International Nuclear Information System (INIS)
Garcia-Rosales, C.; Franzen, P.; Plank, H.; Roth, J.; Gauthier, E.
1996-01-01
The trapping and release of deuterium implanted with an energy of 100 eV in wrought and in plasma sprayed tungsten of different manufacture and structure has been investigated by means of re-emission as well as thermal and isothermal desorption spectroscopy. The experimental data for wrought tungsten are compared with model calculations with the PIDAT code in order to estimate the parameters governing diffusion, surface recombination and trapping in tungsten. The amount of retained deuterium in tungsten is of the same order of magnitude as in graphite for the implantation parameters used in this work. The mobile hydrogen concentration in tungsten during the implantation is of the same order of magnitude than the trapped one, being released after the termination of the implantation. The fraction of deuterium trapped to defects increases strongly with the porosity of the samples. The temperature needed for the release of the trapped deuterium (∝600 K) are considerably lower than for graphite, due to the smaller trapping energy (≤1.5 eV). (orig.)
Kinetic Monte-Carlo modeling of hydrogen retention and re-emission from Tore Supra deposits
International Nuclear Information System (INIS)
Rai, A.; Schneider, R.; Warrier, M.; Roubin, P.; Martin, C.; Richou, M.
2009-01-01
A multi-scale model has been developed to study the reactive-diffusive transport of hydrogen in porous graphite [A. Rai, R. Schneider, M. Warrier, J. Nucl. Mater. (submitted for publication). http://dx.doi.org/10.1016/j.jnucmat.2007.08.013.]. The deposits found on the leading edge of the neutralizer of Tore Supra are multi-scale in nature, consisting of micropores with typical size lower than 2 nm (∼11%), mesopores (∼5%) and macropores with a typical size more than 50 nm [C. Martin, M. Richou, W. Sakaily, B. Pegourie, C. Brosset, P. Roubin, J. Nucl. Mater. 363-365 (2007) 1251]. Kinetic Monte-Carlo (KMC) has been used to study the hydrogen transport at meso-scales. Recombination rate and the diffusion coefficient calculated at the meso-scale was used as an input to scale up and analyze the hydrogen transport at macro-scale. A combination of KMC and MCD (Monte-Carlo diffusion) method was used at macro-scales. Flux dependence of hydrogen recycling has been studied. The retention and re-emission analysis of the model has been extended to study the chemical erosion process based on the Kueppers-Hopf cycle [M. Wittmann, J. Kueppers, J. Nucl. Mater. 227 (1996) 186].
Trapping and re-emission of energetic hydrogen and helium ions in materials
International Nuclear Information System (INIS)
Yamaguchi, Sadae
1981-01-01
The experimental results on the trapping and re-emission of energetic hydrogen and helium ions in materials are explained. The trapping of deuterium and helium in graphite saturates at the concentration of 10 18 ions/cm 2 . The trapping rate of hydrogen depends on the kinds of target materials. In the case of the implantation in Mo over 3 x 10 16 H/cm 2 , hydrogen is hardly trapped. On the other hand, the trapping of hydrogen in Ti, Zr and Ta which form solid solution is easily made. The hydrogen in these metals can diffuse toward the inside of metals. The deuterium retained in 316 SS decreased with time. The trapping rate reached saturation more rapidly at higher implantation temperature. The effective diffusion constant for the explanation of the re-emission process is 1/100 as small as the ordinary value. The radiation damage due to helium irradiation affects on the trapping of deuterium in Mo. The temperature dependence of the trapping rate can be explained by the diffusion model based on the Sievert's law. The re-emission of helium was measured at various temperature. At low temperature, the re-emission was low at first, then the rate increased. At high temperature, the re-emission rate was high from the beginning. (Kato, T.)
[Study on mercury re-emissions during fly ash utilization].
Meng, Yang; Wang, Shu-Xiao
2012-09-01
The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%.
Energy Technology Data Exchange (ETDEWEB)
Ping, Tso Chin [Malaya Univ., Kuala Lumpur (Malaysia)
1984-12-01
The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon.
International Nuclear Information System (INIS)
Tso Chin Ping
1984-01-01
The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon. (author)
Thermal fatigue. Materials modelling
International Nuclear Information System (INIS)
Siegele, D.; Fingerhuth, J.; Mrovec, M.
2012-01-01
In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under
International Nuclear Information System (INIS)
Weissman, P.R.; Kieffer, H.H.
1987-01-01
The past year was one of tremendous activity because of the appearance of Halley's Comet. Observations of the comet were collected from a number of sources and compared with the detailed predictions of the comet thermal modeling program. Spacecraft observations of key physical parameters for cometary nucleus were incorporated into the thermal model and new cases run. These results have led to a much better understanding of physical processes on the nucleus and have pointed the way for further improvements to the modeling program. A model for the large-scale structure of cometary nuclei was proposed in which comets were envisioned as loosely bound agglomerations of smaller icy planetesimals, essentially a rubble pile of primordial dirty snowballs. In addition, a study of the physical history of comets was begun, concentrating on processes during formation and in the Oort cloud which would alter the volatile and nonvolatile materials in cometary nuclei from their pristine state before formation
Study of absorption and re-emission processes in a ternary liquid scintillation system
International Nuclear Information System (INIS)
Xiao Hualin; Wang Naiyan; Li Xiaobo; Cao Jun; Wen Liangjian; Zheng Dong
2010-01-01
Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2, 5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured. (authors)
Energy Technology Data Exchange (ETDEWEB)
Buscheck, T., LLNL
1998-04-29
This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.
Rectenna thermal model development
Kadiramangalam, Murall; Alden, Adrian; Speyer, Daniel
1992-01-01
Deploying rectennas in space requires adapting existing designs developed for terrestrial applications to the space environment. One of the major issues in doing so is to understand the thermal performance of existing designs in the space environment. Toward that end, a 3D rectenna thermal model has been developed, which involves analyzing shorted rectenna elements and finite size rectenna element arrays. A shorted rectenna element is a single element whose ends are connected together by a material of negligible thermal resistance. A shorted element is a good approximation to a central element of a large array. This model has been applied to Brown's 2.45 GHz rectenna design. Results indicate that Brown's rectenna requires redesign or some means of enhancing the heat dissipation in order for the diode temperature to be maintained below 200 C above an output power density of 620 W/sq.m. The model developed in this paper is very general and can be used for the analysis and design of any type of rectenna design of any frequency.
Study of elemental mercury re-emission through a lab-scale simulated scrubber
Energy Technology Data Exchange (ETDEWEB)
Cheng-Li Wu; Yan Cao; Cheng-Chun He; Zhong-Bing Dong; Wei-Ping Pan [Western Kentucky University, KY (United States). Institute for Combustion Science and Environmental Technology
2010-08-15
This paper describes a lab-scale simulated scrubber that was designed and built in the laboratory at Western Kentucky University's Institute for Combustion Science and Environmental Technology. A series of tests on slurries of CaO, CaSO{sub 3}, CaSO{sub 4}/CaSO{sub 3} and Na{sub 2}SO{sub 3} were carried out to simulate recirculating slurries in different oxidation modes. Elemental mercury (Hg{sup 0}) re-emission was replicated through the simulated scrubber. The relationship between the oxidation-reduction potential (ORP) of the slurries and the Hg0 re-emissions was evaluated. Elemental mercury re-emission occurred when Hg{sup 2+} that was absorbed in the simulated scrubber was converted to Hg{sup 0}; then, Hg{sup 0} was emitted from the slurry together with the carrier gas. The effects of both the reagents and the operational conditions (including the temperature, pH, and oxygen concentrations in the carrier gas) on the Hg{sup 0} re-emission rates in the simulated scrubber were investigated. The results indicated that as the operational temperature of the scrubber and the pH value of the slurry increased, the Hg{sup 0} concentrations that were emitted from the simulated scrubber increased. The Hg{sup 0} re-emission rates decreased as the O{sub 2} concentration in the carrier gas increased. In addition, the effects of additives to suppress Hg{sup 0} re-emission were evaluated in this paper. Sodium tetrasulfide, TMT 15, NaHS and HI were added to the slurry, while Hg{sup 2+}, which was absorbed in the slurry, was retained in the slurry as mercury precipitates. Therefore, there was a significant capacity for the additives to suppress Hg{sup 0} re-emission. 11 refs., 11 figs., 5 tabs.
Modeling of Thermal Barrier Coatings
Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.
1992-01-01
The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.
Lumped Thermal Household Model
DEFF Research Database (Denmark)
Biegel, Benjamin; Andersen, Palle; Stoustrup, Jakob
2013-01-01
pump portfolio. Following, we illustrate two disadvantages of individual models, namely that it requires much computational effort to optimize over a large portfolio, and second that it is difficult to accurately model the houses in certain time periods due to local disturbances. Finally, we propose...
Energy Technology Data Exchange (ETDEWEB)
Band, D.L.
1986-12-01
The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.
International Nuclear Information System (INIS)
Ono, T.; Kenmotsu, T.; Muramoto, T.; Kawamura, T.
2009-01-01
We calculated, with a dynamic Monte Carlo code ACAT-DIFFUSE, fluxes of thermal D 2 re-emission, reflection and segregated self-sputtering of D from a D + implanted wrought tungsten material during a time sequence of l00 eV D + implantation, post-implanted isothermal out-gassing and thermal desorption spectroscopy. The obtained result was in good agreement with an existing experiment if two different trap sites with de-trapping energy of 0.85 eV and 2.2 eV and density fraction of 0.05 D/W and 0.01 D/W were assumed to exist. The re-emission, reflection and self-sputtering fluxes in the implantation period were shown to be almost comparable. The integrated deuterium flux released in the same period was estimated. The amount of deuterium retained at 300 K was nearly six times higher than that at 473 K, which reflects the result that mobile atoms and atoms trapped in 0.85 eV trap existed abundantly at 300 K but scarcely at 473 K.
Thermal modelling using discrete vasculature for thermal therapy: a review
Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.
2013-01-01
Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700
Thermal conductivity model for nanofiber networks
Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui
2018-02-01
Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.
Thermal conductivity model for nanofiber networks
Energy Technology Data Exchange (ETDEWEB)
Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
2018-02-28
Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.
Human Thermal Model Evaluation Using the JSC Human Thermal Database
Bue, Grant; Makinen, Janice; Cognata, Thomas
2012-01-01
Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.
International Nuclear Information System (INIS)
Ono, T.; Muramoto, T.; Kenmotsu, T.; Kawamura, T.
2008-08-01
We calculated, with a dynamic Monte Carlo code ACAT-DIFFUSE, fluxes of thermal D 2 re-emission, reflection and self-sputtering from a wrought tungsten material during a time sequence of 100 eV D + implantation, post-implanted isothermal out-gassing and thermal desorption spectroscopy. The obtained result agreed well with an existing experiment, where diffusion was considered in the calculations from the beginning of implantation. The three fluxes in the implantation period were shown to be almost comparable. The integrated deuterium flux released in the same period was estimated. The depth profiles of deuterium retained at 300 K in that period indicate that, while their maximum locations did not move, the profiles were broadened out because of fast diffusion. The amount of deuterium retained at 300 K was one order of magnitude higher than that at 473 K. (author)
A Computational Study of Re-emission Balls Proposed for the NIF Ignition Symmetry Campaign
Meeker, D. J.; Amendt, P.; Dewald, E.; Edwards, M. J.; Milovich, J.; Suter, L.
2006-10-01
Re-emission balls are high-Z spheres used as surrogates for ICF ignition capsules to detect and correct early-time asymmetries of radiation flux at the target. Emission from these balls mimics the incoming flux due to their high albedo, providing a useful symmetry diagnostic. Experiments on Nova by LANL [1] and LLNL used bismuth (Bi) as the surrogate, selected for its high albedo and insensitivity to the fluorescence of the gold hohlraum wall. We are studying the applicability of these capsules to the NIF symmetry campaign as a potential tuning mechanism to achieve the accuracies required for symmetric implosions. We will describe 2-D simulations that predict the emission of the Bi ball as a function of time, frequency, and spatial distribution, as well as quantifying surrogacy of re- emission balls. Using several tuning examples, we will show the resolution expected from this diagnostic. Suggestions for extending this technique to longer times will be discussed as well as describing 3-D effects from diagnostic viewing ports and an opposing hole to eliminate competing wall emission. [1] Delamater, Phys. Rev. E 53, 5240 (1996), Magelssen, Phys. Rev. E 57, 4663 (1998)
W-320 Project thermal modeling
Energy Technology Data Exchange (ETDEWEB)
Sathyanarayana, K., Fluor Daniel Hanford
1997-03-18
This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.
Supo Thermal Model Development II
Energy Technology Data Exchange (ETDEWEB)
Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-14
This report describes the continuation of the Computational Fluid Dynamics (CFD) model of the Supo cooling system described in the report, Supo Thermal Model Development1, by Cynthia Buechler. The goal for this report is to estimate the natural convection heat transfer coefficient (HTC) of the system using the CFD results and to compare those results to remaining past operational data. Also, the correlation for determining radiolytic gas bubble size is reevaluated using the larger simulation sample size. The background, solution vessel geometry, mesh, material properties, and boundary conditions are developed in the same manner as the previous report. Although, the material properties and boundary conditions are determined using the appropriate experiment results for each individual power level.
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2018-01-01
Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...
Effects of thin films on inventory, permeation and re-emission of energetic hydrogen
International Nuclear Information System (INIS)
Ohyabu, N.; Nakamura, Y.; Nakahara, Y.; Livshits, A.; Alimov, V.; Busnyuk, A.; Notkin, M.; Samartsev, A.; Doroshin, A.
2000-01-01
A non-metallic coating thicker than the implantation depth may protect a metal against tritium retention and permeation. However, a thinner film has quite the opposite effect: a dramatic increase of permeation and retention, and a corresponding suppression of re-emission. In view of the benefits expected from particle control with a superpermeable membrane placed right inside the divertor, the behavior of a Nb sample was investigated in a plasma-membrane device having a graphite target. Even polyatomic carbide coating was found not to hinder hydrogen absorption and permeation. Polyatomic non-carbide C films effectively inhibits it, but the formation of such films depends on H and C fluxes, H energy and metal temperature. A durable isolation of suprathermal hydrogen with the superpermeable membrane was observed at a high enough ratio between H and C fluxes, and the effects of carbon were found to have a non-monotonic temperature dependence
Overview of thermal conductivity models of anisotropic thermal insulation materials
Skurikhin, A. V.; Kostanovsky, A. V.
2017-11-01
Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.
Homogenized thermal conduction model for particulate foods
Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel
2002-01-01
International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...
Animal model of thermal injuries
Directory of Open Access Journals (Sweden)
F. Bečić
2003-11-01
Full Text Available Experimental studies of burns require the use of different animal models with the aim to imitate and reproduce pathophysiological conditions. The aim of this work was to establish experimental model of thermal injury.New Zealand rabbits, weighted from 1.8 kg to 2.3 kg, were utilised during our study. Another, also utilized, animal types were laboratory Rattus rats, species Wistar, albino type, females with body weight of about 232 g. All animals were from our own litter (Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine in Sarajevo. During the experiment, animal were properly situated in adequate cages and rooms, at the controlled temperature (22 ± 2°C, and in the air with normal humidity level. All animals took food and water ad libitum.Rabbits received anesthesia - intravenous pentobarbital sodium in a dose of 60 mg/kg, and then, hair from the upper side of the each rabbit ear was removed and burns were caused by a metal seal in the same manner as in rats. Rats were primarily anesthesied by intraperitoneal pentobarbital sodium in a dose of 35 mg/kg, and then, their hair was removed from the scapula zone (5 cm x 5 cm. Burns were caused by contact with a round metal seal, heated at 80°C in a water bath, during the period of 14 seconds together with contact thermometer control. Round metal seal (radius: 2.5 cm; weight: 100 g; surface: 5 cm2 was just placed on the rat skin without any additional pressure. In order to maintain the microcirculation in the burn wound and to reduce the conversion of partial-thickness skin burns to the burns of the full-thickness skin, all burn wounds were immediately sunk in the 4°C water. Subsequent to that procedure, all animals were individually situated in the proper cages, and left to rest for 4 hours with a constant cautious monitoring of the wound development and animal general state.
Reactor Thermal Hydraulic Numerical Calculation And Modeling
International Nuclear Information System (INIS)
Duong Ngoc Hai; Dang The Ba
2008-01-01
In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)
Thermal sensation models: a systematic comparison.
Koelblen, B; Psikuta, A; Bogdan, A; Annaheim, S; Rossi, R M
2017-05-01
Thermal sensation models, capable of predicting human's perception of thermal surroundings, are commonly used to assess given indoor conditions. These models differ in many aspects, such as the number and type of input conditions, the range of conditions in which the models can be applied, and the complexity of equations. Moreover, the models are associated with various thermal sensation scales. In this study, a systematic comparison of seven existing thermal sensation models has been performed with regard to exposures including various air temperatures, clothing thermal insulation, and metabolic rate values after a careful investigation of the models' range of applicability. Thermo-physiological data needed as input for some of the models were obtained from a mathematical model for human physiological responses. The comparison showed differences between models' predictions for the analyzed conditions, mostly higher than typical intersubject differences in votes. Therefore, it can be concluded that the choice of model strongly influences the assessment of indoor spaces. The issue of comparing different thermal sensation scales has also been discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Transmutation Fuel Performance Code Thermal Model Verification
Energy Technology Data Exchange (ETDEWEB)
Gregory K. Miller; Pavel G. Medvedev
2007-09-01
FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.
Global thermal models of the lithosphere
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations
Thermal modelling of friction stir welding
DEFF Research Database (Denmark)
Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri
2008-01-01
The objective of the present work is to present the basic elements of the thermal modelling of friction stir welding as well as to clarify some of the uncertainties in the literature regarding the different contributions to the heat generation. Some results from a new thermal pseudomechanical model...... in which the temperature-dependent yield stress of the weld material controls the heat generation are also presented....
Phonon model of perovskite thermal capacity
International Nuclear Information System (INIS)
Kesler, Ya.A.; Poloznikova, M.Eh.; Petrov, K.I.
1983-01-01
A model for calculating the temperature curve of thermal capacity of perovskite family crystals on the basis of vibrational spectra is proposed. Different representatives of the perovskite family: cubic SrTiO 3 , tetragonal BaTiO 3 and orthorbombic CaTiO 3 and LaCrO 3 are considered. The total frequency set is used in thermal capacity calcUlations. Comparison of the thermal capacity values of compounds calculated on the basis of the proposed model with the experimental values shows their good agreement. The method is also recommended for other compounds with the perovskite-like structure
International Nuclear Information System (INIS)
Yamaguchi, Sadae; Sugizaki, Yasuaki; Ozawa, Kunio; Nakai, Yohta.
1984-05-01
This is the supplement to the data on trapping and re-emission of energetic hydrogen isotopes and helium in materials (JAERI-M 82-118). It contains 32 data up to end of 1982, dividing it into following 6 sections: 1) Dose Dependence, 2) Target Material Dependence, 3) Target Temperature Dependence, 4) Incident Energy Dependence, 5) Damage Effects and 6) Ion-Induced Release. (author)
Thermal conductivity model for nanoporous thin films
Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui
2018-03-01
Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.
Thermal models pertaining to continental growth
International Nuclear Information System (INIS)
Morgan, P.; Ashwal, L.
1988-01-01
Thermal models are important to understanding continental growth as the genesis, stabilization, and possible recycling of continental crust are closely related to the tectonic processes of the earth which are driven primarily by heat. The thermal energy budget of the earth was slowly decreasing since core formation, and thus the energy driving the terrestrial tectonic engine was decreasing. This fundamental observation was used to develop a logic tree defining the options for continental growth throughout earth history
Thermal model of spent fuel transport cask
International Nuclear Information System (INIS)
Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.
1996-01-01
The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs
Analytical modeling for thermal errors of motorized spindle unit
Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling
2017-01-01
Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...
Model Comparison for Electron Thermal Transport
Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques
2015-11-01
Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
Modelling and Control of Thermal System
Directory of Open Access Journals (Sweden)
Vratislav Hladky
2014-01-01
Full Text Available Work presented here deals with the modelling of thermal processes in a thermal system consisting of direct and indirect heat exchangers. The overal thermal properties of the medium and the system itself such as liquid mixing or heat capacity are shortly analysed and their features required for modelling are reasoned and therefore simplified or neglected. Special attention is given to modelling heat losses radiated into the surroundings through the walls as they are the main issue of the effective work with the heat systems. Final part of the paper proposes several ways of controlling the individual parts’ temperatures as well as the temperature of the system considering heating elements or flowage rate as actuators.
Simple Spreadsheet Thermal Models for Cryogenic Applications
Nash, Alfred
1995-01-01
Self consistent circuit analog thermal models that can be run in commercial spreadsheet programs on personal computers have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. these models have been used to analyze the SIRTF Telescope Test Facility (STTF). The facility has been brought on line for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison between the models' predictions and actual performance of this facility will be presented.
Electrical and thermal modeling of railguns
International Nuclear Information System (INIS)
Kerrisk, J.F.
1984-01-01
Electrical and thermal modeling of railguns at Los Alamos has been done for two purposes: (1) to obtain detailed information about the behavior of specific railgun components such as the rails, and (2) to predict overall performance of railgun tests. Detailed electrical and thermal modeling has concentrated on calculations of the inductance and surface current distribution of long parallel conductors in the high-frequency limit and on calculations of current and thermal diffusion in rails. Inductance calculations for various rail cross sections and for magnetic flux compression generators (MFCG) have been done. Inductance and current distribution results were compared with experimental measurements. Twodimensional calculations of current and thermal diffusion in rail cross sections have been done; predictions of rail heating and melting as a function of rail size and total current have been made. An overall performance model of a railgun and power supply has been developed and used to design tests at Los Alamos. The lumped-parameter circuit model uses results from the detailed inductance and current diffusion calculations along with other circuit component models to predict rail current and projectile acceleration, velocity, and position as a function of time
Numerical modeling of the autumnal thermal bar
Tsydenov, Bair O.
2018-03-01
The autumnal riverine thermal bar of Kamloops Lake has been simulated using atmospheric data from December 1, 2015, to January 4, 2016. The nonhydrostatic 2.5D mathematical model developed takes into account the diurnal variability of the heat fluxes and wind on the lake surface. The average values for shortwave and longwave radiation and latent and sensible heat fluxes were 19.7 W/m2, - 95.9 W/m2, - 11.8 W/m2, and - 32.0 W/m2 respectively. Analysis of the wind regime data showed prevailing easterly winds and maximum speed of 11 m/s on the 8th and 19th days. Numerical experiments with different boundary conditions at the lake surface were conducted to evaluate effects of variable heat flux and wind stress. The results of modeling demonstrated that the variable heat flux affects the process of thermal bar evolution, especially during the lengthy night cooling. However, the wind had the greatest impact on the behavior of the autumnal thermal bar: The easterly winds contributed to an earlier appearance of the thermal bar, but the strong winds generating the intensive circulations (the velocity of the upper lake flow increased to 6 cm/s) may destroy the thermal bar front.
Interacting dark energy model and thermal stability
Energy Technology Data Exchange (ETDEWEB)
Bhandari, Pritikana; Haldar, Sourav; Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)
2017-12-15
In the background of the homogeneous and isotropic FLRW model, the thermodynamics of the interacting DE fluid is investigated in the present work. By studying the thermodynamical parameters, namely the heat capacities and the compressibilities, both thermal and mechanical stability are discussed and the restrictions on the equation of state parameter of the dark fluid are analyzed. (orig.)
Interacting dark energy model and thermal stability
International Nuclear Information System (INIS)
Bhandari, Pritikana; Haldar, Sourav; Chakraborty, Subenoy
2017-01-01
In the background of the homogeneous and isotropic FLRW model, the thermodynamics of the interacting DE fluid is investigated in the present work. By studying the thermodynamical parameters, namely the heat capacities and the compressibilities, both thermal and mechanical stability are discussed and the restrictions on the equation of state parameter of the dark fluid are analyzed. (orig.)
Model calculation of thermal conductivity in antiferromagnets
Energy Technology Data Exchange (ETDEWEB)
Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.
2015-11-01
A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.
A new thermal conductivity model for nanofluids
Energy Technology Data Exchange (ETDEWEB)
Koo, Junemoo; Kleinstreuer, Clement [Department of Mechanical and Aerospace Engineering (United States)], E-mail: ck@eos.ncsu.edu
2004-12-15
In a quiescent suspension, nanoparticles move randomly and thereby carry relatively large volumes of surrounding liquid with them. This micro-scale interaction may occur between hot and cold regions, resulting in a lower local temperature gradient for a given heat flux compared with the pure liquid case. Thus, as a result of Brownian motion, the effective thermal conductivity, k{sub eff}, which is composed of the particles' conventional static part and the Brownian motion part, increases to result in a lower temperature gradient for a given heat flux. To capture these transport phenomena, a new thermal conductivity model for nanofluids has been developed, which takes the effects of particle size, particle volume fraction and temperature dependence as well as properties of base liquid and particle phase into consideration by considering surrounding liquid traveling with randomly moving nanoparticles.The strong dependence of the effective thermal conductivity on temperature and material properties of both particle and carrier fluid was attributed to the long impact range of the interparticle potential, which influences the particle motion. In the new model, the impact of Brownian motion is more effective at higher temperatures, as also observed experimentally. Specifically, the new model was tested with simple thermal conduction cases, and demonstrated that for a given heat flux, the temperature gradient changes significantly due to a variable thermal conductivity which mainly depends on particle volume fraction, particle size, particle material and temperature. To improve the accuracy and versatility of the k{sub eff}model, more experimental data sets are needed.
A transient model to the thermal detonation
International Nuclear Information System (INIS)
Karachalios, K.
1987-04-01
The model calculates the escalation dynamics and the long time behavior of thermal detonation waves depending on the initial and boundary conditions (data of the premixture, ignition at a solid wall or at an open end, etc.). Especially, for a given mixture and a certain fragmentation behavior more than one stable steady-state cases resulted, depending on the applied ignition energy. Investigations showed a very good consistency between the transient model and a steady-state model which is based on the same physical description and includes an additional stability criterion. Also the influence of effects such as e.g. non-homogeneous coolant heating, spherical instead of plane wave propagation and inhomogeneities of the premixture on the development of the wave were investigated. Comparison calculations with large scale experiments showed that they can be well explained by means of the thermal detonation theory, especially considering the transient phase of the wave development. (orig./HP) [de
Thermal modelling of a torpedo-car
International Nuclear Information System (INIS)
Verdeja-Gonzalez, L. F.; Barbes-Fernandez, M. F.; Gonzalez-Ojeda, R.; Castillo, G. A.; Colas, R.
2005-01-01
A two-dimensional finite element model for computing the temperature distribution in a torpedo-car holding pig iron is described in this work. The model determines the temperature gradients in steady and transient conditions whiting the different parts that constitute the systems, which are considered to be the steel casing, refractory lining, liquid iron, slag and air. Heat transfer within the main fluid phases (iron and air) is computed assuming an apparent thermal conductivity term incorporating the contribution from convention and radiation, and it is affected by the dimensions of the vessel. Thermal gradients within the constituents of the torpedo-car are used to calculate heat losses during operation. It was found that the model required the incorporate of a region within the iron-refractory interface to reproduce thermographic data recorded during operation; the heat transfer coefficient of this interface was found to be equal to 30 Wm''-2K''-1. (Author) 11 refs
Thermal modelling of Advanced LIGO test masses
International Nuclear Information System (INIS)
Wang, H; Dovale Álvarez, M; Mow-Lowry, C M; Freise, A; Blair, C; Brooks, A; Kasprzack, M F; Ramette, J; Meyers, P M; Kaufer, S; O’Reilly, B
2017-01-01
High-reflectivity fused silica mirrors are at the epicentre of today’s advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal effects that impact on the detectors’ performance. We propose a model of the Advanced LIGO mirrors that introduces an empirical term to account for the radiative heat transfer between the mirror and its surroundings. The mechanical mode frequency is used as a probe for the overall temperature of the mirror. The thermal transient after power build-up in the optical cavities is used to refine and test the model. The model provides a coating absorption estimate of 1.5–2.0 ppm and estimates that 0.3 to 1.3 ppm of the circulating light is scattered onto the ring heater. (paper)
International Nuclear Information System (INIS)
Densmore, Jeffery D.
2011-01-01
We perform an asymptotic analysis of the spatial discretization of radiation absorption and re-emission in Implicit Monte Carlo (IMC), a Monte Carlo technique for simulating nonlinear radiative transfer. Specifically, we examine the approximation of absorption and re-emission by a spatially continuous artificial-scattering process and either a piecewise-constant or piecewise-linear emission source within each spatial cell. We consider three asymptotic scalings representing (i) a time step that resolves the mean-free time, (ii) a Courant limit on the time-step size, and (iii) a fixed time step that does not depend on any asymptotic scaling. For the piecewise-constant approximation, we show that only the third scaling results in a valid discretization of the proper diffusion equation, which implies that IMC may generate inaccurate solutions with optically large spatial cells if time steps are refined. However, we also demonstrate that, for a certain class of problems, the piecewise-linear approximation yields an appropriate discretized diffusion equation under all three scalings. We therefore expect IMC to produce accurate solutions for a wider range of time-step sizes when the piecewise-linear instead of piecewise-constant discretization is employed. We demonstrate the validity of our analysis with a set of numerical examples.
Multiscale Modeling of UHTC: Thermal Conductivity
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
INDIVIDUAL BASED MODELLING APPROACH TO THERMAL ...
Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. Changes in river temperature regimes are producing an additional challenge for upstream migrating adult salmon and steelhead, species that are sensitive to absolute and cumulative thermal exposure. Adult salmon populations have been shown to utilize cold water patches along migration routes when mainstem river temperatures exceed thermal optimums. We are employing an individual based model (IBM) to explore the costs and benefits of spatially-distributed cold water refugia for adult migrating salmon. Our model, developed in the HexSim platform, is built around a mechanistic behavioral decision tree that drives individual interactions with their spatially explicit simulated environment. Population-scale responses to dynamic thermal regimes, coupled with other stressors such as disease and harvest, become emergent properties of the spatial IBM. Other model outputs include arrival times, species-specific survival rates, body energetic content, and reproductive fitness levels. Here, we discuss the challenges associated with parameterizing an individual based model of salmon and steelhead in a section of the Columbia River. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effec
Strangeness by Thermal Model Simulation at RHIC
Institute of Scientific and Technical Information of China (English)
SHI Xing-Hua; MA Yu-Gang; CAI Xiang-Zhou; CHEN Jin-Hui; MA Guo-Liang; ZHONG Chen
2009-01-01
The local temperature effect on strangeness enhancement in relativistic heavy ion collisions is discussed in the framework of the thermal model in which the K+ /h+ ratio becomes smaller with increasing freeze-out temperature.Considering that most strangeness particles of final-state particles are from the kaon meson,the temperature effect may play a role in strangeness production in hot dense matter where a slightly different temperature distribution in different areas could be produced by jet energy loss.This phenomenon is predicted by thermal model calculation at RHIC energy.The Ε-/φ ratio in central Au+Au collisions at 200 GeV from the thermal model depends on the freeze-out temperature obviously when γs is different.It should be one of the reasons why strangeness enhancements of Ε and φ are different though they include two strange quarks.These results indicate that thermodynamics is an important factor for strangeness production and the strangeness enhancement phenomenon.
Modelling and simulation of thermal power plants
Energy Technology Data Exchange (ETDEWEB)
Eborn, J.
1998-02-01
Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs
Thermal modelling using discrete vasculature for thermal therapy: A review
Kok, H. Petra; Gellermann, Johanna; van den Berg, Cornelis A. T.; Stauffer, Paul R.; Hand, Jeffrey W.; Crezee, Johannes
2013-01-01
Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality, and substantial
Stochastic modeling of thermal fatigue crack growth
Radu, Vasile
2015-01-01
The book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-or...
Hierarchic modeling of heat exchanger thermal hydraulics
International Nuclear Information System (INIS)
Horvat, A.; Koncar, B.
2002-01-01
Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)
Mars Propellant Liquefaction Modeling in Thermal Desktop
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
Nonlinear thermal reduced model for Microwave Circuit Analysis
Chang, Christophe; Sommet, Raphael; Quéré, Raymond; Dueme, Ph.
2004-01-01
With the constant increase of transistor power density, electro thermal modeling is becoming a necessity for accurate prediction of device electrical performances. For this reason, this paper deals with a methodology to obtain a precise nonlinear thermal model based on Model Order Reduction of a three dimensional thermal Finite Element (FE) description. This reduced thermal model is based on the Ritz vector approach which ensure the steady state solution in every case. An equi...
Development of irradiated UO2 thermal conductivity model
International Nuclear Information System (INIS)
Lee, Chan Bock; Bang Je-Geon; Kim Dae Ho; Jung Youn Ho
2001-01-01
Thermal conductivity model of the irradiated UO 2 pellet was developed, based upon the thermal diffusivity data of the irradiated UO 2 pellet measured during thermal cycling. The model predicts the thermal conductivity by multiplying such separate correction factors as solid fission products, gaseous fission products, radiation damage and porosity. The developed model was validated by comparison with the variation of the measured thermal diffusivity data during thermal cycling and prediction of other UO 2 thermal conductivity models. Since the developed model considers the effect of gaseous fission products as a separate factor, it can predict variation of thermal conductivity in the rim region of high burnup UO 2 pellet where the fission gases in the matrix are precipitated into bubbles, indicating that decrease of thermal conductivity by bubble precipitation in rim region would be significantly compensated by the enhancing effect of fission gas depletion in the UO 2 matrix. (author)
Simple models of the thermal structure of the Venusian ionosphere
International Nuclear Information System (INIS)
Whitten, R.C.; Knudsen, W.C.
1980-01-01
Analytical and numerical models of plasma temperatures in the Venusian ionosphere are proposed. The magnitudes of plasma thermal parameters are calculated using thermal-structure data obtained by the Pioneer Venus Orbiter. The simple models are found to be in good agreement with the more detailed models of thermal balance. Daytime and nighttime temperature data along with corresponding temperature profiles are provided
The thermal evolution of universe: standard model
International Nuclear Information System (INIS)
Nascimento, L.C.S. do.
1975-08-01
A description of the dynamical evolution of the Universe following a model based on the theory of General Relativity is made. The model admits the Cosmological principle,the principle of Equivalence and the Robertson-Walker metric (of which an original derivation is presented). In this model, the universe is considered as a perfect fluid, ideal and symmetric relatively to the number of particles and antiparticles. The thermodynamic relations deriving from these hypothesis are derived, and from them the several eras of the thermal evolution of the universe are established. Finally, the problems arising from certain specific predictions of the model are studied, and the predictions of the abundances of the elements according to nucleosynthesis and the actual behavior of the universe are analysed in detail. (author) [pt
Directory of Open Access Journals (Sweden)
Masaru Ishizuka
2011-01-01
Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.
Thermal effects in shales: measurements and modeling
International Nuclear Information System (INIS)
McKinstry, H.A.
1977-01-01
Research is reported concerning thermal and physical measurements and theoretical modeling relevant to the storage of radioactive wastes in a shale. Reference thermal conductivity measurements are made at atmospheric pressure in a commercial apparatus; and equipment for permeability measurements has been developed, and is being extended with respect to measurement ranges. Thermal properties of shales are being determined as a function of temperature and pressures. Apparatus was developed to measure shales in two different experimental configurations. In the first, a disk 15 mm in diameter of the material is measured by a steady state technique using a reference material to measure the heat flow within the system. The sample is sandwiched between two disks of a reference material (single crystal quartz is being used initially as reference material). The heat flow is determined twice in order to determine that steady state conditions prevail; the temperature drop over the two references is measured. When these indicate an equal heat flow, the thermal conductivity of the sample can be calculated from the temperature difference of the two faces. The second technique is for determining effect of temperature in a water saturated shale on a larger scale. Cylindrical shale (or siltstone) specimens that are being studied (large for a laboratory sample) are to be heated electrically at the center, contained in a pressure vessel that will maintain a fixed water pressure around it. The temperature is monitored at many points within the shale sample. The sample dimensions are 25 cm diameter, 20 cm long. A micro computer system has been constructed to monitor 16 thermocouples to record variation of temperature distribution with time
Thermal modelling of a torpedo-car
Energy Technology Data Exchange (ETDEWEB)
Verdeja-Gonzalez, L. F.; Barbes-Fernandez, M. F.; Gonzalez-Ojeda, R.; Castillo, G. A.; Colas, R.
2005-07-01
A two-dimensional finite element model for computing the temperature distribution in a torpedo-car holding pig iron is described in this work. The model determines the temperature gradients in steady and transient conditions whiting the different parts that constitute the systems, which are considered to be the steel casing, refractory lining, liquid iron, slag and air. Heat transfer within the main fluid phases (iron and air) is computed assuming an apparent thermal conductivity term incorporating the contribution from convention and radiation, and it is affected by the dimensions of the vessel. Thermal gradients within the constituents of the torpedo-car are used to calculate heat losses during operation. It was found that the model required the incorporate of a region within the iron-refractory interface to reproduce thermographic data recorded during operation; the heat transfer coefficient of this interface was found to be equal to 30 Wm''-2K''-1. (Author) 11 refs.
System model development for nuclear thermal propulsion
International Nuclear Information System (INIS)
Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.
1992-01-01
A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented
Review of computational thermal-hydraulic modeling
International Nuclear Information System (INIS)
Keefer, R.H.; Keeton, L.W.
1995-01-01
Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix
Model of thermal conductivity of anisotropic nanodiamond
International Nuclear Information System (INIS)
Dudnik, S.F.; Kalinichenko, A.I.; Strel'nitskij, V.E.
2014-01-01
Dependence of thermal conductivity of nanocrystalline diamond on grain size and shape is theoretically investigated. Nanodiamond is considered as two-phase material composed of diamond grains characterizing by three main dimensions and segregated by thin graphite layers with electron, phonon or hybrid thermal conductivity. Influence of type of thermal conductance and thickness of boundary layer on thermal conductivity of nanodiamond is analyzed. Derived dependences of thermal conductivity on grain dimensions are compared with experimental data
Thermal-mechanical deformation modelling of soft tissues for thermal ablation.
Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar
2014-01-01
Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.
In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling
Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.
2013-01-01
This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is
Argonne Bubble Experiment Thermal Model Development III
Energy Technology Data Exchange (ETDEWEB)
Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-11
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vessel geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.
A thermal model of the economy
Arroyo Colon, Luis Balbino
The motivation for this work came from an interest in Economics (particularly since the 2008 economic downturn) and a desire to use the tools of physics in a field that has not been the subject of great exploration. We propose a model of economics in analogy to thermodynamics and introduce the concept of the Value Multiplier as a fundamental addition to any such model. Firstly, we attempt to make analogies between some economic concepts and fundamental concepts of thermal physics. Then we introduce the value multiplier and justify its existence in our system; the value multiplier allows us to account for some intangible, psychological elements of the value of goods and services. We finally bring all the elements together in a qualitative system. In particular, we attempt to make an analogy with the Keynesian Multiplier that justifies the usefulness of fiscal stimulus in severe economic downturns. ii
Thermal models of pulse electrochemical machining
International Nuclear Information System (INIS)
Kozak, J.
2004-01-01
Pulse electrochemical machining (PECM) provides an economical and effective method for machining high strength, heat-resistant materials into complex shapes such as turbine blades, die, molds and micro cavities. Pulse Electrochemical Machining involves the application of a voltage pulse at high current density in the anodic dissolution process. Small interelectrode gap, low electrolyte flow rate, gap state recovery during the pulse off-times lead to improved machining accuracy and surface finish when compared with ECM using continuous current. This paper presents a mathematical model for PECM and employs this model in a computer simulation of the PECM process for determination of the thermal limitation and energy consumption in PECM. The experimental results and discussion of the characteristics PECM are presented. (authors)
Aquifer thermal-energy-storage modeling
Schaetzle, W. J.; Lecroy, J. E.
1982-09-01
A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.
Thermal Models of the Niger Delta: Implications for Charge Modelling
International Nuclear Information System (INIS)
Ejedawe, J.
2002-01-01
There are generally three main sources of temperature data-BHT data from log headers, production temperature data, and continuo's temperature logs. Analysis of continuous temperature profiles of over 100 wells in the Niger Delta two main thermal models (single leg and dogleg) are defined with occasional occurrence of a modified dogleg model.The dogleg model is characterised by a shallow interval of low geothermal gradient ( 3.0.C/100m). This is characteristically developed onshore area is simple, requiring only consideration of heat transients, modelling in the onshore require modelling programmes with built in modules to handle convective heat flow dissipation in the shallow layer. Current work around methods would involve tweaking of thermal conductivity values to mimic the underlying heat flow process effects, or heat flow mapping above and below the depth of gradient change. These methods allow for more realistic thermal modelling, hydrocarbon type prediction, and also more accurate prediction of temperature prior to drilling and for reservoir rock properties. The regional distribution of the models also impact on regional hydrocarbon distribution pattern in the Niger Delta
Berrios, William M.
1992-01-01
The Long Duration Exposure Facility (LDEF) postflight thermal model predicted temperatures were matched to flight temperature data recorded by the Thermal Measurement System (THERM), LDEF experiment P0003. Flight temperatures, recorded at intervals of approximately 112 minutes for the first 390 days of LDEF's 2105 day mission were compared with predictions using the thermal mathematical model (TMM). This model was unverified prior to flight. The postflight analysis has reduced the thermal model uncertainty at the temperature sensor locations from +/- 40 F to +/- 18 F. The improved temperature predictions will be used by the LDEF's principal investigators to calculate improved flight temperatures experienced by 57 experiments located on 86 trays of the facility.
Thermal unit availability modeling in a regional simulation model
International Nuclear Information System (INIS)
Yamayee, Z.A.; Port, J.; Robinett, W.
1983-01-01
The System Analysis Model (SAM) developed under the umbrella of PNUCC's System Analysis Committee is capable of simulating the operation of a given load/resource scenario. This model employs a Monte-Carlo simulation to incorporate uncertainties. Among uncertainties modeled is thermal unit availability both for energy simulation (seasonal) and capacity simulations (hourly). This paper presents the availability modeling in the capacity and energy models. The use of regional and national data in deriving the two availability models, the interaction between the two and modifications made to the capacity model in order to reflect regional practices is presented. A sample problem is presented to show the modification process. Results for modeling a nuclear unit using NERC-GADS is presented
RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs
Energy Technology Data Exchange (ETDEWEB)
Hong, Jie; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Carlsson, Mats, E-mail: dmd@nju.edu.cn [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)
2017-08-20
Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.
RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs
Hong, Jie; Carlsson, Mats; Ding, M. D.
2017-08-01
Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.
Modelling of Power Fluxes during Thermal Quenches
International Nuclear Information System (INIS)
Konz, C.; Coster, D. P.; Lackner, K.; Pautasso, G.
2005-01-01
Plasma disruptions, i. e. the sudden loss of magnetic confinement, are unavoidable, at least occasionally, in present day and future tokamaks. The expected energy fluxes to the plasma facing components (PFCs) during disruptions in ITER lie in the range of tens of GW/m''2 for timescales of about a millisecond. Since high energy fluxes can cause severe damage to the PFCs, their design heavily depends on the spatial and temporal distribution of the energy fluxes during disruptions. We investigate the nature of power fluxes during the thermal quench phase of disruptions by means of numerical simulations with the B2 SOLPS fluid code. Based on an ASDEX Upgrade shot, steady-state pre-disruption equilibria are generated which are then subjected to a simulated thermal quench by artificially enhancing the perpendicular transport in the ion and electron channels. The enhanced transport coefficients flows the Rechester and Rosenbluth model (1978) for ergodic transport in a tokamak with destroyed flux surfaces, i. e. χ, D∼const. xT''5/2 where the constants differ by the square root of the mass ratio for ions and electrons. By varying the steady-state neutral puffing rate we can modify the divertor conditions in terms of plasma temperature and density. Our numerical findings indicate that the disruption characteristics depend on the pre disruptive divertor conditions. We study the timescales and the spatial distribution of the divertor power fluxes. The simulated disruptions show rise and decay timescales in the range observed at ASDEX Upgrade. The decay timescale for the central electron temperature of ∼800 μs is typical for non-ITB disruptions. Varying the divertor conditions we find a distinct transition from a regime with symmetric power fluxes to inboard and outboard divertors to a regime where the bulk of the power flux goes to the outboard divertor. This asymmetry in the divertor peak fluxes for the higher puffing case is accompanied by a time delay between the
Model-based analysis of thermal insulation coatings
DEFF Research Database (Denmark)
Kiil, Søren
2014-01-01
Thermal insulation properties of coatings based on selected functional filler materials are investigated. The underlying physics, thermal conductivity of a heterogeneous two-component coating, and porosity and thermal conductivity of hollow spheres (HS) are quantified and a mathematical model for...
Argonne Bubble Experiment Thermal Model Development II
Energy Technology Data Exchange (ETDEWEB)
Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-07-01
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.
An improved thermal model for the computer code NAIAD
International Nuclear Information System (INIS)
Rainbow, M.T.
1982-12-01
An improved thermal model, based on the concept of heat slabs, has been incorporated as an option into the thermal hydraulic computer code NAIAD. The heat slabs are one-dimensional thermal conduction models with temperature independent thermal properties which may be internal and/or external to the fluid. Thermal energy may be added to or removed from the fluid via heat slabs and passed across the external boundary of external heat slabs at a rate which is a linear function of the external surface temperatures. The code input for the new option has been restructured to simplify data preparation. A full description of current input requirements is presented
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
Liu, Feifei; Lan, Fengchong; Chen, Jiqing
2016-07-01
Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.
Thermal modelling of a torpedo-car
Directory of Open Access Journals (Sweden)
Verdeja-González, L. F.
2005-12-01
Full Text Available A two-dimensional finite element model for computing the temperature distribution in a torpedo-car holding pig iron is described in this work. The model determines the temperature gradients in steady and transient conditions within the different parts that constitute the system, which are considered to be the steel casing, refractory lining, liquid iron, slag and air. Heat transfer within the main fluid phases (iron and air is computed assuming an apparent thermal conductivity term incorporating the contribution from convection and radiation, and it is affected by the dimensions of the vessel. Thermal gradients within the constituents of the torpedo-car are used to calculate heat losses during operation. It was found that the model required the incorporation of a region within the iron-refractory interface to reproduce thermographic data recorded during operation; the heat transfer coefficient of this interface was found to be equal to 30 Wm^{-2}K^{-1}.
En este trabajo se describe un modelo bidimensional basado en el método del elemento finito para calcular la distribución de temperaturas en un carro torpedo lleno de arrabio. El modelo determina los gradientes térmicos en condiciones estacionarias y transitorias dentro de las partes que constituyen el sistema considerado, como son cubierta de acero, recubrimientos refractarios, arrabio líquido, escoria y aire. La transferencia de calor en las fases fluidas (arrabio y aire se calcula suponiendo un coeficiente de conductividad térmica aparente que incorpora las contribuciones por convección y radiación y está afectado por las dimensiones del recipiente. El conocimiento de los gradientes térmicos permite calcular las pérdidas de calor durante la operación del carro. Se encontró que el modelo requiere de la incorporación de una región en la intercara hierro-refractario para reproducir la información termográfica recopilada durante pruebas en planta. El
International Nuclear Information System (INIS)
Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David
2017-01-01
Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.
Modeling the Thermal Signature of Natural Backgrounds
National Research Council Canada - National Science Library
Gamborg, Marius
2002-01-01
Two measuring stations have been established the purpose being to collect comprehensive databases of thermal signatures of background elements in addition to the prevailing meteorological conditions...
Thermal expansion and its impacts on thermal transport in the FPU-α-β model
Directory of Open Access Journals (Sweden)
Xiaodong Cao
2015-05-01
Full Text Available We study the impacts of thermal expansion, arising from the asymmetric interparticle potential, on thermal conductance in the FPU-α-β model. A nonmonotonic dependence of the temperature gradient and thermal conductance on the cubic interaction parameter α are shown, which corresponds to the variation of the coefficient of thermal expansion. Three domains with respect to α can be identified. The results are explained based on the detailed analysis of the asymmetry of the interparticle potential. The self-consistent phonon theory, which can capture the effect of thermal expansion, is developed to support our explanation in a quantitative way. Our result would be helpful to understand the issue that whether there exist normal thermal conduction in the FPU-α-β model.
Development and evaluation of thermal model reduction algorithms for spacecraft
Deiml, Michael; Suderland, Martin; Reiss, Philipp; Czupalla, Markus
2015-05-01
This paper is concerned with the topic of the reduction of thermal models of spacecraft. The work presented here has been conducted in cooperation with the company OHB AG, formerly Kayser-Threde GmbH, and the Institute of Astronautics at Technische Universität München with the goal to shorten and automatize the time-consuming and manual process of thermal model reduction. The reduction of thermal models can be divided into the simplification of the geometry model for calculation of external heat flows and radiative couplings and into the reduction of the underlying mathematical model. For simplification a method has been developed which approximates the reduced geometry model with the help of an optimization algorithm. Different linear and nonlinear model reduction techniques have been evaluated for their applicability in reduction of the mathematical model. Thereby the compatibility with the thermal analysis tool ESATAN-TMS is of major concern, which restricts the useful application of these methods. Additional model reduction methods have been developed, which account to these constraints. The Matrix Reduction method allows the approximation of the differential equation to reference values exactly expect for numerical errors. The summation method enables a useful, applicable reduction of thermal models that can be used in industry. In this work a framework for model reduction of thermal models has been created, which can be used together with a newly developed graphical user interface for the reduction of thermal models in industry.
Thermal model of the whole element furnace
International Nuclear Information System (INIS)
Cramer, E.R.
1998-01-01
A detailed thermal analysis was performed to calculate temperatures in the whole element test furnace that is used to conduct drying studies of N-Reactor fuel. The purpose of this analysis was to establish the thermal characteristics of the test system and to provide a basis for post-test analysis
Modeling of Viscosity and Thermal Expansion of Bioactive Glasses
Farid, Saad B. H.
2012-01-01
The behaviors of viscosity and thermal expansion for different compositions of bioactive glasses have been studied. The effect of phosphorous pentoxide as a second glass former in addition to silica was investigated. Consequently, the nonlinear behaviors of viscosity and thermal expansion with respect to the oxide composition have been modeled. The modeling uses published data on bioactive glass compositions with viscosity and thermal expansion. -regression optimization technique has been uti...
Thermal Radiation Effects on Thermal Explosion in Polydisperse Fuel Spray-Probabilistic Model
Directory of Open Access Journals (Sweden)
Ophir Navea
2011-06-01
Full Text Available We investigate the effect of thermal radiation on the dynamics of a thermal explosion of polydisperse fuel spray with a complete description of the chemistry via a single-step two-reactant model of general order. The polydisperse spray is modeled using a Probability Density Function (PDF. The thermal radiation energy exchange between the evaporation surface of the fuel droplets and the burning gas is described using the Marshak boundary conditions. An explicit expression of the critical condition for thermal explosion limit is derived analytically and represents a generalization of the critical parameter of the classical Semenov theory. Because we investigated the model in the range where the temperature is very high, the effect of the thermal radiation is significant.
Geometric model for softwood transverse thermal conductivity. Part I
Hong-mei Gu; Audrey Zink-Sharp
2005-01-01
Thermal conductivity is a very important parameter in determining heat transfer rate and is required for developing of drying models and in industrial operations such as adhesive cure rate. Geometric models for predicting softwood thermal conductivity in the radial and tangential directions were generated in this study based on obervation and measurements of wood...
A temperature dependent slip factor based thermal model for friction
Indian Academy of Sciences (India)
This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the ...
Thermal modeling: at the crossroads of several subjects of physics
International Nuclear Information System (INIS)
1997-01-01
The modeling of thermal phenomena is of prime importance for the dimensioning of industrial facilities. However, the understanding of thermal processes requires to refer to other subjects of physics like electromagnetism, matter transformation, fluid mechanics, chemistry etc.. The aim of this workshop organized by the industrial electro-thermal engineering section of the French society of thermal engineers is to take stock of current or forthcoming advances in the coupling of thermal engineering codes with electromagnetic, fluid mechanics, chemical and mechanical engineering codes. The modeling of phenomena remains the essential link between the laboratory research of new processes and their industrial developments. From the 9 talks given during this workshop, 2 of them deal with thermal processes in nuclear reactors and fall into the INIS scope and the others concern the modeling of industrial heating or electrical processes and were selected for ETDE. (J.S.)
Sommer, W.T.
2015-01-01
Modelling and monitoring of Aquifer Thermal Energy Storage
Impacts of heterogeneity, thermal interference and bioremediation
Wijbrand Sommer
PhD thesis, Wageningen University, Wageningen, NL (2015)
ISBN 978-94-6257-294-2
Abstract
Aquifer
Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones
Hoof, van J.; Hensen, J.L.M.
2007-01-01
Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national
Modeling Thermal Ignition of Energetic Materials
National Research Council Canada - National Science Library
Gerri, Norman J; Berning, Ellen
2004-01-01
This report documents an attempt to computationally simulate the mechanics and thermal regimes created when a threat perforates an armor envelope and comes in contact with stowed energetic material...
Project W-320 thermal hydraulic model benchmarking and baselining
International Nuclear Information System (INIS)
Sathyanarayana, K.
1998-01-01
Project W-320 will be retrieving waste from Tank 241-C-106 and transferring the waste to Tank 241-AY-102. Waste in both tanks must be maintained below applicable thermal limits during and following the waste transfer. Thermal hydraulic process control models will be used for process control of the thermal limits. This report documents the process control models and presents a benchmarking of the models with data from Tanks 241-C-106 and 241-AY-102. Revision 1 of this report will provide a baselining of the models in preparation for the initiation of sluicing
Study of ATES thermal behavior using a steady flow model
Doughty, C.; Hellstroem, G.; Tsang, C. F.; Claesson, J.
1981-01-01
The thermal behavior of a single well aquifer thermal energy storage system in which buoyancy flow is neglected is studied. A dimensionless formulation of the energy transport equations for the aquifer system is presented, and the key dimensionless parameters are discussed. A simple numerical model is used to generate graphs showing the thermal behavior of the system as a function of these parameters. Some comparisons with field experiments are given to illustrate the use of the dimensionless groups and graphs.
International Nuclear Information System (INIS)
Beck, T.; Bieler, A.; Thomas, N.
2012-01-01
We present structural and thermal model (STM) tests of the BepiColombo laser altimeter (BELA) receiver baffle with emphasis on the correlation of the data with a thermal mathematical model. The test unit is a part of the thermal and optical protection of the BELA instrument being tested under infrared and solar irradiation at University of Bern. An iterative optimization method known as particle swarm optimization has been adapted to adjust the model parameters, mainly the linear conductivity, in such a way that model and test results match. The thermal model reproduces the thermal tests to an accuracy of 4.2 °C ± 3.2 °C in a temperature range of 200 °C after using only 600 iteration steps of the correlation algorithm. The use of this method brings major benefits to the accuracy of the results as well as to the computational time required for the correlation. - Highlights: ► We present model correlations of the BELA receiver baffle to thermal balance tests. ► Adaptive particle swarm optimization has been adapted for the correlation. ► The method improves the accuracy of the correlation and the computational time.
McKim, Stephen A.
2016-01-01
This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
Thermal margin model for transition core of KSNP
International Nuclear Information System (INIS)
Nahm, Kee Yil; Lim, Jong Seon; Park, Sung Kew; Chun, Chong Kuk; Hwang, Sun Tack
2004-01-01
The PLUS7 fuel was developed with mixing vane grids for KSNP. For the transition core partly loaded with the PLUS7 fuels, the procedure to set up the optimum thermal margin model of the transition core was suggested by introducing AOPM concept into the screening method which determines the limiting assembly. According to the procedure, the optimum thermal margin model of the first transition core was set up by using a part of nuclear data for the first transition and the homogeneous core with PLUS7 fuels. The generic thermal margin model of PLUS7 fuel was generated with the AOPM of 138%. The overpower penalties on the first transition core were calculated to be 1.0 and 0.98 on the limiting assembly and the generic thermal margin model, respectively. It is not usual case to impose the overpower penalty on reload cores. It is considered that the lack of channel flow due to the difference of pressure drop between PLUS7 and STD fuels results in the decrease of DNBR. The AOPM of the first transition core is evaluated to be about 135% by using the optimum generic thermal margin model which involves the generic thermal margin model and the total overpower penalty. The STD fuel is not included among limiting assembly candidates in the second transition core, because they have much lower pin power than PLUS7 fuels. The reduced number of STD fuels near the limiting assembly candidates the flow from the limiting assembly to increase the thermal margin for the second transition core. It is expected that cycle specific overpower penalties increase the thermal margin for the transition core. Using the procedure to set up the optimum thermal margin model makes sure that the enhanced thermal margin of PLUS7 fuel can be sufficiently applied to not only the homogeneous core but also the transition core
Hybrid photovoltaic–thermal solar collectors dynamic modeling
International Nuclear Information System (INIS)
Amrizal, N.; Chemisana, D.; Rosell, J.I.
2013-01-01
Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.
Directory of Open Access Journals (Sweden)
Asif Mahmood
Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity
Energy Technology Data Exchange (ETDEWEB)
Sundberg, Jan; Wrafter, John; Laendell, Maerta (Geo Innova AB (Sweden)); Back, Paer-Erik; Rosen, Lars (Sweco AB (Sweden))
2008-11-15
This report present the results of thermal modelling work for the Forsmark area carried out during modelling stage 2.3. The work complements the main modelling efforts carried out during modelling stage 2.2. A revised spatial statistical description of the rock mass thermal conductivity for rock domain RFM045 is the main result of this work. Thermal modelling of domain RFM045 in Forsmark model stage 2.2 gave lower tail percentiles of thermal conductivity that were considered to be conservatively low due to the way amphibolite, the rock type with the lowest thermal conductivity, was modelled. New and previously available borehole data are used as the basis for revised stochastic geological simulations of domain RFM045. By defining two distinct thermal subdomains, these simulations have succeeded in capturing more of the lithological heterogeneity present. The resulting thermal model for rock domain RFM045 is, therefore, considered to be more realistic and reliable than that presented in model stage 2.2. The main conclusions of modelling efforts in model stage 2.3 are: - Thermal modelling indicates a mean thermal conductivity for domain RFM045 at the 5 m scale of 3.56 W/(mK). This is slightly higher than the value of 3.49 W/(mK) derived in model stage 2.2. - The variance decreases and the lower tail percentiles increase as the scale of observation increases from 1 to 5 m. Best estimates of the 0.1 percentile of thermal conductivity for domain RFM045 are 2.24 W/(mK) for the 1 m scale and 2.36 W/(mK) for the 5 m scale. This can be compared with corresponding values for domain RFM029 of 2.30 W/(mK) for the 1 m scale and 2.87 W/(mK)for the 5 m scale. - The reason for the pronounced lower tail in the thermal conductivity distribution for domain RFM045 is the presence of large bodies of the low-conductive amphibolite. - The modelling results for domain RFM029 presented in model stage 2.2 are still applicable. - As temperature increases, the thermal conductivity decreases
Adaptive thermal modeling of Li-ion batteries
Rad, M.S.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P.H.L.
2013-01-01
An accurate thermal model to predict the heat generation in rechargeable batteries is an essential tool for advanced thermal management in high power applications, such as electric vehicles. For such applications, the battery materials’ details and cell design are normally not provided. In this work
Frequency-domain thermal modelling of power semiconductor devices
DEFF Research Database (Denmark)
Ma, Ke; Blaabjerg, Frede; Andresen, Markus
2015-01-01
to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...
High power solid state retrofit lamp thermal characterization and modeling
Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.
2012-01-01
Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D
Viscous and thermal modelling of thermoplastic composites forming process
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
Thermal hydraulic model validation for HOR mixed core fuel management
International Nuclear Information System (INIS)
Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de
1997-01-01
A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)
Numerical modeling of aquifer thermal energy storage system
Energy Technology Data Exchange (ETDEWEB)
Kim, Jongchan [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of); Lee, Youngmin [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Yoon, Woon Sang; Jeon, Jae Soo [nexGeo Inc., 134-1 Garak 2-dong, Songpa-gu, Seoul 138-807 (Korea, Republic of); Koo, Min-Ho; Keehm, Youngseuk [Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of)
2010-12-15
The performance of the ATES (aquifer thermal energy storage) system primarily depends on the thermal interference between warm and cold thermal energy stored in an aquifer. Additionally the thermal interference is mainly affected by the borehole distance, the hydraulic conductivity, and the pumping/injection rate. Thermo-hydraulic modeling was performed to identify the thermal interference by three parameters and to estimate the system performance change by the thermal interference. Modeling results indicate that the thermal interference grows as the borehole distance decreases, as the hydraulic conductivity increases, and as the pumping/injection rate increases. The system performance analysis indicates that if {eta} (the ratio of the length of the thermal front to the distance between two boreholes) is lower than unity, the system performance is not significantly affected, but if {eta} is equal to unity, the system performance falls up to {proportional_to}22%. Long term modeling for a factory in Anseong was conducted to test the applicability of the ATES system. When the pumping/injection rate is 100 m{sup 3}/day, system performances during the summer and winter after 3 years of operation are estimated to be {proportional_to}125 kW and {proportional_to}110 kW, respectively. Therefore, 100 m{sup 3}/day of the pumping/injection rate satisfies the energy requirements ({proportional_to}70 kW) for the factory. (author)
Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid
Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.
Thermal automobile interior model; Thermisches Pkw-Innenraum-Modell
Energy Technology Data Exchange (ETDEWEB)
Flieger, Bjoern; Streblow, Rita; Mueller, Dirk [RWTH Aachen (Germany). E.ON Energieforschungszentrum
2012-11-01
The energy demand of climate-control instruments is an increasingly important focus of study in the automobile industry. The ratio of the energy demand for the engine as opposed to that of other car components will greatly change in the future. Especially for electrical vehicles the auxiliary energy use is very critical because of the limited battery capacity. Thus, the aim of this research project is to investigate means of more efficiently using the available energy by maintaining comfort criteria for all passengers. To realize this, a simulation model of a car interior cabin is being developed with which conclusions can be drawn, under the given boundary conditions, about the air circulation and -states as well as about the resulting energy demand to evaluate the efficiency and the thermal comfort. (orig.)
Modelling thermal plume impacts - Kalpakkam approach
International Nuclear Information System (INIS)
Rao, T.S.; Anup Kumar, B.; Narasimhan, S.V.
2002-01-01
A good understanding of temperature patterns in the receiving waters is essential to know the heat dissipation from thermal plumes originating from coastal power plants. The seasonal temperature profiles of the Kalpakkam coast near Madras Atomic Power Station (MAPS) thermal out fall site are determined and analysed. It is observed that the seasonal current reversal in the near shore zone is one of the major mechanisms for the transport of effluents away from the point of mixing. To further refine our understanding of the mixing and dilution processes, it is necessary to numerically simulate the coastal ocean processes by parameterising the key factors concerned. In this paper, we outline the experimental approach to achieve this objective. (author)
Thermal ripples in model molybdenum disulfide monolayers
Energy Technology Data Exchange (ETDEWEB)
Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)
2017-01-15
Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Approach to chemical equilibrium in thermal models
International Nuclear Information System (INIS)
Boal, D.H.
1984-01-01
The experimentally measured (μ - , charged particle)/(μ - ,n) and (p,n/p,p') ratios for the emission of energetic nucleons are used to estimate the time evolution of a system of secondary nucleons produced in a direct interaction of a projectile or captured muon. The values of these ratios indicate that chemical equilibrium is not achieved among the secondary nucleons in noncomposite induced reactions, and this restricts the time scale for the emission of energetic nucleons to be about 0.7 x 10 -23 sec. It is shown that the reason why thermal equilibrium can be reached so rapidly for a particular nucleon species is that the sum of the particle spectra produced in multiple direct reactions looks surprisingly thermal. The rate equations used to estimate the reaction times for muon and nucleon induced reactions are then applied to heavy ion collisions, and it is shown that chemical equilibrium can be reached more rapidly, as one would expect
Development of thermal LED Model | Kapitonov | Journal of ...
African Journals Online (AJOL)
Journal of Fundamental and Applied Sciences ... operating conditions of LEDs at the design stage, taking into account a cooling system in use. ... The created models will allow to reveal unfavorable thermal operating modes for LEDs and, ...
Modelling and analysis of radial thermal stresses and temperature ...
African Journals Online (AJOL)
user
The temperature field, heat transfer rate and thermal stresses were investigated with numerical simulation models using FORTRAN FE (finite element) software. ...... specific heats, International Communications in Heat and Mass Transfer, Vol.
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.
Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system
International Nuclear Information System (INIS)
Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Sohn, Dong Kee; Yeo, Taejung
2016-01-01
Highlights: • Three-dimensional electrochemical thermal model of Li-ion battery pack using computational fluid dynamics (CFD). • Novel pack design for compact liquid cooling based thermal management system. • Simple temperature estimation algorithm for the cells in the pack using the results from the model. • Sensitivity of the thermal performance to contact resistance has been investigated. - Abstract: Thermal management system is of critical importance for a Li-ion battery pack, as high performance and long battery pack life can be simultaneously achieved when operated within a narrow range of temperature around the room temperature. An efficient thermal management system is required to keep the battery temperature in this range, despite widely varying operating conditions. A novel liquid coolant based thermal management system, for 18,650 battery pack has been introduced herein. This system is designed to be compact and economical without compromising safety. A coupled three-dimensional (3D) electrochemical thermal model is constructed for the proposed Li-ion battery pack. The model is used to evaluate the effects of different operating conditions like coolant flow-rate and discharge current on the pack temperature. Contact resistance is found to have the strongest impact on the thermal performance of the pack. From the numerical solution, a simple and novel temperature correlation of predicting the temperatures of all the individual cells given the temperature measurement of one cell is devised and validated with experimental results. Such coefficients have great potential of reducing the sensor requirement and complexity in a large Li-ion battery pack, typical of an electric vehicle.
Coupling of the Models of Human Physiology and Thermal Comfort
Pokorny, J.; Jicha, M.
2013-04-01
A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.
Coupling of the Models of Human Physiology and Thermal Comfort
Directory of Open Access Journals (Sweden)
Jicha M.
2013-04-01
Full Text Available A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus–FE [1]. In the paper validation of the model for very light physical activities (1 met indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments
Zhu, Dongming; Spuckler, Charles M.
2010-01-01
The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.
Thermal properties. Site descriptive modelling Forsmark - stage 2.2
International Nuclear Information System (INIS)
Back, Paer-Erik; Wrafter, John; Sundberg, Jan; Rosen, L ars
2007-09-01
The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail
Thermal properties. Site descriptive modelling Forsmark - stage 2.2
Energy Technology Data Exchange (ETDEWEB)
Back, Paer-Erik; Wrafter, John; Sundberg, Jan [Geo Innova AB (Sweden); Rosen, L ars [Sweco Viak AB (Sweden)
2007-09-15
The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail
Measurement and model on thermal properties of sintered diamond composites
International Nuclear Information System (INIS)
Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan
2013-01-01
Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation
Modeling thermal effects in braking systems of railway vehicles
Directory of Open Access Journals (Sweden)
Milošević Miloš S.
2012-01-01
Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.
Energy Technology Data Exchange (ETDEWEB)
Pannala, S; D' Azevedo, E; Zacharia, T
2002-02-26
The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of
Modeling solid thermal explosion containment on reactor HNIW and HMX
International Nuclear Information System (INIS)
Lin, Chun-Ping; Chang, Chang-Ping; Chou, Yu-Chuan; Chu, Yung-Chuan; Shu, Chi-Min
2010-01-01
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (HNIW), also known as CL-20 and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are highly energetic materials which have been popular in national defense industries for years. This study established the models of thermal decomposition and thermal explosion hazard for HNIW and HMX. Differential scanning calorimetry (DSC) data were used for parameters determination of the thermokinetic models, and then these models were employed for simulation of thermal explosion in a 437 L barrel reactor and a 24 kg cubic box package. Experimental results indicating the best storage conditions to avoid any violent runaway reaction of HNIW and HMX were also discovered. This study also developed an efficient procedure regarding creation of thermokinetics and assessment of thermal hazards of HNIW and HMX that could be applied to ensure safe storage conditions.
International Nuclear Information System (INIS)
Bahiraei, Farid; Fartaj, Amir; Nazri, Gholam-Abbas
2017-01-01
Lithium-ion batteries are commonly used in hybrid electric and full electric vehicles (HEV and EV). In HEV, thermal management is a strict requirement to control the batteries temperature within an optimal range in order to enhance performance, safety, reduce cost, and prolong the batteries lifetime. The optimum design of a thermal management system depends on the thermo-electrochemical behavior of the batteries, operating conditions, and weight and volume constraints. The aim of this study is to investigate the effects of various operating and design parameters on the thermal performance of a battery module consisted of six building block cells. An electrochemical-thermal model coupled to conjugate heat transfer and fluid dynamics simulations is used to assess the effectiveness of two indirect liquid thermal management approaches under the FUDC driving cycle. In this study, a novel pseudo 3D electrochemical-thermal model of the battery is used. It is found that the cooling plate thickness has a significant effect on the maximum and gradient of temperature in the module. Increasing the Reynolds number decreases the average temperature but at the expense of temperature uniformity. The results show that double channel cooling system has a lower maximum temperature and more uniform temperature distribution compared to a single channel cooling system.
Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites
Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.
2010-01-01
Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity
Study of skin model and geometry effects on thermal performance of thermal protective fabrics
Zhu, Fanglong; Ma, Suqin; Zhang, Weiyuan
2008-05-01
Thermal protective clothing has steadily improved over the years as new materials and improved designs have reached the market. A significant method that has brought these improvements to the fire service is the NFPA 1971 standard on structural fire fighters’ protective clothing. However, this testing often neglects the effects of cylindrical geometry on heat transmission in flame resistant fabrics. This paper deals with methods to develop cylindrical geometry testing apparatus incorporating novel skin bioheat transfer model to test flame resistant fabrics used in firefighting. Results show that fabrics which shrink during the test can have reduced thermal protective performance compared with the qualities measured with a planar geometry tester. Results of temperature differences between skin simulant sensors of planar and cylindrical tester are also compared. This test method provides a new technique to accurately and precisely characterize the thermal performance of thermal protective fabrics.
Thermal modelling of an AMTEC recirculating cell
International Nuclear Information System (INIS)
Suitor, J.W.; Williams, R.M.; Underwood, M.L.; Ryan, M.A.; Jeffries-Nakamura, B.; O'Connor, D.
1992-01-01
A modeling program was developed to determine the impact of various design parameters on the operation of an AMTEC system. Temperature profiles generated by the modeling program were compared to actual experimental data to verify the model accuracy. The model was then extended to predict the impact of device design on operational performance. The effect of heat loss form the liquid sodium supply end was studied for this paper
Mathematical Models of IABG Thermal-Vacuum Facilities
Doring, Daniel; Ulfers, Hendrik
2014-06-01
IABG in Ottobrunn, Germany, operates thermal-vacuum facilities of different sizes and complexities as a service for space-testing of satellites and components. One aspect of these tests is the qualification of the thermal control system that keeps all onboard components within their save operating temperature band. As not all possible operation / mission states can be simulated within a sensible test time, usually a subset of important and extreme states is tested at TV facilities to validate the thermal model of the satellite, which is then used to model all other possible mission states. With advances in the precision of customer thermal models, simple assumptions of the test environment (e.g. everything black & cold, one solar constant of light from this side) are no longer sufficient, as real space simulation chambers do deviate from this ideal. For example the mechanical adapters which support the spacecraft are usually not actively cooled. To enable IABG to provide a model that is sufficiently detailed and realistic for current system tests, Munich engineering company CASE developed ESATAN models for the two larger chambers. CASE has many years of experience in thermal analysis for space-flight systems and ESATAN. The two models represent the rather simple (and therefore very homogeneous) 3m-TVA and the extremely complex space simulation test facility and its solar simulator. The cooperation of IABG and CASE built up extensive knowledge of the facilities thermal behaviour. This is the key to optimally support customers with their test campaigns in the future. The ESARAD part of the models contains all relevant information with regard to geometry (CAD data), surface properties (optical measurements) and solar irradiation for the sun simulator. The temperature of the actively cooled thermal shrouds is measured and mapped to the thermal mesh to create the temperature field in the ESATAN part as boundary conditions. Both models comprise switches to easily
First wall thermal hydraulic models for fusion blankets
International Nuclear Information System (INIS)
Fillo, J.A.
1980-01-01
Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization
System performance modeling of extreme ultraviolet lithographic thermal issues
International Nuclear Information System (INIS)
Spence, P. A.; Gianoulakis, S. E.; Moen, C. D.; Kanouff, M. P.; Fisher, A.; Ray-Chaudhuri, A. K.
1999-01-01
Numerical simulation is used in the development of an extreme ultraviolet lithography Engineering Test Stand. Extensive modeling was applied to predict the impact of thermal loads on key lithographic parameters such as image placement error, focal shift, and loss of CD control. We show that thermal issues can be effectively managed to ensure that their impact on lithographic performance is maintained within design error budgets. (c) 1999 American Vacuum Society
Thermal analysis of dry eye subjects and the thermal impulse perturbation model of ocular surface.
Zhang, Aizhong; Maki, Kara L; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Hindman, Holly B; Aquavella, James V; Zavislan, James M
2015-03-01
In this study, we explore the usage of ocular surface temperature (OST) decay patterns to distinguished between dry eye patients with aqueous deficient dry eye (ADDE) and meibomian gland dysfunction (MGD). The OST profiles of 20 dry eye subjects were measured by a long-wave infrared thermal camera in a standardized environment (24 °C, and relative humidity (RH) 40%). The subjects were instructed to blink every 5 s after 20 ∼ 25 min acclimation. Exponential decay curves were fit to the average temperature within a region of the central cornea. We find the MGD subjects have both a higher initial temperature (p model, referred to as the thermal impulse perturbation (TIP) model. We conclude that long-wave-infrared thermal imaging is a plausible tool in assisting with the classification of dry eye patient. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermal model of attic systems with radiant barriers
Energy Technology Data Exchange (ETDEWEB)
Wilkes, K.E.
1991-07-01
This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.
Thermal conductivity of the Lennard-Jones chain fluid model.
Galliero, Guillaume; Boned, Christian
2009-12-01
Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8values of the Lennard-Jones chain fluid model merge on the same "universal" curve when plotted as a function of the excess entropy. Furthermore, it is shown that the reduced configurational thermal conductivity of the Lennard-Jones chain fluid model is approximately proportional to the reduced excess entropy for all fluid states and all chain lengths.
Thermal margin comparison between DAM and simple model
Energy Technology Data Exchange (ETDEWEB)
Cha, Jeonghun; Yook, Daesik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2017-01-15
The nuclear industry in Korea, has considered using a detail analysis model (DAM), which described each rod, to get more thermal margin with the design a dry storage facility for nuclear spent fuel (NSF). A DAM is proposed and a thermal analysis to determine the cladding integrity is performed using test conditions with a homogenized NSF assembly analysis model(Simple model). The result show that according to USA safety criteria, temperature of canister surface has to keep below 500 K in normal condition and 630 K in excess condition. A commercial Computational Fluid Dynamics (CFD) called ANSYS Fluent version 14.5 was used.
Evaluation and verification of thermal stratification models for was
African Journals Online (AJOL)
USER
prediction of the condition of thermal stratification in WSPs under different hydraulic conditions and ... off coefficient. The models are verified with data collected from the full scale waste .... comparing two mathematical models based ..... 2 Comparison of measured and predicted effluent coliform bacteria (N) againsty depth.
Thermal and mechanical modelling of convergent plate margins
van den Beukel, P.J.
1990-01-01
In this thesis, the thermal and mechanical structure of convergent plate margins will be investigated by means of numerical modelling. In addition, we will discuss the implications of modelling results for geological processes such as metamorphism or the break-up of a plate at a convergent plate
Argonne Bubble Experiment Thermal Model Development
Energy Technology Data Exchange (ETDEWEB)
Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-12-03
This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiation. It is based on the model used to calculate temperatures and volume fractions in an annular vessel containing an aqueous solution of uranium . The experiment was repeated at several electron beam power levels, but the CFD analysis was performed only for the 12 kW irradiation, because this experiment came the closest to reaching a steady-state condition. The aim of the study is to compare results of the calculation with experimental measurements to determine the validity of the CFD model.
Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones
Energy Technology Data Exchange (ETDEWEB)
Hoof, Joost van; Hensen, Jan L.M. [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2007-01-15
Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national level, adaptive thermal comfort guidelines come into being, such as in the Netherlands. This paper discusses two implementations of the adaptive comfort model in terms of usability and energy use for moderate maritime climate zones by means of literature study, a case study comprising temperature measurements, and building performance simulation. It is concluded that for moderate climate zones the adaptive model is only applicable during summer months, and can reduce energy for naturally conditioned buildings. However, the adaptive thermal comfort model has very limited application potential for such climates. Additionally we suggest a temperature parameter with a gradual course to replace the mean monthly outdoor air temperature to avoid step changes in optimum comfort temperatures. (author)
Aziz, Asim; Jamshed, Wasim; Aziz, Taha
2018-04-01
In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.
Can polymer thermal oxidative ageing be modelled?
International Nuclear Information System (INIS)
Audouin, L.; Colin, X.; Fayolle, B.; Richaud, E.; Verdu, J.
2010-01-01
It has been supposed, for a long time, that kinetic modelling of polymer ageing for nonempirical lifetime prediction was out of reach for two main reasons: hyper-complexity of mechanisms and heterogeneity of reactions. The arguments relative to both aspects are examined here. It is concluded that, thanks to recent advances, especially the introduction of numerical methods, kinetic modelling is possible in various important practical cases. (authors)
Guo, Guifang; Long, Bo; Cheng, Bo; Zhou, Shiqiong; Xu, Peng; Cao, Binggang
In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO 4/graphite cells and shown to be in great agreement.
Modeling directional thermal radiance from a forest canopy
International Nuclear Information System (INIS)
McGuire, M.J.; Balick, L.K.; Smith, J.A.; Hutchison, B.A.
1989-01-01
Recent advances in remote sensing technology have increased interest in utilizing the thermal-infared region to gain additional information about surface features such as vegetation canopies. Studies have shown that sensor view angle, canopy structure, and percentage of canopy coverage can affect the response of a thermal sensor. These studies have been primarily of agricultural regions and there have been relatively few examples describing the thermal characteristics of forested regions. This paper describes an extension of an existing thermal vegetation canopy radiance model which has been modified to partially account for the geometrically rough structure of a forest canopy. Fourier series expansion of a canopy height profile is used to calculate improved view factors which partially account for the directional variations in canopy thermal radiance transfers. The original and updated radiance model predictions are compared with experimental data obtained over a deciduous (oak-hickory) forest site. The experimental observations are also used to document azimuthal and nadir directional radiance variations. Maximum angular variations in measured canopy temperatures were 4–6°C (azimuth) and 2.5°C (nadir). Maximum angular variations in simulated temperatures using the modified rough surface model was 4°C. The rough surface model appeared to be sensitive to large gaps in the canopy height profile, which influenced the resultant predicted temperature. (author)
Evaluation of Thermal Margin Analysis Models for SMART
International Nuclear Information System (INIS)
Seo, Kyong Won; Kwon, Hyuk; Hwang, Dae Hyun
2011-01-01
Thermal margin of SMART would be analyzed by three different methods. The first method is subchannel analysis by MATRA-S code and it would be a reference data for the other two methods. The second method is an on-line few channel analysis by FAST code that would be integrated into SCOPS/SCOMS. The last one is a single channel module analysis by safety analysis. Several thermal margin analysis models for SMART reactor core by subchannel analysis were setup and tested. We adopted a strategy of single stage analysis for thermal analysis of SMART reactor core. The model should represent characteristics of the SMART reactor core including hot channel. The model should be simple as possible to be evaluated within reasonable time and cost
Thermal mechanical stress modeling of GCtM seals
Energy Technology Data Exchange (ETDEWEB)
Dai, Steve Xunhu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-09-01
Finite-element thermal stress modeling at the glass-ceramic to metal (GCtM) interface was conducted assuming heterogeneous glass-ceramic microstructure. The glass-ceramics were treated as composites consisting of high expansion silica crystalline phases dispersed in a uniform residual glass. Interfacial stresses were examined for two types of glass-ceramics. One was designated as SL16 glass -ceramic, owing to its step-like thermal strain curve with an overall coefficient of thermal expansion (CTE) at 16 ppm/ºC. Clustered Cristobalite is the dominant silica phase in SL16 glass-ceramic. The other, designated as NL16 glass-ceramic, exhibited clusters of mixed Cristobalite and Quartz and showed a near-linear thermal strain curve with a same CTE value.
Modeling of thermalization phenomena in coaxial plasma accelerators
Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.
2018-05-01
Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.
Thermal Models for Intelligent Heating of Buildings
DEFF Research Database (Denmark)
Thavlov, Anders; Bindner, Henrik W.
2012-01-01
the comfort of residents, proper prediction models for indoor temperature have to be developed. This paper presents a model for prediction of indoor temperature and power consumption from electrical space heating in an office building, using stochastic differential equations. The heat dynamic model is build......The Danish government has set the ambitious goal that the share of the total Danish electricity consumption, covered by wind energy, should be increased to 50% by year 2020. This asks for radical changes in how we utilize and transmit electricity in the future power grid. To fully utilize the high...... share of renewable power generation, which is in general intermittent and non-controllable, the consumption side has to be much more flexible than today. To achieve such flexibility, methods for moving power consumption in time, within the hourly timescale, have to be developed. One approach currently...
Characterization and modeling of thermal diffusion and aggregation in nanofluids.
Energy Technology Data Exchange (ETDEWEB)
Gharagozloo, Patricia E.; Goodson, Kenneth E. (Stanford University, Stanford, CA)
2010-05-01
Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.
Adaptive thermal modeling of Li-ion batteries
International Nuclear Information System (INIS)
Shadman Rad, M.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P.H.L.
2013-01-01
Highlights: • A simple, accurate and adaptive thermal model is proposed for Li-ion batteries. • Equilibrium voltages, overpotentials and entropy changes are quantified from experimental results. • Entropy changes are highly dependent on the battery State-of-Charge. • Good agreement between simulated and measured heat development is obtained under all conditions. • Radiation contributes to about 50% of heat dissipation at elevated temperatures. -- Abstract: An accurate thermal model to predict the heat generation in rechargeable batteries is an essential tool for advanced thermal management in high power applications, such as electric vehicles. For such applications, the battery materials’ details and cell design are normally not provided. In this work a simple, though accurate, thermal model for batteries has been developed, considering the temperature- and current-dependent overpotential heat generation and State-of-Charge dependent entropy contributions. High power rechargeable Li-ion (7.5 Ah) batteries have been experimentally investigated and the results are used for model verification. It is shown that the State-of-Charge dependent entropy is a significant heat source and is therefore essential to correctly predict the thermal behavior of Li-ion batteries under a wide variety of operating conditions. An adaptive model is introduced to obtain these entropy values. A temperature-dependent equation for heat transfer to the environment is also taken into account. Good agreement between the simulations and measurements is obtained in all cases. The parameters for both the heat generation and heat transfer processes can be applied to the thermal design of advanced battery packs. The proposed methodology is generic and independent on the cell chemistry and battery design. The parameters for the adaptive model can be determined by performing simple cell potential/current and temperature measurements for a limited number of charge/discharge cycles
A computational model for thermal fluid design analysis of nuclear thermal rockets
International Nuclear Information System (INIS)
Given, J.A.; Anghaie, S.
1997-01-01
A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated
Thermal modeling of cylindrical LiFePO4 batteries
Shadman Rad, M.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P.H.L.
2013-01-01
Thermal management of Li-ion batteries is important because of the high energy content and the risk of rapid temperature development in the high current range. Reliable and safe operation of these batteries is seriously endangered by high temperatures. It is important to have a simple but accurate model to evaluate the thermal behavior of batteries under a variety of operating conditions and be able to predict the internal temperature as well. To achieve this goal, a radial-axial model is dev...
Thermal hydraulic model descrition of TASS/SMR
Energy Technology Data Exchange (ETDEWEB)
Yoon, Han Young; Kim, H. C.; Chung, Y. J.; Lim, H. S.; Yang, S. H
2001-04-01
The TASS/SMR code has been developed for the safety analysis of SMART. The governing equations were applied only to the primary coolant system in TASS which had been developed at KAERI. In TASS/SMR, the solution method is improved so that the primary and secondary coolant systems are solved simultaneously. Besides the solution method, thermal-hydraulic models are incorporated, in TASS/SMR, such as non-condensible gas model, helical steam generator heat transfer model, and passive residual heat removal system (PRHRS) heat transfer model for the application to SMART. The governing equtions of TASS/SMR are based on the drift-flux model so that the accidents and transients accompaning with two-phase flow can be analized. This report describes the governing equations and solution methods used in TASS/SMR and also includes the description for the thermal hydraulic models for SMART design.
Process optimization of friction stir welding based on thermal models
DEFF Research Database (Denmark)
Larsen, Anders Astrup
2010-01-01
This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed....... Also an optimization problem based on a microstructure model is solved, allowing the hardness distribution in the plate to be optimized. The use of purely thermal models represents a simplification of the real process; nonetheless, it shows the applicability of the optimization methods considered...
VHTR core modeling: coupling between neutronic and thermal-hydraulics
International Nuclear Information System (INIS)
Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.
2005-01-01
Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)
The analogic model ''RIC'' of thermal behaviour of mass concrete
International Nuclear Information System (INIS)
Gonzalez Redondo, M.; Gonzalez de Posada, F.; Plana Claver, J.
1997-01-01
In order to study the thermal field and calorific flows in heat sources (i.e. mass concrete during setting) we have conceived, built and experimented with an analogical electric model. This model, named RIC, consists of resistors (R) and capacitors (C) in which nodes an electric current (I) has been injected. Several analogical constants were used for the mathematical approximation. Thus, this paper describes the analogical RIC model, simulating heat generation, boundary and initial conditions and concreting. (Author) 4 refs
Features of Functioning the Integrated Building Thermal Model
Directory of Open Access Journals (Sweden)
Morozov Maxim N.
2017-01-01
Full Text Available A model of the building heating system, consisting of energy source, a distributed automatic control system, elements of individual heating unit and heating system is designed. Application Simulink of mathematical package Matlab is selected as a platform for the model. There are the specialized application Simscape libraries in aggregate with a wide range of Matlab mathematical tools allow to apply the “acausal” modeling concept. Implementation the “physical” representation of the object model gave improving the accuracy of the models. Principle of operation and features of the functioning of the thermal model is described. The investigations of building cooling dynamics were carried out.
A thermal conductivity model for U-Si compounds
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-02
U_{3}Si_{2} is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO_{2} in commercial light water reactors (LWRs). One of its main benefits compared to UO_{2} is higher thermal conductivity that increases with temperature. This increase is contrary to UO_{2}, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U_{3}Si_{2}, as compared to the phonon mechanism responsible for thermal transport in UO_{2}. The phonon thermal conductivity in UO_{2} is unusually low for a fluorite oxide due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U_{3}Si_{2} as well as other U-Si compounds has been measured experimentally [1-4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO_{2} this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U_{3}Si_{2} thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO_{2} (semi-conductor) and U_{3}Si_{2} (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-Si compounds with the goal of capturing the effect of damage in U_{3}Si_{2}. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.
Thermal experiments in the ADS target model
International Nuclear Information System (INIS)
Efanov, A.D.; Orlov, Yu.I.; Sorokin, A.P.; Ivanov, E.F.; Bogoslovskaya, G.P.; Li, N.
2002-01-01
Experiments on the development of the target heat model project and method of investigation into heat exchange in target were conducted with the aim of analysis of thermomechanical and strength characteristics of device; experimental data on the temperature distribution in coolant and membrane were obtained. Obtained data demonstrate that the temperature heterogeneity of membrane and coolant are connected with the temperature distribution variability near the membrane. Peculiarities of the experiment are noted: maximal temperature of oscillations at high point of the membrane, and power bearing temperature oscillations in the range 0 - 1 Hz [ru
Hall Thruster Thermal Modeling and Test Data Correlation
Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren
2016-01-01
The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.
Sparse estimation of model-based diffuse thermal dust emission
Irfan, Melis O.; Bobin, Jérôme
2018-03-01
Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.
A thermal modelling of displacement cascades in uranium dioxide
Energy Technology Data Exchange (ETDEWEB)
Martin, G., E-mail: guillaume.martin@cea.fr [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Garcia, P.; Sabathier, C. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Devynck, F.; Krack, M. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Maillard, S. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France)
2014-05-01
The space and time dependent temperature distribution was studied in uranium dioxide during displacement cascades simulated by classical molecular dynamics (MD). The energy for each simulated radiation event ranged between 0.2 keV and 20 keV in cells at initial temperatures of 700 K or 1400 K. Spheres into which atomic velocities were rescaled (thermal spikes) have also been simulated by MD to simulate the thermal excitation induced by displacement cascades. Equipartition of energy was shown to occur in displacement cascades, half of the kinetic energy of the primary knock-on atom being converted after a few tenths of picoseconds into potential energy. The kinetic and potential parts of the system energy are however subjected to little variations during dedicated thermal spike simulations. This is probably due to the velocity rescaling process, which impacts a large number of atoms in this case and would drive the system away from a dynamical equilibrium. This result makes questionable MD simulations of thermal spikes carried out up to now (early 2014). The thermal history of cascades was compared to the heat equation solution of a punctual thermal excitation in UO{sub 2}. The maximum volume brought to a temperature above the melting temperature during the simulated cascade events is well reproduced by this simple model. This volume eventually constitutes a relevant estimate of the volume affected by a displacement cascade in UO{sub 2}. This definition of the cascade volume could also make sense in other materials, like iron.
An Improvement in Thermal Modelling of Automated Tape Placement Process
International Nuclear Information System (INIS)
Barasinski, Anaies; Leygue, Adrien; Poitou, Arnaud; Soccard, Eric
2011-01-01
The thermoplastic tape placement process offers the possibility of manufacturing large laminated composite parts with all kinds of geometries (double curved i.e.). This process is based on the fusion bonding of a thermoplastic tape on a substrate. It has received a growing interest during last years because of its non autoclave abilities.In order to control and optimize the quality of the manufactured part, we need to predict the temperature field throughout the processing of the laminate. In this work, we focus on a thermal modeling of this process which takes in account the imperfect bonding existing between the different layers of the substrate by introducing thermal contact resistance in the model. This study is leaning on experimental results which inform us that the value of the thermal resistance evolves with temperature and pressure applied on the material.
Thermal modelling of a dry revolving vane compressor
Ooi, K. T.; Aw, K. T.
2017-08-01
The lubricant used in compressors serves to lubricate, to seal the gaps to reduce internal leakage and to a certain extent, to cool. However, a lubricant free compressor is attractive if lubricants become a source of contaminant, or in areas where the compressor needs be placed under any orientation, such as those in military or portable computing. In this paper, a thermal model for a dry revolving vane compressor is presented. This thermal model sets out to predict the steady-state operating temperatures of the compressor components. The lumped thermal conductance method was employed. The results of the components temperature will be presented and discussed. A high potential for overheating is observed at the shaft bearings.
Microinstability-based model for anomalous thermal confinement in tokamaks
International Nuclear Information System (INIS)
Tang, W.M.
1986-03-01
This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed
Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants
Directory of Open Access Journals (Sweden)
Azucena Durán-Colmenares
2016-10-01
Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.
Evaluation of the Thermodynamic Models for the Thermal Diffusion Factor
DEFF Research Database (Denmark)
Gonzalez-Bagnoli, Mariana G.; Shapiro, Alexander; Stenby, Erling Halfdan
2003-01-01
Over the years, several thermodynamic models for the thermal diffusion factors for binary mixtures have been proposed. The goal of this paper is to test some of these models in combination with different equations of state. We tested the following models: those proposed by Rutherford and Drickamer...... we applied different thermodynamic models, such as the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The necessity to try different thermo-dynamic models is caused by the high sensitivity of the thermal diffusion factors to the values of the partial molar properties. Two different...... corrections for the determination of the partial molar volumes have been implemented; the Peneloux correction and the correction based on the principle of corresponding states....
A thermal model for photovoltaic panels under varying atmospheric conditions
International Nuclear Information System (INIS)
Armstrong, S.; Hurley, W.G.
2010-01-01
The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.
Thermal-Chemical Model Of Subduction: Results And Tests
Gorczyk, W.; Gerya, T. V.; Connolly, J. A.; Yuen, D. A.; Rudolph, M.
2005-12-01
Seismic structures with strong positive and negative velocity anomalies in the mantle wedge above subduction zones have been interpreted as thermally and/or chemically induced phenomena. We have developed a thermal-chemical model of subduction, which constrains the dynamics of seismic velocity structure beneath volcanic arcs. Our simulations have been calculated over a finite-difference grid with (201×101) to (201×401) regularly spaced Eulerian points, using 0.5 million to 10 billion markers. The model couples numerical thermo-mechanical solution with Gibbs energy minimization to investigate the dynamic behavior of partially molten upwellings from slabs (cold plumes) and structures associated with their development. The model demonstrates two chemically distinct types of plumes (mixed and unmixed), and various rigid body rotation phenomena in the wedge (subduction wheel, fore-arc spin, wedge pin-ball). These thermal-chemical features strongly perturb seismic structure. Their occurrence is dependent on the age of subducting slab and the rate of subduction.The model has been validated through a series of test cases and its results are consistent with a variety of geological and geophysical data. In contrast to models that attribute a purely thermal origin for mantle wedge seismic anomalies, the thermal-chemical model is able to simulate the strong variations of seismic velocity existing beneath volcanic arcs which are associated with development of cold plumes. In particular, molten regions that form beneath volcanic arcs as a consequence of vigorous cold wet plumes are manifest by > 20% variations in the local Poisson ratio, as compared to variations of ~ 2% expected as a consequence of temperature variation within the mantle wedge.
A modelling approach to designing microstructures in thermal barrier coatings
International Nuclear Information System (INIS)
Gupta, M.; Nylen, P.; Wigren, J.
2013-01-01
Thermomechanical properties of Thermal Barrier Coatings (TBCs) are strongly influenced by coating defects, such as delaminations and pores, thus making it essential to have a fundamental understanding of microstructure-property relationships in TBCs to produce a desired coating. Object-Oriented Finite element analysis (OOF) has been shown previously as an effective tool for evaluating thermal and mechanical material behaviour, as this method is capable of incorporating the inherent material microstructure as input to the model. In this work, OOF was used to predict the thermal conductivity and effective Young's modulus of TBC topcoats. A Design of Experiments (DoE) was conducted by varying selected parameters for spraying Yttria-Stabilised Zirconia (YSZ) topcoat. The microstructure was assessed with SEM, and image analysis was used to characterize the porosity content. The relationships between microstructural features and properties predicted by modelling are discussed. The microstructural features having the most beneficial effect on properties were sprayed with a different spray gun so as to verify the results obtained from modelling. Characterisation of the coatings included microstructure evaluation, thermal conductivity and lifetime measurements. The modelling approach in combination with experiments undertaken in this study was shown to be an effective way to achieve coatings with optimised thermo-mechanical properties.
Modeling of the dilution of thermal discharges into the sea
International Nuclear Information System (INIS)
Boulot, F.; Hauguel, A.
1981-01-01
The report describes the differences in behaviour existing between tidal and tideless oceans with resulting consequences for mathematical modeling of thermal discharges and their dispersion off the coast where plant is located. Examples of studies performed at sites on the Channel and in the Mediterranean sea are also explained [fr
Mathematical modeling of thermal runaway in semiconductor laser operation
Smith, W.R.
2000-01-01
A mathematical model describing the coupling of electrical, optical and thermal effects in semiconductor lasers is introduced. Through a systematic asymptotic expansion, the governing system of differential equations is reduced to a single second-order boundary value problem. This highly nonlinear
Modelling and analysis of radial thermal stresses and temperature ...
African Journals Online (AJOL)
user
it acts as an insulating medium and prevents the heat flow, hence the need of providing insulation coating on valves is ... geometry metal components (piston, liner and cylinder head) and found a satisfactory .... model. Step8: Find the radial thermal stress at all the nodal point with the use of temperature ..... Cast iron St. 70.
A temperature dependent slip factor based thermal model for friction ...
Indian Academy of Sciences (India)
thermal modelling of FSW process by assuming the slip factor as a function of any one of the parameters such as ... Normal load, Fn. 31138 N .... source was moved in discrete steps of 1 mm to simulate the linear motion of the tool. At each load.
Modelling of thermal degradation kinetics of ascorbic acid in ...
African Journals Online (AJOL)
Ascorbic acid (vitamin C) loss in thermally treated pawpaw and potato was modelled mathematically. Isothermal experiments in the temperature range of 50 -80 oC for the drying of pawpaw and 60 -100 oC for the blanch-drying of potato were utilized to determine the kinetics of ascorbic acid loss in both fruit and vegetable.
Modeling of the effective thermal conductivity of sintered porous pastes
Ordonez-Miranda, J.; Hermens, M.; Nikitin, I.; Kouznetsova, V.G.; Volz, S.
2014-01-01
The thermal conductivity of sintered porous pastes of metals is modelled, based on an analytical and a numerical approach. The first method arises from the differential effective medium theory and considers the air voids as ellipsoidal pores of different sizes, while second one is based on the
A Review of the Modelling of Thermally Interacting Multiple Boreholes
Directory of Open Access Journals (Sweden)
Seama Koohi-Fayegh
2013-06-01
Full Text Available Much attention is now focused on utilizing ground heat pumps for heating and cooling buildings, as well as water heating, refrigeration and other thermal tasks. Modeling such systems is important for understanding, designing and optimizing their performance and characteristics. Several heat transfer models exist for ground heat exchangers. In this review article, challenges of modelling heat transfer in vertical heat exchangers are described, some analytical and numerical models are reviewed and compared, recent related developments are described and the importance of modelling these systems is discussed from a variety of aspects, such as sustainability of geothermal systems or their potential impacts on the ecosystems nearby.
Numerical modeling of Thermal Response Tests in Energy Piles
Franco, A.; Toledo, M.; Moffat, R.; Herrera, P. A.
2013-05-01
Nowadays, thermal response tests (TRT) are used as the main tools for the evaluation of low enthalpy geothermal systems such as heat exchangers. The results of TRT are used for estimating thermal conductivity and thermal resistance values of those systems. We present results of synthetic TRT simulations that model the behavior observed in an experimental energy pile system, which was installed at the new building of the Faculty of Engineering of Universidad de Chile. Moreover, we also present a parametric study to identify the most influent parameters in the performance of this type of tests. The modeling was developed using the finite element software COMSOL Multiphysics, which allows the incorporation of flow and heat transport processes. The modeled system consists on a concrete pile with 1 m diameter and 28 m deep, which contains a 28 mm diameter PEX pipe arranged in a closed circuit. Three configurations were analyzed: a U pipe, a triple U and a helicoid shape implemented at the experimental site. All simulations were run considering transient response in a three-dimensional domain. The simulation results provided the temperature distribution on the pile for a set of different geometry and physical properties of the materials. These results were compared with analytical solutions which are commonly used to interpret TRT data. This analysis demonstrated that there are several parameters that affect the system response in a synthetic TRT. For example, the diameter of the simulated pile affects the estimated effective thermal conductivity of the system. Moreover, the simulation results show that the estimated thermal conductivity for a 1 m diameter pile did not stabilize even after 100 hours since the beginning of the test, when it reached a value 30% below value used to set up the material properties in the simulation. Furthermore, we observed different behaviors depending on the thermal properties of concrete and soil. According to the simulations, the thermal
Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)
Energy Technology Data Exchange (ETDEWEB)
Bradley K. Heath
2014-03-01
This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.
Use of advanced modeling techniques to optimize thermal packaging designs.
Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar
2010-01-01
Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed
House thermal model parameter estimation method for Model Predictive Control applications
van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria
In this paper we investigate thermal network models with different model orders applied to various Dutch low-energy house types with high and low interior thermal mass and containing floor heating. Parameter estimations are performed by using data from TRNSYS simulations. The paper discusses results
Lumped-parameter fuel rod model for rapid thermal transients
International Nuclear Information System (INIS)
Perkins, K.R.; Ramshaw, J.D.
1975-07-01
The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company
Modelling of thermal stress in vapor generator supports
International Nuclear Information System (INIS)
Halpert, S.; Vazquez, L.
1997-01-01
To assure safety and availability of a nuclear power plant components or equipment stress analysis are done. When thermal loads are involved it's necessary to know the temperature field of the component or equipment. This paper describes the structural analysis of a steam generator lug with thermal load including the model used for computer simulation and presents the evolution of the temperature profile, the stress intensity and principal stress during start up and shut down of a nuclear power reactor. Temperature field obtained from code calculation show good agreement with the experimental data while stress analysis results are in agreement with a preview estimation. (author) [es
Towards patient specific thermal modelling of the prostate
International Nuclear Information System (INIS)
Berg, Cornelis A T van den; Kamer, Jeroen B van de; Leeuw, Astrid A C ee; Jeukens, Cecile R L P N; Raaymakers, Bas W; Vulpen, Marco van; Lagendijk, Jan J W
2006-01-01
The application of thermal modelling for hyperthermia and thermal ablation is severely hampered by lack of information about perfusion and vasculature. However, recently, with the advent of sophisticated angiography and dynamic contrast enhanced (DCE) imaging techniques, it has become possible to image small vessels and blood perfusion bringing the ultimate goal of patient specific thermal modelling closer within reach. In this study dynamic contrast enhanced multi-slice CT imaging techniques are employed to investigate the feasibility of this concept for regional hyperthermia treatment of the prostate. The results are retrospectively compared with clinical thermometry data of a patient group from an earlier trial. Furthermore, the role of the prostate vasculature in the establishment of the prostate temperature distribution is studied. Quantitative 3D perfusion maps of the prostate were constructed for five patients using a distributed-parameter tracer kinetics model to analyse dynamic CT data. CT angiography was applied to construct a discrete vessel model of the pelvis. Additionally, a discrete vessel model of the prostate vasculature was constructed of a prostate taken from a human corpse. Three thermal modelling schemes with increasing inclusion of the patient specific physiological information were used to simulate the temperature distribution of the prostate during regional hyperthermia. Prostate perfusion was found to be heterogeneous and T3 prostate carcinomas are often characterized by a strongly elevated tumour perfusion (up to 70-80 ml 100 g -1 min -1 ). This elevated tumour perfusion leads to 1-2 deg. C lower tumour temperatures than thermal simulations based on a homogeneous prostate perfusion. Furthermore, the comparison has shown that the simulations with the measured perfusion maps result in consistently lower prostate temperatures than clinically achieved. The simulations with the discrete vessel model indicate that significant pre-heating takes
Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code
International Nuclear Information System (INIS)
Hall, M.L.; Rider, W.J.; Cappiello, M.W.
1992-01-01
The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper
Modeling and simulation of thermally actuated bilayer plates
Bartels, Sören; Bonito, Andrea; Muliana, Anastasia H.; Nochetto, Ricardo H.
2018-02-01
We present a mathematical model of polymer bilayers that undergo large bending deformations when actuated by non-mechanical stimuli such as thermal effects. The simple model captures a large class of nonlinear bending effects and can be discretized with standard plate elements. We devise a fully practical iterative scheme and apply it to the simulation of folding of several practically useful compliant structures comprising of thin elastic layers.
A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations
DEFF Research Database (Denmark)
Wu, Rui; Wang, Huai; Ma, Ke
2014-01-01
Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal ...... relevant reliability aspect performance. A test bench is built up with an ultra-fast infrared (IR) camera to validate the proposed thermal impedance model....
Analytical thermal model validation for Cassini radioisotope thermoelectric generator
International Nuclear Information System (INIS)
Lin, E.I.
1997-01-01
The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before
Thermal expansion model for multiphase electronic packaging materials
International Nuclear Information System (INIS)
Allred, B.E.; Warren, W.E.
1991-01-01
Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients
FASTSAT-HSV01 Thermal Math Model Correlation
McKelvey, Callie
2011-01-01
This paper summarizes the thermal math model correlation effort for the Fast Affordable Science and Technology SATellite (FASTSAT-HSV01), which was designed, built and tested by NASA's Marshall Space Flight Center (MSFC) and multiple partners. The satellite launched in November 2010 on a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska. It carried three Earth science experiments and two technology demonstrations into a low Earth circular orbit with an inclination of 72deg and an altitude of 650 kilometers. The mission has been successful to date with science experiment activities still taking place daily. The thermal control system on this spacecraft was a passive design relying on thermo-optical properties and six heaters placed on specific components. Flight temperature data is being recorded every minute from the 48 Resistance Temperature Devices (RTDs) onboard the satellite structure and many of its avionics boxes. An effort has been made to correlate the thermal math model to the flight temperature data using Cullimore and Ring's Thermal Desktop and by obtaining Earth and Sun vector data from the Attitude Control System (ACS) team to create an "as-flown" orbit. Several model parameters were studied during this task to understand the spacecraft's sensitivity to these changes. Many "lessons learned" have been noted from this activity that will be directly applicable to future small satellite programs.
Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB
Wang, Xiao-Yen, J.
2012-01-01
This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.
Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites
Fasanella, Nicholas A.; Sundararaghavan, Veera
2016-05-01
The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.
Autoxidation of jet fuels: Implications for modeling and thermal stability
Energy Technology Data Exchange (ETDEWEB)
Heneghan, S.P. [Univ. of Dayton Research Institute, OH (United States); Chin, L.P. [Systems Research Laboratories, Inc., Dayton, OH (United States)
1995-05-01
The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to model the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.
Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters
Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.
1999-01-01
NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.
Fluctuations in the thermal superfluid model for heated spherical nuclei
International Nuclear Information System (INIS)
Nguyen Dinhdang; Nguyen Zuythang
1990-01-01
The effect of the non-vanishing thermal pairing gap due to statistical fluctuations is investigated by calculating fluctuations of selected observables such as the energy and particle number fluctuations, the nuclear level density, the level density parameter and the specific heat within the framework of the thermal nuclear superfluid model. In numerical calculations for heated spherical nuclei 58 Ni, 142 Sm and 208 Pb the realistic single-particle energy spectra defined in the Woods-Saxon potential are used. It is found that the results obtained with the non-vanishing thermal average pairing gap can yield an adequate estimate of the true fluctuations in the finite heating non-rotating nuclear systems. (author)
Thermal analysis of charring materials based on pyrolysis interface model
Directory of Open Access Journals (Sweden)
Huang Hai-Ming
2014-01-01
Full Text Available Charring thermal protection systems have been used to protect hypersonic vehicles from high heat loads. The pyrolysis of charring materials is a complicated physical and chemical phenomenon. Based on the pyrolysis interface model, a simulating approach for charring ablation has been designed in order to obtain one dimensional transient thermal behavior of homogeneous charring materials in reentry capsules. As the numerical results indicate, the pyrolysis rate and the surface temperature under a given heat flux rise abruptly in the beginning, then reach a plateau, but the temperature at the bottom rises very slowly to prevent the structural materials from being heated seriously. Pyrolysis mechanism can play an important role in thermal protection systems subjected to serious aerodynamic heat.
International Nuclear Information System (INIS)
Yarlagadda, B.S.
1989-04-01
The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs
Sohrabi, Salman; Liu, Yaling
2018-03-01
Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the
Sohrabi, Salman; Liu, Yaling
2018-03-01
Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the
Theoretical Modelling Methods for Thermal Management of Batteries
Directory of Open Access Journals (Sweden)
Bahman Shabani
2015-09-01
Full Text Available The main challenge associated with renewable energy generation is the intermittency of the renewable source of power. Because of this, back-up generation sources fuelled by fossil fuels are required. In stationary applications whether it is a back-up diesel generator or connection to the grid, these systems are yet to be truly emissions-free. One solution to the problem is the utilisation of electrochemical energy storage systems (ESS to store the excess renewable energy and then reusing this energy when the renewable energy source is insufficient to meet the demand. The performance of an ESS amongst other things is affected by the design, materials used and the operating temperature of the system. The operating temperature is critical since operating an ESS at low ambient temperatures affects its capacity and charge acceptance while operating the ESS at high ambient temperatures affects its lifetime and suggests safety risks. Safety risks are magnified in renewable energy storage applications given the scale of the ESS required to meet the energy demand. This necessity has propelled significant effort to model the thermal behaviour of ESS. Understanding and modelling the thermal behaviour of these systems is a crucial consideration before designing an efficient thermal management system that would operate safely and extend the lifetime of the ESS. This is vital in order to eliminate intermittency and add value to renewable sources of power. This paper concentrates on reviewing theoretical approaches used to simulate the operating temperatures of ESS and the subsequent endeavours of modelling thermal management systems for these systems. The intent of this review is to present some of the different methods of modelling the thermal behaviour of ESS highlighting the advantages and disadvantages of each approach.
Thermal conductivity model of vibro-packed fuel
International Nuclear Information System (INIS)
Yeon Soo, Kim
2001-01-01
In an effort to dispose of excess weapons grade plutonium accumulated in the cold war era in the United States and the Russian Federation, one method currently under investigation is the conversion of the plutonium into mixed oxide (MOX) reactor fuel for LWRs and fast reactors in the Russian Federation. A fuel option already partly developed at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad is that of vibro-packed MOX. Fuel rod fabrication using powder vibro-packing is attractive because it includes neither a process too complex to operate in glove boxes (or remotely), nor a waste-producing step necessary for the conventional pellet rod fabrication. However, because of its loose bonding between fuel particles at the beginning of life, vibro-packed MOX fuel has a somewhat less effective thermal conductivity than fully sintered pellet fuel, and undergoes more restructuring. Helium would also likely be pressurized in vibro-packed MOX fuel rods for LWRs to enhance initial fuel thermal conductivity. The combination of these two factors complicates development of an accurate thermal conductivity model. But clearly in order to predict fuel thermomechanical responses during irradiation of vibro-packed MOX fuel, fuel thermal conductivity must be known. The Vibropac fuel of interest in this study refers the fuel that is compacted with irregular fragments of mixed oxide fuel. In this paper, the thermal-conductivity models in the literature that dealt with relatively similar situations to the present case are examined. Then, the best model is selected based on accuracy of prediction and applicability. Then, the selected model is expanded to fit the various situations of interest. (author)
Asteroid thermal modeling in the presence of reflected sunlight
Myhrvold, Nathan
2018-03-01
A new derivation of simple asteroid thermal models is presented, investigating the need to account correctly for Kirchhoff's law of thermal radiation when IR observations contain substantial reflected sunlight. The framework applies to both the NEATM and related thermal models. A new parameterization of these models eliminates the dependence of thermal modeling on visible absolute magnitude H, which is not always available. Monte Carlo simulations are used to assess the potential impact of violating Kirchhoff's law on estimates of physical parameters such as diameter and IR albedo, with an emphasis on NEOWISE results. The NEOWISE papers use ten different models, applied to 12 different combinations of WISE data bands, in 47 different combinations. The most prevalent combinations are simulated and the accuracy of diameter estimates is found to be depend critically on the model and data band combination. In the best case of full thermal modeling of all four band the errors in an idealized model the 1σ (68.27%) confidence interval is -5% to +6%, but this combination is just 1.9% of NEOWISE results. Other combinations representing 42% of the NEOWISE results have about twice the CI at -10% to +12%, before accounting for errors due to irregular shape or other real world effects that are not simulated. The model and data band combinations found for the majority of NEOWISE results have much larger systematic and random errors. Kirchhoff's law violation by NEOWISE models leads to errors in estimation accuracy that are strongest for asteroids with W1, W2 band emissivity ɛ12 in both the lowest (0.605 ≤ɛ12 ≤ 0 . 780), and highest decile (0.969 ≤ɛ12 ≤ 0 . 988), corresponding to the highest and lowest deciles of near-IR albedo pIR. Systematic accuracy error between deciles ranges from a low of 5% to as much as 45%, and there are also differences in the random errors. Kirchhoff's law effects also produce large errors in NEOWISE estimates of pIR, particularly for high
Energy Technology Data Exchange (ETDEWEB)
Back, Paer-Erik; Sundberg, Jan [Geo Innova AB (Sweden)
2007-09-15
This report presents a strategy for describing, predicting and visualising the thermal aspects of the site descriptive model. The strategy is an updated version of an earlier strategy applied in all SDM versions during the initial site investigation phase at the Forsmark and Oskarshamn areas. The previous methodology for thermal modelling did not take the spatial correlation fully into account during simulation. The result was that the variability of thermal conductivity in the rock mass was not sufficiently well described. Experience from earlier thermal SDMs indicated that development of the methodology was required in order describe the spatial distribution of thermal conductivity in the rock mass in a sufficiently reliable way, taking both variability within rock types and between rock types into account. A good description of the thermal conductivity distribution is especially important for the lower tail. This tail is important for the design of a repository because it affects the canister spacing. The presented approach is developed to be used for final SDM regarding thermal properties, primarily thermal conductivity. Specific objectives for the strategy of thermal stochastic modelling are: Description: statistical description of the thermal conductivity of a rock domain. Prediction: prediction of thermal conductivity in a specific rock volume. Visualisation: visualisation of the spatial distribution of thermal conductivity. The thermal site descriptive model should include the temperature distribution and thermal properties of the rock mass. The temperature is the result of the thermal processes in the repository area. Determination of thermal transport properties can be made using different methods, such as laboratory investigations, field measurements, modelling from mineralogical composition and distribution, modelling from density logging and modelling from temperature logging. The different types of data represent different scales, which has to be
International Nuclear Information System (INIS)
Back, Paer-Erik; Sundberg, Jan
2007-09-01
This report presents a strategy for describing, predicting and visualising the thermal aspects of the site descriptive model. The strategy is an updated version of an earlier strategy applied in all SDM versions during the initial site investigation phase at the Forsmark and Oskarshamn areas. The previous methodology for thermal modelling did not take the spatial correlation fully into account during simulation. The result was that the variability of thermal conductivity in the rock mass was not sufficiently well described. Experience from earlier thermal SDMs indicated that development of the methodology was required in order describe the spatial distribution of thermal conductivity in the rock mass in a sufficiently reliable way, taking both variability within rock types and between rock types into account. A good description of the thermal conductivity distribution is especially important for the lower tail. This tail is important for the design of a repository because it affects the canister spacing. The presented approach is developed to be used for final SDM regarding thermal properties, primarily thermal conductivity. Specific objectives for the strategy of thermal stochastic modelling are: Description: statistical description of the thermal conductivity of a rock domain. Prediction: prediction of thermal conductivity in a specific rock volume. Visualisation: visualisation of the spatial distribution of thermal conductivity. The thermal site descriptive model should include the temperature distribution and thermal properties of the rock mass. The temperature is the result of the thermal processes in the repository area. Determination of thermal transport properties can be made using different methods, such as laboratory investigations, field measurements, modelling from mineralogical composition and distribution, modelling from density logging and modelling from temperature logging. The different types of data represent different scales, which has to be
Fractional Heat Conduction Models and Thermal Diffusivity Determination
Directory of Open Access Journals (Sweden)
Monika Žecová
2015-01-01
Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.
Desiccant wheel thermal performance modeling for indoor humidity optimal control
International Nuclear Information System (INIS)
Wang, Nan; Zhang, Jiangfeng; Xia, Xiaohua
2013-01-01
Highlights: • An optimal humidity control model is formulated to control the indoor humidity. • MPC strategy is used to implement the optimal operation solution. • Practical applications of the MPC strategy is illustrated by the case study. - Abstract: Thermal comfort is an important concern in the energy efficiency improvement of commercial buildings. Thermal comfort research focuses mostly on temperature control, but humidity control is an important aspect to maintain indoor comfort too. In this paper, an optimal humidity control model (OHCM) is presented. Model predictive control (MPC) strategy is applied to implement the optimal operation of the desiccant wheel during working hours of a commercial building. The OHCM is revised to apply the MPC strategy. A case is studied to illustrate the practical applications of the MPC strategy
Thermal Model of a Dish Stirling Cavity-Receiver
Directory of Open Access Journals (Sweden)
Rubén Gil
2015-01-01
Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.
Computationally efficient thermal-mechanical modelling of selective laser melting
Yang, Yabin; Ayas, Can
2017-10-01
The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is anticipated to be instrumental for understanding and predicting the development of residual stress field during the build process. However, SLM process modelling requires determination of the heat transients within the part being built which is coupled to a mechanical boundary value problem to calculate displacement and residual stress fields. Thermal models associated with SLM are typically complex and computationally demanding. In this paper, we present a simple semi-analytical thermal-mechanical model, developed for SLM that represents the effect of laser scanning vectors with line heat sources. The temperature field within the part being build is attained by superposition of temperature field associated with line heat sources in a semi-infinite medium and a complimentary temperature field which accounts for the actual boundary conditions. An analytical solution of a line heat source in a semi-infinite medium is first described followed by the numerical procedure used for finding the complimentary temperature field. This analytical description of the line heat sources is able to capture the steep temperature gradients in the vicinity of the laser spot which is typically tens of micrometers. In turn, semi-analytical thermal model allows for having a relatively coarse discretisation of the complimentary temperature field. The temperature history determined is used to calculate the thermal strain induced on the SLM part. Finally, a mechanical model governed by elastic-plastic constitutive rule having isotropic hardening is used to predict the residual stresses.
Choking flow modeling with mechanical and thermal non-equilibrium
Energy Technology Data Exchange (ETDEWEB)
Yoon, H.J.; Ishii, M.; Revankar, S.T. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)
2006-01-15
The mechanistic model, which considers the mechanical and thermal non-equilibrium, is described for two-phase choking flow. The choking mass flux is obtained from the momentum equation with the definition of choking. The key parameter for the mechanical non-equilibrium is a slip ratio. The dependent parameters for the slip ratio are identified. In this research, the slip ratio which is defined in the drift flux model is used to identify the impact parameters on the slip ratio. Because the slip ratio in the drift flux model is related to the distribution parameter and drift velocity, the adequate correlations depending on the flow regime are introduced in this study. For the thermal non-equilibrium, the model is developed with bubble conduction time and Bernoulli choking model. In case of highly subcooled water compared to the inlet pressure, the Bernoulli choking model using the pressure undershoot is used because there is no bubble generation in the test section. When the phase change happens inside the test section, two-phase choking model with relaxation time calculates the choking mass flux. According to the comparison of model prediction with experimental data shows good agreement. The developed model shows good prediction in both low and high pressure ranges. (author)
Shear heating and metamorphism in subduction zones, 1. Thermal models
Kohn, M. J.; Castro, A. E.; Spear, F. S.
2017-12-01
Popular thermal-mechanical models of modern subduction systems are 100-500 °C colder at c. 50 km depth than pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks. This discrepancy has been ascribed by some to profound bias in the rock record, i.e. metamorphic rocks reflect only anomalously warm subduction, not normal subduction. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting depths of seismicity, fluid release, and sub-arc melting conditions. Here, we show that adding realistic shear stresses to thermal models implies P-T conditions quantitatively consistent with those recorded by exhumed metamorphic rocks, suggesting that metamorphic rock P-T conditions are not anomalously warm. Heat flow measurements from subduction zone fore-arcs typically indicate effective coefficients of friction (µ) ranging from 0.025 to 0.1. We included these coefficients of friction in analytical models of subduction zone interface temperatures. Using global averages of subducting plate age (50 Ma), subduction velocity (6 cm/yr), and subducting plate geometry (central Chile), temperatures at 50 km depth (1.5 GPa) increase by c. 200 °C for µ=0.025 to 700 °C for µ=0.1. However, at high temperatures, thermal softening will reduce frictional heating, and temperatures will not increase as much with depth. Including initial weakening of materials ranging from wet quartz (c. 300 °C) to diabase (c. 600 °C) in the analytical models produces concave-upward P-T distributions on P-T diagrams, with temperatures c. 100 to 500 °C higher than models with no shear heating. The absolute P-T conditions and concave-upward shape of the shear-heating + thermal softening models almost perfectly matches the distribution of P-T conditions derived from a compilation of exhumed metamorphic rocks. Numerical models of modern subduction zones that include shear heating also overlap metamorphic data. Thus, excepting the
Process modeling for the Integrated Thermal Treatment System (ITTS) study
Energy Technology Data Exchange (ETDEWEB)
Liebelt, K.H.; Brown, B.W.; Quapp, W.J.
1995-09-01
This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.
Modeling of thermal explosion under pressure in metal ceramic systems
International Nuclear Information System (INIS)
Shapiro, M.; Dudko, V.; Skachek, B.; Matvienko, A.; Gotman, I.; Gutmanas, E.Y.
1998-01-01
The process of reactive in situ synthesis of dense ceramic matrix composites in Ti-B-C, Ti-B-N, Ti-Si-N systems is modeled. These ceramics are fabricated on the basis of compacted blends of ceramic powders, namely Ti-B 4 C and/or Ti-BN. The objectives of the project are to identify and investigate the optimal thermal conditions preferable for production of fully dense ceramic matrix composites. Towards this goal heat transfer and combustion in dense and porous ceramic blends are investigated during monotonous heating at a constant rate. This process is modeled using a heat transfer-combustion model with kinetic parameters determined from the differential thermal analysis of the experimental data. The kinetic burning parameters and the model developed are further used to describe the thermal explosion synthesis in a restrained die under pressure. It is shown that heat removal from the reaction zone affects the combustion process and the final phase composition
Process modeling for the Integrated Thermal Treatment System (ITTS) study
International Nuclear Information System (INIS)
Liebelt, K.H.; Brown, B.W.; Quapp, W.J.
1995-09-01
This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios
Electricity pricing model in thermal generating stations under deregulation
International Nuclear Information System (INIS)
Reji, P.; Ashok, S.; Moideenkutty, K.M.
2007-01-01
In regulated public utilities with competitive power markets, deregulation has replaced the monopoly. Under the deregulated power market, the electricity price primarily depends on market mechanism and power demand. In this market, generators generally follow marginal pricing. Each generator fixes the electricity price based on their pricing strategy and it leads to more price volatility. This paper proposed a model to determine the electricity price considering all operational constraints of the plant and economic variables that influenced the price, for a thermal generating station under deregulation. The purpose of the model was to assist existing stations, investors in the power sector, regulatory authorities, transmission utilities, and new power generators in decision-making. The model could accommodate price volatility in the market and was based on performance incentive/penalty considering plant load factor, availability of the plant and peak/ off peak demand. The model was applied as a case study to a typical thermal utility in India to determine the electricity price. It was concluded that the case study of a thermal generating station in a deregulated environment showed that the electricity price mainly depended on the gross calorific value (GCV) of fuel, mode of operation, price of the fuel, and operating charges. 11 refs., 2 tabs., 1 fig
Transient electro-thermal modeling of bipolar power semiconductor devices
Gachovska, Tanya Kirilova; Du, Bin
2013-01-01
This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusio
Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model
International Nuclear Information System (INIS)
Haba, Naoyuki; Seto, Osamu
2011-01-01
We investigate thermal leptogenesis in a supersymmetric neutrinophilic Higgs model by taking phenomenological constraints into account, where, in addition to the minimal supersymmetric standard model, we introduce an extra Higgs field with a tiny vacuum expectation value which generates neutrino masses. Thanks to this tiny vacuum expectation value of the neutrinophilic Higgs, our model allows us to reduce the mass of the lightest right-handed (s)neutrino to be O(10 5 ) GeV, keeping sufficiently large CP asymmetry in its decay. Therefore, the reheating temperature after inflation is not necessarily high; hence this scenario is free from the gravitino problem.
Pyrometer model based on sensor physical structure and thermal operation
International Nuclear Information System (INIS)
Sebastian, Eduardo; Armiens, Carlos; Gomez-Elvira, Javier
2010-01-01
This paper proposes a new simplified thermal model for pyrometers, which takes into account both their internal and external physical structure and operation. The model is experimentally tested on the REMS GTS, an instrument for measuring ground temperature, which is part of the payload of the NASA MSL mission to Mars. The proposed model is based on an energy balance equation that represents the heat fluxes exchanged between sensor elements through radiation, conduction and convection. Despite being mathematically more complex than the more commonly used model, the proposed model makes it possible to design a methodology to compensate the effects of sensor spatial thermal gradients. The paper includes a practical methodology for identifying model constants, which is part of the GTS instrument calibration plan and uses a differential approach to avoid setup errors. Experimental results of the model identification methodology and a target temperature measurement performance after identification has been made are reported. Results demonstrate the good behaviour of the model, with errors below 0.15 deg. C in target temperature estimates.
International Nuclear Information System (INIS)
Mehta, Siddharth; Chauhan, K. Prashanth; Kanagaraj, S.
2011-01-01
Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Though many attempts have been made to investigate the abnormal high thermal conductivity of nanofluids, the existing models cannot precisely predict the same. An attempt has been made to develop a model for predicting the thermal conductivity of different types of nanofluids. The model presented here is derived based on the fact that thermal conductivity of nanofluids depends on thermal conductivity of particle and fluid as well as micro-convective heat transfer due to Brownian motion of nanoparticles. Novelty of the article lies in giving a unique equation which predicts thermal conductivity of nanofluids for different concentrations and particle sizes which also correctly predicts the trends observed in experimental data over a wide range of particle sizes, temperatures, and particle concentrations.
Thermal IR exitance model of a plant canopy
Kimes, D. S.; Smith, J. A.; Link, L. E.
1981-01-01
A thermal IR exitance model of a plant canopy based on a mathematical abstraction of three horizontal layers of vegetation was developed. Canopy geometry within each layer is quantitatively described by the foliage and branch orientation distributions and number density. Given this geometric information for each layer and the driving meteorological variables, a system of energy budget equations was determined and solved for average layer temperatures. These estimated layer temperatures, together with the angular distributions of radiating elements, were used to calculate the emitted thermal IR radiation as a function of view angle above the canopy. The model was applied to a lodgepole pine (Pinus contorta) canopy over a diurnal cycle. Simulated vs measured radiometric average temperatures of the midcanopy layer corresponded with 2 C. Simulation results suggested that canopy geometry can significantly influence the effective radiant temperature recorded at varying sensor view angles.
Software for Automated Generation of Reduced Thermal Models for Spacecraft Thermal Control, Phase I
National Aeronautics and Space Administration — Thermal analysis is increasingly used in thermal engineering of spacecrafts in every stage, including design, test, and ground-operation simulation. Current...
Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.
2015-05-01
Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.
Interfacial Thermal Transport via One-Dimensional Atomic Junction Model
Directory of Open Access Journals (Sweden)
Guohuan Xiong
2018-03-01
Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.
Numerical Modelling of Wood Gasification in Thermal Plasma Reactor
Czech Academy of Sciences Publication Activity Database
Hirka, Ivan; Živný, Oldřich; Hrabovský, Milan
2017-01-01
Roč. 37, č. 4 (2017), s. 947-965 ISSN 0272-4324 Institutional support: RVO:61389021 Keywords : Plasma modelling * CFD * Thermal plasma reactor * Biomass * Gasification * Syngas Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.355, year: 2016 https://link.springer.com/article/10.1007/s11090-017-9812-z
The analysis of thermal-hydraulic models in MELCOR code
Energy Technology Data Exchange (ETDEWEB)
Kim, M H; Hur, C; Kim, D K; Cho, H J [POhang Univ., of Science and TECHnology, Pohang (Korea, Republic of)
1996-07-15
The objective of the present work is to verify the prediction and analysis capability of MELCOR code about the progression of severe accidents in light water reactor and also to evaluate appropriateness of thermal-hydraulic models used in MELCOR code. Comparing the results of experiment and calculation with MELCOR code is carried out to achieve the above objective. Specially, the comparison between the CORA-13 experiment and the MELCOR code calculation was performed.
Thermal performance modeling of cross-flow heat exchangers
Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria
2014-01-01
This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges
Models for describing the thermal characteristics of building components
DEFF Research Database (Denmark)
Jimenez, M.J.; Madsen, Henrik
2008-01-01
, for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family....... The characteristics of each type of model are highlighted. Some available software tools for each of the methods described will be mentioned. A case study also demonstrating the difference between linear and nonlinear models is considered....... of these approaches may therefore be very useful for selecting a suitable approach for each particular case. This paper presents an overview of models that can be applied for modelling the thermal characteristics of buildings and building components using data from outdoor testing. The choice of approach depends...
(abstract) Simple Spreadsheet Thermal Models for Cryogenic Applications
Nash, A. E.
1994-01-01
Self consistent circuit analog thermal models, that can be run in commercial spreadsheet programs on personal computers, have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. These models have been used to analyze the Cryogenic Telescope Test Facility (CTTF). The facility will be on line in early 1995 for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison of the model predictions and actual performance of this facility will be presented.
Thermal Modeling Method Improvements for SAGE III on ISS
Liles, Kaitlin; Amundsen, Ruth; Davis, Warren; McLeod, Shawn
2015-01-01
The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be delivered to the International Space Station (ISS) via the SpaceX Dragon vehicle. A detailed thermal model of the SAGE III payload, which consists of multiple subsystems, has been developed in Thermal Desktop (TD). Many innovative analysis methods have been used in developing this model; these will be described in the paper. This paper builds on a paper presented at TFAWS 2013, which described some of the initial developments of efficient methods for SAGE III. The current paper describes additional improvements that have been made since that time. To expedite the correlation of the model to thermal vacuum (TVAC) testing, the chambers and GSE for both TVAC chambers at Langley used to test the payload were incorporated within the thermal model. This allowed the runs of TVAC predictions and correlations to be run within the flight model, thus eliminating the need for separate models for TVAC. In one TVAC test, radiant lamps were used which necessitated shooting rays from the lamps, and running in both solar and IR wavebands. A new Dragon model was incorporated which entailed a change in orientation; that change was made using an assembly, so that any potential additional new Dragon orbits could be added in the future without modification of the model. The Earth orbit parameters such as albedo and Earth infrared flux were incorporated as time-varying values that change over the course of the orbit; despite being required in one of the ISS documents, this had not been done before by any previous payload. All parameters such as initial temperature, heater voltage, and location of the payload are defined based on the case definition. For one component, testing was performed in both air and vacuum; incorporating the air convection in a submodel that was
Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System
Directory of Open Access Journals (Sweden)
Z. Zhou
2005-12-01
Full Text Available Power losses calculation and thermal modelling for a three-phase inverter power system is presented in this paper. Aiming a long real time thermal simulation, an accurate average power losses calculation based on PWM reconstruction technique is proposed. For carrying out the thermal simulation, a compact thermal model for a three-phase inverter power module is built. The thermal interference of adjacent heat sources is analysed using 3D thermal simulation. The proposed model can provide accurate power losses with a large simulation time-step and suitable for a long real time thermal simulation for a three phase inverter drive system for hybrid vehicle applications.
Modeling of thermal plasma arc technology FY 1994 report
International Nuclear Information System (INIS)
Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.
1995-03-01
The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces
Modeling the thermal absorption factor of photovoltaic/thermal combi-panels
International Nuclear Information System (INIS)
Santbergen, R.; Zolingen, R.J.Ch. van
2006-01-01
In a photovoltaic/thermal combi-panel solar cells generate electricity while residual heat is extracted to be used for tap water heating or room heating. In such a panel the entire solar spectrum can be used in principle. Unfortunately long wavelength solar irradiance is poorly absorbed by the semiconductor material in standard solar cells. A computer model was developed to determine the thermal absorption factor of crystalline silicon solar cells. It was found that for a standard untextured solar cell with a silver back contact a relatively large amount of long wavelength irradiance is lost by reflection resulting in an absorption factor of only 74%. The model was then used to investigate ways to increase this absorption factor. One way is absorbing long wavelength irradiance in a second absorber behind a semi-transparent solar cell. According to the model this will increase the total absorption factor to 87%. The second way is to absorb irradiance in the back contact of the solar cell by using rough interfaces in combination with a non-standard metal as back contact. Theoretically the absorption factor can then be increased to 85%
2014-01-01
tramadol reduces acute, postoperative, neuropathic and cancer pain [9,10,12 14] and may have a lower propensity to induce addiction [15] with little to...opioid systems simultaneously, we next examined whether tramadol could attenuate burn evoked pain behaviors in our rat model of full thickness thermal...injury. Tramadol attenuated thermal hyperalgesia when administered one week following thermal injury, a time point when pain behaviors peak in this
Correlation of spacecraft thermal mathematical models to reference data
Torralbo, Ignacio; Perez-Grande, Isabel; Sanz-Andres, Angel; Piqueras, Javier
2018-03-01
Model-to-test correlation is a frequent problem in spacecraft-thermal control design. The idea is to determine the values of the parameters of the thermal mathematical model (TMM) that allows reaching a good fit between the TMM results and test data, in order to reduce the uncertainty of the mathematical model. Quite often, this task is performed manually, mainly because a good engineering knowledge and experience is needed to reach a successful compromise, but the use of a mathematical tool could facilitate this work. The correlation process can be considered as the minimization of the error of the model results with regard to the reference data. In this paper, a simple method is presented suitable to solve the TMM-to-test correlation problem, using Jacobian matrix formulation and Moore-Penrose pseudo-inverse, generalized to include several load cases. Aside, in simple cases, this method also allows for analytical solutions to be obtained, which helps to analyze some problems that appear when the Jacobian matrix is singular. To show the implementation of the method, two problems have been considered, one more academic, and the other one the TMM of an electronic box of PHI instrument of ESA Solar Orbiter mission, to be flown in 2019. The use of singular value decomposition of the Jacobian matrix to analyze and reduce these models is also shown. The error in parameter space is used to assess the quality of the correlation results in both models.
Variational approach to thermal masses in compactified models
Energy Technology Data Exchange (ETDEWEB)
Dominici, Daniele [Dipartimento di Fisica e Astronomia Università di Firenze and INFN - Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Roditi, Itzhak [Centro Brasileiro de Pesquisas Físicas - CBPF/MCT,Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)
2015-08-20
We investigate by means of a variational approach the effective potential of a 5DU(1) scalar model at finite temperature and compactified on S{sup 1} and S{sup 1}/Z{sub 2} as well as the corresponding 4D model obtained through a trivial dimensional reduction. We are particularly interested in the behavior of the thermal masses of the scalar field with respect to the Wilson line phase and the results obtained are compared with those coming from a one-loop effective potential calculation. We also explore the nature of the phase transition.
Thermal Storage Power Balancing with Model Predictive Control
DEFF Research Database (Denmark)
Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik
2013-01-01
The method described in this paper balances power production and consumption with a large number of thermal loads. Linear controllers are used for the loads to track a temperature set point, while Model Predictive Control (MPC) and model estimation of the load behavior are used for coordination....... The total power consumption of all loads is controlled indirectly through a real-time price. The MPC incorporates forecasts of the power production and disturbances that influence the loads, e.g. time-varying weather forecasts, in order to react ahead of time. A simulation scenario demonstrates...
Thermal modeling and design of electronic systems and devices
International Nuclear Information System (INIS)
Wirtz, R.A.; Lehmann, G.L.
1990-01-01
The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance
Thermal experiments in the model of ADS target
International Nuclear Information System (INIS)
Alexander, Efanov; Yuri, Orlov; Alexander, Sorokin; Eugeni, Ivanov; Galina, Bogoslovskaia; Ning, Li
2002-01-01
The paper presents thermal experiments performed in the SSC RF IPPE on the ADS window target model. Brief description of the model, specific features of structure, measurement system and some methodological approaches are presented. Eutectic lead-bismuth alloy is modeled here by eutectic sodium-potassium alloy. The following characteristics of the target model were measured directly and estimated by processing: coolant flow rate, model power, absolute temperature of the coolant with a distance from the membrane of the target, absolute temperature of the membrane surface, mean square value and pulsating component of coolant temperature, as well as membrane temperature. Measurements have shown a great pulsations of temperature existing at the membrane surface that must be taken into account in analysis of strength of real target system. Experimental temperature fields (present work) and velocity fields measured earlier make up a complete database for verification of 2D and 3D thermohydraulic codes. (author)
Hydraulic modeling of thermal discharges into shallow, tidal affected streams
International Nuclear Information System (INIS)
Copp, H.W.; Shashidhara, N.S.
1981-01-01
A two-unit nuclear fired power plant is being constructed in western Washington state. Blowdown water from cooling towers will be discharged into the Chehalis River nearby. The location of a diffuser is some 21 miles upriver from Grays Harbor on the Pacific Ocean. Because the Chehalis River is classified as an excellent stream from the standpoint of water quality, State regulatory agencies required demonstration that thermal discharges would maintain water quality standards within fairly strict limits. A hydraulic model investigation used a 1:12 scale, undistorted model of a 1300-foot river reach in the vicinity of the diffuser. The model scale was selected to insure fully turbulent flows both in the stream and from the diffuser (Reynolds similitude). Model operation followed the densimetric Froude similitude. Thermistors were employed to measure temperatures in the model; measurements were taken by computer command and such measurements at some 250 positions were effected in about 2.5 seconds
Mathematical modelling of thermal storage systems for the food industry
Energy Technology Data Exchange (ETDEWEB)
Lopez, A.; Lacarra, G. [Universidad Publica de Navarra Campus Arrosadia, Pamplona (Spain). Area de Tecnologia de Alimentos
1999-07-01
Dynamic mathematical models of two thermal storage systems used in the food industry to produce chilled water are presented; an ice-bank system and a holding tank system. The variability of the refrigeration demand with time was taken into account in the model. A zoned approach using mass and energy balances was applied. Heat transfer phenomena in the evaporator were modelled using empirical correlations. The experimental validation of the mathematical models on an ice-bank system at pilot plant scale, and a centralized refrigeration system with a holding tank in a winery, showed accurate prediction. Simple models are adequate to predict the dynamic behaviour of these refrigeration systems under variable heat loads. (Author)
Views on the future of thermal hydraulic modeling
Energy Technology Data Exchange (ETDEWEB)
Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1997-07-01
It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.
Views on the future of thermal hydraulic modeling
International Nuclear Information System (INIS)
Ishii, M.
1997-01-01
It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes
Modelling of thermal and mechanical behaviour of pebble beds
International Nuclear Information System (INIS)
Boccaccini, L.V.; Buehler, L.; Hermsmeyer, S.; Wolf, F.
2001-01-01
FZK (Forshungzentrum Karlsruhe) is developing a Helium Cooled Pebble Bed (HCPB) Blanket Concept for fusion power reactors based on the use of ceramic breeder materials and beryllium multiplier in the form of pebble beds. The design of such a blanket requires models and computer codes describing the thermal-mechanical behavior of pebble beds to evaluate the temperatures, stresses, deformations and mechanical interactions between pebble beds and the structure with required accuracy and reliability. The objective to describe the beginning of life condition for the HCPB blanket seems near to be reached. Mechanical models that describe the thermo-mechanical behavior of granular materials used in form of pebble beds are implemented in a commercial structure code. These models have been calibrated using the results of a large series of dedicated experiments. The modeling work is practically concluded for ceramic breeder; it will be carried on in the next year for beryllium to obtain the required correlations for creep and the thermal conductivity. The difficulties for application in large components (such as the HCPB blanket) are the limitations of the present commercial codes to manage such a set of constitutive equations under complex load conditions and large mesh number. The further objective is to model the thermal cycles during operation; the present correlations have to be adapted for the release phase. A complete description of the blanket behavior during irradiation is at the present out of our capability; this objective requires an extensive R and D program that at the present is only at the beginning. (Y.Tanaka)
Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement
Leng, W.; Zhong, S.
2008-12-01
In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].
International Nuclear Information System (INIS)
Davis, P.; Strack, S.; Barry, P.
1996-09-01
This is the second Technical Report of the Special Radionuclides Tritium Working Group. It deals specifically with two major sources of model uncertainty concerning tritium re-emission from soils and vegetation, and the formation of organically bound tritium (OBT) in plant tissues under light and dark conditions which were identified during work undertaken for the first tritium Technical Report. Information obtained from two experiments was formulated into two specific Approach A type scenarios to investigate these aspects of tritium behaviour so that model predictions could be compared with actual observations and data. Data for HTO re-emission measured at two different field sampling sites in Canada were used as the basis for the model test exercise Scenario V2.1. One site was a wetland receiving groundwater discharge containing HTO from a nearby waste management area. The other site was a meadow which had been exposed to a gaseous discharge containing HTO vapour from a nearby CANDU nuclear power generating station. HTO re-emission was measured on several occasions while the prevailing wind carried the plume away from the site. For both sites, relevant site specific information was obtained including HTO concentrations in soil and vegetation and meteorological data for each of about 20 determinations each lasting for 30 to 45 minutes. Modelers were requested to predict net fluxes of water and HTO vapours at the two sites and specified times. Their predictions were compared with the actual water fluxes at the sites, which had been measured by both eddy-correlation and Bowen Ratio, and the HTO flux which had been obtained by measured concentration gradients and estimates of eddy diffusivities. Predicted water vapour fluxes agreed with those observed within 20% where the observed fluxes exceeded about 0.04 g m -2 s -1 . Lower fluxes were associated with meteorological conditions such as strong stability and light winds when assumptions underlying the equation are
Energy Technology Data Exchange (ETDEWEB)
Davis, P. [AECL, Chalk River, ON (Canada); Strack, S. [Forschungszentrum Karlsruhe (Germany); Barry, P. [PJS Barry, (Canada)] [and others
1996-09-01
This is the second Technical Report of the Special Radionuclides Tritium Working Group. It deals specifically with two major sources of model uncertainty concerning tritium re-emission from soils and vegetation, and the formation of organically bound tritium (OBT) in plant tissues under light and dark conditions which were identified during work undertaken for the first tritium Technical Report. Information obtained from two experiments was formulated into two specific Approach A type scenarios to investigate these aspects of tritium behaviour so that model predictions could be compared with actual observations and data. Data for HTO re-emission measured at two different field sampling sites in Canada were used as the basis for the model test exercise Scenario V2.1. One site was a wetland receiving groundwater discharge containing HTO from a nearby waste management area. The other site was a meadow which had been exposed to a gaseous discharge containing HTO vapour from a nearby CANDU nuclear power generating station. HTO re-emission was measured on several occasions while the prevailing wind carried the plume away from the site. For both sites, relevant site specific information was obtained including HTO concentrations in soil and vegetation and meteorological data for each of about 20 determinations each lasting for 30 to 45 minutes. Modelers were requested to predict net fluxes of water and HTO vapours at the two sites and specified times. Their predictions were compared with the actual water fluxes at the sites, which had been measured by both eddy-correlation and Bowen Ratio, and the HTO flux which had been obtained by measured concentration gradients and estimates of eddy diffusivities. Predicted water vapour fluxes agreed with those observed within 20% where the observed fluxes exceeded about 0.04 g m{sup -2} s{sup -1}. Lower fluxes were associated with meteorological conditions such as strong stability and light winds when assumptions underlying the
Thermal-hydraulic modeling of porous bed reactors
International Nuclear Information System (INIS)
Araj, K.J.; Nourbakhsh, H.P.
1987-01-01
Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs
Thermal evolution of the Schwinger model with matrix product operators
International Nuclear Information System (INIS)
Banuls, M.C.; Cirac, J.I.; Cichy, K.; Jansen, K.; Saito, H.
2015-10-01
We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.
Equipping simulators with an advanced thermal hydraulics model EDF's experience
International Nuclear Information System (INIS)
Soldermann, R.; Poizat, F.; Sekri, A.; Faydide, B.; Dumas, J.M.
1997-01-01
The development of an accelerated version of the advanced CATHARe-1 thermal hydraulics code designed for EDF training simulators (CATHARE-SIMU) was successfully completed as early as 1991. Its successful integration as the principal model of the SIPA Post-Accident Simulator meant that its use could be extended to full-scale simulators as part of the renovation of the stock of existing simulators. In order to further extend the field of application to accidents occurring in shutdown states requiring action and to catch up with developments in respect of the CATHARE code, EDF initiated the SCAR Project designed to adapt CATHARE-2 to simulator requirements (acceleration, parallelization of the computation and extension of the simulation range). In other respects, the installation of SIPA on workstations means that the authors can envisage the application of this remarkable training facility to the understanding of thermal hydraulics accident phenomena
CSIR Research Space (South Africa)
Bernhardi, EH
2008-01-01
Full Text Available that determines the temperature and the thermally induced stresses in isotropic rods is presented. Even though the model is developed for isotropic rods, it is shown that it can also be used to accurately estimate the thermal effects in anisotropic rods...
Thermal Conductivity of the Potential Repository Horizon Model Report
International Nuclear Information System (INIS)
Ramsey, J.
2002-01-01
The purpose of this report is to assess the spatial variability and uncertainty of thermal conductivity in the host horizon for the proposed repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). The Tptpul is the layer directly above the repository host layers, which consist of the Tptpmn, Tptpll, and the Tptpln. Current design plans indicate that the largest portion of the repository will be excavated in the Tptpll (Board et al. 2002 [157756]). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large scale (cm-m) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity and perhaps repository system performance as well. To assess the spatial variability and uncertainty of thermal conductivity, a model is proposed that is functionally dependent on the volume fraction of lithophysae and the thermal conductivity of the matrix portion of the rock. In this model, void space characterized as lithophysae is assumed to be air-saturated under all conditions, while void space characterized as matrix may be either water- or air-saturated. Lithophysae are assumed to be air-saturated under all conditions since the units being studied are all located above the water table in the region of interest, and the relatively strong capillary forces of the matrix will, under most conditions, preferentially retain any moisture present in the rock
Models for thermal and mechanical monitoring of power transformers
Energy Technology Data Exchange (ETDEWEB)
Vilaithong, Rummiya
2011-07-01
At present, for economic reasons, there is an increasing emphasis on keeping transformers in service for longer than in the past. A condition-based maintenance using an online monitoring and diagnostic system is one option to ensure reliability of the transformer operation. The key parameters for effectively monitoring equipment can be selected by failure statistics and estimated failure consequences. In this work, two key aspects of transformer condition monitoring are addressed in depth: thermal behaviour and behaviour of on-load tap changers. In the first part of the work, transformer thermal behaviour is studied, focussing on top-oil temperatures. Through online comparison of a measured value of the top-oil temperature and its calculated value, some rapidly developing failures in power transformers such as malfunction of the cooling unit may be detected. Predictions of top-oil temperature can be obtained by means of a mathematical model. Long-term investigations on some dynamic top-oil temperature models are presented for three different types of transformer units. The last-state top-oil temperature, load current, ambient temperature and the operating state of pumps and fans are applied as inputs of the top-oil temperature models. In the fundamental physical models presented, some constant parameters are required and can be estimated using a least-squares optimization technique. Multilayer Feed-forward and Recurrent neural network models are also proposed and investigated. The neural network models are trained with three different Backpropagation training algorithms: Levenberg-Marquardt, Scaled Conjugate Gradient and Automated Bayesian Regularization. The effect of varying operating conditions of the cooling units and the non-steady-state behaviour of loading conditions, as well as ambient temperature are noted. Results show sophisticated temperature prediction is possible using the neural network models that is generally more accurate than with the physical
Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems
International Nuclear Information System (INIS)
Song, C. H.; Baek, W. P.; Chung, M. K.
2007-06-01
The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base
Yu. A. Rounov; O. G. Shirokov; D. I. Zalizny; D. M. Los
2004-01-01
The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.
Directory of Open Access Journals (Sweden)
Yu. A. Rounov
2004-01-01
Full Text Available The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.
Thermal stability and modeling of lithium ion batteries
Botte, Gerardine Gabriela
2000-10-01
First-principles mathematical models were developed to examine the effect of the lithium-lithium ion interactions inside the anode particles on the performance of a lithium foil cell. Two different models were developed: the chemical potential model (CPM) that includes the lithium-lithium ion interactions inside the anode particles and the diffusion model (DIM) that does not include the interactions. Significant differences in the thermal and electrochemical performance of the cell were observed between the two approaches. The temperature of the cell predicted by the DFM is higher than the one predicted by the CPM at a given capacity. The discharge time of the cell predicted by the DFM is shorter than the one predicted by the CPM. The results indicate that the cell needs to be modeled using the CPM approach especially at high discharge rates. An evaluation of the numerical techniques, control volume formulation (CVF) and finite difference method (FDM), used for the models was performed. It is shown that the truncation error is the same for both methods when the boundary conditions are of the Dirichlet type, the system of equations are linear and represented in Cartesian coordinates. A new technique to analyze the accuracy of the methods is presented. The only disadvantage of the FDM is that it failed to conserve mass for a small number of nodes when both boundary conditions include a derivative term whereas the CVF did conserve mass for these cases. However, for a large number of nodes the FDM provides mass conservation. It is important to note that the CVF has only (DeltaX) order of accuracy for a Neumann type boundary condition whereas the FDM has (DeltaX) 2 order. The second topic of this dissertation presents a study of the thermal stability of LiPF6 EC:EMC electrolyte for lithium ion batteries. A differential scanning calorimeter (DSC) was used to perform the study of the electrolyte. For first time, the effect of different variables on its thermal stability
Investigating the thermal dissociation of viral capsid by lattice model
Chen, Jingzhi; Chevreuil, Maelenn; Combet, Sophie; Lansac, Yves; Tresset, Guillaume
2017-11-01
The dissociation of icosahedral viral capsids was investigated by a homogeneous and a heterogeneous lattice model. In thermal dissociation experiments with cowpea chlorotic mottle virus and probed by small-angle neutron scattering, we observed a slight shrinkage of viral capsids, which can be related to the strengthening of the hydrophobic interaction between subunits at increasing temperature. By considering the temperature dependence of hydrophobic interaction in the homogeneous lattice model, we were able to give a better estimate of the effective charge. In the heterogeneous lattice model, two sets of lattice sites represented different capsid subunits with asymmetric interaction strengths. In that case, the dissociation of capsids was found to shift from a sharp one-step transition to a gradual two-step transition by weakening the hydrophobic interaction between AB and CC subunits. We anticipate that such lattice models will shed further light on the statistical mechanics underlying virus assembly and disassembly.
Modelling measurement microphones using BEM with visco-thermal losses
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2012-01-01
For many decades, models that can explain the behaviour of measurement condenser microphones have been proposed in the literature. These devices have an apparently simple working principle, a charged capacitor whose charge varies when one of its electrodes, the diaphragm, moves as a result of sound...... waves. However, measurement microphones must be manufactured very carefully due to their sensitivity to small changes of their physical parameters. There are different elements in a microphone, the diaphragm, the gap behind it, a back cavity, a vent for pressure equalization and an external medium. All...... visco-thermal losses is used to model measurement condenser microphones. The models presented are fully coupled and include a FEM model of the diaphragm. The behaviour of the acoustic variables in the gap and the effect of the pressure equalization vent are discussed, as well as the practical difficulty...
THERMUS—A thermal model package for ROOT
Wheaton, S.; Cleymans, J.; Hauer, M.
2009-01-01
THERMUS is a package of C++ classes and functions allowing statistical-thermal model analyses of particle production in relativistic heavy-ion collisions to be performed within the ROOT framework of analysis. Calculations are possible within three statistical ensembles; a grand-canonical treatment of the conserved charges B, S and Q, a fully canonical treatment of the conserved charges, and a mixed-canonical ensemble combining a canonical treatment of strangeness with a grand-canonical treatment of baryon number and electric charge. THERMUS allows for the assignment of decay chains and detector efficiencies specific to each particle yield, which enables sensible fitting of model parameters to experimental data. Program summaryProgram title: THERMUS, version 2.1 Catalogue identifier: AEBW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 17 152 No. of bytes in distributed program, including test data, etc.: 93 581 Distribution format: tar.gz Programming language: C++ Computer: PC, Pentium 4, 1 GB RAM (not hardware dependent) Operating system: Linux: FEDORA, RedHat, etc. Classification: 17.7 External routines: Numerical Recipes in C [1], ROOT [2] Nature of problem: Statistical-thermal model analyses of heavy-ion collision data require the calculation of both primordial particle densities and contributions from resonance decay. A set of thermal parameters (the number depending on the particular model imposed) and a set of thermalized particles, with their decays specified, is required as input to these models. The output is then a complete set of primordial thermal quantities for each particle, together with the contributions to the final particle yields from resonance decay. In many applications of
Applications for coupled core neutronics and thermal-hydraulic models
International Nuclear Information System (INIS)
Eller, J.
1996-01-01
The unprecedented increases in computing capacity that have occurred during the last decade have affected our sciences, and thus our lives, to an extent that is difficult to overstate. All indications are that this trend will continue for years to come. Nuclear reactor systems analysis is one of many areas of engineering that has changed dramatically as a result of this evolution. Our ability to model the various mechanical and physical systems in greater and greater detail has allowed significant improvements in operational efficiency in spite of increasing regulatory requirements. Many of these efficiencies result from the use of more complex and geometrically detailed computer modeling, which is used to justify a reduction or elimination of some of the conservatisms required by earlier, less sophisticated analyses. And more recently, as our industries open-quotes downsize,close quotes efforts are being made to find ways to use the ever-increasing computing capacity to design systems that accomplish more work, in less time, and with fewer people. The balance of this paper discusses some of the visions that Duke Power Company feels would most benefit their particular methodologies. One of the concepts receiving a lot of attention involves an automated coupling of a thermal-hydraulic plant systems analysis model to a three-dimensional core neutronics program. The thermal-hydraulic analysis of several postulated system transients incorporates large conservatisms because of limited ability to model complex time-dependent asymmetric heat sources in adequate geometric detail. For these transients, the core behavior is closely coupled with the thermal-hydraulic behavior of the total plant system and vice versa. Steam-line break, uncontrolled rod withdrawal, and rod drop anayses are likely to benefit most from this type of linked process
Multiscale modeling of lithium ion batteries: thermal aspects
Directory of Open Access Journals (Sweden)
Arnulf Latz
2015-04-01
Full Text Available The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory.
Prestressed concrete reactor vessel thermal cylinder model study
International Nuclear Information System (INIS)
Callahan, J.P.; Canonico, D.A.; Richardson, M.; Corum, J.M.; Dodge, W.G.; Robinson, G.C.; Whitman, G.D.
1977-01-01
The thermal cylinder experiment was designed both to provide information for evaluating the capability of analytical methods to predict the time-dependent stress-strain behavior of a 1 / 6 -scale model of the barrel section of a single-cavity prestressed concrete reactor vessel and to demonstrate the structural behavior under design and off-design thermal conditions. The model was a thick-walled cylinder having a height of 1.22 m, a thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and circumferentially and subjected to 4.83 MPa internal pressure together with a thermal crossfall imposed by heating the inner surface to 338.8 K and cooling the outer surface to 297.1 K. The initial 460 days of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected to localized heating at 505.4 K for 84 days to produce an off-design hot-spot condition. Comparisons of experimental data with calculated values obtained using the SAFE-CRACK finite-element computer program showed that the program was capable of predicting time-dependent behavior in a vessel subjected to normal operating conditions, but that it was unable to accurately predict the behavior during off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture probe showed little, if any, migration of moisture in the concrete cross section. Destructive examination indicated that the model maintained its basic structural integrity during localized hot-spot heating
Numerical Modeling of a Shallow Borehole Thermal Energy Storage System
Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.
2014-12-01
Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES
Numerical model for the thermal behavior of thermocline storage tanks
Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.
2018-03-01
Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.
Thermal modeling of cylindrical lithium ion battery during discharge cycle
International Nuclear Information System (INIS)
Jeon, Dong Hyup; Baek, Seung Man
2011-01-01
Highlights: → Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. → This model provides the thermal behavior of Li-ion battery during discharge cycle. → A LiCoO 2 /C battery at various discharge rates was investigated. → The contribution of heat source due to joule heating was significant at a high discharge rate. → The contribution of heat source due to entropy change was dominant at a low discharge rate. - Abstract: Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. The simplified model by adopting a cylindrical coordinate was employed. This model provides the thermal behavior of Li-ion battery during discharge cycle. The mathematical model solves conservation of energy considering heat generations due to both joule heating and entropy change. A LiCoO 2 /C battery at various discharge rates was investigated. The temperature profile from simulation had similar tendency with experiment. The temperature profile was decomposed with contributions of each heat sources and was presented at several discharge rates. It was found that the contribution of heat source due to joule heating was significant at a high discharge rate, whereas that due to entropy change was dominant at a low discharge rate. Also the effect of cooling condition and the LiNiCoMnO 2 /C battery were analyzed for the purpose of temperature reduction.
Advanced modelling and numerical strategies in nuclear thermal-hydraulics
International Nuclear Information System (INIS)
Staedtke, H.
2001-01-01
The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)
Assessment of RANS CFD modelling for pressurised thermal shock analysis
International Nuclear Information System (INIS)
Sander M Willemsen; Ed MJ Komen; Sander Willemsen
2005-01-01
Full text of publication follows: The most severe Pressurised Thermal Shock (PTS) scenario is a cold water Emergency Core Coolant (ECC) injection into the cold leg during a LOCA. The injected ECC water mixes with the hot fluid present in the cold leg and flows towards the downcomer where further mixing takes place. When the cold mixture comes into contact with the Reactor Pressure Vessel (RPV) wall, it may lead to large temperature gradients and consequently to high stresses in the RPV wall. Knowledge of these thermal loads is important for RPV remnant life assessments. The existing thermal-hydraulic system codes currently applied for this purpose are based on one-dimensional approximations and can, therefore, not predict the complex three-dimensional flows occurring during ECC injection. Computational Fluid Dynamics (CFD) can be applied to predict these phenomena, with the ultimate benefit of improved remnant RPV life assessment. The present paper presents an assessment of various Reynolds Averaged Navier Stokes (RANS) CFD approaches for modeling the complex mixing phenomena occurring during ECC injection. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code in combination with a hybrid meshing strategy with experimental results of the Upper Plenum Test Facility (UPTF). The UPTF was a full-scale 'simulation' of the primary system of the four loop 1300 MWe Siemens/KWU Pressurised Water Reactor at Grafenrheinfeld. The test vessel upper plenum internals, downcomer and primary coolant piping were replicas of the reference plant, while other components, such as core, coolant pump and steam generators were replaced by simulators. From the extensive test programme, a single-phase fluid-fluid mixing experiment in the cold leg and downcomer was selected. Prediction of the mixing and stratification is assessed by comparison with the measured temperature profiles at several locations
Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting
Abarr, Miles L. Lindsey
This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262
General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2016-01-01
Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....
Mechanical and thermal modeling of the SCALPEL mask
International Nuclear Information System (INIS)
Martin, C. J.; Semke, W. H.; Dicks, G. A.; Engelstad, R. L.; Lovell, E. G.; Liddle, J. A.; Novembre, A. E.
1999-01-01
Scattering with angular limitation projection electron-beam lithography (SCALPEL) is being developed by Lucent Technologies for sub-130 nm lithography. The mask fabrication and exposure processes produce mask distortions that result in pattern placement errors. In order to understand these distortions, and determine how to reduce them to levels consistent with the error budget, structural and heat transfer finite element models have been generated to simulate the mechanical and thermal response of the mask. In addition, sensitivity studies of the distortions due to key design parameters that may be used to refine the SCALPEL mask configuration have been conducted. (c) 1999 American Vacuum Society
LBM estimation of thermal conductivity in meso-scale modelling
International Nuclear Information System (INIS)
Grucelski, A
2016-01-01
Recently, there is a growing engineering interest in more rigorous prediction of effective transport coefficients for multicomponent, geometrically complex materials. We present main assumptions and constituents of the meso-scale model for the simulation of the coal or biomass devolatilisation with the Lattice Boltzmann method. For the results, the estimated values of the thermal conductivity coefficient of coal (solids), pyrolytic gases and air matrix are presented for a non-steady state with account for chemical reactions in fluid flow and heat transfer. (paper)
Thermalization after an interaction quench in the Hubbard model.
Eckstein, Martin; Kollar, Marcus; Werner, Philipp
2009-07-31
We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization occurs. Our results indicate a dynamical phase transition which should be observable in experiments on trapped fermionic atoms.
Thermal experiments with LMFBR subassembly models in sodium flow
International Nuclear Information System (INIS)
Moeller, R.; Tschoeke, H.
1982-01-01
Within the framework of the Fast Breeder Project research work has been undertaken at the Karlsruhe Nuclear Research Center on the thermal and fluid dynamics of nominal and distorted core subassemblies. In 19-rod bundle models (P/D=1.30, W/R=1.38) three-dimensional temperature distributions were measured in the cladding tubes exposed to sodium flow. Results of measurements of the azimuthal temperature profiles of rotated rods in the duct wall zone are indicated for different operating conditions 80 2 , evenly distributed load and oblique load; different axial positions of the spacer grids; and different positions of one bowed rod
Modeling of Thermal Behavior of Raw Natural Gas Air Coolers
Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.
2018-05-01
When gas is being prepared for a long-range transportation, it passes through air cooling units (ACUs) after compressing; there, hot gas passing through finned tubes is cooled with air streams. ACU's mode of operation shall ensure a certain value of gas temperature at the ACU's outlet. At that, when cooling raw gas, temperature distribution along all the tubes shall be known to prevent local hydrate formation. The paper proposes a mathematical model allowing one to obtain a thermal field distribution inside the ACU and study influence of various factors onto it.
Probabilistic modeling of crack networks in thermal fatigue
International Nuclear Information System (INIS)
Malesys, N.
2007-11-01
Thermal superficial crack networks have been detected in mixing zone of cooling system in nuclear power plants. Numerous experimental works have already been led to characterize initiation and propagation of these cracks. The random aspect of initiation led to propose a probabilistic model for the formation and propagation of crack networks in thermal fatigue. In a first part, uniaxial mechanical test were performed on smooth and slightly notched specimens in order to characterize the initiation of multiple cracks, their arrest due to obscuration and the coalescence phenomenon by recovery of amplification stress zones. In a second time, the probabilistic model was established under two assumptions: the continuous cracks initiation on surface, described by a Poisson point process law with threshold, and the shielding phenomenon which prohibits the initiation or the propagation of a crack if this one is in the relaxation stress zone of another existing crack. The crack propagation is assumed to follow a Paris' law based on the computation of stress intensity factors at the top and the bottom of crack. The evolution of multiaxial cracks on the surface can be followed thanks to three quantities: the shielding probability, comparable to a damage variable of the structure, the initiated crack density, representing the total number of cracks per unit surface which can be compared to experimental observations, and the propagating crack density, representing the number per unit surface of active cracks in the network. The crack sizes distribution is also computed by the model allowing an easier comparison with experimental results. (author)
Modeling the Thermal Interactions of Meteorites Below the Antarctic Ice
Oldroyd, William Jared; Radebaugh, Jani; Stephens, Denise C.; Lorenz, Ralph; Harvey, Ralph; Karner, James
2017-10-01
Meteorites with high specific gravities, such as irons, appear to be underrepresented in Antarctic collections over the last 40 years. This underrepresentation is in comparison with observed meteorite falls, which are believed to represent the actual population of meteorites striking Earth. Meteorites on the Antarctic ice sheet absorb solar flux, possibly leading to downward tunneling into the ice, though observations of this in action are very limited. This descent is counteracted by ice sheet flow supporting the meteorites coupled with ablation near mountain margins, which helps to force meteorites towards the surface. Meteorites that both absorb adequate thermal energy and are sufficiently dense may instead reach a shallow equilibrium depth as downward melting overcomes upward forces during the Antarctic summer. Using a pyronometer, we have measured the incoming solar flux at multiple depths in two deep field sites in Antarctica, the Miller Range and Elephant Moraine. We compare these data with laboratory analogues and model the thermal and physical interactions between a variety of meteorites and their surroundings. Our Matlab code model will account for a wide range of parameters used to characterize meteorites in an Antarctic environment. We will present the results of our model along with depth estimates for several types of meteorites. The recovery of an additional population of heavy meteorites would increase our knowledge of the formation and composition of the solar system.
Cooling problems of thermal power plants. Physical model studies
International Nuclear Information System (INIS)
Neale, L.C.
1975-01-01
The Alden Research Laboratories of Worcester Polytechnic Institute has for many years conducted physical model studies, which are normally classified as river or structural hydraulic studies. Since 1952 one aspect of these studies has involved the heated discharge from steam power plants. The early studies on such problems concentrated on improving the thermal efficiency of the system. This was accomplished by minimizing recirculation and by assuring full use of available cold water supplies. With the growing awareness of the impact of thermal power generation on the environment attention has been redirected to reducing the effect of heated discharges on the biology of the receiving body of water. More specifically the efforts of designers and operators of power plants are aimed at meeting or complying with standards established by various governmental agencies. Thus the studies involve developing means of minimizing surface temperatures at an outfall or establishing a local area of higher temperature with limits specified in terms of areas or distances. The physical models used for these studies have varied widely in scope, size, and operating features. These models have covered large areas with both distorted geometric scales and uniform dimensions. Instrumentations has also varied from simple mercury thermometers to computer control and processing of hundreds of thermocouple indicators
SOURCE 2.0 model development: UO2 thermal properties
International Nuclear Information System (INIS)
Reid, P.J.; Richards, M.J.; Iglesias, F.C.; Brito, A.C.
1997-01-01
During analysis of CANDU postulated accidents, the reactor fuel is estimated to experience large temperature variations and to be exposed to a variety of environments from highly oxidized to mildly reducing. The exposure of CANDU fuel to these environments and temperatures may affect fission product releases from the fuel and cause degradation of the fuel thermal properties. The SOURCE 2.0 project is a safety analysis code which will model the necessary mechanisms required to calculate fission product release for a variety of accident scenarios, including large break loss of coolant accidents (LOCAs) with or without emergency core cooling. The goal of the model development is to generate models which are consistent with each other and phenomenologically based, insofar as that is possible given the state of theoretical understanding
Energy Technology Data Exchange (ETDEWEB)
Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)
2012-01-01
A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.
International Nuclear Information System (INIS)
Zhao-Jiang, Chen; Shu-Yi, Zhang
2010-01-01
A new hybrid inversion method for depth profiling reconstruction of thermal conductivities of inhomogeneous solids is proposed based on multilayer quadrupole formalism of thermal waves, particle swarm optimization and sequential quadratic programming. The reconstruction simulations for several thermal conductivity profiles are performed to evaluate the applicability of the method. The numerical simulations demonstrate that the precision and insensitivity to noise of the inversion method are very satisfactory. (condensed matter: structure, mechanical and thermal properties)
Thermal shallow water models of geostrophic turbulence in Jovian atmospheres
International Nuclear Information System (INIS)
Warneford, Emma S.; Dellar, Paul J.
2014-01-01
Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune
Model Development for MODIS Thermal Band Electronic Crosstalk
Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghonh; Brinkman, Jake; Keller, Graziela; Xiong, Xiaoxiong
2016-01-01
MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 m. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands developed substantial issues that cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 m and band 29 at 8.5 m increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk effect is evident in the near-monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. The development of an alternative approach is very helpful for independent verification.In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically to correct the Earth brightness temperature measurements. In the model development, the detectors nonlinear response is considered. The impact of the electronic crosstalk is assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detectors nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector non-linearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic cross talk can be implemented empirically from the processed bias at different brightness temperature. The implementation
International Nuclear Information System (INIS)
Yang Yuching; Chang Winjin; Fang Tehua; Fang Shihchung
2008-01-01
In this study, a general methodology for determining the thermal conductance between the probe tip and the workpiece during microthermal machining using Scanning Thermal Microscopy (SThM) has been proposed. The processing system was considered as an inverse heat conduction problem with an unknown thermal conductance. Temperature dependence for the material properties and thermal conductance in the analysis of heat conduction is taken into account. The conjugate gradient method is used to solve the inverse problem. Furthermore, this methodology can also be applied to estimate the thermal contact conductance in other transient heat conduction problems, like metal casting process, injection molding process, and electronic circuit systems
Forty years of Fanger's model of thermal comfort: Comfort for all?
Hoof, van J.
2008-01-01
The predicted mean vote (PMV) model of thermal comfort, created by Fanger in the late 1960s, is used worldwide to assess thermal comfort. Fanger based his model on college-aged students for use in invariant environmental conditions in air-conditioned buildings in moderate thermal climate zones.
Energy Technology Data Exchange (ETDEWEB)
Bauer, Dan
2011-07-15
The thermal use of the underground for heating and cooling applications can be done with borehole heat exchangers. This work deals with the further development of the modelling of thermal transport processes inside and outside the borehole as well as with the application of the further developed models. The combination of high accuracy and short computation time is achieved by the development of three-dimensional thermal resistance and capacity models for borehole heat exchangers. Short transient transport processes can be calculated by the developed model with a considerable higher dynamic and accuracy than with known models from literature. The model is used to evaluate measurement data of a thermal response test by parameter estimation technique with a transient three-dimensional model for the first time. Clear advantages like shortening of the test duration are shown. The developed borehole heat exchanger model is combined with a three-dimensional description of the underground in the Finite-Element-Program FEFLOW. The influence of moving groundwater on borehole heat exchangers and borehole thermal energy stores is then quantified.
Thermalization threshold in models of 1D fermions
Mukerjee, Subroto; Modak, Ranjan; Ramswamy, Sriram
2013-03-01
The question of how isolated quantum systems thermalize is an interesting and open one. In this study we equate thermalization with non-integrability to try to answer this question. In particular, we study the effect of system size on the integrability of 1D systems of interacting fermions on a lattice. We find that for a finite-sized system, a non-zero value of an integrability breaking parameter is required to make an integrable system appear non-integrable. Using exact diagonalization and diagnostics such as energy level statistics and the Drude weight, we find that the threshold value of the integrability breaking parameter scales to zero as a power law with system size. We find the exponent to be the same for different models with its value depending on the random matrix ensemble describing the non-integrable system. We also study a simple analytical model of a non-integrable system with an integrable limit to better understand how a power law emerges.
Verification of Thermal Models of Internally Cooled Gas Turbine Blades
Directory of Open Access Journals (Sweden)
Igor Shevchenko
2018-01-01
Full Text Available Numerical simulation of temperature field of cooled turbine blades is a required element of gas turbine engine design process. The verification is usually performed on the basis of results of test of full-size blade prototype on a gas-dynamic test bench. A method of calorimetric measurement in a molten metal thermostat for verification of a thermal model of cooled blade is proposed in this paper. The method allows obtaining local values of heat flux in each point of blade surface within a single experiment. The error of determination of local heat transfer coefficients using this method does not exceed 8% for blades with radial channels. An important feature of the method is that the heat load remains unchanged during the experiment and the blade outer surface temperature equals zinc melting point. The verification of thermal-hydraulic model of high-pressure turbine blade with cooling allowing asymmetrical heat removal from pressure and suction sides was carried out using the developed method. An analysis of heat transfer coefficients confirmed the high level of heat transfer in the leading edge, whose value is comparable with jet impingement heat transfer. The maximum of the heat transfer coefficients is shifted from the critical point of the leading edge to the pressure side.
Numerical modeling of thermal conductive heating in fractured bedrock.
Baston, Daniel P; Falta, Ronald W; Kueper, Bernard H
2010-01-01
Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
CFD modeling of thermal mixing in a T-junction geometry using LES model
Energy Technology Data Exchange (ETDEWEB)
Ayhan, Hueseyin, E-mail: huseyinayhan@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey); Soekmen, Cemal Niyazi, E-mail: cemalniyazi.sokmen@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey)
2012-12-15
Highlights: Black-Right-Pointing-Pointer CFD simulations of temperature and velocity fluctuations for thermal mixing cases in T-junction are performed. Black-Right-Pointing-Pointer It is found that the frequency range of 2-5 Hz contains most of the energy; therefore, may cause thermal fatigue. Black-Right-Pointing-Pointer This study shows that RANS based calculations fail to predict a realistic mixing between the fluids. Black-Right-Pointing-Pointer LES model can predict instantaneous turbulence behavior. - Abstract: Turbulent mixing of fluids at different temperatures can lead to temperature fluctuations at the pipe material. These fluctuations, or thermal striping, inducing cyclical thermal stresses and resulting thermal fatigue, may cause unexpected failure of pipe material. Therefore, an accurate characterization of temperature fluctuations is important in order to estimate the lifetime of pipe material. Thermal fatigue of the coolant circuits of nuclear power plants is one of the major issues in nuclear safety. To investigate thermal fatigue damage, the OECD/NEA has recently organized a blind benchmark study including some of results of present work for prediction of temperature and velocity fluctuations performing a thermal mixing experiment in a T-junction. This paper aims to estimate the frequency of velocity and temperature fluctuations in the mixing region using Computational Fluid Dynamics (CFD). Reynolds Averaged Navier-Stokes and Large Eddy Simulation (LES) models were used to simulate turbulence. CFD results were compared with the available experimental results. Predicted LES results, even in coarse mesh, were found to be in well-agreement with the experimental results in terms of amplitude and frequency of temperature and velocity fluctuations. Analysis of the temperature fluctuations and the power spectrum densities (PSD) at the locations having the strongest temperature fluctuations in the tee junction shows that the frequency range of 2-5 Hz
Thermal Efficiency Degradation Diagnosis Method Using Regression Model
International Nuclear Information System (INIS)
Jee, Chang Hyun; Heo, Gyun Young; Jang, Seok Won; Lee, In Cheol
2011-01-01
This paper proposes an idea for thermal efficiency degradation diagnosis in turbine cycles, which is based on turbine cycle simulation under abnormal conditions and a linear regression model. The correlation between the inputs for representing degradation conditions (normally unmeasured but intrinsic states) and the simulation outputs (normally measured but superficial states) was analyzed with the linear regression model. The regression models can inversely response an associated intrinsic state for a superficial state observed from a power plant. The diagnosis method proposed herein is classified into three processes, 1) simulations for degradation conditions to get measured states (referred as what-if method), 2) development of the linear model correlating intrinsic and superficial states, and 3) determination of an intrinsic state using the superficial states of current plant and the linear regression model (referred as inverse what-if method). The what-if method is to generate the outputs for the inputs including various root causes and/or boundary conditions whereas the inverse what-if method is the process of calculating the inverse matrix with the given superficial states, that is, component degradation modes. The method suggested in this paper was validated using the turbine cycle model for an operating power plant
Thermal-hydraulic and characteristic models for packed debris beds
International Nuclear Information System (INIS)
Mueller, G.E.; Sozer, A.
1986-12-01
APRIL is a mechanistic core-wide meltdown and debris relocation computer code for Boiling Water Reactor (BWR) severe accident analyses. The capabilities of the code continue to be increased by the improvement of existing models. This report contains information on theory and models for degraded core packed debris beds. The models, when incorporated into APRIL, will provide new and improved capabilities in predicting BWR debris bed coolability characteristics. These models will allow for a more mechanistic treatment in calculating temperatures in the fluid and solid phases in the debris bed, in determining debris bed dryout, debris bed quenching from either top-flooding or bottom-flooding, single and two-phase pressure drops across the debris bed, debris bed porosity, and in finding the minimum fluidization mass velocity. The inclusion of these models in a debris bed computer module will permit a more accurate prediction of the coolability characteristics of the debris bed and therefore reduce some of the uncertainties in assessing the severe accident characteristics for BWR application. Some of the debris bed theoretical models have been used to develop a FORTRAN 77 subroutine module called DEBRIS. DEBRIS is a driver program that calls other subroutines to analyze the thermal characteristics of a packed debris bed. Fortran 77 listings of each subroutine are provided in the appendix
Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions
Schrage, Dean S.
1991-01-01
An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.
Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking
Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
Molecular dynamics study of thermal disorder in a bicrystal model
International Nuclear Information System (INIS)
Nguyen, T.; Ho, P.S.; Kwok, T.; Yip, S.
1990-01-01
This paper studies a (310) θ = 36.86 degrees left-angle 001 right-angle symmetrical-tilt bicrystal model using an Embedded Atom Method aluminum potential. Based on explicit results obtained from the simulations regarding structural order, energy, and mobility, the authors find that their bicrystal model shows no evidence of pre-melting. Both the surface and the grain-boundary interface exhibit thermal disorder at temperatures below T m , with complete melting occurring only at, or very near, T m . Concerning the details of the onset of melting, the data show considerable disordering in the interfacial region starting at about 0.93 T m . The interfaces exhibit metastable behavior in this temperature range, and the temperature variation of the interfacial thickness suggests that the disordering induced by the interface is a continuous transition, a behavior that has been predicted by a theoretical analysis
Self-Organized Criticality Theory Model of Thermal Sandpile
International Nuclear Information System (INIS)
Peng Xiao-Dong; Qu Hong-Peng; Xu Jian-Qiang; Han Zui-Jiao
2015-01-01
A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics. (paper)
Mathematical modeling and simulation of a thermal system
Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.
2016-12-01
The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.
Modeling of composite synthesis in conditions of controlled thermal explosion
Kukta, Yaroslav; Knyazeva, Anna
2017-12-01
The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.
Modeling thermal stress propagation during hydraulic stimulation of geothermal wells
Jansen, Gunnar; Miller, Stephen A.
2017-04-01
A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir
State reduced order models for the modelling of the thermal behavior of buildings
Energy Technology Data Exchange (ETDEWEB)
Menezo, Christophe; Bouia, Hassan; Roux, Jean-Jacques; Depecker, Patrick [Institute National de Sciences Appliquees de Lyon, Villeurbanne Cedex, (France). Centre de Thermique de Lyon (CETHIL). Equipe Thermique du Batiment]. E-mail: menezo@insa-cethil-etb.insa-lyon.fr; bouia@insa-cethil-etb.insa-lyon.fr; roux@insa-cethil-etb.insa-lyon.fr; depecker@insa-cethil-etb.insa-lyon.fr
2000-07-01
This work is devoted to the field of building physics and related to the reduction of heat conduction models. The aim is to enlarge the model libraries of heat and mass transfer codes through limiting the considerable dimensions reached by the numerical systems during the modelling process of a multizone building. We show that the balanced realization technique, specifically adapted to the coupling of reduced order models with the other thermal phenomena, turns out to be very efficient. (author)
DEFF Research Database (Denmark)
Fuchs, Sven; Balling, Niels
2016-01-01
The subsurface temperature field and the geothermal conditions in sedimentary basins are frequently examined by using numerical thermal models. For those models, detailed knowledge of rock thermal properties are paramount for a reliable parameterization of layer properties and boundary conditions...
Whole body thermal model of man during hyperthermia
International Nuclear Information System (INIS)
Charny, C.K.; Hagmann, M.J.; Levin, R.L.
1987-01-01
A whole body thermal model of man has been developed to predict the changes in regional temperatures and blood flows during hyperthermia treatments with the miniannular phased array (MAPA) and annular phased array (APA) applicators. A model of the thermoregulatory response to regional heating based on the experimental and numerical studies of others has been incorporated into this study. Experimentally obtained energy deposition patterns within a human leg exposed to the MAPA were input into the model and the results were compared to those based upon a theoretical deposition pattern. Exposure of the abdomen to the APA was modeled with and without the aberrant energy deposition that has been described previously. Results of the model reveal that therapeutic heating (>42 0 C) of extremity soft tissue sarcomas is possible without significant systemic heating. Very high bone temperatures (>50 0 C) were obtained when the experimental absorption pattern was used. Calculations show that systemic heating due to APA exposure is reduced via evaporative spray cooling techniques coupled with high-velocity ambient air flow
Transient thermal modeling of permafrost conditions in Southern Norway
Directory of Open Access Journals (Sweden)
S. Westermann
2013-04-01
Full Text Available Thermal modeling is a powerful tool to infer the temperature regime of the ground in permafrost areas. We present a transient permafrost model, CryoGrid 2, that calculates ground temperatures according to conductive heat transfer in the soil and in the snowpack. CryoGrid 2 is forced by operational air temperature and snow-depth products for potential permafrost areas in Southern Norway for the period 1958 to 2009 at 1 km2 spatial resolution. In total, an area of about 80 000 km2 is covered. The model results are validated against borehole temperatures, permafrost probability maps from "bottom temperature of snow" measurements and inventories of landforms indicative of permafrost occurrence. The validation demonstrates that CryoGrid 2 can reproduce the observed lower permafrost limit to within 100 m at all validation sites, while the agreement between simulated and measured borehole temperatures is within 1 K for most sites. The number of grid cells with simulated permafrost does not change significantly between the 1960s and 1990s. In the 2000s, a significant reduction of about 40% of the area with average 2 m ground temperatures below 0 °C is found, which mostly corresponds to degrading permafrost with still negative temperatures in deeper ground layers. The thermal conductivity of the snow is the largest source of uncertainty in CryoGrid 2, strongly affecting the simulated permafrost area. Finally, the prospects of employing CryoGrid 2 as an operational soil-temperature product for Norway are discussed.
Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters
Pfaff, Michael
Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.
Hyperheat: a thermal signature model for super- and hypersonic missiles
van Binsbergen, S. A.; van Zelderen, B.; Veraar, R. G.; Bouquet, F.; Halswijk, W. H. C.; Schleijpen, H. M. A.
2017-10-01
In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures of missile targets. This typically results in an overestimate of the target temperature with correspondingly large infrared signatures and detection ranges. Especially for even higher velocities, this approach is no longer accurate. Alternatives like CFD calculations typically require more complex sets of inputs and significantly more computing power. The MATLAB code Hyperheat was developed to calculate the time-resolved skin temperature of axisymmetric high speed missiles during flight, taking into account the behaviour of non-perfect gas and proper heat transfer to the missile surface. Allowing for variations in parameters like missile shape, altitude, atmospheric profile, angle of attack, flight duration and super- and hypersonic velocities up to Mach 30 enables more accurate calculations of the actual target temperature. The model calculates a map of the skin temperature of the missile, which is updated over the flight time of the missile. The sets of skin temperature maps are calculated within minutes, even for >100 km trajectories, and can be easily converted in thermal infrared signatures for further processing. This paper discusses the approach taken in Hyperheat. Then, the thermal signature of a set of typical missile threats is calculated using both the simple aerodynamic heating model and the Hyperheat code. The respective infrared signatures are compared, as well as the difference in the corresponding calculated detection ranges.
Thermal-hydraulic modeling of porous bed reactors
International Nuclear Information System (INIS)
Araj, K.J.; Nourbakhsh, H.P.
1987-01-01
Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures
Entanglement, decoherence and thermal relaxation in exactly solvable models
International Nuclear Information System (INIS)
Lychkovskiy, Oleg
2011-01-01
Exactly solvable models provide an opportunity to study different aspects of reduced quantum dynamics in detail. We consider the reduced dynamics of a single spin in finite XX and XY spin 1/2 chains. First we introduce a general expression describing the evolution of the reduced density matrix. This expression proves to be tractable when the combined closed system (i.e. open system plus environment) is integrable. Then we focus on comparing decoherence and thermalization timescales in the XX chain. We find that for a single spin these timescales are comparable, in contrast to what should be expected for a macroscopic body. This indicates that the process of quantum relaxation of a system with few accessible states can not be separated in two distinct stages - decoherence and thermalization. Finally, we turn to finite-size effects in the time evolution of a single spin in the XY chain. We observe three consecutive stages of the evolution: regular evolution, partial revivals, irregular (apparently chaotic) evolution. The duration of the regular stage is proportional to the number of spins in the chain. We observe a 'quiet and cold period' in the end of the regular stage, which breaks up abruptly at some threshold time.
Magnetic field approaches in dc thermal plasma modelling
International Nuclear Information System (INIS)
Freton, P; Gonzalez, J J; Masquere, M; Reichert, Frank
2011-01-01
The self-induced magnetic field has an important role in thermal plasma configurations generated by electric arcs as it generates velocity through Lorentz forces. In the models a good representation of the magnetic field is thus necessary. Several approaches exist to calculate the self-induced magnetic field such as the Maxwell-Ampere formulation, the vector potential approach combined with different kinds of boundary conditions or the Biot and Savart (B and S) formulation. The calculation of the self-induced magnetic field is alone a difficult problem and only few papers of the thermal plasma community speak on this subject. In this study different approaches with different boundary conditions are applied on two geometries to compare the methods and their limitations. The calculation time is also one of the criteria for the choice of the method and a compromise must be found between method precision and computation time. The study shows the importance of the current carrying path representation in the electrode on the deduced magnetic field. The best compromise consists of using the B and S formulation on the walls and/or edges of the calculation domain to determine the boundary conditions and to solve the vector potential in a 2D system. This approach provides results identical to those obtained using the B and S formulation over the entire domain but with a considerable decrease in calculation time.
Energy Technology Data Exchange (ETDEWEB)
Tingmei Tang; Jiang Xu; Rongjie Lu; Jingjing Wo; Xinhua Xu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering
2010-12-15
Secondary atmospheric pollutions may result from wet flue gas desulfurization (FGD) systems caused by the reduction of Hg{sup 2+} to Hg{sup 0}. The present study employed three agents: Na{sub 2}S, 2,4,6-trimercaptotiazine, trisodium salt nonahydrate (TMT) and sodium dithiocarbamate (DTCR) to precipitate aqueous Hg{sup 2+} in simulated desulfurization solutions. The effects of the precipitator's dosing quantity, the initial pH value, the reaction temperature, the concentrations of Cl{sup -} and other metal ions (e.g. Cu{sup 2+} and Pb{sup 2+}) on Hg{sup 2+} removal were studied. A linear relationship was observed between Hg{sup 2+} removal efficiency and the increasing precipitator's doses along with initial pH. The addition of chloride and metal ions impaired the Hg{sup 2+} removal from solutions due to the complexation of Cl{sup -} and Hg{sup 2+} as well as the chelating competition between Hg{sup 2+} and other metal ions. Based on a comprehensive comparison of the treatment effects, DTCR was found to be the most effective precipitating agent. Moreover, all the precipitating agents were potent enough to inhibit Hg{sup 2+} reduction as well as Hg{sup 0} re-emission from FGD liquors. More than 90% Hg{sup 2+} was captured by precipitating agents while Hg{sup 2+} reduction efficiency decreased from 54% to just less than 3%. The additives could efficiently control the secondary Hg{sup 0} pollution from FGD liquors. 21 refs., 6 figs.
Energy Technology Data Exchange (ETDEWEB)
Luscher, Darby J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-05-08
We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructural characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of
Modeling texture kinetics during thermal processing of potato products.
Moyano, P C; Troncoso, E; Pedreschi, F
2007-03-01
A kinetic model based on 2 irreversible serial chemical reactions has been proposed to fit experimental data of texture changes during thermal processing of potato products. The model links dimensionless maximum force F*(MAX) with processing time. Experimental texture changes were obtained during frying of French fries and potato chips at different temperatures, while literature data for blanching/cooking of potato cubes have been considered. A satisfactory agreement between experimental and predicted values was observed, with root mean square values (RMSs) in the range of 4.7% to 16.4% for French fries and 16.7% to 29.3% for potato chips. In the case of blanching/cooking, the proposed model gave RMSs in the range of 1.2% to 17.6%, much better than the 6.2% to 44.0% obtained with the traditional 1st-order kinetics. The model is able to predict likewise the transition from softening to hardening of the tissue during frying.
Recent progress in the modelling of thermal plasma systems
International Nuclear Information System (INIS)
Xi Chen
2002-01-01
Plasma flow and heat transfer in thermal plasma systems are often of three-dimensional (3-D) features and cannot be well studied by use of a two-dimensional modelling approach. 3-D modelling studies are recently performed in our group. It is found that appreciable 3-D effects exist within non-transferred DC arc plasma torches even for the case with axisymmetrical external conditions. The key for the successful 3-D modelling of the non-transferred arc plasma torch is that the anode-nozzle wall is included in the computational domain. The predicted results are favorably compared with experimental observation. 3-D modelling of the plasma jets with lateral injection of particulate matter and its carrier gas also reveals distinct 3-D effects with the injection velocity and the distance between the carrier-gas injection-tube tip and the jet edge as critical parameters. The 3-D effects appreciably influence the trajectories and heating histories of particles injected into the plasma jet. (author)
Updated thermal model using simplified short-wave radiosity calculations
International Nuclear Information System (INIS)
Smith, J.A.; Goltz, S.M.
1994-01-01
An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)
Updated thermal model using simplified short-wave radiosity calculations
Energy Technology Data Exchange (ETDEWEB)
Smith, J. A.; Goltz, S. M.
1994-02-15
An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)
Modelling and analysis of radial thermal stresses and temperature ...
African Journals Online (AJOL)
A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...
International Nuclear Information System (INIS)
Sundberg, Jan
2003-04-01
Site investigations are in progress for the siting of a deep repository for spent nuclear fuel. As part of the planning work, strategies are developed for site descriptive modelling regarding different disciplines, amongst them the thermal conditions. The objective of the strategy for a thermal site descriptive model is to guide the practical implementation of evaluating site specific data during the site investigations. It is understood that further development may be needed. The model describes the thermal properties and other thermal parameters of intact rock, fractures and fracture zones, and of the rock mass. The methodology is based on estimation of thermal properties of intact rock and discontinuities, using both empirical and theoretical/numerical approaches, and estimation of thermal processes using mathematical modelling. The methodology will be used and evaluated for the thermal site descriptive modelling at the Aespoe Hard Rock Laboratory
Inverse modelling of thermal histories with apatite fission tracks
International Nuclear Information System (INIS)
El Lmrani, A.; Zine El Abidine, H.; Limouri, M.; Essaid, A.; POupeau, G.
1998-01-01
The problem of modelling thermal histories lies in the exploration of a time-temperature space, usually so broad, in order to identify the optimal paths. For overcoming this difficulty, many approaches were proposed, using linear and non-linear optimisation algorithms. Generally, these approaches do not take into account the experimental data (fission track age [FTA] and fission track length distribution [FTLD]) to better aim the search strategy. The present work shows that experimental data hold some precious information, for which it should be known how to extract it. In fact, it allows us to tighten the time-temperature space of search, supposed to contain the optimal solutions. A genetic algorithm is also used in this work to perform the search for these optimal solutions. (authors)
submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems
Bottura, L
2016-01-01
Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...
The Adaptive Thermal Comfort model may not always predict thermal effects on performance
DEFF Research Database (Denmark)
Wyon, David Peter; Wargocki, Pawel
2014-01-01
A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues.......A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues....
Thermal comfort assessment in a Dutch hospital setting – model applicability
Ottenheijm, E.M.M.; Loomans, M.G.L.C.; Kort, H.S.M.; Trip, A.
2016-01-01
SUMMARY Limited information is available on thermal comfort performance of the indoor environment in health care facilities both for staff and patients. Thermal comfort models such as Predicted Mean Vote (PMV) and Adaptive Thermal Comfort (ATC), have not been applied extensively for this setting. In
Thermal hydraulics model for Sandia's annular core research reactor
International Nuclear Information System (INIS)
Rao, Dasari V.; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.
1988-01-01
A thermal hydraulics model was developed for the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. The coupled mass, momentum and energy equations for the core were solved simultaneously using an explicit forward marching numerical technique. The model predictions of the temperature rise across the central channel of the ACRR core were within ± 10 percent agreement with the in-core temperature measurements. The model was then used to estimate the coolant mass flow rate and the axial distribution of the cladding surface temperature in the central and average channels as functions of the operating power and the water inlet subcooling. Results indicated that subcooled boiling occurs at the cladding surface in the central channels of the ACRR at power levels in excess of 0.5 MW. However, the high heat transfer coefficient due to subcooled boiling causes the cladding temperature along most of the active fuel rod region to be quite uniform and to increase very little with the reactor power. (author)
Design Considerations, Modeling and Analysis for the Multispectral Thermal Imager
International Nuclear Information System (INIS)
Borel, C.C.; Clodius, W.B.; Cooke, B.J.; Smith, B.W.; Weber, P.G.
1999-01-01
The design of remote sensing systems is driven by the need to provide cost-effective, substantive answers to questions posed by our customers. This is especially important for space-based systems, which tend to be expensive, and which generally cannot be changed after they are launched. We report here on the approach we employed in developing the desired attributes of a satellite mission, namely the Multispectral Thermal Imager. After an initial scoping study, we applied a procedure which we call: ''End-to-end modeling and analysis (EEM).'' We began with target attributes, translated to observable signatures and then propagated the signatures through the atmosphere to the sensor location. We modeled the sensor attributes to yield a simulated data stream, which was then analyzed to retrieve information about the original target. The retrieved signature was then compared to the original to obtain a figure of merit: hence the term ''end-to-end modeling and analysis.'' We base the EEM in physics to ensure high fidelity and to permit scaling. As the actual design of the payload evolves, and as real hardware is tested, we can update the EEM to facilitate trade studies, and to judge, for example, whether components that deviate from specifications are acceptable
Thermal-hydraulic Experiments for Advanced Physical Model Development
International Nuclear Information System (INIS)
Song, Chulhwa
2012-04-01
The improvement of prediction models is needed to enhance the safety analysis capability through experimental database of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out with local two-phase interfacial structure test facilities. 2 Χ 2 and 6 Χ 6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. In order to develop a model for key phenomena of newly adapted safety system, experiments for boiling inside a pool and condensation in horizontal channel have been performed. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) was constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double-sensor optical void probe, Optic Rod, PIV technique and UBIM system
Modelling thermal radiation and soot formation in buoyant diffusion flames
International Nuclear Information System (INIS)
Demarco Bull, R.A.
2012-01-01
The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)
K. S. Reddy; P Karthikeyan
2010-01-01
A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II) to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν) on the structure composition factor (ψ) of the food materials is studied. Th...
Modelling characteristics of photovoltaic panels with thermal phenomena taken into account
International Nuclear Information System (INIS)
Krac, Ewa; Górecki, Krzysztof
2016-01-01
In the paper a new form of the electrothermal model of photovoltaic panels is proposed. This model takes into account the optical, electrical and thermal properties of the considered panels, as well as electrical and thermal properties of the protecting circuit and thermal inertia of the considered panels. The form of this model is described and some results of measurements and calculations of mono-crystalline and poly-crystalline panels are presented
Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise
2015-04-06
Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.
Thermal control modeling approach for GRAPE (GRAntecan PolarimEter)
Di Varano, I.; Woche, M.; Strassmeier, K. G.
2016-08-01
GRAPE is the polarimeter planned to be installed on the main Cassegrain focus of GTC (Gran Telescopio Canarias), having an equivalent entrance pupil of 10.4 m, located at the Observatorio del Roque de los Muchachos (ORM) , in La Palma, Canary Islands. It's meant to deliver full Stokes (IQUV) polarimetry covering the spectral range 0.420-1.6 μ, in order to feed the HORS instrument (High Optical Resolution Spectrograph), mounted on the Nasmyth platform, which has a FWHM resolving power of about 25,000 (5 pixel) designed for the wavelength range of 380-800 nm. Two calcite blocks and a BK-7 prism arranged in a Foster configuration are splitting the Ø12.5mm collimated beam into the ordinary and extraordinary components. The entire subunit from the Foster prisms down to the input fibers is rotated by steps of 45 degrees in order to retrieve Q, U components. By inserting a quarter wave retarder plate before the entrance to the Foster unit circular polarization is measured too. The current paper consist of two main parts: at first CFD simulations are introduced, which have been run compliant to the specifications derived by the environmental conditions and the transient thermal gradients taking into account the presence of the electronic cabinets installed, which are triggering the boundary conditions for the outer structure of the instrument; then a thermal control model is proposed based on heat exchangers to stabilize the inner temperature when compensation via passive insulation is not enough. The tools that have been adopted to reach for such goal are Ansys Multiphysics, in particular CFX package and Python scripts.
Integrated System Modeling for Nuclear Thermal Propulsion (NTP)
Ryan, Stephen W.; Borowski, Stanley K.
2014-01-01
Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.
Thermal modelling of the calorimeter used for energy measurement of LMJ laser pulse
Directory of Open Access Journals (Sweden)
Crespy C.
2013-11-01
Full Text Available In this work, a 3D thermal model of the LMJ calorimeter is developed using Comsol multiphysics. The unknown thermal properties of the system are identified by comparing the model results with the measured temperature. Several model's applications, such as comparing deposition modes (electrical and optical or defining calibration procedure, are presented.
International Nuclear Information System (INIS)
Sweeney, B.W.; Newbold, J.D.; Vannote, R.L.
1991-12-01
The thermal regime immediately downstream from bottom release reservoirs is often characterized by reduced diel and seasonal (winter warm/summer cool) conditions. These unusual thermal patterns have often been implicated as a primary factor underlying observed downstream changes in the species composition of aquatic macroinvertebrate communities. The potential mechanisms for selective elimination of benthic species by unusual thermal regimes has been reviewed. Although the effects of temperature on the rate and magnitude of larval growth and development has been included in the list of potential mechanisms, only recently have field studies below dams focused on this interrelationship. This study investigates the overall community structure as well as the seasonal pattern of larval growth and development for several univoltine species of insects in the Delaware River below or near the hypolimnetic discharge of the Cannonsville and Pepeacton dams. These dams, which are located on the West and East branches of the Delaware River, respectively, produce a thermal gradient extending about 70 km downstream
Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model
Directory of Open Access Journals (Sweden)
Reza Akbari
2017-08-01
Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.
Lee, S. S.; Sengupta, S.
1980-01-01
Two three dimensional, time dependent models, one free surface, the other rigid lid, were verified at Anclote Anchorage and Lake Keowee respectively. The first site is a coastal site in northern Florida; the other is a man-made lake in South Carolina. These models describe the dispersion of heated discharges from power plants under the action of ambient conditions. A one dimensional, horizontally-averaged model was also developed and verified at Lake Keowee. The data base consisted of archival in situ measurements and data collected during field missions. The field missions were conducted during winter and summer conditions at each site. Each mission consisted of four infrared scanner flights with supporting ground truth and in situ measurements. At Anclote, special care was taken to characterize the complete tidal cycle. The three dimensional model results compared with IR data for thermal plumes on an average within 1 C root mean square difference. The one dimensional model performed satisfactorily in simulating the 1971-1979 period.
Limiting fragmentation in a thermal model with flow
Energy Technology Data Exchange (ETDEWEB)
Kumar Tiwari, Swatantra; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Simrol, Indore (India)
2016-12-15
The property of limiting fragmentation of various observables such as rapidity distributions (dN/dy), elliptic flow (v{sub 2}), average transverse momentum (left angle p{sub T} right angle) etc. of charged particles is observed when they are plotted as a function of rapidity (y) shifted by the beam rapidity (y{sub beam}) for a wide range of energies from AGS to RHIC. Limiting fragmentation (LF) is a well-studied phenomenon as observed in various collision energies and colliding systems experimentally. It is very interesting to verify this phenomenon theoretically. We study such a phenomenon for pion rapidity spectra using our hydrodynamic-like model where the collective flow is incorporated in a thermal model in the longitudinal direction. Our findings advocate the observation of extended longitudinal scaling in the rapidity spectra of pions from AGS to lower RHIC energies, while it is observed to be violated at top RHIC and LHC energies. Prediction of LF hypothesis for Pb+Pb collisions at √(s{sub NN}) = 5.02 TeV is given. (orig.)
Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model
Energy Technology Data Exchange (ETDEWEB)
Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)
2017-05-10
We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.
Thermal modelling of PV module performance under high ambient temperatures
Energy Technology Data Exchange (ETDEWEB)
Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering
2005-07-01
When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.
Thermal-hydraulic Experiments for Advanced Physical Model Development
International Nuclear Information System (INIS)
Song, Chul Hwa; Baek, W. P.; Yoon, B. J.
2010-04-01
The improvement of prediction models is needed to enhance the safety analysis capability through the fine measurements of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out used SUBO and DOBO. 2x2 and 6x6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle were focused on the break-up of droplets induced by a spacer grid in a rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) had been constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double -sensor optical void probe, Optic Rod, PIV technique and UBIM system
Simplified analytical model for thermal transfer in vertical hollow brick
Energy Technology Data Exchange (ETDEWEB)
Lorente, S [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France); Petit, M [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France); Javelas, R [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France)
1996-12-01
A modern building envelope has a lot of little cavities. Most of them are vertical with a high height to thickness ratio. We present here the conception of a software to determine heat transfer through terra-cotta bricks full of large vertical cavities. After a bibliographic study on convective heat transfer in such cavities, we made an analytical model based on Karman-Polhausen`s method for convection and on the radiosity method for radiative heat transfer. We used a test apparatus of a single cavity to determine the temperature field inside the cavity. Using these experimental results, we showed that the exchange was two-dimensional. We also realised heat flux measurements. Then we expose our theoretical study: We propose relations between central core temperatures and active face temperatures, then between outside and inside active face temperatures. We calculate convective superficial heat transfer because we noticed we have boundary layers along the active faces. We realise a heat flux balance between convective plus radiative heat transfer and conductive heat transfer, so we propose an algorithm to calculate global heat transfer through a single cavity. Finally, we extend our model to a whole hollow brick with lined-up cavities and propose an algorithm to calculate heat flux and thermal resistance with a good accuracy ({approx}7.5%) compared to previous experimental results. (orig.)
Modeling conductive cooling for thermally stressed dairy cows.
Gebremedhin, Kifle G; Wu, Binxin; Perano, K
2016-02-01
Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subgrid models for mass and thermal diffusion in turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Sharp, David H [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Li, Xiao - Lin [STONY BROOK UNIV; Gilmm, James G [STONY BROOK UNIV
2008-01-01
We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without
Characterization and modeling of the thermal mechanics of lithium-ion battery cells
International Nuclear Information System (INIS)
Oh, Ki-Yong; Epureanu, Bogdan I.
2016-01-01
Highlights: • Thermal swelling shape is different than Li-ion intercalation swelling shape. • Nonuniform temperature and gap creation leads to a convex shape at free conditions. • Important parameters of thermal mechanics are estimated through experiments. • A coupled thermal-structural analysis accurately predicts thermal swelling shape. • Nonuniform temperature still plays a critical role at pack conditions. - Abstract: The thermal mechanics of Lithium-ion (Li-ion) batteries is explored with a focus on thermal swelling. Experiments show for the first time that the swelling shape of prismatic battery cells due to temperature variations is significantly different from that due to Li-ion intercalation in unconstrained conditions. In contrast to uniform and orthotropic Li-ion intercalation swelling in a direction perpendicular to electrodes, the nonuniform temperature distribution in the jellyroll and the gaps/voids between electrodes result in distinguishable different swelling shapes. A unique coupled thermal-structural analysis with a simple, but efficient 3-D finite numerical model is proposed to investigate the impact of temperature variations on the thermal behaviors of battery cells. Anisotropic heat conduction and temperature dependency of the coefficient of thermal expansion are taken into account and found to have an impact on temperature distribution and thermal expansion. Experimental validation of the proposed model clearly demonstrates that the coupled thermal-structural analysis with the proposed model can predict accurately the thermal swelling at unconstrained conditions. The solution at pack (constrained) conditions shows that the nonuniform temperature distribution of the jellyroll still plays a critical role for the thermal swelling shape, although the gaps/voids do not occur because of the constraints from spacers in the pack, suggesting that the estimation of core temperature is important. Such an accurate model, able to estimate cell
International Nuclear Information System (INIS)
Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat
2009-01-01
The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for
Formation of cratonic lithosphere: An integrated thermal and petrological model
Herzberg, Claude; Rudnick, Roberta
2012-09-01
The formation of cratonic mantle peridotite of Archean age is examined within the time frame of Earth's thermal history, and how it was expressed by temporal variations in magma and residue petrology. Peridotite residues that occupy the lithospheric mantle are rare owing to the effects of melt-rock reaction, metasomatism, and refertilization. Where they are identified, they are very similar to the predicted harzburgite residues of primary magmas of the dominant basalts in greenstone belts, which formed in a non-arc setting (referred to here as "non-arc basalts"). The compositions of these basalts indicate high temperatures of formation that are well-described by the thermal history model of Korenaga. In this model, peridotite residues of extensive ambient mantle melting had the highest Mg-numbers, lowest FeO contents, and lowest densities at ~ 2.5-3.5 Ga. These results are in good agreement with Re-Os ages of kimberlite-hosted cratonic mantle xenoliths and enclosed sulfides, and provide support for the hypothesis of Jordan that low densities of cratonic mantle are a measure of their high preservation potential. Cratonization of the Earth reached its zenith at ~ 2.5-3.5 Ga when ambient mantle was hot and extensive melting produced oceanic crust 30-45 km thick. However, there is a mass imbalance exhibited by the craton-wide distribution of harzburgite residues and the paucity of their complementary magmas that had compositions like the non-arc basalts. We suggest that the problem of the missing basaltic oceanic crust can be resolved by its hydration, cooling and partial transformation to eclogite, which caused foundering of the entire lithosphere. Some of the oceanic crust partially melted during foundering to produce continental crust composed of tonalite-trondhjemite-granodiorite (TTG). The remaining lithosphere gravitationally separated into 1) residual eclogite that continued its descent, and 2) buoyant harzburgite diapirs that rose to underplate cratonic nuclei
Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries
Directory of Open Access Journals (Sweden)
Seyed Saeed Madani
2018-04-01
Full Text Available This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific heat capacity, entropic heat coefficient, and thermal conductivity in order to design suitable thermal management system.
Coupling diffusion and maximum entropy models to estimate thermal inertia
Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...
Bayesian networks modeling for thermal error of numerical control machine tools
Institute of Scientific and Technical Information of China (English)
Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN
2008-01-01
The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.
Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools
Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu
2018-03-01
Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.
Sabanskis, A.; Virbulis, J.
2018-05-01
Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.
DEFF Research Database (Denmark)
Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Knap, Vaclav
2016-01-01
Thermal modeling of lithium-ion batteries is gaining its importance together with increasing power density and compact design of the modern battery systems in order to assure battery safety and long lifetime. Thermal models of lithium-ion batteries are usually either expensive to develop...... and accurate or equivalent thermal circuit based with moderate accuracy and without spatial temperature distribution. This work presents initial results that can be used as a fundament for the cost-efficient development of the two-dimensional thermal model of lithium-ion battery based on multipoint...
A Combined Electro-Thermal Breakdown Model for Oil-Impregnated Paper
Directory of Open Access Journals (Sweden)
Meng Huang
2017-12-01
Full Text Available The breakdown property of oil-impregnated paper is a key factor for converter transformer design and operation, but it is not well understood. In this paper, breakdown voltages of oil-impregnated paper were measured at different temperatures. The results showed that with the increase of temperature, electrical, electro-thermal and thermal breakdown occurred successively. An electro-thermal breakdown model was proposed based on the heat equilibrium and space charge transport, and negative differential mobility was introduced to the model. It was shown that carrier mobility determined whether it was electrical or thermal breakdown, and the model can effectively explain the temperature-dependent breakdown.
Lee, H. P.
1977-01-01
The NASTRAN Thermal Analyzer Manual describes the fundamental and theoretical treatment of the finite element method, with emphasis on the derivations of the constituent matrices of different elements and solution algorithms. Necessary information and data relating to the practical applications of engineering modeling are included.
On-Line Core Thermal-Hydraulic Model Improvement
International Nuclear Information System (INIS)
In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan; Hwang, Dae Hyun; Seo, Kyung Won
2007-02-01
The objective of this project is to implement a fast-running 4-channel based code CETOP-D in an advanced reactor core protection calculator system(RCOPS). The part required for the on-line calculation of DNBR were extracted from the source of the CETOP-D code based on analysis of the CETOP-D code. The CETOP-D code was revised to maintain the input and output variables which are the same as in CPC DNBR module. Since the DNBR module performs a complex calculation, it is divided into sub-modules per major calculation step. The functional design requirements for the DNBR module is documented and the values of the database(DB) constants were decided. This project also developed a Fortran module(BEST) of the RCOPS Fortran Simulator and a computer code RCOPS-SDNBR to independently calculate DNBR. A test was also conducted to verify the functional design and DB of thermal-hydraulic model which is necessary to calculate the DNBR on-line in RCOPS. The DNBR margin is expected to increase by 2%-3% once the CETOP-D code is used to calculate the RCOPS DNBR. It should be noted that the final DNBR margin improvement could be determined in the future based on overall uncertainty analysis of the RCOPS
Dynamic thermal model of photovoltaic cell illuminated by laser beam
Liu, Xiaoguang; Hua, Wenshen; Guo, Tong
2015-07-01
Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.
Modelling of non-thermal electron cyclotron emission during ECRH
International Nuclear Information System (INIS)
Tribaldos, V.; Krivenski, V.
1990-01-01
The existence of suprathermal electrons during Electron Cyclotron Resonance Heating experiments in tokamaks is today a well established fact. At low densities the creation of large non-thermal electron tails affects the temperature profile measurements obtained by 2 nd harmonic, X-mode, low-field side, electron cyclotron emission. At higher densities suprathermal electrons can be detected by high-field side emission. In electron cyclotron current drive experiments a high energy suprathermal tail, asymmetric in v, is observed. Non-Maxwellian electron distribution functions are also typically observed during lower-hybrid current drive experiments. Fast electrons have been observed during ionic heating by neutral beams as well. Two distinct approaches are currently used in the interpretation of the experimental results: simple analytical models which reproduce some of the expected non-Maxwellian characteristics of the electron distribution function are employed to get a qualitative picture of the phenomena; sophisticated numerical Fokker-Planck calculations give the electron distribution function from which the emission spectra are computed. No algorithm is known to solve the inverse problem, i.e. to compute the electron distribution function from the emitted spectra. The proposed methods all relay on the basic assumption that the electron distribution function has a given functional dependence on a limited number of free parameters, which are then 'measured' by best fitting the experimental results. Here we discuss the legitimacy of this procedure. (author) 7 refs., 5 figs
On-Line Core Thermal-Hydraulic Model Improvement
Energy Technology Data Exchange (ETDEWEB)
In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan; Hwang, Dae Hyun; Seo, Kyung Won
2007-02-15
The objective of this project is to implement a fast-running 4-channel based code CETOP-D in an advanced reactor core protection calculator system(RCOPS). The part required for the on-line calculation of DNBR were extracted from the source of the CETOP-D code based on analysis of the CETOP-D code. The CETOP-D code was revised to maintain the input and output variables which are the same as in CPC DNBR module. Since the DNBR module performs a complex calculation, it is divided into sub-modules per major calculation step. The functional design requirements for the DNBR module is documented and the values of the database(DB) constants were decided. This project also developed a Fortran module(BEST) of the RCOPS Fortran Simulator and a computer code RCOPS-SDNBR to independently calculate DNBR. A test was also conducted to verify the functional design and DB of thermal-hydraulic model which is necessary to calculate the DNBR on-line in RCOPS. The DNBR margin is expected to increase by 2%-3% once the CETOP-D code is used to calculate the RCOPS DNBR. It should be noted that the final DNBR margin improvement could be determined in the future based on overall uncertainty analysis of the RCOPS.
Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector
Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.
2017-07-01
The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.
Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi
2018-08-01
The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Gao, Jie; Wang, Yi; Wargocki, Pawel
2015-01-01
In this paper, a comparative analysis was performed on the human thermal sensation estimated by modified predicted mean vote (PMV) models and modified standard effective temperature (SET) models in naturally ventilated buildings; the data were collected in field study. These prediction models were....../s, the expectancy factors for the extended PMV model and the extended SET model were from 0.770 to 0.974 and from 1.330 to 1.363, and the adaptive coefficients for the adaptive PMV model and the adaptive SET model were from 0.029 to 0.167 and from-0.213 to-0.195. In addition, the difference in thermal sensation...... between the measured and predicted values using the modified PMV models exceeded 25%, while the difference between the measured thermal sensation and the predicted thermal sensation using modified SET models was approximately less than 25%. It is concluded that the modified SET models can predict human...
Design and modeling of low temperature solar thermal power station
International Nuclear Information System (INIS)
Shankar Ganesh, N.; Srinivas, T.
2012-01-01
Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.
DART model for thermal conductivity of U3Si2 Aluminum dispersion fuel
International Nuclear Information System (INIS)
Rest, J.; Snelgrove, J.L.; Hofman, G.L.
2004-01-01
This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminum dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values. (author)
DART model for thermal conductivity of U3Si2 aluminum dispersion fuel
International Nuclear Information System (INIS)
Rest, J.; Snelgrove, J.L.; Hofman, G.L.
1995-09-01
This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminium dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values
Modeling and analysis of a robust thermal control system based on forced convection thermal switches
Williams, Andrew D.; Palo, Scott E.
2006-05-01
There is a critical need, not just in the Department of Defense (DOD) but the entire space industry, to reduce the development time and overall cost of satellite missions. To that end, the DOD is actively pursuing the capability to reduce the deployment time of a new system from years to weeks or even days. The goal is to provide the advantages space affords not just to the strategic planner but also to the battlefield commanders. One of the most challenging aspects of this problem is the satellite's thermal control system (TCS). Traditionally the TCS must be vigorously designed, analyzed, tested, and optimized from the ground up for every satellite mission. This "reinvention of the wheel" is costly and time intensive. The next generation satellite TCS must be modular and scalable in order to cover a wide range of applications, orbits, and mission requirements. To meet these requirements a robust thermal control system utilizing forced convection thermal switches was investigated. The problem was investigated in two separate stages. The first focused on the overall design of the bus. The second stage focused on the overarching bus architecture and the design impacts of employing a thermal switch based TCS design. For the hot case, the fan provided additional cooling to increase the heat transfer rate of the subsystem. During the cold case, the result was a significant reduction in survival heater power.
Modeling the thermal absorption factor of photovoltaic/thermal combi-panels
Santbergen, R.; Zolingen, van R.J.C.
2006-01-01
In a photovoltaic/thermal combi-panel solar cells generate electricity while residual heat is extracted to be used for tap water heating or room heating. In such a panel the entire solar spectrum can be used in principle. Unfortunately long wavelength solar irradiance is poorly absorbed by the
Advanced deposition model for thermal activated chemical vapor deposition
Cai, Dang
Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface
Ulmer, Christopher J.; Motta, Arthur T.
2017-11-01
The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.
Instantaneous thermal modeling of the DC-link capacitor in PhotoVoltaic systems
DEFF Research Database (Denmark)
Yang, Yongheng; Ma, Ke; Wang, Huai
2015-01-01
, instantaneous thermal modeling approaches considering mission profiles for the DC-link capacitor in single-phase PV systems are explored in this paper. These thermal modelling approaches are based on: a) fast Fourier transform, b) look-up tables, and c) ripple current reconstruction. Moreover, the thermal...... grid-connected PV system have been adopted to demonstrate a look-up table based modelling approach, where real-field daily ambient conditions are considered....... modelling approaches for the DC-link capacitors take into account the instantaneous thermal characteristics, which are more challenging to the capacitor reliability during operation. Such instantaneous thermal modeling approaches enable a translation of instantaneous capacitor power losses to capacitor...
Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames
Schlup, Jason; Blanquart, Guillaume
2018-03-01
The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.
Directory of Open Access Journals (Sweden)
K. S. Reddy
2010-01-01
Full Text Available A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν on the structure composition factor (ψ of the food materials is studied. The models are compared with the experimental data of various foods at the initial freezing temperature. The effective thermal conductivity estimated by the Maxwell-Eucken-I + Present model shows good agreement with the experimental data with a minimum average deviation of ±8.66% and maximum deviation of ±42.76% of Series + Present Model. The combined models have advantages over other empirical and semiempirical models.
Modeling of droplet dynamic and thermal behaviour during spray ...
Indian Academy of Sciences (India)
Unknown
Supersonic atomization; droplets; thermal history; solid fraction; secondary dendrite arm spacing. 1. Introduction .... velocity with distance as illustrated in (1) (Eon-Sik Lee and Ahn ...... Uhlenwinkel and U Fritsching (Bremen, Germany: Univer-.
modelling of thermal degradation kinetics of ascorbic acid
African Journals Online (AJOL)
Administrator
dependence of the rate constant during thermal processing of pawpaw and potato obeyed the Arrhenius relationship with ... processing, distribution, storage and preparation. (Gregory, 1996) ... water solubility and mass transfer, heat sensitivity.
A review of typical thermal fatigue failure models for solder joints of electronic components
Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong
2017-09-01
For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.
A numerical model for the thermal history of rocks based on confined horizontal fission tracks
DEFF Research Database (Denmark)
Jensen, Peter Klint; Hansen, Kirsten; Kunzendorf, Helmar
1992-01-01
A numerical model for determination of the thermal history of rocks is presented. It is shown that the thermal history may be uniquely determined as a piece-by-piece linear function on the basis of etched confined, horizontal fission track length distributions, their surface densities, and the ur......A numerical model for determination of the thermal history of rocks is presented. It is shown that the thermal history may be uniquely determined as a piece-by-piece linear function on the basis of etched confined, horizontal fission track length distributions, their surface densities...
Thermal and mechanical modelling of a mig-type electron gun
International Nuclear Information System (INIS)
Patire Junior, H.; Castro, J.J.B. de
1995-01-01
A thermal and mechanical modelling of a magnetron injection electron gun has been made to minimize the temperature distribution in the gun elements while keeping the required operating temperature at 1000 0 C of the emitter. Appropriate materials were selected to reduce thermal losses and to improve the gun design from a constructional point of view aiming at extending the capabilities of the gun. A software has been used to simulate a thermal model considering the three processes of thermal transfer and the influence of the physical properties of the materials used. (author). 8 refs., 2 figs, 2 tabs
International Nuclear Information System (INIS)
Scott, Edouard
1978-01-01
This research thesis aims at being a contribution to the safety of nuclear facilities by reporting the study of the interaction between nuclear fuel and coolant in simplified conditions. It focuses on the thermal aspect of this interaction between a very hot body and an easily vaporized cold body, which could produce a blast. Thus, this author addresses the field of existence of a thermal blast, and reports the development of a hydrodynamic model which takes the heterogeneous nature of the interacting medium into account, in order to precisely describe the conditions of fuel fragmentation. This model includes the propagation of a shock in a mixture, and the calculation of a multi-phase flow in the reaction zone, and proposes criteria for a self-sustained shock wave propagation in the reactive medium. Results are compared with those obtained with the Bankoff model [fr
Integration of a Multizone Airflow Model into a Thermal simulation Program
DEFF Research Database (Denmark)
Jensen, Rasmus Lund; Sørensen, Karl Grau; Heiselberg, Per
2007-01-01
An existing computer model for dynamic hygrothermal analysis of buildings has been extended with a multizone airflow model based on loop equations to account for the coupled thermal and airflow in natural and hybrid ventilated buildings.......An existing computer model for dynamic hygrothermal analysis of buildings has been extended with a multizone airflow model based on loop equations to account for the coupled thermal and airflow in natural and hybrid ventilated buildings....
The effect of a realistic thermal diffusivity on numerical model of a subducting slab
Maierova, P.; Steinle-Neumann, G.; Cadek, O.
2010-12-01
A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the
Kim, Y. W.; Cress, R. P.
2016-11-01
Disordered binary alloys are modeled as a randomly close-packed assembly of nanocrystallites intermixed with randomly positioned atoms, i.e., glassy-state matter. The nanocrystallite size distribution is measured in a simulated macroscopic medium in two dimensions. We have also defined, and measured, the degree of crystallinity as the probability of a particle being a member of nanocrystallites. Both the distribution function and the degree of crystallinity are found to be determined by alloy composition. When heated, the nanocrystallites become smaller in size due to increasing thermal fluctuation. We have modeled this phenomenon as a case of thermal dissociation by means of the law of mass action. The crystallite size distribution function is computed for AuCu3 as a function of temperature by solving some 12 000 coupled algebraic equations for the alloy. The results show that linear thermal expansion of the specimen has contributions from the temperature dependence of the degree of crystallinity, in addition to respective thermal expansions of the nanocrystallites and glassy-state matter.
Forty years of Fanger's model of thermal comfort: comfort for all?
van Hoof, J
2008-06-01
The predicted mean vote (PMV) model of thermal comfort, created by Fanger in the late 1960s, is used worldwide to assess thermal comfort. Fanger based his model on college-aged students for use in invariant environmental conditions in air-conditioned buildings in moderate thermal climate zones. Environmental engineering practice calls for a predictive method that is applicable to all types of people in any kind of building in every climate zone. In this publication, existing support and criticism, as well as modifications to the PMV model are discussed in light of the requirements by environmental engineering practice in the 21st century in order to move from a predicted mean vote to comfort for all. Improved prediction of thermal comfort can be achieved through improving the validity of the PMV model, better specification of the model's input parameters, and accounting for outdoor thermal conditions and special groups. The application range of the PMV model can be enlarged, for instance, by using the model to assess the effects of the thermal environment on productivity and behavior, and interactions with other indoor environmental parameters, and the use of information and communication technologies. Even with such modifications to thermal comfort evaluation, thermal comfort for all can only be achieved when occupants have effective control over their own thermal environment. The paper treats the assessment of thermal comfort using the PMV model of Fanger, and deals with the strengths and limitations of this model. Readers are made familiar to some opportunities for use in the 21st-century information society.
Development of thermal hydraulic models for the reliable regulatory auditing code
Energy Technology Data Exchange (ETDEWEB)
Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2003-04-15
The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out.
Development of thermal hydraulic models for the reliable regulatory auditing code
International Nuclear Information System (INIS)
Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S.
2003-04-01
The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out
Hydrodynamic and thermal modelling of gas-particle flow in fluidized beds
International Nuclear Information System (INIS)
Abdelkawi, O.S; Abdalla, A.M.; Atwan, E.F; Abdelmonem, S.A.; Elshazly, K.M.
2009-01-01
In this study a mathematical model has been developed to simulate two dimensional fluidized bed with uniform fluidization. The model consists of two sub models for hydrodynamic and thermal behavior of fluidized bed on which a FORTRAN program entitled (NEWFLUIDIZED) is devolved. The program is used to predict the volume fraction of gas and particle phases, the velocity of the two phases, the gas pressure and the temperature distribution for two phases. Also the program calculates the heat transfer coefficient. Besides the program predicts the fluidized bed stability and determines the optimum input gas velocity for fluidized bed to achieve the best thermal behavior. The hydrodynamic model is verified by comparing its results with the computational fluid dynamic code MFIX . While the thermal model was tested and compared by the available previous experimental correlations.The model results show good agreement with MFIX results and the thermal model of the present work confirms Zenz and Gunn equations
Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems
International Nuclear Information System (INIS)
Song, C. H.; Chung, M. K.; Park, C. K. and others
2005-04-01
The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved
Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems
Energy Technology Data Exchange (ETDEWEB)
Song, C. H.; Chung, M. K.; Park, C. K. and others
2005-04-15
The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.
Coupled electromagnetic acoustic and thermal-flow modeling of an induction motor of railway traction
International Nuclear Information System (INIS)
Fasquelle, A.; Le Besnerais, J.; Harmand, S.; Hecquet, M.; Brisset, S.; Brochet, P.; Randria, A.
2010-01-01
In order to optimize the design of an enclosed induction machine of railway traction, a multi-physical model is developed taking into account electromagnetic, mechanical and thermal-flow phenomena. The electromagnetic model is based on analytical formulations and allows calculating the losses. The thermal-flow modeling is based on an equivalent thermal circuit which has the feature to consider the flow structure inside the machine. In this way, a numerical study has been carried out to evaluate this internal flow structure depending on the rotational speed. The results of the multi-physical model are confronted with experimental results.
Energy Technology Data Exchange (ETDEWEB)
Kaellblad, K
1998-05-01
The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs
Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System
Directory of Open Access Journals (Sweden)
Lei He
2016-01-01
Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.
The equivalent thermal conductivity of lattice core sandwich structure: A predictive model
International Nuclear Information System (INIS)
Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining
2016-01-01
Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.
The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation
Directory of Open Access Journals (Sweden)
Mihaela Raduca
2006-10-01
Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.
Experimental modeling of weld thermal cycle of the heat affected zone (HAZ
Directory of Open Access Journals (Sweden)
J. Kulhánek
2016-10-01
Full Text Available Contribution deals with experimental modeling of quick thermal cycles of metal specimens. In the introduction of contribution will be presented measured graphs of thermal cycle of heat affected zone (HAZ of weld. Next will be presented experimental simulation of measured thermal cycle on the standard specimens, useable for material testing. This approach makes possible to create material structures of heat affected zone of weld, big enough for standard material testing.
An improved UO2 thermal conductivity model in the ELESTRES computer code
International Nuclear Information System (INIS)
Chassie, G.G.; Tochaie, M.; Xu, Z.
2010-01-01
This paper describes the improved UO 2 thermal conductivity model for use in the ELESTRES (ELEment Simulation and sTRESses) computer code. The ELESTRES computer code models the thermal, mechanical and microstructural behaviour of a CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains for fuel element design and assessment. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. The thermal conductivity of UO 2 fuel is one of the key parameters that affect ELESTRES calculations. The existing ELESTRES thermal conductivity model has been assessed and improved based on a large amount of thermal conductivity data from measurements of irradiated and un-irradiated UO 2 fuel with different densities. The UO 2 thermal conductivity data cover 90% to 99% theoretical density of UO 2 , temperature up to 3027 K, and burnup up to 1224 MW·h/kg U. The improved thermal conductivity model, which is recommended for a full implementation in the ELESTRES computer code, has reduced the ELESTRES code prediction biases of temperature, fission gas release, and fuel sheath strains when compared with the available experimental data. This improved thermal conductivity model has also been checked with a test version of ELESTRES over the full ranges of fuel temperature, fuel burnup, and fuel density expected in CANDU fuel. (author)
Thermal conductivity model for powdered materials under vacuum based on experimental studies
Directory of Open Access Journals (Sweden)
N. Sakatani
2017-01-01
Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.
International Nuclear Information System (INIS)
Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard
2013-01-01
Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory’s BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO 2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release
International Nuclear Information System (INIS)
Ling, Ziye; Chen, Jiajie; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo
2015-01-01
Highlights: • Expanded graphite can improve thermal conductivity of RT44HC by 20–60 times. • Thermal conductivity of PCM/EG composites keeps constant before/after melting. • Thermal conductivity of PCMs nearly doubled during phase changing. • Thermal conductivity of composite PCM increases with density and percentage of EG. • The simple model predicts thermal conductivity of EG-based composites accurately. - Abstract: This work studies factors that affect the thermal conductivity of an organic phase change material (PCM), RT44HC/expanded graphite (EG) composite, which include: EG mass fraction, composite PCM density and temperature. The increase of EG mass fraction and bulk density will both enhance thermal conductivity of composite PCMs, by up to 60 times. Thermal conductivity of RT44HC/EG composites remains independent on temperature outside the phase change range (40–45 °C), but nearly doubles during the phase change. The narrow temperature change during the phase change allows the maximum heat flux or minimum temperature for heat source if attaching PCMs to a first (constant temperature) or second (constant heat flux) thermal boundary. At last, a simple thermal conductivity model for EG-based composites is put forward, based on only two parameters: mass fraction of EG and bulk density of the composite. This model is validated with experiment data presented in this paper and in literature, showing this model has general applicability to any composite of EG and poor thermal conductive materials
Additive model for thermal comfort generated by matrix experiment using orthogonal array
Energy Technology Data Exchange (ETDEWEB)
Hwang, Reuy-Lung [Department of Occupational Safety and Health, China Medical University, 91 Huseh-shin Road, Taichung 404 (China); Lin, Tzu-Ping [Department of Leisure Planning, National Formosa University, 64 Wen-hua Road, Huwei, Yunlin 632 (China); Liang, Han-Hsi [Department of Architecture, National United University, No. 1, Lien Da, Kung-Ching Li, Miaoli 360 (China); Yang, Kuan-Hsiug; Yeh, Tsung-Chyn [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yet-Sen University, No. 91, Lien-hai Road, Kaohsiung (China)
2009-08-15
In addition to ensuring the thermal comfort of occupants, monitoring and controlling indoor thermal environments can reduce the energy consumed by air conditioning systems. This study develops an additive model for predicting thermal comfort with rapid and simple arithmetic calculations. The advantage of the additive model is its comprehensibility to administrators of air conditioning systems, who are unfamiliar with the PMV-PPD model but want to adjust an indoor environment to save energy without generating complaints of discomfort from occupants. In order to generate the additive model, a laboratory chamber experiment based on matrix experiment using orthogonal array, was performed. By applying the analysis of variance on observed thermal sensation votes and percentage of dissatisfaction, the factor effects of environmental variables that account for the additive model were determined. Additionally, the applicability of the PMV-PPD model in hot and humid climates is discussed in this study, based on experimental results. (author)
Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo
2010-07-07
In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes.
Heat transfer corrected isothermal model for devolatilization of thermally-thick biomass particles
DEFF Research Database (Denmark)
Luo, Hao; Wu, Hao; Lin, Weigang
Isothermal model used in current computational fluid dynamic (CFD) model neglect the internal heat transfer during biomass devolatilization. This assumption is not reasonable for thermally-thick particles. To solve this issue, a heat transfer corrected isothermal model is introduced. In this model......, two heat transfer corrected coefficients: HT-correction of heat transfer and HR-correction of reaction, are defined to cover the effects of internal heat transfer. A series of single biomass devitalization case have been modeled to validate this model, the results show that devolatilization behaviors...... of both thermally-thick and thermally-thin particles are predicted reasonable by using heat transfer corrected model, while, isothermal model overestimate devolatilization rate and heating rate for thermlly-thick particle.This model probably has better performance than isothermal model when it is coupled...
Thermal conductivity of Al–Cu–Mg–Si alloys: Experimental measurement and CALPHAD modeling
Energy Technology Data Exchange (ETDEWEB)
Zhang, Cong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Du, Yong, E-mail: yong-du@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Liu, Shuhong; Liu, Yuling [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Sundman, Bo. [INSTN, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France)
2016-07-10
Highlights: • The thermal conductivities of Al–x wt% Cu (x = 1, 3, 5, 15 and 30) and Al–y wt% Si (y = 2, 12.5 and 20) alloys were determined. • The reported thermal conductivities of Al–Cu–Mg–Si system were critically reviewed. • The CALPHAD approach was applied for the modeling of thermal conductivity. • The applicability of CALPHAD technique in the modeling of thermal conductivity was discussed. - Abstract: In the present work, the thermal conductivities and microstructure of Al–x wt% Cu (x = 1, 3, 5, 15 and 30) and Al–y wt% Si (y = 2, 12.5 and 20) alloys were investigated by using laser-flash method, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Besides, a CALPHAD (CALculation of PHAse Diagram) approach to evaluate the thermal conductivity of Al–Cu–Mg–Si system was performed. The numerical models for the thermal conductivity of pure elements and stoichiometric phases were described as polynomials, and the coefficients were optimized via PARROT module of Thermal-Calc software applied to the experimental data. The thermal conductivity of (Al)-based solid solutions was described by using Redlich–Kister interaction parameters. For alloys in two-phase region, the interface scattering parameter was proposed in the modeling to describe the impediment of interfaces on the heat transfer. Finally, a set of self-consistent parameters for the description of thermal conductivity in Al–Cu–Mg–Si system was obtained, and comprehensive comparisons between the calculated and measured thermal conductivities show that the experimental information is satisfactorily accounted for by the present modeling.
Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction
Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro
Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.
International Nuclear Information System (INIS)
Chen, Xiao; Wang, Qian; Srebric, Jelena
2016-01-01
Highlights: • This study evaluates an occupant-feedback driven Model Predictive Controller (MPC). • The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model. • A chamber model for predicting chamber air temperature is developed and validated. • Experiments show that MPC using DTS performs better than using Predicted Mean Vote. - Abstract: In current centralized building climate control, occupants do not have much opportunity to intervene the automated control system. This study explores the benefit of using thermal comfort feedback from occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation (DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure for thermal control was adopted in the chamber experiments. At the high level, an MPC controller calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning (HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote (PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using occupant feedback allows significant energy saving while maintaining occupant thermal comfort compared to the PMV-based MPC.
Thermal conductivity of granular porous media: A pore scale modeling approach
Directory of Open Access Journals (Sweden)
R. Askari
2015-09-01
Full Text Available Pore scale modeling method has been widely used in the petrophysical studies to estimate macroscopic properties (e.g. porosity, permeability, and electrical resistivity of porous media with respect to their micro structures. Although there is a sumptuous literature about the application of the method to study flow in porous media, there are fewer studies regarding its application to thermal conduction characterization, and the estimation of effective thermal conductivity, which is a salient parameter in many engineering surveys (e.g. geothermal resources and heavy oil recovery. By considering thermal contact resistance, we demonstrate the robustness of the method for predicting the effective thermal conductivity. According to our results obtained from Utah oil sand samples simulations, the simulation of thermal contact resistance is pivotal to grant reliable estimates of effective thermal conductivity. Our estimated effective thermal conductivities exhibit a better compatibility with the experimental data in companion with some famous experimental and analytical equations for the calculation of the effective thermal conductivity. In addition, we reconstruct a porous medium for an Alberta oil sand sample. By increasing roughness, we observe the effect of thermal contact resistance in the decrease of the effective thermal conductivity. However, the roughness effect becomes more noticeable when there is a higher thermal conductivity of solid to fluid ratio. Moreover, by considering the thermal resistance in porous media with different grains sizes, we find that the effective thermal conductivity augments with increased grain size. Our observation is in a reasonable accordance with experimental results. This demonstrates the usefulness of our modeling approach for further computational studies of heat transfer in porous media.
Using a Zonal Model To Assess the Effect of a Heated Floor on Thermal Comfort Quality
International Nuclear Information System (INIS)
Boukhris, Yosr; Gharbi, Leila; Ghrab-Morcos, Nadia
2009-01-01
People s perceptions of indoor air quality and thermal comfort are affected by air speed and temperature. We have extended the three-dimensional zonal model, ZAER, to be able to predict the temperature fields and the air distributions between and within rooms in the case of natural convection. This paper presents an application of the new zonal model dealing with the influence of a heated floor of one room upon the winter thermal comfort of an unconditioned Tunisian dwelling. Coupling ZAER with a thermal comfort model allows the assessment of the thermal quality of the dwelling through the prediction of a comfort indicator. The obtained results show that a heated floor can be a useful component to improve thermal comfort in the Tunisian context, even in another room
An analytically resolved model of a potato's thermal processing using Heun functions
Vargas Toro, Agustín.
2014-05-01
A potato's thermal processing model is solved analytically. The model is formulated using the equation of heat diffusion in the case of a spherical potato processed in a furnace, and assuming that the potato's thermal conductivity is radially modulated. The model is solved using the method of the Laplace transform, applying Bromwich Integral and Residue Theorem. The temperatures' profile in the potato is presented as an infinite series of Heun functions. All computations are performed with computer algebra software, specifically Maple. Using the numerical values of the thermal parameters of the potato and geometric and thermal parameters of the processing furnace, the time evolution of the temperatures in different regions inside the potato are presented analytically and graphically. The duration of thermal processing in order to achieve a specified effect on the potato is computed. It is expected that the obtained analytical results will be important in food engineering and cooking engineering.
Numerical modeling of thermal fatigue cracks from the viewpoint of eddy current testing
International Nuclear Information System (INIS)
Yusa, Noritaka; Hashizume, Hidetoshi; Virkkunen, Iikka; Kemppainen, Mika
2012-01-01
This study discusses a suitable numerical modeling of a thermal fatigue crack from the viewpoint of eddy current testing. Five artificial thermal fatigue cracks, introduced into type 304L austenitic stainless steel plates with a thickness of 25 mm, are prepared; and eddy current inspections are carried out to gather signals using an absolute type pancake probe and a differential type plus point probe. Finite element simulations are then carried out to evaluate a proper numerical model of the thermal fatigue cracks. In the finite element simulations, the thermal fatigue cracks are modeled as a semi-elliptic planar region on the basis of the results of the destructive tests. The width and internal conductivity are evaluated by the simulations. The results of the simulations reveal that the thermal fatigue cracks are regarded as almost nonconductive when the internal conductivity is assumed to be uniform inside. (author)
Nonlinear Modeling and Simulation of Thermal Effects in Microcantilever Resonators Dynamic
International Nuclear Information System (INIS)
Tadayon, M A; Sayyaadi, H; Jazar, G Nakhaie
2006-01-01
Thermal dependency of material characteristics in micro electromechanical systems strongly affects their performance, design, and control. Hence, it is essential to understand and model that in MEMS devices to optimize their designs. A thermal phenomenon introduces two main effects: damping due to internal friction, and softening due to Young modulus temperature relation. Based on some reported theoretical and experimental results, we model the thermal phenomena and use two Lorentzian functions to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, by considering capacitor nonlinearity, have been used. The response of the system is developed by employing multiple time scales perturbation method on nondimensionalized form of equations. Frequency response, resonant frequency and peak amplitude are examined for variation of dynamic parameters involved
Concrete creep and thermal stresses:new creep models and their effects on stress development
Westman, Gustaf
1999-01-01
This thesis deals with the problem of creep in concrete and its influence on thermal stress development. New test frames were developed for creep of high performance concrete and for measurements of thermal stress development. Tests were performed on both normal strength and high performance concretes. Two new models for concrete creep are proposed. Firstly, a viscoelastic model, the triple power law, is supplemented with two additional functions for an improved modelling of the early age cre...
Development of models for thermal infrared radiation above and within plant canopies
Paw u, Kyaw T.
1992-01-01
Any significant angular dependence of the emitted longwave radiation could result in errors in remotely estimated energy budgets or evapotranspiration. Empirical data and thermal infrared radiation models are reviewed in reference to anisotropic emissions from the plant canopy. The biometeorological aspects of linking longwave models with plant canopy energy budgets and micrometeorology are discussed. A new soil plant atmosphere model applied to anisotropic longwave emissions from a canopy is presented. Time variation of thermal infrared emission measurements is discussed.
Energy Technology Data Exchange (ETDEWEB)
Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)
2002-03-01
This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)
Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali
2014-05-01
In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to
Thermal Decomposition Model Development of EN-7 and EN-8 Polyurethane Elastomers.
Energy Technology Data Exchange (ETDEWEB)
Keedy, Ryan Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harrison, Kale Warren [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-10-01
Thermogravimetric analysis - gas chromatography/mass spectrometry (TGA- GC/MS) experiments were performed on EN-7 and EN-8, analyzed, and reported in [1] . This SAND report derives and describes pyrolytic thermal decomposition models for use in predicting the responses of EN-7 and EN-8 in an abnormal thermal environment.
A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations
DEFF Research Database (Denmark)
Wu, Rui; Wang, Huai; Pedersen, Kristian Bonderup
2016-01-01
A basic challenge in the IGBT transient simulation study is to obtain the realistic junction temperature, which demands not only accurate electrical simulations but also precise thermal impedance. This paper proposed a transient thermal model for IGBT junction temperature simulations during short...
2016-07-31
distribution unlimited Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis Matthew...vital importance for hydrocarbon -fueled propulsion systems: fuel thermal performance as indicated by physical and chemical effects of cooling passage... analysis . The selection and acquisition of a set of chemically diverse fuels is pivotal for a successful outcome since test method validation and
International Nuclear Information System (INIS)
Lu Yanyun; Gu Shenjie; Lou Tianyang
2014-01-01
Background: As nuclear grade cable must endure harsh environment within design life, it is critical to predict cable thermal life accurately owing to thermal aging, which is one of dominant factors of aging mechanism. Purpose: Using time temperature superposition (TTS) method, the aim is to construct nuclear grade cable thermal life model, predict cable residual life and develop life model interactive interface under Matlab GUI. Methods: According to TTS, nuclear grade cable thermal life model can be constructed by shifting data groups at various temperatures to preset reference temperature with translation factor which is determined by non linear programming optimization. Interactive interface of cable thermal life model developed under Matlab GUI consists of superposition mode and standard mode which include features such as optimization of translation factor, calculation of activation energy, construction of thermal aging curve and analysis of aging mechanism., Results: With calculation result comparison between superposition and standard method, the result with TTS has better accuracy than that with standard method. Furthermore, confidence level of nuclear grade cable thermal life with TTS is higher than that with standard method. Conclusion: The results show that TTS methodology is applicable to thermal life prediction of nuclear grade cable. Interactive Interface under Matlab GUI achieves anticipated functionalities. (authors)
Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction
Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi
2016-01-01
A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…
Loss and thermal model for power semiconductors including device rating information
DEFF Research Database (Denmark)
Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon
2014-01-01
The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...
Non-local modelling of cyclic thermal shock damage including parameter estimation
Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.
2011-01-01
In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by
Energy Technology Data Exchange (ETDEWEB)
Alexandre, A. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France); Flament, P. [SAFT, 33 - Bordeaux (France); Marolleau, T. [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France); Guiot, T.; Lefriec, C. [TSR Futuropolis, 86 - Chasseneuil du Poitou (France)
1996-12-31
The thermal modeling of electrochemical batteries is today an integral part of the design and validation operations of new products. The Li-ion pair allows to increase the power density of batteries but leads to higher heat fluxes during charging-output cycles. Thus, the thermal control has become more crucial and requires the use of modeling. SAFT and TSR companies are involved in this approach and use the ESACAP software. This paper presents this software which uses a nodal method for the modeling of the coupled thermal and electrical processes that take place inside elementary cells and batteries. (J.S.)
An anisotropic thermal-stress model for through-silicon via
Liu, Song; Shan, Guangbao
2018-02-01
A two-dimensional thermal-stress model of through-silicon via (TSV) is proposed considering the anisotropic elastic property of the silicon substrate. By using the complex variable approach, the distribution of thermal-stress in the substrate can be characterized more accurately. TCAD 3-D simulations are used to verify the model accuracy and well agree with analytical results (model can be integrated into stress-driven design flow for 3-D IC , leading to the more accurate timing analysis considering the thermal-stress effect. Project supported by the Aerospace Advanced Manufacturing Technology Research Joint Fund (No. U1537208).
Absence of local thermal equilibrium in two models of heat conduction
Dhar, Abhishek; Dhar, Deepak
1998-01-01
A crucial assumption in the conventional description of thermal conduction is the existence of local thermal equilibrium. We test this assumption in two simple models of heat conduction. Our first model is a linear chain of planar spins with nearest neighbour couplings, and the second model is that of a Lorentz gas. We look at the steady state of the system when the two ends are connected to heat baths at temperatures T1 and T2. If T1=T2, the system reaches thermal equilibrium. If T1 is not e...
Energy Technology Data Exchange (ETDEWEB)
Alexandre, A [Ecole Nationale Superieure de Mecanique et d` Aerotechnique (ENSMA), 86 - Poitiers (France); Flament, P [SAFT, 33 - Bordeaux (France); Marolleau, T [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France); Guiot, T; Lefriec, C [TSR Futuropolis, 86 - Chasseneuil du Poitou (France)
1997-12-31
The thermal modeling of electrochemical batteries is today an integral part of the design and validation operations of new products. The Li-ion pair allows to increase the power density of batteries but leads to higher heat fluxes during charging-output cycles. Thus, the thermal control has become more crucial and requires the use of modeling. SAFT and TSR companies are involved in this approach and use the ESACAP software. This paper presents this software which uses a nodal method for the modeling of the coupled thermal and electrical processes that take place inside elementary cells and batteries. (J.S.)
Fluid temperatures: Modeling the thermal regime of a river network
Rhonda Mazza; Ashley Steel
2017-01-01
Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...
Development of Thermal Bridging Factors for Use in Energy Models
2015-06-20
assemblies. 5.2.2 Drainage : Drained systems Drained (Figure 5-6) and screened enclosures assume some rainwater will penetrate the outer surface...38 5.2.2 Drainage : Drained systems ...layer (e.g., drainage plane and gap or waterproofing) 2. Airflow control layer (e.g., an air barrier system ) 3. Thermal control layer (e.g., insulation
A micro-convection model for thermal conductivity of nanofluids
Indian Academy of Sciences (India)
Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of ...
Thermal modeling of cylindrical LiFePO4 batteries
Shadman Rad, M.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P.H.L.
2013-01-01
Thermal management of Li-ion batteries is important because of the high energy content and the risk of rapid temperature development in the high current range. Reliable and safe operation of these batteries is seriously endangered by high temperatures. It is important to have a simple but accurate
Modelling and system analysis of new photovoltaic thermal solar collectors
Katiyar, M.
2016-01-01
This project report is a deliverable within the scope of WenSDak project, which is being carried out by a consortium of a number of photovoltaic-thermal (PVT) panel manufacturers and knowledge institutes. This project is financed by RVO (Rijksdienst voor Ondernemend Nederland) – project number
Meson thermalization by baryon injection in D4/D6 model
Energy Technology Data Exchange (ETDEWEB)
Rezaei, Z., E-mail: z.rezaei@aut.ac.ir [Department of Physics, Tafresh University, Tafresh 39518 79611 (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2016-12-15
We study meson thermalization in a strongly coupled plasma of quarks and gluons using AdS/CFT duality technique. Four dimensional large-N{sub c} QCD is considered as a theory governing this quark–gluon plasma (QGP) and D4/D6-brane model is chosen to be its holographic dual theory. In order to investigate meson thermalization, we consider a time-dependent change of baryon number chemical potential. Thermalization in gauge theory side corresponds to horizon formation on the probe flavor brane in the gravity side. The gravitational dual theory is compactified on a circle that the inverse of its radius is proportional to energy scale of dual gauge theory. It is seen that increase of this energy scale results in thermalization time dilation. In addition we study the effect of magnetic field on meson thermalization. It will be seen that magnetic field also prolongs thermalization process by making mesons more stable.
Meson thermalization by baryon injection in D4/D6 model
International Nuclear Information System (INIS)
Rezaei, Z.
2016-01-01
We study meson thermalization in a strongly coupled plasma of quarks and gluons using AdS/CFT duality technique. Four dimensional large-N_c QCD is considered as a theory governing this quark–gluon plasma (QGP) and D4/D6-brane model is chosen to be its holographic dual theory. In order to investigate meson thermalization, we consider a time-dependent change of baryon number chemical potential. Thermalization in gauge theory side corresponds to horizon formation on the probe flavor brane in the gravity side. The gravitational dual theory is compactified on a circle that the inverse of its radius is proportional to energy scale of dual gauge theory. It is seen that increase of this energy scale results in thermalization time dilation. In addition we study the effect of magnetic field on meson thermalization. It will be seen that magnetic field also prolongs thermalization process by making mesons more stable.
Meson thermalization by baryon injection in D4/D6 model
Rezaei, Z.
2016-12-01
We study meson thermalization in a strongly coupled plasma of quarks and gluons using AdS/CFT duality technique. Four dimensional large-Nc QCD is considered as a theory governing this quark-gluon plasma (QGP) and D4/D6-brane model is chosen to be its holographic dual theory. In order to investigate meson thermalization, we consider a time-dependent change of baryon number chemical potential. Thermalization in gauge theory side corresponds to horizon formation on the probe flavor brane in the gravity side. The gravitational dual theory is compactified on a circle that the inverse of its radius is proportional to energy scale of dual gauge theory. It is seen that increase of this energy scale results in thermalization time dilation. In addition we study the effect of magnetic field on meson thermalization. It will be seen that magnetic field also prolongs thermalization process by making mesons more stable.
Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries
DEFF Research Database (Denmark)
Saeed Madani, Seyed; Schaltz, Erik; Kær, Søren Knudsen
2018-01-01
This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid...... on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs) and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific...... and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact...
Thermal Conductivity in Soil: Theoretical Approach by 3D Infinite Resistance Grid Model
Changjan, A.; Intaravicha, N.
2018-05-01
Thermal conductivity in soil was elementary characteristic of soil that conduct heat, measured in terms of Fourier’s Law for heat conduction and useful application in many fields: such as Utilizing underground cable for transmission and distribution systems, the rate of cooling of the cable depends on the thermal properties of the soil surrounding the cable. In this paper, we investigated thermal conductivity in soil by infinite three dimensions (3D) electrical resistance circuit concept. Infinite resistance grid 3D was the grid of resistors that extends to infinity in all directions. Model of thermal conductivity in soil of this research was generated from this concept: comparison between electrical resistance and thermal resistance in soil. Finally, we investigated the analytical form of thermal conductivity in soil which helpful for engineering and science students that could exhibit education with a principle of physics that applied to real situations.
International Nuclear Information System (INIS)
Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André
2015-01-01
Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.
Electro-thermal characterization of Lithium Iron Phosphate cell with equivalent circuit modeling
International Nuclear Information System (INIS)
Saw, L.H.; Ye, Y.; Tay, A.A.O.
2014-01-01
Highlights: • We modeled the electrical and thermal behavior of the Li-ion battery. • We validated the simulation results with experimental studies. • We studied the thermal response of the battery pack using UDDS and US06 test. • Active cooling system is needed to prolong life cycle of cell. - Abstract: Prediction of the battery performance is important in the development of the electric vehicles battery pack. A battery model that is capable to reproduce I–V characteristic, thermal response and predicting the state of charge of the battery will benefit the development of cell and reduce time to market for electric vehicles. In this work, an equivalent circuit model coupled with the thermal model is used to analyze the electrical and thermal behavior of Lithium Iron Phosphate pouch cell under various operating conditions. The battery model is comprised three RC blocks, one series resistor and one voltage source. The parameters of the battery model are extracted from pulse discharge curve under different temperatures. The simulations results of the battery model under constant current discharge and pulse charge and discharge show a good agreement with experimental data. The validated battery model is then extended to investigate the dynamic behavior of the electric vehicle battery pack using UDDS and US06 test cycle. The simulation results show that an active thermal management system is required to prolong the calendar life and ensure safety of the battery pack
The EXTASE thermal probe: Laboratory investigation and modelling of thermal properties
Kaufmann, E.; Knollenberg, J.; Kargl, G.; Koemle, N. I.
2011-10-01
In recent years space missions including landing devices are getting more important. These missions allow in-situ measurements and lead therefore to information on the structure and behavior of extraterrestrial surface and subsurface layers. Sensors used for this kind of missions have to be adapted to the non-terrestrial environment conditions. The better the properties of the single elements of each sensor are known, the more precise are the results from the data evaluation of in-situ measurements. We present the results of thermal conductivity measurements and simulations done for the fiber compound tube used as structural element for the heating segments of the MUPUS-PEN and EXTASE - a spin-off project of Rosetta/MUPUS.
Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis
International Nuclear Information System (INIS)
Kwon, Hyukjoon; Sprengel, Michael; Ivantysynova, Monika
2016-01-01
Hybrid vehicles have become a popular alternative to conventional powertrain architectures by offering improved fuel efficiency along with a range of environmental benefits. Hydraulic Hybrid Vehicles (HHV) offer one approach to hybridization with many benefits over competing technologies. Among these benefits are lower component costs, more environmentally friendly construction materials, and the ability to recover a greater quantity of energy during regenerative braking which make HHVs partially well suited to urban environments. In order to further the knowledge base regarding HHVs, this paper explores the thermodynamic characteristics of such a system. A system model is detailed for both the hydraulic and thermal components of a closed circuit hydraulic hybrid transmission following the FTP-72 driving cycle. Among the new techniques proposed in this paper is a novel method for capturing rapid thermal transients. This paper concludes by comparing the results of this model with experimental data gathered on a Hardware-in-the-Loop (HIL) transmission dynamometer possessing the same architecture, components, and driving cycle used within the simulation model. This approach can be used for several applications such as thermal stability analysis of HHVs, optimal thermal management, and analysis of the system's thermodynamic efficiency. - Highlights: • Thermal modeling for HHVs is introduced. • A model for the hydraulic and thermal system is developed for HHVs. • A novel method for capturing rapid thermal transients is proposed. • The thermodynamic system diagram of a series HHV is predicted.
Panczak, Tim; Ring, Steve; Welch, Mark
1999-01-01
Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.
A 3D thermal runaway propagation model for a large format lithium ion battery module
International Nuclear Information System (INIS)
Feng, Xuning; Lu, Languang; Ouyang, Minggao; Li, Jiangqiu; He, Xiangming
2016-01-01
In this paper, a 3D thermal runaway (TR) propagation model is built for a large format lithium ion battery module. The 3D TR propagation model is built based on the energy balance equation. Empirical equations are utilized to simplify the calculation of the chemical kinetics for TR, whereas equivalent thermal resistant layer is employed to simplify the heat transfer through the thin thermal layer. The 3D TR propagation model is validated by experiment and can provide beneficial discussions on the mechanisms of TR propagation. According to the modeling analysis of the 3D model, the TR propagation can be delayed or prevented through: 1) increasing the TR triggering temperature; 2) reducing the total electric energy released during TR; 3) enhancing the heat dissipation level; 4) adding extra thermal resistant layer between adjacent batteries. The TR propagation is successfully prevented in the model and validated by experiment. The model with 3D temperature distribution provides a beneficial tool for researchers to study the TR propagation mechanisms and for engineers to design a safer battery pack. - Highlights: • A 3D thermal runaway (TR) propagation model for Li-ion battery pack is built. • The 3D TR propagation model can fit experimental results well. • Temperature distributions during TR propagation are presented using the 3D model. • Modeling analysis provides solutions for the prevention of TR propagation. • Quantified solutions to prevent TR propagation in battery pack are discussed.
International Nuclear Information System (INIS)
Hensinger, D.M.; Gritzo, L.A.; Koski, J.A.
1996-01-01
A user-defined boundary condition subroutine has been implemented within P3/THERMAL to represent the heat flux between a noncombusting object and an engulfing fire. The heat flux calculations includes a simple 2D fire model in which energy and radiative heat transport equations are solved to produce estimates of the heat fluxes at the fire-object interface. These estimates reflect radiative coupling between a cold object and the flow of hot combustion gases which has been observed in fire experiments. The model uses a database of experimental pool fire measurements for far field boundary conditions and volumetric heat release rates. Taking into account the coupling between a structure and the fire is an improvement over the σT 4 approximation frequently used as a boundary condition for engineered system response and is the preliminary step in the development of a fire model with a predictive capability. This paper describes the implementation of the fire model as a P3/THERMAL boundary condition and presents the results of a verification calculation carried out using the model
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level
Guan, Kang; Wu, Jianqing; Cheng, Laifei
2016-01-01
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130
Modeling energy flexibility of low energy buildings utilizing thermal mass
DEFF Research Database (Denmark)
Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten
2016-01-01
In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...
Advanced homogenization strategies in material modeling of thermally sprayed TBCs
International Nuclear Information System (INIS)
Bobzin, K.; Lugscheider, E.; Nickel, R.; Kashko, T.
2006-01-01
Thermal barrier coatings (TBC), obtained by atmospheric plasma spraying (APS), have a complex microstructure (lamellar, porous, micro-cracked). Process parameters take an influence on this microstructure. Two methods based on the homogenization for periodic structures are presented in this article. The methods are used to calculate the effective material behavior of APS-TBCs made of partially yttria stabilized zirconia (PYSZ) depending on the microstructure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Modelling aging effects on a thermal cycling absorption process column
Energy Technology Data Exchange (ETDEWEB)
Laquerbe, C.; Contreras, S. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France); Baudouin, O. [ProSim SA, Stratege Bat. A, BP 27210, F-31672 Labege Cedex (France); Demoment, J. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France)
2008-07-15
Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)
A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations
Marschall, Jochen; Cooper, D. M. (Technical Monitor)
1995-01-01
A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.
Thermal Modeling of GaN HEMTs on Sapphire and Diamond
National Research Council Canada - National Science Library
Salm, III, Roman P
2005-01-01
... to diamond through the use of commercially available Silvaco software for modeling and simulation. The unparalleled thermal properties of diamond are expected to dramatically decrease device temperatures and increase component lifetimes and reliability.
International Nuclear Information System (INIS)
Torres, Alejandro; Mishkinis, Donatas; Kaya, Tarik
2014-01-01
A novel satellite thermal architecture connecting the east and west radiators of a geostationary telecommunication satellite via loop heat pipes (LHPs) is flight tested on board the satellite Hispasat 1E. The LHP operating temperature is regulated by using pressure regulating valves (PRVs). The flight data demonstrated the successful operation of the proposed concept. A transient numerical model specifically developed for the design of this system satisfactorily simulated the flight data. The validated mathematical model can be used to design and analyze the thermal behavior of more complex architectures. - Highlights: •A novel spacecraft thermal control architecture is presented. •The east–west radiators of a GEO communications satellite are connected using LHPs. •A transient mathematical model is validated with flight data. •The space flight data proved successful in-orbit operation of the novel architecture. •The model can be used to design/analyze LHP based complex thermal architectures
A theoretical adaptive model of thermal comfort - Adaptive Predicted Mean Vote (aPMV)
Energy Technology Data Exchange (ETDEWEB)
Yao, Runming [School of Construction Management and Engineering, The University of Reading (United Kingdom); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Li, Baizhan [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Liu, Jing [School of Construction Management and Engineering, The University of Reading (United Kingdom)
2009-10-15
This paper presents in detail a theoretical adaptive model of thermal comfort based on the ''Black Box'' theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient ({lambda}) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results. (author)
Hall Thruster Thermal Modeling and Test Data Correlation
Myers, James
2016-01-01
HERMeS - Hall Effect Rocket with Magnetic Shielding. Developed through a joint effort by NASA/GRC and the Jet Propulsion Laboratory (JPL). Design goals: High power (12.5 kW) high Isp (3000 sec), high efficiency (> 60%), high throughput (10,000 kg), reduced plasma erosion and increased life (5 yrs) to support Asteroid Redirect Robotic Mission (ARRM). Further details see "Performance, Facility Pressure Effects and Stability Characterization Tests of NASAs HERMeS Thruster" by H. Kamhawi and team. Hall Thrusters (HT) inherently operate at elevated temperatures approx. 600 C (or more). Due to electric magnetic (E x B) fields used to ionize and accelerate propellant gas particles (i.e., plasma). Cooling is largely limited to radiation in vacuum environment.Thus the hardware components must withstand large start-up delta-T's. HT's are constructed of multiple materials; assorted metals, non-metals and ceramics for their required electrical and magnetic properties. To mitigate thermal stresses HT design must accommodate the differential thermal growth from a wide range of material Coef. of Thermal Expansion (CTEs). Prohibiting the use of some bolted/torqued interfaces.Commonly use spring loaded interfaces, particularly at the metal-to-ceramic interfaces to allow for slippage.However most component interfaces must also effectively conduct heat to the external surfaces for dissipation by radiation.Thus contact pressure and area are important.
Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings
Lovelace, Geoffrey; Demos, Nicholas; Khan, Haroon
2018-01-01
Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We verify numerical convergence, and by running on up to hundreds of compute cores, we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected with changing beam size, mirror dimensions, and coating thickness. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole et al (2013 Nat. Photon. 7 644–50), comparing our results to a simpler numerical calculation that treats the coating as an ‘effectively amorphous’ material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to
Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB
Wang, Xiao-Yen J.; Yuko, James
2010-01-01
This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.
Mathematical model of thermal and mechanical steady state fuel element behaviour TEDEF
International Nuclear Information System (INIS)
Dinic, N.; Kostic, Z.; Josipovic, M.
1987-01-01
In this paper a numerical model of thermal and thermomechanical behaviour of a cylindrical metal uranium fuel element is described. Presented are numerical method and computer program for solving the stationary temperature field and thermal stresses of a fuel element. The model development is a second phase of analysis of these phenomena, and may as well be used for analysing power nuclear reactor fuel elements behaviour. (author)
VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling
International Nuclear Information System (INIS)
Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.
1983-04-01
VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail
Physical and mathematical models for diffusion of thermal pollutants in water
International Nuclear Information System (INIS)
Pires, E.C.; Giorgetti, M.F.; Carajilescov, P.
1983-01-01
Mathematical models, such as the Fickian model and the model at PAILY and SAYRE, have been used in the analysis of thermal pollution. In the present work, experimental simulations of thermal dispersion were made using an artificial channel with injection of hat water and measurements of the temperature field were taken. The results were compared with the results given by the mentioned models, applying the image sources method. Due to the limitations of the model of PAILY and SAYRE, it was generalized for thermal sources posicioned at any place in the channel. The model of PAILY and SAYRE proved to be more satisfactory than the Fickian model and the image sources method was considered adequate. (Author) [pt
Model of optical phantoms thermal response upon irradiation with 975 nm dermatological laser
Wróbel, M. S.; Bashkatov, A. N.; Yakunin, A. N.; Avetisyan, Yu. A.; Genina, E. A.; Galla, S.; Sekowska, A.; Truchanowicz, D.; Cenian, A.; Jedrzejewska-Szczerska, M.; Tuchin, V. V.
2018-04-01
We have developed a numerical model describing the optical and thermal behavior of optical tissue phantoms upon laser irradiation. According to our previous studies, the phantoms can be used as substitute of real skin from the optical, as well as thermal point of view. However, the thermal parameters are not entirely similar to those of real tissues thus there is a need to develop mathematical model, describing the thermal and optical response of such materials. This will facilitate the correction factors, which would be invaluable in translation between measurements on skin phantom to real tissues, and gave a good representation of a real case application. Here, we present the model dependent on the data of our optical phantoms fabricated and measured in our previous preliminary study. The ambiguity between the modeling and the thermal measurements depend on lack of accurate knowledge of material's thermal properties and some exact parameters of the laser beam. Those parameters were varied in the simulation, to provide an overview of possible parameters' ranges and the magnitude of thermal response.
Spontaneous non-thermal leptogenesis in high-scale inflation models
International Nuclear Information System (INIS)
Endo, M.; Takahashi, F.; Yanagida, T.T.; Tokyo Univ.
2006-11-01
We argue that a non-thermal leptogenesis occurs spontaneously, without direct couplings of the inflation with right-handed neutrinos, in a wide class of high-scale inflation models such as the chaotic and hybrid inflation. It is only a finite vacuum expectation value of the inflaton, of more precisely, a linear term in the Kaehler potential, that is a prerequisite for the spontaneous non-thermal leptogenesis. To exemplify how it works, we show that a chaotic inflation model in supergravity naturally produces a right amount of baryon asymmetry via the spontaneous non-thermal leptogenesis. We also discuss the gravitino production from the inflation. (orig.)
Zhou, Xunfei; Hsieh, Sheng-Jen
2017-05-01
After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.
Modeling of two-phase flow with thermal and mechanical non-equilibrium
International Nuclear Information System (INIS)
Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.
1977-01-01
To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented
Point, surface and volumetric heat sources in the thermal modelling of selective laser melting
Yang, Yabin; Ayas, Can
2017-10-01
Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses limit the load resistance of the product and may even lead to fracture during the built process. It is therefore of paramount importance to predict the level of part distortion and residual stress as a function of SLM process parameters which requires a reliable thermal modelling of the SLM process. Consequently, a key question arises which is how to describe the laser source appropriately. Reasonable simplification of the laser representation is crucial for the computational efficiency of the thermal model of the SLM process. In this paper, first a semi-analytical thermal modelling approach is described. Subsequently, the laser heating is modelled using point, surface and volumetric sources, in order to compare the influence of different laser source geometries on the thermal history prediction of the thermal model. The present work provides guidelines on appropriate representation of the laser source in the thermal modelling of the SLM process.
Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung
2009-03-01
Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4°C and 17.6-30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.
Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.
2017-10-01
Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.
SO2 oxidation catalyst model systems characterized by thermal methods
DEFF Research Database (Denmark)
Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M
2002-01-01
The molten salts M2S2O7 and MHSO4, the binary molten salt Systems M2S2O7-MHSO4 and the molten salt-gas systems M2S2O7 V2O5 and M2S2O7-M2SO4 V2O5 (M = Na, K, Rb, Cs) in O-2, SO2 and At atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....
Thermal conductivity of group-IV semiconductors from a kinetic-collective model.
de Tomas, C; Cantarero, A; Lopeandia, A F; Alvarez, F X
2014-09-08
The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon-phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range.
Thermal conductivity of group-IV semiconductors from a kinetic-collective model
de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.
2014-01-01
The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon–phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range. PMID:25197256
A novel electro-thermal model for wide bandgap semiconductor based devices
DEFF Research Database (Denmark)
Sintamarean, Nicolae Christian; Blaabjerg, Frede; Wang, Huai
2013-01-01
This paper propose a novel Electro-Thermal Model for the new generation of power electronics WBG-devices (by considering the SiC MOSFET-CMF20120D from CREE), which is able to estimate the device junction and case temperature. The Device-Model estimates the voltage drop and the switching energies...... by considering the device current, the off-state blocking voltage and junction temperature variation. Moreover, the proposed Thermal-Model is able to consider the thermal coupling within the MOSFET and its freewheeling diode, integrated into the same package, and the influence of the ambient temperature...... variation. The importance of temperature loop feedback in the estimation accuracy of device junction and case temperature is studied. Furthermore, the Safe Operating Area (SOA) of the SiC MOSFET is determined for 2L-VSI applications which are using sinusoidal PWM. Thus, by considering the heatsink thermal...
Thermal modeling of the ceramic composite fuel for light water reactors
International Nuclear Information System (INIS)
Revankar, S.T.; Latta, R.; Solomon, A.A.
2005-01-01
Full text of publication follows: Composite fuel designs capable of providing improved thermal performance are of great interest in advanced reactor designs where high efficiency and long fuel cycles are desired. Thermal modeling of the composite fuel consisting of continuous second phase in a ceramic (uranium oxide) matrix has been carried out with detailed examination of the microstructure of the composite and the interface. Assuming that constituent phases are arranged as slabs, upper and lower bounds for the thermal conductivity of the composite are derived analytically. Bounding calculations on the thermal conductivity of the composite were performed for SiC dispersed in the UO 2 matrix. It is found that with 10% SiC, the thermal conductivity increases from 5.8 to 9.8 W/m.deg. K at 500 K, or an increase of 69% was observed in UO 2 matrix. The finite element analysis computer program ANSYS was used to create composite fuel geometries with set boundary conditions to produce accurate thermal conductivity predictions. A model developed also accounts for SiC-matrix interface resistance and the addition of coatings or interaction barriers. The first set of calculations using the code was to model simple series and parallel fuel slab geometries, and then advance to inter-connected parallel pathways. The analytical calculations were compared with the ANSYS results. The geometry of the model was set up as a 1 cm long by 400 micron wide rectangle. This rectangle was then divided into one hundred sections with the first ninety percent of a single section being UO 2 and the remaining ten percent consisting of SiC. The model was then meshed using triangular type elements. The boundary conditions were set with the sides of the rectangle being adiabatic and having an assigned temperature at the end of the rectangle. A heat flux was then applied to one end of the model producing a temperature gradient. The effective thermal conductivity was then calculated using the geometry
A decision-tree-based model for evaluating the thermal comfort of horses
Directory of Open Access Journals (Sweden)
Ana Paula de Assis Maia
2013-12-01
Full Text Available Thermal comfort is of great importance in preserving body temperature homeostasis during thermal stress conditions. Although the thermal comfort of horses has been widely studied, there is no report of its relationship with surface temperature (T S. This study aimed to assess the potential of data mining techniques as a tool to associate surface temperature with thermal comfort of horses. T S was obtained using infrared thermography image processing. Physiological and environmental variables were used to define the predicted class, which classified thermal comfort as "comfort" and "discomfort". The variables of armpit, croup, breast and groin T S of horses and the predicted classes were then subjected to a machine learning process. All variables in the dataset were considered relevant for the classification problem and the decision-tree model yielded an accuracy rate of 74 %. The feature selection methods used to reduce computational cost and simplify predictive learning decreased model accuracy to 70 %; however, the model became simpler with easily interpretable rules. For both these selection methods and for the classification using all attributes, armpit and breast T S had a higher power rating for predicting thermal comfort. Data mining techniques show promise in the discovery of new variables associated with the thermal comfort of horses.
Directory of Open Access Journals (Sweden)
Michelle D Leach
Full Text Available Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.
Model-based thermal system design optimization for the James Webb Space Telescope
Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.
2017-10-01
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
Energy exchange in thermal energy atom-surface scattering: impulsive models
International Nuclear Information System (INIS)
Barker, J.A.; Auerbach, D.J.
1979-01-01
Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)
Determining passive cooling limits in CPV using an analytical thermal model
Gualdi, Federico; Arenas, Osvaldo; Vossier, Alexis; Dollet, Alain; Aimez, Vincent; Arès, Richard
2013-09-01
We propose an original thermal analytical model aiming to predict the practical limits of passive cooling systems for high concentration photovoltaic modules. The analytical model is described and validated by comparison with a commercial 3D finite element model. The limiting performances of flat plate cooling systems in natural convection are then derived and discussed.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
Page, Arthur T.
2001-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
Dynamic thermal modelling and analysis of press-pack IGBTs both at component-level and chip-level
DEFF Research Database (Denmark)
Busca, Cristian; Teodorescu, Remus; Blaabjerg, Frede
2013-01-01
curves under various mechanical clamping conditions are derived. Moreover, the deformation of the internal components of the PP IGBT under operating-like conditions is investigated with the help of the thermal models and the coefficient of thermal expansion (CTE) information.......Thermal models are needed when designing power converters for Wind Turbines (WTs) in order to carry out thermal and reliability assessment of certain designs. Usually the thermal models of Insulated Gate Bipolar Transistors (IGBTs) are given in the datasheet in various forms at component......-level, not taking into account the thermal distribution among the chips. This is especially relevant in the case of Press-Pack (PP) IGBTs because any non-uniformity of the clamping pressure can affect the chip-level thermal impedances. This happens because the contact thermal resistances in the thermal impedance...
Thermal Properties of West Siberian Sediments in Application to Basin and Petroleum Systems Modeling
Romushkevich, Raisa; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Myasnikov, Artem; Kazak, Andrey; Belenkaya, Irina; Zagranovskaya, Dzhuliya
2016-04-01
Quality of heat flow and rock thermal property data is the crucial question in basin and petroleum system modeling. A number of significant deviations in thermal conductivity values were observed during our integral geothermal study of West Siberian platform reporting that the corrections should be carried out in basin models. The experimental data including thermal anisotropy and heterogeneity measurements were obtained along of more than 15 000 core samples and about 4 500 core plugs. The measurements were performed in 1993-2015 with the optical scanning technique within the Continental Super-Deep Drilling Program (Russia) for scientific super-deep well Tyumenskaya SG-6, parametric super-deep well Yen-Yakhinskaya, and deep well Yarudeyskaya-38 as well as for 13 oil and gas fields in the West Siberia. Variations of the thermal conductivity tensor components in parallel and perpendicular direction to the layer stratification (assessed for 2D anisotropy model of the rock studied), volumetric heat capacity and thermal anisotropy coefficient values and average values of the thermal properties were the subject of statistical analysis for the uppermost deposits aged by: T3-J2 (200-165 Ma); J2-J3 (165-150 Ma); J3 (150-145 Ma); K1 (145-136 Ma); K1 (136-125 Ma); K1-K2 (125-94 Ma); K2-Pg+Ng+Q (94-0 Ma). Uncertainties caused by deviations of thermal conductivity data from its average values were found to be as high as 45 % leading to unexpected errors in the basin heat flow determinations. Also, the essential spatial-temporal variations in the thermal rock properties in the study area is proposed to be taken into account in thermo-hydrodynamic modeling of hydrocarbon recovery with thermal methods. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).
Thermal-hydraulic modeling needs for passive reactors
International Nuclear Information System (INIS)
Kelly, J.M.
1997-01-01
The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken
Thermal-hydraulic modeling needs for passive reactors
Energy Technology Data Exchange (ETDEWEB)
Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)
1997-07-01
The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.
Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.
2016-01-01
Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.
Modeling of thermal effects on TIBER II divertor during plasma disruptions
International Nuclear Information System (INIS)
Bruhn, M.L.; Perkins, L.J.
1987-01-01
Mapping the disruption power flow from the mid-plane of the TIBER Engineering Test Reactor to its divertor and calculating the resulting thermal effects are accomplished through the modification and coupling of three presently existing computer codes. The resulting computer code TADDPAK (Thermal Analysis Divertor during Disruption PAcKage) provides three-dimensional graphic presentations of time and positional dependent thermal effects on a poloidal cross section of the double-null-divertor configured reactor. These thermal effects include incident heat flux, surface temperature, vaporization rate, total vaporization, and melting depth. The dependence of these thermal effects on material choice, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is determined through parametric analysis with TADDPAK. This computer code is designed to be a convenient, rapid, and user-friendly modeling tool which can be easily adapted to most tokamak double-null-divertor reactor designs
Mathematical modelling of a steam boiler room to research thermal efficiency
International Nuclear Information System (INIS)
Bujak, J.
2008-01-01
This paper introduces a mathematical model of a boiler room to research its thermal efficiency. The model is regarded as an open thermodynamic system exchanging mass, energy, and heat with the atmosphere. On those grounds, the energy and energy balance were calculated. Here I show several possibilities concerning how this model may be applied. Test results of the coefficient of thermal efficiency were compared to a real object, i.e. a steam boiler room of the Provincial Hospital in Wloclawek (Poland). The tests were carried out for 18 months. The results obtained in the boiler room were used for verification of the mathematical model
Modelling solar cells with thermal phenomena taken into account
International Nuclear Information System (INIS)
Górecki, K; Górecki, P; Paduch, K
2014-01-01
The paper is devoted to modelling properties of solar cells. The authors' electrothermal model of such cells is described. This model takes into account the influence of temperature on its characteristics. Some results of calculations and measurements of selected solar cells are presented and discussed. The good agreement between the results of calculations and measurements was obtained, which proves the correctness of the elaborated model.
Modelling of the thermal behaviour of 48 inch cylinders
Energy Technology Data Exchange (ETDEWEB)
Clayton, D.G.; Hayes, T.J.; Livesey, E.; Lomas, J.; Price, M. [British Nuclear Fuels plc, Risley Warrington Cheshire (United Kingdom)
1991-12-31
This paper describes the current state of the analytical models being developed by British Nuclear Fuels plc (BNFL) to improve the understanding of the response of Uranium Hexafluoride containers engulfed in a fire. Details are given of the modeling methods used and physical processes simulated, together with some predictions from the models. Explanations for the differences between the predictions are presented as well as an outline for future development of the models.
A Model of Thermal Conductivity for Planetary Soils: 1. Theory for Unconsolidated Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
We present a model of heat conduction for mono-sized spherical particulate media under stagnant gases based on the kinetic theory of gases, numerical modeling of Fourier s law of heat conduction, theoretical constraints on the gas thermal conductivity at various Knudsen regimes, and laboratory measurements. Incorporating the effect of the temperature allows for the derivation of the pore-filling gas conductivity and bulk thermal conductivity of samples using additional parameters (pressure, gas composition, grain size, and porosity). The radiative and solid-to-solid conductivities are also accounted for. Our thermal model reproduces the well-established bulk thermal conductivity dependency of a sample with the grain size and pressure and also confirms laboratory measurements finding that higher porosities generally lead to lower conductivities. It predicts the existence of the plateau conductivity at high pressure, where the bulk conductivity does not depend on the grain size. The good agreement between the model predictions and published laboratory measurements under a variety of pressures, temperatures, gas compositions, and grain sizes provides additional confidence in our results. On Venus, Earth, and Titan, the pressure and temperature combinations are too high to observe a soil thermal conductivity dependency on the grain size, but each planet has a unique thermal inertia due to their different surface temperatures. On Mars, the temperature and pressure combination is ideal to observe the soil thermal conductivity dependency on the average grain size. Thermal conductivity models that do not take the temperature and the pore-filling gas composition into account may yield significant errors.
Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems
Directory of Open Access Journals (Sweden)
Gornov V.F.
2016-01-01
Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.
Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism.
Directory of Open Access Journals (Sweden)
Amanda Lee
Full Text Available Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application.
Development of local TDC model in core thermal hydraulic analysis
International Nuclear Information System (INIS)
Kwon, H.S.; Park, J.R.; Hwang, D.H.; Lee, S.K.
2004-01-01
The local TDC model consisting of natural mixing and forced mixing part was developed to obtain more realistic local fluid properties in the core subchannel analysis. To evaluate the performance of local TDC model, the CHF prediction capability was tested with the various CHF correlations and local fluid properties at CHF location which are based on the local TDC model. The results show that the standard deviation of measured to predicted CHF ratio (M/P) based on local TDC model can be reduced by about 7% compared to those based on global TDC model when the CHF correlation has no term to account for distance from the spacer grid. (author)
One-dimensional modeling of thermal energy produced in a seismic fault
Konga, Guy Pascal; Koumetio, Fidèle; Yemele, David; Olivier Djiogang, Francis
2017-12-01
Generally, one observes an anomaly of temperature before a big earthquake. In this paper, we established the expression of thermal energy produced by friction forces between the walls of a seismic fault while considering the dynamic of a one-dimensional spring-block model. It is noted that, before the rupture of a seismic fault, displacements are caused by microseisms. The curves of variation of this thermal energy with time show that, for oscillatory and aperiodic displacement, the thermal energy is accumulated in the same way. The study reveals that thermal energy as well as temperature increases abruptly after a certain amount of time. We suggest that the corresponding time is the start of the anomaly of temperature observed which can be considered as precursory effect of a big seism. We suggest that the thermal energy can heat gases and dilate rocks until they crack. The warm gases can then pass through the cracks towards the surface. The cracks created by thermal energy can also contribute to the rupture of the seismic fault. We also suggest that the theoretical model of thermal energy, produced in seismic fault, associated with a large quantity of experimental data may help in the prediction of earthquakes.
Multiscale Modeling of Grain Boundaries in ZrB2: Structure, Energetics, and Thermal Resistance
Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W., Jr.
2012-01-01
A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.
Thermal stability analysis and modelling of advanced perpendicular magnetic tunnel junctions
Van Beek, Simon; Martens, Koen; Roussel, Philippe; Wu, Yueh Chang; Kim, Woojin; Rao, Siddharth; Swerts, Johan; Crotti, Davide; Linten, Dimitri; Kar, Gouri Sankar; Groeseneken, Guido
2018-05-01
STT-MRAM is a promising non-volatile memory for high speed applications. The thermal stability factor (Δ = Eb/kT) is a measure for the information retention time, and an accurate determination of the thermal stability is crucial. Recent studies show that a significant error is made using the conventional methods for Δ extraction. We investigate the origin of the low accuracy. To reduce the error down to 5%, 1000 cycles or multiple ramp rates are necessary. Furthermore, the thermal stabilities extracted from current switching and magnetic field switching appear to be uncorrelated and this cannot be explained by a macrospin model. Measurements at different temperatures show that self-heating together with a domain wall model can explain these uncorrelated Δ. Characterizing self-heating properties is therefore crucial to correctly determine the thermal stability.
Mathematical modelling of pasta dough dynamic viscosity, thermal conductivity and diffusivity
Directory of Open Access Journals (Sweden)
Andrei Ionuţ SIMION
2015-08-01
Full Text Available This work aimed to study the mathematical variation of three main thermodynamic properties (dynamic viscosity, thermal conductivity and thermal diffusivity of pasta dough obtained by mixing wheat semolina and water with dough humidity and deformation speed (for dynamic viscosity, respectively with dough humidity and temperature (for thermal diffusivity and conductivity. The realized regression analysis of existing graphical data led to the development of mathematical models with a high degree of accuracy. The employed statistical tests (least squares, relative error and analysis of variance revealed that the obtained equations are able to describe and predict the tendency of the dough thermodynamic properties.
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
A model of thermal conductivity for planetary soils: 2. Theory for cemented soils
Piqueux, S.; Christensen, P. R.
2009-09-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.
Modelling and Design of Active Thermal Controls for Power Electronics of Motor Drive Applications
DEFF Research Database (Denmark)
Vernica, Ionut; Blaabjerg, Frede; Ma, Ke
2017-01-01
of active thermal control methods for the power devices of a motor drive application. The motor drive system together with the thermal cycling of the power devices have been modelled, and adverse temperature swings could be noticed during the start-up and deceleration periods of the motor. Based...... on the electrical response of the system, the junction temperature of the semiconductor devices is estimated, and consequently three active thermal control methods are proposed and practically designed with respect to the following parameters: switching frequency, deceleration slope and modulation technique....... Finally, experimental results are provided in order to validate the effectiveness of the proposed control methods....
Comparison for the interfacial and wall friction models in thermal-hydraulic system analysis codes
International Nuclear Information System (INIS)
Hwang, Moon Kyu; Park, Jee Won; Chung, Bub Dong; Kim, Soo Hyung; Kim, See Dal
2007-07-01
The average equations employed in the current thermal hydraulic analysis codes need to be closed with the appropriate models and correlations to specify the interphase phenomena along with fluid/structure interactions. This includes both thermal and mechanical interactions. Among the closure laws, an interfacial and wall frictions, which are included in the momentum equations, not only affect pressure drops along the fluid flow, but also have great effects for the numerical stability of the codes. In this study, the interfacial and wall frictions are reviewed for the commonly applied thermal-hydraulic system analysis codes, i.e. RELAP5-3D, MARS-3D, TRAC-M, and CATHARE
Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint
Energy Technology Data Exchange (ETDEWEB)
Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad
2015-09-14
Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.
Thermal modelling. Preliminary site description. Forsmark area - version 1.2
Energy Technology Data Exchange (ETDEWEB)
Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)
2005-08-01
This report presents the thermal site descriptive model for the Forsmark area, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at canister scale has been modelled for two different lithological domains (RFM029 and RFM012, both dominated by granite to granodiorite (101057)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Two alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Forsmark area, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. Results indicate that the mean of thermal conductivity is expected to exhibit a small variation between the different domains, 3.46 W/(mxK) for RFM012 to 3.55 W/(mxK) for RFM029. The spatial distribution of the thermal conductivity does not follow a simple model. Lower and upper 95% confidence limits are based on the modelling results, but have been rounded of to only two significant figures. Consequently, the lower limit is 2.9 W/(mxK), while the upper is 3.8 W/(mxK). This is applicable to both the investigated domains. The temperature dependence is rather small with a decrease in thermal conductivity of 10.0% per 100 deg C increase in temperature for the dominating rock type. There are a number of important uncertainties associated with these results. One of the uncertainties considers the representative scale for the canister. Another important uncertainty is the methodological uncertainties associated with the upscaling of thermal conductivity from cm-scale to canister scale. In addition, the representativeness of rock samples is
Avila, Arturo
2011-01-01
The Standard JPL thermal engineering practice prescribes worst-case methodologies for design. In this process, environmental and key uncertain thermal parameters (e.g., thermal blanket performance, interface conductance, optical properties) are stacked in a worst case fashion to yield the most hot- or cold-biased temperature. Thus, these simulations would represent the upper and lower bounds. This, effectively, represents JPL thermal design margin philosophy. Uncertainty in the margins and the absolute temperatures is usually estimated by sensitivity analyses and/or by comparing the worst-case results with "expected" results. Applicability of the analytical model for specific design purposes along with any temperature requirement violations are documented in peer and project design review material. In 2008, NASA released NASA-STD-7009, Standard for Models and Simulations. The scope of this standard covers the development and maintenance of models, the operation of simulations, the analysis of the results, training, recommended practices, the assessment of the Modeling and Simulation (M&S) credibility, and the reporting of the M&S results. The Mars Exploration Rover (MER) project thermal control system M&S activity was chosen as a case study determining whether JPL practice is in line with the standard and to identify areas of non-compliance. This paper summarizes the results and makes recommendations regarding the application of this standard to JPL thermal M&S practices.