar} = 10{sup 17.574}*exp(-207 kJ/mole / R*T ) , respectively. A new reaction mechanism was then proposed, based on new experimental data for NM decomposition both in Ar and N{sub 2} and on three previously developed mechanisms. The new mechanism predicts well the decomposition of NM diluted in both N{sub 2} and Ar within the pressure and temperature range covered by the experiments. In parallel to, and following the decomposition experiments, oxidative experiments on the ignition delay times of NM/O{sub 2}/Ar mixtures were investigated over high temperature and low to high pressure ranges. These experiments were carried out with eight different mixtures of gaseous NM and oxygen diluted in argon, with pressures ranging between 44.3-600 kPa, and temperatures ranging between 842-1378 K. The oxidation experiments were divided into different categories according to the type of decomposition signals achieved. For signals with and without emission, the apparent quasi

  13. Cold shock to aquatic organisms: guidance for power-plant siting, design, and operation

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1977-01-01

    Problems of cold-shock damages to aquatic organisms have arisen at some condenser cooling-water discharges of thermal power stations when the warm-water releases have suddenly terminated. The basis for such damage lies in the exposure of resident organisms to a rapid decrease in temperature and a sustained exposure to low temperature that induces abnormal behavioral or physiological performance and often leads to death. Although some spectacular fish kills from cold shock have occurred, the present knowledge of the hydraulic and biological processes involved can provide guidance for the siting, design, and operation of power-plant cooling systems to minimize the likelihood of significant cold-shock effects. Preventing cold-shock damages is one consideration in minimizing overall environmental impacts of power-plant cooling and in balancing plant costs with environmental benefits

  14. A nova outburst powered by shocks

    Science.gov (United States)

    Li, Kwan-Lok; Metzger, Brian D.; Chomiuk, Laura; Vurm, Indrek; Strader, Jay; Finzell, Thomas; Beloborodov, Andrei M.; Nelson, Thomas; Shappee, Benjamin J.; Kochanek, Christopher S.; Prieto, José L.; Kafka, Stella; Holoien, Thomas W.-S.; Thompson, Todd A.; Luckas, Paul J.; Itoh, Hiroshi

    2017-10-01

    Classical novae are runaway thermonuclear burning events on the surfaces of accreting white dwarfs in close binary star systems, sometimes appearing as new naked-eye sources in the night sky1. The standard model of novae predicts that their optical luminosity derives from energy released near the hot white dwarf, which is reprocessed through the ejected material2-5. Recent studies using the Fermi Large Area Telescope have shown that many classical novae are accompanied by gigaelectronvolt γ-ray emission6,7. This emission likely originates from strong shocks, providing new insights into the properties of nova outflows and allowing them to be used as laboratories for the study of the unknown efficiency of particle acceleration in shocks. Here, we report γ-ray and optical observations of the Milky Way nova ASASSN-16ma, which is among the brightest novae ever detected in γ-rays. The γ-ray and optical light curves show a remarkable correlation, implying that the majority of the optical light comes from reprocessed emission from shocks rather than the white dwarf8. The ratio of γ-ray to optical flux in ASASSN-16ma directly constrains the acceleration efficiency of non-thermal particles to be around 0.005, favouring hadronic models for the γ-ray emission9. The need to accelerate particles up to energies exceeding 100 gigaelectronvolts provides compelling evidence for magnetic field amplification in the shocks.

  15. Potential impact of enhanced fracture-toughness data on pressurized-thermal-shock analysis

    International Nuclear Information System (INIS)

    Dickson, T.L.; Theiss, T.J.

    1990-01-01

    The Heavy Section Steel Technology (HSST) Program is involved with the generation of ''enhanced'' fracture-initiation toughness and fracture-arrest toughness data of prototypic nuclear reactor vessel steels. These two sets of data are enhanced because they have distinguishing characteristics that could potentially impact PWR pressure vessel integrity assessments for the pressurized-thermal shock (PTS) loading condition which is a major plant-life extension issue to be confronted in the 1990's. Currently, the HSST Program is planning experiments to verify and quantify, for A533B steel, the distinguishing characteristic of elevated initiation-fracture toughness for shallow flaws which has been observed for other steels. Deterministic and probabilistic fracture-mechanics analyses were performed to examine the influence of the enhanced initiation and arrest fracture-toughness data on the cleavage fracture response of a nuclear reactor pressure vessel subjected to PTS loading. The results of the analyses indicated that application of the enhanced K Ia data does reduce the conditional probability of failure P(F|E); however, it does not appear to have the potential to significantly impact the results of PTS analyses. The application of enhanced fracture-initiation-toughness data for shallow flaws also reduces P(F|E), but it does appear to have a potential for significantly affecting the results of PTS analyses. The effect of including Type I warm prestress in probabilistic fracture-mechanics analyses is beneficial. The benefit is transient dependent and, in some cases, can be quite significant. 19 refs., 12 figs., 1 tab

  16. Dissociation of NF3 in shock waves

    International Nuclear Information System (INIS)

    Breshears, W.D.; Bird, P.F.

    1978-01-01

    The thermal dissociation rate of NF 3 in mixtures of 5% and 10%NF 3 in Ar has been measured behind incident shock waves over the temperature range 1330-2000 K. Dissociation rates were determined from postshock density gradients measured by laser beam deflection. The second order rate coefficient determined for NF 3 -Ar collisions is k/sub d/=2.31 x 10 15 exp(-20500/T) cm 3 mole sec

  17. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    Science.gov (United States)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  18. Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    Science.gov (United States)

    Ritchey, Adam M.; Federman, Steven Robert; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2018-06-01

    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on an examination of high-resolution HST/STIS spectra of two stars probing predominantly neutral gas located both ahead of and behind the supernova shock front. The pre-shock neutral gas is characterized by densities and temperatures typical of diffuse interstellar clouds, while the post-shock material exhibits a range of more extreme physical conditions, including high temperatures (>104 K) in some cases, which may require a sudden heating event to explain. The ionization level is enhanced in the high-temperature post-shock material, which could be the result of enhanced radiation from shocks or from an increase in cosmic-ray ionization. The gas-phase abundances of refractory elements are also enhanced in the high-pressure gas, suggesting efficient destruction of dust grains by shock sputtering. Observations of highly-ionized species at very high velocity indicate a post-shock temperature of 107 K for the hot X-ray emitting plasma of the remnant’s interior, in agreement with studies of thermal X-ray emission from IC 443.

  19. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  20. Analytical criterion for shock ignition of fusion reaction in hot spot

    International Nuclear Information System (INIS)

    Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Vallet, A.; Bel, E. L.

    2013-01-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latter phase by using the Guderley self-similar solution for converging flows. Our model accounts for the fusion reaction energy deposition, thermal and radiation losses thus describing the basic physics of hot spot ignition. The ignition criterion derived from the analytical model is successfully compared with full scale hydrodynamic simulations. (authors)

  1. Kinetic instabilities in plasmas: from electromagnetic fluctuations to collisionless shocks

    International Nuclear Information System (INIS)

    Ruyer, Charles

    2014-01-01

    Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between sub-luminal and supra-luminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the sub-luminal regime along with some discrepancy in the supra-luminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energy. We then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle

  2. Fracture risk assessment for the pressurized water reactor pressure vessel under pressurized thermal shock events

    International Nuclear Information System (INIS)

    Chou, Hsoung-Wei; Huang, Chin-Cheng

    2016-01-01

    Highlight: • The PTS loading conditions consistent with the USNRC's new PTS rule are applied as the loading condition for a Taiwan domestic PWR. • The state-of-the-art PFM technique is employed to analyze a reactor pressure vessel. • Novel flaw model and embrittlement correlation are considered in the study. • The RT-based regression formula of NUREG-1874 was also utilized to evaluate the failure risks of RPV. • For slightly embrittled RPV, the SO-1 type PTSs play more important role than other types of PTS. - Abstract: The fracture risk of the pressurized water reactor pressure vessel of a Taiwan domestic nuclear power plant has been evaluated according to the technical basis of the U.S.NRC's new pressurized thermal shock (PTS) screening criteria. The ORNL's FAVOR code and the PNNL's flaw models were employed to perform the probabilistic fracture mechanics analysis associated with plant specific parameters of the domestic reactor pressure vessel. Meanwhile, the PTS thermal hydraulic and probabilistic risk assessment data analyzed from a similar nuclear power plant in the United States for establishing the new PTS rule were applied as the loading conditions. Besides, an RT-based regression formula derived by the U.S.NRC was also utilized to verify the through-wall cracking frequencies. It is found that the through-wall cracking of the analyzed reactor pressure vessel only occurs during the PTS events resulted from the stuck-open primary safety relief valves that later reclose, but with only an insignificant failure risk. The results indicate that the Taiwan domestic PWR pressure vessel has sufficient structural margin for the PTS attack until either the current license expiration dates or during the proposed extended operation periods.

  3. Reynolds stress turbulence model applied to two-phase pressurized thermal shocks in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril

    2016-04-01

    Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.

  4. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    Science.gov (United States)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  5. 6 CFR 13.9 - Answer.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Answer. 13.9 Section 13.9 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.9 Answer. (a) The Defendant may request a hearing by serving an answer on the Reviewing Official within 30 days of service of...

  6. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. II. BALMER EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, G.; Bandiera, R.; Blasi, P.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-01

    Strong shocks propagating into a partially ionized medium are often associated with optical Balmer lines. This emission is due to impact excitation of neutral hydrogen by hot protons and electrons in the shocked gas. The structure of such Balmer-dominated shocks has been computed in a previous paper, where the distribution function of neutral particles was derived from the appropriate Boltzmann equation including coupling with ions and electrons through charge exchange and ionization. This calculation showed how the presence of neutrals can significantly modify the shock structure through the formation of a neutral-induced precursor ahead of the shock. Here we follow up on our previous work and investigate the properties of the resulting Balmer emission, with the aim of using the observed radiation as a diagnostic tool for shock parameters. Our main focus is on supernova remnant shocks, and we find that, for typical parameters, the H{alpha} emission typically has a three-component spectral profile, where (1) a narrow component originates from upstream cold hydrogen atoms, (2) a broad component comes from hydrogen atoms that have undergone charge exchange with shocked protons downstream of the shock, and (3) an intermediate component is due to hydrogen atoms that have undergone charge exchange with warm protons in the neutral-induced precursor. The relative importance of these three components depends on the shock velocity, on the original degree of ionization, and on the electron-ion temperature equilibration level. The intermediate component, which is the main signature of the presence of a neutral-induced precursor, becomes negligible for shock velocities {approx}< 1500 km s{sup -1}. The width of the intermediate line reflects the temperature in the precursor, while the width of the narrow one is left unaltered by the precursor. In addition, we show that the profiles of both the intermediate and broad components generally depart from a thermal distribution, as a

  7. Effects of non-adiabatic walls on shock/boundary-layer interaction using direct numerical simulations

    Science.gov (United States)

    Volpiani, Pedro S.; Bernardini, Matteo; Larsson, Johan

    2017-11-01

    The influence of wall thermal conditions on the properties of an impinging shock wave interacting with a turbulent supersonic boundary layer is a research topic that still remains underexplored. In the present study, direct numerical simulations (DNS) are employed to investigate the flow properties of a shock wave interacting with a turbulent boundary layer at free-stream Mach number M∞ = 2.28 with distinct wall thermal conditions and shock strengths. Instantaneous and mean flow fields, wall quantities and the low-frequency unsteadiness are analyzed. While heating contributes to increase the extent of the interaction zone, wall cooling turns out to be a good candidate for flow control. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. Numerical results indicate that the changes in the interaction length are mainly linked to the incoming boundary layer as suggested in previous studies (Souverein et al., 2013 and Jaunet et al., 2014). This work was supported by the Air Force Office of Scientific Research, Grant FA95501610385.

  8. From Question Answering to Visual Exploration

    Energy Technology Data Exchange (ETDEWEB)

    McColgin, Dave W.; Gregory, Michelle L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2006-08-11

    Research in Question Answering has focused on the quality of information retrieval or extraction using the metrics of precision and recall to judge success; these metrics drive toward finding the specific best answer(s) and are best supportive of a lookup type of search. These do not address the opportunity that users? natural language questions present for exploratory interactions. In this paper, we present an integrated Question Answering environment that combines a visual analytics tool for unstructured text and a state-of-the-art query expansion tool designed to compliment the cognitive processes associated with an information analysts work flow. Analysts are seldom looking for factoid answers to simple questions; their information needs are much more complex in that they may be interested in patterns of answers over time, conflicting information, and even related non-answer data may be critical to learning about a problem or reaching prudent conclusions. In our visual analytics tool, questions result in a comprehensive answer space that allows users to explore the variety within the answers and spot related information in the rest of the data. The exploratory nature of the dialog between the user and this system requires tailored evaluation methods that better address the evolving user goals and counter cognitive biases inherent to exploratory search tasks.

  9. X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids

    Science.gov (United States)

    Owens, F. J.; Sharma, J.

    1980-03-01

    Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.

  10. Polymerization, shock cooling and ionization of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Rogers, F

    2005-07-21

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10{sup 6} GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T {approx} 3.5 10{sup 5} K) and at 400 Mbar (T {approx} 2.3 10{sup 6} K) from K shell ionization. Near a pressure of 10{sup 6} GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit.

  11. Slow shocks and their transition to fast shocks in the inner solar wind

    International Nuclear Information System (INIS)

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  12. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM

  13. The acceleration rate of cosmic rays at cosmic ray modified shocks

    Science.gov (United States)

    Saito, Tatsuhiko; Hoshino, Masahiro; Amano, Takanobu

    It is a still controversial matter whether the production efficiency of cosmic rays (CRs) is relatively efficient or inefficient (e.g. Helder et al. 2009; Hughes et al. 2000; Fukui 2013). In upstream region of SNR shocks (the interstellar medium), the energy density of CRs is comparable to a substantial fraction of that of the thermal plasma (e.g. Ferriere 2001). In such a situation, CRs can possibly exert a back-reaction to the shocks and modify the global shock structure. These shocks are called cosmic ray modified shocks (CRMSs). In CRMSs, as a result of the nonlinear feedback, there are almost always up to three steady-state solutions for given upstream parameters, which are characterized by CR production efficiencies (efficient, intermediate and inefficient branch). We evaluate qualitatively the efficiency of the CR production in SNR shocks by considering the stability of CRMS, under the effects of i) magnetic fields and ii) injection, which play significant roles in efficiency of acceleration. By adopting two-fluid model (Drury & Voelk, 1981), we investigate the stability of CRMSs by means of time-dependent numerical simulations. As a result, we show explicitly the bi-stable feature of these multiple solutions, i.e., the efficient and inefficient branches are stable and the intermediate branch is unstable, and the intermediate branch transit to the inefficient one. This feature is independent of the effects of i) shock angles and ii) injection. Furthermore, we investigate the evolution from a hydrodynamic shock to CRMS in a self-consistent manner. From the results, we suggest qualitatively that the CR production efficiency at SNR shocks may be the least efficient.

  14. Effect of long-term water immersion or thermal shock on mechanical properties of high-impact acrylic denture base resins.

    Science.gov (United States)

    Sasaki, Hirono; Hamanaka, Ippei; Takahashi, Yutaka; Kawaguchi, Tomohiro

    2016-01-01

    The purpose of this study was to investigate the effect of long-term water immersion or thermal shock on the mechanical properties of high-impact acrylic denture base resins. Two high-impact acrylic denture base resins were selected for the study. Specimens of each denture base material tested were fabricated according to the manufacturers' instructions (n=10). The flexural strength at the proportional limit, the elastic modulus and the impact strength of the specimens were evaluated. The flexural strength at the proportional limit of the high-impact acrylic denture base resins did not change after six months' water immersion or thermocycling 50,000 times. The elastic moduli of the high-impact acrylic denture base resins significantly increased after six months' water immersion or thermocycling 50,000 times. The impact strengths of the high-impact acrylic denture base resins significantly decreased after water immersion or thermocycling as described above.

  15. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Liu, Xiang; Wang, Jianbao; Feng, Fan [Southwestern Institute of Physics, Chengdu (China); Lv, Yanwei; Song, Jiupeng [China National R& D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd, 361026 Xiamen (China); Chen, Jiming [Southwestern Institute of Physics, Chengdu (China)

    2016-12-30

    Highlights: • Thick CVD-W coatingswere deposited at a rapid growth rate. • The polished CVD-W coatings have highly textured structure and exhibited a very strong preferred orientation. • The polished CVD tungsten coatings show superior thermal shock resistance as compared with that of the as-deposited coatings. • The crack formation of the polished CVD-W was almost suppressed at an elevated temperature. - Abstract: Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m{sup 2}. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  16. X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF ζ OPH AND BD+43°3654

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A.; Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Oskinova, L. M.; González-Galán, A. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Pohl, M., E-mail: toala@iaa.es [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617,Taiwan (China)

    2016-04-20

    Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars ζ Oph by Chandra and Suzaku and of BD+43°3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of ζ Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T ≈ 2 × 10{sup 6} K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43°3654 is puzzling, as non-thermal emission has been reported in a previous work for this source.

  17. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification

    Science.gov (United States)

    Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.

    2017-03-01

    Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.

  18. Illustrating answers: an evaluation of automatically retrieved illustrations of answers to medical questions

    NARCIS (Netherlands)

    Bosma, W.E.; Theune, Mariet; van Hooijdonk, C.M.J.; Krahmer, E.; Maes, F.

    In this paper we discuss and evaluate a method for automatic text illustration, applied to answers to medical questions. Our method for selecting illustrations is based on the idea that similarities between the answers and picture-related text (the picture’s caption or the section/paragraph that

  19. Answers at your fingertips: Access to the Internet influences willingness to answer questions.

    Science.gov (United States)

    Ferguson, Amanda M; McLean, David; Risko, Evan F

    2015-12-01

    Recent technological advances have given rise to an information-gathering tool unparalleled by any in human history-the Internet. Understanding how access to such a powerful informational tool influences how we think represents an important question for psychological science. In the present investigation we examined the impact of access to the Internet on the metacognitive processes that govern our decisions about what we "know" and "don't know." Results demonstrated that access to the Internet influenced individuals' willingness to volunteer answers, which led to fewer correct answers overall but greater accuracy when an answer was offered. Critically, access to the Internet also influenced feeling-of-knowing, and this accounted for some (but not all) of the effect on willingness to volunteer answers. These findings demonstrate that access to the Internet can influence metacognitive processes, and contribute novel insights into the operation of the transactive memory system formed by people and the Internet. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  1. Thermodynamic model of the compaction of powder materials by shock waves

    NARCIS (Netherlands)

    Dijken, Durandus; Hosson, J.Th.M. De

    1994-01-01

    For powder materials a model is proposed to predict the mean temperature behind the shock wave, the ratio between the increase of thermal energy and increase of total internal energy, as well as the mean final temperature after release of adiabatic pressure. Further, the change of pressure, specific

  2. Contribution of the study of thermal interaction: modelling of a thermal blast in a multi-phase medium

    International Nuclear Information System (INIS)

    Scott, Edouard

    1978-01-01

    This research thesis aims at being a contribution to the safety of nuclear facilities by reporting the study of the interaction between nuclear fuel and coolant in simplified conditions. It focuses on the thermal aspect of this interaction between a very hot body and an easily vaporized cold body, which could produce a blast. Thus, this author addresses the field of existence of a thermal blast, and reports the development of a hydrodynamic model which takes the heterogeneous nature of the interacting medium into account, in order to precisely describe the conditions of fuel fragmentation. This model includes the propagation of a shock in a mixture, and the calculation of a multi-phase flow in the reaction zone, and proposes criteria for a self-sustained shock wave propagation in the reactive medium. Results are compared with those obtained with the Bankoff model [fr

  3. Shock-wave structure based on the Navier-Stokes-Fourier equations

    Science.gov (United States)

    Uribe, F. J.; Velasco, R. M.

    2018-04-01

    We use the Navier-Stokes-Fourier constitutive equations to study plane shock waves in dilute gases. It is shown that the experimental information on the normalized density profiles can be fit by using the so-called soft sphere model, in which the viscosity and thermal conductivity are proportional to a power of the temperature.

  4. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  5. Thermal effects on the mechanical properties of SiC fibre reinforced reaction-bonded silicon nitride matrix composites

    Science.gov (United States)

    Bhatt, R. T.; Phillips, R. E.

    1990-01-01

    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  6. Multi-scale modelling of thermal shock damage in refractory materials

    NARCIS (Netherlands)

    Özdemir, I.

    2009-01-01

    Refractories are high-temperature resistant materials used extensively in many engineering structures and assemblies in a wide spectrum of applications ranging from metallurgical furnace linings to thermal barrier coatings. Such structures are often exposed to severe thermal loading conditions in

  7. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  8. Liquid metal targets for high-power applications : pulsed heating and shock hydrodynamics

    International Nuclear Information System (INIS)

    Hassanein, A.

    2000-01-01

    Significant interest has recently focused on the use of liquid-metal targets flowing with high velocities for various high-power nuclear and high-energy physics applications such as fusion reactor first-walls, the Spallation Neutron Source, Isotope Separation On Line, and Muon Collider projects. This is because the heat generated in solid targets due to beam or plasma bombardment cannot be removed easily and the resulting thermal shock damage could be a serious lifetime problem for long-term operation. More recently, the use of free or open flying-liquid jets has been proposed for higher-power-density applications. The behavior of a free-moving liquid mercury or gallium jet subjected to proton beam deposition in a strong magnetic field has been modeled and analyzed for the Muon Collider project. Free-liquid-metal jets can offer significant advantages over conventional solid targets, particularly for the more demanding and challenging high-power applications. However, the use of free-moving liquid-metal targets raises a number of new and challenging problems such as instabilities of the jet in a strong magnetic field, induced eddy-current effects on jet shape, thermal-shock formation, and possible jet fragmentation. Problems associated with shock heating of liquid jets in a strong magnetic field are analyzed in this study

  9. Novelty Detection via Answer Updating

    National Research Council Canada - National Science Library

    Li, Xiaoyan; Croft, W. B

    2004-01-01

    .... Specifically, we explore the use of question-answering techniques for novelty detection. New information is defined as new/previously unseen answers to questions representing a user's information need...

  10. To answer or not to answer? A field test of loss aversion

    OpenAIRE

    Michał Krawczyk

    2011-01-01

    This study is a field experiment on loss aversion. The framing of scoring rules was differentiated in two exams at the University of Warsaw, with only half the students facing explicit penalty points in the case of giving an incorrect answer. Loss aversion predicts that less risk will be taken (less questions will be answered) when losses are possible but in fact, no treatment effect was observed.

  11. 3D numerical modeling of YSO accretion shocks

    Directory of Open Access Journals (Sweden)

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  12. CAT questions and answers

    International Nuclear Information System (INIS)

    1993-02-01

    This document, prepared in February 1993, addresses the most common questions asked by APS Collaborative Access Teams (CATs). The answers represent the best judgment on the part of the APS at this time. In some cases, details are provided in separate documents to be supplied by the APS. Some of the answers are brief because details are not yet available. The questions are separated into five categories representing different aspects of CAT interactions with the APS: (1) Memorandum of Understanding (MOU), (2) CAT Beamline Review and Construction, (3) CAT Beamline Safety, (4) CAT Beamline Operations, and (5) Miscellaneous. The APS plans to generate similar documents as needed to both address new questions and clarify answers to present questions

  13. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  14. Generic Drugs: Questions and Answers

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Drugs Home Drugs Resources for You Information for Consumers (Drugs) Questions & Answers Generic Drugs: Questions & Answers Share Tweet Linkedin Pin it More ...

  15. Deep Question Answering for protein annotation.

    Science.gov (United States)

    Gobeill, Julien; Gaudinat, Arnaud; Pasche, Emilie; Vishnyakova, Dina; Gaudet, Pascale; Bairoch, Amos; Ruch, Patrick

    2015-01-01

    Biomedical professionals have access to a huge amount of literature, but when they use a search engine, they often have to deal with too many documents to efficiently find the appropriate information in a reasonable time. In this perspective, question-answering (QA) engines are designed to display answers, which were automatically extracted from the retrieved documents. Standard QA engines in literature process a user question, then retrieve relevant documents and finally extract some possible answers out of these documents using various named-entity recognition processes. In our study, we try to answer complex genomics questions, which can be adequately answered only using Gene Ontology (GO) concepts. Such complex answers cannot be found using state-of-the-art dictionary- and redundancy-based QA engines. We compare the effectiveness of two dictionary-based classifiers for extracting correct GO answers from a large set of 100 retrieved abstracts per question. In the same way, we also investigate the power of GOCat, a GO supervised classifier. GOCat exploits the GOA database to propose GO concepts that were annotated by curators for similar abstracts. This approach is called deep QA, as it adds an original classification step, and exploits curated biological data to infer answers, which are not explicitly mentioned in the retrieved documents. We show that for complex answers such as protein functional descriptions, the redundancy phenomenon has a limited effect. Similarly usual dictionary-based approaches are relatively ineffective. In contrast, we demonstrate how existing curated data, beyond information extraction, can be exploited by a supervised classifier, such as GOCat, to massively improve both the quantity and the quality of the answers with a +100% improvement for both recall and precision. Database URL: http://eagl.unige.ch/DeepQA4PA/. © The Author(s) 2015. Published by Oxford University Press.

  16. Verification, validation and application of NEPTUNE-CFD to two-phase Pressurized Thermal Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, N., E-mail: nicolas.merigoux@edf.fr [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C. [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Bellet, S., E-mail: serge.bellet@edf.fr [Electricité de France, Thermal & Nuclear Studies and Projects Division, 12-14 Avenue Dutriévoz, 69628 Villeurbanne (France)

    2017-02-15

    Nuclear Power Plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential Pressurized Thermal Shock (PTS) – characterized by a rapid cooling of the Reactor Pressure Vessel (RPV) wall. In this context, NEPTUNE-CFD is developed and used to model two-phase PTS in an industrial configuration, providing temperature and pressure fields required to assess the integrity of the RPV. Furthermore, when using CFD for nuclear safety demonstration purposes, EDF applies a methodology based on physical analysis, verification, validation and application to industrial scale (V&V), to demonstrate the quality of, and the confidence in results obtained. By following this methodology, each step must be proved to be consistent with the others, and with the final goal of the calculations. To this effect, a chart demonstrating how far the validation step of NEPTUNE-CFD is covering the PTS application will be drawn. A selection of the code verification and validation cases against different experiments will be described. For results consistency, a single and mature set of models – resulting from the knowledge acquired during the code development over the last decade – has been used. From these development and validation feedbacks, a methodology has been set up to perform industrial computations. Finally, the guidelines of this methodology based on NEPTUNE-CFD and SYRTHES coupling – to take into account the conjugate heat transfer between liquid and solid – will be presented. A short overview of the engineering approach will be given – starting from the meshing process, up to the results post-treatment and analysis.

  17. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  18. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  19. What Is the Correct Answer about The Dress' Colors? Investigating the Relation between Optimism, Previous Experience, and Answerability.

    Science.gov (United States)

    Karlsson, Bodil S A; Allwood, Carl Martin

    2016-01-01

    The Dress photograph, first displayed on the internet in 2015, revealed stunning individual differences in color perception. The aim of this study was to investigate if lay-persons believed that the question about The Dress colors was answerable. Past research has found that optimism is related to judgments of how answerable knowledge questions with controversial answers are (Karlsson et al., 2016). Furthermore, familiarity with a question can create a feeling of knowing the answer (Reder and Ritter, 1992). Building on these findings, 186 participants saw the photo of The Dress and were asked about the correct answer to the question about The Dress' colors (" blue and black," "white and gold," "other, namely…," or "there is no correct answer" ). Choice of the alternative "there is no correct answer" was interpreted as believing the question was not answerable. This answer was chosen more often by optimists and by people who reported they had not seen The Dress before. We also found that among participants who had seen The Dress photo before, 19%, perceived The Dress as "white and gold" but believed that the correct answer was "blue and black ." This, in analogy to previous findings about non-believed memories (Scoboria and Pascal, 2016), shows that people sometimes do not believe the colors they have perceived are correct. Our results suggest that individual differences related to optimism and previous experience may contribute to if the judgment of the individual perception of a photograph is enough to serve as a decision basis for valid conclusions about colors. Further research about color judgments under ambiguous circumstances could benefit from separating individual perceptual experience from beliefs about the correct answer to the color question. Including the option "there is no correct answer " may also be beneficial.

  20. Dynamics of cylindrical converging shock waves interacting with aerodynamic obstacle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Vignati, F.; Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156 Milano (Italy)

    2015-06-15

    Cylindrical converging shock waves interacting with an array of aerodynamic obstacles are investigated numerically for diverse shock strengths and for different obstacle configurations in air in standard conditions. The considered number of obstacles N is 4, 6, 8, 16, and 24. Obstacles are lenticular airfoils with thickness-to-chord ratios t/c of 0.07, 0.14, and 0.21. The distances of the airfoil leading edge from the shock focus point (r{sub LE})/(r{sub LE}{sup ref}) are 1, 2, and 2.5, where r{sub LE}{sup ref}=7 is the dimensionless reference distance from the origin. Considered impinging shock Mach numbers M{sub s} are 2.2, 2.7, and 3.2 at the reference distance from the origin. The reference experimental configuration (N=8,t/c =0.14,r{sub LE}=7,M{sub s}=2.7) was proposed by Kjellander et al. [“Thermal radiation from a converging shock implosion,” Phys. Fluids 22, 046102 (2010)]. Numerical results compare fairly well to available one-dimensional models for shock propagation and to available experimental results in the reference configuration. Local reflection types are in good agreement with the classical criteria for planar shock waves. The main shock reshaping patterns are identified and their dependence on the shock strength and obstacle configuration is exposed. In particular, different shock patterns are observed after the leading edge reflection, which results in polygonal shock wave with N, 2N, 3N, and 4N sides. The largest temperature peak at the origin is obtained for the 8- and the 16-obstacle configurations and for the smallest thickness to length ratio, 0.07, located at distance from the origin of 2r{sub LE}{sup ref}. In terms of compression efficiency at the origin, the 16-obstacle configuration is found to perform slightly better than the reference 8-obstacle configuration—with an efficiency increase of about 2%-3%, which is well within the model accuracy—thus confirming the goodness of the obstacle arrangement proposed by Kjellander and

  1. Dynamics of cylindrical converging shock waves interacting with aerodynamic obstacle arrays

    International Nuclear Information System (INIS)

    Vignati, F.; Guardone, A.

    2015-01-01

    Cylindrical converging shock waves interacting with an array of aerodynamic obstacles are investigated numerically for diverse shock strengths and for different obstacle configurations in air in standard conditions. The considered number of obstacles N is 4, 6, 8, 16, and 24. Obstacles are lenticular airfoils with thickness-to-chord ratios t/c of 0.07, 0.14, and 0.21. The distances of the airfoil leading edge from the shock focus point (r LE )/(r LE ref ) are 1, 2, and 2.5, where r LE ref =7 is the dimensionless reference distance from the origin. Considered impinging shock Mach numbers M s are 2.2, 2.7, and 3.2 at the reference distance from the origin. The reference experimental configuration (N=8,t/c =0.14,r LE =7,M s =2.7) was proposed by Kjellander et al. [“Thermal radiation from a converging shock implosion,” Phys. Fluids 22, 046102 (2010)]. Numerical results compare fairly well to available one-dimensional models for shock propagation and to available experimental results in the reference configuration. Local reflection types are in good agreement with the classical criteria for planar shock waves. The main shock reshaping patterns are identified and their dependence on the shock strength and obstacle configuration is exposed. In particular, different shock patterns are observed after the leading edge reflection, which results in polygonal shock wave with N, 2N, 3N, and 4N sides. The largest temperature peak at the origin is obtained for the 8- and the 16-obstacle configurations and for the smallest thickness to length ratio, 0.07, located at distance from the origin of 2r LE ref . In terms of compression efficiency at the origin, the 16-obstacle configuration is found to perform slightly better than the reference 8-obstacle configuration—with an efficiency increase of about 2%-3%, which is well within the model accuracy—thus confirming the goodness of the obstacle arrangement proposed by Kjellander and collaborators

  2. Acoustic emission from thermal-gradient cracks in UO2

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Kupperman, D.S.; Wrona, B.J.

    1975-01-01

    A feasibility study has been conducted to evaluate the potential use of acoustic emission to monitor thermal-shock damage in direct electrical heating of UO 2 pellets. In the apparatus used for the present tests, two acoustic-emission sensors were placed on extensions of the upper and lower electrical feedthroughs. Commercially available equipment was used to accumulate acoustic-emission data. The accumulation of events displayed on a cathode-ray-tube screen indicates the total number of acoustic-emission events at a particular location within the pellet stack. These tests have indicated that acoustic emission can be used to monitor thermal-shock damage in UO 2 pellets subjected to direct-electrical heating. 8 references

  3. Thermal spray deposition and evaluation of low-Z coatings

    International Nuclear Information System (INIS)

    Seals, R.D.; Swindeman, C.J.; White, R.L.

    1996-01-01

    Thermally sprayed low-Z coatings of B 4 C on Al substrates were investigated as candidate materials for first-wall reactor protective surfaces. Comparisons were made to thermally sprayed coatings of B, MgAl 2 O 4 , Al 2 O 3 , and composites. Graded bond layers were applied to mitigate coefficient of thermal expansion mismatch. Microstructures, thermal diffusivity before and after thermal shock loading, steel ball impact resistance, CO 2 pellet cleaning and erosion tolerance, phase content, stoichiometry by Rutherford backscattering spectroscopy, and relative tensile strengths were measured

  4. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  5. On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster

    Directory of Open Access Journals (Sweden)

    H. Kucharek

    2004-07-01

    Full Text Available Two distinct populations of reflected and accelerated ions are known to originate from quasi-perpendicular shocks, gyrating ions and reflected ion beams. Recent observations under such bow shock conditions with Cluster have shown strong evidence that both particle distributions appear to emerge from the same reflection process. In this paper the basic production mechanism of field-aligned beams has been investigated by using CLUSTER multi-spacecraft measurements. We have analyzed several quasi-perpendicular shocks with the Cluster Ion Spectrometry experiment (CIS and followed the spatial and temporal evolution of the reflected and transmitted ion populations across the shock. These observations show that the field-aligned beams most likely result from effective scattering in pitch angle during reflection in the shock ramp. Investigating a low Mach number shock, leakage of a fraction of the thermalized ion distribution in the downstream region does not appear to be the source as the volume in phase space occupied by beam ions is empty downstream of the shock ramp.

  6. Finding Question-Answer Pairs from Online Forums

    DEFF Research Database (Denmark)

    Cong, Gao; Wang, Long; Lin, Chin-Yew

    2008-01-01

    Online forums contain a huge amount of valuable user generated content. In this paper we address the problem of extracting question-answer pairs from forums. Question-answer pairs extracted from forums can be used to help Question Answering services (e.g. Yahoo! Answers) among other applications...

  7. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  8. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  9. Chemical-Petrographic Types and Shock Metamorphism of 184 Grove Mountains Equilibrated Ordinary Chondrites

    Directory of Open Access Journals (Sweden)

    Deqiu Dai

    2018-06-01

    Full Text Available We reported the petrography and mineral chemistry of 184 equilibrated ordinary chondrites collected from Grove Mountains, Antarctica. The chemical-petrographic types and shock metamorphism degrees of these chondrites were assigned. They were classified into 46 H groups (22 H4, 20 H5, and four H6, 133 L groups (eight L4, 75 L5, and 50 L6, and five LL groups (four LL4 and one LL5. Some of these chondrites could be paired; however, both H and L group meteorites were affected. Further studies such as terrestrial ages and thermal luminescence are required in order to confirm the pairings. The relative abundances of H, L, and LL are different in Grove Mountain meteorites, when compared to those in Transcontinental Ridge meteorites. Based on the shock effects, the shock metamorphism degrees of these chondrites were assigned. Compared to previous studies, the heavily shocked samples of S4 and S5 have a higher fraction (59 out of 184 in Grove Mountain ordinary chondrites. The L group (54 out of 59 is the dominant chemical group in the heavily shocked chondrites, except for five meteorites which belong to the H group. The shock metamorphism degrees of the H and L groups are distinct, which may indicate different surface properties in their parent bodies. In addition, the petrologic types and shock degrees are probably closely related, with the most heavily shocked chondrites observed in types 5 and 6.

  10. Modeling and evaluation of HE driven shock effects in copper with the MTS model

    International Nuclear Information System (INIS)

    Murphy, M.J.; Lassila, D.F.

    1997-01-01

    Many experimental studies have investigated the effect of shock pressure on the post-shock mechanical properties of OFHC copper. These studies have shown that significant hardening occurs during shock loading due to dislocation processes and twinning. It has been demonstrated that when an appropriate initial value of the Mechanical Threshold Stress (MTS) is specified, the post-shock flow stress of OFE copper is well described by relationships derived independently for unshocked materials. In this study we consider the evolution of the MTS during HE driven shock loading processes and the effect on the subsequent flow stress of the copper. An increased post shock flow stress results in a higher material temperature due to an increase in the plastic work. An increase in temperature leads to thermal softening which reduces the flow stress. These coupled effects will determine if there is melting in a shaped charge jet or a necking instability in an EFP Ww. 'Me critical factor is the evolution path followed combined with the 'current' temperature, plastic strain, and strain rate. Preliminary studies indicate that in simulations of HE driven shock with very high resolution zoning, the MTS saturates because of the rate dependence in the evolution law. On going studies are addressing this and other issues with the goal of developing a version of the MT'S model that treats HE driven, shock loading, temperature, strain, and rate effects apriori

  11. 31 CFR 10.64 - Answer; default.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Answer; default. 10.64 Section 10.64... SERVICE Rules Applicable to Disciplinary Proceedings § 10.64 Answer; default. (a) Filing. The respondent's... need be adduced at a hearing. (d) Default. Failure to file an answer within the time prescribed (or...

  12. Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra

    Science.gov (United States)

    Botteon, A.; Gastaldello, F.; Brunetti, G.

    2018-06-01

    A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have Mdiverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.

  13. The fate or organic matter during planetary accretion - Preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite

    Science.gov (United States)

    Tingle, Tracy N.; Tyburczy, James A.; Ahrens, Thomas J.; Becker, Christopher H.

    1992-01-01

    The fate of organic matter in carbonaceous meteorites during hypervelocity (1-2 km/sec) impacts is investigated using results of experiments in which three samples of the Murchison (CM2) carbonaceous chondrite were shocked to 19, 20, and 36 GPa and analyzed by highly sensitive thermal-desorption photoionization mass spectrometry (SALI). The thermal-desorptive SALI mass spectra of unshocked CM2 material revealed presence of indigenous aliphatic, aromatic, sulfur, and organosulfur compounds, and samples shocked to about 20 GPa showed little or no loss of organic matter. On the other hand, samples shocked to 36 GPa exhibited about 70 percent loss of organic material and a lower alkene/alkane ratio than did the starting material. The results suggest that it is unlikely that the indigenous organic matter in carbonaceous chondritelike planetesimals could have survived the impact on the earth in the later stages of earth's accretion.

  14. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  15. Shock wave and modeling study of the thermal decomposition reactions of pentafluoroethane and 2-H-heptafluoropropane.

    Science.gov (United States)

    Cobos, C J; Sölter, L; Tellbach, E; Troe, J

    2014-06-07

    The thermal decomposition reactions of CF3CF2H and CF3CFHCF3 have been studied in shock waves by monitoring the appearance of CF2 radicals. Temperatures in the range 1400-2000 K and Ar bath gas concentrations in the range (2-10) × 10(-5) mol cm(-3) were employed. It is shown that the reactions are initiated by C-C bond fission and not by HF elimination. Differing conclusions in the literature about the primary decomposition products, such as deduced from experiments at very low pressures, are attributed to unimolecular falloff effects. By increasing the initial reactant concentrations in Ar from 60 to 1000 ppm, a retardation of CF2 formation was observed while the final CF2 yields remained close to two CF2 per C2F5H or three CF2 per C3F7H decomposed. This is explained by secondary bimolecular reactions which lead to comparably stable transient species like CF3H, releasing CF2 at a slower rate. Quantum-chemical calculations and kinetic modeling help to identify the reaction pathways and provide estimates of rate constants for a series of primary and secondary reactions in the decomposition mechanism.

  16. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  17. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  18. Shock wave plasticity in Mo at 293K and 1673K

    International Nuclear Information System (INIS)

    Tonks, D.L.

    1996-01-01

    The shock wave plasticity of Mo is extracted from two VISAR wave profiles; of about 110 kbar strength at 293 K and of about 120 kbar strength at 1673 K. The Wallace weak shock analysis is used to obtain the plastic strain and deviatoric stress, and the normal stress and volumetric strain, through the shock rise from the velocity profile data. The Wallace analysis uses the steady wave assumption for the plastic portion of the shock rise, a plausible evolution for the precursor portion, a thermoelastic model, and the mechanical equations of motion. Comparison of the high and low temperature results is of interest in assessing the mechanisms of plastic flow. In the results, the (von Mises equivalent) peak deviatoric stresses are 12.8 kbar and 20.3 kbar, for the hot and cold Mo, respectively, while the peak plastic strain rate of the hot Mo is about 2.6 times that of the cold Mo. These values rule out thermal activation. In addition, they are not consistent with a simple phonon viscosity linear in the temperature. Additional effects are needed to explain the results, e.g. evolution of the mobile dislocation density. copyright 1996 American Institute of Physics

  19. Prediction of cleavage crack propagation and arrest in a nuclear pressure vessel steel (16MND5) under thermal shock

    International Nuclear Information System (INIS)

    Yang, Xiaoyu

    2015-01-01

    the critical stress was developed. The results of this analytical model is in good agreement with the empirical criterion identified. In order to test the validity of the identified criterion, the prediction of the crack propagation and arrest by the criterion was first performed for isothermal tests. It was performed both on CT25 specimens (crack was solicited in mode I) and on ring specimens in mixed mode loading which were carried out at three different temperatures. The numerical results of prediction were in good agreement with experiments. They showed the validity of the criterion for experiments under isothermal loading for two different specimen geometries. In order to test the validity of criterion for the situation of thermal shock, experiments were carried out on ring specimens. At first, one ring specimen was cooled down to -150 C, and then hot water (∼90 C) was injected through the inner side of the ring specimen. At the same time of thermal shock, this specimen was submitted to a mechanical compressive loading (-750 kN). The prediction of crack propagation and arrest by the criterion for this situation was calculated in both 2D and 3D. The predicted results were in good agreement with experiments for both crack speed and crack length. This confirmed that the criterion is relevant to predict the crack propagation and arrest for thermal shock. In parallel, some experiments were performed on extended CT25 specimens (same height but double the width of the CT25 specimen). The crack path on this kind of specimen was curved. A statistical effect by a random selection in the propagation direction was introduced to take into account the instability during the crack propagation. The numerical results correctly reproduce the curvature and the dispersion of the crack paths. (author) [fr

  20. What Is the Correct Answer about The Dress’ Colors? Investigating the Relation between Optimism, Previous Experience, and Answerability

    OpenAIRE

    Karlsson, Bodil S. A.; Allwood, Carl Martin

    2016-01-01

    The Dress photograph, first displayed on the internet in 2015, revealed stunning individual differences in color perception. The aim of this study was to investigate if lay-persons believed that the question about The Dress colors was answerable. Past research has found that optimism is related to judgments of how answerable knowledge questions with controversial answers are (Karlsson et al., 2016). Furthermore, familiarity with a question can create a feeling of knowing the answer (Reder and...

  1. Thermal Shock In Periodic Edge-Cracked Plate Supported By Elastic Foundation

    OpenAIRE

    Abd El-Fattah A. Rizk

    2012-01-01

    The study of the transient thermal stress problem for a periodic edge cracks in an elastic plate on an elastic foundations is investigated. This study may also be applied for circumferentially periodic cracked hollow cylinder under transient thermal stresses. Based on previous studies, the cylindrical shell may be modeled by a plate on an elastic foundation. The thermal stresses are generated due to sudden convective cooling on the boundary containing the edge cracks while the other boundary ...

  2. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  3. Technology of Double Thermal Insulation for the Repair and Energy Optimization of Existing Thermal Insulation Composite Systems

    Science.gov (United States)

    Belániová, Barbora; Antošová, Naďa

    2017-06-01

    The theme of improvement thermal proprieties of external cladding according to the New EU Directive is still a hot topic, which needs to be answered necessarily till December 2020. Maintenance and repair of existing ETICS became to also an actual open theme in search solutions for existing constructions. The aim of the research in this review is to analyze influence of layers the alternative thermal materials in technology "double thermal insulation". Humidity and temperature conditions will be further examined in connection with the development and colonization of microorganisms on surface construction.

  4. Alfven shock trains

    International Nuclear Information System (INIS)

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  5. Numerical simulation of shock absorbers heat load for semi-active vehicle suspension system

    Directory of Open Access Journals (Sweden)

    Demić Miroslav D.

    2016-01-01

    Full Text Available Dynamic simulation, based on modelling, has a significant role during to the process of vehicle development. It is especially important in the first design stages, when relevant parameters are to be defined. Shock absorber, as an executive part of a semi-active suspension system, is exposed to thermal loads which can lead to its damage and degradation of characteristics. Therefore, this paper attempts to analyze a conversion of mechanical work into heat energy by use of a method of dynamic simulation. The issue of heat dissipation from the shock absorber has not been taken into consideration.

  6. Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2015-11-01

    Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  7. Spherical strong-shock generation for shock-ignition inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W.; Seka, W.; Lafon, M.; Anderson, K. S.; Hohenberger, M.; Marshall, F. J.; Michel, D. T.; Solodov, A. A.; Stoeckl, C.; Edgell, D. H.; Yaakobi, B.; Shvydky, A. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Nora, R.; Betti, R. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, Rochester, New York 14623 (United States); Casner, A.; Reverdin, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Ribeyre, X.; Vallet, A. [Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107 F-33400 Talence (France); Peebles, J.; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); and others

    2015-05-15

    Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The results are relevant to the validation of the shock-ignition scheme and to the development of an OMEGA experimental platform to study material properties at Gbar pressures. The experiments investigate the strength of the ablation pressure and the hot-electron production at incident laser intensities of ∼2 to 6 × 10{sup 15 }W/cm{sup 2} and demonstrate ablation pressures exceeding 300 Mbar, which is crucial to developing a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer the ablation and shock pressures. Laser–plasma instabilities produce hot-electrons with a moderate temperature (<100 keV). The instantaneous conversion efficiencies of laser power into hot-electron power reached up to ∼15% in the intensity spike. The large amount of hot electrons is correlated with an earlier x-ray flash and a strong increase in its magnitude. This suggests that hot electrons contribute to the augmentation of the shock strength.

  8. Is shock index associated with outcome in children with sepsis/septic shock?*.

    Science.gov (United States)

    Yasaka, Yuki; Khemani, Robinder G; Markovitz, Barry P

    2013-10-01

    To investigate the association between PICU shock index (the ratio of heart rate to systolic blood pressure) and PICU mortality in children with sepsis/septic shock. To explore cutoff values for shock index for ICU mortality, how change in shock index over the first 6 hours of ICU admission is associated with outcome, and how the use of vasoactive therapy may affect shock index and its association with outcome. Retrospective cohort. Single-center tertiary PICU. Five hundred forty-four children with the diagnosis of sepsis/septic shock. None. From January 2003 to December 2009, 544 children met International Pediatric Sepsis Consensus Conference of 2005 criteria for sepsis/septic shock. Overall mortality was 23.7%. Among all patients, hourly shock index was associated with mortality: odds ratio of ICU mortality at 0 hour, 1.08, 95% CI (1.04-1.12); odds ratio at 1 hour, 1.09 (1.04-1.13); odds ratio at 2 hours, 1.09 (1.05-1.13); and odds ratio at 6 hours, 1.11 (1.06-1.15). When stratified by age, early shock index was associated with mortality only in children 1-3 and more than or equal to 12 years old. Area under the receiver operating characteristic curve in age 1-3 and more than or equal to 12 years old for shock index at admission was 0.69 (95% CI, 0.58-0.80) and 0.62 (95% CI, 0.52-0.72) respectively, indicating a fair predictive marker. Although higher shock index was associated with increased risk of mortality, there was no particular cutoff value with adequate positive or negative likelihood ratios to identify mortality in any age group of children. The improvement of shock index in the first 6 hours of ICU admission was not associated with outcome when analyzed in all patients. However, among patients whose shock index were above the 50th percentile at ICU admission for each age group, improvement of shock index was associated with lower ICU mortality in children between 1-3 and more than or equal to 12 years old (p = 0.02 and p = 0.03, respectively). When

  9. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  10. Thermal effects on the mechanical properties of SiC fiber reinforced reaction bonded silicon nitride matrix (SiC/RBSN) composites

    Science.gov (United States)

    Bhatt, R. T.; Phillips, R. E.

    1988-01-01

    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  11. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Directory of Open Access Journals (Sweden)

    N. Simos

    2016-11-01

    Full Text Available A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5×10^{20}  p/cm^{2}. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (∼5×10^{18}

  12. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  13. Development of laser-induced grating spectroscopy for underwater temperature measurement in shock wave focusing regions

    Science.gov (United States)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2004-02-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gas-dynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm 3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results are used to empirically establish the equation of states of water, gelatin or agar cell which will work as alternatives of human tissues.

  14. EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS

    International Nuclear Information System (INIS)

    Paul, S.; Mannheim, K.; Iapichino, L.; Miniati, F.; Bagchi, J.

    2011-01-01

    We performed a set of cosmological simulations of major mergers in galaxy clusters, in order to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations have been performed with the grid-based, adaptive mesh refinement hydrodynamical code Enzo, using a refinement criterion especially designed for refining turbulent flows in the vicinity of shocks. When a major merger event occurs, a substantial amount of turbulence energy is injected in the ICM of the newly formed cluster. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is of the order of 300 kpc h -1 , and the turbulent velocity dispersion in this region is larger than 100 km s -1 . We performed a scaling analysis of the turbulence energy within our cluster sample. The best fit for the scaling of the turbulence energy with the cluster mass is consistent with M 5/3 , which is also the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. As for the turbulence in the cluster core, we found that within 2 Gyr after the major merger (the timescale for the shock propagation in the ICM), the ratio of the turbulent to total pressure is larger than 10%, and after about 4 Gyr it is still larger than 5%, a typical value for nearly relaxed clusters. Turbulence at the cluster center is thus sustained for several gigayears, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations and the

  15. Study of the thermal and mechanical sensitivity of bitumen/oxygen salt mixtures

    International Nuclear Information System (INIS)

    Backof, E.; Diepold, W.

    1975-07-01

    The safe handling characteristics of radioactive wastes containing nitrate salts to be fixed in bitumen for ultimate storage in salt mines according to a process developed at the Karlsruhe Nuclear Research Center have been examined with respect to their combustibility and shock sensitivity in tests of inactive bitumen/salt mixtures. Samples containing 40% bitumen and 60% nitrates of alkali, alkaline earth, and heavy metals, organic acids and rare earths were used to determine the thermal sensitivity (ignition temperature, duration of burning, heating under contained conditions), the mechanical sensitivity (shock sensitivity) and, in order to simulate major shock stresses, the sensitivity against detonation stresses. A few basic experiments were also performed on some beta-irradiated inactive samples. It appeared that although the addition of nitrates increased the combustibility of bitumen, neither the high thermal nor the detonation stresses resulted in any explosion-type reaction. (orig.) [de

  16. QUESTION ANSWERING SYSTEM DAN PENERAPANNYA PADA ALKITAB

    Directory of Open Access Journals (Sweden)

    Gunawan Gunawan

    2006-01-01

    Full Text Available Question answering system is a system that allows user to state his or her information need in the form of natural language question, and return short text excerpts or even phrases as an answer. The availability of a wide and various information source and improvements in the techniques of natural language processing, information extraction (wrapper, and information retrieval give a big effect on the development of question answering system, from just answering questions in a specific domain by consulting to structured information source such as database, and like in this research, answering any questions based on information stored in an unstructured text collection. A general architecture of question answering system based on text consists of six processing stages, i.e. question analysis, document collection preprocessing, candidate document selection, candidate document analysis, answer extraction, and response generation. Application of question answering system like AnswerBus, Mulder, and Webclopedia that are developed with its own characteristics has similar processing steps as in the general architecture. Answers returned by a question answering system need to be evaluated for performance measure. This research completed with a simple question answering system application using english Bible in World English Bible (WEB version as the source of information to answer some questions. Because specific domain is selected: Bible, questions that can be posed by user could ask about information in the Bible itself only. Question is also limited to three types of answers that can be supported by the application: person (who, location (where, and date (when. Abstract in Bahasa Indonesia : Question answering system (QA system adalah sistem yang mengijinkan user menyatakan kebutuhan informasinya dalam bentuk natural language question (pertanyaan dalam bahasa alami, dan mengembalikan kutipan teks singkat atau bahkan frase sebagai jawaban. Ketersediaan

  17. Structural integrity assessment of the reactor pressure vessel under the pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Chen, Mingya; Lu, Feng; Wang, Rongshan; Ren, Ai

    2014-01-01

    Highlights: • The regulation and the code are proved to be conservative in the integrity assessment. • This study is helpful to understand the complex influence of the parameters. • The most dangerous case is given for the reference transient. - Abstract: Fracture mechanics analysis of pressurized thermal shock (PTS) is the key element of the integrity evaluation of the nuclear reactor pressure vessel (RPV). While the regulation of 10 CFR 50.61 and the ASME Code provide the guidance for the structural integrity, the guidance has been prepared under conservative assumptions. In this paper, the effects of conservative assumptions involved in the PTS analysis were investigated. The influence of different parameters, such as crack size, cladding effect and neutron fluence, were reviewed based on 3-D finite element analyses. Also, the sensitivity study of elastic–plastic approach, crack type and cladding thickness were reviewed. It was shown that crack depth, crack type, plastic effect and cladding thickness change the safety margin (SM) significantly, and the SM at the deepest point of the crack is not always smaller than that of the surface point, indicating that both the deepest and surface points of the crack front should be considered. For the reference transient, deeper cracks always give more conservative prediction. So compared to the prescribed analyses of a set of postulated defects with varying depths in the ASME code, it only needs to assess the crack with maximum depth in the code for the reference transient according to the conclusions

  18. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading

    International Nuclear Information System (INIS)

    Hai-Feng, Song; Hai-Feng, Liu; Guang-Cai, Zhang; Yan-Hong, Zhao

    2009-01-01

    We undertake a numerical simulation of shock experiments on tin reported in the literature, by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β, γ and liquid phases. In the MSG model, the Bauschinger effect is considered to better describe the unloading behavior. The phase diagram and Hugoniot of tin are calculated by MEOS, and they agree well with the experimental data. Combined with the MEOS and MSG models, hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment. Moreover, by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin, we further discuss the complex behavior of tin under shock-wave loading. (condensed matter: structure, mechanical and thermal properties)

  19. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  20. Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.

    Directory of Open Access Journals (Sweden)

    Juan Diego Gaitán-Espitia

    Full Text Available The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC, in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits, influencing the biogeographic patterns of species' distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation. We tested two competing hypotheses regarding thermal adaptation (the "hotter is better" and the generalist-specialist trade-offs. Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints ("hotter is better" and thermal adaptations to their local environments (generalist-specialist trade-offs. This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.

  1. Answer Sets in a Fuzzy Equilibrium Logic

    Science.gov (United States)

    Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk; de Cock, Martine

    Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.

  2. Flexible Query Answering Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 10th International Conference on Flexible Query Answering Systems, FQAS 2013, held in Granada, Spain, in September 2013. The 59 full papers included in this volume were carefully reviewed and selected from numerous submissions. The papers...... are organized in a general session train and a parallel special session track. The general session train covers the following topics: querying-answering systems; semantic technology; patterns and classification; personalization and recommender systems; searching and ranking; and Web and human...

  3. Shock Producers and Shock Absorbers in the Crisis

    OpenAIRE

    Sinn, Hans-Werner

    2009-01-01

    It is not surprising that the U.S. has been by far the world’s largest shock producer in this crisis. The big shock absorbers on the other hand were Japan, Russia and Germany, whose exports shrank more than their imports.

  4. Parental Effect of Long Acclimatization on Thermal Tolerance of Juvenile Sea Cucumber Apostichopus japonicus.

    Directory of Open Access Journals (Sweden)

    Qing-Lin Wang

    Full Text Available To evaluate the thermal resistance of marine invertebrates to elevated temperatures under scenarios of future climate change, it is crucial to understand parental effect of long acclimatization on thermal tolerance of offspring. To test whether there is parental effect of long acclimatization, adult sea cucumbers (Apostichopus japonicus from the same broodstock were transplanted southward and acclimatized at high temperature in field mesocosms. Four groups of juvenile sea cucumbers whose parents experienced different durations of high temperature acclimatization were established. Upper thermal limits, oxygen consumption and levels of heat shock protein mRNA of juveniles was determined to compare thermal tolerance of individuals from different groups. Juvenile sea cucumbers whose parents experienced high temperature could acquire high thermal resistance. With the increase of parental exposure duration to high temperature, offspring became less sensitive to high temperature, as indicated by higher upper thermal limits (LT50, less seasonal variations of oxygen consumption, and stable oxygen consumption rates between chronic and acute thermal stress. The relatively high levels of constitutive expression of heat-shock proteins should contribute to the high thermal tolerance. Together, these results indicated that the existence of a parental effect of long acclimatization would increase thermal tolerance of juveniles and change the thermal sensitivity of sea cucumber to future climate change.

  5. Mobile Information Access with Spoken Query Answering

    DEFF Research Database (Denmark)

    Brøndsted, Tom; Larsen, Henrik Legind; Larsen, Lars Bo

    2006-01-01

    window focused over the part which most likely contains an answer to the query. The two systems are integrated into a full spoken query answering system. The prototype can answer queries and questions within the chosen football (soccer) test domain, but the system has the flexibility for being ported...

  6. Question Answering for Dutch : Simple does it

    NARCIS (Netherlands)

    Hoekstra, A.H.; Hiemstra, Djoerd; van der Vet, P.E.; Huibers, Theo W.C.; Schobbens, Pierre-Yves; Vanhoof, Wim; Schwanen, Gabriel

    2006-01-01

    When people pose questions in natural language to search for information on the web, the role of question answering (QA) systems becomes important. In this paper the QAsystem simpleQA, capable of answering Dutch questions on which the answer is a person or a location, is described. The system's

  7. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef.

    Science.gov (United States)

    Juneja, V K; Klein, P G; Marmer, B S

    1998-04-01

    Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 degrees C for 15-30 min, and then heated to a final internal temperature of 60 degrees C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 degrees C increased 1.56- and 1.50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 degrees C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held to 15 or 28 degrees C. A 25 min heat shock at 46 degrees C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.

  8. Shock equation of state of 6LiH to 1.1 TPa

    Science.gov (United States)

    Lazicki, A.; London, R. A.; Coppari, F.; Erskine, D.; Whitley, H. D.; Caspersen, K. J.; Fratanduono, D. E.; Morales, M. A.; Celliers, P. M.; Eggert, J. H.; Millot, M.; Swift, D. C.; Collins, G. W.; Kucheyev, S. O.; Castor, J. I.; Nilsen, J.

    2017-10-01

    Using laser-generated shock waves, we have measured pressure, density, and temperature of LiH on the principal Hugoniot between 260 and 1100 GPa (2.6-11 Mbar) and on a second-shock Hugoniot up to 1400 GPa to near fivefold compression, extending the maximum pressure reached in non-nuclear experiments by a factor of two. We observe the onset of metal-like reflectivity consistent with temperature-induced ionization of the Li 2s electron, and no sign of additional changes in ionization up to the maximum pressure. Our measurements are in good agreement with gas gun, Z-machine, and underground test data and are accurately described by quantum molecular dynamics simulations. The results confirm the validity of equation of state models built on an average-atom description of the electron-thermal contribution to the free energy and a density-dependent Grüneisen parameter to describe shock response of LiH over this pressure range.

  9. Time-dependent bow shocks and the condensation structure of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Raga, A.C.; Bohm, K.H.

    1987-01-01

    Some Herbig-Haro objects show a structure which appears to look like a bow shock, but also show a number of condensations superposed on this bow-shaped structure. In the case of HH 1 and HH 2 considerably different proper motions have been measured for the individual condensations. It is, however, very hard to explain why the condensations remain so close to each other if they are indeed separate entities. In this paper it is shown that an interpretation of the whole Herbig-Haro object as a single, time-dependent bow shock provides a natural explanation for the occurrence of condensations (which in numerical calculations appear to be associated with thermal instabilities in the postshock flow) with different proper motions. To this effect, time-dependent, axisymmetric, nonadiabatic bow shock models have been developed from which predictions were obtained for spatially resolved H-alpha intensity maps, and then these predictions are compared qualitatively with observations of a few Herbig-Haro objects. 57 references

  10. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  11. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  12. Characteristics of six small heat shock protein genes from Bactrocera dorsalis: Diverse expression under conditions of thermal stress and normal growth.

    Science.gov (United States)

    Dou, Wei; Tian, Yi; Liu, Hong; Shi, Yan; Smagghe, Guy; Wang, Jin-Jun

    2017-11-01

    To explore the functions of small heat shock proteins (sHsps) in relation to thermal stress and development in Bactrocera dorsalis (Hendel), one of the most economically important pest species attacking a wide range of fruits and vegetables, six full-length cDNAs of sHsp genes (BdHsp17.7, 18.4, 20.4, 20.6, 21.6 and 23.8) were cloned, and the expression patterns in different developmental stages and tissues, as well as in response to both thermal and 20-hydroxyecdysone (20E) exposures, were examined using real time quantitative PCR. The open reading frames (ORFs) of six sHsps are 453, 489, 537, 543, 567 and 630bp in length, encoding proteins with molecular weights of 17.7, 18.4, 20.4, 20.6, 21.6 and 23.8kDa, respectively. BdHsp18.4 and BdHsp20.4 maintained lower expression levels in both eggs and larvae, whereas remarkably up-regulated after the larval-pupal transformation, suggesting that these two sHsps may be involved in metamorphosis. Significant tissue specificity exists among sHsps: the highest expression of BdHsp20.6 and BdHsp23.8 in the Malpighian tubules and ovary, respectively, versus a peak in the fat body for others. BdHsp20.4 and BdHsp20.6 were significantly up-regulated by thermal stress. In contrast, BdHsp18.4 and BdHsp23.8 reacted only to heat stress. BdHsp17.7 and BdHsp21.6 were insensitive to both heat and cold stresses. The degree of sHsps response depends on intensity of 20E treatment, i.e., dose and time. These results strongly suggest functional differentiation within the sHsp subfamily in B. dorsalis. The physiological function of sHsp members under thermal stress and normal growth remains the subjects of further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Relationship between mechanical characteristics and thermal shock stability of refractories

    International Nuclear Information System (INIS)

    Volkov-Husovic, T.; Raic, K.

    2003-01-01

    Thermal stability of the refractory material with the content of 60 % Al 2 O 3 was investigated. Water quench test (JUS.B.D8.319) was applied as experimental method for thermal stability testing. Damage of porous materials is commonly related to a modification of strength that is mostly a reduction. This is linked with characteristics related to pore space. Mechanical characteristics are considered such as compressive strength, dynamic modulus of elasticity and resistance parameters resulting from resonance frequency measurements, as well as ultrasonic velocity. (Original)

  14. Analytical expression of the thermal stresses in a vessel or pipe with cladding submitted to any thermal transient

    International Nuclear Information System (INIS)

    Marie, Stephane

    2004-01-01

    This article proposes an extension of the known analytical solution for the temperature and stresses in the event of a linear shock in a pipe containing a fluid. The intention is to propose a simple solution for any variation of the temperature in the fluid and to cover the influence of cladding on the inner surface. The approach consists of breaking down the fluid temperature variation into a succession of linear shocks. Using the linear shock resolution approach, it is possible to propose a simple analytical solution, using the same constant (Biot number B, etc.). The proposed solution is compared with finite element analysis: the solution is found to be reliable for any thermal shock or cyclic variation of fluid temperature, and can even replicate the transient regime. The following stage has made it possible to account for the effect of cladding on the inner surface of the piping on temperature distribution. The second part gives analytical expressions for the elastic stresses due to the temperature field alone

  15. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  16. Effects of shock on hypersonic boundary layer stability

    Science.gov (United States)

    Pinna, F.; Rambaud, P.

    2013-06-01

    The design of hypersonic vehicles requires the estimate of the laminar to turbulent transition location for an accurate sizing of the thermal protection system. Linear stability theory is a fast scientific way to study the problem. Recent improvements in computational capabilities allow computing the flow around a full vehicle instead of using only simplified boundary layer equations. In this paper, the effect of the shock is studied on a mean flow provided by steady Computational Fluid Dynamics (CFD) computations and simplified boundary layer calculations.

  17. Evolution of supernova remnants. III. Thermal waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1975-01-01

    The effect of heat conduction on the evolution of supernova remnants is investigated. A thermal wave, or electron conduction front, can travel more rapidly than a shock wave during the first thousand years of the remnant's evolution. A self-similar solution describing this phase has been found by Barenblatt. Numerical computations verify the solution and give the evolution past the thermal wave phase. While shell formation is not impeded, the interior density and temperature profiles are smoothed by the action of conduction

  18. Mathematics year 5 answers

    CERN Document Server

    Alexander, Serena; Poggo, Tammy

    2014-01-01

    Features the complete set of answers to the exercises in Mathematics Year 5, to save you time marking work and enable you to identify areas requiring further attention. The book includes diagrams and workings where necessary, to ensure pupils understand how to present their answers. Also available from Galore Park www.galorepark.co.uk :. - Mathematics Year 5. - Mathematics Year 6. - 11+ Maths Practice Exercises. - 11+ Maths Revision Guide. - 10-Minute Maths Tests Workbook Age 8-10. - 10-Minute Maths Tests Workbook Age 9-11. - Mental Arithmetic Workbook Age 8-10. - Mental Arithmetic Workbook Ag

  19. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress

    Directory of Open Access Journals (Sweden)

    Ian R. Brown

    2017-04-01

    Full Text Available Heat shock proteins (Hsps co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40, HSPA (Hsp70, and HSPH (Hsp105α. The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B' is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1 or HSPH1 (Hsp105α. At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC of the nucleolus. Inducible HSPA1A (Hsp70-1 and constitutively expressed HSPA8 (Hsc70 co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.

  20. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  1. The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics

    Science.gov (United States)

    1974-08-01

    ANALYSIS 47 R.F. Davis and D.E. Hines, McDonnell Douglas Astronautics Company, Huntington Beach, California PREDICTION OF SHOCK ENVIRONMENTS BY...data was taken during systea-level tests to cor- roborate predicted loads and/or coaponent environments. During the analytical/empirical phase of...Test Model (TETM) - To prove the thermal control system and anal- yses; 2. The Lander Structural Test Model ( LSTM ) - To apply calculated flight

  2. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    Science.gov (United States)

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  3. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  4. A new plastic correction for the stress intensity factor of an under-clad defect in a PWR vessel subjected to a pressurised thermal shock

    International Nuclear Information System (INIS)

    Marie, S.; Nedelec, M.

    2007-01-01

    For the assessment of an under-clad defect in a vessel subjected to a cold pressurised thermal shock, plasticity is considered through the amplification β of the elastic stress intensity factor K I in the ferritic part of the vessel. An important effort has been made recently by CEA to improve the analytical tools in the frame of R and D activities funded by IRSN. The current solution in the French RSE-M code has been developed from fitted F.E. calculation results. A more physical solution is proposed in this paper. This takes into account two phenomena: the amplification of the elastic K I due to plasticity in the cladding and a plastic zone size correction in the ferritic part. The first correction has been established by representing the cladding plasticity by an imposed displacement on the crack faces at the interface between the cladding and the ferritic vessel. The corresponding elastic stress intensity factor is determined from the elastic plane strain asymptotic solution for the opening displacement. Plasticity in the ferritic steel is considered through a classical plastic zone size correction. The application of the solution to axisymmetric defects is first checked. The case of semi-elliptical defects is also investigated. For the correction determined at the interface between the cladding and the ferritic vessel, an amplification of the correction proposed for the deepest point is determined from a fitting of the 3D F.E. calculation results. It is also shown that the proposition of RSE-M, which consists in applying the same β correction at the deepest point and the interface point is not suitable. The applicability to a thermal shock, eventually combined with an internal pressure has been verified. For the deepest point, the proposed correction leads to similar results to the RSE-M method, but presents an extended domain of validity (no limits on the crack length are imposed)

  5. Information Presentation in Decision and Risk Analysis: Answered, Partly Answered, and Unanswered Questions.

    Science.gov (United States)

    Keller, L Robin; Wang, Yitong

    2017-06-01

    For the last 30 years, researchers in risk analysis, decision analysis, and economics have consistently proven that decisionmakers employ different processes for evaluating and combining anticipated and actual losses, gains, delays, and surprises. Although rational models generally prescribe a consistent response, people's heuristic processes will sometimes lead them to be inconsistent in the way they respond to information presented in theoretically equivalent ways. We point out several promising future research directions by listing and detailing a series of answered, partly answered, and unanswered questions. © 2016 Society for Risk Analysis.

  6. Are Credit Shocks Supply or Demand Shocks?

    OpenAIRE

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  7. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  8. Some perspectives in nuclear astrophysics on non-thermal phenomena

    International Nuclear Information System (INIS)

    Tatischeff, V.

    2012-01-01

    In this HDR (Accreditation to Supervise Researches) report, the author presents and comments his research activities on nuclear phenomena in stellar eruptions (solar eruptions, lithium nucleosynthesis in stellar eruptions), on particle acceleration in shock waves of stellar explosions (diffusive acceleration by shock wave, particle acceleration in symbiotic novae, particle acceleration in radio-detected supernovae), of research on low energy cosmic rays (galactic emission of nuclear gamma rays, non thermal soft X rays as new tracer of accelerated particles), and on the origin of short period radioactivities in the primitive solar system (extinguished radio-activities and formation of the solar system, origin of berylium-10 in the primitive solar system). The author concludes with some perspectives on non thermal phenomena in nuclear astrophysics, and on research and development for the future of medium-energy gamma astronomy [fr

  9. Shock and rarefaction waves in a hyperbolic model of incompressible materials

    Directory of Open Access Journals (Sweden)

    Tommaso Ruggeri

    2013-01-01

    Full Text Available The aim of the present paper is to investigate shock and rarefaction waves in a hyperbolic model of incompressible materials. To this aim, we use the so-called extended quasi-thermal-incompressible (EQTI model, recently proposed by Gouin & Ruggeri (H. Gouin, T. Ruggeri, Internat. J. Non-Linear Mech. 47 688–693 (2012. In particular, we use as constitutive equation a variant of the well-known Bousinnesq approximation in which the specific volume depends not only on the temperature but also on the pressure. The limit case of ideal incompressibility, namely when the thermal expansion coefficient and the compressibility factor vanish, is also considered.

  10. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  11. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  12. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  13. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  14. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  15. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    Science.gov (United States)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  16. Experimental Research of Machineless Energy Separation Effect Influenced by Shock Waves

    Directory of Open Access Journals (Sweden)

    S. S. Popovich

    2016-01-01

    Full Text Available The paper presents experimental research results of machineless energy separation effect with transversal ribs in supersonic channel. The energy separation effect assumes a physical division of the inlet flow into two or more flows, each having different stagnation temperature. Among well-known energy separation effects noted there are Ranque-Hilsch vortex tubes, Hartmann-Sprenger resonance tubes, pulsating tubes and some others.A working principle of device under study is based on thermal interaction between subsonic and supersonic gas flows through a heat-conducting division wall. This energy separation method was proposed by academician Leontiev and was patented in 1998. A number of references for PhD theses, articles, and conference proceedings devoted to the research of “Leontiev tube” have been mentioned in the paper. Efficiency factors for energy separation device performability have been analyzed in detail. The main attention was focused on the phenomenon of shock waves generation in supersonic channel of Leontiev tube.Experiment was carried out in the air prototype of energy separation device with supersonic flow Mach numbers 1.9 and 2.5, stagnation temperatures 40°С and 70°С, and for uni-flow and counter-flow air moving direction in subsonic and supersonic channels. Shock waves have been generated by means of circular ribs in supersonic channel of energy separation device. The research was carried out by means of infrared thermal imaging, thermocouples, total and static pressure probes, and modern National Insturments automation equipment. The work shows that shock waves have no negative influence on energy separation effect. A conclusion is made that unexpected shock wave generation in supersonic channel will not cause operability loss. It was gained that counter-flow regime is more efficient than uni-flow. Energy separation effect also appears to be higher with the rise of Mach number and flow initial stagnation temperature

  17. Molecular dynamics simulation of a piston driven shock wave in a hard sphere gas. Final Contractor ReportPh.D. Thesis

    Science.gov (United States)

    Woo, Myeung-Jouh; Greber, Isaac

    1995-01-01

    Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.

  18. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  19. Effect of a transverse plasma jet on a shock wave induced by a ramp

    Directory of Open Access Journals (Sweden)

    Hongyu WANG

    2017-12-01

    Full Text Available We conducted experiments in a wind tunnel with Mach number 2 to explore the evolution of a transverse plasma jet and its modification effect on a shock wave induced by a ramp with an angle of 24°. The transverse plasma jet was created by arc discharge in a small cylindrical cavity with a 2 mm diameter orifice. Three group tests with different actuator arrangements in the spanwise or streamwise direction upstream from the ramp were respectively studied to compare their disturbances to the shock wave. As shown by a time-resolved schlieren system, an unsteady motion of the shock wave by actuation was found: the shock wave was significantly modified by the plasma jet with an upstream motion and a reduced angle. Compared to spanwise actuation, a more intensive impact was obtained with two or three streamwise actuators working together. From shock wave structures, the control effect of the plasma jet on the shock motion based on a thermal effect, a potential cause of shock modification, was discussed. Furthermore, we performed a numerical simulation by using the Improved Delayed Detached Eddy Simulation (IDDES method to simulate the evolution of the transverse plasma jet plume produced by two streamwise actuators. The results show that flow structures are similar to those identified in schlieren images. Two streamwise vortices were recognized, which indicates that the higher jet plume is the result of the overlap of two streamwise jets. Keywords: Flow control, Improved delayed detached eddy simulation (IDDES method, Plasma synthetic jet, Shock wave/boundary layer interaction, Time resolved schlieren system

  20. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)