WorldWideScience

Sample records for thermal restart capability

  1. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  2. Waxy crude oil flow restart ability

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Andre Gaona; Varges, Priscilla Ribeiro; Mendes, Paulo Roberto de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do Rio de Janeiro, RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br; Ziglio, Claudio [PETROBRAS S.A, R.J., Rio de Janeiro, RJ (Brazil)], e-mail: ziglio@petrobras.com.br

    2010-07-01

    Under the hot reservoir conditions, waxy crudes behave like Newtonian fluids but once they experience very cold temperatures on the sea floor, the heavy paraffin's begin to precipitate from the solution impacting non- Newtonian flow behavior to the crude (Chang 2000, Lee 2009, Davidson 2004) and begin to deposit on the pipe wall leave blocked of pipeline. This gel cannot be broken with the original steady state flow operating pressure applied before gelation (Chang 1998). Restarting waxy crude oil flows in pipelines is a difficult issue because of the complex rheological behavior of the gelled oil. Indeed, below the WAT, the gelled oil exhibits viscoplastic, thixotropic, temperature-dependent, and compressible properties due to the interlocking gel-like structure formed by the crystallized paraffin compounds and the thermal shrinkage of the oil. The main objective of this work is to determine the minimal pressure to restart the flow, and the relationship between the fluid rheology , pipe geometry and the restart pressure of the flow. Experiments will be performed to investigate the displacement of carbopol aqueous solutions (viscoplastic fluid without thixotropic effects) by Newtonian oil flowing through a strait pipe to validate the experimental apparatus. Therefore, tests will be made with different fluids, like Laponite and waxy crude oils. (author)

  3. Documentation of a restart option for the U.S. Geological Survey coupled Groundwater and Surface-Water Flow (GSFLOW) model

    Science.gov (United States)

    Regan, R. Steve; Niswonger, Richard G.; Markstrom, Steven L.; Barlow, Paul M.

    2015-10-02

    A new option to write and read antecedent conditions (also referred to as initial conditions) has been developed for the U.S. Geological Survey (USGS) Groundwater and Surface-Water Flow (GSFLOW) numerical, hydrologic simulation code. GSFLOW is an integration of the USGS Precipitation-Runoff Modeling System (PRMS) and USGS Modular Groundwater-Flow Model (MODFLOW), and provides three simulation modes: MODFLOW-only, PRMS-only, and GSFLOW (or coupled). The new capability, referred to as the restart option, can be used for all three simulation modes, such that the results from a pair (or set) of spin-up and restart simulations are nearly identical to results produced from a continuous simulation for the same time period. The restart option writes all results to files at the end of a spin-up simulation that are required to initialize a subsequent restart simulation. Previous versions of GSFLOW have had some capability to save model results for use as antecedent condiitions in subsequent simulations; however, the existing capabilities were not comprehensive or easy to use. The new restart option supersedes the previous methods. The restart option was developed in collaboration with the National Oceanic and Atmospheric Administration, National Weather Service as part of the Integrated Water Resources Science and Services Partnership. The primary focus for the development of the restart option was to support medium-range (7- to 14-day) forecasts of low streamflow conditions made by the National Weather Service for critical water-supply basins in which groundwater plays an important role.

  4. Restarts in Conversation and Literature.

    Science.gov (United States)

    Person, Raymond F., Jr.

    1996-01-01

    Analyzes restarts, a common feature of conversation, in literary discourse. The term "restart" refers to the repetition of a word or words within an utterance by the same speaker. Restarts in literary discourse are of two types: (1) those produced by the characters in their "real" narrative world and (2) those produced by the narrators themselves.…

  5. Japan: Sendai, first reactor to restart. Sendai restart: how does it work? Japan: restart will be 'progressive'. 2015: which role for nuclear energy in Japan?

    International Nuclear Information System (INIS)

    Le Ngoc, Boris; Jouette, Isabelle

    2015-01-01

    A set of articles addresses the restart of nuclear plants in Japan. The first one presents the Sendai nuclear plant, evokes the commitment of the Japanese nuclear safety authority (the NRA) at each step of the restart process, the agreement of local populations, the loading of the nuclear fuel, a successful crisis exercise, and the benefits expected from this restart. The second article addresses the restart process with its administrative aspects, the implication of local authorities, its technical aspects, and investments made to improve nuclear safety. The third article proposes an interview of the nuclear expert of the French embassy in Tokyo. He outlines that the restart of nuclear plants will be progressive, comments how Sendai restart has been commented in the Japanese press, evokes how this restart is part of the Japanese Prime Minister's policy, evokes the role and challenges of nuclear energy in Japan for the years to come, and the role France may play. The last article discusses the role of nuclear energy in Japan in 2015: importance of the old 3E policy (Energy, Environment, Economy) which is put into question again by the Fukushima accident, creation of a new nuclear safety authority as a first step before restarting nuclear reactors

  6. Keeping checkpoint/restart viable for exascale systems.

    Energy Technology Data Exchange (ETDEWEB)

    Riesen, Rolf E.; Bridges, Patrick G. (IBM Research, Ireland, Mulhuddart, Dublin); Stearley, Jon R.; Laros, James H., III; Oldfield, Ron A.; Arnold, Dorian (University of New Mexico, Albuquerque, NM); Pedretti, Kevin Thomas Tauke; Ferreira, Kurt Brian; Brightwell, Ronald Brian

    2011-09-01

    Next-generation exascale systems, those capable of performing a quintillion (10{sup 18}) operations per second, are expected to be delivered in the next 8-10 years. These systems, which will be 1,000 times faster than current systems, will be of unprecedented scale. As these systems continue to grow in size, faults will become increasingly common, even over the course of small calculations. Therefore, issues such as fault tolerance and reliability will limit application scalability. Current techniques to ensure progress across faults like checkpoint/restart, the dominant fault tolerance mechanism for the last 25 years, are increasingly problematic at the scales of future systems due to their excessive overheads. In this work, we evaluate a number of techniques to decrease the overhead of checkpoint/restart and keep this method viable for future exascale systems. More specifically, this work evaluates state-machine replication to dramatically increase the checkpoint interval (the time between successive checkpoint) and hash-based, probabilistic incremental checkpointing using graphics processing units to decrease the checkpoint commit time (the time to save one checkpoint). Using a combination of empirical analysis, modeling, and simulation, we study the costs and benefits of these approaches on a wide range of parameters. These results, which cover of number of high-performance computing capability workloads, different failure distributions, hardware mean time to failures, and I/O bandwidths, show the potential benefits of these techniques for meeting the reliability demands of future exascale platforms.

  7. Restarting Automata with Auxiliary Symbols and Small Lookahead

    DEFF Research Database (Denmark)

    Schluter, Natalie Elaine

    2012-01-01

    We present a study on lookahead hierarchies for restarting automata with auxiliary symbols and small lookahead. In particular, we show that there are just two different classes of languages recognised by RRWW automata, through the restriction of lookahead size. We also show that the respective...... (left-) monotone restarting automaton models characterise the context-free languages and that the respective right-left-monotone restarting automata characterise the linear languages both with just lookahead length 2....

  8. On the entrance distribution in RESTART simulation

    NARCIS (Netherlands)

    Garvels, M.J.J.; Kroese, Dirk

    The RESTART method is a widely applicable simulation technique for the estimation of rare event probabilities. The method is based on the idea to restart the simulation at certain intermediate stages, in order to generate more occurrences of the rare event. In many cases we are interested in the

  9. Environmental consequences of alternatives to L Reactor restart

    International Nuclear Information System (INIS)

    1983-01-01

    Alternatives to renewed L-Reactor operation for increased production of nuclear materials are: restart of R Reactor, construction and operation of a New Production Reactor (NPR), increased throughput of SRP reactors C, K, and P and N Reactor at Hanford, restart of K Reactors at Hanford, and no action - standby ready state for L Reactor. This report compares the environmental consequences from the proposed L-Reactor restart and these alternatives. The environmental consequences considered are radiological releases, radiocesium remobilization, nonradiological releases, ecological impacts and transportation

  10. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig.

  11. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    International Nuclear Information System (INIS)

    1991-04-01

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig

  12. Feasibility study to restart the research reactor RA with a converted core

    International Nuclear Information System (INIS)

    Matausek, M.V.; Plecas, I.; Marinkovic, N.

    1999-01-01

    Main options are specified for the future status of the 6.5 MW heavy water research reactor RA. Arguments pro and contra restarting the reactor are presented. When considering the option to restart the RA reactor, possibilities to improve its neutronic parameters, such as neutron flux values and irradiation capabilities, are discussed, as well as the compliance with the worldwide activities of Reduced Enrichment for Research and Test Reactors (RERTR) program. Possibility of core conversion is examined. Detailed reactor physics design calculations are performed for different fuel types and uranium loading. For different fuel management schemes results are presented for the effective multiplication factor, power distribution, fuel burnup and consumption. It is shown that, as far as reactor core parameters are considered, conversion to lower enrichment fuel could be easily accomplished. However, conversion to the lower enrichment could only be justified if combined with improvement of some other reactor attributes. (author)

  13. Mechanisms of bacterial DNA replication restart

    Science.gov (United States)

    Windgassen, Tricia A; Wessel, Sarah R; Bhattacharyya, Basudeb

    2018-01-01

    Abstract Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved ‘DNA replication restart’ pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT). PMID:29202195

  14. Operational readiness reviews for restart of L reactor

    International Nuclear Information System (INIS)

    Finley, R.H.

    1984-01-01

    The L Reactor at the Savannah River Plant is being restarted after being in a standby status since 1968. Operational Readiness Reviews (ORRs) were conducted by DOE-SR and contractor personnel concurrent with the restart activity. This paper summarizes the ORR activity

  15. Milagro Version 2 An Implicit Monte Carlo Code for Thermal Radiative Transfer: Capabilities, Development, and Usage

    Energy Technology Data Exchange (ETDEWEB)

    T.J. Urbatsch; T.M. Evans

    2006-02-15

    We have released Version 2 of Milagro, an object-oriented, C++ code that performs radiative transfer using Fleck and Cummings' Implicit Monte Carlo method. Milagro, a part of the Jayenne program, is a stand-alone driver code used as a methods research vehicle and to verify its underlying classes. These underlying classes are used to construct Implicit Monte Carlo packages for external customers. Milagro-2 represents a design overhaul that allows better parallelism and extensibility. New features in Milagro-2 include verified momentum deposition, restart capability, graphics capability, exact energy conservation, and improved load balancing and parallel efficiency. A users' guide also describes how to configure, make, and run Milagro2.

  16. Electro-Thermal-Mechanical Simulation Capability Final Report

    International Nuclear Information System (INIS)

    White, D

    2008-01-01

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There are numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R and D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems

  17. Los Alamos National Laboratory Omega West Reactor restart

    International Nuclear Information System (INIS)

    1993-01-01

    This report is a critical evaluation of the effort for the restart of the Omega West reactor. It is divided into the following areas: progress made; difficulties in restart effort; current needs; and suggested detailed steps for improvement. A brief discussion is given for each area of study

  18. Safety Evaluation Report Restart of K-Reactor Savannah River Site

    International Nuclear Information System (INIS)

    1991-10-01

    In April 1991, the Department of Energy (DOE) issued DOE/DP-0084T, ''Safety Evaluation Report Restart of K-Reactor Savannah River Site.'' The Safety Evaluation Report (SER) documents the results of DOE reviews and evaluations of the programmatic aspects of a large number of issues necessary to be satisfactorily addressed before restart. The issues were evaluated for compliance with the restart criteria included in the SER. The results of those evaluations determined that the restart criteria had been satisfied for some of the issues. However, for most of the issues at least part of the applicable restart criteria had not been found to be satisfied at the time the evaluations were prepared. For those issues, open or confirmatory items were identified that required resolution. In August 1991, DOE issued DOE/DP-0090T, ''Safety Evaluation Report Restart of K-Reactor Savannah River Site Supplement 1.'' That document was the first Supplement to the April 1991 SER, and documented the resolution of 62 of the open items identified in the SER. This document is the second Supplement to the April 1991 SER. This second SER Supplement documents the resolution of additional open times identified in the SER, and includes a complete list of all remaining SER open items. The resolution of those remaining open items will be documented in future SER Supplements. Resolution of all open items for an issue indicates that its associated restart criteria have been satisfied, and that DOE concludes that the programmatic aspects of the issue have been satisfactorily addressed

  19. Correlation between fuel rack sticking and unintentional re-starting of EDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Cheol; Chung, Woo geun; Kang, Seung Hee; Kim, Myeong hoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Emergency Diesel Generator (EDG) was being tested after overhaul maintenance. While the EDG was running at the rated speed (450 rpm), an operator pressed the manual stop button. But the EDG failed to stop and unintentionally started again. After the unintentional re-start, the EDG maintained running speed of 340 rpm. In the category of a governing system, this paper analyzes the cause of unintentional restart of the EDG that unintentionally re-started and maintained a speed at 340 rpm. The results of the analysis were then verified by a test run. Finally, we identified a correlation between fuel rack sticking and unintentional re-starting of the EDG. An analysis was conducted to confirm the cause of an EDG which was unintentionally restarting and running at 340rpm (rated speed is 450 rpm). Through a test run, it was confirmed that the results of the analysis are correct. The cause of the EDG unintentionally restarting was that it still rotated at 55 rpm over the minimum starting speed at the moment when the shutdown cylinder stopped blocking the fuel, because of a stuck fuel rack at the R7 cylinder. At the same time, the fuel that had been supplied into the cylinders (combustion chamber) by the governing system exploded and the EDG restarted unintentionally.

  20. Bruce A restart (execution and lessons-learned)

    International Nuclear Information System (INIS)

    Soini, J.

    2011-01-01

    Lessons learned with the Bruce Units 3 and 4 restart have been incorporated into the current refurbishment of Units 1 and 2. In addition, lessons learned on the lead unit (U2) are aggressively applied on the lagging unit (U1) to maximize efficiency and productivity. There will be a discussion on how this internal OPEX, along with external lessons learned, are used to continuously improve all aspects of the Bruce A Restart project management cycle, from scope selection, through planning and scheduling, to execution.

  1. Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems

    International Nuclear Information System (INIS)

    Turati, Pietro; Pedroni, Nicola; Zio, Enrico

    2016-01-01

    The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.

  2. Thick-Restart Lanczos Method for Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Simon, Horst D.; Wang, L.-W.; Wu, Kesheng

    1999-01-01

    This paper describes two recent innovations related to the classic Lanczos method for eigenvalue problems, namely the thick-restart technique and dynamic restarting schemes. Combining these two new techniques we are able to implement an efficient eigenvalue problem solver. This paper will demonstrate its effectiveness on one particular class of problems for which this method is well suited: linear eigenvalue problems generated from non-self-consistent electronic structure calculations

  3. Operational Readiness Review Final Report For F-Canyon Restart. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, A.F.; Spangler, J.B.

    1995-04-05

    An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH& QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment.

  4. Operational Readiness Review Final Report For F-Canyon Restart. Phase 1

    International Nuclear Information System (INIS)

    McFarlane, A.F.; Spangler, J.B.

    1995-01-01

    An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH ampersand QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment

  5. Krylov-Schur-Type restarts for the two-sided arnoldi method

    NARCIS (Netherlands)

    Zwaan, I.N.; Hochstenbach, M.E.

    2017-01-01

    We consider the two-sided Arnoldi method and propose a two-sided Krylov-Schurtype restarting method. We discuss the restart for standard Rayleigh-Ritz extraction as well as harmonic Rayleigh-Ritz extraction. Additionally, we provide error bounds for Ritz values and Ritz vectors in the context of

  6. Review of Savannah River Site K Reactor inservice inspection and testing restart program

    International Nuclear Information System (INIS)

    Anderson, M.T.; Hartley, R.S.; Kido, C.

    1992-09-01

    Inservice inspection (ISI) and inservice testing (IST) programs are used at commercial nuclear power plants to monitor the pressure boundary integrity and operability of components in important safety-related systems. The Department of Energy (DOE) - Office of Defense Programs (DP) operates a Category A (> 20 MW thermal) production reactor at the Savannah River Site (SRS). This report represents an evaluation of the ISI and IST practices proposed for restart of SRS K Reactor as compared, where applicable, to current ISI/IST activities of commercial nuclear power facilities

  7. Restarting TMI unit one: social and psychological impacts

    International Nuclear Information System (INIS)

    Sorensen, J.; Soderstrom, J.; Bolin, R.; Copenhaver, E.; Carnes, S.

    1983-12-01

    A technical background is provided for preparing an environmental assessment of the social and psychological impacts of restarting the undamaged reactor at Three Mile Island (TMI). Its purpose is to define the factors that may cause impacts, to define what those impacts might be, and to make a preliminary assessment of how impacts could be mitigated. It does not attempt to predict or project the magnitude of impacts. Four major research activities were undertaken: a literature review, focus-group discussions, community profiling, and community surveys. As much as possible, impacts of the accident at Unit 2 were differentiated from the possible impacts of restarting Unit 1. It is concluded that restart will generate social conflict in the TMI vicinity which could lead to adverse effects. Furthermore, between 30 and 50 percent of the population possess characteristics which are associated with vulnerability to experiencing negative impacts. Adverse effects, however, can be reduced with a community-based mitigation strategy

  8. Restarting TMI unit one: social and psychological impacts

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, J.; Soderstrom, J.; Bolin, R.; Copenhaver, E.; Carnes, S.

    1983-12-01

    A technical background is provided for preparing an environmental assessment of the social and psychological impacts of restarting the undamaged reactor at Three Mile Island (TMI). Its purpose is to define the factors that may cause impacts, to define what those impacts might be, and to make a preliminary assessment of how impacts could be mitigated. It does not attempt to predict or project the magnitude of impacts. Four major research activities were undertaken: a literature review, focus-group discussions, community profiling, and community surveys. As much as possible, impacts of the accident at Unit 2 were differentiated from the possible impacts of restarting Unit 1. It is concluded that restart will generate social conflict in the TMI vicinity which could lead to adverse effects. Furthermore, between 30 and 50 percent of the population possess characteristics which are associated with vulnerability to experiencing negative impacts. Adverse effects, however, can be reduced with a community-based mitigation strategy.

  9. Mental health effects of the Three Mile Island nuclear reactor restart.

    Science.gov (United States)

    Dew, M A; Bromet, E J; Schulberg, H C; Dunn, L O; Parkinson, D K

    1987-08-01

    Controversy over potential mental health effects of the Three Mile Island Unit-1 restart led the authors to examine prospectively the pattern of psychiatric symptoms in a sample of Three Mile Island area mothers of young children. Symptom levels after restart were elevated over previous levels; a sizable subcohort of the sample reported relatively serious degrees of postrestart distress. History of diagnosable major depression and generalized anxiety following the Three Mile Island accident, plus symptoms and beliefs about personal risk prior to the restart, best predicted postrestart symptoms.

  10. Mental health effects of the Three Mile Island nuclear reactor restart

    International Nuclear Information System (INIS)

    Dew, M.A.; Bromet, E.J.; Schulberg, H.C.; Dunn, L.O.; Parkinson, D.K.

    1987-01-01

    Controversy over potential mental health effects of the Three Mile Island Unit-1 restart led the authors to examine prospectively the pattern of psychiatric symptoms in a sample of Three Mile Island area mothers of young children. Symptom levels after restart were elevated over previous levels; a sizable subcohort of the sample reported relatively serious degrees of postrestart distress. History of diagnosable major depression and generalized anxiety following the Three Mile Island accident, plus symptoms and beliefs about personal risk prior to the restart, best predicted postrestart symptoms

  11. Safety Evaluation Report: Restart of K-Reactor, Savannah River Site

    International Nuclear Information System (INIS)

    1991-08-01

    In April 1991, the Department of Energy (DOE) issued DOE/DP-0084T, ''Safety Evaluation Report Restart of K-Reactor Savannah River Site.'' The Safety Evaluation Report (SER) documents the results of DOE reviews and evaluations of the programmatic aspects of a large number of issues which need to be satisfactorily addressed before restart. The issues were evaluated for compliance with the restart criteria included in the SER. The results of those evaluations determined that the restart criteria had been satisfied for some of the issues. However, for most of the issues at least part of the applicable restart criteria had not been found to be satisfied a the time the evaluations were prepared. For those issues, open or confirmatory items were identified that required resolution. This document supplements the April 1991 SER. The SER Supplement documents the resolution of several of the open items identified in the SER. Only those issues (sections) for which at least one open item identified in the SER has now been closed are addressed in this Supplement. Additionally, some SER sections had no open items identified. Therefore, this Supplement does not include all sections that were addressed in the SER. If there are any open items remaining to be resolved for the sections included in this Supplement, that is so identified at the end of the section. The resolution of those remaining open times, and all remaining open items for those SER sections not included in this first Supplement, will be documented in future SER Supplements. Resolution of all open items for an issue indicates that its associated restart criteria have been satisfied, and that DOE concludes that the programmatic aspects of the issue have been satisfactorily addressed

  12. LHC Report: Restart preparations continue

    CERN Multimedia

    Katy Foraz for the LHC team and Julia Trummer for the RP Group

    2012-01-01

    Maintenance and consolidation work has been progressing well in both the machine and the experiments in preparation for the March restart.   A sample material is attached to the LHC (the white bag taped to the green line), to measure the radiation doses. Additional work was required around Point 5 due to the discovery and repair of a problem with the RF fingers at the connection of two beam vacuum chambers in CMS. The repair has been completed successfully and the sector is now under vacuum. In order to avoid rushing the delicate final operations required for closing the detector, the restart of the machine has been postponed by one week, from 7 March to 14 March. In the machine, the first cool-down to 1.9 K has started in several sectors ,and the cool-down of the whole machine is still planned to be finished by 21 February. The time window between 22 February and 14 March will be dedicated to powering and cryogenic tests. Since 12 December, the Radiation Protection (RP) group has been deep...

  13. LHC Report: Rocky re-start

    CERN Multimedia

    Barbara Holzer for the LHC Team

    2012-01-01

    A rocky re-start with beam followed a successful machine development period and the first technical stop of 2012. Today, Friday 11 May, the machine began running again with 1380 bunches.   A short, two-day machine development period was successfully completed on 21-22 April. It focused on topics relevant for the 2012 physics beam operation. This was then followed by a five-day technical stop, the first of the year. The technical stop finished on time on Friday 26 April. The re-start with beam was somewhat tortuous and hampered by an unlucky succession of technical faults leading to extended periods of downtime. The planned intensity increase was put on hold for three days with the machine operating with 1092 bunches and a moderate bunch intensity of 1.3x1011 protons. This delivered a reasonable peak luminosity of 3.6x1033 cm-2s-1 to ATLAS and CMS. Higher than usual beam losses were observed in the ramp and squeeze, and time was required to investigate the causes and to implement mitigati...

  14. The dynamic storage and restart facilities in MABEL-2

    International Nuclear Information System (INIS)

    Nye, M.T.S.

    1983-12-01

    MABEL-2 is a FORTRAN program for calculating clad ballooning in a PWR during a LOCA. Originally written with fixed array storage, the use of the code has been extended by including dynamic storage. The lengths of the arrays in the program are set at execution time, varying from run to run. This allows much greater freedom in the choice of mesh and the size of case run. The use of computer memory is also more efficient. In addition a restart facility has been included which allows the user to break off and restart execution of the program (once or many times) during a transient. By using this facility much longer calculations can be run. Should an error in either input data or program become apparent late in a transient, the case need only be re-run from the last dump because some input data can be altered at restart. The use of these new facilities and the coding changes are described. (author)

  15. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    Energy Technology Data Exchange (ETDEWEB)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  16. Risk perception in an interest group context: an examination of the TMI restart issue

    International Nuclear Information System (INIS)

    Soderstrom, E.J.; Sorensen, J.H.; Copenhaver, E.D.; Carnes, S.A.

    1984-01-01

    Human response to environmental hazards and risks has been the subject of considerable research by social scientists. Work has traditionally focused on either individual response to the risks of an ongoing or future threat (hazards research), or group and organizational response to a specific disaster event (disaster research). As part of a larger investigation of the restart of the Unit 1 reactor at Three Mile Island (TMI), the response of interest groups active in the restart issue to the continued threat of TMI and to future risks due to restart was examined. After reviewing the restart issue in general, the local dimensions of the restart issue from interest group perspectives are discussed. A method for defining appropriate issues at the community level is reviewed. Differences in the perceived local impacts of alternative decisions, and systems of beliefs associated with differing perceptions are discussed. Finally, the implications of interest group versus individual perceptions of local issues for decision making about TMI, in particular, and about technological hazards management, in general, are discussed. Associated implications for determining socially acceptable risk levels are identified

  17. Checkpoint-dependent RNR induction promotes fork restart after replicative stress.

    Science.gov (United States)

    Morafraile, Esther C; Diffley, John F X; Tercero, José Antonio; Segurado, Mónica

    2015-01-20

    The checkpoint kinase Rad53 is crucial to regulate DNA replication in the presence of replicative stress. Under conditions that interfere with the progression of replication forks, Rad53 prevents Exo1-dependent fork degradation. However, although EXO1 deletion avoids fork degradation in rad53 mutants, it does not suppress their sensitivity to the ribonucleotide reductase (RNR) inhibitor hydroxyurea (HU). In this case, the inability to restart stalled forks is likely to account for the lethality of rad53 mutant cells after replication blocks. Here we show that Rad53 regulates replication restart through the checkpoint-dependent transcriptional response, and more specifically, through RNR induction. Thus, in addition to preventing fork degradation, Rad53 prevents cell death in the presence of HU by regulating RNR-expression and localization. When RNR is induced in the absence of Exo1 and RNR negative regulators, cell viability of rad53 mutants treated with HU is increased and the ability of replication forks to restart after replicative stress is restored.

  18. ESP – Data from Restarted Life Tests of Various Silicon Materials

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jim

    2010-10-06

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  19. Failure Recovery via RESTART: Wallclock Models

    DEFF Research Database (Denmark)

    Asmussen, Søren; Rønn-Nielsen, Anders

    A task such as the execution of a computer program or the transfer of a file on a communications link may fail and then needs to be restarted. Let the ideal task time be a constant $\\ell$ and the actual task time $X$, a random variable. Tail asymptotics for $\\mathbb{P}(X>x)$ is given under three ...

  20. LHC Experiments: refinements for the restart

    CERN Multimedia

    2009-01-01

    As the LHC restart draws closer, the Bulletin will be taking a look at how the six LHC experiments are preparing and what they have been up to since last September. In this issue we start with a roundup of the past 10 months of activity at CMS and ATLAS, both technical work and outreach activities.

  1. Beleaguered LHC gears up for restart

    CERN Multimedia

    Cartwright, Jon

    2009-01-01

    "The Large Hadron Collider (LHC) is finally set to restart in mid-November following last year's accident. Initially it will collide protons at an energy of only 3.5 TeV per beam, and staff at Cern will have to wait until late next year before trying to run the collider at its maximum energy" (0.75 page)

  2. Stuck fermentation: development of a synthetic stuck wine and study of a restart procedure.

    Science.gov (United States)

    Maisonnave, Pierre; Sanchez, Isabelle; Moine, Virginie; Dequin, Sylvie; Galeote, Virginie

    2013-05-15

    Stuck fermentation is a major problem in winemaking, resulting in large losses in the wine industry. Specific starter yeasts are used to restart stuck fermentations in conditions determined essentially on the basis of empirical know-how. We have developed a model synthetic stuck wine and an industrial process-based procedure for restarting fermentations, for studies of the conditions required to restart stuck fermentations. We used a basic medium containing 13.5% v/v ethanol and 16 g/L fructose, pH 3.3, to test the effect of various nutrients (vitamins, amino acids, minerals, oligoelements), with the aim of developing a representative and discriminative stuck fermentation model. Cell growth appeared to be a key factor for the efficient restarting of stuck fermentations. Micronutrients, such as vitamins, also strongly affected the efficiency of the restart procedure. For the validation of this medium, we compared the performances of three wine yeast strains in the synthetic stuck fermentation and three naturally stuck wine fermentations. Strain performance was ranked similar in the synthetic medium and in the "Malbec" and "Sauvignon" natural stuck wines. However, two strains were ranked differently in the "Gros Manseng" stuck wine. Nutrient content seemed to be a crucial factor in fermentation restart conditions, generating differences between yeast strains. However, the specific sensitivity of yeast strains to the composition of the wine may also have had an effect. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Restart of the LHC in 2009

    CERN Multimedia

    Corinne Pralavorio

    The restart of the LHC during the summer 2009 has been confirmed today, the 5 December. An updated report on the incident which damaged sector 3-4 has just been published. It gives details on the damage caused by the incident and explains the ongoing repairs and the new systems being put into place to reinforce the safety of the machine. Click here to see the report.

  4. Public communication toward Monju restart

    International Nuclear Information System (INIS)

    Aoki, Tadao

    2001-01-01

    Five years have gone by since the sodium leak took place at a prototype FBR Monju. Looking back upon that time, one journalist said, The Monju accident was technically far from the serious one as being reported in the media. Had it not been for the infamous 'accident cover-up', an uproar must have calmed down in a month. But an unexpectedly large negative public reaction has kept Monju idle all these years. What had really happened? There was a false report on the time of first entry to the piping room or the sodium-leak spot. Contrary to the fact that five staffs did enter the room at 2:00 am, PNC failed to mention it at a first press conference held at 8:30 am. Instead, PNC created a fictitious time of entry at 10:00 am and reported it to the authorities in a formal document. Another mishap was a video cover-up operation. A year and three months later, an explosion accident took place at PNC's Tokai Reprocessing Facility and similar mishap was repeated then, causing a fatal damage to the PNC's reputation. Public opinion polls taken by mass media have concluded that PNC is 'bureaucratic, closed, slow in coping with situation and untrustworthy'. PNC struggle began - struggle to regain public trust. A series of mishaps at PNC have created an anxiety and distrust about nuclear energy among the nation. In order to restore the trust of the nation, STA, a government agency supervising PNC, decided that PNC be reorganised to make a new start as Japan Nuclear Cycle Development Institute (JNC) on October 1, 1998. In the start of the new organisation, JNC is expected to carry out operations placing priority on the locality of its facilities. The most precious lesson learned from the Monju accident is the importance of public communication. Currently undertaking activities toward Monju restart are; 1) public opinion monitoring, 2) social meetings, 3) strengthening publicity activities, 4) dialogue with local administration officials and opinion leaders, 5) 'open meeting

  5. RELAP5-3D Resolution of Known Restart/Backup Issues

    Energy Technology Data Exchange (ETDEWEB)

    Mesina, George L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Anderson, Nolan A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho National Laboratory (INL), RELAP5-3D, continues to adapt to changes in computer hardware and software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the forefront, code testing must evolve with both code and industry developments, and it must work correctly. To best ensure this, the processes of Software Verification and Validation (V&V) are applied. Verification compares coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions. A form of this, sequential verification, checks code specifications against coding only when originally written then applies regression testing which compares code calculations between consecutive updates or versions on a set of test cases to check that the performance does not change. A sequential verification testing system was specially constructed for RELAP5-3D to both detect errors with extreme accuracy and cover all nuclear-plant-relevant code features. Detection is provided through a “verification file” that records double precision sums of key variables. Coverage is provided by a test suite of input decks that exercise code features and capabilities necessary to model a nuclear power plant. A matrix of test features and short-running cases that exercise them is presented. This testing system is used to test base cases (called null testing) as well as restart and backup cases. It can test RELAP5-3D performance in both standalone and coupled (through PVM to other codes) runs. Application of verification testing revealed numerous restart and backup issues in both standalone and couple modes. This document reports the resolution of these issues.

  6. Thermal Vacuum Verification of Origami Inspired Radiators

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort seeks to provide a unique means of modulating the waste thermal energy radiated by a radiator, and represents a restart of the FY17 effort that had to be...

  7. The Efficacy of a Restart Break for Recycling with Optimal Performance Depends Critically on Circadian Timing

    Science.gov (United States)

    Van Dongen, Hans P.A.; Belenky, Gregory; Vila, Bryan J.

    2011-01-01

    Objectives: Under simulated shift-work conditions, we investigated the efficacy of a restart break for maintaining neurobehavioral functioning across consecutive duty cycles, as a function of the circadian timing of the duty periods. Design: As part of a 14-day experiment, subjects underwent two cycles of five simulated daytime or nighttime duty days, separated by a 34-hour restart break. Cognitive functioning and high-fidelity driving simulator performance were tested 4 times per day during the two duty cycles. Lapses on a psychomotor vigilance test (PVT) served as the primary outcome variable. Selected sleep periods were recorded polysomnographically. Setting: The experiment was conducted under standardized, controlled laboratory conditions with continuous monitoring. Participants: Twenty-seven healthy adults (13 men, 14 women; aged 22–39 years) participated in the study. Interventions: Subjects were randomly assigned to a nighttime duty (experimental) condition or a daytime duty (control) condition. The efficacy of the 34-hour restart break for maintaining neurobehavioral functioning from the pre-restart duty cycle to the post-restart duty cycle was compared between these two conditions. Results: Relative to the daytime duty condition, the nighttime duty condition was associated with reduced amounts of sleep, whereas sleep latencies were shortened and slow-wave sleep appeared to be conserved. Neurobehavioral performance measures ranging from lapses of attention on the PVT to calculated fuel consumption on the driving simulators remained optimal across time of day in the daytime duty schedule, but degraded across time of night in the nighttime duty schedule. The 34-hour restart break was efficacious for maintaining PVT performance and other objective neurobehavioral functioning profiles from one duty cycle to the next in the daytime duty condition, but not in the nighttime duty condition. Subjective sleepiness did not reliably track objective neurobehavioral

  8. Japan: The institute for the economy of energy recommends a quick re-start of nuclear reactors

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    The Japanese Institute for the Economy of the Energy (IEEJ) considers that the sooner the nuclear reactors will re-start, the better the Japanese economy and environment will be. The 48 Japanese reactors were stopped after the Fukushima accident and their restart is linked to the implementation of new measures for reinforcing safety. Until now only 2 reactors Sendai 1 and Sendai 2 have been allowed to re-start. The procedure for the safety assessment of the reactors is slower than expected. A study shows that only 7 reactors may be allowed to re-start before march 2015 and a total of 19 units may be operating in march 2016. In this scenario 2% of the electricity will come from nuclear energy in 2014 and 15% in 2015, natural gas imports will still be necessary for the production of electricity and their global cost is estimated to reach 56 billions euros while Japan's rate of energy independence will drop by 4.6%. (A.C.)

  9. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    International Nuclear Information System (INIS)

    Hargrove, Paul H; Duell, Jason C

    2006-01-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters

  10. Friction Stir Weld Restart+Reweld Repair Allowables

    Science.gov (United States)

    Clifton, Andrew

    2008-01-01

    A friction stir weld (FSW) repair method has been developed and successfully implemented on Al 2195 plate material for the Space Shuttle External Fuel Tank (ET). The method includes restarting the friction stir weld in the termination hole of the original weld followed by two reweld passes. Room temperature and cryogenic temperature mechanical properties exceeded minimum FSW design strength and compared well with the development data. Simulated service test results also compared closely to historical data for initial FSW, confirming no change to the critical flaw size or inspection requirements for the repaired weld. Testing of VPPA fusion/FSW intersection weld specimens exhibited acceptable strength and exceeded the minimum design value. Porosity, when present at the intersection was on the root side toe of the fusion weld, the "worst case" being 0.7 inch long. While such porosity may be removed by sanding, this "worst case" porosity condition was tested "as is" and demonstrated that porosity did not negatively affect the strength of the intersection weld. Large, 15-inch "wide panels" FSW repair welds were tested to demonstrate strength and evaluate residual stresses using photo stress analysis. All results exceeded design minimums, and photo stress analysis showed no significant stress gradients due to the presence of the restart and multi-pass FSW repair weld.

  11. Final Report for the Restart of the Waste Characterization, Reduction and Repackaging Facility (WCRRF) Contractor Readiness Assessment (CRA)

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Gregory Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-22

    The Los Alamos National Laboratory (LANL or Laboratory) Contractor Readiness Assessment (CRA) required for restart of the Technical Area (TA) 50 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) for remediated nitrate salt (RNS) waste operations was performed in compliance with the requirements of Department of Energy (DOE) Order (O) 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities, and LANL procedure FSD-115-001, Verification of Readiness to Start Up or Restart LANL Nuclear Facilities, Activities, and Operations.

  12. Freeze and restart of the DWPF Scale Glass Melter

    International Nuclear Information System (INIS)

    Choi, A.S.

    1989-01-01

    After over two years of successful demonstration of many design and operating concepts of the DWPF Melter system, the last Scale Glass Melter campaign was initiated on 6/9/88 and consisted of two parts; (1) simulation of noble metal buildup and (2) freeze and subsequent restart of the melter under various scenarios. The objectives were to simulate a prolonged power loss to major heating elements and to examine the characteristics of transient melter operations during a startup with a limited supply of lid heat. Experimental results indicate that in case of a total power loss to the lower electrodes such as due to noble metal deposition, spinel crystals will begin to form in the SRL 165 composite waste glass pool in 24 hours. The total lid heater power required to initiate joule heating was the same as that during slurry-feeding. Results of a radiative heat transfer analysis in the plenum indicate that under the identical operating conditions, the startup capabilities of the SGM and the DWPF Melter are quite similar, despite a greater lid heater to melt surface area ratio in the DWPF Melter

  13. GAPCON-THERMAL-3 code description

    International Nuclear Information System (INIS)

    Lanning, D.D.; Mohr, C.L.; Panisko, F.E.; Stewart, K.B.

    1978-01-01

    GAPCON-3 is a computer program that predicts the thermal and mechanical behavior of an operating fuel rod during its normal lifetime. The code calculates temperatures, dimensions, stresses, and strains for the fuel and the cladding in both the radial and axial directions for each step of the user specified power history. The method of weighted residuals is for the steady state temperature calculation, and is combined with a finite difference approximation of the time derivative for transient conditions. The stress strain analysis employs an iterative axisymmetric finite element procedure that includes plasticity and creep for normal and pellet-clad mechanical interaction loads. GAPCON-3 can solve steady state and operational transient problems. Comparisons of GAPCON-3 predictions to both closed form analytical solutions and actual inpile instrumented fuel rod data have demonstrated the ability of the code to calculate fuel rod behavior. GAPCON-3 features a restart capability and an associated plot package unavailable in previous GAPCON series codes

  14. GAPCON-THERMAL-3 code description

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, D.D.; Mohr, C.L.; Panisko, F.E.; Stewart, K.B.

    1978-01-01

    GAPCON-3 is a computer program that predicts the thermal and mechanical behavior of an operating fuel rod during its normal lifetime. The code calculates temperatures, dimensions, stresses, and strains for the fuel and the cladding in both the radial and axial directions for each step of the user specified power history. The method of weighted residuals is for the steady state temperature calculation, and is combined with a finite difference approximation of the time derivative for transient conditions. The stress strain analysis employs an iterative axisymmetric finite element procedure that includes plasticity and creep for normal and pellet-clad mechanical interaction loads. GAPCON-3 can solve steady state and operational transient problems. Comparisons of GAPCON-3 predictions to both closed form analytical solutions and actual inpile instrumented fuel rod data have demonstrated the ability of the code to calculate fuel rod behavior. GAPCON-3 features a restart capability and an associated plot package unavailable in previous GAPCON series codes.

  15. Re-starting an Arnoldi iteration

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, R.B. [Argonne National Lab., IL (United States)

    1996-12-31

    The Arnoldi iteration is an efficient procedure for approximating a subset of the eigensystem of a large sparse n x n matrix A. The iteration produces a partial orthogonal reduction of A into an upper Hessenberg matrix H{sub m} of order m. The eigenvalues of this small matrix H{sub m} are used to approximate a subset of the eigenvalues of the large matrix A. The eigenvalues of H{sub m} improve as estimates to those of A as m increases. Unfortunately, so does the cost and storage of the reduction. The idea of re-starting the Arnoldi iteration is motivated by the prohibitive cost associated with building a large factorization.

  16. Restart plan for the prototype vertical denitration calciner

    Energy Technology Data Exchange (ETDEWEB)

    SUTTER, C.S.

    1999-09-01

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The Restart Plan will govern the transition of the test program from the completion of the activity based startup review; through equipment checkout and surrogate material runs; to resumption of the testing program and transition to unrestricted testing.

  17. Restart plan for the prototype vertical denitration calciner

    International Nuclear Information System (INIS)

    SUTTER, C.S.

    1999-01-01

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The Restart Plan will govern the transition of the test program from the completion of the activity based startup review; through equipment checkout and surrogate material runs; to resumption of the testing program and transition to unrestricted testing

  18. Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks

    Science.gov (United States)

    Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan

    2010-01-01

    For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.

  19. Markov Renewal Methods in Restart Problems in Complex Systems

    DEFF Research Database (Denmark)

    Asmussen, Søren; Lipsky, Lester; Thompson, Stephen

    A task with ideal execution time L such as the execution of a computer program or the transmission of a file on a data link may fail, and the task then needs to be restarted. The task is handled by a complex system with features similar to the ones in classical reliability: failures may...

  20. Restart Testing Program for piping following steam generator replacement at North Anna Unit 1

    International Nuclear Information System (INIS)

    Bain, R.A.; Bayer, R.K.

    1993-01-01

    In order to provide assurance that the effects of performing steam generator replacement (SGR) at North Anna unit 1 had no adverse impact on plant piping systems, a cold functional verification restart testing program was developed. This restart testing program was implemented in lieu of a hot functional testing program normally used during the initial startup of a nuclear plant. A review of North Anna plant-specific and generic U.S. Nuclear Regulatory Commission requirements for restart testing was performed to ensure that no mandatory hot functional testing was required. This was determined to be the case, and the development of a cold functional test program was initiated. The cold functional test had inherent advantages as compared to the hot functional testing, while still providing assurance of piping system adequacy. The advantages of the cold verification program included reducing risk to personnel from hot piping, increasing the accuracy of measurements with the improvement in work conditions, eliminating engineering activities during the heatup process, and being able to record measurements as construction work was completed allowing for rework or repair of components if required. To ensure the effectiveness of the cold verification program, a project procedure was generated to identify the personnel, equipment, and measurement requirements. An engineering calculation was issued to document the scope of the restart test program, and an additional calculation was developed to provide acceptance criteria for the critical commodity measurements

  1. Commentary: restarting NTD programme activities after the Ebola outbreak in Liberia.

    Science.gov (United States)

    Thomas, Brent C; Kollie, Karsor; Koudou, Benjamin; Mackenzie, Charles

    2017-05-01

    It is widely known that the recent Ebola Virus Disease (EVD) in West Africa caused a serious disruption to the national health system, with many of ongoing disease focused programmes, such as mass drug administration (MDA) for onchocerciasis (ONC), lymphatic filariasis (LF) and schistosomiasis (SCH), being suspended or scaled-down. As these MDA programmes attempt to restart post-EVD it is important to understand the challenges that may be encountered. This commentary addresses the opinions of the major health sectors involved, as well as those of community members, regarding logistic needs and challenges faced as these important public health programmes consider restarting. There appears to be a strong desire by the communities to resume NTD programme activities, although it is clear that some important challenges remain, the most prominent being those resulting from the severe loss of trained staff.

  2. RDEL: Restart Differential Evolution algorithm with Local Search Mutation for global numerical optimization

    Directory of Open Access Journals (Sweden)

    Ali Wagdy Mohamed

    2014-11-01

    Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.

  3. Solution structure of the N-terminal domain of a replication restart primosome factor, PriC, in Escherichia coli

    Science.gov (United States)

    Aramaki, Takahiko; Abe, Yoshito; Katayama, Tsutomu; Ueda, Tadashi

    2013-01-01

    In eubacterial organisms, the oriC-independent primosome plays an essential role in replication restart after the dissociation of the replication DNA-protein complex by DNA damage. PriC is a key protein component in the replication restart primosome. Our recent study suggested that PriC is divided into two domains: an N-terminal and a C-terminal domain. In the present study, we determined the solution structure of the N-terminal domain, whose structure and function have remained unknown until now. The revealed structure was composed of three helices and one extended loop. We also observed chemical shift changes in the heteronuclear NMR spectrum and oligomerization in the presence of ssDNA. These abilities may contribute to the PriC-ssDNA complex, which is important for the replication restart primosome. PMID:23868391

  4. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  5. Applications of implicit restarting in optimization and control Dan Sorensen

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, D. [Rice Univ., Houston, TX (United States)

    1996-12-31

    Implicit restarting is a technique for combining the implicitly shifted QR mechanism with a k-step Arnoldi or Lanczos factorization to obtain a truncated form of the implicitly shifted QR-iteration suitable for large scale eigenvalue problems. The software package ARPACK based upon this technique has been successfully used to solve large scale symmetric and nonsymmetric (generalized) eigenvalue problems arising from a variety of applications.

  6. An asynchronous writing method for restart files in the gysela code in prevision of exascale systems*

    Directory of Open Access Journals (Sweden)

    Thomine O.

    2013-12-01

    Full Text Available The present work deals with an optimization procedure developed in the full-f global GYrokinetic SEmi-LAgrangian code (GYSELA. Optimizing the writing of the restart files is necessary to reduce the computing impact of crashes. These files require a very large memory space, and particularly so for very large mesh sizes. The limited bandwidth of the data pipe between the comput- ing nodes and the storage system induces a non-scalable part in the GYSELA code, which increases with the mesh size. Indeed the transfer time of RAM to data depends linearly on the files size. The necessity of non synchronized writing-in-file procedure is therefore crucial. A new GYSELA module has been developed. This asynchronous procedure allows the frequent writ- ing of the restart files, whilst preventing a severe slowing down due to the limited writing bandwidth. This method has been improved to generate a checksum control of the restart files, and automatically rerun the code in case of a crash for any cause.

  7. Restart of R reactor at SRP

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1983-01-01

    Restart of the Savannah River R-Reactor is an alternative to L-Reactor operation for increased production of defense nuclear material. R-Reactor was shut down in 1964 after 11-years operation and has been on standby for 19 years. This report presents a description of R-Reactor operation to serve as a basis for analysis of environmental impacts after restoration to meet current SRP performance standards. R-Reactor operation would differ from L-Reactor operation principally in discharge and recycle of effluent cooling water to Par Pond, rather than direct discharge to the Savannah River by way of Steel Creek. Significant differences in environmental effects could result. A costly renovation program would be required to restore R-Reactor to operability, and the reactor could not contribute to material production before about 1989

  8. HAYNES 244 alloy – a new 760 ∘C capable low thermal expansion alloy

    Directory of Open Access Journals (Sweden)

    Fahrmann Michael G.

    2014-01-01

    Full Text Available HAYNES® 244TM alloy is a new 760∘C capable, high strength low thermal expansion (CTE alloy. Its nominal chemical composition in weight percent is Ni – 8 Cr – 22.5 Mo – 6 W. Recently, a first mill-scale heat of 244 alloy was melted by Haynes International, and processed to various product forms such as re-forge billet, plate, and sheet. This paper presents key attributes of this new alloy (CTE, strength, low-cycle fatigue performance, oxidation resistance, thermal stability as they pertain to the intended use in rings and seals of advanced gas turbines.

  9. Prediction of thermal conductivity of rock through physico-mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, T.N. [Department of Earth Sciences, Indian Institute of Technology, Bombay 400 076 (India); Sinha, S.; Singh, V.K. [Institute of Technology, Banaras Hindu University, Varanasi 221 005 (India)

    2007-01-15

    The transfer of energy between two adjacent parts of rock mainly depends on its thermal conductivity. Present study supports the use of artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS) in the study of thermal conductivity along with other intrinsic properties of rock due to its increasing importance in many areas of rock engineering, agronomy and geo environmental engineering field. In recent years, considerable effort has been made to develop techniques to determine these properties. Comparative analysis is made to analyze the capabilities among six different models of ANN and ANFIS. ANN models are based on feedforward backpropagation network with training functions resilient backpropagation (RP), one step secant (OSS) and Powell-Beale restarts (CGB) and radial basis with training functions generalized regression neural network (GRNN) and more efficient design radial basis network (NEWRB). A data set of 136 has been used for training different models and 15 were used for testing purposes. A statistical analysis is made to show the consistency among them. ANFIS is proved to be the best among all the networks tried in this case with average absolute percentage error of 0.03% and regression coefficient of 1, whereas best performance shown by the FFBP (RP) with average absolute error of 2.26%. Thermal conductivity is predicted using P-wave velocity, porosity, bulk density, uniaxial compressive strength of rock as input parameters. (author)

  10. Savannah River Site peer evaluator standards: Operator assessment for restart

    International Nuclear Information System (INIS)

    1990-01-01

    Savannah River Site has implemented a Peer Evaluator program for the assessment of certified Central Control Room Operators, Central Control Room Supervisors and Shift Technical Engineers prior to restart. This program is modeled after the nuclear Regulatory Commission's (NRC's) Examiner Standard, ES-601, for the requalification of licensed operators in the commercial utility industry. It has been tailored to reflect the unique differences between Savannah River production reactors and commercial power reactors

  11. IAEA issues recommendations regarding temporary restart of Dutch reactor

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: An IAEA-led international team of nuclear reactor safety experts completed a safety review mission on 18 February at the High Flux Reactor (HFR) at Petten, in the Netherlands. The mission was conducted at the request of the Government of the Netherlands to review a set of previous evaluations made by the Dutch regulatory authority regarding the reactor's safety. The IAEA mission made a series of recommendations to enhance the safety of the year-long temporary restart. The recommendations included: - Performance of the monitoring system for leaks should be rigorously checked during the interim year of operation; - Temporary operation of the HFR cannot be extended beyond 1 March 2010; and - In case of any detected leakage from the coolant pipes, the reactor should be shut down immediately and repaired before restarting. The international team was composed of one IAEA staff member and five external experts from Argentina, Canada, France, India and South Africa. The IAEA's main conclusions and recommendations were presented in The Hague to the Ministry of Housing, Spatial Planning and the Environment and several other ministries. The team also provided a summary of its findings to the Netherlands Regulatory Authority. The team's final report will be submitted within two weeks. The HFR at Petten is one of five research reactors in the world that produces radioactive medical isotopes, used an estimated 40 million times annually for cancer treatment and the diagnosis of heart attacks. Prolonged outages at any of these five reactors have a far-reaching impact on medical treatments and diagnoses for patients around the globe. Since August 2008, the HFR reactor has been in shut-down status due to corrosion of pipes in its primary cooling circuit. The Nuclear Research and Consultancy Group (NRG), the operating organization for Petten, proposed a one-year restart of the HFR reactor, which was approved by the Dutch regulatory body. The reactor then resumed operation

  12. Asymptotic optimality of RESTART estimators in highly dependable systems

    International Nuclear Information System (INIS)

    Villén-Altamirano, J.

    2014-01-01

    We consider a wide class of models that includes the highly reliable Markovian systems (HRMS) often used to represent the evolution of multi-component systems in reliability settings. Repair times and component lifetimes are random variables that follow a general distribution, and the repair service adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly-dependable systems, the RESTART method is used for the estimation of steady-state unavailability and other reliability measures. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty involved in applying this method is finding a suitable function, called the importance function, to define the regions. In this paper we introduce an importance function which, for unbalanced systems, represents a great improvement over the importance function used in previous papers. We also demonstrate the asymptotic optimality of RESTART estimators in these models. Several examples are presented to show the effectiveness of the new approach, and probabilities up to the order of 10 −42 are accurately estimated with little computational effort. - Highlights: • Rare event probabilities of highly reliable systems are estimated by simulation. • The asymptotic optimality of the application is proved. • A better importance function for highly reliable systems is provided in the paper

  13. Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan

    International Nuclear Information System (INIS)

    Wilson, T.R.; Hanson, C.

    1994-01-01

    The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103

  14. Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.R.; Hanson, C.

    1994-10-03

    The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103.

  15. Preparing for the re-start

    CERN Multimedia

    2009-01-01

    The end of a Council week is a good opportunity to bring you up to date with the status of the LHC, and I’m pleased to say that we had a good deal of positive news to report to the delegations today. The bottom line is that we remain on course to restart the LHC safely this year, albeit currently about 2-3 weeks later than we’d hoped at Chamonix. This Council week has seen many important developments for our future. I am particularly pleased that Council approved the Medium Term Plan and budget for 2010 as presented by the management. This is a strong vote of confidence in all of you. The President of Council is reporting on Council business in this issue of the Bulletin, so I will focus on the status of the LHC. A tremendous amount of work has been done to understand fully the splices in the LHC’s superconducting cable and copper stabilizers. One of these splices was the root cause of the incident last September that brought ...

  16. LHC Report: A tough restart

    CERN Multimedia

    Jan Uythoven for the LHC team

    2012-01-01

    The third LHC Technical Stop of five days took place in the week of September 17. Getting back to normal operation after a technical stop  can sometimes be difficult, with debugging, testing and requalification required on the systems that have seen interventions. Folding in a selection of other problems can make for a frustrating time.   The new injector magnet is transported to the LHC. Photo: TE/ABT group. The restart experienced over the last days was one of the tougher ones. Many problems occurred, both small and large, one after the other; in the end it took until Sunday afternoon, 9 days after the end of the technical stop, to have a physics fill in the machine that delivered an initial luminosity similar to those before the technical stop. Most problems encountered were, in fact, not related to the technical stop. The technical stop consisted of the usual maintenance and consolidation of the various systems, but two items stand out: the replacement of the mirrors an...

  17. Restart oversight assessment of Hanford 242-A evaporator: Summary report

    International Nuclear Information System (INIS)

    1994-08-01

    This report summarizes a January 17--28, 1994, oversight assessment of restart activities for the 242-A Evaporator at the US Department of Energy's (DOE's) Hanford Site about 25 miles northeast of Hanford, Washington. The assessment was conducted by qualified staff and consultants from the DOE Office of Environment, Safety and Health (EH). Its focus was the readiness of the facility for the resumption of safe operations, in particular those operations involved in the treatment and disposal of condensate from the evaporation of liquid radioactive waste, a key element of the tank waste remediation project administered by the DOE Richland Operations Office (DOE-RL). Overall, the assessment yielded eight programmatic concerns, supported by 38 individual findings. Of the concerns, four have already been closed, and the other four have been resolved. Results pointed up strengths in management and engineering design, as well as effective support of facility training programs by the management and operating contractor, Westinghouse Hanford Company (WHC). Weaknesses were evident, however, in conduct of operations, maintenance, and radiological practices. Furthermore, problems in the submittal and approval of Compliance Schedule Approvals--that is, WHC documentation of the status of compliance with DOE orders--were indicative of a programmatic breakdown in the DOE Order compliance process. According to the results of this assessment, there are no safety and health issues that would preclude or delay restart of the evaporator

  18. Analysis of reactivity worth for xenon poisoning during restart-up of reactor in iodine pit

    International Nuclear Information System (INIS)

    Li Xaofeng; Chen Wenzhen; Zhu Qian; Xu Guojun

    2009-01-01

    The reactivity worth of xenon poisoning and the densities of 135 I and 135 Xe were derived when the reactor was restarted up in iodine pit. Through the expressions obtained we can find the physics characteristics of reactor restarted up in iodine pit comprehensively and essentially. The results were analyzed and discussed. The reactor power before shutdown, the start-up power, the position where the reactor starts up in iodine pit, and so on, all have effect on the reactivity worth of xenon poisoning, and the different conditions can lead to totally different physics characteristics. In addition, the time when the reactor starts up in iodine pit is a very important factor for nuclear reactors safety. The conclusions are very important to the maneuverability and operation safety of ship nuclear reactors. (authors)

  19. Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins.

    Science.gov (United States)

    Rangarajan, Savithri; Woodgate, Roger; Goodman, Myron F

    2002-02-01

    In Escherichia coli, UV-irradiated cells resume DNA synthesis after a transient inhibition by a process called replication restart. To elucidate the role of several key proteins involved in this process, we have analysed the time dependence of replication restart in strains carrying a combination of mutations in lexA, recA, polB (pol II), umuDC (pol V), priA, dnaC, recF, recO or recR. We find that both pol II and the origin-independent primosome-assembling function of PriA are essential for the immediate recovery of DNA synthesis after UV irradiation. In their absence, translesion replication or 'replication readthrough' occurs approximately 50 min after UV and is pol V-dependent. In a wild-type, lexA+ background, mutations in recF, recO or recR block both pathways. Similar results were obtained with a lexA(Def) recF strain. However, lexA(Def) recO or lexA(Def) recR strains, although unable to facilitate PriA-pol II-dependent restart, were able to perform pol V-dependent readthrough. The defects in restart attributed to mutations in recF, recO or recR were suppressed in a recA730 lexA(Def) strain expressing constitutively activated RecA (RecA*). Our data suggest that in a wild-type background, RecF, O and R are important for the induction of the SOS response and the formation of RecA*-dependent recombination intermediates necessary for PriA/Pol II-dependent replication restart. In con-trast, only RecF is required for the activation of RecA that leads to the formation of pol V (UmuD'2C) and facilitates replication readthrough.

  20. ALICE & LHCb: refinements for the restart

    CERN Multimedia

    2009-01-01

    Following the previous issue, the Bulletin continues its series to find out what the six LHC experiments have been up to since last September, and how they are preparing for the restart. Previously we looked at CMS and ATLAS; this issue we will round up the past 10 months of activity at ALICE and LHCb. LHCb The cavern of the LHCb experiment. This year has given LHCb the chance to install the 5th and final plane of muon chambers, which will improve the triggering at nominal luminosity. This is the final piece of the experiment to be installed. "Now the detector looks exactly as it does in the technical design report," confirms Andrei Golutvin, LHCb Spokesperson. "We also took advantage of this shutdown to make several improvements. For example, we modified the high voltage system of the electromagnetic calorimeter to reduce noise further to a negligible level. We also took some measures to improve ...

  1. 78 FR 69367 - Golden Valley Electric Association: Healy Power Plant Unit #2 Restart

    Science.gov (United States)

    2013-11-19

    ... of Decision. SUMMARY: The Rural Utilities Service (RUS) has issued a Record of Decision (ROD) for the... financing from RUS to facilitate the restart of Unit 2 and for improvements to the Healy Plant, which... DOE and AIDEA. The decision documented in RUS's ROD is that RUS agrees to consider, subject to...

  2. The design and implementation of Berkeley Lab's linuxcheckpoint/restart

    Energy Technology Data Exchange (ETDEWEB)

    Duell, Jason

    2005-04-30

    This paper describes Berkeley Linux Checkpoint/Restart (BLCR), a linux kernel module that allows system-level checkpoints on a variety of Linux systems. BLCR can be used either as a stand alone system for checkpointing applications on a single machine, or as a component by a scheduling system or parallel communication library for checkpointing and restoring parallel jobs running on multiple machines. Integration with Message Passing Interface (MPI) and other parallel systems is described.

  3. Status of High Flux Isotope Reactor (HFIR) post-restart safety analysis and documentation upgrades

    International Nuclear Information System (INIS)

    Cook, D.H.; Radcliff, T.D.; Rothrock, R.B.; Schreiber, R.E.

    1990-01-01

    The High Flux Isotope Reactor (HFIR), an experimental reactor located at the Oak Ridge National Laboratory (ORNL) and operated for the US Department of Energy by Martin Marietta Energy Systems, was shut down in November, 1986 after the discovery of unexpected neutron embrittlement of the reactor vessel. The reactor was restarted in April, 1989, following an extensive review by DOE and ORNL of the HFIR design, safety, operation, maintenance and management, and the implementation of several upgrades to HFIR safety-related hardware, analyses, documents and procedures. This included establishing new operating conditions to provide added margin against pressure vessel failure, as well as the addition, or upgrading, of specific safety-related hardware. This paper summarizes the status of some of the follow-on (post-restart) activities which are currently in progress, and which will result in a comprehensive set of safety analyses and documentation for the HFIR, comparable with current practice in commercial nuclear power plants. 8 refs

  4. Economic evaluation of strategies for restarting anticoagulation therapy after a first event of unprovoked venous thromboembolism.

    Science.gov (United States)

    Monahan, M; Ensor, J; Moore, D; Fitzmaurice, D; Jowett, S

    2017-08-01

    Essentials Correct duration of treatment after a first unprovoked venous thromboembolism (VTE) is unknown. We assessed when restarting anticoagulation was worthwhile based on patient risk of recurrent VTE. When the risk over a one-year period is 17.5%, restarting is cost-effective. However, sensitivity analyses indicate large uncertainty in the estimates. Background Following at least 3 months of anticoagulation therapy after a first unprovoked venous thromboembolism (VTE), there is uncertainty about the duration of therapy. Further anticoagulation therapy reduces the risk of having a potentially fatal recurrent VTE but at the expense of a higher risk of bleeding, which can also be fatal. Objective An economic evaluation sought to estimate the long-term cost-effectiveness of using a decision rule for restarting anticoagulation therapy vs. no extension of therapy in patients based on their risk of a further unprovoked VTE. Methods A Markov patient-level simulation model was developed, which adopted a lifetime time horizon with monthly time cycles and was from a UK National Health Service (NHS)/Personal Social Services (PSS) perspective. Results Base-case model results suggest that treating patients with a predicted 1 year VTE risk of 17.5% or higher may be cost-effective if decision makers are willing to pay up to £20 000 per quality adjusted life year (QALY) gained. However, probabilistic sensitivity analysis shows that the model was highly sensitive to overall parameter uncertainty and caution is warranted in selecting the optimal decision rule on cost-effectiveness grounds. Univariate sensitivity analyses indicate variables such as anticoagulation therapy disutility and mortality risks were very influential in driving model results. Conclusion This represents the first economic model to consider the use of a decision rule for restarting therapy for unprovoked VTE patients. Better data are required to predict long-term bleeding risks during therapy in this

  5. Additional information for impact response of the restart safety rods

    International Nuclear Information System (INIS)

    Yau, W.W.F.

    1991-01-01

    WSRC-RP-91-677 studied the structural response of the safety rods under the conditions of brake failure and accidental release. It was concluded that the maximum impact loading to the safety rod is 6020 pounds based on conservative considerations that energy dissipation attributable to fluid resistance and reactor superstructure flexibility. The staffers of the Defense Nuclear Facility Safety Board reviewed the results and inquired about the extent of conservatism. By request of the RESTART team, I reassessed the impact force due to these conservative assumptions. This memorandum reports these assessments

  6. Numerical Simulation Procedure for Modeling TGO Crack Propagation and TGO Growth in Thermal Barrier Coatings upon Thermal-Mechanical Cycling

    Directory of Open Access Journals (Sweden)

    Ding Jun

    2014-01-01

    Full Text Available This paper reports a numerical simulation procedure to model crack propagation in TGO layer and TGO growth near a surface groove in metal substrate upon multiple thermal-mechanical cycles. The material property change method is employed to model TGO formation cycle by cycle, and the creep properties for constituent materials are also incorporated. Two columns of repeated nodes are placed along the interface of the potential crack, and these nodes are bonded together as one node at a geometrical location. In terms of critical crack opening displacement criterion, onset of crack propagation in TGO layer has been determined by finite element analyses in comparison with that without predefined crack. Then, according to the results from the previous analyses, the input values for the critical failure parameters for the subsequent analyses can be decided. The robust capabilities of restart analysis in ABAQUS help to implement the overall simulation for TGO crack propagation. The comparison of the TGO final deformation profile between numerical and experimental observation shows a good agreement indicating the correctness and effectiveness of the present procedure, which can guide the prediction of the failure in TGO for the future design and optimization for TBC system.

  7. Comparison of thermal capabilities of the fuel assemblies for the WWR-M reactor

    International Nuclear Information System (INIS)

    Kirsanov, G.A.; Konoplev, K.A.; Findeisen, A.; Shishkina, Zh.A.

    1989-01-01

    On the basis of measurement results of the WWR-M2, WWR-M3 and WWR-M5 fuel element can temperature in the WWR-M reactor core their thermal capabilities are compared. The use of the WWR-M5 fuel assemblies instead of the WWR-M2 ones in the WWR-M reactor permits to increase specific heat loading by a factor of 2.7. The possibility to increase fuel can temperature up to 110 deg C is confirmed experimentally which corresponds to specific heat loading of 900 kW/l

  8. Effect of PWR Re-start ramp rate on pellet-cladding interactions

    International Nuclear Information System (INIS)

    Yagnik, S.K.; Chang, B.C.; Sunderland, D.J.

    2005-01-01

    To mitigate pellet-cladding interaction (PCI) leading to fuel rod failures, fuel suppliers specify reactor power ramp rate limitations during reactor start-up after an outage. Typical re-start ramp rates are restricted and range between 3-4% per hour of full reactor power above a threshold power level. Relaxation of threshold power and ramp rate restrictions has the potential to improve plant economics. The paper will compare known re-start power ascension procedures employed in the US, German, French and Korean PWRs after a refuelling outage. A technical basis for optimising power ascension procedures during reactor start-up can be developed using analytical modelling. The main objective of the modelling is to determine the potential for PCI failure for various combinations of threshold power levels and ramp rate levels. A key element of our analysis is to estimate the decrease in margin to cladding failure by ISCC based on a time-temperature-stress failure criterion fashioned Act a cumulative cladding damage index. The analysis approach and the cladding damage model will be described and the results from three case studies based on the FALCON fuel rod behaviour code will be reported. We conclude that the PCI behaviour is more affected by ramp rate and threshold power than by the fuel design and that the fuel power history is the most important parameter. (authors)

  9. TMI-1 restart: an evaluation of the licensee's management integrity as it affects restart of Three Mile Island Nuclear Station (Unit 1 Docket 50-289). Supplement 5

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 5 to the Safety Evaluation Report (SER) on TMI-1 Restart documents the review by the Nuclear Regulatory Commission (NRC) staff of nine investigations conducted by the NRC Office of Investigations into matters identified as relevant and material to an evaluation of the licensee's management integrity. The staff has included, as part of its evaluation, materials from its review of the GPU v. B and W lawsuit record (NUREG-1020LD, GPU, v. B and W Lawsuit Review and Its Effect on TMI-1) as well as other relevant materials developed since the close of the record in the TMI-1 Restart proceeding. In developing its position on General Public Utilities Nuclear Corporation's character (i.e., management integrity), the staff evaluated matters that cast doubt on the licensee's character, individually and collectively; considered the remedial actions taken by the licensee; and balanced past improper conduct of the licensee against its subsequent record of remedial actions and performance and record of current senior management of the licensee. The staff concluded that, while the past improper conduct was grave, the remedial actions taken, the subsequent record of performance, and the record of current senior management support a finding that GPUN can and will operate TMI-1 without undue risk to the health and safety of the public

  10. Press Conference: LHC Restart, Season 2

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    PRESS BRIEFING ON THE LARGE HADRON COLLIDER (LHC) RE-START, SEASON 2 AT CERN, GLOBE OF SCIENCE AND INNOVATION Where :   http://cern.ch/directions   at the Globe of Science and Innovation When : Thursday, 12 March from 2.30 to 3.30pm - Open seating as from 2.15pm Speakers : CERN’s Director General, Rolf Heuer and Director of Accelerators, Frédérick Bordry, and representatives of the LHC experiments Webcast : https://webcast.web.cern.ch/webcast/ Dear Journalists, CERN is pleased to invite you to the above press briefing which will take place on Thursday 12 March, in the Globe of Science and Innovation, 1st floor, from 2.30 to 3.30pm. The Large Hadron Collider (LHC) is ready to start up for its second three-year run. The 27km LHC is the largest and most powerful particle accelerator in the world operating at a temperature of -217 degrees Centigrade and powered to a current of 11,000 amps. Run 2 of the LHC follows a two-year technical s...

  11. Promoting Recruitment using Information Management Efficiently (PRIME): a stepped-wedge, cluster randomised trial of a complex recruitment intervention embedded within the REstart or Stop Antithrombotics Randomised Trial.

    Science.gov (United States)

    Maxwell, Amy E; Parker, Richard A; Drever, Jonathan; Rudd, Anthony; Dennis, Martin S; Weir, Christopher J; Al-Shahi Salman, Rustam

    2017-12-28

    Few interventions are proven to increase recruitment in clinical trials. Recruitment to RESTART, a randomised controlled trial of secondary prevention after stroke due to intracerebral haemorrhage, has been slower than expected. Therefore, we sought to investigate an intervention to boost recruitment to RESTART. We conducted a stepped-wedge, cluster randomised trial of a complex intervention to increase recruitment, embedded within the RESTART trial. The primary objective was to investigate if the PRIME complex intervention (a recruitment co-ordinator who conducts a recruitment review, provides access to bespoke stroke audit data exports, and conducts a follow-up review after 6 months) increases the recruitment rate to RESTART. We included 72 hospital sites located in England, Wales, or Scotland that were active in RESTART in June 2015. All sites began in the control state and were allocated using block randomisation stratified by hospital location (Scotland versus England/Wales) to start the complex intervention in one of 12 different months. The primary outcome was the number of patients randomised into RESTART per month per site. We quantified the effect of the complex intervention on the primary outcome using a negative binomial, mixed model adjusting for site, December/January months, site location, and background time trends in recruitment rate. We recruited and randomised 72 sites and recorded their monthly recruitment to RESTART over 24 months (March 2015 to February 2017 inclusive), providing 1728 site-months of observations for the primary analysis. The adjusted rate ratio for the number of patients randomised per month after allocation to the PRIME complex intervention versus control time before allocation to the PRIME complex intervention was 1.06 (95% confidence interval 0.55 to 2.03, p = 0.87). Although two thirds of respondents to the 6-month follow-up questionnaire agreed that the audit reports were useful, only six patients were reported to

  12. Stop and Restart Effects on Modern Vehicle Starting System Components

    Energy Technology Data Exchange (ETDEWEB)

    Windover, Paul R. [Argonne National Lab. (ANL), Argonne, IL (United States); Owens, Russell J. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Terry M. [Argonne National Lab. (ANL), Argonne, IL (United States); Laughlin, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    Many drivers of personal and commercial vehicles believe that turning the vehicle off and on frequently instead of idling will cause premature wear of the starter system (starter motor and starter battery). As a result, they are concerned that the replacement cost of the starter motor and/or battery due to increased manual engine cycling would be more than the cumulative cost of the fuel saved by not idling unnecessarily. A number of variables play a role in addressing this complex concern, including the number of starting cycles per day, the time between starting cycles, the intended design life of the starting system, the amount of fuel used to restart an engine, and the cumulative cost of the saved fuel. Qualitative and quantitative information from a variety of sources was used to develop a life-cycle economic model to evaluate the cost and quantify the realistic factors that are related to the permissible frequency of starter motor cycles for the average vehicle to economically minimize engine idle time. Annual cost savings can be calculated depending on shutdown duration and the number of shutdown cycles per day. Analysis shows that cost savings are realized by eliminating idling exceeding one minute by shutting down the engine and restarting it. For a typical motorist, the damage to starting system components resulting from additional daily start cycles will be negligible. Overall, it was found that starter life is mostly dependent on the total number of start cycles, while battery life is more dependent on ensuring a full charge between start events.

  13. Restart of the chemical preparation process for the fabrication of ZnO varistors for ferroelectric neutron generator power supplies

    International Nuclear Information System (INIS)

    Lockwood, Steven John

    2005-01-01

    To date, all varistors used in ferroelectric neutron generators have been supplied from a single, proprietary source, General Electric Corporate Research and Development (GE CR and D). To protect against the vulnerability of a single source, Sandia initiated a program in the early 1980's to develop a second source for this material. A chemical preparation process for making homogeneous, high purity ZnO-based varistor powder was generated, scaled to production quantities, and transferred to external suppliers. In 1992, the chem-prep varistor program was suspended when it appeared there was sufficient inventory of GE CR and D material to supply ferroelectric neutron generator production for many years. In 1999, neutron generator production schedules increased substantially, resulting in a predicted exhaustion of the existing supply of varistor material within five years. The chem-prep program was restarted in January, 2000. The goals of the program were to (1) duplicate the chem-prep powder synthesis process that had been qualified for WR production, (2) demonstrate sintered billets from the chem-prep powder met requirements, (3) develop a process for rod fabrication and demonstrate that all component specifications could be met, and (4) optimize the process from powder synthesis through component fabrication for full-scale production. The first three of these goals have been met and are discussed in this report. A facility for the fabrication of production quantities of chem-prep powder has been established. All batches since the restart have met compositional requirements, but differences in sintering behavior between the original process and the restarted process were noted. Investigation into the equipment, precipitant stoichiometry, and powder processing procedures were not able to resolve the discrepancies. It was determined that the restarted process, which incorporated Na doping for electrical stability (a process that was not introduced until the end of the

  14. RESTART simulation of non-Markov consecutive-k-out-of-n: F repairable systems

    International Nuclear Information System (INIS)

    Villen-Altamirano, Jose

    2010-01-01

    The reliability of consecutive-k-out-of-n: F repairable systems and (k-1)-step Markov dependence is studied. The model analyzed in this paper is more general than those of previous studies given that repair time and component lifetimes are random variables that follow a general distribution. The system has one repair service which adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly dependable systems, the RESTART method was used for the estimation of steady-state unavailability, MTBF and unreliability. Probabilities up to the order of 10 -16 have been accurately estimated with little computational effort. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty for the application of this method is to find a suitable function, called the importance function, to define the regions. Given the simplicity involved in changing some model assumptions with RESTART, the importance function used in this paper could be useful for dependability estimation of many systems.

  15. Capability of NIPAM polymer gel in recording dose from the interaction of 10B and thermal neutron in BNCT

    International Nuclear Information System (INIS)

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-01-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of 10 B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without 10 B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of 10 B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to 10 B and thermal neutron reaction in BNCT. - Highlights: • Three compositions of NIPAM gel with different concentration of 10 B have been exposed by gamma and thermal neutron. • The vials containing NIPAM gel have been irradiated by an automatic system capable of providing for dose uniformity. • Suitability of NIPAM polymer gel in measuring radiation doses in BNCT has been investigated.

  16. On factoring RSA modulus using random-restart hill-climbing algorithm and Pollard’s rho algorithm

    Science.gov (United States)

    Budiman, M. A.; Rachmawati, D.

    2017-12-01

    The security of the widely-used RSA public key cryptography algorithm depends on the difficulty of factoring a big integer into two large prime numbers. For many years, the integer factorization problem has been intensively and extensively studied in the field of number theory. As a result, a lot of deterministic algorithms such as Euler’s algorithm, Kraitchik’s, and variants of Pollard’s algorithms have been researched comprehensively. Our study takes a rather uncommon approach: rather than making use of intensive number theories, we attempt to factorize RSA modulus n by using random-restart hill-climbing algorithm, which belongs the class of metaheuristic algorithms. The factorization time of RSA moduli with different lengths is recorded and compared with the factorization time of Pollard’s rho algorithm, which is a deterministic algorithm. Our experimental results indicates that while random-restart hill-climbing algorithm is an acceptable candidate to factorize smaller RSA moduli, the factorization speed is much slower than that of Pollard’s rho algorithm.

  17. The application of modern safety criteria to restarting and operating the USDOE K-Reactor

    International Nuclear Information System (INIS)

    Dimenna, R.A.; Taylor, G.A.; Brandyberry, M.D.

    1993-01-01

    The United States Department of Energy's (USDOE's) K-reactor, a defense production reactor located at the Savannah River Site in Aiken, South Carolina, was shut down in the summer of 1988 for safety upgrades to bring it into conformance with modern safety standards prior to restart. Over the course of the succeeding four years, all aspects of the 35-year old reactor, including hardware, operations, and analysis, were upgraded to ensure that the reactor could operate safely according to standards similar to those applied to modern nuclear reactors. This paper describes the decision making processes by which issues were identified, priorities assigned, and analysis improved to enhance reactor safety. Special emphasis is given to the probabilistic risk assessment (PRA) decision making processes used to quantify the risks and consequences of operating the K-reactor, the analytical hierarchy process (AHP) used to identify key phenomena, and modifications made to the RELAP5 computer code to make it applicable to K-reactor analysis. The success of the project was demonstrated when the K-reactor was restarted in the summer of 1992

  18. The ISRN has stated on the CABRI reactor restarting

    International Nuclear Information System (INIS)

    2009-01-01

    This paper presents the different issues examined by the ISRN (the French Institute of Radioprotection and Nuclear Safety) for the restarting of the pool type research CABRI reactor which is briefly described in appendix. These issues are: the design, realisation and monitoring of the new pressurised water test loop, the reassessment of the protection system limiting the reactivity injection during tests, inspection of fuel pencil condition, reassessment of safety studies, inspection of the condition of existing equipment which are essential for safety, reassessment of the seismic risk and of the fire risk, reassessment of operation conditions (personal radioprotection, human and organisational factors). An appendix contains the report by the Permanent Group of Experts for Nuclear Reactors with its recommendations

  19. The pros and cons about restarting and awareness about nuclear power generation. Further findings from INSS's analysis of the opinion survey answers

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2015-01-01

    In this paper, the pros and cons and the awareness of their background on the restart of nuclear power plants (NPPs) were analyzed based on the data of opinion polls conducted by news organizations and INSS. The results were as follows: (1) Although opposition to restart has been nearly 60% in the case when the question has only 2 choices of pros and cons, the 60% includes many people who “cannot say either way”. (2) For approval of restarting, it is necessary to have the attitude to tolerate the use of nuclear power generation (NPG), and it is extremely important that people think “safety has been confirmed,” but it does not seem to be enough reason to hesitate in the restart. (3) From the open-ended question about the influences of long-term shutdown of NPPs on the respondents and Japanese society, 50% of the respondents said there was no influence. 20% said they felt safe or easy because no accident could occur. Only 20% described economic influence, such as a real increase in electricity cost, especially among men or the people who were in favor of restarting. (4) When the above-described influences, people's recognition of the utility of NPG (or thinking about the problems that occur when reducing NPG) and people's criteria for selecting an electric power generation method were organized in terms of the 3Es (Energy security, Economic efficiency, Environment), there was quite a difference from the idea of energy policy that emphasizes a good balance among these 3Es. People's recognition of the utility of NPG has been declining. This was considered to be the reason that neither the present influences nor the importance of the invisible influence at a macro-level had been recognized. For restarting to be supported by many people, there is a need for appropriate information about not only the safety, but also the importance from the viewpoints of the 3Es and the benefits of NPG in the 3Es. (author)

  20. TOTEM and LHCf: refinements for the restart

    CERN Multimedia

    2009-01-01

    Following the previous two issues, the Bulletin continues its series to find out what the six LHC experiments have been up to since last September, and how they are preparing for the restart. We covered CMS, ATLAS, LHCb and ALICE in previous issues. In this issue we will round up the past 10 months of activity at TOTEM and LHCf. Roman Pots of the TOTEM experiment.TOTEM The past 10 months at TOTEM have been amongst the busiest since the project’s inception. The delay in the LHC startup has certainly had a silver lining for the TOTEM collaboration - not only has it given them a much-needed opportunity to test and install many crucial new detector parts, but also the lower energy range that the LHC will initially operate at in 2009 is perfect for TOTEM physics. "In fact, the LHC almost seems to be following the schedule of TOTEM!" jokes Karsten Eggert, TOTEM spokesperson. TOTEM is made up of three different detectors spread out...

  1. Evaluation of building envelopes from the viewpoint of capability of controlling thermal environment; Onnetsu kankyo chosei noryoku ni yoru kenchiku gaihi no hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K; Ono, S [Taisei Corp., Tokyo (Japan); Shukuya, M [Musashi Institute of Technology, Tokyo (Japan)

    1996-10-27

    The ability that architectural space improves the thermal environment in comparison with outdoor environment is called the `capability of controlling thermal environment.` As the value becomes higher, the indoor thermal environment is more improved. In this paper, the controlling capability of six building envelopes with different window systems was compared. The heat transfer in the wall and window system is approximated using a lumped mass model of heat capacity to obtain a heat balance equation and combined with the heat balance equation in indoor air for backward difference. The wall surface temperature and indoor air temperature in a calculation model are then calculated. A radiation absorption coefficient is used for mutual radiation on each wall. In the model, the adjoining room or first- and second-floor rooms were made the same in conditions as the model on the assumption that the one-side lighted office in an RC reference floor is in the non-illumination and non-airconditioning state. In summer, the controlling capability remarkably varies depending on the window system. For the window facing the south, the annual capability is more advanced than in other directions and the indoor thermal environment is improved on the average. 7 refs., 12 figs., 1 tab.

  2. A study on people's awareness about the restarting and decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Goto, Manabu; Sakai, Yukimi

    2015-01-01

    In this study, we conducted two questionnaire surveys targeting a total of 918 respondents living in the cities of Kyoto, Osaka and Kobe, in order to elucidate people's awareness of three things: 1) restart of nuclear power plants; 2) extension of the operation period of aging plants; and 3) decommissioning. The results are as follows: 1) People who think that electrical power companies voluntarily take higher safety measures trust the power companies and do not oppose the restart of the nuclear power plants, as compared to people who think that power companies only meet the requirements set by the nuclear regulatory agency. 2) When people were given information about aging measures and conforming to new regulatory standards, their anxiety toward the operation of aging plants was reduced. 3) People thought that decommissioning work was important for society. However, a small number of people thought it was a job worthwhile doing. (author)

  3. Nuclear and thermal power plant power ramping capability

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1983-01-01

    The possibilities of step power increase by NPP and TPP units under emergency conditions of power grids operation are considered. The data analysis has shown that power units ramping capability with WWER-440, WWER-1000 and RBMK-1000 reactors is higher than that of 300 MW power units on fossil fuel, at the initial time interval (0-30 s). These NPP power units satisfy as to ramping capability the energy system requirements. Higher NPP power units ramping capability is explained by the fact that relative pressure before turbine valves is decreased less than in straight-through boilers while the steam volumes time constant of steam separator-superheaters is less than that of intermediate superheatings. Higher power unit ramping capability with WWER-440 and RBMK-1000 reactors as compared with the WWER-1000 reactor is pointed out as well as the increase of WWER-1000 power unit capability using high-speed turbines

  4. Rheology and FTIR studies of model waxy crude oils with relevance to gelled pipeline restart

    Energy Technology Data Exchange (ETDEWEB)

    Magda, J.J.; Guimeraes, K.; Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Venkatesan, R.; Montesi, A. [Chevron Energy Technology Co., Houston, TX (United States)

    2008-07-01

    Gels composed of wax crystals may sometimes form when crude oils are transported in pipelines when ambient temperatures are low. The gels may stop the pipe flow, making it difficult or even impossible to restart the flow without breaking the pipe. Rheology and FTIR techniques were used to study the problem and to characterize transparent model waxy crude oils in pipeline flow experiments. These model oils were formulated without any highly volatile components to enhance the reproducibility of the rheology tests. Results were presented for the time- and temperature-dependent rheology of the model waxy crude oils as obtained in linear oscillatory shear and in creep-recovery experiments. The model oils were shown to exhibit many of the rheological features reported for real crude oils, such as 3 distinct apparent yield stresses, notably static yield stress, dynamic yield stress, and elastic-limit yield stress. It was concluded that of the 3, the static yield stress value, particularly its time dependence, can best be used to predict the restart behaviour observed for the same gel in model pipelines.

  5. Modeling of the re-starting of waxy crude oil flows in pipelines; Modelisation du redemarrage des ecoulements de bruts paraffiniques dans les conduites petrolieres

    Energy Technology Data Exchange (ETDEWEB)

    Vinay, G.

    2005-11-15

    Pipelining crude oils that contain large proportions of paraffins can cause many specific difficulties. These oils, known as waxy crude oils, usually exhibit high 'pour point', where this temperature is higher than the external temperature conditions surrounding the pipeline. During the shutdown, since the temperature decreases in the pipeline, the gel-like structure builds up and the main difficulty concerns the issue of restarting. This PhD attempts to improve waxy crude oil behaviour understanding thanks to experiment, modelling and numerical simulation in order to predict more accurately time and pressure required to restart the flow. Using various contributions to the literature, waxy crude oils are described as viscoplastic, thixotropic and compressible fluid. Strong temperature history dependence plays a prevailing role in the whole shutdown and restart process. Thus, waxy crude oils under flowing conditions correspond to the non-isothermal flow of a viscoplastic material with temperature-dependent rheological properties. Besides, the restart of a waxy crude oil is simulated by the isothermal transient flow of a weakly compressible thixotropic fluid in axisymmetric pipe geometry. We retain the Houska model to describe the thixotropic/viscoplastic feature of the fluid and compressibility is introduced in the continuity equation. The viscoplastic constitutive equation is involved using an augmented Lagrangian method and the resulting equivalent saddle-point problem is solved thanks to an Uzawa-like algorithm. Governing equations are discretized using a Finite Volume method and the convection terms are treated thanks to a TVD (Total Variation Diminishing) scheme. The Lagrangian functional technique usually used for incompressible viscoplastic flows, is adapted to compressible situations. Several numerical results attest the good convergence properties of the proposed transient algorithm. The non-isothermal results highlight the strong sensitivity of

  6. Restart Plan for the Prototype Vertical Denitration Calciner [SD Coversheet has Incorrect Document Number

    Energy Technology Data Exchange (ETDEWEB)

    SUTTER, C.S.

    1999-07-26

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The Restart Plan will govern the transition of the test program from the completion of the activity based startup review; through equipment checkout and surrogate material runs; to resumption of the testing program and transition to unrestricted testing.

  7. Multifunctional glass fiber/polyamide composites with thermal energy storage/release capability

    Directory of Open Access Journals (Sweden)

    G. Fredi

    2018-04-01

    Full Text Available Thermoplastic composite laminates with thermal energy storage (TES capability were prepared by combining a glass fabric, a polyamide 12 (PA12 matrix and two different phase change materials (PCMs, i.e. a paraffinic wax microencapsulated in melamine-formaldehyde shells and a paraffin shape stabilized with carbon nanotubes. The melt flow index of the PA12/PCM blends decreased with the PCM concentration, especially in the systems with shape stabilized wax. Differential scanning calorimetry showed that, for the matrices with microcapsules, the values of enthalpy were approximately the 70% of the theoretical values, which was attributed to the fracture of some microcapsules. Nevertheless, most of the energy storage capability was preserved. On the other hand, much lower relative enthalpy values were measured on the composites with shape stabilized wax, due to a considerable paraffin leakage or degradation. The subsequent characterization of the glass fabric laminates highlighted that the fiber and void volume fractions were comparable for all the laminates except for that with the higher amount of shape stabilized wax, where the high viscosity of the matrix led to a low fiber volume fraction and higher void content. The mechanical properties of the laminates were only slightly impaired by PCM addition, while a more sensible drop of the elastic modulus, of the stress at break and of the interlaminar shear strength could be observed in the shape stabilized wax systems.

  8. The accuracy evaluation according to dose delivery interruption and restart for volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hyung; Bae, Sun Myung; Kwak, Jung Won; Kang, Tae Young; Bck, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul(Korea, Republic of)

    2013-03-15

    The accurate movement of gantry rotation, collimator and correct application of dose rate are very important to approach the successful performance of Volumetric Modulated Arc Therapy (VMAT), because it is tightly interlocked with a complex treatment plan. The interruption and restart of dose delivery, however, are able to occur on treatment by various factors of a treatment machine and treatment plan. If unexpected problems of a treat machine or a patient interrupt the VMAT, the movement of treatment machine for delivering the remaining dose will be restarted at the start point. In this investigation, We would like to know the effect of interruptions and restart regarding dose delivery at VMAT. Treatment plans of 10 patients who had been treated at our center were used to measure and compare the dose distribution of each VMAT after converting to a form of digital image and communications in Medicine (DICOM) with treatment planning system (Eclipse V 10.0, Varian, USA). We selected the 6 MV photon energy of Trilogy (Varian, USA) and used OmniPro I'mRT system (V 1.7b, IBA dosimetry, Germany) to analyze the data that were acquired through this measurement with two types of interruptions four times for each case. The door interlock and the beam-off were used to stop and then to restart the dose delivery of VMAT. The gamma index in OmniPro I'mRT system and T-test in Microsoft Excel 2007 were used to evaluate the result of this investigation. The deviations of average gamma index in cases with door interlock, beam-off and without interruption on VMAT are 0.141, 0.128 and 0.1. The standard deviations of acquired gamma values are 0.099, 0.091, 0.071 and The maximum gamma value in each case is 0.413, 0.379, 0.286, respectively. This analysis has a 95-percent confidence level and the P-value of T-test is under 0.05. Gamma pass rate (3%, 3 mm) is acceptable in all of measurements. As a result, We could make sure that the interruption of this investgation are not

  9. Psychological adaptation among residents following restart of Three Mile Island.

    Science.gov (United States)

    Prince-Embury, S; Rooney, J F

    1995-01-01

    Psychological adaptation is examined in a sample of residents who remained in the vicinity of Three Mile Island following the restart of the nuclear generating facility which had been shut down since the 1979 accident. Findings indicate a lowering of psychological symptoms between 1985 and 1989 in spite of increased lack of control, less faith in experts and increased fear of developing cancer. The suggestion is made that reduced stress might have been related to a process of adaptation whereby a cognition of emergency preparedness was integrated by some of these residents as a modulating cognitive element. Findings also indicate that "loss of faith in experts" is a persistently salient cognition consistent with the "shattered assumptions" theory of victimization.

  10. Validation of DRAGON side-step method for Bruce-A restart Phase-B physics tests

    International Nuclear Information System (INIS)

    Shen, W.; Ngo-Trong, C.; Davis, R.S.

    2004-01-01

    The DRAGON side-step method, developed at AECL, has a number of advantages over the all-DRAGON method that was used before. It is now the qualified method for reactivity-device calculations. Although the side-step-method-generated incremental cross sections have been validated against those previously calculated with the all-DRAGON method, it is highly desirable to validate the side-step method against device-worth measurements in power reactors directly. In this paper, the DRAGON side-step method was validated by comparison with the device-calibration measurements made in Bruce-A NGS Unit 4 restart Phase-B commissioning in 2003. The validation exercise showed excellent results, with the DRAGON code overestimating the measured ZCR worth by ∼5%. A sensitivity study was also performed in this paper to assess the effect of various DRAGON modelling techniques on the incremental cross sections. The assessment shows that the refinement of meshes in 3-D and the use of the side-step method are two major reasons contributing to the improved agreement between the calculated ZCR worths and the measurements. Use of different DRAGON versions, DRAGON libraries, local-parameter core conditions, and weighting techniques for the homogenization of tube clusters inside the ZCR have a very small effect on the ZCR incremental thermal absorption cross section and ZCR reactivity worth. (author)

  11. Simulated annealing with restart strategy for the blood pickup routing problem

    Science.gov (United States)

    Yu, V. F.; Iswari, T.; Normasari, N. M. E.; Asih, A. M. S.; Ting, H.

    2018-04-01

    This study develops a simulated annealing heuristic with restart strategy (SA_RS) for solving the blood pickup routing problem (BPRP). BPRP minimizes the total length of the routes for blood bag collection between a blood bank and a set of donation sites, each associated with a time window constraint that must be observed. The proposed SA_RS is implemented in C++ and tested on benchmark instances of the vehicle routing problem with time windows to verify its performance. The algorithm is then tested on some newly generated BPRP instances and the results are compared with those obtained by CPLEX. Experimental results show that the proposed SA_RS heuristic effectively solves BPRP.

  12. The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G.; Miro, R. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Valencia (Spain); Ginestar, D. [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Valencia (Spain); Vidal, V. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Valencia (Spain)

    1999-05-01

    To calculate the neutronic steady state of a nuclear power reactor core and its subcritical modes, it is necessary to solve a partial eigenvalue problem. In this paper, an implicit restarted Arnoldi method is presented as an advantageous alternative to classical methods as the Power Iteration method and the Subspace Iteration method. The efficiency of these methods, has been compared calculating the dominant Lambda modes of several configurations of the Three Mile Island reactor core.

  13. Technical Capability Upgrades to the NASA Langley Research Center 6 ft. by 6 ft. Thermal Vacuum Chamber

    Science.gov (United States)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Mau, Johnny C.; Duncan, Dwight L.

    2014-01-01

    The 6 ft. by 6 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen thermal conditioning unit for controlling shroud temperatures from -150degC to +150degC; two horizontal auxiliary cold plates for independent temperature control from -150degC to +200degC; a suite of contamination monitoring sensors for outgassing measurements and species identification; signal and power feed-throughs; new pressure gauges; and a new data acquisition and control commanding system including safety interlocks. This presentation will provide a general overview of the LaRC 6 ft. by 6 ft. TVAC chamber, an overview of the new technical capabilities, and illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  14. Importance of Entrepreneurs’ Knowledge for Business Restarts of Micro and Small Enterprises

    OpenAIRE

    Ropęga, Jarosław

    2013-01-01

    Przedstawiona publikacja jest poświęcona charakterystyce i znaczeniu restartów jako następstw niepowodzeń gospodarczych. Zjawisko to staje się coraz częściej wymieniane w kategorii badawczej. Jest ona wynikiem dostrzeżenia potrzeby dyskusji nad postawami osób, które po wcześniejszych doświadczeniach zakończonych niepowodzeniem biznesu chcą ponownie rozpocząć nową działalność gospodarczą. W pierwszej części artykułu omówiono pojęcie oraz skalę tego zjawiska, wskazując na jego ...

  15. Current status of JMTR for restart

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Kimura, Nobuaki; Ooka, Makoto

    2013-01-01

    After the 2011 off the Pacific Coast of Tohoku Earthquake on March 11, 2011, JMTR has been challenging to the inspection of facility equipment, seismic soundness evaluation through earthquake response analysis, repair of facilities, correspondence to the report matters stipulated by laws and regulations, and improvement of irradiation facilities, and based on these, it have formulated the operation schedule from FY2013. In the future, JMTR will explain the soundness of the facilities to the Nuclear Regulatory Commission, and receive the facility's regular inspection after the completion of piping updating work related to the report matters stipulated by laws and regulations. After obtaining the understanding of local municipalities, it aims to restart the facilities in August 2013. After the reoperation, it will make efforts to safely and stably operate the facilities with a target of the operating rate of world top class. In addition, the following challenges are planned: (1) improvement of the facilities based on external funds for expanding utilization, (2) human resource development in the nuclear field by utilizing JMTR, and (3) development of an advanced monitoring system for improving the safety of nuclear power plants by utilizing the irradiation technology that has been accumulated in JMTR. With the aim for JMTR becoming the international hub, JMTR will continue aggressive activities. (A.O.)

  16. A proposal on restart rule of nuclear power plants with piping having local wall thinning subjected to an earthquake. Former part. Aiming at further application

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2011-01-01

    Restart rule of nuclear power plants (NPPs) with piping having local wall thinning subjected to an earthquake was proposed taking account of local wall thinning, seismic effects and restart of NPPs with applicability of 'Guidelines for NPP Response to an Earthquake (EPRI NP-6695)' in Japan. Japan Earthquake Damage Intensity Scale (JEDIS) and Earthquake Ground Motion Level (EGML) were introduced. JEDIS was classified into four scales obtained from damage level of components and structures of NPPs subjected to an earthquake, while EGML was divided into four levels by safe shutdown earthquake ground motion (So), elastic design earthquake ground motion (Sd) and design earthquake ground motion (Ss). Combination of JEDIS and EGML formulated 4 x 4 matrix and determined detailed conditions of restart of NPPs. As a response to an earthquake, operator walk inspections and evaluation of earthquake ground motion were conducted to know the level of JEDIS. JEDIS level requested respective allowable conditions of restart of NPP, which were scale level dependent and consisted of weighted combination of damage inspection (operator walk inspections, focused inspections/tests and expanded inspections), integrity evaluation and repair/replacement. If JEDIS were assigned greater than 3 with expanded inspections, inspection of piping with local wall thinning, its integrity evaluation and repair/replacement if necessary were requested. Inspection and evaluation of piping with local wall thinning was performed based on JSME or ASME codes. Detailed work flow charts were presented. Carbon steel piping and elbow was chosen for evaluation. (T. Tanaka)

  17. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    Science.gov (United States)

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  18. CATHARE2 V1.4 capability to simulate the performance of isolation condenser systems with thermal valve

    International Nuclear Information System (INIS)

    Meloni, P.

    2001-01-01

    ENEA (Italy) in co-operation with CEA (France) has carried out an R and D activity aimed at increasing the reliability of Decay Heat Removal (DHR) passive systems that implement in-pool heat exchangers. The main outcome reached was the definition of a device, called Thermal Valve (TV), able to avoid the installation of mechanical valve on the primary circuit, thus reducing thermalmechanical constrains and thermal-hydraulic instabilities. This paper presents a preliminary assessment performed with CATHARE of this innovative device. In the first part the code capability to simulate in-pool heat exchangers is verified against experimental data of the PANDA facility, that are available within the frame of the ISP 42. In the second part a CATHARE calculation showing the performances of the PANDA passive condenser with TV (start-up and shutdown) is described.(author)

  19. Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter

    Science.gov (United States)

    Xu, Teng; Gómez-Hernández, J. Jaime

    2018-02-01

    Detecting where and when a contaminant entered an aquifer from observations downgradient of the source is a difficult task; this identification becomes more challenging when the uncertainty about the spatial distribution of hydraulic conductivity is accounted for. In this paper, we have implemented an application of the restart normal-score ensemble Kalman filter (NS-EnKF) for the simultaneous identification of a contaminant source and the spatially variable hydraulic conductivity in an aquifer. The method is capable of providing estimates of the spatial location, initial release time, the duration of the release and the mass load of a point-contamination event, plus the spatial distribution of hydraulic conductivity together with an assessment of the estimation uncertainty of all the parameters. The method has been applied in synthetic aquifers exhibiting both Gaussian and non-Gaussian patterns. The identification is made possible by assimilating in time both piezometric head and concentration observations from an array of observation wells. The method is demonstrated in three different synthetic scenarios that combine hydraulic conductivities with unimodal and bimodal histograms, and releases in high and low conductivity zones. The results prove that the specific implementation of the EnKF is capable of recovering the source parameters with some uncertainty and of recovering the main patterns of heterogeneity of the hydraulic conductivity fields by assimilating a sufficient number of state variable observations. The proposed approach is an important step towards contaminant source identification in real aquifers, which may have logconductivity spatial distributions with either Gaussian or non-Gaussian features, yet, it is still far from practical applications since the transport parameters, the external sinks and sources and the initial and boundary conditions are assumed known.

  20. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.

  1. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    International Nuclear Information System (INIS)

    Page, R.; Jones, J.R.

    1997-01-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell 'B' Loss of offsite power fault transient

  2. Effect of hydraulic retention time on deterioration/restarting of sludge anaerobic digestion: Extracellular polymeric substances and microbial response.

    Science.gov (United States)

    Wei, Liangliang; An, Xiaoyan; Wang, Sheng; Xue, Chonghua; Jiang, Junqiu; Zhao, Qingliang; Kabutey, Felix Tetteh; Wang, Kun

    2017-11-01

    In this study, the transformation of the sludge-related extracellular polymeric substances (EPS) during mesophilic anaerobic digestion was characterized to assess the effect of hydraulic retention time (HRT) on reactor deterioration/restarting. Experimental HRT variations from 20 to 15 and 10d was implemented for deterioration, and from 10 to 20d for restarting. Long-term digestion at the lowest HRT (10d) resulted in significant accumulation of hydrolyzed hydrophobic materials and volatile fatty acids in the supernatants. Moreover, less efficient hydrolysis of sludge EPS, especially of proteins related substances which contributed to the deterioration of digester. Aceticlastic species of Methanosaetaceae decreased from 36.3% to 27.6% with decreasing HRT (20-10d), while hydrogenotrophic methanogens (Methanomicrobiales and Methanobacteriales) increased from 30.4% to 38.3%. Proteins and soluble microbial byproducts related fluorophores in feed sludge for the anaerobic digester changed insignificantly at high HRT, whereas the fluorescent intensity of fulvic acid-like components declined sharply once the digestion deteriorated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  4. Anticipated transport of Cs-137 from Steel Creek following L-Area restart

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1982-01-01

    Heat exchanger cooling water, spent fuel storage basin effluents, and process water from P and L-Reactor Areas were discharged to Steel Creek beginning in 1954. Cs-137 was the most significant radionuclide discharged to the environs. Once the Cs-137 was discharged from P and L-Area reactors to Steel Creek, it became associated with silt and clay in the Steel Creek system. After its association with the silt and clay, the Cs-137 becomes part of the sediment transport process and undergoes continual deposition-resuspension in the stream system. This report discusses the expected fate and transport of Cs-137 currently present in the Steel Creek system after L-Reactor restart

  5. Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual.

    Science.gov (United States)

    Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing

    2011-12-01

    Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America

  6. Thermal Properties Measurement Report

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hurley, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gofryk, Krzysztof [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fielding, Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knight, Collin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meyer, Mitch [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  7. Getting to First Flight: Equipping Space Engineers to Break the Start-Stop-Restart Cycle

    Science.gov (United States)

    Singer, Christopher E.; Dumbacher, Daniel L.

    2010-01-01

    The National Aeronautics and Space Administration s (NASA s) history is built on a foundation of can-do strength, while pointing to the Saturn/Apollo Moon missions in the 1960s and 1970s as its apex a sentiment that often overshadows the potential that lies ahead. The chronicle of America s civil space agenda is scattered with programs that got off to good starts with adequate resources and vocal political support but that never made it past a certain milestone review, General Accountability Office report, or Congressional budget appropriation. Over the decades since the fielding of the Space Shuttle in the early 1980s, a start-stop-restart cycle has intervened due to many forces. Despite this impediment, the workforce has delivered engineering feats such as the International Space Station and numerous Shuttle and science missions, which reflect a trend in the early days of the Exploration Age that called for massive infrastructure and matching capital allocations. In the new millennium, the aerospace industry must respond to transforming economic climates, the public will, national agendas, and international possibilities relative to scientific exploration beyond Earth s orbit. Two pressing issues - workforce transition and mission success - are intertwined. As this paper will address, U.S. aerospace must confront related workforce development and industrial base issues head on to take space exploration to the next level. This paper also will formulate specific strategies to equip space engineers to move beyond the seemingly constant start-stop-restart mentality to plan and execute flight projects that actually fly.

  8. Comparative study of the optimal ratio of biogas production from various organic wastes and weeds for digester/restarted digester

    Directory of Open Access Journals (Sweden)

    Ugochukwu C. Okonkwo

    2018-04-01

    Full Text Available This study carried out a comparative analysis of the rates of production of biogas from various organic wastes and weeds which enabled the determination of optimal ratio of poultry droppings to domestic wastes. Digester was prepared for the anaerobic fermentation of the domestic wastes and weeds. The gas production did not begin until the 7th day and increased steadily at first, and then increased sharply until it reached its peak on the 18th day before declining. The total gas produced within the 22 days of experimentation was 1771 cm3. The maximum volume of gas amounting to 809 cm3 was produced by the sample containing 50% poultry dropping and 50% weeds. This indicates that this sample possesses the best C/N ratio of all the samples prepared. For restarted digester, gas production began on the 2nd day as against the 7th day with no restarted digester and the gas production peaked earlier. Keywords: Digester, Optimal ratio, Biogas production, Organic wastes, C/N ratio

  9. Improved thermal source term generation capability for use in performance assessment and system studies

    International Nuclear Information System (INIS)

    King, J.; Rhodes, C.

    1994-01-01

    This paper describes work performed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating (M ampersand O) Contractor to improve spent nuclear fuel (SNF) waste stream characterization for system studies. It discusses how these new capabilities may be exploited for thermal source term generation for use in repository performance assessment modeling. SNF historical discharges have been exhaustively tracked, and significant effort has gone into capturing, verifying, and electronically managing spent fuel inventory data. Future discharge projections are produced annually by the Energy Information Administration (EIA) using sophisticated computer models. The output of these models is coupled with annually updated SNF historical discharges to produce what is referred to as the open-quotes reactor database.close quotes This database and related data are published in a variety of ways including on magnetic media for consistent use by analysts or other interested parties

  10. Cadmium-emitter self-powered thermal neutron detector performance characterization & reactor power tracking capability experiments performed in ZED-2

    Energy Technology Data Exchange (ETDEWEB)

    LaFontaine, M.W., E-mail: physics@execulink.com [LaFontaine Consulting, Kitchener, Ontario (Canada); Zeller, M.B. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Nielsen, K. [Royal Military College of Canada, SLOWPOKE-2 Reactor, Kingston, Ontario (Canada)

    2014-07-01

    Cadmium-emitter self-powered thermal neutron flux detectors (SPDs), are typically used for flux monitoring and control applications in low temperature, test reactors such as the SLOWPOKE-2. A collaborative program between Atomic Energy of Canada, academia (Royal Military College of Canada (RMCC)) and industry (LaFontaine Consulting) was initiated to characterize the incore performance of a typical Cd-emitter SPD; and to obtain a definitive measure of the capability of the detector to track changes in reactor power in real time. Prior to starting the experiment proper, Chalk River Laboratories' ZED-2 was operated at low power (5 watts nominal) to verify the predicted moderator critical height. Test measurements were then performed with the vertical center of the SPD emitter positioned at the vertical mid-plane of the ZED-2 reactor core. Measurements were taken with the SPD located at lattice position L0 (near center), and repeated at lattice position P0 (in D{sub 2}O reflector). An ionization chamber (part of the ZED-2 control instrumentation) monitored reactor power at a position located on the south side of the outside wall of the reactor's calandria. These experiments facilitated measurement of the absolute thermal neutron sensitivity of the subject Cd-emitter SPD, and validated the power tracking capability of said SPD. Procedural details of the experiments, data, calculations and associated graphs, are presented and discussed. (author)

  11. Bruce A units 1 and 2 restart project

    International Nuclear Information System (INIS)

    Routledge, K.

    2006-01-01

    This presentation provides an overview of the Bruce A Units 1 and 2 Restart project from the vantage point of the Project Management Contractor (PMC). The presentation will highlight the unique structure of the project, which has been designed to maximize project efficiencies while minimizing the impact to the Bruce Power operational reactors. Efficiency improvements covered in the presentation includes: support services provided to the direct work contractors, radiation protection, worker protection, engineering, field execution, maintenance and facilities. The presentation focusses on the roles of the PMC in helping to ensure the successful outcome of this ambitious reactor refurbishment project. In addition, the Construction Island concept that has been implemented on the project will be presented, with some of the innovative thinking that has gone into its creation. The organization of the PMC and an overview of the project schedule is also presented. AMEC NCL is a privately held consultancy in the Canadian nuclear industry which provides experienced and flexible multi-disciplined resources to support full project management, engineering solutions and safety consultancy services throughout the life cycle of nuclear facilities in Canada, and for customers in related markets in North America and overseas. AMEC NCL is a wholly-owned subsidiary of AMEC plc

  12. Implementation plan for the Waste Experimental Reduction Facility Restart Operational Readiness Review

    International Nuclear Information System (INIS)

    1993-03-01

    The primary technical objective for the WERF Restart Project is to assess, upgrade where necessary, and implement management, documentation, safety, and operation control systems that enable the resumption and continued operation of waste treatment and storage operations in a manner that is compliant with all environment, safety, and quality requirements of the US Department of Energy and Federal and State regulatory agencies. Specific processes that will be resumed at WERF include compaction of low-level compatible waste; size reduction of LLW, metallic and wood waste; incineration of combustible LLW and MLLW; and solidification of low-level and mixed low-level incinerator bottom ash, baghouse fly ash, and compatible sludges and debris. WERF will also provide for the operation of the WWSB which includes storage of MLLW in accordance with Resource Conservation and Recovery Act requirements

  13. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song

    2017-05-10

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young\\'s moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell–Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  14. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    International Nuclear Information System (INIS)

    Shadid, J.N.; Smith, T.M.; Cyr, E.C.; Wildey, T.M.; Pawlowski, R.P.

    2016-01-01

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  15. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N., E-mail: jnshadi@sandia.gov [Sandia National Laboratories, Computational Mathematics Department (United States); Department of Mathematics and Statistics, University of New Mexico (United States); Smith, T.M. [Sandia National Laboratories, Multiphysics Applications Department (United States); Cyr, E.C. [Sandia National Laboratories, Computational Mathematics Department (United States); Wildey, T.M. [Sandia National Laboratories, Optimization and UQ Department (United States); Pawlowski, R.P. [Sandia National Laboratories, Multiphysics Applications Department (United States)

    2016-09-15

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  16. A decay heat removal methodology for reuseable orbital transfer vehicles

    Science.gov (United States)

    McDaniel, Patrick J.; Perkins, David R.

    1992-07-01

    Operation of a nuclear thermal rocket(NTR) as the propulsion system for a reusable orbital transfer vehicle has been considered. This application is the most demanding in terms of designing a multiple restart capability for an NTR. The requirements on a NTR cooling system associated with the nuclear decay heat stored during operation have been evaluated, specifically for a Particle Bed Reactor(PBR) configuration. A three mode method of operation has been identified as required to adequately remove the nuclear decay heat.

  17. PSU-LEOPARD, Program LEOPARD in PFMP System, Fast Neutron and Thermal Neutron Spectra Calculation

    International Nuclear Information System (INIS)

    Petrovic, B.G.; Smuc, T.; Pevec, D.; Grgic, D.

    1992-01-01

    1 - Description of problem or function: LEOPARD is a unit cell code for generating two and/or four group constants for PWR fuel assemblies. It assumes that the fuel assembly consists of a large array of identical unit cells, each unit cell being composed of a fuel pin and cladding, surrounded by a moderator. A non-lattice part of the fuel assembly is accounted for by introducing an 'extra' region. The most important feature of PSU-LEOPARD is the capability to fit the group constants as polynomials in burnup and soluble boron concentration, providing easily accessible data for in-core fuel management calculations. The polynomial coefficients are stored in a file called ADD (Assembly Data Description) in a Format compatible with the MCRAC code. RBI version 90.1 of PSU-LEOPARD (PC, IBM mainframe and VAX versions) includes a restart option, numerically more stable polynomial fit, PC and VAX timing routines, and a few other new options. 2 - Method of solution: LEOPARD is a spectrum dependent non-spatial depletion code, based on the modified MUFT and SOFOCATE models. The MUFT model, dividing the fast energy range into 54 energy groups, calculates the fast constants by utilizing the B1 and Grueling-Goertzel approximations. The SOFOCATE model, representing the thermal energy range by 172 energy levels, calculates the thermal constants averaged over the Wigner-Wilkins spectrum. ABH method is used to homogenize the unit cell for each energy level to provide the equivalent homogeneous macroscopic Cross sections for use with Wigner-Wilkins spectrum. The LEOPARD energy range is from zero eV to 10 MeV with a 0.625 eV cutoff between the fast and thermal groups. 3 - Restrictions on the complexity of the problem: PSU-LEOPARD works with Nuclides commonly used in water reactors. Thorium and U-238 chains are allowed

  18. Heat transfer capability of solar radiation in colored roof and influence on room thermal comfort

    Science.gov (United States)

    Syuhada, Ahmad; Maulana, Muhammad Ilham

    2018-02-01

    Colored zinc is the most widely used by people in Indonesia as the roof of the building. Each color has different heat absorption capability, the higher the absorption capacity of a roof will cause high room temperature. A high temperature in the room will cause the room is not thermally comfortable for activity. Lack of public knowledge about the ability of each color to absorb heat can cause errors in choosing the color of the roof of the building so that it becomes uncomfortable regarding thermal comfort. This study examined how big the ability of each color in influencing the heat absorption on the roof of the zinc. The purpose of this study is to examine which colors are the lowest to absorb radiation heat. This research used theexperimental method. Data collected by measuring the temperature of the environment above and below the colored tin roof, starting at 11:00 am until 15:00 pm. The zinc roofs tested in this study are zinc black, red zinc, green zinc, blue zinc, brown zinc, maroon zinc, orange zinc, zinc gray, zinc color chrome and zinc white color. The study results show that black and blackish colors will absorb more heat than other colors. While the color white or close to whitish color will absorb a slight heat.

  19. Europe faces up to NSP restart and two new crackers

    International Nuclear Information System (INIS)

    Roberts, M.

    1993-01-01

    European cracker operators are hurting-most have not been covering cash costs for the past six months-and they are determined to ease the pain by boosting prices. But since olefins demand remains weak, price gains will have to come via lower production. That appears to be difficult, given the startup of two new world-scale crackers-BP Chemicals (London) 350,000-m.t./year expansion at Grangemouth, UK and EniChem's (Milan) 360,000-m.t./year plant at Brindisi, Italy - and the restart of North Sea Petrochemical's (NSP; Antwerp) 250,000-m.t./year propane dehydrogenation unit. Although the two new crackers have the potential to boost Europe's net olefins output by 4% in 1993, to 18.5 million m.t./year, according to Trichem Consultants (London), the increase will be smaller because EniChem and BP will reduce capacity at other plants as the new units come onstream. EniChem says that the startup of Brindisi will not have an effect on the market. We will not allow the startup to further depress prices

  20. Latest news from the YETS: all restarting except the LHC

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    With the closure of the SPS at 3 p.m. on Friday, 19 February, maintenance work is now ongoing only at the LHC. All activities are on track for a smooth restart in a few weeks’ time.   At the LHC, all general maintenance activities are proceeding well and according to schedule. In particular, the electrical tests on the general emergency stops have been completed, while the cooling and ventilation maintenance, including leak repairs at various points, will be completed by the end of this week for the whole machine. By the end of next week, the teams will also have completed the bakeout and commissioning of all the collimators, while the installation of coaxial cable for clock distribution for CMS TOTEM has been postponed to the Extended Year-End Technical Stop (EYETS), scheduled to start in December. Following a recent decision, additional electrical tests of the circuits (ELQA and energy extraction insulation tests) for the whole machine have been added to the schedule. The SPS is currentl...

  1. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  2. Restart 2.0 of substrategic nuclear weapon disarmament? Negotiation approaches and models; Neustart 2.0 zur Abruestung substrategischer Nuklearwaffen? Verhandlungsansaetze und -modelle

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Michael

    2011-05-15

    The author discusses the following topics with respect a possible restart of nuclear disarmament negotiations: nuclear disarmament versus nuclear deterrence; substrategic nuclear weapons; initial positions for the negotiations (American position, Russian position, German position); strategic and substrategic nuclear weapon disarmament (including the questions of transparency and verification); imponderables.

  3. SP-100 initial startup and restart control strategy

    International Nuclear Information System (INIS)

    Halfen, F.J.; Wong, K.K.; Switick, D.M.; Shukla, J.N.

    1992-01-01

    This paper reports that recent Generic Flight System (GFS) updates have necessitated revisions in the initial startup and restart control strategies. The design changes that have had the most impact on the control strategies are the addition of the Auxiliary Cooling and Thaw (ACT) system for preheating the lithium filled components, changes in the reactivity worths of the reflectors and safety-rods such that initial cold criticality is achieved with only a small amount of reflector movement following the withdrawal of the safety-rods, and the removal of the scram function from the reflectors. Revised control and operating strategies have been developed and tested using the SP-100 dynamic simulation model, ARIES-GFS. The change in the total reactivity worths of the reflectors and safety-rods has eliminated the need for the use of fast and slow reflector drive speeds during the initial on-orbit approach to criticality. The relatively fast removal of the safety-rods results in a near-critical condition so that the use of slow moving (single speed) reflector drives does not add significant time to achieve full power for the initial startup. The use of the ACT system (with its NaK trace-lines for preheating and auxiliary cooling) affects the main Thermoelectric Electro-Magnetic (TEM) pump startup and the time after a shutdown before freezing occurs in the main heat transfer systems

  4. HFBR restart activity A2.6: Review of FSAR and 60 MW addendum to assure consistency of operation at 40 MW

    International Nuclear Information System (INIS)

    Rao, D.V.; Ross, S.B.; Darby, J.L.; Clark, R.A.

    1990-01-01

    The purpose of this task (HFBR Restart Activity A2.6) is to perform a review of the design basis accident (DBA) analyses sections of the 1964 HFBR-Final Safety Analysis Report; Volumes I and II, and the 1982 Addendum to the HFBR-FSAR for 60 MW operation to assure that operation at 40 MW will be consistent with these analyses. Additional documents utilized in the review included the Level 1 PRA for HFBR, HFBR-PDMs and HFBR-OPMs. The review indicates that the 1964 FSAR-DBA analysis in incomplete in the sense that it did not analyze some of the important initiators for 1-loop operation that include: Accidental throttling of primary flow control valves; seizure of primary pump; loss of secondary pump; accidental throttling of secondary flow control valves; rupture of secondary piping. The first three initiators were later studied in the 1982 addendum. The other two initiators have not been examined to-date for 1-loop operation. It is recommended that the impact of these initiators be assessed prior to the restart, if 1-loop operation is chosen for the restart. The review demonstrated that at 40 MW operation there are only a few accident initiators that will culminate in core damage (fuel melting and /or cladding failure) regardless of the availability of mitigating systems. For 1-loop Operation these accidents include: Fuel channel blockage, primary pump seizure, and large-large LOCA (a LOCA with effective break diameter > 2.81 in. is referred to as a large-large LOCA in this document as well as in PRA). Although all these accidents listed above could lead to core damage for 1-loop operation as well, the probability is expected be very low

  5. Asynchronous Checkpoint Migration with MRNet in the Scalable Checkpoint / Restart Library

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, K; Moody, A; de Supinski, B R

    2012-03-20

    Applications running on today's supercomputers tolerate failures by periodically saving their state in checkpoint files on stable storage, such as a parallel file system. Although this approach is simple, the overhead of writing the checkpoints can be prohibitive, especially for large-scale jobs. In this paper, we present initial results of an enhancement to our Scalable Checkpoint/Restart Library (SCR). We employ MRNet, a tree-based overlay network library, to transfer checkpoints from the compute nodes to the parallel file system asynchronously. This enhancement increases application efficiency by removing the need for an application to block while checkpoints are transferred to the parallel file system. We show that the integration of SCR with MRNet can reduce the time spent in I/O operations by as much as 15x. However, our experiments exposed new scalability issues with our initial implementation. We discuss the sources of the scalability problems and our plans to address them.

  6. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    Science.gov (United States)

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  7. Security surveillance challenges and proven thermal imaging capabilities in real-world applications

    Science.gov (United States)

    Francisco, Glen L.; Roberts, Sharon

    2004-09-01

    Uncooled thermal imaging was first introduced to the public in early 1980's by Raytheon (legacy Texas Instruments Defense Segment Electronics Group) as a solution for military applications. Since the introduction of this technology, Raytheon has remained the leader in this market as well as introduced commercial versions of thermal imaging products specifically designed for security, law enforcement, fire fighting, automotive and industrial uses. Today, low cost thermal imaging for commercial use in security applications is a reality. Organizations of all types have begun to understand the advantages of using thermal imaging as a means to solve common surveillance problems where other popular technologies fall short. Thermal imaging has proven to be a successful solution for common security needs such as: ¸ vision at night where lighting is undesired and 24x7 surveillance is needed ¸ surveillance over waterways, lakes and ports where water and lighting options are impractical ¸ surveillance through challenging weather conditions where other technologies will be challenged by atmospheric particulates ¸ low maintenance requirements due to remote or difficult locations ¸ low cost over life of product Thermal imaging is now a common addition to the integrated security package. Companies are relying on thermal imaging for specific applications where no other technology can perform.

  8. PHISICS multi-group transport neutronic capabilities for RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G. [Idaho National Laboratory (INL), 2525 N. Fremont Ave., Idaho Falls, ID 83402 (United States)

    2012-07-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  9. Development of a coupled neutronic/thermal-hydraulic tool with multi-scale capabilities and applications to HPLWR core analysis

    International Nuclear Information System (INIS)

    Monti, Lanfranco; Starflinger, Joerg; Schulenberg, Thomas

    2011-01-01

    Highlights: → Advanced analysis and design techniques for innovative reactors are addressed. → Detailed investigation of a 3 pass core design with a multi-physics-scales tool. → Coupled 40-group neutron transport/equivalent channels TH core analyses methods. → Multi-scale capabilities: from equivalent channels to sub-channel pin-by-pin study. → High fidelity approach: reduction of conservatism involved in core simulations. - Abstract: The High Performance Light Water Reactor (HPLWR) is a thermal spectrum nuclear reactor cooled and moderated with light water operated at supercritical pressure. It is an innovative reactor concept, which requires developing and applying advanced analysis tools as described in the paper. The relevant water density reduction associated with the heat-up, together with the multi-pass core design, results in a pronounced coupling between neutronic and thermal-hydraulic analyses, which takes into account the strong natural influence of the in-core distribution of power generation and water properties. The neutron flux gradients within the multi-pass core, together with the pronounced dependence of water properties on the temperature, require to consider a fine spatial resolution in which the individual fuel pins are resolved to provide precise evaluation of the clad temperature, currently considered as one of the crucial design criteria. These goals have been achieved considering an advanced analysis method based on the usage of existing codes which have been coupled with developed interfaces. Initially neutronic and thermal-hydraulic full core calculations have been iterated until a consistent solution is found to determine the steady state full power condition of the HPLWR core. Results of few group neutronic analyses might be less reliable in case of HPLWR 3-pass core than for conventional LWRs because of considerable changes of the neutron spectrum within the core, hence 40 groups transport theory has been preferred to the

  10. Determination of the replacement cooling tower capability at the ETRR-2 research reactor

    International Nuclear Information System (INIS)

    El-Din El-Morshdy, S.

    2004-01-01

    The ETRR-2 replacement cooling tower capability has been evaluated by the thermal acceptance test performed in June 2003. All instruments used were calibrated prior to the test. The measured data are collected at regular intervals in accordance with the acceptance test code for water cooling towers of the cooling tower institute recommendations. Both the characteristic curve and the performance curve methods were used to evaluate the tower capability. The test results yield a tower capability of about 105% and so the tower is thermally accepted. (orig.)

  11. Technical Capability Upgrades to the NASA Langley Research Center 8 ft. by 15 ft. Thermal Vacuum Chamber

    Science.gov (United States)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Duncan, Dwight L.

    2016-01-01

    The 8 ft. by 15 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen distribution manifold for supplying the shroud and other cold surfaces to liquid nitrogen temperatures; a new power supply and distribution system for accurately controlling a quartz IR lamp suite; a suite of contamination monitoring sensors for outgassing measurements and species identification; a new test article support system; signal and power feed-throughs; elimination of unnecessary penetrations; and a new data acquisition and control commanding system including safety interlocks. This paper will provide a general overview of the LaRC 8 ft. by 15 ft. TVAC chamber, an overview of the new technical capabilities, and will illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  12. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of L reactor

    International Nuclear Information System (INIS)

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1981-10-01

    Information is presented on the following subjects: habitat and vegetation, the avifauna, semi-aquatic and terrestrial vertebrates, and aquatic communities of Steel Creek, species of special concern, and radiocesium in Steel Creek. Two main goals of the study were the compilation of a current inventory of the flora and fauna of the Steel Creek ecosystem and an assessment of the probable impacts of radionuclides, primarily 137 Cs, that were released into Steel Creek during earlier reactor operations. Although a thorough evaluation of the impacts of the L reactor restart is impossible at this time, it is concluded that the effects on the Steel Creek ecosystem will be substantial if no mitigative measures are taken

  13. Thermal-hydraulic tests with out-of-pile test facility for BOCA development

    International Nuclear Information System (INIS)

    Kitagishi, Shigeru; Aoyama, Masashi; Tobita, Masahiro; Inaba, Yoshitomo; Yamaura, Takayuki

    2012-01-01

    The fuel transient test facility was prepared for power ramping tests of light-water-reactor (LWR) fuels in the Japan Materials Testing Reactor (JMTR) under a contract project with the Nuclear Industrial Safety Agent (NISA) of the Ministry of Economy, Trade and Industry (METI). It is necessary to develop high accuracy analysis procedure for power ramping tests after restart of the JMTR. The out-of-pile test facility to simulate thermal-hydraulic conditions of the fuel transient test facility was therefore developed. Applicability of the analysis code ACE-3D was examined for thermal-hydraulic analysis of power ramping tests for 10x10 BWR fuels by the fuel transient test facility. As the results, the calculated temperature was 304°C in comparison with measured value of 304.9-317.4°C in the condition of 600 W/cm. There is a bright prospect of high accuracy power ramping tests by the fuel transient test facility in JMTR. (author)

  14. Thermal-hydraulic safety aspects related to irradiation capabilities in MTR reactors

    International Nuclear Information System (INIS)

    Khedr, A.

    2009-01-01

    MTR research reactor such as ETRR-2 is an open pool type reactor that has a capability for irradiation into a number of irradiation boxes (IBs) installed at different positions on a separate grid called irradiation grid (I G). The I B has a lower removable plug to open or close its lower nozzle according to the I B is used or not.Increasing the used No. of I Bs in irradiation means that a valuable change in the flow distribution on the I G will occur. This paper is focused on the optimum number of I Bs that could be used without deterioration the cooling of I G components and avoiding the formation of hot spots. RELAP5 system code is used for thermal hydraulic analysis of the I G cooling system. Mathematical models and fortran program is developed to calculate the heat distribution in the I G components and the equivalent nozzle diameter that compensate the I B pressure drop due to the irradiated material (I M). This equivalent diameter simulates the used I B nozzle in the RELAP5 input deck. The results show that, the internal flow into the I Bs has significant effect on the coolability of the I G components. The number of I Bs that can be used is inversely proportional with the reactor power, the IM's void fraction and directly proportional with the PCS flow rate. Different cases of operating power and void fraction at two values for PCS flow are studied. In all of the cases considered limited number of the I Bs is permissible to use in order to avoid the excessive heating of the I G components

  15. Renewable Energy Essentials: Concentrating Solar Thermal Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Concentrated solar thermal power (CSP) is a re-emerging market. The Luz Company built 354 MWe of commercial plants in California, still in operations today, during 1984-1991. Activity re-started with the construction of an 11-MW plant in Spain, and a 64-MW plant in Nevada, by 2006. There are currently hundreds of MW under construction, and thousands of MW under development worldwide. Spain and the United States together represent 90% of the market. Algeria, Egypt and Morocco are building integrated solar combined cycle plants, while Australia, China, India, Iran, Israel, Italy, Jordan, Mexico, South Africa and the United Arab Emirates are finalising or considering projects. While trough technology remains the dominant technology, several important innovations took place over 2007-2009: the first commercial solar towers, the first commercial plants with multi-hour capacities, the first Linear Fresnel Reflector plants went into line.

  16. APPLICATION OF RESTART COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY (RCMA-ES TO GENERATION EXPANSION PLANNING PROBLEM

    Directory of Open Access Journals (Sweden)

    K. Karthikeyan

    2012-10-01

    Full Text Available This paper describes the application of an evolutionary algorithm, Restart Covariance Matrix Adaptation Evolution Strategy (RCMA-ES to the Generation Expansion Planning (GEP problem. RCMA-ES is a class of continuous Evolutionary Algorithm (EA derived from the concept of self-adaptation in evolution strategies, which adapts the covariance matrix of a multivariate normal search distribution. The original GEP problem is modified by incorporating Virtual Mapping Procedure (VMP. The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units is considered. Two different constraint-handling methods are incorporated and impact of each method has been compared. In addition, comparison and validation has also made with dynamic programming method.

  17. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song; Cottrill, Anton L.; Kunai, Yuichiro; Toland, Aubrey R.; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S.

    2017-01-01

    rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous

  18. Life stage differences in resident coping with restart of the Three Mile Island nuclear generating facility

    International Nuclear Information System (INIS)

    Prince-Embury, S.; Rooney, J.F.

    1990-01-01

    A study of residents who remained in the vicinity of Three Mile Island (TMI) immediately following the restart of the nuclear generating plant revealed that older residents employed a more emotion-focused coping style in the face of this event than did younger residents. Coping style was, however, unrelated to the level of psychological symptoms for these older residents, whereas demographic variables were related. Among younger residents, on the other hand, coping style was related to the level of psychological symptoms, whereas demographic variables were not. Among younger residents, emotion-focused coping was associated with more symptoms and problem-focused coping was associated with fewer symptoms, contradicting previous findings among TMI area residents

  19. Assessment on the Reactor Containment Cooling Capability of Kori Unit 1 Under LOCA Conditions with Loss of Offsite Power

    International Nuclear Information System (INIS)

    Lee, Jin Yong; Park, Jong Woon; Kim, Hyeong Taek

    2006-01-01

    The fan cooler system is designed to remove heat from containment under postulated accident conditions. During a postulated LOCA concurrent with a Loss of Offsite Power (LOOP), the Component Cooling Water (CCW) pumps that supply cooling water to the fan cooler and the fan that supplies containment air to the fan cooler will temporarily lose power. Then, the high temperature steam in the containment atmosphere will pass over the fan cooler tubing without forced cooling water flow. In that case, boiling may occur in the fan cooler tubes causing steam bubbles to form and pass into the attached CCW piping creating steam voids. Prior to the CCW pumps restart, the presence of steam and subcooled water can induce the potential for water hammer. As the CCW pumps restart, the accumulated steam condenses and the pumped water can produce a water hammer when the void closes. The hydrodynamic loads caused by such a water hammer event could challenge the integrity and the function of the fan cooler and associated CCW system. With respect to this phenomena, the United States Nuclear Regulatory Commission (USNRC) issued the Generic Letter (GL) 96-06, which requests an assessment of the possibility of boiling and water hammer in the cooling water system. The objectives of this study are to develop a analysis method for predicting the thermal hydraulic status of containment fan cooler and then to assess the containment fan cooler of Kori Unit 1 using the developed model under a LOCA with LOOP

  20. Restart oversight assessment of Hanford 242-A evaporator: Technical report

    International Nuclear Information System (INIS)

    Lagdon, R.; Lasky, R.

    1994-08-01

    An assessment team from the Office of Environment, Safety and Health (EH), US Department of Energy (DOE), conducted an independent assessment of the 242-A Evaporator at the Hanford Site during January 17--28, 1994. An EH team member remained on-site following the assessment to track corrective actions and resolve prestart findings. The primary objective of this assessment was independent assurance that the DOE Office of Environmental Management (EM), the DOE Richland Operations Office (DOE-RL), and Westinghouse Hanford Company (WHC) can safely restart the evaporator. Another objective of the EH team was to assess EM's Operational Readiness Evaluation (ORE) to determine if the programs, procedures, and management systems implemented for operation of the 241-A Evaporator ensure the protection of worker safety and health. The following section of this report provides background information on the 242-A Evaporator and Operational Readiness Review (ORR) activities conducted to date. The next chapter is divided into sections that address the results of discrete assessment activities. Each section includes a brief statement of conclusions for the functional area in question, descriptions of the review bases and methods, and a detailed discussion of the results. Concerns identified during the assessment are listed for the section to which they apply, and the specific findings upon which the concern is based can be found immediately thereafter

  1. Challenges of restarting Bruce Units 3 and 4 from a chemistry and materials perspective

    International Nuclear Information System (INIS)

    Roberts, J.G.; Langguth, K.

    2005-01-01

    In 2001, Bruce Power leased the Bruce Units 1-8 reactors from Ontario Power Generation. Bruce Power decided to restart Bruce Units 3 and 4 following a condition assessment of Bruce A Units 3 and 4. This paper describes the challenges that were encountered and how they were overcome, specifically for heat transport system chemistry in order to adequately protect carbon steel surfaces. The heat transport system, by design, has close inter-relations with other station systems and the related issues of some of these systems are also discussed. Considerations of material impacts have significant influences on the approach to, and control of, chemistry. Specific material impacts led to a novel, and successful, approach. This approach was arrived at following significant efforts by a multi-disciplinary team of operations, maintenance and chemistry staff. The issues, approaches considered and solutions used for a successful outcome will be presented. (author)

  2. Challenges of restarting Bruce Units 3 and 4 from a chemistry and materials perspective

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.G.; Langguth, K. [Bruce Power, Tiverton, Ontario (Canada)

    2005-07-01

    In 2001, Bruce Power leased the Bruce Units 1-8 reactors from Ontario Power Generation. Bruce Power decided to restart Bruce Units 3 and 4 following a condition assessment of Bruce A Units 3 and 4. This paper describes the challenges that were encountered and how they were overcome, specifically for heat transport system chemistry in order to adequately protect carbon steel surfaces. The heat transport system, by design, has close inter-relations with other station systems and the related issues of some of these systems are also discussed. Considerations of material impacts have significant influences on the approach to, and control of, chemistry. Specific material impacts led to a novel, and successful, approach. This approach was arrived at following significant efforts by a multi-disciplinary team of operations, maintenance and chemistry staff. The issues, approaches considered and solutions used for a successful outcome will be presented. (author)

  3. Integral transport computation of gamma detector response with the CPM2 code

    International Nuclear Information System (INIS)

    Jones, D.B.

    1989-12-01

    CPM-2 Version 3 is an enhanced version of the CPM-2 lattice physics computer code which supports the capabilities to (1) perform a two-dimensional gamma flux calculation and (2) perform Restart/Data file maintenance operations. The Gamma Calculation Module implemented in CPM-2 was first developed for EPRI in the CASMO-1 computer code by Studsvik Energiteknik under EPRI Agreement RP2352-01. The gamma transport calculation uses the CPM-HET code module to calculate the transport of gamma rays in two dimensions in a mixed cylindrical-rectangular geometry, where the basic fuel assembly and component regions are maintained in a rectangular geometry, but the fuel pins are represented as cylinders within a square pin cell mesh. Such a capability is needed to represent gamma transport in an essentially transparent medium containing spatially distributed ''black'' cylindrical pins. Under a subcontract to RP2352-01, RPI developed the gamma production and gamma interaction library used for gamma calculation. The CPM-2 gamma calculation was verified against reference results generated by Studsvik using the CASMO-1 program. The CPM-2 Restart/Data file maintenance capabilities provide the user with options to copy files between Restart/Data tapes and to purge files from the Restart/Data tapes

  4. Operation of a New Half-Bridge Gate Driver for Enhancement - Mode GaN FETs, Type LM5113, Over a Wide Temperature Range

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.

  5. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  6. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  7. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  8. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (CRAY VERSION WITH NASADIG)

    Science.gov (United States)

    Anderson, G. E.

    1994-01-01

    . The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version

  9. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    International Nuclear Information System (INIS)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. the applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing

  10. Evaluation of the NASA Arc Jet Capabilities to Support Mission Requirements

    Science.gov (United States)

    Calomino, Anthony; Bruce, Walt; Gage, Peter; Horn, Dennis; Mastaler, Mike; Rigali, Don; Robey, Judee; Voss, Linda; Wahlberg, Jerry; Williams, Calvin

    2010-01-01

    NASA accomplishes its strategic goals through human and robotic exploration missions. Many of these missions require launching and landing or returning spacecraft with human or return samples through Earth's and other planetary atmospheres. Spacecraft entering an atmosphere are subjected to extreme aerothermal loads. Protecting against these extreme loads is a critical element of spacecraft design. The safety and success of the planned mission is a prime concern for the Agency, and risk mitigation requires the knowledgeable use of thermal protection systems to successfully withstand the high-energy states imposed on the vehicle. Arc jets provide ground-based testing for development and flight validation of re-entry vehicle thermal protection materials and are a critical capability and core competency of NASA. The Agency's primary hypersonic thermal testing capability resides at the Ames Research Center and the Johnson Space Center and was developed and built in the 1960s and 1970s. This capability was critical to the success of Apollo, Shuttle, Pioneer, Galileo, Mars Pathfinder, and Orion. But the capability and the infrastructure are beyond their design lives. The complexes urgently need strategic attention and investment to meet the future needs of the Agency. The Office of Chief Engineer (OCE) chartered the Arc Jet Evaluation Working Group (AJEWG), a team of experienced individuals from across the Nation, to capture perspectives and requirements from the arc jet user community and from the community that operates and maintains this capability and capacity. This report offers the AJEWG's findings and conclusions that are intended to inform the discussion surrounding potential strategic technical and investment strategies. The AJEWG was directed to employ a 30-year Agency-level view so that near-term issues did not cloud the findings and conclusions and did not dominate or limit any of the strategic options.

  11. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (DEC VAX VERSION WITH NASADIG)

    Science.gov (United States)

    Anderson, G. E.

    1994-01-01

    . The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version

  12. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (DEC VAX VERSION WITHOUT NASADIG)

    Science.gov (United States)

    Vogt, R. A.

    1994-01-01

    . The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version

  13. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  14. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  15. Thermal soil remediation

    International Nuclear Information System (INIS)

    Nelson, D.

    1999-01-01

    The environmental properties and business aspects of thermal soil remediation are described. Thermal soil remediation is considered as being the best option in cleaning contaminated soil for reuse. The thermal desorption process can remove hydrocarbons such as gasoline, kerosene and crude oil, from contaminated soil. Nelson Environmental Remediation (NER) Ltd. uses a mobile thermal desorption unit (TDU) with high temperature capabilities. NER has successfully applied the technology to target heavy end hydrocarbon removal from Alberta's gumbo clay in all seasons. The TDU consist of a feed system, a counter flow rotary drum kiln, a baghouse particulate removal system, and a secondary combustion chamber known as an afterburner. The technology has proven to be cost effective and more efficient than bioremediation and landfarming

  16. Fast Inbound Top-K Query for Random Walk with Restart.

    Science.gov (United States)

    Zhang, Chao; Jiang, Shan; Chen, Yucheng; Sun, Yidan; Han, Jiawei

    2015-09-01

    Random walk with restart (RWR) is widely recognized as one of the most important node proximity measures for graphs, as it captures the holistic graph structure and is robust to noise in the graph. In this paper, we study a novel query based on the RWR measure, called the inbound top-k (Ink) query. Given a query node q and a number k , the Ink query aims at retrieving k nodes in the graph that have the largest weighted RWR scores to q . Ink queries can be highly useful for various applications such as traffic scheduling, disease treatment, and targeted advertising. Nevertheless, none of the existing RWR computation techniques can accurately and efficiently process the Ink query in large graphs. We propose two algorithms, namely Squeeze and Ripple, both of which can accurately answer the Ink query in a fast and incremental manner. To identify the top- k nodes, Squeeze iteratively performs matrix-vector multiplication and estimates the lower and upper bounds for all the nodes in the graph. Ripple employs a more aggressive strategy by only estimating the RWR scores for the nodes falling in the vicinity of q , the nodes outside the vicinity do not need to be evaluated because their RWR scores are propagated from the boundary of the vicinity and thus upper bounded. Ripple incrementally expands the vicinity until the top- k result set can be obtained. Our extensive experiments on real-life graph data sets show that Ink queries can retrieve interesting results, and the proposed algorithms are orders of magnitude faster than state-of-the-art method.

  17. Westinghouse Hanford Company package testing capabilities

    International Nuclear Information System (INIS)

    Hummer, J.H.; Mercado, M.S.

    1993-07-01

    The Department of Energy's Hanford Site is a 1,450-km 2 (560-mi 2 ) installation located in southeastern Washington State. Established in 1943 as a plutonium production facility, Hanford's role has evolved into one of environmental restoration and remediation. Many of these environmental restoration and remediation activities involve transportation of radioactive/hazardous materials. Packagings used for the transportation of radioactive/hazardous materials must be capable of meeting certain normal transport and hypothetical accident performance criteria. Evaluations of performance to these criteria typically involve a combination of analysis and testing. Required tests may include the free drop, puncture, penetration, compression, thermal, heat, cold, vibration, water spray, water immersion, reduced pressure, and increased pressure tests. The purpose of this paper is to outline the Hanford capabilities for performing each of these tests

  18. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of the L-reactor

    International Nuclear Information System (INIS)

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1982-10-01

    This report summarizes the findings of slightly more than one year's study of the Steel Creek ecosystem. Generally, the findings have allowed us to refine our understanding of the structural and functional organization of the Steel Creek ecosystem which is an essential prerequisite for predicting the impacts associated with L-reactor restart. Reanalysis of the Steel Creek plant community relationships using 1981 aerial photography revealed that this component of the delta ecosystem continues to change as a result of natural successional processes. The major detectable changes have occurred on the more elevated portions of Steel Creek delta where coverage by woody species (especially willow) is continuing to increase. This successional woody community is invading areas previously dominated by persistent herbaceous species such as cut grass. Eleven vegetation associations were identified in the Steel Creek delta area, including two associations that were not apparently affected by the earlier reactor operations

  19. Printable, flexible and stretchable diamond for thermal management

    Science.gov (United States)

    Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

    2013-06-25

    Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

  20. Proceedings of the third nuclear thermal hydraulics meeting

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book contains the proceedings of the Thermal Hydraulics Division of the American Nuclear Society. The papers presented include: Simulator qualification using engineering codes and Development of thermal hydraulic analysis capabilities for Oyster Creek

  1. Luminescent nanoprobes for thermal bio-sensing: Towards controlled photo-thermal therapies

    Energy Technology Data Exchange (ETDEWEB)

    Jaque, Daniel, E-mail: daniel.jaque@uam.es [Fluorescence Imaging Group, Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Grupo de Fotônica e Fluidos Complexos (GFFC), Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil); Jacinto, Carlos [Grupo de Fotônica e Fluidos Complexos (GFFC), Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2016-01-15

    Photo-thermal therapies, based on the light-induced local heating of cancer tumors and tissues, are nowadays attracting an increasing attention due to their effectiveness, universality, and low cost. In order to avoid undesirable collateral damage in the healthy tissues surrounding the tumors, photo-thermal therapies should be achieved while monitoring tumor’s temperature in such a way that thermal therapy could be stopped before reaching the damage limit. Measuring tumor temperature is not an easy task at all and novel strategies should be adopted. In this work it is demonstrated how luminescent nanoparticles, in particular Neodymium doped LaF{sub 3} nanoparticles, could be used as multi-functional agents capable of simultaneous heating and thermal sensing. Advantages and disadvantages of such nanoparticles are discussed and the future perspectives are briefly raised. - Highlights: • Thermal control is essential in novel photo-thermal therapies. • Thermal control and heating can be achieved by Neodymium doped nanoparticles. • Perspectives of Neodymium doped nanoparticles in potential in vivo applications are discussed.

  2. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  3. Parallel thermal radiation transport in two dimensions

    International Nuclear Information System (INIS)

    Smedley-Stevenson, R.P.; Ball, S.R.

    2003-01-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  4. Parallel thermal radiation transport in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, R.P.; Ball, S.R. [AWE Aldermaston (United Kingdom)

    2003-07-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  5. BISON Modeling of Reactivity-Initiated Accident Experiments in a Static Environment

    Energy Technology Data Exchange (ETDEWEB)

    Folsom, Charles P.; Jensen, Colby B.; Williamson, Richard L.; Woolstenhulme, Nicolas E.; Ban, Heng; Wachs, Daniel M.

    2016-09-01

    In conjunction with the restart of the TREAT reactor and the design of test vehicles, modeling and simulation efforts are being used to model the response of Accident Tolerant Fuel (ATF) concepts under reactivity insertion accident (RIA) conditions. The purpose of this work is to model a baseline case of a 10 cm long UO2-Zircaloy fuel rodlet using BISON and RELAP5 over a range of energy depositions and with varying reactor power pulse widths. The results show the effect of varying the pulse width and energy deposition on both thermal and mechanical parameters that are important for predicting failure of the fuel rodlet. The combined BISON/RELAP5 model captures coupled thermal and mechanical effects on the fuel-to-cladding gap conductance, cladding-to-coolant heat transfer coefficient and water temperature and pressure that would not be capable in each code individually. These combined effects allow for a more accurate modeling of the thermal and mechanical response in the fuel rodlet and thermal-hydraulics of the test vehicle.

  6. Enhanced Monte-Carlo-Linked Depletion Capabilities in MCNPX

    International Nuclear Information System (INIS)

    Fensin, Michael L.; Hendricks, John S.; Anghaie, Samim

    2006-01-01

    As advanced reactor concepts challenge the accuracy of current modeling technologies, a higher-fidelity depletion calculation is necessary to model time-dependent core reactivity properly for accurate cycle length and safety margin determinations. The recent integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a completely self-contained Monte-Carlo-linked depletion capability. Two advances have been made in the latest MCNPX capability based on problems observed in pre-released versions: continuous energy collision density tracking and proper fission yield selection. Pre-released versions of the MCNPX depletion code calculated the reaction rates for (n,2n), (n,3n), (n,p), (n,a), and (n,?) by matching the MCNPX steady-state 63-group flux with 63-group cross sections inherent in the CINDER90 library and then collapsing to one-group collision densities for the depletion calculation. This procedure led to inaccuracies due to the miscalculation of the reaction rates resulting from the collapsed multi-group approach. The current version of MCNPX eliminates this problem by using collapsed one-group collision densities generated from continuous energy reaction rates determined during the MCNPX steady-state calculation. MCNPX also now explicitly determines the proper fission yield to be used by the CINDER90 code for the depletion calculation. The CINDER90 code offers a thermal, fast, and high-energy fission yield for each fissile isotope contained in the CINDER90 data file. MCNPX determines which fission yield to use for a specified problem by calculating the integral fission rate for the defined energy boundaries (thermal, fast, and high energy), determining which energy range contains the majority of fissions, and then selecting the appropriate fission yield for the energy range containing the majority of fissions. The MCNPX depletion capability enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code

  7. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  8. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  9. Investigating the breeding capabilities of hybrid soliton reactors

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Jejcic, A.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.

    2013-01-01

    Highlights: • ANET code simulates innovative reactor designs including Accelerator Driven Systems. • Preliminary analysis of thermal hybrid soliton reactor examines breeding capabilities. • Subsequent studies will aim at optimizing parameters examined in this analysis. • Breeding capacity could be obtained while preserving efficiency and reactor stability. -- Abstract: Nuclear energy industry asks for an optimized exploitation of available natural resources and a safe operation of reactors. A closed fuel cycle requires the mass of fissile material depleted in a reactor to be equal to or less than the fissile mass produced in the same or in other reactors. In this work, a simple closed cycle scheme is investigated, grounded on the use of a conceptual thermal water-cooled and moderated subcritical hybrid soliton reactor (HSR). The concept is a specific Accelerator Driven System (ADS) operating at lower power than usual pressurized water reactors (PWRs). This type of reactor can be inherently safe, since shutdown is achieved by simply interrupting the accelerator's power supply. In this work a preliminary investigation is attempted concerning the existence of conditions under which the operation of a thermal HSR in breeding regime is possible. For this purpose, a conceptual encapsulated core has been defined by choosing the magnitude of a set of parameters which are important from the neutronic point of view, such as core geometry and fuel composition. Indications of breeding operation regime for thermal HSR systems are sought by performing preliminary simulations of this core. For this purpose, the Monte Carlo code ANET, which is being developed based on the high energy physics code GEANT is utilized, as being capable of simulating particles’ transport and interactions produced, including also simulation of low energy neutrons transport. A simple analytical model is also developed and presented in order to investigate the conditions under which breeding in

  10. The performance of biological anaerobic filters packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) during the restart period: effect of the C/N ratios and filter media.

    Science.gov (United States)

    Yue, Qinyan; Han, Shuxin; Yue, Min; Gao, Baoyu; Li, Qian; Yu, Hui; Zhao, Yaqin; Qi, Yuanfeng

    2009-11-01

    Two lab-scale upflow biological anaerobic filters (BAF) packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) were employed to investigate effects of the C/N ratios and filter media on the BAF performance during the restart period. The results indicated that BAF could be restarted normally after one-month cease. The C/N ratio of 4.0 was the thresholds of nitrate removal and nitrite accumulation. TN removal and phosphate uptake reached the maximum value at the same C/N ratio of 5.5. Ammonia formation was also found and excreted a negative influence on TN removal, especially when higher C/N ratios were applied. Nutrients were mainly degraded within the height of 25 cm from the bottom. In addition, SFCP, as novel filter media manufactured by wastes-dewatered sludge and fly ash, represented a better potential in inhibiting nitrite accumulation, TN removal and phosphate uptake due to their special characteristics in comparison with CCP.

  11. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  12. GAPCON-THERMAL-3

    International Nuclear Information System (INIS)

    Mohr, C.L.; Lanning, D.D.; Panisko, F.E.

    1979-01-01

    The fuel performance code GAPCON-THERMAL-3 has been expanded to include recent transient material deformation constitutive relations and the FLECHT heat transfer correlation. The modifications make it possible to compute the thermal and mechanical response of nuclear fuel to postulated Loss of Coolant Accidents (LOCA). The numerical formulation has the capability of predicting both steady state and transient behavior of a fuel rod using a single analytical procedure. GAPCON-THERMAL-3 (G-T-3) uses a specialized finite element procedure for mechanics predictions and the method of weighted residuals and finite difference techniques to compute temperature and thermal behavior. Fuel behavior, gas release models, gas conductance models, and stored energy calculations are applicable to both steady state and transient conditions. The code has been used to perform scoping analysis for in-reactor LOCA simulation testing. (orig.)

  13. 40 CFR 90.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for thermally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10...

  14. Study on decay heat removal capability of reactor vessel auxiliary cooling system

    International Nuclear Information System (INIS)

    Nishi, Y.; Kinoshita, I.

    1991-01-01

    The reactor vessel auxiliary cooling system (RVACS) is a simple, Passive decay heat removal system for an LMFBR. However, the heat removal capacity of this system is small compared to that of an immersed type of decay heat exchanger. In this study, a high-porosity porous body is proposed to enhance the RVACS's heat transfer performance to improve its applicability. The objectives of this study are to propose a new method which is able to use thermal radiation effectively, to confirm its heat removal capability and to estimate its applicability limit of RVACS for an LMFBR. Heat transfer tests were conducted in an experimental facility with a 3.5 m heat transfer height to evaluate the heat transfer performance of the high-porosity porous body. Using the experimental results, plant transient analyses were performed for a 300 MWe pool type LMFBR under a Total Black Out (TBO) condition to confirm the heat removal capability. Furthermore, the relationship between heat removal capability and thermal output of a reactor were evaluated using a simple parameter model

  15. New Environmental Testing Capabilities at INTA

    Science.gov (United States)

    Olivo, Esperanza; Hernandez, Daniel; Garranzo, Daniel; Barandiaran, Javier; Reina, Manuel

    2012-07-01

    In this paper we aim to present and describe the facilities for aerospace environmental testing at INTA; the Spanish National Institute for Aerospace Technique with emphasis on the Thermal Vacuum testing facility with dimensions 4 m x 4 m x 4 m and a temperature range from +150oC to -175 oC and 10-6 vacuum conditions with the new Thermo Elastic Distortion (TED) measurement capability designed at INTA. It will be presented the validation data for the empty chamber, with specimens such a 3m diameter reflector and antenna towers for both, thermal cycling and TED measurements. For TED, it will be shown the feasibility study and the solution finally selected. Apart from those, it will be shown other complementary facilities for environmental testing such as 320 (2x160) kN dual shaker with a new 3 m x 3 m sliding table and other complementary facilities.

  16. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2017-01-01

    Full Text Available As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients’ personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases.

  17. Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd{sup 3+}:LaF{sub 3} multifunctional nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Uéslen, E-mail: ueslen.silva@fis.ufal.br [Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid (Spain); Jacinto, Carlos; Kumar, Kagola Upendra [Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas (Brazil); López, Fernando J.; Bravo, David; Solé, José García [Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid (Spain); Jaque, Daniel, E-mail: daniel.jaque@uam.es [Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid (Spain); Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramon y Cajal, Madrid 28034 (Spain)

    2016-07-15

    Nd{sup 3+} ion doped LaF{sub 3} dielectric nanoparticles have recently emerged as very attractive multifunctional nanoparticles capable of simultaneous sub-tissue heating and thermal sensing. Although they have been already used for selective photothermal treatment of cancer tumors in animal models, their real application as self-monitored photothermal agents require further optimization and development. Dynamic adjustment of the therapy parameters is mandatory for non-selective damage minimization. It would require real-time (sub-second) thermal sensing with a sub-degree thermal resolution. In this work we demonstrate that meeting this challenge is, indeed, possible by performing controlled thermal treatment on as-synthesized Nd{sup 3+} doped LaF{sub 3} nanoparticles. Temperature induced lattice ordering and defect re-combination have been concluded to induce, simultaneously, a line fluorescence narrowing, fluorescence brightness enhancement and a remarkable increment in thermal sensitivity. Ex-vivo experiments have demonstrated that, thanks to this multi-parameter optimization, Neodymium doped LaF{sub 3} nanoparticles are capable of real time sub-tissue thermal reading with a temperature resolution as low as 0.7 °C.

  18. WFPC2 Science Capability Report

    Science.gov (United States)

    Brown, David I.

    2001-01-01

    In the following pages, a brief outline of the salient science features of Wide Field/Planetary Camera 2 (WFPC2) that impact the proposal writing process and conceptual planning of observations is presented. At the time of writing, WFPC2, while having been better defined than in the past, is far from being at the stage where science and engineering details are well enough known that concrete observational/operational sequences can be plannned with assurance. Conceptual issues are another matter. The thrust of the Science Capability Report at this time is to outline the known performance parameters and capabilities of WFPC2, filling in with specifications when necessary to hold a place for these items as they become known. Also, primary scientific and operational differences between WFPC 1 and 2 are discussed section-by-section, along with issues that remain to be determined and idiosyncrasies when known. Clearly the determination of the latter awaits some form of testing, most likely thermal/vacuum testing. All data in this report should be viewed with a jaundiced eye at this time.

  19. Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil.

    Science.gov (United States)

    Wang, Jiangang; Zhan, Xinhua; Zhou, Lixiang; Lin, Yusuo

    2010-08-01

    In China, there are many special sites for recycling and washing the used drums, which release a variety of C5-C40 hydrocarbon mixture into the soil around the site. The remediation of these contaminated sites by thermal treatment is adopted ubiquitously and needs to be assessed. Here we report the feasibility of biological indicators applied to assess thermal treatment efficiency in such contaminated soil. A series of biological indicators, including seed germination index (SGI), root elongation index (REI), plant growth height, biomass, carbon dioxide evolved (CDE), soil respiration inhibition (SRI) and soil enzymatic activities, were employed to monitor or assess hydrocarbon mixture removal in thermal treated soil. The results showed that residual hydrocarbon mixture content correlated strongly negatively with SGI for sesamum (Sesamum indicum L.), plant height, and biomass for ryegrass (Lolium perenne L.) in the concentration ranges of 0-3990, 0-3170 and 0-2910 mg kg(-1), respectively. In contrast, REI for sesamum was positively correlated with residual hydrocarbon mixture content from 0 to 1860 mg kg(-1). In addition, both CDE and SRI demonstrated that 600 mg kg(-1) of residual hydrocarbon mixture content caused the highest amount of soil carbon dioxide emission and inhabitation of soil respiration. The results of soil enzymes indicated that 1000 mg kg(-1) of residual hydrocarbon mixture content was the threshold value of stimulating or inhibiting the activities of phosphatase and catalase, or completely destroying the activities of dehydrogenase, invertase, and urease. In conclusion, these biological indicators can be used as a meaningful complementation for traditional chemical content measurement in evaluating the environmental risk of the contaminated sites before and after thermal treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  1. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  2. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  3. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  4. Thermal capacitator design rationale. Part 1: Thermal and mechanical property data for selected materials potentially useful in thermal capacitor design and construction

    Science.gov (United States)

    Bailey, J. A.; Liao, C. K.

    1975-01-01

    The thermal properties of paraffin hydrocarbons and hydrocarbon mixtures which may be used as the phase change material (PCM) in thermal capacitors are discussed. The paraffin hydrocarbons selected for consideration are those in the range from C11H24 (n-Undecane) to C20H42 (n-Eicosane). A limited amount of data is included concerning other properties of paraffin hydrocarbons and the thermal and mechanical properties of several aluminum alloys which may find application as constructional materials. Data concerning the melting temperature, transition temperature, latent heat of fusion, heat of transition, specific heat, and thermal conductivity of pure and commercial grades of paraffin hydrocarbons are given. An index of companies capable of producing paraffin hydrocarbons and information concerning the availability of various grades (purity levels) is provided.

  5. Manufacturing fuel-switching capability, 1988

    International Nuclear Information System (INIS)

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs

  6. Manufacturing fuel-switching capability, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  7. Increasing the Working Capabilities of the Egyptian Scanning Landmine Detectors

    International Nuclear Information System (INIS)

    Mohamed, M.S.A.

    2013-01-01

    This work describes and discusses the developments which were performed to increase the potential uses of Egyptian Scanning Landmine Detectors, ESCALAD. The ESCALAD apply two nuclear techniques for allocation and identification of landmines buried in arid soil like landmine fields in Egypt. The first technique is based on measuring thermal neutrons backscattered from the soil and the second one is based on measuring gamma-rays emitted from elements of landmine interrogated by fast and thermal neutrons when the soil is irradiated by fast neutrons from Pu-α-Be sources. The developed systems with their associated detectors, neutron sources, measuring electronics and data analysis modules are mounted on an electrically driven trolley. The neutron backscattering NBS device detects landmines by the recognition of hydrogen density variation between explosive material, of a landmine and its surroundings, soil and other scattered objects. When a high energy neutron flux from Pu-α-Be sources penetrates the soil in which the landmine is buried, the neutrons undergo successive moderation processes until they come back with thermal energy. An array of two dimensional position sensitive thermal neutron detectors of 3 He was used to monitor the backscattered thermal neutrons and for each neutron the position of hit along the tube with respect to the position on the ground is recorded. The elemental analysis technique is regarded as a complementary sensor of ESCALAD in which the gamma rays produced from fast/thermal neutrons interactions with the buried objects (i.e., a landmine) are measured. The measured response for gamma-rays is given as gamma ray spectrum. A mine is recognized through measuring the difference in the elemental composition, especially H, C, N and O. To increase the working capabilities of ESCALAD, different design mechanisms were developed for mount the detectors tray to overcome the effect of soil surface roughness and standoff distance on scanning

  8. Knowledge management implementation on the restart of the nuclear power plant construction

    International Nuclear Information System (INIS)

    Vetere, C.; Eppenstein, M.

    2007-01-01

    Full text: Restarting the NPP construction after 10 years of inactivity is a process that involves many preliminary tasks associated with the transition period to get the project started again. Implementing a KM program during the preparatory phase motivates the personnel and facilitates the completion of these additional activities. Human Resources Motivation: Manpower is the most critical aspect to consider at the moment of restarting the NPP project. The reduced engineering teams left at the NPP lost their motivation as a result of the absence of project requirements. These groups, which were responsible of key activities in the past, and now assigned to other tasks, must be reinserted to the schedule and functions required by the project management. Moreover, they constitute the core that would transfer knowledge to the future personnel. Therefore, it is a good practice to include these engineering groups from the very beginning of the KM development. It is proved that the participation of these groups in the KM design and definition, in the knowledge map building, in identifying the domains and performing critical knowledge analysis by means of workshops, and in meetings and individual interviews facilitates the reactivation of them. The demands from the Knowledge Management Project create a good atmosphere to stimulate sharing and competences development. Capturing Experts' Knowledge. During the years of inactivity of the plant construction many professionals and specialists that belonged to the original project teams left the organization taking with them their data and information related to the project evolution, and valuable undocumented knowledge. Documented meetings between current and past experts, or through an Experts Consulting Group articulates this tacit knowledge, and provides a source of answers about previous situations, taken decisions and critical issues. Furthermore, implementing a feedback program prevents the risk of knowledge loss due to

  9. Hydrokinesitherapy in thermal mineral water

    Directory of Open Access Journals (Sweden)

    Rendulić-Slivar Senka

    2013-01-01

    Full Text Available The treatment of clients in health spa resorts entails various forms of hydrotherapy. Due to specific properties of water, especially thermal mineral waters, hydrokinesitherapy has a positive effect on the locomotor system, aerobic capabilities of organism and overall quality of human life. The effects of use of water in movement therapy are related to the physical and chemical properties of water. The application of hydrotherapy entails precautionary measures, with an individual approach in assessment and prescription. The benefits of treatment in thermal mineral water should be emphasized and protected, as all thermal mineral waters differ in composition. All physical properties of water are more pronounced in thermal mineral waters due to its mineralisation, hence its therapeutical efficiency is greater, as well.

  10. Intracavitary ultrasound phased arrays for thermal therapies

    Science.gov (United States)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated

  11. Restart capability of resting-states of Euglena gracilis after 9 months of dormancy: preparation for autonomous space flight experiments

    Science.gov (United States)

    Strauch, Sebastian M.; Becker, Ina; Pölloth, Laura; Richter, Peter R.; Haag, Ferdinand W. M.; Hauslage, Jens; Lebert, Michael

    2018-04-01

    Dormant states of organisms are easier to store than the living state because they tolerate larger variations in temperature, light, storage space etc., making them attractive for laboratory culture stocks and also for experiments under special circumstances, especially space flight experiments. Like several other organisms, Euglena gracilis is capable of forming desiccation tolerant resting states in order to survive periods of unfavourable environmental conditions. In earlier experiments it was found that dormant Euglena cells must not become completely desiccated. Some residual moisture is required to ensure recovery of the resting states. To analyse the water demand in recovery of Euglena resting states, cells were transferred to a defined amount of cotton wool (0.5 g). Subsequently different volumes of medium (1, 2, 3, 4, 5, 8, 10 and 20 ml) were added in order to supply humidity; a control was set up without additional liquid. Samples were sealed in transparent 50 ml falcon tubes and stored for 9 months under three different conditions: • Constant low light conditions in a culture chamber at 20°C, • In a black box, illuminated with short light emitting diode-light pulses provided by joule thieves and • In darkness in a black box. After 9 months, cells were transferred to fresh medium and cell number, photosynthetic efficiency and movement behavior was monitored over 3 weeks. It was found that cells recovered under all conditions except in the control, where no medium was supplied. Transcription levels of 21 genes were analysed with a Multiplex-polymerase chain reaction. One hour after rehydration five of these genes were found to be up-regulated: ubiquitin, heat shock proteins HSP70, HSP90, the calcium-sensor protein frequenin and a distinct protein kinase, which is involved in gravitaxis. The results indicate a transient general stress response of the cells.

  12. Note: A wide temperature range MOKE system with annealing capability.

    Science.gov (United States)

    Chahil, Narpinder Singh; Mankey, G J

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  13. Terminal-shock and restart control of a Mach 2.5, axisymmetric, mixed compression inlet with 40 percent internal contraction. [wind tunnel tests

    Science.gov (United States)

    Baumbick, R. J.

    1974-01-01

    Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.

  14. Solar-thermal conversion and thermal energy storage of graphene foam-based composite

    KAUST Repository

    Zhang, Lianbin

    2016-07-11

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  15. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  16. Modelling of thermal behaviour of iron oxide layers on boiler tubes

    Science.gov (United States)

    Angelo, J. D.; Bennecer, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Slender boiler tubes are subject to localised swelling when they are expose to excessive heat. The latter is due to the formation of an oxide layer, which acts as an insulation barrier. This excessive heat can lead to microstructural changes in the material that would reduce the mechanical strength and would eventually lead to critical and catastrophic failure. Detecting such creep damage remains a formidable challenge for boiler operators. It involves a costly process of shutting down the plant, performing electromagnetic and ultrasonic non-destructive inspection, repairing or replacing damaged tubes and finally restarting the plant to resume its service. This research explores through a model developed using a finite element computer simulation platform the thermal behaviour of slender tubes under constant temperature exceeding 723 °K. Our simulation results demonstrate that hematite layers up to 15 μm thickness inside the tubes do not act as insulation. They clearly show the process of long term overheating on the outside of boiler tubes which in turn leads to initiation of flaws.

  17. Smart thermal patch for adaptive thermotherapy

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-11-12

    A smart thermal patch for adaptive thermotherapy is provided. In an embodiment, the patch can be a stretchable, non-polymeric, conductive thin film flexible and non-invasive body integrated mobile thermal heater with wireless control capabilities that can be used to provide adaptive thermotherapy. The patch can be geometrically and spatially tunable on various pain locations. Adaptability allows the amount of heating to be tuned based on the temperature of the treated portion.

  18. SPARC: Demonstrate burst-buffer-based checkpoint/restart on ATS-1.

    Energy Technology Data Exchange (ETDEWEB)

    Oldfield, Ron A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulmer, Craig D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Widener, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    Recent high-performance computing (HPC) platforms such as the Trinity Advanced Technology System (ATS-1) feature burst buffer resources that can have a dramatic impact on an application’s I/O performance. While these non-volatile memory (NVM) resources provide a new tier in the storage hierarchy, developers must find the right way to incorporate the technology into their applications in order to reap the benefits. Similar to other laboratories, Sandia is actively investigating ways in which these resources can be incorporated into our existing libraries and workflows without burdening our application developers with excessive, platform-specific details. This FY18Q1 milestone summaries our progress in adapting the Sandia Parallel Aerodynamics and Reentry Code (SPARC) in Sandia’s ATDM program to leverage Trinity’s burst buffers for checkpoint/restart operations. We investigated four different approaches with varying tradeoffs in this work: (1) simply updating job script to use stage-in/stage out burst buffer directives, (2) modifying SPARC to use LANL’s hierarchical I/O (HIO) library to store/retrieve checkpoints, (3) updating Sandia’s IOSS library to incorporate the burst buffer in all meshing I/O operations, and (4) modifying SPARC to use our Kelpie distributed memory library to store/retrieve checkpoints. Team members were successful in generating initial implementation for all four approaches, but were unable to obtain performance numbers in time for this report (reasons: initial problem sizes were not large enough to stress I/O, and SPARC refactor will require changes to our code). When we presented our work to the SPARC team, they expressed the most interest in the second and third approaches. The HIO work was favored because it is lightweight, unobtrusive, and should be portable to ATS-2. The IOSS work is seen as a long-term solution, and is favored because all I/O work (including checkpoints) can be deferred to a single library.

  19. In-wheel PM motor : compromise between high power density and extended speed capability

    NARCIS (Netherlands)

    Lomonova, E.; Kazmin, Evgeny; Tang, Y.; Paulides, J.J.H.

    2011-01-01

    Purpose – Today's brushless permanent magnet (PM) drive systems usually adopt motors including the advancements in magnet technology, e.g. better thermal characteristics and higher magnetic strength. By this means, they become capable in the roughest applications yet maintain a high accuracy at

  20. Structural Capability of an Organization toward Innovation Capability

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Momeni, Mostafa

    2016-01-01

    The scholars in the field of strategic management have developed two major approaches for attainment of competitive advantage: an approach based on environmental opportunities, and another one based on internal capabilities of an organization. Some investigations in the last two decades have...... indicated that the advantages relying on the internal capabilities of organizations may determine the competitive position of organizations better than environmental opportunities do. Characteristics of firms shows that one of the most internal capabilities that lead the organizations to the strongest...... competitive advantage in the organizations is the innovation capability. The innovation capability is associated with other organizational capabilities, and many organizations have focused on the need to identify innovation capabilities.This research focuses on recognition of the structural aspect...

  1. Quick discharge circuit for pacer nuclear power supply

    International Nuclear Information System (INIS)

    Chen, C.Y.

    1975-01-01

    A quick discharge circuit for a pacer's nuclear power supply is described. A pacer capable of implantation within the body of a patient and capable of being powered by at least one nuclear battery is disclosed. Voltage from a single nuclear battery is increased by a factor of about 25 to 30 in order to provide a voltage level adequate to power pacer circuitry. A restartable DC--DC converter is used for this purpose. But if the converter malfunctions the load voltage must be reduced below a certain level for the converter to be automatically restarted. The present invention relates to means for reducing the time from converter malfunction to resumption of converter operation in order to reduce the corresponding inoperative pacer time period. (U.S.)

  2. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    Science.gov (United States)

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-12-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication.

  3. 40 CFR 91.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10 °C. (b) Evaluation...

  4. Variable Surface Area Thermal Radiator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Due to increased complexity of spacecraft and longer expected life, more sophisticated and complex thermal management schemes are needed that will be capable of...

  5. Origami structures for tunable thermal expansion

    Science.gov (United States)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  6. The Advanced Test Reactor Irradiation Facilities and Capabilities

    International Nuclear Information System (INIS)

    S. Blaine Grover; Raymond V. Furstenau

    2007-01-01

    The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments

  7. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    International Nuclear Information System (INIS)

    Clough, D; Fletcher, S; Longstaff, A P; Willoughby, P

    2012-01-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  8. DNA replication restart and cellular dynamics of Hef helicase/nuclease protein in Haloferax volcanii.

    Science.gov (United States)

    Lestini, Roxane; Delpech, Floriane; Myllykallio, Hannu

    2015-11-01

    Understanding how frequently spontaneous replication arrests occur and how archaea deal with these arrests are very interesting and challenging research topics. Here we will described how genetic and imaging studies have revealed the central role of the archaeal helicase/nuclease Hef belonging to the XPF/MUS81/FANCM family of endonucleases in repair of arrested replication forks. Special focus will be on description of a recently developed combination of genetic and imaging tools to study the dynamic localization of a functional Hef::GFP (Green Fluorescent Protein) fusion protein in the living cells of halophilic archaea Haloferax volcanii. As Archaea provide an excellent and unique model for understanding how DNA replication is regulated to allow replication of a circular DNA molecule either from single or multiple replication origins, we will also summarize recent studies that have revealed peculiar features regarding DNA replication, particularly in halophilic archaea. We strongly believe that fundamental knowledge of our on-going studies will shed light on the evolutionary history of the DNA replication machinery and will help to establish general rules concerning replication restart and the key role of recombination proteins not only in bacteria, yeast and higher eukaryotes but also in archaea. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA).

    Science.gov (United States)

    Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A

    2015-02-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.

  10. Challenges and solutions for manifold gas well production in Mexilhao field; Desafios e solucoes para a producao de pocos de gas interligados por manifold no Campo de Mexilhao

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzeti, Jorge Fernando Canato; Silva, Haroldo Benedito da [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    This work presents the main challenges and the solutions found in the development of the Mexilhao Gas Field, located in the Santos Basin, about 145 kilometers off the Brazilian coast. Many technological innovations were devised for the subsea system, such as the use of subsea control valves in the manifold (for monoethylene glycol, MEG, injection), the use of HIPPS (High Integrity Pipeline Protection System) and the thermal insulation of the Wet Christmas Tree (WCT). It is also presented the sequence of the interlocking protection logic and the results observed during production. The cooling down of the WCT block after a stop production is showed. This is very important feature in this project for mitigating hydrate formation and allowing a higher operational flexibility during the restarting of production. The good simulation results by OLGA are also presented and they are compared to the real thermal-hydraulic profile data observed during the restart. The correct timing of this operation is essential to ensure not only that the overpressure protection logic is not triggered during the restart, but to prevent very low temperatures downstream of the choke (Joule-Thompson effect). (author)

  11. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  12. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  13. Evaluation on Cooling Performance of Containment Fan Cooler during Design Basis Accident with Loss of Offsite Power for Kori 3 and 4 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Bok; Lee, Sang Won [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Park, Young Chan [Atomic Creative Technology Co., LTD., Daejeon (Korea, Republic of)

    2007-10-15

    The purpose of this study is to evaluate cooling performance of containment fan cooler units and to review a technical background related to Generic Letter 96-06. In case that design basis accident (DBA) and loss of offsite power (LOOP) occurs, component cooling water (CCW) pumps cannot provide the cooling water source to fan cooler units while fan coolers coast down. Fan cooler units and CCW pumps are restarted by emergency diesel generator (EDG) operation and it takes about 30 seconds. In this scenario, before the EDG restarts and CCW flowrate is restored, heated air in the containment passes through coil of fan cooler units without cooling water source. In this situation, the boiling of water in the fan cooler units may occur. Restarting of CCW pumps may bring about condensation by injected cooling water and water hammer may occur. This thermal-hydraulic effect is sensitive to system configuration, i.e system pressure, containment pressure/temperature, EDG restarting time, etc. In this study, the evaluation of containment fan cooler units was performed for Kori 3 and 4 nuclear power plant.

  14. High thermal load receiving heat plate

    International Nuclear Information System (INIS)

    Shibutani, Jun-ichi; Shibayama, Kazuhito; Yamamoto, Keiichi; Uchida, Takaho.

    1993-01-01

    The present invention concerns a high thermal load heat receiving plate such as a divertor plate of a thermonuclear device. The high thermal load heat receiving plate of the present invention has a cooling performance capable of suppressing the temperature of an armour tile to less than a threshold value of the material against high thermal loads applied from plasmas. Spiral polygonal pipes are inserted in cooling pipes at a portion receiving high thermal loads in the high temperature load heat receiving plate of the present invention. Both ends of the polygonal pipes are sealed by lids. An area of the flow channel in the cooling pipes is thus reduced. Heat conductivity on the cooling surface of the cooling pipes is increased in the high thermal load heat receiving plate having such a structure. Accordingly, temperature elevation of the armour tile can be suppressed. (I.S.)

  15. Non-Grey Radiation Modeling using Thermal Desktop/Sindaworks TFAWS06-1009

    Science.gov (United States)

    Anderson, Kevin R.; Paine, Chris

    2006-01-01

    This paper provides an overview of the non-grey radiation modeling capabilities of Cullimore and Ring's Thermal Desktop(Registered TradeMark) Version 4.8 SindaWorks software. The non-grey radiation analysis theory implemented by Sindaworks and the methodology used by the software are outlined. Representative results from a parametric trade study of a radiation shield comprised of a series of v-grooved shaped deployable panels is used to illustrate the capabilities of the SindaWorks non-grey radiation thermal analysis software using emissivities with temperature and wavelength dependency modeled via a Hagen-Rubens relationship.

  16. First Materials Science Research Facility Rack Capabilities and Design Features

    Science.gov (United States)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  17. Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films.

    Science.gov (United States)

    Xiao, Lin; Ma, He; Liu, Junku; Zhao, Wei; Jia, Yi; Zhao, Qiang; Liu, Kai; Wu, Yang; Wei, Yang; Fan, Shoushan; Jiang, Kaili

    2015-12-09

    Adaptive camouflage in thermal imaging, a form of cloaking technology capable of blending naturally into the surrounding environment, has been a great challenge in the past decades. Emissivity engineering for thermal camouflage is regarded as a more promising way compared to merely temperature controlling that has to dissipate a large amount of excessive heat. However, practical devices with an active modulation of emissivity have yet to be well explored. In this letter we demonstrate an active cloaking device capable of efficient thermal radiance control, which consists of a vanadium dioxide (VO2) layer, with a negative differential thermal emissivity, coated on a graphene/carbon nanotube (CNT) thin film. A slight joule heating drastically changes the emissivity of the device, achieving rapid switchable thermal camouflage with a low power consumption and excellent reliability. It is believed that this device will find wide applications not only in artificial systems for infrared camouflage or cloaking but also in energy-saving smart windows and thermo-optical modulators.

  18. 14 CFR 27.903 - Engines.

    Science.gov (United States)

    2010-01-01

    ... failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade... shutdown of all engines, engine restart capability must be demonstrated throughout a flight envelope for...

  19. Study on evaluation of containment capability of glove box under fire accident (2)

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Watanabe, Koji; Tashiro, Shinsuke; Uchiyama, Gunzo

    2007-11-01

    In the MOX fuel fabrication facility, MOX is required to be handled in glove box to sustain containment of MOX into the facility. In case of fire in the facility, the containment capability of glove box may be deteriorated by pyrolysis or combustion of the plastic materials as components of glove box caused by thermal stress from flame. The purpose of this study is to examine pyrolysis and combustion properties of the materials for applying them to quantitative evaluation method for the containment capability of glove box under fire. This report summarize experimental results about the properties under the air condition and investigation of evaluation model for estimating time-course of deteriorating containment capability of glove box under fire. (author)

  20. Development of covariance capabilities in EMPIRE code

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Pigni, M.T.; Oblozinsky, P.; Mughabghab, S.F.; Mattoon, C.M.; Capote, R.; Cho, Young-Sik; Trkov, A.

    2008-06-24

    The nuclear reaction code EMPIRE has been extended to provide evaluation capabilities for neutron cross section covariances in the thermal, resolved resonance, unresolved resonance and fast neutron regions. The Atlas of Neutron Resonances by Mughabghab is used as a primary source of information on uncertainties at low energies. Care is taken to ensure consistency among the resonance parameter uncertainties and those for thermal cross sections. The resulting resonance parameter covariances are formatted in the ENDF-6 File 32. In the fast neutron range our methodology is based on model calculations with the code EMPIRE combined with experimental data through several available approaches. The model-based covariances can be obtained using deterministic (Kalman) or stochastic (Monte Carlo) propagation of model parameter uncertainties. We show that these two procedures yield comparable results. The Kalman filter and/or the generalized least square fitting procedures are employed to incorporate experimental information. We compare the two approaches analyzing results for the major reaction channels on {sup 89}Y. We also discuss a long-standing issue of unreasonably low uncertainties and link it to the rigidity of the model.

  1. Tailoring the contact thermal resistance at metal-carbon nanotube interface

    Energy Technology Data Exchange (ETDEWEB)

    Firkowska, Izabela; Boden, Andre; Vogt, Anna-Maria; Reich, Stephanie [Department of Physics, Freie Universitaet, Arnimallee 14, 14195 Berlin (Germany)

    2011-11-15

    Copper-decorated carbon nanotubes (CNTs) were synthesized and used as conductive filler to improve the heat transport capabilities of copper matrix. Thermal properties, i.e., thermal diffusivity and thermal conductivity, of copper composite were measured and compared with those containing pristine and functionalized CNTs. Experimental results revealed that composites enriched with nanohybrids where Cu nanoparticles were covalently bonded to CNTs had thermal conductivity four times higher than those containing the same content of pristine CNTs. Evaluation of thermal interface resistance in copper-CNTs composites by means of the flash method. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Thermal animal detection system (TADS)

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M

    2003-03-01

    This report presents data from equipment tests and software development for the Thermal Animal Detection System (TADS) development project: 'Development of a method for estimating collision frequency between migrating birds and offshore wind turbines'. The technical tests were performed to investigate the performance of remote controlling, video file compression tool and physical stress of the thermal camera when operating outdoors and under the real time vibration conditions at a 2 MW turbine. Furthermore, experimental tests on birds were performed to describe the decreasing detectability with distance on free flying birds, the performance of the thermal camera during poor visibility, and finally, the performance of the thermal sensor software developed for securing high -quality data. In general, it can be concluded that the thermal camera and its related hardware and software, the TADS, are capable of recording migrating birds approaching the rotating blades of a turbine, even under conditions with poor visibility. If the TADS is used in a vertical viewing scenario it would comply with the requirements for a setup used for estimating the avian collision frequency at offshore wind turbines. (au)

  3. Programmable thermal emissivity structures based on bioinspired self-shape materials

    Science.gov (United States)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  4. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    promise of improved thermoelectric materials and problems of thermal management of optoelectronic devices have stimulated extensive studies of semiconductor superlattices; agreement between experiment and theory is generally poor. Advances in measurement methods, e.g., the 3ω method, time-domain thermoreflectance, sources of coherent phonons, microfabricated test structures, and the scanning thermal microscope, are enabling new capabilities for nanoscale thermal metrology.

  5. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  6. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    International Nuclear Information System (INIS)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts' meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes

  7. The restart of Belgium reactors of Doel 3 and Tihange 2. Doel 3 and Tihange 2: indications of defects in vessel steel

    International Nuclear Information System (INIS)

    2015-01-01

    In a first part, an IRSN report comments the issue of restarting some Belgium reactors after the detection of defects (due to the presence of hydrogen) in the vessel steel of reactors during the third decennial inspection by Electrabel. The report describes the procedure followed by Electrabel and the Belgium nuclear authority (AFCN) to confirm that the detected defects were not harmful. It comments the defect detection and characterisation, the origin and potential evolution of defects, the assessment of mechanical characteristics of some components, the assessment of the defect harmfulness in terms of failure risk, and additional measurements. The second part contains the AFCN report which addresses: the chronology and scientific context, the actors, the situation of other Belgium reactors, an indication of published reports and press releases

  8. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    International Nuclear Information System (INIS)

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-01

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System

  9. Impact of Personnel Capabilities on Organizational Innovation Capability

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Momeni, Mostafa

    2016-01-01

    in this rapidly changing world. This research focuses on definition of the personnel aspect of innovation capability, and proposes a conceptual model based on the scientific articles of academic literature on organisations innovation capability. This paper includes an expert based validation in three rounds...... of the Delphi method. And for the purpose of a better appreciation of the relationship dominating the factors of the model, it has distributed the questionnaire to Iranian companies in the Food industry. This research proposed a direct relationship between Innovation Capability and the Personnel Capability...

  10. Local quantum thermal susceptibility

    Science.gov (United States)

    de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-09-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.

  11. Thermal sensation models: a systematic comparison.

    Science.gov (United States)

    Koelblen, B; Psikuta, A; Bogdan, A; Annaheim, S; Rossi, R M

    2017-05-01

    Thermal sensation models, capable of predicting human's perception of thermal surroundings, are commonly used to assess given indoor conditions. These models differ in many aspects, such as the number and type of input conditions, the range of conditions in which the models can be applied, and the complexity of equations. Moreover, the models are associated with various thermal sensation scales. In this study, a systematic comparison of seven existing thermal sensation models has been performed with regard to exposures including various air temperatures, clothing thermal insulation, and metabolic rate values after a careful investigation of the models' range of applicability. Thermo-physiological data needed as input for some of the models were obtained from a mathematical model for human physiological responses. The comparison showed differences between models' predictions for the analyzed conditions, mostly higher than typical intersubject differences in votes. Therefore, it can be concluded that the choice of model strongly influences the assessment of indoor spaces. The issue of comparing different thermal sensation scales has also been discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  13. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Richou, M; Loarer, T; Riccardi, B; Gavila, P; Constans, S

    2011-01-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m - 2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m - 2 for the CFC-armoured tiles and 15 MW m - 2 for the W-armoured tiles, respectively.

  14. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  15. Use of advanced modeling techniques to optimize thermal packaging designs.

    Science.gov (United States)

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  16. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  17. Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm.

    Science.gov (United States)

    Zhang, Yunhua; Dai, Li; Liu, Ying; Zhang, YuHang; Wang, ShaoPeng

    2017-01-01

    Fruit is essential for plant reproduction and is responsible for protection and dispersal of seeds. The development and maturation of fruit is tightly regulated by numerous genetic factors that respond to environmental and internal stimulation. In this study, we attempted to identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a computational method. Based on validated fruit-related genes, the random walk with restart (RWR) algorithm was applied on a protein-protein interaction (PPI) network using these genes as seeds. The identified genes with high probabilities were filtered by the permutation test and linkage tests. In the permutation test, the genes that were selected due to the structure of the PPI network were discarded. In the linkage tests, the importance of each candidate gene was measured from two aspects: (1) its functional associations with validated genes and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG pathways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of important genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11, UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism (HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and maturation of fruit in Arabidopsis thaliana.

  18. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  19. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    Science.gov (United States)

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  20. Capability Paternalism

    NARCIS (Netherlands)

    Claassen, R.J.G.|info:eu-repo/dai/nl/269266224

    A capability approach prescribes paternalist government actions to the extent that it requires the promotion of specific functionings, instead of the corresponding capabilities. Capability theorists have argued that their theories do not have much of these paternalist implications, since promoting

  1. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.; Attenberger, S.E.

    1988-01-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor plasma (Tokamak Ignition/Burn Experimental Reactor) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-dimensional transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alpha concentration significantly influence the ignition and steady-state burn capability

  2. Clean energy for a new generation. Steam generator life cycle management and Bruce restart

    International Nuclear Information System (INIS)

    Newman, G.W.

    2009-01-01

    In the mid to late 1990s, Ontario Hydro decided to lay-up and write-down the Bruce A Nuclear Reactors. Upon transition to Bruce Power L.P., Canada's first and only private nuclear operator, new life and prospects were injected into the site, local economy and the provincial energy portfolio. The first step in this provincial power recovery initiative involved restart of Bruce Units 3 and 4 in the 2003/04 time-frame. Units 3 and 4 have performed beyond expectation during the last five-year operating interval. A combination of steam generator and fuel channel issues precluded a similar restart of Units 1 and 2. Enter the refurbishment of Bruce Units 1 and 2. This first-of-a-kind undertaking within the Canadian nuclear power industry is testament to the demonstrated industry leadership by Bruce Power L.P., their investors and the significant vendor community contribution that is supporting this major power infrastructure enhancement. Initiated as a 'turn-key' project solution separated from the operating units, this major refurbishment project has evolved to a fully managed in-house refurbishment project with the continued support from the broader vendor community. As part of this first-of-kind undertaking, Bruce Power L.P. is in the process of accomplishing such initiatives as a complete fuel channel re-tube (i.e. full core calandria and pressure tube replacement), replacement of all boilers (i.e. 16 in total) and the majority of feeder pipe replacement. Complimentary major upgrades and replacement of the remainder of plant equipment including both nuclear and non-nuclear valves, heat exchangers, electrical infrastructure, service water systems and components, all while meeting a parallel evolving/maturing regulatory environment related to achieving compliance with IAEA derived modern codes and standards. Returning to ground level, boiler replacement is a key part of the refurbishment undertaking and this further reflected a meeting of the 'old' and the 'new'. Pre

  3. Thermal Analysis of Sintered Silver Nanoparticles Film

    Directory of Open Access Journals (Sweden)

    M. Keikhaie

    2014-07-01

    Full Text Available Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in materials play very important role on the effective thermal conductivity. In this paper, finite element method (FEM was utilized to simulate the effect of pores on the effective thermal conductivity of sintered silver nanoparticles film. The simulation results indicate that the effective thermal conductivity of film is different at different directions and would be enhanced when the pore angle is 90. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation or conductor property. Because of there is no similar experimental data for this simulation results, this paper is a comparative work among three different models.

  4. Multiscale thermal transport.

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  5. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  6. Local quantum thermal susceptibility

    Science.gov (United States)

    De Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-01-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions. PMID:27681458

  7. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  8. Thermal and mechanical modelling of a mig-type electron gun

    International Nuclear Information System (INIS)

    Patire Junior, H.; Castro, J.J.B. de

    1995-01-01

    A thermal and mechanical modelling of a magnetron injection electron gun has been made to minimize the temperature distribution in the gun elements while keeping the required operating temperature at 1000 0 C of the emitter. Appropriate materials were selected to reduce thermal losses and to improve the gun design from a constructional point of view aiming at extending the capabilities of the gun. A software has been used to simulate a thermal model considering the three processes of thermal transfer and the influence of the physical properties of the materials used. (author). 8 refs., 2 figs, 2 tabs

  9. CFD simulation for thermal mixing of a SMART flow mixing header assembly

    International Nuclear Information System (INIS)

    Kim, Young In; Bae, Youngmin; Chung, Young Jong; Kim, Keung Koo

    2015-01-01

    Highlights: • Thermal mixing performance of a FMHA installed in SMART is investigated numerically. • Effects of operating condition and discharge hole configuration are examined. • FMHA performance satisfies the design requirements under various abnormal conditions. - Abstract: A flow mixing header assembly (FMHA) is installed in a system-integrated modular advanced reactor (SMART) to enhance the thermal mixing capability and create a uniform core flow distribution under both normal operation and accident conditions. In this study, the thermal mixing characteristics of the FMHA are investigated for various steam generator conditions using a commercial CFD code. Simulations include investigations for the effects of FMHA discharge flow rate differences, turbulence models, and steam generator conditions. The results of the analysis show that the FMHA works effectively for thermal mixing in various conditions and makes the temperature difference at the core inlet decrease noticeably. We verified that the mixing capability of the FMHA is excellent and satisfies the design requirement in all simulation cases tested here

  10. Thermal animal detection system (TADS)

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M.

    2003-03-01

    This report presents data from equipment tests and software development for the Thermal Animal Detection System (TADS) development project: 'Development of a method for estimating collision frequency between migrating birds and offshore wind turbines'. The technical tests were performed to investigate the performance of remote controlling, video file compression tool and physical stress of the thermal camera when operating outdoors and under the real time vibration conditions at a 2 MW turbine. Furthermore, experimental tests on birds were performed to describe the decreasing detectability with distance on free flying birds, the performance of the thermal camera during poor visibility, and finally, the performance of the thermal sensor software developed for securing high -quality data. In general, it can be concluded that the thermal camera and its related hardware and software, the TADS, are capable of recording migrating birds approaching the rotating blades of a turbine, even under conditions with poor visibility. If the TADS is used in a vertical viewing scenario it would comply with the requirements for a setup used for estimating the avian collision frequency at offshore wind turbines. (au)

  11. Thermal disadvantage factor calculation by the multiregion collision probability method

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2004-01-01

    A multi-region collision probability formulation that is capable of applying white boundary condition directly is presented and applied to thermal neutron transport problems. The disadvantage factors computed are compared with their counterparts calculated by S N methods with both direct and indirect application of white boundary condition. The results of the ABH and collision probability method with indirect application of white boundary condition are also considered and comparisons with benchmark Monte Carlo results are carried out. The studies show that the proposed formulation is capable of calculating thermal disadvantage factor with sufficient accuracy without resorting to the fictitious scattering outer shell approximation associated with the indirect application of the white boundary condition in collision probability solutions

  12. Dynamic capabilities, Marketing Capability and Organizational Performance

    Directory of Open Access Journals (Sweden)

    Adriana Roseli Wünsch Takahashi

    2017-01-01

    Full Text Available The goal of the study is to investigate the influence of dynamic capabilities on organizational performance and the role of marketing capabilities as a mediator in this relationship in the context of private HEIs in Brazil. As a research method we carried out a survey with 316 IES and data analysis was operationalized with the technique of structural equation modeling. The results indicate that the dynamic capabilities have influence on organizational performance only when mediated by marketing ability. The marketing capability has an important role in the survival, growth and renewal on educational services offerings for HEIs in private sector, and consequently in organizational performance. It is also demonstrated that mediated relationship is more intense for HEI with up to 3,000 students and other organizational profile variables such as amount of courses, the constitution, the type of institution and type of education do not significantly alter the results.

  13. Development of twin cannons of thermal plasma

    International Nuclear Information System (INIS)

    Pena E, R.

    1996-01-01

    Today several service and transformation industries that generate hazardous wastes must implement programs in order to fulfill with requirements established by the present standardization. This problem is solved here for proposing the design and construction of a thermal plasma transferred torch with double cannon which is generated by an electric arc with a capacity of 50 k W, a regulable gas flow from 0-50 lt./min and thermal yield higher than 85 %. This equipment would be capable for degradating industrial and hospital wastes. (Author)

  14. Power Electronics Thermal Management Research: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Reliable WBG devices are capable of operating at elevated temperatures (≥ 175 °Celsius). However, packaging WBG devices within an automotive inverter and operating them at higher junction temperatures will expose other system components (e.g., capacitors and electrical boards) to temperatures that may exceed their safe operating limits. This creates challenges for thermal management and reliability. In this project, system-level thermal analyses are conducted to determine the effect of elevated device temperatures on inverter components. Thermal modeling work is then conducted to evaluate various thermal management strategies that will enable the use of highly efficient WBG devices with automotive power electronic systems.

  15. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  16. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  17. Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria a.

    2009-01-01

    This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.

  18. The Application of LENR to Synergistic Mission Capabilities

    Science.gov (United States)

    Wells, Douglas P.; Mavris, Dimitri N.

    2014-01-01

    This paper presents an overview of several missions that exploit the capabilities of a Low Energy Nuclear Reaction (LENR) aircraft propulsion system. LENR is a form of nuclear energy and potentially has over 4,000 times the energy density of chemical energy sources. It does not have any harmful emissions or radiation which makes it extremely appealing. The global reliance on crude oil for aircraft energy creates the opportunity for a revolutionary change with LENR. LENR will impact aircraft performance capabilities, military capabilities, the environment, the economy, and society. Although there is a lot of interest in LENR, there is no proven theory that explains it. Some of the technical challenges are thermal runaway and start-up time. This paper does not explore the feasibility of LENR and assumes that a system is available. A non-dimensional aircraft mass (NAM) ratio diagram is used to explore the aircraft system design space. The NAM ratio diagram shows that LENR can enable long range and high speed missions. The design space exploration led to the conclusion that LENR aircraft would be well suited for high altitude long endurance (HALE) missions, including communications relay and scientific missions for hurricane tracking and other weather phenomena, military intelligence, surveillance, and reconnaissance (ISR) and airspace denial missions, supersonic passenger transport aircraft, and international cargo transport. This paper describes six of those missions.

  19. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  20. Cessations and reversals of the large-scale circulation in turbulent thermal convection.

    Science.gov (United States)

    Xi, Heng-Dong; Xia, Ke-Qing

    2007-06-01

    We present an experimental study of cessations and reversals of the large-scale circulation (LSC) in turbulent thermal convection in a cylindrical cell of aspect ratio (Gamma) 1/2 . It is found that cessations and reversals of the LSC occur in Gamma = 1/2 geometry an order-of-magnitude more frequently than they do in Gamma=1 cells, and that after a cessation the LSC is most likely to restart in the opposite direction, i.e., reversals of the LSC are the most probable cessation events. This contrasts sharply to the finding in Gamma=1 geometry and implies that cessations in the two geometries are governed by different dynamics. It is found that the occurrence of reversals is a Poisson process and that a stronger rebound of the flow strength after a reversal or cessation leads to a longer period of stability of the LSC. Several properties of reversals and cessations in this system are found to be statistically similar to those of geomagnetic reversals. A direct measurement of the velocity field reveals that a cessation corresponds to a momentary decoherence of the LSC.

  1. Thermal Analysis of Filler Reinforced Polymeric Composites

    Science.gov (United States)

    Ghadge, Mahesh Devidas

    Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is

  2. Fluorescent nano-particles for multi-photon thermal sensing

    Energy Technology Data Exchange (ETDEWEB)

    Jaque, D., E-mail: daniel.jaque@uam.es [Fluorescence Imaging Group, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Maestro, L.M.; Escudero, E. [Fluorescence Imaging Group, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Rodriguez, E. Martin; Capobianco, J.A. [Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, QC, Canada H4B 1R6 (Canada); Vetrone, F. [Institut National de la Recherche Scientifique-Energie, Materiaux et Telecommunications, Universite du Quebec, Varennes, QC, Canada J3X 1S2 (Canada); Juarranz de la Fuente, A.; Sanz-Rodriguez, F. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Iglesias-de la Cruz, M.C. [Departamento de Fisiologia, Facultad de Medicina, Universidad Autonoma de Madrid, C/Arzobispo Morcillo s/n, 29029 Madrid (Spain); Jacinto, C.; Rocha, U. [Grupo de Fotonica e Fluidos Complexos, Instituto de Fisica, Universidade Federal de Alagoas, 57072-970 Maceio, Alagoas (Brazil); Garcia Sole, J. [Fluorescence Imaging Group, Universidad Autonoma de Madrid, Madrid 28049 (Spain)

    2013-01-15

    In this work we report on the ability of Er/Yb co-doped NaYF{sub 4} nano-crystals and CdTe Quantum Dots as two-photon excited fluorescent nano-thermometers. The basic physical phenomena causing the thermal sensitivity of the two-photon excited emission bands have been discussed and the maximum thermal resolution achievable in each case has been estimated. The practical application of both systems for thermal sensing at the micro-scale in biological systems is demonstrated. In particular, they have been used to evaluate the thermal loading induced by tightly focused laser beams in both living cells and fluids. - Highlights: Black-Right-Pointing-Pointer Two-photon-excited optical probes capable of thermal sensing are introduced. Black-Right-Pointing-Pointer The physics at the basis of thermal sensing is identified for each case. Black-Right-Pointing-Pointer Optical nano-thermometers are used to determine laser induced heating in cells and fluids.

  3. Thermal testing of packages for transport of radioactive wastes

    International Nuclear Information System (INIS)

    Koski, J.A.

    1994-01-01

    Shipping containers for radioactive materials must be shown capable of surviving tests specified by regulations such as Title 10, Code of Federal Regulations, Part 71 (called 10CFR71 in this paper) within the United States. Equivalent regulations hold for other countries such as Safety Series 6 issued by the International Atomic Energy Agency. The containers must be shown to be capable of surviving, in order, drop tests, puncture tests, and thermal tests. Immersion testing in water is also required, but must be demonstrated for undamaged packages. The thermal test is intended to simulate a 30 minute exposure to a fully engulfing pool fire that could occur if a transport accident involved the spill of large quantities of hydrocarbon fuels. Various qualification methods ranging from pure analysis to actual pool fire tests have been used to prove regulatory compliance. The purpose of this paper is to consider the alternatives for thermal testing, point out the strengths and weaknesses of each approach, and to provide the designer with the information necessary to make informed decisions on the proper test program for the particular shipping container under consideration. While thermal analysis is an alternative to physical testing, actual testing is often emphasized by regulators, and this report concentrates on these testing alternatives

  4. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  5. Restarting Anticoagulant Treatment After Intracranial Hemorrhage in Patients With Atrial Fibrillation and the Impact on Recurrent Stroke, Mortality, and Bleeding: A Nationwide Cohort Study.

    Science.gov (United States)

    Nielsen, Peter Brønnum; Larsen, Torben Bjerregaard; Skjøth, Flemming; Gorst-Rasmussen, Anders; Rasmussen, Lars Hvilsted; Lip, Gregory Y H

    2015-08-11

    Intracranial hemorrhage is the most feared complication of oral anticoagulant treatment. The optimal treatment option for patients with atrial fibrillation who survive an intracranial hemorrhage remains unknown. We hypothesized that restarting oral anticoagulant treatment was associated with a lower risk of stroke and mortality in comparison with not restarting. Linkage of 3 Danish nationwide registries in the period between 1997 and 2013 identified patients with atrial fibrillation on oral anticoagulant treatment with incident intracranial hemorrhage. Patients were stratified by treatment regimens (no treatment, oral anticoagulant treatment, or antiplatelet therapy) after the intracranial hemorrhage. Event rates were assessed 6 weeks after hospital discharge and compared with Cox proportional hazard models. In 1752 patients (1 year of follow-up), the rate of ischemic stroke/systemic embolism and all-cause mortality (per 100 person-years) for patients treated with oral anticoagulants was 13.6, in comparison with 27.3 for nontreated patients and 25.7 for patients receiving antiplatelet therapy. The rate of ischemic stroke/systemic embolism and all-cause mortality (per 100 person-years) for recurrent intracranial hemorrhage, the rate of ischemic stroke/systemic embolism, and all-cause mortality (per 100 person-years) patients treated with oral anticoagulants was 8.0, in comparison with 8.6 for nontreated patients and 5.3 for patients receiving antiplatelet therapy. The adjusted hazard ratio of ischemic stroke/systemic embolism and all-cause mortality was 0.55 (95% confidence interval, 0.39-0.78) in patients on oral anticoagulant treatment in comparison with no treatment. For ischemic stroke/systemic embolism and for all-cause mortality, hazard ratios were 0.59 (95% confidence interval, 0.33-1.03) and 0.55 (95% confidence interval, 0.37-0.82), respectively. Oral anticoagulant treatment was associated with a significant reduction in ischemic stroke/all-cause mortality

  6. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  7. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  8. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  9. A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties

    International Nuclear Information System (INIS)

    Zhang, He; Xing, Feng; Cui, Hong-Zhi; Chen, Da-Zhu; Ouyang, Xing; Xu, Su-Zhen; Wang, Jia-Xin; Huang, Yi-Tian; Zuo, Jian-Dong; Tang, Jiao-Ning

    2016-01-01

    Highlights: • A novel flaky graphite-doped phase-change microcapsule (FGD-MPCM) was prepared. • FGD-MPCM has substantial latent heat storage capacity (135.8 J/g). • FGD-MPCMs/cement composite is capable of reducing indoor temperature fluctuation. • Compressive strength of cement composite with 30% FGD-MPCMs can reach to 14.2 MPa. - Abstract: Facing upon the increasingly severe energy crisis, one of the key issues for reducing the building energy consumption is to pursue high-performance thermal energy storage technologies based on phase-change materials. In this study, a novel cement composite incorporated with flaky graphite-doped microencapsulated phase-change materials (FGD-MPCMs) was developed. Various techniques, such as field emission-scanning electron microscopy (FE-SEM), optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to analyse the composite structure and thermal performances. The results indicate that the spherical microcapsules are well dispersed in the cement matrix. When combined within the cement, the thermal stability of the microcapsules was highly improved, and the inclusion of greater amounts of FGD-MPCMs further increased the latent heat of the composite. The mechanical properties of the cement composites were affected with the increase of FGD-MPCMs dosage and the porosity of the composites. In spite of this, the compressive strength and flexural strength of the cement composite with 30% FGD-MPCM could still reach to as high as 14.2 MPa and 4.1 MPa, respectively. Results from the infrared thermography and the model room test suggested that the composite filled with FGD-MPCMs is capable of reducing indoor temperature fluctuation and exhibits good potential for application in buildings to enhance energy savings and thermal comfort.

  10. Assessment of CANDU-6 reactivity devices for DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-11-01

    Reactivity device characteristics for a CANDU 6 reactor loaded with DUPIC fuel have been assessed. The lattice parameters were generated by WIMS-AECL code and the core calculations were performed by RFSP code with a 3-dimensional full core model. The reactivity devices studied are the zone controller, adjusters, mechanical control absorber and shutoff rods. For the zone controller system, damping capability for spatial oscillation was investigated. For the adjusters, the restart capability was investigated. For the adjusters, the restart capability was investigated. The shin operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster system. The mechanical control absorber was assessed for the function of compensating temperature reactivity feedback following a power reduction. And shutoff rods were also assessed to investigate the following a power reduction. And shutoff rods were also assessed to investigate the static reactivity worth. This study has shown that the current reactivity device system of CANDU-6 core with the DUPIC fuel. (author). 9 refs., 17 tabs., 7 figs

  11. Residents within 30 km of the Sendai nuclear plant in Kagoshima prefecture, the scope of the evacuation zone, oppose to restart of the plant being shut down after Fukushima Daiichi nuclear accident. Findings based on the region's representative sample survey by interviewers

    International Nuclear Information System (INIS)

    Hirose, Hirotada

    2015-01-01

    Due to the aftermath of the accident of Tokyo Electric Power Company Right Single Quotation Marks Fukushima Daiichi Nuclear Power Station caused by the Great East Japan Earthquake, a lot of residents were still forced to be under evacuation. However, the Japanese government places nuclear power as a base load power, and is trying to successively restart nuclear power plants under full-stop state. Under such circumstance, a questionnaire survey about the issue over the nuclear power plant was conducted for residents near the Sendai Nuclear Power Station, which is expected to restart. The areas of the survey are within 30 km radius from the plant, where evacuation is required in case of an accident, and these areas are divided to two categories; Precautionary Action Zone (PAZ), which is within 5 km from a nuclear plant, and Urgent Protective Action Planning Zone (UPZ), which is 5-30 km from a nuclear plant. This paper introduces in detail the survey methods and findings. (A.O.)

  12. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  13. Thermal effects of divertor sweeping in ITER

    International Nuclear Information System (INIS)

    Wesley, J.C.

    1992-01-01

    In this paper, thermal effects of magnetically sweeping the separatrix strike point on the outer divertor target of the International Thermonuclear Fusion Reactor (ITER) are calculated. For the 0. 2 Hz x ± 12 cm sweep scenario proposed for ITER operations, the thermal capability of a generic target design is found to be slightly inadequate (by ∼ 5%) to accommodate the full degree of plasma scrape-off peaking postulated as a design basis. The principal problem identified is that the 5 s sweep period is long relative to the 1. 4 s thermal time constant of the divertor target. An increase of the sweep frequency to ∼ 1 Hz is suggested: this increase would provide a power handling margin of ∼ 25% relative to present operational criteria

  14. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure.

    Science.gov (United States)

    Rosa, Priscila F S; Thomas, Sean M; Balakirev, Fedor F; Betts, Jon; Seo, Soonbeom; Bauer, Eric D; Thompson, Joe D; Jaime, Marcelo

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn₅. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L₀)/L₀] on the order of 10 -7 . Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hindered by the small working volumes typical of pressure cells.

  15. Hydro-pneumatic accumulators for vehicles kinetic energy storage: Influence of gas compressibility and thermal losses on storage capability

    International Nuclear Information System (INIS)

    Puddu, Pierpaolo; Paderi, Maurizio

    2013-01-01

    In this work the differences between the thermodynamic behaviour of real and ideal gases are analysed to determine their influence on the processes of compression and expansion of a gas-charged accumulator. The behaviour of real gas has a significant influence on the size of accumulators used for Kinetic Energy Recovery of vehicles. In particular, it is underscored that the accumulator's design, based on ideal gas behaviour, provides undersized accumulators and therefore makes impossible the complete energy recovery for Hydraulic Energy Storage Systems (HES). The analysis of the thermodynamic properties of gases has shown that the main differences between ideal and real behaviour are due to gas compressibility. A mathematical model of a gas-charged accumulator is developed in order to analyse its real behaviour in presence of irreversible heat transfer and viscous losses. The simulation process of charging and discharging of a hydro-pneumatic accumulator, makes it clear that hydrodynamic and thermal losses are responsible for the characteristic hysteresis cycle on the p–V diagram. Different gases are tested as charged fluid of a hydro-pneumatic accumulator to simulate cyclic processes of charge and discharge. Results show different characteristics in terms of volumetric gas properties, thermal time-constant and thermal efficiency of the accumulator. - Highlights: • A dynamic model of a gas charged accumulator was developed. • Gas compressibility significantly influences the size of high-pressure accumulators. • A hysteresis loop is indicative of the thermal energy losses. • Loss increases with increasing the period of the cyclic process. • Thermal time constant is different from compression to expansion

  16. Dynamic capabilities and innovation capabilities: The case of the ‘Innovation Clinic’

    Directory of Open Access Journals (Sweden)

    Fred Strønen

    2017-01-01

    Full Text Available In this explorative study, we investigate the relationship between dynamic capabilities and innovation capabilities. Dynamic capabilities are at the core of strategic management in terms of how firms can ensure adaptation to changing environments over time. Our paper follows two paths of argumentation. First, we review and discuss some major contributions to the theories on ordinary capabilities, dynamic capabilities, and innovation capabilities. We seek to identify different understandings of the concepts in question, in order to clarify the distinctions and relationships between dynamic capabilities and innovation capabilities. Second, we present a case study of the ’Innovation Clinic’ at a major university hospital, including four innovation projects. We use this case study to explore and discuss how dynamic capabilities can be extended, as well as to what extent innovation capabilities can be said to be dynamic. In our conclusion, we discuss the conditions for nurturing ‘dynamic innovation capabilities’ in organizations.

  17. Capability ethics

    OpenAIRE

    Robeyns, Ingrid

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological theories, virtue ethics, or pragmatism. As I will argue in this chapter, at present the core of the capability approach is an account of value, which together with some other (more minor) normative comm...

  18. Deburring: technical capabilities and cost-effective approaches, Lessons 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-06-01

    This ten lesson text on deburring is designed to provide engineers and production supervisors with an overall understanding of deburring economics and current capabilities. The material included describes economics, side effects, process selection techniques, product design influences, standards, plantwide approaches, burr formation, and prevention. Deburring methods described include barrel, centrifugal barrel, vibratory, spindle, manual, electrochemical, electropolish, brush, abrasive jet, abrasive flow, water jet, thermal energy, and mechanized mechanical. Lessons 3 and 4 describe product design influences and burr prevention and minimization respectively.

  19. Nanoparticles for heat transfer and thermal energy storage

    Science.gov (United States)

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  20. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng

    2012-06-26

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  1. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2012-01-01

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  2. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  3. New and Emerging Satellite Imaging Capabilities in Support of Safeguards

    International Nuclear Information System (INIS)

    Johnson, M.; Paquette, J.P.; Spyropoulos, N.; Rainville, L.; Schichor, P.; Hong, M.

    2015-01-01

    This abstract is focused on new and emerging commercial satellite imagery (CSI) capabilities. For more than a decade, experienced imagery analysts have been exploiting and analyzing CSI in support of the Department of Safeguards. As the remote sensing industry continues to evolve, additional CSI imagery types are becoming available that could enhance our ability to evaluate and verify States' declarations and to investigate the possible presence of undeclared activities. A newly available and promising CSI capability that may have a Safeguards application is Full Motion Video (FMV) imagery collection from satellites. For quite some time, FMV imagery has been collected from airborne platforms, but now FMV sensors are being deployed into space. Like its airborne counterpart, satellite FMV imagery could provide analysts with a great deal of information, including insight into the operational status of facilities and patterns of activity. From a Safeguards perspective, FMV imagery could help the Agency in the evaluation and verification of States' declared facilities and activities. There are advantages of FMV imaging capabilities that cannot be duplicated with other CSI capabilities, including the ability to loiter over areas of interest and the potential to revisit sites multiple times per day. Additional sensor capabilities applicable to the Safeguards mission include, but are not limited to, the following sensors: · Thermal Infrared imaging sensors will be launched in late 2014 to monitor operational status, e.g., heat from a transformer. · High resolution ShortWave Infrared sensors able to characterize materials that could support verification of Additional Protocol declarations under Article 2.a(v). · Unmanned Aerial Vehicles with individual sensors or specific sensor combinations. The Safeguards Symposium provides a forum to showcase and demonstrate safeguards applications for these emerging satellite imaging capabilities. (author)

  4. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  5. Performance testing of thermal analysis codes for nuclear fuel casks

    International Nuclear Information System (INIS)

    Sanchez, L.C.

    1987-01-01

    In 1982 Sandia National Laboratories held the First Industry/Government Joint Thermal and Structural Codes Information Exchange and presented the initial stages of an investigation of thermal analysis computer codes for use in the design of nuclear fuel shipping casks. The objective of the investigation was to (1) document publicly available computer codes, (2) assess code capabilities as determined from their user's manuals, and (3) assess code performance on cask-like model problems. Computer codes are required to handle the thermal phenomena of conduction, convection and radiation. Several of the available thermal computer codes were tested on a set of model problems to assess performance on cask-like problems. Solutions obtained with the computer codes for steady-state thermal analysis were in good agreement and the solutions for transient thermal analysis differed slightly among the computer codes due to modeling differences

  6. Effects of Temperature on the Performance and Stability of Recent COTS Silicon Oscillators

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2010-01-01

    Silicon oscillators have lately emerged to serve as potential replacement for crystal and ceramic resonators to provide timing and clock signals in electronic systems. These semiconductor-based devices, including those that are based on MEMS technology, are reported to be resistant to vibration and shock (an important criteria for systems to be deployed in space), immune to EMI, consume very low current, require few or no external components, and cover a wide range of frequency for analog and digital circuits. In this work, the performance of five recently-developed COTS silicon oscillator chips from different manufacturers was determined within a temperature range that extended beyond the individual specified range of operation. In addition, restart capability at extreme temperatures, i.e. power switched on while the device was soaking at extreme (hot or cold) temperature, and the effects of thermal cycling under a wide temperature range on the operation of these silicon oscillators were also investigated. Performance characterization of each oscillator was obtained in terms of its output frequency, duty cycle, rise and fall times, and supply current at specific test temperatures. The five different oscillators tested operated beyond their specified temperature region, with some displaying excellent stability throughout the whole test temperature range. Others experienced some instability at certain temperature test points as evidenced by fluctuation in the output frequency. Recovery from temperature-induced changes took place when excessive temperatures were removed. It should also be pointed out that all oscillators were able to restart at the extreme test temperatures and to withstand the limited thermal cycling without undergoing any significant changes in their characteristics. In addition, no physical damage was observed in the packaging material of any of these silicon oscillators due to extreme temperature exposure and thermal cycling. It is recommended

  7. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  8. Gossiping Capabilities

    DEFF Research Database (Denmark)

    Mogensen, Martin; Frey, Davide; Guerraoui, Rachid

    Gossip-based protocols are now acknowledged as a sound basis to implement collaborative high-bandwidth content dissemination: content location is disseminated through gossip, the actual contents being subsequently pulled. In this paper, we present HEAP, HEterogeneity Aware gossip Protocol, where...... nodes dynamically adjust their contribution to gossip dissemination according to their capabilities. Using a continuous, itself gossip-based, approximation of relative capabilities, HEAP dynamically leverages the most capable nodes by (a) increasing their fanouts (while decreasing by the same proportion...... declare a high capability in order to augment their perceived quality without contributing accordingly. We evaluate HEAP in the context of a video streaming application on a 236 PlanetLab nodes testbed. Our results shows that HEAP improves the quality of the streaming by 25% over a standard gossip...

  9. Improving Research Reactor Accident Response Capability at the Hungarian Nuclear Safety Authority

    International Nuclear Information System (INIS)

    Vegh, J.; Gajdos, F.; Horvath, Cs.; Matisz, A.; Nyisztor, D.

    2013-06-01

    The paper describes the design and implementation of an on-line operation monitoring and accident response support system to be used at the CERTA emergency response centre of Hungarian Atomic Energy Authority (HAEA). The monitored facility is the Budapest Research Reactor (BRR), which is a tank-type thermal reactor having 10 MW thermal power. The basic reason for the development of the on-line safety information system is to extend the emergency response capability of the CERTA crisis centre to include emergencies related to BRR, as well. CERTA is operated by HAEA at its Budapest headquarters and the centre already has an on-line system for monitoring the state of the four units of Paks NPP, Hungary. The system is called CERTA VITA and it is able to monitor the four VVER-440/V213 units during their normal operation, and during emergencies (including severe accidents). Ensuring appropriate emergency response capabilities, as well as improving the presently available systems and tools was one of the important recommendations resulting from the analyses following the severe accident at Fukushima. This task is valid not only for the operators of the nuclear facilities but also for the nuclear safety authorities, therefore HAEA decided to launch a project - together with the Centre for Energy Research, the operator of BRR - to establish an on-line information system similar to the CERTA VITA used for monitoring the four units of the Paks NPP. It is believed that by the introduction of this new on-line system the accident response capabilities of HAEA will be further enhanced and the BRR emergencies will be handled at the same professional level as potential emergencies at Paks NPP. (authors)

  10. The design of high-temperature thermal conductivity measurements apparatus for thin sample size

    Directory of Open Access Journals (Sweden)

    Hadi Syamsul

    2017-01-01

    Full Text Available This study presents the designing, constructing and validating processes of thermal conductivity apparatus using steady-state heat-transfer techniques with the capability of testing a material at high temperatures. This design is an improvement from ASTM D5470 standard where meter-bars with the equal cross-sectional area were used to extrapolate surface temperature and measure heat transfer across a sample. There were two meter-bars in apparatus where each was placed three thermocouples. This Apparatus using a heater with a power of 1,000 watts, and cooling water to stable condition. The pressure applied was 3.4 MPa at the cross-sectional area of 113.09 mm2 meter-bar and thermal grease to minimized interfacial thermal contact resistance. To determine the performance, the validating process proceeded by comparing the results with thermal conductivity obtained by THB 500 made by LINSEIS. The tests showed the thermal conductivity of the stainless steel and bronze are 15.28 Wm-1K-1 and 38.01 Wm-1K-1 with a difference of test apparatus THB 500 are −2.55% and 2.49%. Furthermore, this apparatus has the capability to measure the thermal conductivity of the material to a temperature of 400°C where the results for the thermal conductivity of stainless steel is 19.21 Wm-1K-1 and the difference was 7.93%.

  11. Thermal interaction in crusted melt jets with large-scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Ken-ichiro; Sotome, Fuminori; Ishikawa, Michio [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1998-01-01

    The objective of the present study is to experimentally observe thermal interaction which would be capable of triggering due to entrainment, or entrapment in crusted melt jets with `large-scale structure`. The present experiment was carried out by dropping molten zinc and molten tin of 100 grams, of which mass was sufficient to generate large-scale structures of melt jets. The experimental results show that the thermal interaction of entrapment type occurs in molten-zinc jets with rare probability, and the thermal interaction of entrainment type occurs in molten tin jets with high probability. The difference of thermal interaction between molten zinc and molten tin may attribute to differences of kinematic viscosity and melting point between them. (author)

  12. Development of a multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3 and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    A multi-dimensional realistic thermal-hydraulic system analysis code, MARS version 1.3 has been developed. Main purpose of MARS 1.3 development is to have the realistic analysis capability of transient two-phase thermal-hydraulics of Pressurized Water Reactors (PWRs) especially during Large Break Loss of Coolant Accidents (LBLOCAs) where the multi-dimensional phenomena domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, three-dimensional (3D) reactor vessel analysis code, and RELAP5/MOD3.2.1.2, one-dimensional (1D) reactor system analysis code., Developmental requirements for MARS are chosen not only to best utilize the existing capability of the codes but also to have the enhanced capability in code maintenance, user accessibility, user friendliness, code portability, code readability, and code flexibility. For the maintenance of existing codes capability and the enhancement of code maintenance capability, user accessibility and user friendliness, MARS has been unified to be a single code consisting of 1D module (RELAP5) and 3D module (COBRA-TF). This is realized by implicitly integrating the system pressure matrix equations of hydrodynamic models and solving them simultaneously, by modifying the 1D/3D calculation sequence operable under a single Central Processor Unit (CPU) and by unifying the input structure and the light water property routines of both modules. In addition, the code structure of 1D module is completely restructured using the modular data structure of standard FORTRAN 90, which greatly improves the code maintenance capability, readability and portability. For the code flexibility, a dynamic memory management scheme is applied in both modules. MARS 1.3 now runs on PC/Windows and HP/UNIX platforms having a single CPU, and users have the options to select the 3D module to model the 3D thermal-hydraulics in the reactor vessel or other

  13. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles.

    Science.gov (United States)

    Shuhaibar, Leia C; Egbert, Jeremy R; Norris, Rachael P; Lampe, Paul D; Nikolaev, Viacheslav O; Thunemann, Martin; Wen, Lai; Feil, Robert; Jaffe, Laurinda A

    2015-04-28

    Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2-4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes.

  14. Radioactive material package testing capabilities at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-01-01

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia's facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns

  15. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  16. Evaluation of the AN/SAY-1 Thermal Imaging Sensor System

    National Research Council Canada - National Science Library

    Smith, John G; Middlebrook, Christopher T

    2002-01-01

    The AN/SAY-1 Thermal Imaging Sensor System "TISS" was developed to provide surface ships with a day/night imaging capability to detect low radar reflective, small cross-sectional area targets such as floating mines...

  17. Rights, goals, and capabilities

    NARCIS (Netherlands)

    van Hees, M.V.B.P.M

    This article analyses the relationship between rights and capabilities in order to get a better grasp of the kind of consequentialism that the capability theory represents. Capability rights have been defined as rights that have a capability as their object (rights to capabilities). Such a

  18. Current and anticipated uses of thermal-hydraulic codes in NFI

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, K. [Nuclear Fuel Industries, Ltd., Tokyo (Japan); Takayasu, M. [Nuclear Fuel Industries, Ltd., Sennann-gun (Japan)

    1997-07-01

    This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.

  19. Development of measurement capabilities for the thermophysical properties of energy-related fluids. Annual report, December 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, R.F.

    1993-08-13

    The measurement capabilities to be developed include new apparatus for transport properties, thermodynamic properties, phase equilibria, and dielectric properties. Specific capabilities are: Thermal conductivity apparatus, vibrating wire viscometer, dual-sinker densimeter, high-temperature vibrating tube densimeter, dynamic phase equilibria apparatus, apparatus for dilute solutions, total-enthalpy flow calorimeter. Benchmark measurements were made (no data given) on pure and mixed alternative refrigerants and their mixtures with lubricants, and other fluids.

  20. Thermal management of Li-ion battery with liquid metal

    International Nuclear Information System (INIS)

    Yang, Xiao-Hu; Tan, Si-Cong; Liu, Jing

    2016-01-01

    Highlights: • Liquid metal is used for power battery pack thermal management. • Better cooling performance and more uniform module temperature is obtained. • Less power consumption is needed. • The proposed liquid metal cooling system is robust and can cope with stressful conditions. - Abstract: Thermal management especially cooling of electric vehicles (EVs) battery pack is of great significance for guaranteeing the performance of the cells as well as safety and high-efficiency working of the EVs. Liquid cooling is a powerful way to keep the battery temperature in a proper range. However, the efficiency of conventional liquid cooling is still limited due to the inherently low thermal conductivity of the coolant which is usually water or aqueous ethanol. In this paper, a new kind of coolant, liquid metal, is proposed to be used for the thermal management of the battery pack. Mathematical analysis and numerical simulations are conducted to evaluate the cooling capability, pump power consumption and module temperature uniformity of the liquid metal cooling system, in comparison with that of water cooling. The results show that under the same flow conditions, a lower and more uniform module temperature can be obtained and less pump power consumption are needed in the liquid metal cooling system. In addition, liquid metal has an excellent cooling capability coping with stressful conditions, such as high power draw, defects in cells, and high ambient temperature. This makes it a promising coolant for the thermal management of high driving force EVs and quick charge batteries.

  1. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    Science.gov (United States)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  2. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological

  3. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films.

    Science.gov (United States)

    Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E

    2015-03-11

    Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.

  4. Dynamic Capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case enterprises, as we would expect. It was, however, not possible to establish a positive relationship between innovation performance and profitability. Nor was there any positive...... relationship between dynamic capabilities and profitability....

  5. Nanoscale thermal transport. II. 2003-2012

    Science.gov (United States)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    analysis using proximal probes has achieved spatial resolution of 10 nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

  6. Silicon Cold Plate for CubeSat/SmallSat Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of advanced small spacecraft with increased capability and performance requires new technologies and approaches to thermal management. Newer and more...

  7. Resonance shielding in thermal reactor lattices

    International Nuclear Information System (INIS)

    Rothenstein, W.; Taviv, E.; Aminpour, M.

    1982-01-01

    The theoretical foundations of a new methodology for the accurate treatment of resonance absorption in thermal reactor lattice analysis are presented. This methodology is based on the solution of the point-energy transport equation in its integral or integro-differential form for a heterogeneous lattice using detailed resonance cross-section profiles. The methodology is applied to LWR benchmark analysis, with emphasis on temperature dependence of resonance absorption during fuel depletion, spatial and mutual self-shielding, integral parameter analysis and treatment of cluster geometry. The capabilities of the OZMA code, which implements the new methodology are discussed. These capabilities provide a means against which simpler and more rapid resonance absorption algorithms can be checked. (author)

  8. Capabilities and Incapabilities of the Capabilities Approach to Health Justice.

    Science.gov (United States)

    Selgelid, Michael J

    2016-01-01

    This first part of this article critiques Sridhar Venkatapuram's conception of health as a capability. It argues that Venkatapuram relies on the problematic concept of dignity, implies that those who are unhealthy lack lives worthy of dignity (which seems politically incorrect), sets a low bar for health, appeals to metaphysically problematic thresholds, fails to draw clear connections between appealed-to capabilities and health, and downplays the importance/relevance of health functioning. It concludes by questioning whether justice entitlements should pertain to the capability for health versus health achievements, challenging Venkatapuram's claims about the strength of health entitlements, and demonstrating that the capabilities approach is unnecessary to address social determinants of health. © 2016 John Wiley & Sons Ltd.

  9. Millisecond photo-thermal process on significant improvement of supercapacitor’s performance

    International Nuclear Information System (INIS)

    Wang, Kui; Wang, Jixiao; Wu, Ying; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-01-01

    Graphical abstract: A high way for charge transfer is created by a millisecond photo-thermal process which could decrease contact resistance among nanomaterials and improve the electrochemical performances. - Highlights: • Improve conductivity among nanomaterials with a millisecond photo-thermal process. • The specific capacitance can increase about 25% with an photo-thermal process. • The circle stability and rate capability can be improved above 10% with photo-thermal process. • Provide a new way that create electron path to improve electrochemical performance. - Abstract: Supercapacitors fabricated with nanomaterials usually have high specific capacitance and excellent performance. However, the small size of nanomaterials renders a considerable limitation of the contact area among nanomaterials, which is harmful to charge carrier transfer. This fact may hinder the development and application of nanomaterials in electrochemical storage systems. Here, a millisecond photo-thermal process was introduced to create a charge carries transfer path to decrease the contact resistance among nanomaterials, and enhance the electrochemical performance of supercapacitors. Polyaniline (PANI) nanowire, as a model nanomaterial, was used to modify electrodes under different photo-thermal process conditions. The modified electrodes were characterized by scanning electronic microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and the results were analysed by equivalent circuit simulation. These results demonstrate that the photo-thermal process can alter the morphology of PANI nanowires, lower the charge transfer resistances and thus improve the performance of electrodes. The specific capacitance increase of the modified electrodes is about 25%. The improvement of the circle stability and rate capability are above 10%. To the best of our knowledge, this is the first attempt on research the effect of photo-thermal process on the conductivity

  10. NGNP Data Management and Analysis System Modeling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia D. Gentillon

    2009-09-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

  11. NGNP Data Management and Analysis System Modeling Capabilities

    International Nuclear Information System (INIS)

    Gentillon, Cynthia D.

    2009-01-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

  12. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    Science.gov (United States)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  13. Capabilities for Strategic Adaptation

    DEFF Research Database (Denmark)

    Distel, Andreas Philipp

    This dissertation explores capabilities that enable firms to strategically adapt to environmental changes and preserve competitiveness over time – often referred to as dynamic capabilities. While dynamic capabilities being a popular research domain, too little is known about what these capabiliti...

  14. The SPAR thermal analyzer: Present and future

    Science.gov (United States)

    Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.

    The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.

  15. Room-Temperature Voltage Tunable Phonon Thermal Conductivity via Reconfigurable Interfaces in Ferroelectric Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Ihlefeld, Jon F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Foley, Brian M. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering; Scrymgeour, David A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Michael, Joseph R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); McKenzie, Bonnie B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Medlin, Douglas L. [Sandia National Laboratories, Livermore, CA; Wallace, Margeaux [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Trolier-McKinstry, Susan [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Hopkins, Patrick E. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering

    2015-02-19

    Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. Here, we demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.

  16. Thermal and seismic impacts on the North Ramp at Yucca Mountain

    International Nuclear Information System (INIS)

    Lin, M.; Hardy, M.P.; Jung, J.

    1994-01-01

    The impacts of thermal and seismic loads on the stability of the Exploratory Studies Facility North Ramp at Yucca Mountain were assessed using both empirical and analytical approaches. This paper presents the methods and results of the analyses. Thermal loads were first calculated using the computer code STRES3D. This code calculates the conductive heat transfer through a semi-infinite elastic, isotropic, homogeneous solid and the resulting thermally-induced stresses. The calculated thermal loads, combined with simulated earthquake motion, were then modeled using UDEC and DYNA3D, numerical codes with dynamic simulation capabilities. The thermal- and seismic-induced yield zones were post-processed and presented for assessment of damage. Uncoupled bolt stress analysis was also conducted to evaluate the seismic impact on the ground support components

  17. Direct versus Indirect Treatment for Preschool Children who Stutter: The RESTART Randomized Trial.

    Directory of Open Access Journals (Sweden)

    Caroline de Sonneville-Koedoot

    Full Text Available Stuttering is a common childhood disorder. There is limited high quality evidence regarding options for best treatment. The aim of the study was to compare the effectiveness of direct treatment with indirect treatment in preschool children who stutter.In this multicenter randomized controlled trial with an 18 month follow-up, preschool children who stutter who were referred for treatment were randomized to direct treatment (Lidcombe Program; n = 99 or indirect treatment (RESTART-DCM treatment; n = 100. Main inclusion criteria were age 3-6 years, ≥3% syllables stuttered (%SS, and time since onset ≥6 months. The primary outcome was the percentage of non-stuttering children at 18 months. Secondary outcomes included stuttering frequency (%SS, stuttering severity ratings by the parents and therapist, severity rating by the child, health-related quality of life, emotional and behavioral problems, and speech attitude.Percentage of non-stuttering children for direct treatment was 76.5% (65/85 versus 71.4% (65/91 for indirect treatment (Odds Ratio (OR, 0.6; 95% CI, 0.1-2.4, p = .42. At 3 months, children treated by direct treatment showed a greater decline in %SS (significant interaction time x therapy: β = -1.89; t(282.82 = -2.807, p = .005. At 18 months, stuttering frequency was 1.2% (SD 2.1 for direct treatment and 1.5% (SD 2.1 for indirect treatment. Direct treatment had slightly better scores on most other secondary outcome measures, but no differences between treatment approaches were significant.Direct treatment decreased stuttering more quickly during the first three months of treatment. At 18 months, however, clinical outcomes for direct and indirect treatment were comparable. These results imply that at 18 months post treatment onset, both treatments are roughly equal in treating developmental stuttering in ways that surpass expectations of natural recovery. Follow-up data are needed to confirm these findings in the longer term

  18. Numerical modeling capabilities to predict repository performance

    International Nuclear Information System (INIS)

    1979-09-01

    This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used

  19. Thermal stress-dependent dilation of concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.

    1984-01-01

    Recent studies in nuclear fast reactor safety consider the possibility of concrete containment being subjected to extremely severe environmental conditions. Certain safety scenarios subject the concrete to very high temperatures hence raising the concern of containment integrity. Some of the main detrimental effects of high temperature on concrete are: reduction of strength, redistribution of moisture and etc. Consequently, analytical prediction of concrete response under the high temperature conditions becomes very complex. A rather simple but important experiment of concrete at high temperatures was conducted by Anderberg and Thelandersson. The test samples were small so that moisture was free to evaporate with no appreciable gradient as the temperature increased. Their results revealed that good correlation with analysis could be obtained if thermal expansion was made a function of both temperature and stress. The method of relating the thermal strain to temperature and stress has been integrated into the TEMP-STRESS code. Thus, high temperature concrete computational capability is now available for thermal-stress calculations

  20. 14 CFR 29.903 - Engines.

    Science.gov (United States)

    2010-01-01

    ... failure or malfunction of any engine, or the failure of any system that can affect any engine, will not... rotor failure; and (2) The powerplant systems associated with engine control devices, systems, and... of all engines, engine restart capability must be demonstrated throughout a flight envelope for the...

  1. Optimal thermal-hydraulic performance for helium-cooled divertors

    International Nuclear Information System (INIS)

    Izenson, M.G.; Martin, J.L.

    1996-01-01

    Normal flow heat exchanger (NFHX) technology offers the potential for cooling divertor panels with reduced pressure drops (<0.5% Δp/p), reduced pumping power (<0.75% pumping/thermal power), and smaller duct sizes than conventional helium heat exchangers. Furthermore, the NFHX can easily be fabricated in the large sizes required for divertors in large tokamaks. Recent experimental and computational results from a program to develop NFHX technology for divertor coolings using porous metal heat transfer media are described. We have tested the thermal and flow characteristics of porous metals and identified the optimal heat transfer material for the divertor heat exchanger. Methods have been developed to create highly conductive thermal bonds between the porous material and a solid substrate. Computational fluid dynamics calculations of flow and heat transfer in the porous metal layer have shown the capability of high thermal effectiveness. An 18-kW NFHX, designed to meet specifications for the international Thermonuclear Experimental Reactor divertor, has been fabricated and tested for thermal and flow performance. Preliminary results confirm design and fabrication methods. 11 refs., 12 figs., 1 tab

  2. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  3. ATHENA [Advanced Thermal Hydraulic Energy Network Analyzer] solutions to developmental assessment problems

    International Nuclear Information System (INIS)

    Carlson, K.E.; Ransom, V.H.; Roth, P.A.

    1987-03-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems that may be found in fusion reactors, space reactors, and other advanced systems. As an assessment of current capability the code was applied to a number of physical problems, both conceptual and actual experiments. Results indicate that the numerical solution to the basic conservation equations is technically sound, and that generally good agreement can be obtained when modeling relevant hydrodynamic experiments. The assessment also demonstrates basic fusion system modeling capability and verifies compatibility of the code with both CDC and CRAY mainframes. Areas where improvements could be made include constitutive modeling, which describes the interfacial exchange term. 13 refs., 84 figs

  4. Proposal of performance indicators/model for Operational Readiness Verification (ORV) at restart after a planned shutdown

    International Nuclear Information System (INIS)

    Hollnagel, Erik; Nygren, Magnus

    2005-12-01

    The objectives of the study reported here were to propose a model that can be used in the analysis of possible future ORV-related events and to outline a set of performance indicators that can be used by the inspectorate to assess a utility's level of readiness if an ORV-event should take place. Together the two objectives serve to improve the inspectorate's ability to ensure that the utilities maintain an adequate capability to respond. The background for the current study is the nine ORV events that occurred in Sweden between 1995- 1998, as well as the findings of a previous study of safety during outage and restart of nuclear power plants project. This study found that the three levels or types of tests that occur in ORV were used according to need rather than according to a predefined arrangement or procedure, and that tasks were adapted relative to the different types of embedding and the degree of correspondence between nominal and actual ORV. The organisation's coping with the complexity of ORV was discussed by the relation between expectations and surprises, how planning was used as control, attention to details, and the practices of shift changes. It is a truism that accidents are analysed and interpreted relative to a commonly accepted understanding of their nature. This understanding is, however, relative rather than absolute, and has changed significantly during the last decade. In the 1990s, accidents were analysed step by step, and explanations and recommendations therefore emphasised specific rather than generic solutions. The present study illustrates this by going through the responses to the nine ORV events. Following that, the nine events are analysed anew using a contemporary understanding of accidents (a systemic model), which emphasises that incidents more often arise from context induced performance variability than from failures of people. The alternative interpretation provided by a systemic model is illustrated by a detailed analysis of

  5. Dynamic thermal analysis of machines in running state

    CERN Document Server

    Wang, Lihui

    2014-01-01

    With the increasing complexity and dynamism in today’s machine design and development, more precise, robust and practical approaches and systems are needed to support machine design. Existing design methods treat the targeted machine as stationery. Analysis and simulation are mostly performed at the component level. Although there are some computer-aided engineering tools capable of motion analysis and vibration simulation etc., the machine itself is in the dry-run state. For effective machine design, understanding its thermal behaviours is crucial in achieving the desired performance in real situation. Dynamic Thermal Analysis of Machines in Running State presents a set of innovative solutions to dynamic thermal analysis of machines when they are put under actual working conditions. The objective is to better understand the thermal behaviours of a machine in real situation while at the design stage. The book has two major sections, with the first section presenting a broad-based review of the key areas of ...

  6. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  7. Quaternion Based Thermal Condition Monitoring System

    Science.gov (United States)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  8. Determination of the Local Thermal Conductivity of Functionally Graded Materials by a Laser Flash Method

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....

  9. SPAR thermal analysis processors reference manual, system level 16. Volume 1: Program executive. Volume 2: Theory. Volume 3: Demonstration problems. Volume 4: Experimental thermal element capability. Volume 5: Programmer reference

    Science.gov (United States)

    Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.

    1979-01-01

    User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.

  10. Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Alkeskjold, Thomas Tanggaard

    2012-01-01

    Power scaling of fiber laser systems requires the development of innovative active fibers, capable of providing high pump absorption, ultralarge effective area, high-order mode suppression, and resilience to thermal effects. Thermally induced refractive index change has been recently appointed...... as one major limitation to the achievable power, causing degradation of the modal properties and preventing to obtain stable diffraction-limited output beam. In this paper, the effects of thermally induced refractive index change on the guiding properties of a double-cladding distributed modal filtering...

  11. Capability-based computer systems

    CERN Document Server

    Levy, Henry M

    2014-01-01

    Capability-Based Computer Systems focuses on computer programs and their capabilities. The text first elaborates capability- and object-based system concepts, including capability-based systems, object-based approach, and summary. The book then describes early descriptor architectures and explains the Burroughs B5000, Rice University Computer, and Basic Language Machine. The text also focuses on early capability architectures. Dennis and Van Horn's Supervisor; CAL-TSS System; MIT PDP-1 Timesharing System; and Chicago Magic Number Machine are discussed. The book then describes Plessey System 25

  12. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  13. Mobile Test Capabilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrical Power Mobile Test capabilities are utilized to conduct electrical power quality testing on aircraft and helicopters. This capability allows that the...

  14. Building Service Provider Capabilities

    DEFF Research Database (Denmark)

    Brandl, Kristin; Jaura, Manya; Ørberg Jensen, Peter D.

    2015-01-01

    In this paper we study whether and how the interaction between clients and the service providers contributes to the development of capabilities in service provider firms. In situations where such a contribution occurs, we analyze how different types of activities in the production process...... process. We find that clients influence the development of human capital capabilities and management capabilities in reciprocally produced services. While in sequential produced services clients influence the development of organizational capital capabilities and management capital capabilities....... of the services, such as sequential or reciprocal task activities, influence the development of different types of capabilities. We study five cases of offshore-outsourced knowledge-intensive business services that are distinguished according to their reciprocal or sequential task activities in their production...

  15. 75 FR 70917 - Environmental Impacts Statements; Notice Of Availability

    Science.gov (United States)

    2010-11-19

    ... the Federal Register. EIS No. 20100444, Final EIS, BLM, NV, Tonopah Solar Energy Crescent Dunes Solar Energy Project, a 7,680-Acre Right-of-Way (ROW) on Public Lands to Construct a Concentrated Solar Thermal... Restart an Idled Production Line and Expand Contiguous Sections of the Open Pit Iron Ore Mine, located...

  16. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    Science.gov (United States)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  17. TRANSPA: a code for transient thermal analysis of a single fuel pin

    International Nuclear Information System (INIS)

    Prenger, F.C.

    1985-02-01

    An analytical model (TRANSPA) for the transient thermal analysis of a single uranium carbide fuel pin was developed. This model uses thermal boundary conditions obtained from COBRA-WC output and calculates the transient thermal response of a single fuel pin to changes in internal power generation, coolant flowrate, or fuel pin physical configuration. The model uses the MITAS finite difference thermal analyzer. MITAS provides the means to input separate conductance models through the use of a user subroutine input capability. The model is a lumped-mass representation of the fuel pin using 26 nodes and 42 conductors. Run time for each transient analysis is approximately one minute of central processor time on the NOS operating system

  18. Thermally stable diamond brazing

    Science.gov (United States)

    Radtke, Robert P [Kingwood, TX

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  19. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  20. Solar Thermal Enhanced Oil Recovery, (STEOR) Volume 1: Executive summary

    Science.gov (United States)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P.; Shaw, H.

    1980-11-01

    Thermal enhanced oil recovery is widely used in California to aid in the production of heavy oils. Steam injection either to stimulate individual wells or to drive oil to the producing wells, is by far the major thermal process today and has been in use for over 20 years. Since steam generation at the necessary pressures (generally below 4000 kPa (580 psia)) is within the capabilities of present day solar technology, it is logical to consider the possibilities of solar thermal enhanced oil recovery (STEOR). The present project consisted of an evaluation of STEOR. Program objectives, system selection, trade-off studies, preliminary design, cost estimate, development plan, and market and economic analysis are summarized.

  1. Nanoscale thermal transport. II. 2003–2012

    International Nuclear Information System (INIS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-01-01

    thermal analysis using proximal probes has achieved spatial resolution of 10 nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples

  2. Realizing tunable molecular thermal devices based on photoisomerism—Is it possible?

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Raghavan; Sasikumar, Kiran; Keblinski, Pawel, E-mail: keblip@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-01-14

    In this work, we address the question if it is possible to tune the thermal conductance through photoisomerism-capable molecular junctions. Using non-equilibrium molecular dynamics simulations, we study heat flow due to phonons between two silicon leads connected via two classes of photoisomeric molecules—(a) azobenzene and (b) Spiropyran (SP)–Merocyanine (MC) isomers. For the case of azobenzene, isomeric states with different conformations are realized via mechanical strain, while in the case of SP-MC, via a hybridization change. Based on the phononic contribution to thermal conductance, we observe that the thermal conductance of both junctions is rather insensitive to the isomeric state, thereby rendering the tunability of molecular thermal devices rather difficult. Consistent with these observations, the vibrational density of states for different configurations yields very similar spectra. We note that including the effect of electronic contribution to thermal conductance could enhance the tunability of thermal properties, albeit weakly.

  3. Thermal Vacuum Integrated System Test at B-2

    Science.gov (United States)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  4. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    Science.gov (United States)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  5. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    Science.gov (United States)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-15

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  6. Research on Debonding Defects in Thermal Barrier Coatings Structure by Thermal-Wave Radar Imaging (TWRI)

    Science.gov (United States)

    Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang

    2018-06-01

    In this paper, thermal-wave radar imaging (TWRI) is introduced to detect debonding defects in SiC-coated Ni-based superalloy plates. Linear frequency modulation signal (chirp) is used as the excitation signal which has a large time-bandwidth product. Artificial debonding defects in SiC coating are excited by the laser beam with the light intensity modulated by a chirp signal. Cross-correlation algorithm and chirp lock-in algorithm are introduced to extract the thermal-wave signal characteristic. The comparative experiment between TWRI reflection mode and transmission mode was carried out. Experiments are conducted to investigate the influence of laser power density, chirp period, and excitation frequency. Experimental results illustrate that chirp lock-in phase has a better detection capability than other characteristic parameters. TWRI can effectively detect simulated debonding defects of SiC-coated Ni-based superalloy plates.

  7. Qualitative assessment of the fission product release capability of ELOCA.Mk5

    International Nuclear Information System (INIS)

    Klein, M.E.; Carlucci, L.N.; Arimescu, V.I.

    1995-01-01

    A qualitative assessment of the fission product release capability of the ELOCA.Mk5 computer code was performed by simulating two transients from the sweep-gas experiment, FIO-133. Improved agreement between calculated and experimental trends in release was obtained by applying an interface pressure stress component to the pellet center. As well, results show that the current system for defining the reference temperature distribution for the thermal stress component is not always realistic. These results are being used in the development of a new, mechanistic pellet stress model. (author)

  8. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    Science.gov (United States)

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-01-01

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles. PMID:28772823

  9. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    Directory of Open Access Journals (Sweden)

    Xiaohua Bao

    2017-04-01

    Full Text Available Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs. Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  10. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.

    Science.gov (United States)

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-04-27

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  11. Reflections about the cogeneration of electrical and thermal energy in conditions of Chisinau city, Republic of Moldova

    International Nuclear Information System (INIS)

    Musteata, Valentin

    2004-01-01

    The cogeneration of electrical and thermal energy in Chisinau city is implements on heat power plants HPP-1 and HPP - 2. The district heating, receiving thermal energy from these power plants, has a severe alternative from the autonomous heating system. The capabilities of reducing the cost of thermal energy produced by HPP-2 are analyzed and the paths of improvement of district heating are forecasted. (author)

  12. FMEF/experimental capabilities

    International Nuclear Information System (INIS)

    Burgess, C.A.; Dronen, V.R.

    1981-01-01

    The Fuels and Materials Examination Facility (FMEF), under construction at the Hanford site north of Richland, Washington, will be one of the most modern facilities offering irradiated fuels and materials examination capabilities and fuel fabrication development technologies. Scheduled for completion in 1984, the FMEF will provide examination capability for fuel assemblies, fuel pins and test pins irradiated in the FFTF. Various functions of the FMEF are described, with emphasis on experimental data-gathering capabilities in the facility's Nondestructive and Destructive examination cell complex

  13. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Budden, B.S., E-mail: bbudden@lanl.gov [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stonehill, L.C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D.D.S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G. [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kamto, J. [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Electrical & Computer Engineering Department, Praire View A& M University, Prairie View, TX 77446 (United States)

    2015-09-21

    A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.

  14. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)

    1995-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  15. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Ubra, O.; Doubek, M.

    1995-01-01

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.)

  16. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O [Skoda Company, Prague (Switzerland); Doubek, M [Czech Technical Univ., Prague (Switzerland)

    1996-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  17. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    Science.gov (United States)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  18. Generalized superradiant assembly for nanophotonic thermal emitters

    Science.gov (United States)

    Mallawaarachchi, Sudaraka; Gunapala, Sarath D.; Stockman, Mark I.; Premaratne, Malin

    2018-03-01

    Superradiance explains the collective enhancement of emission, observed when nanophotonic emitters are arranged within subwavelength proximity and perfect symmetry. Thermal superradiant emitter assemblies with variable photon far-field coupling rates are known to be capable of outperforming their conventional, nonsuperradiant counterparts. However, due to the inability to account for assemblies comprising emitters with various materials and dimensional configurations, existing thermal superradiant models are inadequate and incongruent. In this paper, a generalized thermal superradiant assembly for nanophotonic emitters is developed from first principles. Spectral analysis shows that not only does the proposed model outperform existing models in power delivery, but also portrays unforeseen and startling characteristics during emission. These electromagnetically induced transparency like (EIT-like) and superscattering-like characteristics are reported here for a superradiant assembly, and the effects escalate as the emitters become increasingly disparate. The fact that the EIT-like characteristics are in close agreement with a recent experimental observation involving the superradiant decay of qubits strongly bolsters the validity of the proposed model.

  19. [The physiological classification of human thermal states under high environmental temperatures].

    Science.gov (United States)

    Bobrov, A F; Kuznets, E I

    1995-01-01

    The paper deals with the physiological classification of human thermal states in a hot environment. A review of the basic systems of classifications of thermal states is given, their main drawbacks are discussed. On the basis of human functional state research in a broad range of environmental temperatures the system of evaluation and classification of human thermal states is proposed. New integral one-dimensional multi-parametric criteria for evaluation are used. For the development of these criteria methods of factor, cluster and canonical correlation analyses are applied. Stochastic nomograms capable of identification of human thermal state for different intensity of influence are given. In this case evaluation of intensity is estimated according to one-dimensional criteria taking into account environmental temperature, physical load and time of man's staying in overheating conditions.

  20. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems

  1. Modeling and analysis of a robust thermal control system based on forced convection thermal switches

    Science.gov (United States)

    Williams, Andrew D.; Palo, Scott E.

    2006-05-01

    There is a critical need, not just in the Department of Defense (DOD) but the entire space industry, to reduce the development time and overall cost of satellite missions. To that end, the DOD is actively pursuing the capability to reduce the deployment time of a new system from years to weeks or even days. The goal is to provide the advantages space affords not just to the strategic planner but also to the battlefield commanders. One of the most challenging aspects of this problem is the satellite's thermal control system (TCS). Traditionally the TCS must be vigorously designed, analyzed, tested, and optimized from the ground up for every satellite mission. This "reinvention of the wheel" is costly and time intensive. The next generation satellite TCS must be modular and scalable in order to cover a wide range of applications, orbits, and mission requirements. To meet these requirements a robust thermal control system utilizing forced convection thermal switches was investigated. The problem was investigated in two separate stages. The first focused on the overall design of the bus. The second stage focused on the overarching bus architecture and the design impacts of employing a thermal switch based TCS design. For the hot case, the fan provided additional cooling to increase the heat transfer rate of the subsystem. During the cold case, the result was a significant reduction in survival heater power.

  2. Using the shield for thermal energy storage in pulsar

    International Nuclear Information System (INIS)

    Sager, G.T.; Sze, D.K.; Wong, C.P.C.; Bathke, C.G.; Blanchard, J.P.; Brimer, C.; Cheng, E.T.; El-Guebaly, L.A.; Hasan, M.Z.; Najmabadi, F.; Sharafat, S.; Sviatoslavski, I.N.; Waganer, L.

    1995-01-01

    The PULSAR pulsed tokamak power plant design utilizes the outboard shield for thermal energy storage to maintain full 1000MW(e) output during the dwell period of 200s. Thermal energy resulting from direct nuclear heating is accumulated in the shield during the 7200s fusion power production phase. The maximum shield temperature may be much higher than that for the blanket because radiation damage is significantly reduced. During the dwell period, thermal power discharged from the shield and coolant temperature are simultaneously regulated by controlling the coolant mass flow rate at the shield inlet. This is facilitated by throttled coolant bypass. Design concepts using helium and lithium coolant have been developed. Two-dimensional time-dependent thermal hydraulic calculations were performed to confirm performance capabilities required of the design concepts. The results indicate that the system design and performance can accommodate uncertainties in material limits or the length of the dwell period. (orig.)

  3. Developing Alliance Capabilities

    DEFF Research Database (Denmark)

    Heimeriks, Koen H.; Duysters, Geert; Vanhaverbeke, Wim

    This paper assesses the differential performance effects of learning mechanisms on the development of alliance capabilities. Prior research has suggested that different capability levels could be identified in which specific intra-firm learning mechanisms are used to enhance a firm's alliance...

  4. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  5. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  6. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  7. Thermal transport in Si and Ge nanostructures in the 'confinement' regime.

    Science.gov (United States)

    Kwon, Soonshin; Wingert, Matthew C; Zheng, Jianlin; Xiang, Jie; Chen, Renkun

    2016-07-21

    Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.

  8. Measuring Thermal Conductivity at LH2 Temperatures

    Science.gov (United States)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  9. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  10. Effect of multiple stress factors (thermal, nutritional and pregnancy type) on adaptive capability of native ewes under semi-arid environment.

    Science.gov (United States)

    Dias E Silva, Tairon Pannunzio; Costa Torreão, Jacira Neves da; Torreão Marques, Carlo Aldrovandi; de Araújo, Marcos Jácome; Bezerra, Leílson Rocha; Kumar Dhanasekaran, Dinesh; Sejian, Veerasamy

    2016-07-01

    This study was conducted to evaluate the effect of multiple stress factors (thermal, nutritional and pregnancy type) on two different native track breeds of ewes as reflected by their adaptive capability under semi-arid environment. The multiple stressor experiment was conducted in twenty-four ewes (12 Santa Inês and 12 Morada Nova ewes). Both heat stress and pregnancy stress was common to all four groups. However, the animals were divided into further two groups within each breed on the basis of nutrition regimen. According the groupings were: Group 1 (Six Santa Ines ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 2 (Six Santa Ines ewes; heat stress; nutrition at 1.5% BW; twin pregnancy); groups Group 3 (Six Morada Nova ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 4 (Six Morada Nova ewes; heat stress; nutrition at 1.5% BW; twin pregnancy). All the animals in the experiment were pregnant. Heat stress was induced by exposing all animals to summer heat stress in outside environment while the nutritional regimen followed was at 0.5% and 1.5% level of body weight (BW) respectively in each breed. The experiment was conducted in a completely randomized design with two breeds, two nutritional treatments and two pregnancy types, 10 repetitions for physiological parameters and six for blood parameters, with repeated measures over time. Physiological parameters (respiratory rate, pulse rate and rectal temperature) were measured with the animals at rest in the morning and afternoon, 0600-0700 and 1300-1400h, respectively, every seven days. Blood samples were collected every 14d for determination of serum glucose, triglycerides, cholesterol, urea and creatinine. We found interaction effect between breed and pregnancy type on respiratory rate and rectal temperature with greater values in Santa Inês ewes than Morada Nova ewes. However, there was no significant fixed effect of pregnancy type and supplementation level on physiological

  11. Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles

    International Nuclear Information System (INIS)

    Zhao, Liang; Luo, Jie; Wang, Hao; Song, Guolin; Tang, Guoyi

    2016-01-01

    Highlights: • Microencapsulated n-octadecane with silk fibroin shell was fabricated. • The microcapsules show high heat storage capability. • The microcapsules are good candidate for thermal-regulating textiles. - Graphical Abstract: Display Omitted - Abstract: Novel microencapsulated n-octadecane with natural silk fibroin (SF) shell was prepared using a self-assembly method in oil-in-water (o/w) emulsion. The microstructures and chemical compositions of the resultant microcapsules were investigated by scanning electronic microscope (SEM) and Fourier transformation infrared spectroscope (FT-IR). SEM images demonstrated that the microcapsules presented spherical shape with a median size of 4–5 µm. FT-IR results confirmed that SF shell was successfully fabricated upon n-octadecane core. According to the DSC and TGA examinations, the resultant microcapsules exhibited good phase-change performance, high thermal-storage capability and high thermal reliability. The microencapsulated n-octadecane with SF shell synthesized in the present study would be a potential candidate for the application of thermal-regulating textiles or fibers and biological medical materials, etc.

  12. Dual-band infrared capabilities for imaging buried object sites

    Energy Technology Data Exchange (ETDEWEB)

    Del Grande, N.K.; Durbin, P.F.; Gorvad, M.R.; Perkins, D.E.; Clark, G.A.; Hernandez, J.E.; Sherwood, R.J.

    1993-04-02

    We discuss dual-band infrared (DBIR) capabilities for imaging buried object sizes. We identify physical features affecting thermal contrast needed to distinguish buried object sites from undisturbed sites or surface clutter. Apart from atmospheric transmission and system performance, these features include: object size, shape, and burial depth; ambient soil, disturbed soil and object site thermal diffusivity differences; surface temperature, emissivity, plant-cover, slope, albedo and roughness variations; weather conditions and measurement times. We use good instrumentation to measure the time-varying temperature differences between buried object sites and undisturbed soil sites. We compare near surface soil temperature differences with radiometric infrared (IR) surface temperature differences recorded at 4.7 {plus_minus} 0.4 {mu}m and at 10.6 {plus_minus} 1.0 {mu}m. By producing selective DBIR image ratio maps, we distinguish temperature-difference patterns from surface emissivity effects. We discuss temperature differences between buried object sites, filled hole site (without buried objects), cleared (undisturbed) soil sites, and grass-covered sites (with and without different types of surface clutter). We compare temperature, emissivity-ratio, visible and near-IR reflectance signatures of surface objects, leafy plants and sod. We discuss the physical aspects of environmental, surface and buried target features affecting interpretation of buried targets, surface objects and natural backgrounds.

  13. Damage Characterization of EBC-SiCSiC Ceramic Matrix Composites Under Imposed Thermal Gradient Testing

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2014-01-01

    Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.

  14. Thermal conductance of nanofluids: is the controversy over?

    International Nuclear Information System (INIS)

    Keblinski, Pawel; Prasher, Ravi; Eapen, Jacob

    2008-01-01

    Over the last decade nanofluids (colloidal suspensions of solid nanoparticles) sparked excitement as well as controversy. In particular, a number of researches reported dramatic increases of thermal conductivity with small nanoparticle loading, while others showed moderate increases consistent with the effective medium theories on well-dispersed conductive spheres. Accordingly, the mechanism of thermal conductivity enhancement is a hotly debated topic. We present a critical analysis of the experimental data in terms of the potential mechanisms and show that, by accounting for linear particle aggregation, the well established effective medium theories for composite materials are capable of explaining the vast majority of the reported data without resorting to novel mechanisms such as Brownian motion induced nanoconvection, liquid layering at the interface, or near-field radiation. However, particle aggregation required to significantly enhance thermal conductivity, also increases fluid viscosity rendering the benefit of nanofluids to flow based cooling applications questionable.

  15. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    Science.gov (United States)

    Page, Arthur T.

    2001-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  16. Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, David

    2017-12-29

    The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allow for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.

  17. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2016-08-01

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenization model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.

  18. Advanced Durable Flexible Ultra Low Outgassing Thermal Control Coatings for NASA Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I program proposes to synthesize novel nanoengineered ultra low out gassing elastomers and formulate high temperature capable flexible thermal control...

  19. Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens H.; Koumoutsakos, Petros

    2015-01-01

    The remarkable thermal properties of graphene and carbon nanotubes (CNTs) have been the subject of intensive investigations for the thermal management of integrated circuits. However, the small contact area of CNTs and the large anisotropic heat conduction of graphene have hindered...... their applications as effective thermal interface materials (TIMs). Here, a covalently bonded graphene–CNT (G-CNT) hybrid is presented that multiplies the axial heat transfer capability of individual CNTs through their parallel arrangement, while at the same time it provides a large contact area for efficient heat...... extraction. Through computer simulations, it is demonstrated that the G-CNT outperforms few-layer graphene by more than 2 orders of magnitude for the c-axis heat transfer, while its thermal resistance is 3 orders of magnitude lower than the state-of-the-art TIMs. We show that heat can be removed from the G...

  20. Pressure locking and thermal binding of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, E.M.

    1996-12-01

    Pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. Supplement 6 to Generic Letter 89-10, {open_quotes}Safety-Related Motor-Operated Gate Valve Testing and Surveillance,{close_quotes} provided an acceptable approach to addressing pressure locking and thermal binding of gate valves. More recently, the NRC has issued Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} to request that licensees take certain actions to ensure that safety-related power-operated gate valves that are susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases. Over the past two years, several plants in Region I determined that valves in certain systems were potentially susceptible to pressure locking and thermal binding, and have taken various corrective actions. The NRC Region I Systems Engineering Branch has been actively involved in the inspection of licensee actions in response to the pressure locking and thermal binding issue. Region I continues to maintain an active involvement in this area, including participation with the Office of Nuclear Reactor Regulation in reviewing licensee responses to Generic Letter 95-07.

  1. Transforming organizational capabilities in strategizing

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Friis, Ole Uhrskov; Koch, Christian

    2014-01-01

    Offshored and networked enterprises are becoming an important if not leading organizational form and this development seriously challenges their organizational capabilities. More specifically, over the last years, SMEs have commenced entering these kinds of arrangements. As the organizational...... capabilities of SMEs are limited at the outset, even more emphasis is needed regarding the issues of developing relevant organizational capabilities. This paper aims at investigating how capabilities evolve during an offshoring process of more than 5 years in two Danish SMEs, i.e. not only short- but long......-term evolvements within the companies. We develop our framework of understanding organizational capabilities drawing on dynamic capability, relational capability and strategy as practice concepts, appreciating the performative aspects of developing new routines. Our two cases are taken from one author’s Ph...

  2. The application of fracture mechanics in thermally stressed structures

    International Nuclear Information System (INIS)

    Cesari, F.; Maitan, A.; Hellen, T.K.

    1981-03-01

    There is considerable interest in calculating stress intensity factors at crack tips in thermally stressed structures, particularly in the power generation industry where the safe operation of both conventional and nuclear plant is founded on rigorous safety cases. Analytical methods to study such problems are of limited scope, although they can be extended by introducing numerical techniques. Purpose built numerical methods, however, offer a much greater and more accurate solution capability and in particular the finite element method is well advanced. Such methods are described, including how stress intensity factors can be obtained from the finite element results. They are then applied to a range of thermally stressed problems including plates with central cracks and cylinders with axial and circumferential cracks. Both steady state and transient temperature distributions arising from typical thermal shocks are considered. (author)

  3. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, S; D' Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  4. New flexible thermal control material for long-life satellite

    International Nuclear Information System (INIS)

    Sasaki, Shigekuni; Hasuda, Yoshinori; Ichino, Toshihiro

    1986-01-01

    Flexible thermal control materials are light weight, cheap and excellent in the practical applicability, and are expected to be applied to future long life, large capacity satellites. However, the flexible thermal control materials used at present have the defect that either the space environment withstanding capability or the thermal control performance is poor. Therefore, the authors examined the flexible thermal control materials which are excellent in both these properties, and have developed the thermal control material PEI-OSR using polyether imide films as the substrate. In this study, while comparing with the FEP Teflon with silver vapor deposition, which has been used so far for short life satellites, the long term reliability of the PEI-OSR supposing the use for seven years was examined. As the results, the FEP Teflon with silver vapor deposition caused cracking and separation by irradiation and heat cycle test, and became unusable, but the PEI-OSR did not change its flexibility at all. Also the thermal control performance of the PEI-OSR after the test equivalent to seven years was superior to the initial performance of the Kaptone with aluminum vapor deposition, which has excellent space environment endurance, thus it was clarified that the PEI-OSR is the most excellent for this purpose. (Kako, I.)

  5. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  6. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  7. WRAP: a water reactor analysis package

    International Nuclear Information System (INIS)

    Anderson, M.M.

    1977-06-01

    The modular computational system known as the Water Reactor Analysis Package (WRAP) has been developed at the Savannah River Laboratory. WRAP is essentially a reprogrammed version of the RELAP4 computer code with an extensively restructured input format, a dynamic dimensioning capability and additional computational capabilities such as an automatic steady-state option for pressurized water reactors and an automatic restart capability with provision for renodalization. The report describes the capabilities of WRAP at its current stage of development. The addition of new capabilities (e.g., a BWR steady-state capability), the inclusion of improved models (e.g., models in RELAP4/M0D8) and the development of improved numerical techniques to reduce execution time are being planned at this time

  8. The correlation between thermal comfort in buildings and fashion products.

    Science.gov (United States)

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  9. Thermal ambience of expanding event horizon in Minkowski space-time

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1983-01-01

    It is shown that in flat space-time the thermal ambience of accelerated observers is not associated exclusively with flat event horizons, but arises also with (observer-dependent) event horizons that are light cones. The quanta of this ambience are characterized by a generalized frequency which identifies the representation of the Lorentz group. Global and local model detectors capable of responding to quanta of any given generalized frequency are exhibited. The discussion of the thermal ambience is implemented in terms of a partial-wave analysis using a set of harmonics on the hyperboloid x 2 +y 2 +z 2 -t 2 = 1

  10. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  11. Analysis of Sensory/Active Piezoelectric Composite Structures in Thermal Environments

    Science.gov (United States)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1996-01-01

    Although there has been extensive development of analytical methods for modeling the behavior of piezoelectric structures, only a limited amount of research has been performed concerning the implications of thermal effects on both the active and sensory response of smart structures. Thermal effects become important when the piezoelectric structure has to operate in either extremely hot or cold temperature environments. Consequently, the purpose of this paper is to extend the previously developed discrete layer formulation of Saravanos and Heyliger to account for the coupled mechanical, electrical, and thermal response in modern smart composite beams. The mechanics accounts for thermal effects which may arise in the elastic and piezoelectric media at the material level through the constitutive equations. The displacements, electric potentials, and temperatures are introduced as state variables, allowing them to be modeled as variable fields through the laminate thickness. This unified representation leads to an inherent capability to model both the active compensation of thermal distortions in smart structures and the resultant sensory voltage when thermal loads are applied. The corresponding finite element formulation is developed and numerical results demonstrate the ability to model both the active and sensory modes of composite beams with heterogeneous plies with attached piezoelectric layers under thermal loadings.

  12. Opto-thermal moisture content and moisture depth profile measurements in organic materials

    NARCIS (Netherlands)

    Xiao, P.; Guo, X.; Cui, Y.Y.; Imhof, R.; Bicanic, D.D.

    2004-01-01

    Opto-thermal transient emission radiometry(OTTER) is a infrared remote sensing technique, which has been successfully used in in vivo skin moisture content and skin moisture depth profiling measurements.In present paper, we extend this moisture content measurement capability to analyze the moisture

  13. Thermal mixing characteritics during a postulated PTS event

    International Nuclear Information System (INIS)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    The present study aims to investigate the characteristics of thermal fluid mixing during a postulated loss of coolant accident (LOCA) under two-phase flow condition using RELAP5 code. The RELAP5 code has been widely used in estimating global system thermal-hydraulic behaviors. However, the RELAP5 is not fully verified for the prediction of thermal mixing phenomena due to its limitation to the multi-dimensional behavior. Therefore, supplementary analysis is required, which can address the performance and limitation of the current RELAP5 code in predicting the thermal mixing. Another objective of this study is to compare the applicable empirical correlation (Theofanous') and the calculation of simple mixing code (REMIX) with one predicted by RELAP5. By those comparisons the capability on PTS thermal mixing of the current RELAP5 can be evaluated. In this study, thermal mixing behavior is analyzed for the task of the international comparative assessment study on PTS (PTS-ICAS) which was proposed by OECD-NEA. Through some preliminary calculations using RELAP5, the boundary conditions relevant to the problem constraints are appropriately specified with some artificial assumptions. As a calculation results, system pressure, downcomer water level, wall heat transfer coefficient, etc., are predicted as suitable for given problem constraints. From the predicted thermal hydraulic behavior, it is shown that the thermal stratification begins to start around 200 seconds after high pressure safety injection. At 400 seconds, the maximum difference in azimuthal temperature distribution at the downcomer due to thermal mixing is predicted about 150 K. Based on the comparison of the current RELAP5 prediction with the Theofanous' correlation and the REMIX calculation, it is found that thermal stratification characteristics predicted by RELAP5 is agreed in qualitative manner to the empirical correlation

  14. A business analytics capability framework

    Directory of Open Access Journals (Sweden)

    Ranko Cosic

    2015-09-01

    Full Text Available Business analytics (BA capabilities can potentially provide value and lead to better organisational performance. This paper develops a holistic, theoretically-grounded and practically relevant business analytics capability framework (BACF that specifies, defines and ranks the capabilities that constitute an organisational BA initiative. The BACF was developed in two phases. First, an a priori conceptual framework was developed based on the Resource-Based View theory of the firm and a thematic content analysis of the BA literature. Second, the conceptual framework was further developed and refined using a three round Delphi study involving 16 BA experts. Changes from the Delphi study resulted in a refined and confirmed framework including detailed capability definitions, together with a ranking of the capabilities based on importance. The BACF will help academic researchers and industry practitioners to better understand the capabilities that constitute an organisational BA initiative and their relative importance. In future work, the capabilities in the BACF will be operationalised to measure their as-is status, thus enabling organisations to identify key areas of strength and weakness and prioritise future capability improvement efforts.

  15. Sensor Alerting Capability

    Science.gov (United States)

    Henriksson, Jakob; Bermudez, Luis; Satapathy, Goutam

    2013-04-01

    There is a large amount of sensor data generated today by various sensors, from in-situ buoys to mobile underwater gliders. Providing sensor data to the users through standardized services, language and data model is the promise of OGC's Sensor Web Enablement (SWE) initiative. As the amount of data grows it is becoming difficult for data providers, planners and managers to ensure reliability of data and services and to monitor critical data changes. Intelligent Automation Inc. (IAI) is developing a net-centric alerting capability to address these issues. The capability is built on Sensor Observation Services (SOSs), which is used to collect and monitor sensor data. The alerts can be configured at the service level and at the sensor data level. For example it can alert for irregular data delivery events or a geo-temporal statistic of sensor data crossing a preset threshold. The capability provides multiple delivery mechanisms and protocols, including traditional techniques such as email and RSS. With this capability decision makers can monitor their assets and data streams, correct failures or be alerted about a coming phenomena.

  16. Realization of a thermal cloak-concentrator using a metamaterial transformer.

    Science.gov (United States)

    Liu, Ding-Peng; Chen, Po-Jung; Huang, Hsin-Haou

    2018-02-06

    By combining rotating squares with auxetic properties, we developed a metamaterial transformer capable of realizing metamaterials with tunable functionalities. We investigated the use of a metamaterial transformer-based thermal cloak-concentrator that can change from a cloak to a concentrator when the device configuration is transformed. We established that the proposed dual-functional metamaterial can either thermally protect a region (cloak) or focus heat flux in a small region (concentrator). The dual functionality was verified by finite element simulations and validated by experiments with a specimen composed of copper, epoxy, and rotating squares. This work provides an effective and efficient method for controlling the gradient of heat, in addition to providing a reference for other thermal metamaterials to possess such controllable functionalities by adapting the concept of a metamaterial transformer.

  17. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons

    International Nuclear Information System (INIS)

    Giaz, A.; Pellegri, L.; Camera, F.; Blasi, N.; Brambilla, S.; Ceruti, S.; Million, B.; Riboldi, S.; Cazzaniga, C.; Gorini, G.; Nocente, M.; Pietropaolo, A.; Pillon, M.; Rebai, M.; Tardocchi, M.

    2016-01-01

    The crystal Cs 2 LiYCl 6 :Ce (CLYC) is a very interesting scintillator material because of its good energy resolution and its capability to identify γ-rays and fast/thermal neutrons. The crystal Cs 2 LiYCl 6 :Ce contains 6 Li and 35 Cl isotopes, therefore, it is possible to detect thermal neutrons through the reaction 6 Li(n, α)t while 35 Cl ions allow to measure fast neutrons through the reactions 35 Cl(n, p) 35 S and 35 Cl(n, α) 32 P. In this work two CLYC 1″×1″ crystals were used: the first crystal, enriched with 6 Li at 95% (CLYC-6) is ideal for thermal neutron measurements while the second one, enriched with 7 Li at >99% (CLYC-7) is suitable for fast neutron measurements. The response of CLYC scintillators was measured with different PMT models: timing or spectroscopic, with borosilicate glass or quartz window. The energy resolution, the neutron-γ discrimination and the internal activity are discussed. The capability of CLYC scintillators to discriminate γ rays from neutrons was tested with both thermal and fast neutrons. The thermal neutrons were measured with both detectors, using an AmBe source. The measurements of fast neutrons were performed at the Frascati Neutron Generator facility (Italy) where a deuterium beam was accelerated on a deuterium or on a tritium target, providing neutrons of 2.5 MeV or 14.1 MeV, respectively. The different sensitivity to thermal and fast neutrons of a CLYC-6 and of a CLYC-7 was additionally studied.

  18. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  19. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.

  20. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2004-01-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures

  1. Comparison of thermal runaway limits under different test conditions based on a 4.5 kV IGBT

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Prindle, D.; Pâques, Gontran

    2016-01-01

    runaway takes place. In this paper guidelines are proposed based on the correlation among short circuit withstand capability and off-state leakage current for guarantying reliable operation and ensuring that they are thermally stable under parameter variations. This study is helpful to facilitate...... application engineers for defining the correct stability criteria and/or margins in respect of thermal runaway....

  2. Survey of thermal-hydraulic models of commercial nuclear power plants

    International Nuclear Information System (INIS)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described

  3. Apparatus for determining the thermal history of equipment using solid state track recorders

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Lippincott, E.P.; Fero, A.H.; Schreiber, R.B.; Seidel, J.G.

    1991-01-01

    This patent describes a nuclear power plant having equipment subject to thermal aging, the rate of the thermal aging being capable of characterization by at least one equipment Arrhenius function of temperature, the equipment being subjected to a temperature environment having a predetermined range of temperatures, apparatus for determining the thermal aging which has occurred in the equipment. It comprises passive sensors, each of the sensors being formed from a selected material and subject to a thermal aging process within the range of temperatures, the extent of the thermal aging in each respective sensor being quantifiable, the rate at which the thermal aging process progresses in each of the sensors being characterized by a respective Arrhenius function of temperature; and the selected material not being the same for each of the sensors, whereby the range of activation energy values characterizing the respective Arrhenius functions encompasses the activation energy value characterizing the equipment Arrhenius function

  4. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide.

  5. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    International Nuclear Information System (INIS)

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide

  6. Resource-Based Capability on Development Knowledge Management Capabilities of Coastal Community

    Science.gov (United States)

    Teniwut, Roberto M. K.; Hasyim, Cawalinya L.; Teniwut, Wellem A.

    2017-10-01

    Building sustainable knowledge management capabilities in the coastal area might face a whole new challenge since there are many intangible factors involved from openness on new knowledge, access and ability to use the latest technology to the various local wisdom that still in place. The aimed of this study was to identify and analyze the resource-based condition of coastal community in this area to have an empirical condition of tangible and intangible infrastructure on developing knowledge management capability coastal community in Southeast Maluku, Indonesia. We used qualitative and quantitative analysis by depth interview and questionnaire for collecting the data with multiple linear regression as our analysis method. The result provided the information on current state of resource-based capability of a coastal community in this Southeast Maluku to build a sustainability model of knowledge management capabilities especially on utilization marine and fisheries resources. The implication of this study can provide an empirical information for government, NGO and research institution to dictate on how they conducted their policy and program on developing coastal community region.

  7. Multi-pass TIG welding process: simulating thermal SS304

    International Nuclear Information System (INIS)

    Harinadh, Vemanaboina; Akella, S.; Buddu, Ramesh Kumar; Edision, G.

    2015-01-01

    Welding is basic requirement in the construction of nuclear reactors, power plants and structural components development. A basic studies on various aspects of the welding is essential to ensure the stability and structural requirement conditions. The present study explored the thermo-mechanical analysis of the multipass welds of austenitic stainless steels which are widely used in fusion and fission reactor components development. A three-dimensional (3D) finite element model is developed to investigate thermally induced stress field during TIG welding process for SS304 material. The transient thermal analysis is performed to obtain the temperature history, which then is applied to the mechanical (stress) analysis. The present thermal analysis is conducted using element type DC3D8. This element type has a three dimensional thermal conduction capability and eight nodes. The 6 mm thick plated is welded with six numbers of passes. The geometry and meshed model with tetrahedral shape with volume sweep. The analysis is on TIG welding process using 3D-weld interface plug-in on ABAQUS-6.14. The results are reported in the present paper

  8. Thermal-hydraulic calculation and analysis for QNPP (Qinshan Nuclear Power Plant) containment

    International Nuclear Information System (INIS)

    Xie Hui; Zhou Jie; He Yingchao

    1993-01-01

    Three containment thermal-hydraulic codes CONTEMPT-LT/028, CONTEMPT-4/MOD3 and COMPARE are used to compute and analyse the Qinshan Nuclear Power Plant (QNPP) containment response under LOCA or MSLB conditions. An evaluation of the capability of containment of QNPP is given

  9. Intelligent screening of electrofusion-polyethylene joints based on a thermal NDT method

    Science.gov (United States)

    Doaei, Marjan; Tavallali, M. Sadegh

    2018-05-01

    The combinations of infrared thermal images and artificial intelligence methods have opened new avenues for pushing the boundaries of available testing methods. Hence, in the current study, a novel thermal non-destructive testing method for polyethylene electrofusion joints was combined with k-means clustering algorithms as an intelligent screening tool. The experiments focused on ovality of pipes in the coupler, as well as misalignment of pipes-couplers in 25 mm diameter joints. The temperature responses of each joint to an internal heat pulse were recorded by an IR thermal camera, and further processed to identify the faulty joints. The results represented clustering accuracy of 92%, as well as more than 90% abnormality detection capabilities.

  10. Thermal design and analysis of the HTGR fuel element vertical carbonizing and annealing furnace

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1977-06-01

    Computer analyses of the thermal design for the proposed HTGR fuel element vertical carbonizing and annealing furnace were performed to verify its capability and to determine the required power input and distribution. Although the furnace is designed for continuous operation, steady-state temperature distributions were obtained by assuming internal heat generation in the fuel elements to simulate their mass movement. The furnace thermal design, the analysis methods, and the results are discussed herein

  11. Campus Capability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Arsenlis, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bailey, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brase, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brenner, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Camara, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlton, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cheng, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chrzanowski, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Colson, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); East, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Farrell, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferranti, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gursahani, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hansen, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Helms, L. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jeffries, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Larson, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNabb, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mercer, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Skeate, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sueksdorf, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zucca, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Le, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ancria, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scott, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leininger, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gagliardi, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gash, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronson, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chung, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hobson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meeker, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanchez, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zagar, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Quivey, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sommer, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Atherton, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-06

    Lawrence Livermore National Laboratory Campus Capability Plan for 2018-2028. Lawrence Livermore National Laboratory (LLNL) is one of three national laboratories that are part of the National Nuclear Security Administration. LLNL provides critical expertise to strengthen U.S. security through development and application of world-class science and technology that: Ensures the safety, reliability, and performance of the U.S. nuclear weapons stockpile; Promotes international nuclear safety and nonproliferation; Reduces global danger from weapons of mass destruction; Supports U.S. leadership in science and technology. Essential to the execution and continued advancement of these mission areas are responsive infrastructure capabilities. This report showcases each LLNL capability area and describes the mission, science, and technology efforts enabled by LLNL infrastructure, as well as future infrastructure plans.

  12. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides.

    Science.gov (United States)

    Kobayashi, Kaori; Guilliam, Thomas A; Tsuda, Masataka; Yamamoto, Junpei; Bailey, Laura J; Iwai, Shigenori; Takeda, Shunichi; Doherty, Aidan J; Hirota, Kouji

    2016-08-02

    PrimPol is a DNA damage tolerance enzyme possessing both translesion synthesis (TLS) and primase activities. To uncover its potential role in TLS-mediated IgVλ hypermutation and define its interplay with other TLS polymerases, PrimPol(-/-) and PrimPol(-/-)/Polη(-/-)/Polζ (-/-) gene knockouts were generated in avian cells. Loss of PrimPol had no significant impact on the rate of hypermutation or the mutation spectrum of IgVλ. However, PrimPol(-/-) cells were sensitive to methylmethane sulfonate, suggesting that it may bypass abasic sites at the IgVλ segment by repriming DNA synthesis downstream of these sites. PrimPol(-/-) cells were also sensitive to cisplatin and hydroxyurea, indicating that it assists in maintaining / restarting replication at a variety of lesions. To accurately measure the relative contribution of the TLS and primase activities, we examined DNA damage sensitivity in PrimPol(-/-) cells complemented with polymerase or primase-deficient PrimPol. Polymerase-defective, but not primase-deficient, PrimPol suppresses the hypersensitivity of PrimPol(-/-) cells. This indicates that its primase, rather than TLS activity, is pivotal for DNA damage tolerance. Loss of TLS polymerases, Polη and Polζ has an additive effect on the sensitivity of PrimPol(-/-) cells. Moreover, we found that PrimPol and Polη-Polζ redundantly prevented cell death and facilitated unperturbed cell cycle progression. PrimPol(-/-) cells also exhibited increased sensitivity to a wide variety of chain-terminating nucleoside analogs (CTNAs). PrimPol could perform close-coupled repriming downstream of CTNAs and oxidative damage in vitro. Together, these results indicate that PrimPol's repriming activity plays a central role in reinitiating replication downstream from CTNAs and other specific DNA lesions.

  13. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms.

    Science.gov (United States)

    Chen, Lei; Liu, Tao; Zhao, Xian

    2018-06-01

    The anatomical therapeutic chemical (ATC) classification system is a widely accepted drug classification scheme. This system comprises five levels and includes several classes in each level. Drugs are classified into classes according to their therapeutic effects and characteristics. The first level includes 14 main classes. In this study, we proposed two network-based models to infer novel potential chemicals deemed to belong in the first level of ATC classification. To build these models, two large chemical networks were constructed using the chemical-chemical interaction information retrieved from the Search Tool for Interactions of Chemicals (STITCH). Two classic network algorithms, shortest path (SP) and random walk with restart (RWR) algorithms, were executed on the corresponding network to mine novel chemicals for each ATC class using the validated drugs in a class as seed nodes. Then, the obtained chemicals yielded by these two algorithms were further evaluated by a permutation test and an association test. The former can exclude chemicals produced by the structure of the network, i.e., false positive discoveries. By contrast, the latter identifies the most important chemicals that have strong associations with the ATC class. Comparisons indicated that the two models can provide quite dissimilar results, suggesting that the results yielded by one model can be essential supplements for those obtained by the other model. In addition, several representative inferred chemicals were analyzed to confirm the reliability of the results generated by the two models. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development of students learning capabilities and professional capabilities

    DEFF Research Database (Denmark)

    Ringtved, Ulla Lunde; Wahl, Christian; Belle, Gianna

    This paper describes the work-in-progress on a project that aims todevelop a tool that via learning analytic methods enable studentsto enhance, document and assess the development of their learningcapabilities and professional capabilities in consequence of theirself-initiated study activities...... during their bachelor educations. Thetool aims at enhancing the development of students’ capabilities toself-initiate, self-regulate and self-assess their study activities.The tool uses the concept of collective intelligence as source formotivation and inspiration in self-initiating study activities...... as wellas self-assessing them. The tool is based on a heutagogical approachto support reflection on learning potential in these activities. Thisenhances the educational use of students self-initiated learningactivities by bringing visibility and evidence to them, and therebybringing value to the assessment...

  15. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  16. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  17. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  18. The gyro-radius scaling of ion thermal transport from global numerical simulations of ITG turbulence

    International Nuclear Information System (INIS)

    Ottaviani, M.; Manfredi, G.

    1998-12-01

    A three-dimensional, fluid code is used to study the scaling of ion thermal transport caused by Ion-Temperature-Gradient-Driven (ITG) turbulence. The code includes toroidal effects and is capable of simulating the whole torus. It is found that both close to the ITG threshold and well above threshold, the thermal transport and the turbulence structures exhibit a gyro-Bohm scaling, at least for plasmas with moderate poloidal flow. (author)

  19. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  20. Characterization of the Vectron PX-570 Crystal Oscillator for Use in Harsh Environments

    Science.gov (United States)

    Li, Jacob; Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Computing hardware, data-acquisition systems, communications systems, and many electronic control systems require well-controlled timing signals for proper and accurate operation. These signals are, in most cases, provided by circuits that employ crystal oscillators due to availability, cost, ease of operation, and accuracy. In some cases, the electronic systems are expected to survive and operate under harsh conditions that include exposure to extreme temperatures. These applications exist in terrestrial systems as well as in aerospace products. Well-logging, geothermal systems, and industrial process control are examples of ground-based applications, while distributed jet engine control in aircraft, space-based observatories (such as the James Webb Space Telescope), satellites, and lunar and planetary landers are typical environments where electronics are exposed to harsh operating conditions. To ensure these devices produce reliable results, the digital heartbeat from the oscillator must deliver a stable signal that is not affected by external temperature or other conditions. One such solution is a recently introduced commercial-off-the-shelf (COTS) oscillator, the PX-570 series from Vectron International. The oscillator was designed for high-temperature applications and as proof, the crystal oscillator was subjected to a wide suite of tests to determine its ruggedness for operation in harsh environments. The tests performed by Vectron included electrical characterization under wide range of temperature, accelerated life test/aging, shock and vibration, internal moisture analysis, ESD threshold, and latch-up testing. The parametric evaluation was performed on the oscillator's frequency, output signal rise and fall times, duty cycle, and supply current over the temperature range of -125 C to +230 C. The evaluations also determined the effects of thermal cycling and the oscillator's re-start capability at extreme hot and cold temperatures. These thermal cycling

  1. Pressure vessel code construction capabilities for a nickel-chromium-tungsten-molybdenum alloy

    International Nuclear Information System (INIS)

    Rothman, M.F.

    1990-01-01

    HAYNES alloy 230 (UNS NO6230) has achieved wide usage in a variety of high-temperature aerospace, chemical process industry and industrial heating applications since its introduction in 1981. Combining high elevated temperature strength with excellent metallurgical stability, environment-resistance and relatively straight forward fabrication characteristics, this Ni-Cr-W-Mo alloy was an excellent candidate for ASME Pressure vessel Code applications. Coverage under case No. 2063 was granted in July, 1989, for both Section I and Section VIII Division 1 construction. In this paper, the metallurgy of 230 alloy will be described, and its design strength capabilities contrasted with those for more established code materials. Other important performance capabilities, such as long-term thermal stability, oxidation-resistance, fatigue-resistance, and resistance to other forms of environmental degradation will be discussed. It will be shown that the combined properties of 230 alloy offer some significant advantages over other materials for applications such as expansion bellows, heat-exchangers, valves and other components in the fossil energy, nuclear energy and chemical process industries, among others

  2. Daytime space cooling with phase change material ceiling panels discharged using rooftop photovoltaic/thermal panels and night-time ventilation

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Pean, Thibault Quentin; Gennari, Luca

    2016-01-01

    The possibility of using photovoltaic/thermal panels for producing cold water through the process of night-time radiative cooling was experimentally examined. The cold water was used to discharge phase change material in ceiling panels in a climatic chamber. Both night-time radiative cooling...... the photovoltaic/thermal varied from 56% to 122%. The phase change material ceiling panels were thus, capable of providing an acceptable thermal environment and the photovoltaic/thermal panels were able to provide most of the required electricity and cold water needed for cooling....

  3. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  4. Capitalizing on capabilities.

    Science.gov (United States)

    Ulrich, Dave; Smallwood, Norm

    2004-06-01

    By making the most of organizational capabilities--employees' collective skills and fields of expertise--you can dramatically improve your company's market value. Although there is no magic list of proficiencies that every organization needs in order to succeed, the authors identify 11 intangible assets that well-managed companies tend to have: talent, speed, shared mind-set and coherent brand identity, accountability, collaboration, learning, leadership, customer connectivity, strategic unity, innovation, and efficiency. Such companies typically excel in only three of these capabilities while maintaining industry parity in the other areas. Organizations that fall below the norm in any of the 11 are likely candidates for dysfunction and competitive disadvantage. So you can determine how your company fares in these categories (or others, if the generic list doesn't suit your needs), the authors explain how to conduct a "capabilities audit," describing in particular the experiences and findings of two companies that recently performed such audits. In addition to highlighting which intangible assets are most important given the organization's history and strategy, this exercise will gauge how well your company delivers on its capabilities and will guide you in developing an action plan for improvement. A capabilities audit can work for an entire organization, a business unit, or a region--indeed, for any part of a company that has a strategy to generate financial or customer-related results. It enables executives to assess overall company strengths and weaknesses, senior leaders to define strategy, midlevel managers to execute strategy, and frontline leaders to achieve tactical results. In short, it helps turn intangible assets into concrete strengths.

  5. The origin of Venusian channels: Modelling of thermal erosion by lava

    Science.gov (United States)

    Bussey, D. B. J.; Sorensen, S-A.; Guest, J. E.

    1993-01-01

    Magellan imagery has revealed that channels, apparently volcanic in origin, are abundant on the surface of Venus. There has been much debate about the origin of these channels. Are they the result of erosional (either thermal or mechanical) or constructional processes? A common characteristic of the simple sinuous channels is that they show evidence of erosion near their source and then become purely constructional, forming levees and in some cases roofing over completely. One method of showing that thermal erosion is capable of producing the type of channels seen is to use computer modeling incorporating the physical conditions on Venus and the physical characteristics of the different types of lava that may have been erupted. It is possible to calculate, relatively easily, two channel parameters. The first is the erosion rate, which combined with eruption duration, gives depth. The second is for how long after leaving the source the erupted lava will continue to be capable of thermal erosion before constructional processes dominate. Making assumptions about the rheology of the lava (e.g., assume it behaves as a Bingham plastic) along with the slope angle yields a flow velocity and therefore a distance over which thermal erosion will take place. Due to the resolution (both vertical and horizontal) of the Magellan altimetric data, the distance from the source that the channel is erosional can be much more accurately measured than the depth of the channel. This will remain the case until stereo imagery becomes available for large areas of the planet.

  6. The evolution of alliance capabilities

    NARCIS (Netherlands)

    Heimeriks, K.H.; Duysters, G.M.; Vanhaverbeke, W.P.M.

    2004-01-01

    This paper assesses the effectiveness and differential performance effects of learning mechanisms on the evolution of alliance capabilities. Relying on the concept of capability lifecycles, prior research has suggested that different capability levels could be identified in which different

  7. Hybrid energy harvesting using active thermal backplane

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  8. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    International Nuclear Information System (INIS)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ''Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)''. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work

  9. TRAC-B thermal-hydraulic analysis of the Black Fox boiling water reactor

    International Nuclear Information System (INIS)

    Martin, R.P.

    1993-05-01

    Thermal-hydraulic analyses of six hypothetical accident scenarios for the General Electric Black Fox Nuclear Project boiling water reactor were performed using the TRAC-BF1 computer code. This work is sponsored by the US Nuclear Regulatory Commission and is being done in conjunction with future analysis work at the US Nuclear Regulatory Commission Technical Training Center in Chattanooga, Tennessee. These accident scenarios were chosen to assess and benchmark the thermal-hydraulic capabilities of the Black Fox Nuclear Project simulator at the Technical Training Center to model abnormal transient conditions

  10. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  11. The thermal properties of the subsurface – key parameters for geothermal energy utilization

    DEFF Research Database (Denmark)

    Norden, Ben; Bording, Thue Sylvester; Balling, N.

    Often the investigation of petrophysical properties is far behind the capabilities of sophisticated modelling techniques applied in basin and geothermal modelling and for which these data serve as an input. Therefore, more in-depth investigations especially of thermal properties are requested. We...

  12. Sandia Laboratories technical capabilities: materials and processes

    International Nuclear Information System (INIS)

    Lundergan, C.D.; Mead, P.L.

    1977-08-01

    Materials and process activities have emphasized the balance between research and development necessary to provide materials compatible with the extreme environments and performance requirements associated with nuclear ordnance. Specific technical areas which have continuing emphasis include metallurgy, composites, surface characterization and thin films, polymers, ceramics, and high-temperature characterization. Complete processing and fabrication facilities assure the capability for early evaluation and use of tailored materials. Efforts are focused on material applications involving structural and electronic materials, thermal and electrical insulation, radiation shields, and shock mitigation. Key elements in these efforts are functionability, reliability, and longevity. This interdisciplinary approach to scientific materials engineering results from the recognition that many disciplines are required to understand, characterize, and apply materials, and from the fact that material design is an essential element in meeting the objectives of quality, functionality, and life. In effect, the responsibility of a materials group extends beyond the development of a material into the understanding and description of its behavior in the extreme environments to which it will be subjected

  13. Current and anticipated uses of thermal-hydraulic codes in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-07-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.

  14. Current and anticipated uses of thermal-hydraulic codes in Germany

    International Nuclear Information System (INIS)

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-01-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses

  15. Brandishing Cyberattack Capabilities

    Science.gov (United States)

    2013-01-01

    Advertising cyberwar capabilities may be helpful. It may back up a deterrence strategy. It might dissuade other states from conventional mischief or...to enable the attack.5 Many of the instruments of the attack remain with the target system, nestled in its log files, or even in the malware itself...debat- able. Even if demonstrated, what worked yesterday may not work today. But difficult does not mean impossible. Advertising cyberwar capabilities

  16. Power handling capability of Faraday rotation isolators for CO(2) laser radars.

    Science.gov (United States)

    Klein, C A; Dorschner, T A

    1989-03-01

    Faraday rotation isolators for CO(2) laser radars must be capable of handling substantial average power loads without degrading the beam quality or experiencing thermal runaway. For this reason, the semiconductorbased isolators, which are of promise for applications at 10.6 microm, must be cooled. This creates radial temperature gradients and, in conjunction with a nonuniform beam pattern, may lead to severe wavefront aberrations. It is the purpose of this paper to formulate simple procedures for assessing the impact of such aberrations in a cw regime and to provide a prescription on how to proceed in the context of designing or evaluating Faraday rotators for CO(2) laser systems. If it is a good approximation to describe the beam-induced temperature rise by means of a fourth-order even polynomial, the degradation in beam quality originates entirely from the quartic term deltaT(4)rho(4). Specifically, it is the spherical aberration factor S = deltaT(4) radicalvar[rho(4)] that best describes the combined impact of temperature profile and beam shape. The heat flow equation for cw-loaded, edge-cooled, or face-cooled cylindrical Faraday rotator elements can be formulated in a simple nondimensional manner, which demonstrates that (a) temperature variations causing optical distortion scale with betaP/K, i.e., linearly with the deposited power per unit path length and inversely with the thermal conductivity; (b) in a transmission mode of operation with edge cooling and no thermal runaway, the power handling capability is independent of the aperture diameter; and (c), in a double-pass reflection mode of operation that takes advantage of a face-cooled back surface, a significant reduction of the distortion requires Nusselt numbers of at least 10, which leads to a new figure of merit for characterizing the performance of Faraday rotator material candidates. Edge-cooled optical isolators described in the published literature then provide cases for exercising the formalism and

  17. Predicting lattice thermal conductivity with help from ab initio methods

    Science.gov (United States)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  18. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  19. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  20. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    Science.gov (United States)

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-07

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  1. KSC Technical Capabilities Website

    Science.gov (United States)

    Nufer, Brian; Bursian, Henry; Brown, Laurette L.

    2010-01-01

    This document is the website pages that review the technical capabilities that the Kennedy Space Center (KSC) has for partnership opportunities. The purpose of this information is to make prospective customers aware of the capabilities and provide an opportunity to form relationships with the experts at KSC. The technical capabilities fall into these areas: (1) Ground Operations and Processing Services, (2) Design and Analysis Solutions, (3) Command and Control Systems / Services, (4) Materials and Processes, (5) Research and Technology Development and (6) Laboratories, Shops and Test Facilities.

  2. Organizational Economics of Capability and Heterogeneity

    DEFF Research Database (Denmark)

    Argyres, Nicholas S.; Felin, Teppo; Foss, Nicolai Juul

    2012-01-01

    For decades, the literatures on firm capabilities and organizational economics have been at odds with each other, specifically relative to explaining organizational boundaries and heterogeneity. We briefly trace the history of the relationship between the capabilities literature and organizational...... economics, and we point to the dominance of a “capabilities first” logic in this relationship. We argue that capabilities considerations are inherently intertwined with questions about organizational boundaries and internal organization, and we use this point to respond to the prevalent capabilities first...... logic. We offer an integrative research agenda that focuses first on the governance of capabilities and then on the capability of governance....

  3. Shuttle TPS thermal performance and analysis methodology

    Science.gov (United States)

    Neuenschwander, W. E.; Mcbride, D. U.; Armour, G. A.

    1983-01-01

    Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program.

  4. Adsorption properties of thermally sputtered calcein film

    Science.gov (United States)

    Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.

    2014-05-01

    High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).

  5. Metrology Measurement Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  6. Metallized compliant 3D microstructures for dry contact thermal conductance enhancement

    Science.gov (United States)

    Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.

    2018-05-01

    Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.

  7. Capable design or designing capabilities? An exploration of service design as an emerging organizational capability in Telenor – Martinkenaite

    Directory of Open Access Journals (Sweden)

    Ieva Martinkenaite

    2017-01-01

    Full Text Available This empirical paper examines a process, starting with the managerial decision to make service design an organizational capability, and follows it as it unfolds over time within one organization. Service design has become an established business practice of how firms create new products and services to promote differentiation in an increasingly uncertain business landscape. Implicit in the literature on service design are assumptions about strategic implications of adopting the prescribed innovation methods and tools. However, little is known about how service design evolves into an organizational capability enabling firms to transform their existing businesses and sustain competitiveness. Through a longitudinal, exploratory case study of service design practices in one of the world’s largest telecommunications companies, we explicate mechanisms through which service design evolves into an organizational capability by exploring the research question: what are the mechanisms through which service design develops into an organizational capability? Our study reveals the effect of an initial introduction of service design tools, identification of boundaryspanning actors and co-alignment of dedicated resources between internal functions, as well as through co-creation with customers. Over time, these activities lead to the adoption of service design practices, and subsequently these practices spark incremental learning throughout the organization, alter managerial decisions and influence multiple paths for the development of new capabilities. Reporting on this process, we are able to describe how service design practices were disseminated and institutionalized within the organization we observed. This study thus contributes by informing how service design can evolve into an organizational capability, as well as by bridging the emerging literature on service design and design thinking with established strategy theory. Further research will have to

  8. Space Logistics: Launch Capabilities

    Science.gov (United States)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  9. The use of lipids as phase change materials for thermal energy storage

    Science.gov (United States)

    Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...

  10. The Capability to Hold Property

    NARCIS (Netherlands)

    Claassen, Rutger

    2015-01-01

    This paper discusses the question of whether a capability theory of justice (such as that of Martha Nussbaum) should accept a basic “capability to hold property.” Answering this question is vital for bridging the gap between abstract capability theories of justice and their institutional

  11. Effects of thermal aging on thermo-mechanical behavior of a glass sealant for solid oxide cell applications

    DEFF Research Database (Denmark)

    Abdoli, Hamid; Alizadeh, Parvin; Boccaccini, Dino

    2014-01-01

    Thermo-mechanical properties of a silicate based glass and its potential use for sealing application in intermediate temperature solid oxide cell (SOC) are presented in this paper. Effects of thermal aging are discussed on structural and microstructural evolution, thermal expansion, viscosity......'s modulus in which a transition between a slow softening (elastic) regime and a rapid softening one was observed. Crystallization induced by thermal aging led to higher creep resistance, but lower capability of crack healing when inspected by electron microscopy. However, potential of stress relaxation...

  12. Conceptualizing innovation capabilities: A contingency perspective

    Directory of Open Access Journals (Sweden)

    Tor Helge Aas

    2017-01-01

    Full Text Available Empirical research has confirmed that a positive relationship exists between the implementation of innovation activities and the future performance of organizations. Firms utilize resources and capabilities to develop innovations in the form of new products, services or processes. Some firms prove to be better at reproducing innovation success than others, and the capacity to do so is referred to as innovation capability. However, the term innovation capability is ambiguously treated in extant literature. There are several different definitions of the concept and the distinction between innovation capabilities and other types of capabilities, such as dynamic capabilities, is neither explicitly stated, nor is the relationship between the concept and other resource- and capability-based concepts within strategy theory established. Although innovation is increasingly identified as crucial for a firm’s sustainable competitiveness in contemporary volatile and complex markets, the strategy-innovation link is underdeveloped in extant research. To overcome this challenge this paper raises the following research question: What type of innovation capabilities are required to innovate successfully? Due to the status of the extant research, we chose a conceptual research design to answer our research question and the paper contributes with a conceptual framework to discuss what innovation capabilities firms need to reproduce innovation success. Based on careful examination of current literature on innovation capability specifically, and the strategy-innovation link in general, we suggest that innovation capability must be viewed along two dimensions – innovation novelty and market characteristics. This framework enables the identification of four different contexts for innovation capabilities in a two-bytwo matrix. We discuss the types of innovation capabilities necessary within the four different contexts. This novel framework contributes to the

  13. A study of the external cooling capability for the prevention of reactor vessel failure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S H; Baek, W P; Moon, S K; Yang, S H; Kim, S H [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-07-15

    This study (a 3-year program) aims to perform a comprehensive assessment of the feasibility of external vessel flooding with respect to advanced pressurized water reactor plants to be built in Korea. During the second year, appropriate correlations have been chosen to describe the phenomena resulted from the external flooding on the basis of review works. Also performed is to develop the computer program using the chosen correlations and to accomplish the thermal analysis for assessment of the cooling capability of external flooding. Accomplished works for second year are as follows. Review of analytical and experimental works related to the external flooding are performed, appropriate correlations are chosen to describe the phenomena resulted from the external flooding on the basis of first and second year review works. A computer program is also developed to predict the temperature distribution of reactor vessel lower head. Thermal analyses are performed to judge the feasibility of external flooding using developed computer program.

  14. Prestressed concrete reactor vessel thermal cylinder model study

    International Nuclear Information System (INIS)

    Callahan, J.P.; Canonico, D.A.; Richardson, M.; Corum, J.M.; Dodge, W.G.; Robinson, G.C.; Whitman, G.D.

    1977-01-01

    The thermal cylinder experiment was designed both to provide information for evaluating the capability of analytical methods to predict the time-dependent stress-strain behavior of a 1 / 6 -scale model of the barrel section of a single-cavity prestressed concrete reactor vessel and to demonstrate the structural behavior under design and off-design thermal conditions. The model was a thick-walled cylinder having a height of 1.22 m, a thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and circumferentially and subjected to 4.83 MPa internal pressure together with a thermal crossfall imposed by heating the inner surface to 338.8 K and cooling the outer surface to 297.1 K. The initial 460 days of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected to localized heating at 505.4 K for 84 days to produce an off-design hot-spot condition. Comparisons of experimental data with calculated values obtained using the SAFE-CRACK finite-element computer program showed that the program was capable of predicting time-dependent behavior in a vessel subjected to normal operating conditions, but that it was unable to accurately predict the behavior during off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture probe showed little, if any, migration of moisture in the concrete cross section. Destructive examination indicated that the model maintained its basic structural integrity during localized hot-spot heating

  15. Developing Collaborative Product Development Capabilities

    DEFF Research Database (Denmark)

    Mahnke, Volker; Tran, Yen

    2012-01-01

    innovation strategies’. Our analyses suggest that developing such collaboration capabilities benefits from the search for complementary practices, the combination of learning styles, and the development of weak and strong ties. Results also underscore the crucial importance of co-evolution of multi......Collaborative product development capabilities support a company’s product innovation activities. In the context of the fast fashion sector, this paper examines the development of the product development capabilities (PDC) that align product development capabilities in a dual innovation context......, one, slow paced, where the firm is well established and the other, fast paced, which represents a new competitive arena in which the company competes. To understand the process associated with collaborative capability development, we studied three Scandinavian fashion companies pursuing ‘dual...

  16. Experiments and analysis of thermal stresses around the nozzle of the reactor vessel

    International Nuclear Information System (INIS)

    Song, D.H.; Oh, J.H.; Song, H.K.; Park, D.S.; Shon, K.H.

    1981-01-01

    This report describes the results of analysis and experiments on the thermal stress around the reactor vessel nozzle performed to establish a capability of thermal stress analysis of pressure vessel subjected to thermal loadings. Firstly, heat conduction analysis during reactor design transients and analysis on the experimental model were performed using computer code FETEM-1 for the purpose of verification of FETEM-1 which was developed in 1979 and will be used to obtain the temperature distribution in a solid body under the steady-state and the transient conditions. The results of the analysis was compared to the results in the Stress Report of Kori-1 reactor vessel and those from experiments on the model, respectively

  17. Method for automated building of spindle thermal model with use of CAE system

    Science.gov (United States)

    Kamenev, S. V.

    2018-03-01

    The spindle is one of the most important units of the metal-cutting machine tool. Its performance is critical to minimize the machining error, especially the thermal error. Various methods are applied to improve the thermal behaviour of spindle units. One of the most important methods is mathematical modelling based on the finite element analysis. The most common approach for its realization is the use of CAE systems. This approach, however, is not capable to address the number of important effects that need to be taken into consideration for proper simulation. In the present article, the authors propose the solution to overcome these disadvantages using automated thermal model building for the spindle unit utilizing the CAE system ANSYS.

  18. A Thermally Insulating Textile Inspired by Polar Bear Hair.

    Science.gov (United States)

    Cui, Ying; Gong, Huaxin; Wang, Yujie; Li, Dewen; Bai, Hao

    2018-04-01

    Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improved thermal storage material for portable life support systems

    Science.gov (United States)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  20. Solar-Thermal Engine Testing

    Science.gov (United States)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.

  1. Design, implementation, and testing of a cryogenic loading capability on an engineering neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, T. R.; Krishnan, V. B.; Vaidyanathan, R. [Department of Mechanical, Materials, and Aerospace Engineering, Advanced Materials Processing and Analysis Center (AMPAC), University of Central Florida, Orlando, Florida 32816 (United States); Clausen, B.; Sisneros, T.; Livescu, V.; Brown, D. W.; Bourke, M. A. M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2010-06-15

    A novel capability was designed, implemented, and tested for in situ neutron diffraction measurements during loading at cryogenic temperatures on the spectrometer for materials research at temperature and stress at Los Alamos National Laboratory. This capability allowed for the application of dynamic compressive forces of up to 250 kN on standard samples controlled at temperatures between 300 and 90 K. The approach comprised of cooling thermally isolated compression platens that in turn conductively cooled the sample in an aluminum vacuum chamber which was nominally transparent to the incident and diffracted neutrons. The cooling/heat rate and final temperature were controlled by regulating the flow of liquid nitrogen in channels inside the platens that were connected through bellows to the mechanical actuator of the load frame and by heaters placed on the platens. Various performance parameters of this system are reported here. The system was used to investigate deformation in Ni-Ti-Fe shape memory alloys at cryogenic temperatures and preliminary results are presented.

  2. Dynamic Capabilities and Performance

    DEFF Research Database (Denmark)

    Wilden, Ralf; Gudergan, Siegfried P.; Nielsen, Bo Bernhard

    2013-01-01

    are contingent on the competitive intensity faced by firms. Our findings demonstrate the performance effects of internal alignment between organizational structure and dynamic capabilities, as well as the external fit of dynamic capabilities with competitive intensity. We outline the advantages of PLS...

  3. A study of the external cooling capability for the prevention of reactor vessel failure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S H; Baek, W P; Moon, S K; Yang, S H; Kim, S H [Korea Advanced Institute of Science Technology, Daejeon (Korea, Republic of)

    1994-07-15

    This study (a 3-year program) aims to perform a comprehensive assessment of the feasibility of external vessel flooding with respect to advanced pressurized water reactor plants to be built in Korea. During the first year, review of the relevant phenomena and preliminary assessment of the concept have been performed. Also performed is a review of heat transfer correlations for the computer program that will be developed for assessment of the cooling capability of external vessel flooding. Important phenomena that determine the cooling capability of external vessel flooding are (a) the initial transient before formation of molten corium pool, (b) natural convection of in-vessel molten corium pool, (c) radiative heat exchange between the molten corium pool and the upper vessel structures, (d) thermal hydraulics outside the vessel, (e) structural integrity consideration, and (f) long-term phenomena. The adoption of the concept should be decided by considering several factors such as (a) vessel submergence procedure, (b) cooling requirements, (c) vessel design features, (d) steam production, (e) instrumentation needs, and (f) an overall accident management strategy. The external vessel cooling concept looks to be promising. However, further study is required for a reliable decision making. Several correlations are available for the prediction of cooling capability of the present concept. However, it is difficult to define a sufficiently reliable set of correlations; sensitivity studies would be required in assessing the cooling capability with the computer program.

  4. Thermal Development Test of the NEXT PM1 Ion Engine

    Science.gov (United States)

    Anderson, John R.; Snyder, John S.; VanNoord, Jonathan L.; Soulas, George C.

    2010-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is a next-generation high-power ion propulsion system under development by NASA as a part of the In-Space Propulsion Technology Program. NEXT is designed for use on robotic exploration missions of the solar system using solar electric power. Potential mission destinations that could benefit from a NEXT Solar Electric Propulsion (SEP) system include inner planets, small bodies, and outer planets and their moons. This range of robotic exploration missions generally calls for ion propulsion systems with deep throttling capability and system input power ranging from 0.6 to 25 kW, as referenced to solar array output at 1 Astronomical Unit (AU). Thermal development testing of the NEXT prototype model 1 (PM1) was conducted at JPL to assist in developing and validating a thruster thermal model and assessing the thermal design margins. NEXT PM1 performance prior to, during and subsequent to thermal testing are presented. Test results are compared to the predicted hot and cold environments expected missions and the functionality of the thruster for these missions is discussed.

  5. Marketing Capability in Strategy Research

    DEFF Research Database (Denmark)

    Ritter, Thomas; Distel, Andreas Philipp

    Following the call for a demand-side perspective of strategic management (e.g., Priem et al., 2012), a firm’s marketing capability, i.e. its ability to interact with down-stream stakeholders, becomes a pivotal element in explaining a firm’s competitiveness. While marketing capability is recognized...... in the strategic management literature as an important driver of firm performance, our review of 86 articles reveals a lack of a generally accepted definition of marketing capability, a lack of a common conceptualization as well as differences in the measurement of marketing capability. In order to build a common...... ground for advancing marketing capability research and thus supporting the demand-side perspective in strategic management, we develop an integrative framework to explain the differences and propose a research agenda for developing the field....

  6. Interaction between daily load demand curve and management of hydro-thermal generation system

    International Nuclear Information System (INIS)

    Granelli, G.; Montagna, M.; Pasini, G.; Innorta, M.; Marannino, P.

    1993-01-01

    The influence that the behaviour of the daily load demand curve has on the management of a hydro-thermal generation system is considered. The aim of this paper is to show the improvements that can be achieved by suitable load management techniques capable of flattening the load demand curve. The analysis is carried out by using a hydro-thermal scheduling program and a thermal unit dynamic dispatch procedure. The possibility of properly re-committing the available thermal units is also taken into account. The economical and technical convenience of shutting down less economical thermal units operating near the lower generations limits is verified. Finally, some considerations are made about the possible use of the thermal generation incremental costs as a tool for planning the end users' kWh prices, even in the short term. The results refer to a system with characteristics similar to those of the Italian one. In determining the daily load demand curves, the characteristics of load demand in Italy as well as in other European countries are taken into account

  7. Hot wire needle probe for thermal conductivity detection

    Science.gov (United States)

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  8. Views on the future of thermal hydraulic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1997-07-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.

  9. Views on the future of thermal hydraulic modeling

    International Nuclear Information System (INIS)

    Ishii, M.

    1997-01-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes

  10. The Impact of IT Capability on Employee Capability, Customer Value, Customer Satisfaction, and Business Performance

    Science.gov (United States)

    Chae, Ho-Chang

    2009-01-01

    This study empirically examines the impact of IT capability on firms' performance and evaluates whether firms' IT capabilities play a role in improving employee capability, customer value, customer satisfaction, and ultimately business performance. The results were based on comparing the business performance of the IT leader companies with that of…

  11. Design and calibration of a test facility for MLI thermal performance measurements below 80K

    International Nuclear Information System (INIS)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs

  12. Perspective of Japanese energy policy after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Kikkawa, Takeo

    2012-01-01

    After the Great East Japan Earthquake and following shutdown of damaged Nuclear Power Plants (NPPs) with no admittance of restart of periodically inspected NPPs, Japan was to face a great danger of shortage of power supply which led to hollowing out of Japanese industry and shifting production capacity overseas. Toward needed restart of NPPs, safety standards against severe accidents should be newly established so as to implement hazards minimization measures of NPPs, which was harmonized with the requests of Fukui prefecture having the oldest and most numerous NPPs. Author's short-term or urgent proposals were (1) safety standards should incorporate site-specific historical utmost earthquake and tsunami and be updated by reflecting latest knowledge, (2) restart of old NPPs should be put off until investigation committee concluded the relation between oldness of Fukushima Daiichi NPPs and accident progression, and (3) separation of electric power production from power distribution and transmission should be careful and not be concluded with more haste than caution. Mid-and-long-term proposals were (1) reform of nuclear power; establishment of independent nuclear regulatory authority, separation of nuclear business from private company and nationalization, and promotion of transfer of power-resources development tax to local government, (2) institutional reform of electric power; reinforcement and expansion of frequency converter and electricity interconnectors, and promotion of intense competition among electric power companies, (3) thermal power shift response; gaining bargaining power for LNG procurement and carbon dioxide reduction using bilateral offset credit mechanism through technology transfer of coal-fired thermal power; (4) expansion of renewable energy; use of geothermal, small hydro and biomass power, use of solar and wind power as distributed generation, and promotion of Smart Community activities in north Kyushu and Kamaishi. Electric power sources

  13. Thermal management evaluation of the complex electro-optical system

    Directory of Open Access Journals (Sweden)

    Nijemčević Srećko S.

    2017-01-01

    Full Text Available The thermal management of a complex electro-optical system aimed for outdoor application is challenging task due to the requirement of having an air-sealed enclosure, harsh working environment, and an additional thermal load generated by sunlight. It is essential to consider the effect of heating loads in the system components, as well as the internal temperature distribution, that can have influence on the system life expectancy, operational readiness and parameters, and possibility for catastrophic failure. The main objective of this paper is to analyze internal temperature distribution and evaluate its influence on system component operation capability. The electro-optical system simplified model was defined and related thermal balance simulation model based on Solid Works thermal analysis module was set and applied for temperature distribution calculation. Various outdoor environment scenarios were compared to evaluate system temperature distribution and evaluate its influence on system operation, reliability, and life time in application environment. This work was done during the design process as a part of the electro-optical system optimization. The results show that temperature distribution will not be cause for catastrophic failure and malfunction operation during operation in the expected environment.

  14. Investigation of Thermal Performance for Atria: a Method Overview

    Directory of Open Access Journals (Sweden)

    Moosavi Leila

    2016-01-01

    Full Text Available The importance of low energy design in large buildings has encouraged researchers to implement different methods for predicting a building’s thermal performance. Atria, as energy efficient features, have been implemented to improve the indoor thermal environment in large modern buildings. Though widely implemented, the thorough study of atrium performance is restricted due to its large size, complex thermodynamic behavior and the inaccuracies and limitations of available prediction tools. This study reviews the most common research tools implemented in previous researches on atria thermal performance, to explore the advantages and limitation of different methods for future studies. The methods reviewed are analytical, experimental, computer modelling and a combination of any or all of these methods. The findings showed that CFD (computational fluid dynamic models are the most popular tools of recent due to their higher accuracy, capabilities and user-friendly modification. Although the experimental methods were reliable for predicting atria thermal and ventilation performance, they have mostly been used to provide data for validation of CFD models. Furthermore, coupling CFD with other experimental models could increase the reliability and accuracy of the models and provide a more comprehensive analysis.

  15. Amartya Sen's Capability Approach and Education

    Science.gov (United States)

    Walker, Melanie

    2005-01-01

    The human capabilities approach developed by the economist Amartya Sen links development, quality of life and freedom. This article explores the key ideas in the capability approach of: capability, functioning, agency, human diversity and public participation in generating valued capabilities. It then considers how these ideas relate specifically…

  16. Flexible operation of thermal plants with integrated energy storage technologies

    Science.gov (United States)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  17. Capabilities for innovation

    DEFF Research Database (Denmark)

    Nielsen, Peter; Nielsen, Rene Nesgaard; Bamberger, Simon Grandjean

    2012-01-01

    is a survey that collected information from 601 firms belonging to the private urban sector in Denmark. The survey was carried out in late 2010. Keywords: dynamic capabilities/innovation/globalization/employee/employer cooperation/Nordic model Acknowledgment: The GOPA study was financed by grant 20080053113......Technological developments combined with increasing levels of competition related to the ongoing globalization imply that firms find themselves in dynamic, changing environments that call for dynamic capabilities. This challenges the internal human and organizational resources of firms in general...

  18. Possibility of a pressurized water reactor concept with highly inherent heat removal following capability

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Murao, Yoshio

    1995-01-01

    If the core power inherently follows change in heat removal rate from the primary coolant system within small thermal expansion of the coolant which can be absorbed in a practical size of pressurizer, reactor systems may have more safety and load following capability. In order to know possibility and necessary conditions of a concept on reactor core and primary coolant system of a pressurized water reactor (PWR) with such 'highly inherent heat removal following capability', transient analyses on an ordinary two-loop PWR have been performed for a transient due to 50% change in heat removal with the RETRAN-02 code. The possibility of a PWR concept with the highly inherent heat removal following capability has been demonstrated under the conditions of the absolute value of ratio of the coolant density reactivity coefficient to the Doppler reactivity coefficient more than 10x10 3 kg·cm 3 which is two to three times larger than that at beginning of cycle (BOC) in an ordinary PWR and realized by elimination of the chemical shim, the 12% lower average linear heat generation rate of 17.9 kW/m, and the 1.5 times larger pressurizer volume than those of the ordinary PWR. (author)

  19. Nuclear thermal rocket engine operation and control

    International Nuclear Information System (INIS)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs

  20. Detection of impact damage on thermal protection systems using thin-film piezoelectric sensors for integrated structural health monitoring

    Science.gov (United States)

    Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.

    2008-03-01

    Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.