WorldWideScience

Sample records for thermal properties sintez

  1. Thermal properties

    Science.gov (United States)

    Roger M. Rowell

    2005-01-01

    The traditional question at the start of a class on thermal properties of wood is, “Does wood burn?” The students have all been warmed in front of a wood-burning fire before, so they are sure the answer is yes—but since the professor asked the question, there must be some hidden trick to the obvious answer. Going with their experience, their answer is “yes, wood burns...

  2. Thermal Properties Measurement Report

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hurley, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gofryk, Krzysztof [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fielding, Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knight, Collin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meyer, Mitch [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  3. Thermal Properties of oil sand

    Science.gov (United States)

    LEE, Y.; Lee, H.; Kwon, Y.; Kim, J.

    2013-12-01

    Thermal recovery methods such as Cyclic Steam Injection or Steam Assisted Gravity Drainage (SAGD) are the effective methods for producing heavy oil or bitumen. In any thermal recovery methods, thermal properties (e.g., thermal conductivity, thermal diffusivity, and volumetric heat capacity) are closely related to the formation and expansion of steam chamber within a reservoir, which is key factors to control efficiency of thermal recovery. However, thermal properties of heavy oil or bitumen have not been well-studied despite their importance in thermal recovery methods. We measured thermal conductivity, thermal diffusivity, and volumetric heat capacity of 43 oil sand samples from Athabasca, Canada, using a transient thermal property measurement instrument. Thermal conductivity of 43 oil sand samples varies from 0.74 W/mK to 1.57 W/mK with the mean thermal conductivity of 1.09 W/mK. The mean thermal diffusivity is 5.7×10-7 m2/s with the minimum value of 4.2×10-7 m2/s and the maximum value of 8.0×10-7 m2/s. Volumetric heat capacity varies from 1.5×106 J/m3K to 2.11×106 J/m3K with the mean volumetric heat capacity of 1.91×106 J/m3K. In addition, physical and chemical properties (e.g., bitumen content, electric resistivity, porosity, gamma ray and so on) of oil sand samples have been measured by geophysical logging and in the laboratory. We are now proceeding to investigate the relationship between thermal properties and physical/chemical properties of oil sand.

  4. Vesta surface thermal properties map

    Science.gov (United States)

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  5. Thermal properties of tetrahedral compounds

    International Nuclear Information System (INIS)

    Kagaya, H.M.; Soma, T.

    1987-01-01

    The thermal properties of tetrahedral compounds are studied theoretically from first principle using the lattice dynamical method recently developed. Numerical calculations about the specific heat are performed for AlP, AlAs, AlSb and about the thermal expansion coefficient for AlP, AlAs, AlSb, ZnS, ZnSe, ZnTe, and CdTe. (author)

  6. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  7. Thermal Properties of FOX-7

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K; Weese, R K; Wang, R; Kwok, Q M; Jones, D G

    2005-03-30

    Much effort has been devoted to an ongoing search for more powerful, safer and environmentally friendly explosives. Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. Preliminary results on the physical and chemical characterization of FOX-7 have shown that it possesses good thermal and chemical stability. It is expected that FOX-7 will be a new important explosive ingredient in high performance, insensitive munition (IM) explosives. One of the major focuses in research on this novel energetic material is a study of its thermal properties. Oestmark et al have reported that DSC curves exhibit two minor endothermic peaks as well as two major exothermic peaks. Two endothermic peaks at {approx}116 and {approx}158 C suggest the presence of two solid-solid phase transitions. A third phase change below 100 C has also been reported based on a X-ray powder diffraction (XPD) study. The shapes, areas and observed temperatures of the two decomposition peaks at {approx}235 C and {approx}280 C vary with different batches and sources of the sample, and occasionally these two peaks are merged into one. The factors leading to this variation and a more complete investigation are in progress. Our laboratories have been interested in the thermal properties of energetic materials characterized by means of various thermal analysis techniques. This paper will present our results for the thermal behavior of FOX-7 including the phase changes, decomposition, kinetic analysis and the decomposition products using DSC, TG, ARC (Accelerating Rate Calorimetry), HFC (Heat Flow Calorimetry) and simultaneous TGDTA-FTIR (Fourier Transform Infrared Spectroscopy) Spectroscopy-MS (Mass) measurements.

  8. Thermal properties of cesium molybdate

    International Nuclear Information System (INIS)

    Minato, Kazuo; Fukuda, Kousaku; Takano, Masahide; Sato, Seichi; Ohashi, Hiroshi

    1996-01-01

    Cesium is one of the most important fission products to aid in the understanding and prediction of the behavior of oxide nuclear fuels because of its high mobility, chemical reactivity, and large yield. In postirradiation examinations of the Phoenix reactor fuel pins, the accumulation of cesium and molybdenum between the fuel pellet and cladding was observed, though the chemical form was not determined. In the thermodynamic analyses of chemical states of fission products, Cs 2 MoO 4 was often predicted to exist as a stable compound in oxide fuels. The Cs 2 MoO 4 compound is thermodynamically stable under the conditions of light water reactors, fast breeder reactors, and high-temperature gas-cooled reactors. In the Cs-Mo-O system several phases have been found, and the structural and thermodynamic properties were studied. At room temperature, Cs 2 MoO 4 has an orthorhombic structure and a phase transition occurs at 841 K to a hexagonal structure. Both structures are expected to exist in the fuel, depending on the fuel temperature. However, no data has been available on the thermal properties of CS 2 MoO 4 . In the current work, the thermal expansion and thermal conductivity of Cs 2 MoO 4 were determined, which are the basic data needed to understand and predict the fuel/clad mechanical interaction and fuel temperature

  9. Thermal properties of two-dimensional materials

    International Nuclear Information System (INIS)

    Zhang Gang; Zhang Yong-Wei

    2017-01-01

    Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)

  10. Thermal properties of methyltrimethoxysilane aerogel thin films

    Directory of Open Access Journals (Sweden)

    Leandro N. Acquaroli

    2016-10-01

    Full Text Available Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m−1 K−1 and 9.8 × 10-9 m2 s−1. A model was used to identify the components (solid, gaseous and radiative of the total thermal conductivity of the aerogel.

  11. Laboratory measurements of rock thermal properties

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.

    The thermal properties of rocks are key elements in understanding and modelling the temperature field of the subsurface. Thermal conductivity and thermal diffusivity can be measured in the laboratory if rock samples can be provided. We have introduced improvements to the divided bar and needle...... probe methods to be able to measure both thermal conductivity and thermal diffusivity. The improvements we implement include, for both methods, a combination of fast numerical finite element forward modelling and a Markov Chain Monte Carlo inversion scheme for estimating rock thermal parameters...

  12. Thermal properties of defective fullerene

    Science.gov (United States)

    Li, Jian; Zheng, Dong-Qin; Zhong, Wei-Rong

    2016-09-01

    We have investigated the thermal conductivity of defective fullerene (C60) by using the nonequilibrium molecular dynamics (MD) method. It is found that the thermal conductivity of C60 with one defect is lower than the thermal conductivity of perfect C60. However, double defects in C60 have either positive or negative influence on the thermal conductivity, which depends on the positions of the defects. The phonon spectra of perfect and defective C60 are also provided to give corresponding supports. Our results can be extended to long C60 chains, which is helpful for the thermal management of C60.

  13. Thermal properties of heterogeneous fuels

    International Nuclear Information System (INIS)

    Staicu, D.; Beauvy, M.

    1998-01-01

    Fresh or irradiated nuclear fuels are composites or solid solutions more or less heterogeneous, and their thermal conductivities are strongly dependent on the microstructure. The effective thermal conductivities of these heterogeneous solids must be determined for the modelling of the behaviour under irradiation. Different methods (analytical or numerical) published in the literature can be used for the calculation of this effective thermal conductivity. They are analysed and discussed, but finally only few of them are really useful because the assumptions selected are often not compatible with the complex microstructures observed in the fuels. Numerical calculations of the effective thermal conductivity of various fuels based on the microstructure information provided in our laboratory by optical microscopy or electron micro-probe analysis images, have been done for the validation of these methods. The conditions necessary for accurate results on effective thermal conductivity through these numerical calculations are discussed. (author)

  14. Thermally stimulated properties of amber

    International Nuclear Information System (INIS)

    Bowlt, C.

    1983-01-01

    Thermoelectrets yielded thermally stimulated currents but radioelectrets could not be produced even following exposures of 16000 R of ionising radiation. It is concluded that the thermally stimulated currents are due to the depolarisation of dipoles, with activation energy of 1.4 +- 0.1 eV, rather than to discharge of trapped charge carriers. Amber exhibits thermal luminescence following exposure to light of lambda < 500 nm but not to ionising radiation after exposures up to 5500 R, indicating localised impurity/trap/recombination complexes in the specimen surface, with a trap depth of 1.5 +- 0.1 eV. (author)

  15. Synthesis, mechanical, thermal and chemical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. C V MYTHILI, A MALAR RETNA and S GOPALAKRISHNAN*. Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, India. MS received 28 August 2003; revised 19 February 2004.

  16. Thermal Properties of Metallic Nanowires: Modeling & Experiment

    Science.gov (United States)

    Stojanovic, Nenad; Berg, Jordan; Maithripala, Sanjeeva; Holtz, Mark

    2009-10-01

    Effects such as surface and grain boundary scattering significantly influence electrical and thermal properties of nanoscale materials with important practical implications for current and future electronics and photonics. Conventional wisdom for metals holds that thermal transport is predominantly by electrons and transport by phonons is negligible. This assumption is used to justify the use of the Wiedemann-Franz law to infer thermal conductivity based on measurements of electrical resistivity. Recently experiments suggest a breakdown of the Wiedemann-Franz law at the nanoscale. This talk will examine the assumption that thermal transport by phonons can be neglected. The electrical resistivities and thermal conductivities of aluminum nanowires of various sizes are directly measured. These values are used in conjunction with the Boltzmann transport equation to conclude that the Wiedemann-Franz law describes the electronic component of thermal conductivity, but that the phonon term must also be considered. A novel experimental device is described for the direct thermal conductivity measurements.

  17. Thermal to electricity conversion using thermal magnetic properties

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  18. Thermal properties of the Cobourg Limestone

    Science.gov (United States)

    Pitts, Michelle

    The underground storage of used nuclear fuel in Deep Geologic Repositories (DGRs) has been a subject of research in Canada for decades. One important technical aspect of repository design is the accommodation of the mechanical impacts of thermal inputs (heating) from the fuel as it goes through the remainder of its life cycle. Placement room spacing, a major factor in project cost, will be determined by the ability of the host rock to dissipate heat. The thermal conductivity and linear thermal expansion will determine the evolution of the temperature and thermally-induced stress fields. Thermal processes must be well understood to design a successful DGR. This thesis examines the thermal properties of rocks, how they are influenced by factors such as temperature, pressure, mineralogy, porosity, and saturation; and common methods for calculating and/or measuring these properties. A brief overview of thermal and thermally-coupled processes in the context of DGRs demonstrates the degree to which they would impact design, construction, and operation of these critical structures. Several case histories of major in situ heating experiments are reviewed to determine how the lessons learned could be applied to a Canadian Underground Demonstration Facility (UDF). A mineralogy investigation using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) examines samples of the Cobourg Limestone from the Bowmanville and Bruce sites, and demonstrates geographical variability within the Cobourg Formation. The thermal properties of samples from the Bowmanville site are determined. A divided bar apparatus was constructed and used to measure thermal conductivity. The temperature measurement component of the divided bar apparatus was used to measure linear thermal expansion. Finally, the past investigations into the thermal impact of a DGR are reviewed, and the implications of the laboratory testing results on similar analyses are discussed.

  19. Thermal Properties of Alaskan North Slope Soils.

    Science.gov (United States)

    Overduin, P. P.; Kane, D. L.

    2002-12-01

    Climatic processes important to permafrost formation, maintenance and degradation have an annual to millennial timescale. The thin active layer, vegetation and snow above the permafrost can exert considerable influence on permafrost stability and react more rapidly than permafrost to climatic shifts. The thermal properties of this layer are thus important for the interpretation of permafrost data. We seek to predict bulk properties of a porous multiphase media based on state variables, bulk material properties and spatial phase densities. In this study, our objectives are: 1) to test thermal diffusivity probes in the field for the assessment of phase density, in particular of volumetric ice content and 2) to corroborate field studies with laboratory determinations of phase density and thermal diffusivity. We measure thermal properties and phase densities of a range of soils from the Alaskan North Slope, including high organic content and fine-grained mineral soils. Liquid water content is measured using time domain reflectometry to constrain the composition of the multiphase soil. Additional measurements of the soil's state are made using thermistors, heat flux plates and radial heat dissipation probes. The latter are thin films with embedded heat pulse wire and thermopiles to measure the radial thermal gradient response to temperature change. We report changes in thermal conductivity and diffusivity during freezing and thawing, and at different moisture contents and temperatures. The results for thermal conductivity and diffusivity as a function of phase density under field conditions are compared to those measured in the lab and to those calculated using empirical models.

  20. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

    Directory of Open Access Journals (Sweden)

    Jackie D. Renteria

    2014-11-01

    Full Text Available We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

  1. Thermal properties of compacted pharmaceutical excipients.

    Science.gov (United States)

    Krok, Alexander; Vitorino, Nuno; Zhang, Jianyi; Frade, Jorge Ribeiro; Wu, Chuan-Yu

    2017-12-20

    Thermal properties of powders are critical material attributes that control temperature rise during tableting and roll compaction. In this study, various analytical methods were used to measure the thermal properties of widely used pharmaceutical excipients including microcrystalline cellulose (MCC) of three different grades (Avicel PH 101; Avicel PH 102 and Avicel DG), lactose and mannitol. The effect of relative density on the measured thermal properties was investigated by compressing the powders into specimen of different relative densities. Differential thermal analysis (DTA) was employed to explore endothermic or exothermic events in the temperature range endured during typical pharmaceutical manufacturing processes, such as tabletting and roll compaction. Thermogravimetric analysis (TGA) was performed to analyse the water/solvent content, either in the form as solvates or as loosely bound molecules on the particle surface. Thermal conductivity analysis (TCA) was conducted to measure thermal conductivity and volumetric heat capacity. It is shown that, for the MCC powders, almost no changes in morphology or structural changes were observed during heating to temperatures up to 200°C. An increase in relative density or temperature leads to a high thermal conductivity and the volumetric heat capacity. Among all MCC powders considered, Avicel DG showed the highest increase in thermal conductivity and the volumetric heat capacity, but this heat capacity was not sensitive to the measurement temperature. For lactose and mannitol, some endothermic events occurred during heating. The thermal conductivity increased with the increase in temperature and relative density. A model was also developed to describe the variation of the thermal conductivity and the volumetric heat capacity with the relative density and the temperature. It was shown that the empirical model can well predict the dependency of the thermal conductivity and the volumetric heat capacity on the

  2. Molecular shape and thermophysical properties of liquids. II. Thermal properties

    International Nuclear Information System (INIS)

    Adamenko, Yi.Yi.; Grigor'jev, A.M.; Kuzovkov, Yu.G.; Mironenko, O.K.

    2009-01-01

    Isobaric and isochoric heat capacities, thermal expansion coefficient and enthalpy of soft dumb-bell fluids were determined in Monte Carlo simulations in a wide range of reduced densities and pressures. Molecular nonsphericity influence on pressure dependencies of elastic thermal properties was analyzed.

  3. Thermal and physical properties of bakery products.

    Science.gov (United States)

    Baik, O D; Marcotte, M; Sablani, S S; Castaigne, F

    2001-07-01

    This article reviews the measurement techniques, prediction models, and data on thermo-physical properties of bakery products: specific heat, thermal conductivity, thermal diffusivity, and density. Over the last decade, investigation has focused more on thermo-physical properties of nonbread bakery products. Both commonly used and new measurement techniques for thermo-physical properties reported in the publication are presented with directions for their proper use. Data and prediction models are tabulated for the range of moisture content and temperature of the bakery products.

  4. Thermal properties of selected cheeses samples

    Directory of Open Access Journals (Sweden)

    Monika BOŽIKOVÁ

    2016-02-01

    Full Text Available The thermophysical parameters of selected cheeses (processed cheese and half hard cheese are presented in the article. Cheese is a generic term for a diverse group of milk-based food products. Cheese is produced throughout the world in wide-ranging flavors, textures, and forms. Cheese goes during processing through the thermal and mechanical manipulation, so thermal properties are one of the most important. Knowledge about thermal parameters of cheeses could be used in the process of quality evaluation. Based on the presented facts thermal properties of selected cheeses which are produced by Slovak producers were measured. Theoretical part of article contains description of cheese and description of plane source method which was used for thermal parameters detection. Thermophysical parameters as thermal conductivity, thermal diffusivity and volume specific heat were measured during the temperature stabilisation. The results are presented as relations of thermophysical parameters to the temperature in temperature range from 13.5°C to 24°C. Every point of graphic relation was obtained as arithmetic average from measured values for the same temperature. Obtained results were statistically processed. Presented graphical relations were chosen according to the results of statistical evaluation and also according to the coefficients of determination for every relation. The results of thermal parameters are in good agreement with values measured by other authors for similar types of cheeses.

  5. Thermal properties of polymers below 4 K.

    Science.gov (United States)

    Salinger, G. L.

    1972-01-01

    Obtained measurement data on the Debye contribution to the specific heat, the specific heat, and the thermal conductivity in polymers below 4 deg K are discussed. The results obtained suggest that impurities are responsible for the apparent thermal properties of polymers and glasses at low temperatures. In order to determine the intrinsic behavior of amorphous solids, measurements must be made at temperatures low enough to freeze out the local modes.

  6. Thermal entanglement properties of small spin clusters

    OpenAIRE

    Bose, Indrani; Tribedi, Amit

    2005-01-01

    Exchange interactions in spin systems can give rise to quantum entanglement in the ground and thermal states of the systems. In this paper, we consider a spin tetramer, with spins of magnitude 1/2, in which the spins interact via nearest-neighbour, diagonal and four-spin interactions of strength J1, J2 and K respectively. The ground and thermal state entanglement properties of the tetramer are calculated analytically in the various limiting cases. Signatures of quantum phase transition (QPT) ...

  7. Vibrational and Thermal Properties of Oxyanionic Crystals

    Science.gov (United States)

    Korabel'nikov, D. V.

    2018-03-01

    The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.

  8. Thermal remediation alters soil properties - a review.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Khan, Eakalak; Wick, Abbey F

    2018-01-15

    Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thermal and thermoelectric properties of graphene.

    Science.gov (United States)

    Xu, Yong; Li, Zuanyi; Duan, Wenhui

    2014-06-12

    The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermal properties of FOX-7

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.; Weese, R.K. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Wang, R.; Kwok, Q.S.M.; Jones, D.E.G. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2005-04-01

    FOX-7 refers to 1,1-diamino-2,2-dinitroethene, a new explosive ingredient used in high-performance, insensitive munition (IM) explosives. It was developed in the late 1990s in response to the need for a more powerful, safer and environmentally sound explosive. This paper presents the results of laboratory studies which examined the thermal behaviour of FOX-7 including phase changes, kinetic analysis and the decomposition products using differential scanning calorimetry (DSC), thermogravimetry (TG), accelerating rate calorimetry (ARC), heat flow calorimetry (HFC) and simultaneous TG-DTA-FTIR-MS measurements. This paper outlined the experimental procedures and summarized the 3 solid-solid phase transitions prior to chemical decomposition. The study showed that the total energy released from the 2-stage decomposition measured by DSC decreases somewhat as the heating rate increases. However, the more pronounced effect is the large reduction in the fraction of heat released in the first peak as the heating rate increases. Test results also suggest that pressure may be a controlling factor in the decomposition process of FOX-7. The results from the isothermal experiments were found to be in good agreement with results from the nonisothermal experiments. 11 refs., 4 tabs., 11 figs.

  11. Thermal Properties of Aliphatic Polypeptoids

    KAUST Repository

    Fetsch, Corinna

    2013-01-29

    A series of polypeptoid homopolymers bearing short (C1-C5) side chains of degrees of polymerization of 10-100 are studied with respect to thermal stability, glass transition and melting points. Thermogravimetric analysis of polypeptoids suggests stability to >200 °C. The study of the glass transition temperatures by differential scanning calorimetry revealed two dependencies. On the one hand an extension of the side chain by constant degree of polymerization decrease the glass transition temperatures (Tg) and on the other hand a raise of the degree of polymerization by constant side chain length leads to an increase of the Tg to a constant value. Melting points were observed for polypeptoids with a side chain comprising not less than three methyl carbon atoms. X-ray diffraction of polysarcosine and poly(N-ethylglycine) corroborates the observed lack of melting points and thus, their amorphous nature. Diffractograms of the other investigated polypeptoids imply that crystalline domains exist in the polymer powder. © 2013 by the authors.

  12. Structural, thermal and spectroscopic properties of supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 6. Structural, thermal and spectroscopic properties of supramolecular coordination solids ... trans-[M(NC5H4--CO2)2(OH2)4], participate in exhaustive hydrogen-bond formation among themselves to lead to a robust 3D supramolecular network in the solid ...

  13. Thermal Properties of Zeolite-Containing Composites.

    Science.gov (United States)

    Shimonosono, Taro; Hirata, Yoshihiro; Nishikawa, Kyohei; Sameshima, Soichiro; Sodeyama, Kenichi; Masunaga, Takuro; Yoshimura, Yukio

    2018-03-13

    A zeolite (mordenite)-pore-phenol resin composite and a zeolite-pore-shirasu glass composite were fabricated by hot-pressing. Their thermal conductivities were measured by a laser flash method to determine the thermal conductivity of the monolithic zeolite with the proposed mixing rule. The analysis using composites is useful for a zeolite powder with no sinterability to clarify its thermal properties. At a low porosity thermal conductivity of the composite was in excellent agreement with the calculated value for the structure with phenol resin or shirasu glass continuous phase. At a higher porosity above 40%, the measured value approached the calculated value for the structure with pore continuous phase. The thermal conductivity of the monolithic mordenite was evaluated to be 3.63 W/mK and 1.70-2.07 W/mK at room temperature for the zeolite-pore-phenol resin composite and the zeolite-pore-shirasu glass composite, respectively. The analyzed thermal conductivities of monolithic mordenite showed a minimum value of 1.23 W/mK at 400 °C and increased to 2.51 W/mK at 800 °C.

  14. The Thermal Properties of CM Carbonaceous Chondrites

    Science.gov (United States)

    Britt, D. T.; Opeil, C.

    2017-12-01

    The physical properties of asteroid exploration targets are fundamental parameters for developing models, planning observations, mission operations, reducing operational risk, and interpreting mission results. Until we have returned samples, meteorites represent our "ground truth" for the geological material we expect to interact with, sample, and interpret on the surfaces of asteroids. The physical properties of the volatile-rich carbonaceous chondrites (CI, C2, CM, and CR groups) are of particular interest because of their high resource potential. We have measured the thermal conductivity, heat capacity and thermal expansion of five CM carbonaceous chondrites (Murchison, Murray, Cold Bokkeveld, NWA 7309, Jbilet Winselwan) at low temperatures (5-300 K) to mimic the conditions in the asteroid belt. The mineralogy of these meteorites are dominated by abundant hydrous phyllosilicates, but also contain anhydrous minerals such as olivine and pyroxene found in chondrules. The thermal expansion measurements for all these CMs indicate a substantial increase in meteorite volume as temperature decreases from 230 - 210 K followed by linear contraction below 210 K. Such transitions were unexpected and are not typical for anhydrous carbonaceous chondrites or ordinary chondrites. Our thermal diffusivity results compare well with previous estimates for similar meteorites, where conductivity was derived from diffusivity measurements and modeled heat capacities; our new values are of a higher precision and cover a wider range of temperatures.

  15. Adsorption properties of thermally sputtered calcein film

    Science.gov (United States)

    Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.

    2014-05-01

    High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).

  16. Thermal radiation properties of PTFE plasma

    Science.gov (United States)

    Liu, Xiangyang; Wang, Siyu; Zhou, Yang; Wu, Zhiwen; Xie, Kan; Wang, Ningfei

    2017-06-01

    To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene (PTFE) as ablation materials, the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium (LTE) and optical thin assumptions. It is clarified that line radiation is the dominant mechanism of PTFE plasma. The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above 15 000 K. The emission coefficient increases with increasing temperature and pressure. Furthermore, it has a good log linear relation with pressure. Equivalent emissivity varies complexly with temperature, and has a critical point between 20 000 K to 25 000 K. The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.

  17. Thermal properties of an erythritol derivative

    Science.gov (United States)

    Trhlikova, Lucie; Prikryl, Radek; Zmeskal, Oldrich

    2016-06-01

    Erythritol (C4H10O4) is a sugar alcohol (or polyol) that is commonly used in the food industry. Its molar mass is 122.12 g.mol-1 and mass density 1450 kg.m-3. Erythritol, an odorless crystalline powder, can also be characterized by other physical parameters like melting temperature (121 °C) and boiling temperature (329 °C). The substance can be used for the accumulation of energy in heat exchangers based on various oils or water. The PlusICE A118 product manufactured by the PCM Products Ltd. company (melting temperature Θ = 118 °C, specific heat capacity cp = 2.70 kJ.K-1.kg-1, mass density 1450 kg.m-3, latent heat capacity 340 kJ.kg-1, volumetric heat capacity 493 MJ.m-3) is based on an erythritol-type medium. Thermal properties of the PlusICE A118 product in both solid and liquid phase were investigated for this purpose in terms of potential applications. Temperature dependences of its thermal parameters (thermal diffusivity, thermal conductivity, and specific heat) were determined using a transient (step-wise) method. A fractal model of heat transport was used for determination of the above thermal parameters. This model is independent of geometry and type of sample heating. Moreover, it also considers heat losses. The experiment confirmed the formerly declared value of phase change temperature, about 120 °C.

  18. Determining the Thermal Properties of Space Lubricants

    Science.gov (United States)

    Maldonado, Christina M.

    2004-01-01

    Many mechanisms used in spacecrafts, such as satellites or the space shuttle, employ ball bearings or gears that need to be lubricated. Normally this is not a problem, but in outer space the regular lubricants that are used on Earth will not function properly. Regular lubricants will quickly vaporize in the near vacuum of space. A unique liquid called a perfluoropolyalkylether (PFPE) has an extremely low vapor pressure, around l0(exp -10) torr at 20 C, and has been used in numerous satellites and is currently used in the space shuttle. Many people refer to the PFPEs as "liquid Teflon". PFPE lubricants however, have a number of problems with them. Lubricants need many soluble additives, especially boundary and anti-wear additives, in them to function properly. All the regular known boundary additives are insoluble in PFPEs and so PFPEs lubricate poorly under highly loaded conditions leading to many malfunctioning ball bearings and gears. JAXA, the Japanese Space Agency, is designing and building a centrifuge rotor to be installed in the International Space Station. The centrifuge rotor is part of a biology lab module. They have selected a PFPE lubricant to lubricate the rotor s ball bearings and NASA bearing experts feel this is not a wise choice. An assessment of the centrifuge rotor design is being conducted by NASA and part of the assessment entails knowing the physical and thermal properties of the PFPE lubricant. One important property, the thermal diffusivity, is not known. An experimental apparatus was set up in order to measure the thermal diffusivity of the PFPE. The apparatus consists of a constant temperature heat source, cylindrical Pyrex glassware, a thermal couple and digital thermometer. The apparatus was tested and calibrated using water since the thermal diffusivity of water is known.

  19. Hysteric behaviour of thermal properties on porous media

    International Nuclear Information System (INIS)

    Rubio, C. M.; Josa, R.; Cobos, D.; Campbell, C.; Ferrer, F.

    2009-01-01

    In order to partly fill the thermal soil properties studies, we focused this work in the relation between thermal and hydrodynamic soil properties for several soil textural classes. This study was divided in two different objective; (i) to determine and to analyze soil thermal and hydrodynamic properties, and (ii) to explore the impacts of hysteresis on soil thermal properties under experimental controlled conditions. Samples were obtained from Llobregat delta plain (Spain). To measure soil thermal properties, simple needle sensors were used. The samples were repacked in a soil column device. Volumetric water content and thermal conductivity were monitored continuously. The results allowed a rather complete understanding of the relation between thermal and hydrodynamic properties at laboratory scale for silt loam soils. Differences in thermal properties at a given water content were interpreted as a results of different hysteretic paths observed, arising in turn from different wetting and drying processes. (Author) 14 refs.

  20. Thermal power sludge – properties, treatment, utilization

    Directory of Open Access Journals (Sweden)

    Martin Sisol

    2005-11-01

    Full Text Available In this paper a knowledge about properties of thermal power sludge from coal combustion in smelting boilers is presented. The physical and technological properties of slag – granularity, density, specific, volume and pouring weight, hardness and decoupling – together with chemical properties influence its exploitation. The possibility of concentrating the Fe component by the mineral processing technologies (wet low-intenzity magnetic separation is verified. An industrial use of the slag in civil engineering, e.g. road construction, was realised. The slag-fly ashes are directly utilized in the cement production as a substitute of a part of natural raw materials. For the use of slag as the stoneware in the road construction, all the criteria are fulfilled.

  1. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  2. Study of Thermal Properties of Cast Metal- Ceramic Composite Foams

    OpenAIRE

    Gawdzińska K.; Chybowski L.; Przetakiewicz W.

    2017-01-01

    Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC). A certificate of non-combustibil...

  3. Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation

    International Nuclear Information System (INIS)

    Hong, Seok Min; Lee, Jang Il; Byun, Jae Ki; Choi, Young Don

    2014-01-01

    Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties

  4. Thermal property testing technique on micro specimen

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Kishimoto, Isao; Taketoshi, Naoyuki

    2000-01-01

    This study aims at establishment of further development on some testing techniques on the nuclear advanced basic research accumulated by the National Research Laboratory of Metrology for ten years. For this purpose, a technology to test heat diffusion ratio and specific heat capacity of less than 3 mm in diameter and 1 mm in thickness of micro specimen and technology to test heat diffusion ratio at micro area of less than 1 mm in area along cross section of less than 10 mm in diameter of column specimen were developed to contribute to common basic technology supporting the nuclear power field. As a result, as an element technology to test heat diffusion ratio and specific heat capacity of the micro specimen, a specimen holding technique stably to hold a micro specimen with 3 mm in diameter could be developed. And, for testing the specific heat capacity by using the laser flush differential calorimetry, a technique to hold two specimen of 5 mm in diameter at their proximities was also developed. In addition, by promoting development of thermal property data base capable of storing thermal property data obtained in this study and with excellent workability in this 1998 fiscal year a data in/out-put program with graphical user interface could be prepared. (G.K.)

  5. Some Physco-thermal properties of Rice Bran | Obetta | Global ...

    African Journals Online (AJOL)

    Some of these properties were combined for study on their effect on thermal conductivity which was one of the thermal properties studied. Mean values of the thermal conductivity determined ranged from 0.2456 to 0.5764 W/m oC depending on the moisture content of the raw rice bran and the variety. The two major varieties ...

  6. Boron nitride elastic and thermal properties. Irradiation effects

    International Nuclear Information System (INIS)

    Jager, Bernard.

    1977-01-01

    The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C 33 and C 44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation [fr

  7. Thermal properties of hemp fibre non-woven materials

    Science.gov (United States)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-12-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies - thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used - Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised.

  8. Thermal properties of hemp fibre non-woven materials

    International Nuclear Information System (INIS)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-01-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies – thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used – Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised

  9. Investigation Of Thermal Properties Of Naturally Seasoned Dry ...

    African Journals Online (AJOL)

    Steady-state thermal conductivity measurements of naturally seasoned African thorn tree (Macaranga barteri) timer boards were carried out. Other thermal and physical properties such as specific heat capacity, thermal resistivity, density, thermal absorptivity and diffusivity as well as percentage of dead air space (v/v) were ...

  10. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  11. Optical and Thermal Properties of In2S3

    Directory of Open Access Journals (Sweden)

    Faycel Saadallah

    2011-01-01

    Full Text Available Photothermal deflection spectroscopy (PDS is carried out in order to investigate thermal and optical properties of Al doped In2S3. The influence of thermal annealing on its gap energy as well as its thermal properties is revealed. In this way, we notice that thermal conductivity is increased and the gap energy is reduced. These features are probably due to the improvement of the crystalline structure of the sample.

  12. CW 316 mechanical properties during thermal transients

    International Nuclear Information System (INIS)

    Cauvin, R.; Boutard, J.L.; Allegraud, G.

    1984-06-01

    During in pile incidents, the cladding can experience higher temperatures than the nominal one; it is necessary to know the mechanical properties of the cladding material during such thermal transients to predict the time and location of rupture. Two types of tests have been developed: first tensile (constant strain rate) tests after a heating at a constant rate and secondly constant load tests where heating is performed until rupture occurs. The tensile tests clearly show the role of the heating rate: the higher is the heating rate, the lower is the cold work recovery. Constant load tests were conducted with either uniaxial or biaxial (burst tests) loading. The same stress/failure temperature relation is found in both types of loading using the Von Mises equivalent stress. To predict failure, the Larson Miller parameter is not adequate, as well as all parameters based on a time/temperature equivalence. The yield stress measured in the two types of tests are very different probably due to a strain rate effect. Indeed the tensile tests are dynamic ones to avoid thermal recovery during the test duration, while the strain rate measured in constant load tests ranges only from 10 -5 s -1 to 10 -3 s -1 , being an increasing function of heating rate (ranging from 1 0 c/s to 100 0 c/s)

  13. Thermal insulation materials for inside applications: Hygric and thermal properties

    Science.gov (United States)

    Jerman, Miloš; Černý, Robert

    2017-11-01

    Two thermal insulation materials suitable for the application on the interior side of historical building envelopes, namely calcium silicate and polyurethane-based foam are studied. Moisture diffusivity and thermal conductivity of both materials, as fundamental moisture and heat transport parameters, are measured in a dependence on moisture content. The measured data will be used as input parameters in computer simulation studies which will provide moisture and temperature fields necessary for an appropriate design of interior thermal insulation systems.

  14. Thermal properties of UO2 - Gd2O3 fuel

    International Nuclear Information System (INIS)

    Kim, G. S.; Yang, J. H.; Kang, K. W.; Kim, Y. M.; Song, G. W.

    2000-01-01

    The thermal properties (thermal conductivity, oxygen potential and thermal expansion) of UO 2 -Gd 2 O 3 fuels were measured by the laser-flash, TGA and dilatometry method. The thermal conductivity decreased with Gd content, but the oxygen potential and thermal expansion increased with Gd content. Substitution of Gd +3 ion in UO 2 structure increases the scattering site for thermal phonon propagation and thereby decreases the thermal conductivity. The oxygen potential of Gd-doped UO 2 increase mainly because the Gd +3 ions, which are inert to oxidation, make it difficult for oxygen interstitials to access just near them

  15. Constraining Non-thermal and Thermal properties of Dark Matter

    Directory of Open Access Journals (Sweden)

    Bhupal eDev

    2014-05-01

    Full Text Available We describe the evolution of Dark Matter (DM abundance from the very onset of its creation from inflaton decay under the assumption of an instantaneous reheating. Based on the initial conditions such as the inflaton mass and its decay branching ratio to the DM species, the reheating temperature, and the mass and interaction rate of the DM with the thermal bath, the DM particles can either thermalize (fully/partially with the primordial bath or remain non-thermal throughout their evolution history. In the thermal case, the final abundance is set by the standard freeze-out mechanism for large annihilation rates, irrespective of the initial conditions. For smaller annihilation rates, it can be set by the freeze-in mechanism which also does not depend on the initial abundance, provided it is small to begin with. For even smaller interaction rates, the DM decouples while being non-thermal, and the relic abundance will be essentially set by the initial conditions. We put model-independent constraints on the DM mass and annihilation rate from over-abundance by exactly solving the relevant Boltzmann equations, and identify the thermal freeze-out, freeze-in and non-thermal regions of the allowed parameter space. We highlight a generic fact that inflaton decay to DM inevitably leads to an overclosure of the Universe for a large range of DM parameter space, and thus poses a stringent constraint that must be taken into account while constructing models of DM. For the thermal DM region, we also show the complementary constraints from indirect DM search experiments, Big Bang Nucleosynthesis, Cosmic Microwave Background, Planck measurements, and theoretical limits due to the unitarity of S-matrix. For the non-thermal DM scenario, we show the allowed parameter space in terms of the inflaton and DM masses for a given reheating temperature, and compute the comoving free-streaming length to identify the hot, warm and cold DM regimes.

  16. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)

    2017-04-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  17. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City College of New York, NY (United States)

    2016-05-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  18. On sound absorption and thermal properties of non-wovens

    Directory of Open Access Journals (Sweden)

    Chen Jin-Jing

    2015-01-01

    Full Text Available Non-woven is widely used as auxiliary materials of automobile industry due to its excellent sound absorption capability and good thermal property. The paper concludes that its density greatly affects sound absorption and thermal resistance, and an aluminum evaporated film can enhance the thermal resistance.

  19. On sound absorption and thermal properties of non-wovens

    OpenAIRE

    Chen Jin-Jing; Yu Hong-Qin; Guo Zheng; You Jin-Zhang; Song Wen-Fang

    2015-01-01

    Non-woven is widely used as auxiliary materials of automobile industry due to its excellent sound absorption capability and good thermal property. The paper concludes that its density greatly affects sound absorption and thermal resistance, and an aluminum evaporated film can enhance the thermal resistance.

  20. Experimental Determination of Some Thermal Properties of Raphia ...

    African Journals Online (AJOL)

    The thermal properties - thermal conductivity, specific heat capacity and viscosity of raphia gum are studied experimentally. The results show that thermal conductivity varies from 0.0164 to 0.0403 (W/mok) for moisture content and temperature ranging from 59.77 to 93.13% (W.b) and 40 to 80 (oC) respectively. The specific ...

  1. Thermal-Insulation Properties of Multilayer Textile Packages

    Directory of Open Access Journals (Sweden)

    Matusiak Małgorzata

    2014-12-01

    Full Text Available Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.

  2. SOME MOISTURE DEPENDENT THERMAL PROPERTIES AND ...

    African Journals Online (AJOL)

    The thermal heat conductivity, specific heat capacity, thermal heat diffusivity and bulk density of Prosopis africana seeds were determined as a function of moisture content. Specific heat capacity was measured by the method of mixture while the thermal heat conductivity was measured by the guarded hot plate method.

  3. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  4. Thermal properties of WC-10 wt. (% Co alloys

    Directory of Open Access Journals (Sweden)

    Francisco de Assis Léo Machado

    2008-03-01

    Full Text Available In this article, photothermal techniques were used in order to determine some thermal properties: diffusivity, conductivity, effusivity and specific heat capacity of WC-10 wt. (% Co six samples subjected to different sintering processes. The samples were sintered using high pressure - high temperature (HPHT sintering system. The open cell photoacoustic (OPC used to measure thermal diffusivity is described in detail. The values of thermal properties here measured and evaluated are consistent to those previously reported in the literature.

  5. Thermal Coatings Seminar Series Training Part 1: Properties of Thermal Coatings

    Science.gov (United States)

    Triolo, Jack

    2015-01-01

    This course will present an overview of a variety of thermal coatings-related topics, including: coating types and availability, thermal properties measurements, environmental testing (lab and in-flight), environmental impacts, contamination impacts, contamination liabilities, determination of BOLEOL values, and what does specularity mean to the thermal engineer.

  6. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)]. E-mail: asari@gop.edu.tr

    2006-06-15

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period.

  7. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2006-01-01

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period

  8. Method for measuring thermal properties using a long-wavelength infrared thermal image

    Science.gov (United States)

    Walker, Charles L [Albuquerque, NM; Costin, Laurence S [Albuquerque, NM; Smith, Jody L [Albuquerque, NM; Moya, Mary M [Albuquerque, NM; Mercier, Jeffrey A [Albuquerque, NM

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  9. Simultaneous reconstruction of thermal degradation properties for anisotropic scattering fibrous insulation after high temperature thermal exposures

    International Nuclear Information System (INIS)

    Zhao, Shuyuan; Zhang, Wenjiao; He, Xiaodong; Li, Jianjun; Yao, Yongtao; Lin, Xiu

    2015-01-01

    To probe thermal degradation behavior of fibrous insulation for long-term service, an inverse analysis model was developed to simultaneously reconstruct thermal degradation properties of fibers after thermal exposures from the experimental thermal response data, by using the measured infrared spectral transmittance and X-ray phase analysis data as direct inputs. To take into account the possible influence of fibers degradation after thermal exposure on the conduction heat transfer, we introduced a new parameter in the thermal conductivity model. The effect of microstructures on the thermal degradation parameters was evaluated. It was found that after high temperature thermal exposure the decay rate of the radiation intensity passing through the material was weakened, and the probability of being scattered decreased during the photons traveling in the medium. The fibrous medium scattered more radiation into the forward directions. The shortened heat transfer path due to possible mechanical degradation, along with the enhancement of mean free path of phonon scattering as devitrification after severe heat treatment, made the coupled solid/gas thermal conductivities increase with the rise of heat treatment temperature. - Highlights: • A new model is developed to probe conductive and radiative properties degradation of fibers. • To characterize mechanical degradation, a new parameter is introduced in the model. • Thermal degradation properties are reconstructed from experiments by L–M algorithm. • The effect of microstructures on the thermal degradation parameters is evaluated. • The analysis provides a powerful tool to quantify thermal degradation of fiber medium

  10. Serrated magnetic properties in metallic glass by thermal cycle

    International Nuclear Information System (INIS)

    Ri Myong-Chol; Sohrabi, Sajad; Ding Da-Wei; Wang Wei-Hua; Dong Bang-Shao; Zhou Shao-Xiong

    2017-01-01

    Fe-based metallic glasses (MGs) with excellent soft magnetic properties are applicable in a wide range of electronic industry. We show that the cryogenic thermal cycle has a sensitive effect on soft magnetic properties of Fe 78 Si 9 B 13 glassy ribbon. The values of magnetic induction (or magnetic flux density) B and coercivity H c show fluctuation with increasing number of thermal cycles. This phenomenon is explained as thermal-cycle-induced stochastically structural aging or rejuvenation which randomly fluctuates magnetic anisotropy and, consequently, the magnetic induction and coercivity. Overall, increasing the number of thermal cycles improves the soft magnetic properties of the ribbon. The results could help understand the relationship between relaxation and magnetic property, and the thermal cycle could provide an effective approach to improving performances of metallic glasses in industry. (paper)

  11. Thermal properties of nonstoichiometry uranium dioxide

    Science.gov (United States)

    Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.

    2016-04-01

    In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.

  12. Study RELAP5 Helium Properties for HTGR Thermal Hydraulic Analysis

    Science.gov (United States)

    Widodo, Surip; Rohanda, Anis; Subekti, Muhammad; Setiadipura, Topan; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    The system codes non-specific for HTGR such as RELAP5 has been utilized for HTGR thermal hydraulic analysis even helium gas property is not based on KTA 3102.1. However, those RELAP5 applications for HTGR above are merely based on the assumption that RELAP5 helium properties are comparable to the helium properties in the KTA 3102.1. Therefore, the study for comparing the helium properties used in RELAP5 and the helium properties in KTA 3102.1 is required. The objective of this paper is to study the appropriateness’ helium properties in RELAP5 code for high temperature gas reactor (HTGR) thermal hydraulic analysis. There has been an inclined interest in the scientific community in the study of the application RELAP5 for HTGR thermal hydraulic analysis. The KTA 3102.1 provides the helium properties that are the most commonly use for the HTGR thermal hydraulic analysis. For this study, the RELAP5 helium properties are compared with the helium properties in KTA 3102.1. The comparison results showed that the RELAP5 helium properties are satisfactory for the HTGR thermal hydraulic analysis.

  13. Electronic, thermal and mechanical properties of carbon nanotubes.

    Science.gov (United States)

    Dresselhaus, M S; Dresselhaus, G; Charlier, J C; Hernández, E

    2004-10-15

    A review of the electronic, thermal and mechanical properties of nanotubes is presented, with particular reference to properties that differ from those of the bulk counterparts and to potential applications that might result from the special structure and properties of nanotubes. Both experimental and theoretical aspects of these topics are reviewed.

  14. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    Science.gov (United States)

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  15. Contribution to the thermal properties of selected steels

    Directory of Open Access Journals (Sweden)

    P. Jonšta

    2015-01-01

    Full Text Available The paper deals with the influence of structural changes on heat transport phenomena of steels samples. Three samples of 10GN2MFA steel were thermally treated at quenching temperatures equal to 900 °C, 1 000 °C and 1 100 °C, and temperature of the tempering was 670 °C. Both thermal diffusivity and thermal conductivity increase with the quenching temperature. Specific heat capacity of steel samples after thermal treatment does not change significantly. Further three different high manganese steels were measured. Maximal content of Mn and C was 27 and 0,5 mass percent. From results of thermophysical properties after ageing, one can see the increase of thermal diffusivity up to 20 percent, thermal conductivity up to 15 percent, decrease of specific heat capacity is not significant. All measured values of thermophysical properties are in good agreement with literary data (before ageing.

  16. First-principles study of thermal properties of borophene.

    Science.gov (United States)

    Sun, Hongyi; Li, Qingfang; Wan, X G

    2016-06-01

    Very recently, a new single-element two-dimensional (2D) material borophene was successfully grown on a silver surface under pristine ultrahigh vacuum conditions which attracts tremendous interest. In this paper, the lattice thermal conductivity, phonon lifetimes, thermal expansion and temperature dependent elastic moduli of borophene are systematically studied by using first-principles. Our simulations show that borophene possesses unique thermal properties. Strong phonon-phonon scattering is found in borophene, which results in its unexpectedly low lattice thermal conductivity. Thermal expansion coefficients along both the armchair and zigzag directions of borophene show impressive negative values. More strikingly, the elastic moduli are sizably strengthened as temperature increases, and the negative in-plane Poisson's ratios are found along both the armchair and zigzag directions at around 120 K. The mechanisms of these unique thermal properties are also discussed in this paper.

  17. Effects of nanosized constriction on thermal transport properties of graphene

    Science.gov (United States)

    2014-01-01

    Thermal transport properties of graphene with nanosized constrictions are investigated using nonequilibrium molecular dynamics simulations. The results show that the nanosized constrictions have a significant influence on the thermal transport properties of graphene. The thermal resistance of the nanosized constrictions is on the order of 107 to 109 K/W at 150 K, which reduces the thermal conductivity by 7.7% to 90.4%. It is also found that the constriction resistance is inversely proportional to the width of the constriction and independent of the heat current. Moreover, we developed an analytical model for the ballistic thermal resistance of the nanosized constrictions in two-dimensional nanosystems. The theoretical prediction agrees well with the simulation results in this paper, which suggests that the thermal transport across the nanosized constrictions in two-dimensional nanosystems is ballistic in nature. PACS 65.80.CK; 61.48.Gh; 63.20.kp; 31.15.xv PMID:25232292

  18. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  19. Estimation technique on thermal properties data of reactor materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1998-01-01

    This study aims at rapid measurement of thermal properties (thermal conductivity, thermal diffusivity, specific heat capacity, and emissivity) with the highest precision and till ultra high temperature in the world under identifying high temperature materials expected at reactor engineering in future such as plasma facing materials of nuclear fusion reactor. It was conducted by setting some sub-theme such as highly precise measurement and characterization of thermal properties, estimation technique of their data. Thus, precise measurement on specific heat capacity of meso-phase graphite was conducted. Between those at 1000degC and 3000degC a difference of about 5% was observed. As a result, it was found that it was required for highly precise estimation of thermal property data to consider value of the specific heat capacity. (G.K.)

  20. Thermal Transport Properties of Dry Spun Carbon Nanotube Sheets

    Directory of Open Access Journals (Sweden)

    Heath E. Misak

    2016-01-01

    Full Text Available The thermal properties of carbon nanotube- (CNT- sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an IR Camera. The heat flux of CNT-sheet was compared to that of copper, and it was found that the CNT-sheet has significantly higher specific heat transfer properties compared to those of copper. CNT-sheet is a potential candidate to replace copper in thermal transport applications where weight is a primary concern such as in the automobile, aircraft, and space industries.

  1. experimental determination of some thermal properties of raphia ...

    African Journals Online (AJOL)

    NIJOTECH

    Introduction. A knowledge of thermal properties of materials is one which is frequently desired in many areas of engineering applications. A few of such areas include thermal storage for low temperature application, equipment design, insulation for refrigeration and air-conditioning technology. The raphia palm known as ...

  2. Preparation and investigations of thermal properties of copper oxide ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 2. Preparation and investigations of thermal properties of copper oxide, aluminium oxide and graphite based on new organic phase change material for thermal energy storage. Murat Genc Betul Inci Zuhal Karagoz Genc Canan Aksu Canbay Memet Sekercı.

  3. Preparation and investigations of thermal properties of copper oxide ...

    Indian Academy of Sciences (India)

    EDX) and scan- ning electron microscope (SEM) were used to determine the chemical structure, crystalloid phase, chemical com- position and microstructure of the composites, respectively. The thermal properties were investigated by differen-.

  4. Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only

  5. Thermal treatment of natural goethite: Thermal transformation and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haibo [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia); Chen, Tianhu, E-mail: chentianhu@hfut.edu.cn [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Zou, Xuehua; Qing, Chengsong [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia)

    2013-09-20

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier.

  6. Thermal treatment of natural goethite: Thermal transformation and physical properties

    International Nuclear Information System (INIS)

    Liu, Haibo; Chen, Tianhu; Zou, Xuehua; Qing, Chengsong; Frost, Ray L.

    2013-01-01

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier

  7. Investigation of electrical and thermal properties of carbon nanotube interconnects

    OpenAIRE

    Todri-Sanial , Aida

    2016-01-01

    International audience; Carbon nanotubes (CNTs) present themselves as a viable material for on-and off-chip interconnect material due to their unique electrical, thermal and mechanical properties. The electrothermal properties of CNTs, including high Young's modulus, resiliency and low thermal expansion coefficient offer great advantage for reliable and strong interconnects, and even more so for local and global on-chip interconnects. With aggressive scaling, on-chip interconnects contribute ...

  8. Dependence of Glass Mechanical Properties on Thermal and Pressure History

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauchy, Mathieu

    -equilibrium material, the structure and properties of glass depend not only on its composition, but also on its thermal and pressure histories. Here we review our recent findings regarding the thermal and pressure history dependence of indentation-derived mechanical properties of oxide glasses.......Predicting the properties of new glasses prior to manufacturing is a topic attracting great industrial and scientific interest. Mechanical properties are currently of particular interest given the increasing demand for stronger, thinner, and more flexible glasses in recent years. However, as a non...

  9. Estimation of radiative properties of thermal protective clothing

    International Nuclear Information System (INIS)

    Udayraj; Talukdar, Prabal; Das, Apurba; Alagirusamy, Ramasamy

    2016-01-01

    Highlights: • Absorption and scattering coefficients of thermal protective fabrics are determined. • Genetic algorithm is applied for the inverse estimation. • Effects of pyrolysis of fabrics on radiative properties are analyzed. • Radiative properties of different layers of protective clothing are determined. - Abstract: Thermal protective clothing provides more safety and time to allow wearer to complete task or escape from external high heat or fire exposures. Radiation heat transfer is significant in such high temperature conditions. In the present work, radiative properties of various fabrics used for thermal protective clothing are estimated. Experimentally measured spectral directional–hemispherical reflectance and transmittance data available from literature are used to predict some of the radiative properties. A coupled finite volume radiative transfer equation solver along with genetic algorithm is used for this purpose. Radiative properties of some commonly used fabrics in thermal protective clothing at various heat source temperatures are predicted. Effects of pyrolysis on these properties are also analyzed. It is found that the extinction coefficient of the outermost layer of thermal protective clothing is very high as compared to the other inner layers, and it plays a significant role in blocking heat transfer to the skin. Scattering in fabrics used for thermal protective clothing is also found significant.

  10. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2011-01-15

    This study deals with preparation, characterization, thermal properties and thermal reliability of n-eicosane microcapsules as novel phase change material (PCM) for thermal energy storage. The microcapsulated PCMs were prepared by coating n-eicosane with polymethylmethacrylate (PMMA) shell. Fourier transform infrared (FT-IR), scanning electron microscope (SEM) and particle size distribution (PSD) analysis were used to characterize the PMMA/eicosane microcapsules as microcapsulated PCMs. The PSD analysis indicated that the average diameter of microcapsules was found to be 0.70 {mu}m under the stirring speed of 2000 rpm. Thermal properties and thermal reliability of the microcapsules were determined using differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) methods. From DSC analysis, the melting and freezing temperatures and the latent heats of the microcapsules were measured as 35.2 C and 34.9 C, 84.2 and -87.5 J/g, respectively. TGA analysis indicated that PMMA/eicosane microcapsules degrade in three steps at considerably high temperatures. Accelerated thermal cycling tests have been also applied to show the thermal reliability of the microcapsules. All results showed that thermal properties make the PMMA/eicosane microcapsules potential PCM for thermal energy storage. (author)

  11. Use of thermal-inertia properties for material identification

    Science.gov (United States)

    Schieldge, J. P.; Kahle, A. B.; Alley, R. E.; Gillespie, A. R.

    1980-01-01

    It is noted that a knowledge of the thermal inertia of the earth's surface can be used in geologic mapping as a complement to surface reflectance data as provided by Landsat. Thermal inertia, which is a body property, cannot be determined directly but can be inferred from radiation temperature measurements made at various times in the diurnal heating cycle, combined with a model of the surface heating processes. A model of this type is developed and applied along with temperature measurements made in the field and by satellite to determine thermal properties of surface materials. An example from a test site in western Nevada is used to demonstrate the utility of this technique.

  12. SYNTHESIS, SPECTRAL AND THERMAL PROPERTIES OF SOME ...

    African Journals Online (AJOL)

    The infrared spectral studies reveal that the ligand HNAAPTS is coordinated in neutral tridentate (N,N,S) fashion. The coordination number of Th(IV) in these coordination compounds varies from 6, 8, 10 or 11; while for U(VI) the coordination number are 8, 9 or 10. Thermal stabilities of these complexes were investigated ...

  13. Mesophase properties after anthracene thermal exposure

    Czech Academy of Sciences Publication Activity Database

    Šugárková, Věra; Plevová, Eva; Kaloč, M.

    -, - (2008), s. 62-70. ISBN 978-80-248-1939-6 Grant - others:GA ČR GA105/00/1698 Institutional research plan: CEZ:AV0Z30860518 Keywords : mesophase * anthracene * thermal behaviour * anisotropy Subject RIV: CC - Organic Chemistry

  14. Mechanical and thermal properties of prepacked aggregate ...

    Indian Academy of Sciences (India)

    Hossein Mohammadhosseini

    Use of pozzolanic materials in conventional concrete has become increasingly extensive, and this trend is expected to continue in PAC as well. Palm oil fuel ... POFA is beneficial, particularly for prepacked mass concrete where thermal cracking due to extreme heat rise is ... POFA is an agro-industrial waste that contains a.

  15. Influence of molybdenum on thermal properties of CMCs

    International Nuclear Information System (INIS)

    Khan, A.A.; Labbe, J.C.

    1996-01-01

    Aluminum nitride (AlN) has received considerable attention in recent years because of its high thermal conductivity. AlN is currently used in thermal management applications. AlN single crystals have a thermal conductivity as high as 320 W·m -1 ·K -1 , whereas the thermal conductivity of polycrystalline AlN varies from 80 to 200 W· -1 ·K -1 , depending on the microstructure and composition of the sintered ceramic. Conventional AlN ceramics, however, do not exhibit thermal conductivity as high as expected because of their relatively low purity and sinterability. Purity, particle-size distribution, oxygen content and specific surface area affect sinterability and thermal properties of AlN. It is difficult to produce pure AlN powder and dense, sintered AlN materials that are free from oxygen impurities. The effect of adding a ductile metallic phase (aluminum) to improve the mechanical behavior of AlN is therefore studied. Aluminum, because of its low melting point, degrades the mechanical properties of AlN at high temperatures. A refractory metal with high thermal conductivity is the best choice as a second phase additive. The influence of molybdenum addition on the thermal properties of AlN has been studied

  16. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ganiu B. Olowojoba

    2016-01-01

    Full Text Available Abstract Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %, tensile and storage moduli (more than 13 % were recorded with the addition of 2 wt% of rGO.

  17. THERMAL PROPERTIES OF PARTICULATE EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    Vasile BRIA

    2010-06-01

    Full Text Available The combination of a filler with a polymer results in a new material with changed properties. Some of these changes are advantageous while others are less favorable. Polymeric dispersions of nanometer-sized metal particles offer the possibility of functionalizing the polymer by properties coming from the large number of surface atoms and the quantum-size effects. Nanosized metals show properties that differ significantly from that of bulk metals, which makes these nano-composite systems intriguing for scientific study and potentially useful for a number of technological applications. This study is about changing the epoxy properties using appropriate fillers.

  18. Thermal characterization and properties of a copper-diamond composite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chavez, Thomas P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DiAntonio, Christopher Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coker, Eric Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The thermal properties of a commercial copper-diamond composite were measured from below -50°C to above 200°C. The results of thermal expansion, heat capacity, and thermal diffusivity were reported. These data were used to calculate the thermal conductivity of the composite as a function of temperature in the thickness direction. These results are compared with estimated values based on a simple mixing rule and the temperature dependence of these physical properties is represented by curve fitting equations. These fitting equations can be used for thermal modeling of practical devices/systems at their operation temperatures. The results of the mixing rule showed a consistent correlation between the amount of copper and diamond in the composite, based on density, thermal expansion, and heat capacity measurements. However, there was a disparity between measured and estimated thermal diffusivity and thermal conductivity. These discrepancies can be caused by many intrinsic material issues such as lattice defects and impurities, but the dominant factor is attributed to the large uncertainty of the interfacial thermal conductance between diamond and copper.

  19. Thermal Properties of Polymethyl Methacrylate Composite Containing Copper Nanoparticles.

    Science.gov (United States)

    Yu, Wei; Xie, Huaqing; Xin, Sha; Yin, Junshan; Jiang, Yitong; Wang, Mingzhu

    2015-04-01

    Thermal functional Materials have wide applications in thermal management fields, and inserting highly thermal conductive materials is effective in enhancing thermal conductivity of matrix. In this paper, copper nanoparticles were selected as the additive to prepare polymethyl methacrylate (PMMA) based nanocomposite with enhanced thermal properties. Uniform copper nanoparticles with pure face-centered lattice were prepared by liquid phase reduction method. Then, they were added into PMMA/N, N-Dimethylmethanamide (DMF) solution according to the different mass fraction for uniform dispersion. After DMF was evaporated, Cu-PMMA nanocomposites were gained. The thermal analysis measurement results showed that the decomposition temperature of nanocomposites decreased gradually with the increasing particle loadings. The thermal conductivity of the Cu-PMMA nanocomposites rose with the increasing contents of copper nanoparticles. With a 20 vol.% addition, the thermal conductivity was up to 1.2 W/m · K, a 380.5% increase compared to the pure PMMA. The results demonstrate that copper nanoparticles have great potential in enhancing thermal transport properties of polymer.

  20. Synthesis, characterization, thermal and electrical properties of ...

    Indian Academy of Sciences (India)

    The anticorrosive property of a coating of PANI/[Co(mea)2(H2O)2Cl2] composite on mild steel coupon in 3 M HNO3 was evaluated using weight loss measurement and compared with pure polyaniline coating. The said composite has shown anticorrosive property and can thus, act as a potent dopant for enhancing corrosion ...

  1. Thermal transport properties of antimonene: an ab initio study.

    Science.gov (United States)

    Wang, Shudong; Wang, Wenhua; Zhao, Guojun

    2016-11-16

    Searching for low thermal conductivity materials is crucial for thermoelectric devices. Here we report on the phonon transport properties of recently fabricated single layer antimony, antimonene [Ares, et al., Adv. Mater., 2016, 28, 6332]. Ab initio calculations in combination with the Boltzmann transport equation (BTE) for phonons show that antimonene has a low lattice thermal conductivity (15.1 W m -1 K -1 at 300 K), indicating its potential thermoelectric applications. The low lattice thermal conductivity is due to its small group velocity, low Debye temperature and large buckling height. We also investigate in detail the mode contributions to total thermal conductivity and find at low frequency that the longitudinal acoustic (LA) branch dominates the thermal conductivity. Moreover, we show that the lattice thermal conductivity of antimonene can further be reduced by minimizing the sample size. Our findings open the field for thermoelectric applications based on antimonene.

  2. Thermal properties of composite materials: a complex systems approximation

    Science.gov (United States)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  3. Whole Year Optimization of Building Thermal Properties

    OpenAIRE

    Naeimi, Homa

    2014-01-01

    Along with improvement in buildings structure, developments in thermal design allow decreasing the energy demand of heating, cooling, and air conditioning of buildings. This thesis distinguishes and optimizes design elements that are essential in minimizing building heating /cooling loads. Optimum designs vary significantly for different areas due to different meteorological conditions between locations and seasonal changes at the same location. Considering the typical meteorological conditio...

  4. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  5. Comparative study of physicochemical and thermal properties of the ...

    African Journals Online (AJOL)

    Three indigenous cucurbit seeds from Ivory Coast namely Cucumeropsis mannii Naudin, Citrullus lanatus var. Citroides (Thrumb.) Matsum & Nakai and Cucumis melo var. Agrestis were investigated for the physicochemical properties. Thermal properties of their crude oils extracted by a cold solvent method were also tested.

  6. Measurement and model on thermal properties of sintered diamond composites

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2013-01-01

    Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation

  7. Thermal conductivity theory, properties, and applications

    CERN Document Server

    Tritt, Terry M

    2006-01-01

    It has been almost thirty years since the publication of a book that is entirely dedicated to the theory, description, characterization and measurement of the thermal conductivity of solids. The recent discovery of new materials which possess more complex crystal structures and thus more complicated phonon scattering mechanisms have brought innovative challenges to the theory and experimental understanding of these new materials. With the development of new and novel solid materials and new measurement techniques, this book will serve as a current and extensive resource to the next generation

  8. Mechanical and thermal properties of bulk ZrB2

    International Nuclear Information System (INIS)

    Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke

    2015-01-01

    ZrB 2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B 4 C. Since ZrB 2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB 2 , significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB 2 bulk sample with 93.1% theoretical density by sintering ZrB 2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB 2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13–23 GPa and 1.8–2.8 MPa m 0.5 , respectively. The relationships between these properties were carefully examined in the present study. - Highlights: • A ZrB 2 bulk sample with 93.1% theoretical density was prepared by sintering ZrB 2 powder. • We have evaluated mechanical and thermal properties such as Vickers hardness, fracture toughness and thermal conductivity. • The relationships between these properties were carefully examined.

  9. Thermal properties of alkali-activated aluminosilicates with CNT admixture

    Science.gov (United States)

    Zmeskal, Oldrich; Trhlikova, Lucie; Fiala, Lukas; Florian, Pavel; Cerny, Robert

    2017-07-01

    Material properties of electrically conductive cement-based materials with increased attention paid on electric and thermal properties were often studied in the last years. Both electric and thermal properties play an important role thanks to their possible utilization in various practical applications (e.g. snow-melting systems or building structures monitoring systems without the need of an external monitoring system). The DC/AC characteristics depend significantly on the electrical resistivity and the electrical capacity of bulk materials. With respect to the DC/AC characteristics of cement-based materials, such materials can be basically classified as electric insulators. In order to enhance them, various conductive admixtures such as those based on different forms of carbon, can be used. Typical representatives of carbon-based admixtures are carbon nanotubes (CNT), carbon fibers (CF), graphite powder (GP) and carbon black (CB). With an adequate amount of such admixtures, electric properties significantly change and new materials with higher added value can be prepared. However, other types of materials can be enhanced in the same way. Alkali-activated aluminosilicates (AAA) based on blast furnace slag are materials with high compressive strength comparable with cement-based materials. Moreover, the price of slag is lower than of Portland cement. Therefore, this paper deals with the study of thermal properties of this promising material with different concentrations of CNT. Within the paper a simple method of basic thermal parameters determination based on the thermal transient response to a heat power step is presented.

  10. High pressure elasticity and thermal properties of depleted uranium

    International Nuclear Information System (INIS)

    Jacobsen, M. K.; Velisavljevic, N.

    2016-01-01

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.

  11. Antisickling properties, thermal and photochemical degradations of ...

    African Journals Online (AJOL)

    Anthocyanin crude extracts and fractions of Annona senegalensis leaves were screened for their antisickling properties using a validated in vitro bioassay model of sickle cell anaemia. Preparative thin layer chromatography of acetylated anthocyanin crude extracts carried out with chloroform as solvent provided two active ...

  12. Synthesis, characterization, thermal and electrical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    known as hybrid materials, which are the current inquisi- tion among material scientists. These hybrid systems possess varied properties and find applications in various fields like catalysis, sensors, bio-medical field (Greene et al 1975) and in corrosion study. Ethanolamines commonly known as aminoalcohols include ...

  13. Thermal radiative properties of a DLC coating

    Czech Academy of Sciences Publication Activity Database

    Hanzelka, Pavel; Králík, Tomáš; Mašková, A.; Musilová, Věra; Vyskočil, J.

    2008-01-01

    Roč. 48, 9-10 (2008), s. 455-457 ISSN 0011-2275 Institutional research plan: CEZ:AV0Z20650511 Keywords : thin films * heat transfer * radiant properties * cryostats Subject RIV: BJ - Thermodynamics Impact factor: 0.915, year: 2008

  14. Temperature-dependent thermal properties of Ru/C multilayers.

    Science.gov (United States)

    Yan, Shuai; Jiang, Hui; Wang, Hua; He, Yan; Li, Aiguo; Zheng, Yi; Dong, Zhaohui; Tian, Naxi

    2017-09-01

    Multilayers made of Ru/C are the most promising candidates when working in the energy region 8-20 keV. The stability of its thermal properties, including thermal expansion and thermal conduction, needs to be considered for monochromator or focusing components. Ru/C multilayers with periodic thicknesses of 3, 4 and 5 nm were investigated in situ by grazing-incidence X-ray reflectometry and diffuse scattering in order to study their thermal expansion characteristics as a function of annealing temperature up to 400°C. The thermal conductivity of multilayers with the same structure was also measured by the transient hot-wire method and compared with bulk values.

  15. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  16. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-01-15

    This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 C and crystallizes at 40.6 C. It has latent heats of 54.6 and -48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications. (author)

  17. Mechanical properties and thermal behaviour of LLDPE/MWNTs nanocomposites

    Directory of Open Access Journals (Sweden)

    Tai Jin-hua

    2012-12-01

    Full Text Available Multi-walled carbon nanotubes (MWNTs were incorporated into a linear low-density polyethylene (LLDPE matrix through using screw extrusion and injection technique. The effect of different weight percent loadings of MWNTs on the morphology, mechanical, and thermal of LLDPE/MWNTs nanocomposite had been investigated. It was found that, at low concentration of MWNTs, it could uniformly disperse into a linear low-density polyethylene matrix and provide LLDPE/MWNTs nanocomposites much improved mechanical properties. Thermal analysis showed that a clear improvement of thermal stability for LLDPE/MWNTs nanocomposites increased with increasing MWNTs content.

  18. Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux.

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.; Kim, Y. S.; Hofman, G. L. (Nuclear Engineering Division)

    2011-05-23

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in {sup 235}U) to LEU (19.75% enriched in {sup 235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. This section is regrouping all of the thermal property tables. Section 2 provides a summary of the thermal properties in form of tables while the following sections present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: (i) aluminum, (ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), (iii) beryllium, and (iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase's volume fraction. Appendix B shows the evolution of the BR2 maximum heat flux with burnup.

  19. Study of Thermal Properties of Cast Metal- Ceramic Composite Foams

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2017-12-01

    Full Text Available Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC. A certificate of non-combustibility test of cast aluminum-ceramic foam for marine applications was included inside the paper. The composite foam was prepared by the gas injection method, consisting in direct injection of gas into liquid metal. Foams with closed and open cells were examined. The foams were foaming with foaming gas consisting of nitrogen or air. This work is one of elements of researches connected with description of properties of composite foams. In author's other works acoustic properties of these materials will be presented.

  20. Carbon filter property detection with thermal neutron technique

    International Nuclear Information System (INIS)

    Deng Zhongbo; Han Jun; Li Wenjie

    2003-01-01

    The paper discussed the mechanism that the antigas property of the carbon filter will decrease because of its carbon bed absorbing water from the air while the carbon filter is being stored, and introduced the principle and method of detection the amount of water absorption with thermal neutron technique. Because some certain relation between the antigas property of the carbon filter and the amount of water absorption exists, the decrease degree of the carbon filter antigas property can be estimated through the amount of water absorption, offering a practicable facility technical pathway to quickly non-destructively detect the carbon filter antigas property

  1. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    Science.gov (United States)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity

  2. Review on thermal properties of nanofluids: Recent developments.

    Science.gov (United States)

    Angayarkanni, S A; Philip, John

    2015-11-01

    Nanofluids are dispersions of nanomaterials (e.g. nanoparticles, nanofibers, nanotubes, nanowires, nanorods, nanosheet, or droplets) in base fluids. Nanofluids have been a topic of great interest during the last one decade primarily due to the initial reports of anomalous thermal conductivity (k) enhancement in nanofluids with a small percentage of nanoparticles. This field has been quite controversial, with multiple reports of anomalous enhancement in thermal conductivity and many other reports of the thermal conductivity increase within the classical Maxwell mixing model. Several mechanisms have been proposed for explaining the observed enhancement in thermal conductivity. The role of Brownian motion, interfacial resistance, morphology of suspended nanoparticles and aggregating behavior is investigated both experimentally and theoretically. As the understanding of specific heat capacity of nanofluids is a prerequisite for their effective utilization in heat transfer applications, it is also investigated by many researchers. From the initial focus on thermophysical properties of nanofluids, the attention is now shifted to tailoring of novel nanofluids with large thermal conductivities. Further, to overcome the limitations of traditional heat transfer media, phase change materials (PCMs) and hybrid nanofluids are being developed as effective media for thermal energy storage. This review focuses the recent progress in nanofluids research from a heat transfer perspective. Emphasis is given for the latest work on thermal properties of nanofluids, phase change materials and hybrid nanofluids. The preparation of nanofluids by various techniques, methods of stabilization, stability measurement techniques, thermal conductivity and heat capacity studies, proposed mechanisms of heat transport, theoretical models on thermal conductivity, factors influencing k and the effect of nanoinclusions in PCM are discussed in this review. Sufficient background information is also

  3. Thermal Properties for the Thermal-Hydraulics Analyses of the BR2 Maximum Nominal Heat Flux

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Kim, Y. S. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, G. L. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2015-02-01

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in 235U) to LEU (19.75% enriched in 235U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. Section 2 provides a summary of the thermal properties in the form of tables while the following sections and appendices present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: i) aluminum, ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), iii) beryllium, and iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase’s volume fraction. Appendix B provides a revised methodology for determining the thermal conductivity as a function of burnup for HEU and LEU.

  4. Thermal Properties of Lunar Regolith Simulants

    Science.gov (United States)

    Street, Kenneth W., Jr.; Ray, Chandra; Rickman, Doug; Scheiman, Daniel A.

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the Moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Thermo-Gravimetric Analysis (TGA) with Fourier Transform Infrared (FTIR) analysis provides information on evolved gas species and their evolution temperature profiles. The DTA and TGA studies included JSC-1A fine (Johnson Space Center Mare Type 1A simulant), NU-LHT-2M (National Aeronautics and Space Administration (NASA)-- United States Geological Survey (USGS)--Lunar Highlands Type 2M simulant) and its proposed feedstocks: anorthosite; dunite; high quality (HQ) glass and the norite from which HQ glass is produced. As an example, the DTA and TGA profiles for anorthosite follow. The DTA indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water is lost accounting for approximately 0.1 percent mass loss. Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals along with other volatile oxides. Limited TGA-FTIR data is available at the time of this writing. For JSC-1A fine, the TGA-FTIR indicates at least two kinds of water are evolved in the 100 to 500 and the 700 to 900 C ranges. Evolution of carbon dioxide types occurs in the 250 to 545, 545 to 705, and 705 to 985 C ranges. Geologically, the results are consistent with the evolution of "water" in its several forms, CO2 from break down of secondary carbonates and magmatic, dissolved gas and glass

  5. Comparative study of hygrothermal properties of five thermal insulation materials

    OpenAIRE

    Laure Ducoulombier; Zoubeir Lafhaj

    2017-01-01

    The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three pa...

  6. Rare Earth Borohydrides—Crystal Structures and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Christoph Frommen

    2017-12-01

    Full Text Available Rare earth (RE borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE-borohydrides, light-weight metal borohydrides such as LiBH4 and additives such as LiH.

  7. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    International Nuclear Information System (INIS)

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan; Rosen, L ars

    2007-09-01

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail

  8. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan [Geo Innova AB (Sweden); Rosen, L ars [Sweco Viak AB (Sweden)

    2007-09-15

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail

  9. Thermal Properties of Lunar Regolith Simulants

    Science.gov (United States)

    Street, Kenneth; Ray, Chandra; Rickman, Doug

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of

  10. Measurement of thermal properties of magnetic nanoparticles using infrared thermal microscopy

    DEFF Research Database (Denmark)

    Kim, Jae Young; Chang, Ki Soo; Kook, Myung Ho

    2013-01-01

    Magnetic nanoparticles (MNPs) are considered promising for biomedical applications such as hyperthermia treatment and disease diagnosis owing to their distinctive thermal properties. For these applications, it is essential to screen the temperature distribution in the targeted disease site....... This study aimed to investigate and observe the thermal properties of a small amount of MNPs used as highly sensitive biomarkers for disease diagnosis by microthermography. Toward this end, we used polyacrylamide and agarose phantoms containing a small amount of MNPs (30 mg Fe-1). In phantoms, the increasing...

  11. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.

    Science.gov (United States)

    Guntur, Sitaramanjaneya Reddy; Lee, Kang Il; Paeng, Dong-Guk; Coleman, Andrew John; Choi, Min Joo

    2013-10-01

    Thermotherapy uses a heat source that raises temperatures in the target tissue, and the temperature rise depends on the thermal properties of the tissue. Little is known about the temperature-dependent thermal properties of tissue, which prevents us from accurately predicting the temperature distribution of the target tissue undergoing thermotherapy. The present study reports the key thermal parameters (specific heat capacity, thermal conductivity and heat diffusivity) measured in ex vivo porcine liver while being heated from 20 ° C to 90 ° C and then naturally cooled down to 20 ° C. The study indicates that as the tissue was heated, all the thermal parameters resulted in plots with asymmetric quasi-parabolic curves with temperature, being convex downward with their minima at the turning temperature of 35-40 ° C. The largest change was observed for thermal conductivity, which decreased by 9.6% from its initial value (at 20 ° C) at the turning temperature (35 ° C) and rose by 45% at 90 ° C from its minimum (at 35 ° C). The minima were 3.567 mJ/(m(3) ∙ K) for specific heat capacity, 0.520 W/(m.K) for thermal conductivity and 0.141 mm(2)/s for thermal diffusivity. The minimum at the turning temperature was unique, and it is suggested that it be taken as a characteristic value of the thermal parameter of the tissue. On the other hand, the thermal parameters were insensitive to temperature and remained almost unchanged when the tissue cooled down, indicating that their variations with temperature were irreversible. The rate of the irreversible rise at 35 ° C was 18% in specific heat capacity, 40% in thermal conductivity and 38.3% in thermal diffusivity. The study indicates that the key thermal parameters of ex vivo porcine liver vary largely with temperature when heated, as described by asymmetric quasi-parabolic curves of the thermal parameters with temperature, and therefore, substantial influence on the temperature distribution of the tissue undergoing

  12. Thermal properties of solids at room and cryogenic temperatures

    CERN Document Server

    Ventura, Guglielmo

    2014-01-01

    This book is a guide for materials scientists, physicists, chemists and engineers who wish to explore the field of low-temperature material properties. The focus is on heat capacity, thermal expansion and electrical and thermal conductivity. The authors report a wide range of experimental details and data, and have compiled useful tables of low-temperature data. Each chapter of the book starts by addressing the theoretical basis of the phenomena. This is a concise presentation, but it helps the reader to develop a deeper understanding of the experiments. The second part of the chapters is dedicated to describing the main experimental techniques to measure thermal properties at low and very low temperature ranges. The final part of each chapter provides a wealth of relevant experimental data in the form of tables and graphs.

  13. Applications and properties of thermally sprayed oxide ceramics

    International Nuclear Information System (INIS)

    Pawlowski, L.

    1991-01-01

    After a brief discussion of the general properties of thermally sprayed oxide ceramics, some of the more important materials are discussed in detail. The electric properties of Al 2 O 3 , such as electric resistivity, dielectric constant and dielectric strength, are shown together with the applications of thermally sprayed alumina coatings in 'corona rolls' and substrates in hybrid microelectronics. The thermal conductivity of ZrO 2 stabilized with a different Y 2 O 3 content is discussed together with the coatings' microstructure. The research on the development of zirconia coatings for application in the advanced turbines is briefly described. The mechanical properties of thermally sprayed Cr 2 O 3 coatings as well as their microstructure are shown. As chromia coatings often contain suboxides or even metallic chromium, a special powder giving metal free deposits has been developed and the coatings sprayed therefrom are applied in the printing industry as 'anilox rolls'. Finally, microstructure and some electrical properties of a high temperature superconductor YBa 2 CU 3 O 7-x are presented. (orig.) [de

  14. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  15. Chemical and thermal properties of VIP latrine sludge

    African Journals Online (AJOL)

    2015-07-04

    Jul 4, 2015 ... This study investigated the chemical and thermal properties of faecal sludge from 10 dry VIP latrines in Bester's Camp in the eThekwini Municipality, Durban, ... emptying and treatment equipment. A manual sorting of the pit .... (LaDePa) plant (Harrison and Wilson, 2012). Figure 3 illustrates the depths of the ...

  16. Effects of ageing and moisture content on thermal properties of ...

    African Journals Online (AJOL)

    This study therefore investigated the influence of tuber age and moisture content on the thermal properties of cassava roots. Freshly harvested cassava roots were peeled, cut into cylindrical shape of length 5cm and diameter 3.5 cm and then conditioned to moisture contents of 50, 55, 60, 65 and 70% (wet basis).

  17. Chemical and thermal properties of VIP latrine sludge | Zuma | Water ...

    African Journals Online (AJOL)

    This study investigated the chemical and thermal properties of faecal sludge from 10 dry VIP latrines in Bester's Camp in the eThekwini Municipality, Durban, South Africa. Faecal sludge samples were selected at different depths and from the front and back sections of 10 VIP latrines during a manual emptying process.

  18. Thermal, electrical, mechanical and fluidity properties of polyester ...

    Indian Academy of Sciences (India)

    Bariş Şimşek

    2018-04-13

    Apr 13, 2018 ... Design of experiment; electrical resistivity; polyester-reinforced concrete composites; thermal conductivity; product design. 1. Introduction. In recent years, polyesters have been widely used in resin systems to provide extraordinary mechanical [1], corrosion and water resistance properties to composite ...

  19. Thermal impact on spiking properties in Hodgkin-Huxley neuron ...

    Indian Academy of Sciences (India)

    Thermal impact on spiking properties in Hodgkin-Huxley neuron with synaptic stimulus. Shenbing ... Department of Physical Science and Technology, Wuhan University of Technology, Wuhan, 430070, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China ...

  20. Structural Properties of Dwelling and Thermal Comfort in Tropical ...

    African Journals Online (AJOL)

    The structural properties of dwelling units, in particular “window types” in 1, 250 apartments and their indoor temperature levels were collected. One hypothesis was formulated: (HO) There is no significant variation in effective temperature index and thus thermal comfort between dwellings built with wooden windows and ...

  1. Mechanical properties of clayey soils and thermal solicitations

    International Nuclear Information System (INIS)

    Boisson, J.Y.

    1992-01-01

    Changes in permeability and mechanical properties of three clayey soils with temperature have been studied by using a special oedometric cell. The action of a thermal solicitation on the fabric and the behavior of the samples is highlighted. 3 figs., 1 tab

  2. SIMULATION OF THERMO-ELASTICS PROPERTIES OF THERMAL ...

    African Journals Online (AJOL)

    30 juin 2011 ... SIMULATION OF THERMO-ELASTICS PROPERTIES OF THERMAL. BARRIER COATINGS. A. M. Ferouani*, H. I. Faraoun and H. Aourag*. Laboratoire d'Étude et Prédiction des Matériaux, Unité de Recherche Matériaux et. Energies Renouvelables, Faculté des sciences, Département de physique, ...

  3. Evaluating Thermal Properties of Rock | Bello | Journal of the ...

    African Journals Online (AJOL)

    The coefficients of the generalized model give the thermal properties of each rock type. The chi-square test showed that there was no significant difference (p>0.05) between the expected and observed data for all the models. The model developed in this work enabled us to use simulation prediction as the basis for rock ...

  4. Bark thermal properties of selected central hardwood species

    Science.gov (United States)

    Gretel E. Hengst; Jeffery O. Dawson

    1993-01-01

    Some physical, thermal, and chemical properties of bark of eleven tree species native to the central hardwood region were measured to determine their potential to protect the vascular cambium from damage by fire. The relationship between dbh and bark thickness for each of sixteen species was determined. For purposes of monitoring seasonal trends, two species (Quercus...

  5. Preparation and investigations of thermal properties of copper oxide ...

    Indian Academy of Sciences (India)

    Abstract. The effects of copper oxide, aluminium oxide and graphite on the thermal and structural properties of the organic phase change material (PCM) were investigated. Ethyl 2-(1H-benzotriazole-1-yl)acetate was selected as the pure PCM. Fourier transform infrared (FT-IR) spectroscopy, X-ray, energy dispersive X-ray ...

  6. Phonon and thermal properties of achiral single wall carbon ...

    Indian Academy of Sciences (India)

    A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...

  7. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuomin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-28

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiative properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to

  8. Electronic and Thermal Properties of Graphene and Carbon Structures

    Science.gov (United States)

    Anthony, Gilmore; Khatun, Mahfuza

    2011-10-01

    We will present the general properties of carbon structures. The research involves the study of carbon structures: Graphene, Graphene nanoribbons (GNRs), and Carbon Nanotubes (CNTs). A review of electrical and thermal conduction phenomena of the structures will be discussed. Particularly carbon nanoribbons and CNTs have many interesting physical properties, and have the potential for device applications. Our research interests include the study of electronic structures, electrical and thermal transport properties of the carbon structures. Results are produced analytically as well as by simulation. The numerical simulations are conducted using various tools such as Visual Molecular Dynamics (VMD), Large Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), NanoHub at Purdue University and the Beowulf Cluster at Ball State University.

  9. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Science.gov (United States)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  10. Thermal Properties of Prominence Motions as Observed in the UV

    Science.gov (United States)

    Kucera, T.; Landi, E.

    2003-01-01

    The mechanisms by which solar prominences are filled with plasma are still undetermined. In this study we perform a quantitative analysis of the thermal properties of moving features in prominences in order to put constraints on models of prominence formation and dynamics. In order to make such measurements of quickly moving features seen in prominences in the UV we use the SOHO instruments SUMER and CDS to take a time series of exposures at a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The resulting observations in spectral lines in a range of 'transition region' temperatures allow us to analyze the thermal properties of the moving prominence sources as a function of time.

  11. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  12. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  13. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  14. Characterization of thermal properties of municipal solid waste landfills.

    Science.gov (United States)

    Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila

    2015-02-01

    Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  16. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  17. Enhancement in thermal and mechanical properties of bricks

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2013-01-01

    Full Text Available A new type of porous brick is proposed. Sawdust is initially well mixed with wet clay in order to create voids inside the brick during the firing process. The voids will enhance the total performance of the brick due to the reduction of its density and thermal conductivity and a minor reduction of its compressive stress. All these properties have been measured experimentally and good performance has been obtained. Although a minor reduction in compressive stress has been observed with increased porosity, this property has still been larger than that of the common used hollow brick. Data obtained by this work lead to a new type of effective brick having a good performance with no possibility that mortar enters inside the holes which is the case with the common used hollow bricks. The mortar has a determent effect on thermal properties of the wall since it has some higher thermal conductivity and density than that of brick which increases the wall overall density and thermal conductivity of the wall.

  18. Thermal properties of flax fiber scoured by different methods

    Directory of Open Access Journals (Sweden)

    Zheng Dong

    2015-01-01

    Full Text Available Thermal properties of flax roves untreated and treated were characterized by differential scanning calorimetry (DSC and thermal gravity analyzer (TGA in order to understand their thermal behavior in more detail and to evaluate the effect of scouring processing on the thermal behavior. Flax roves were treated with six kinds of methods including biological scouring, one bath, two bath, bleaching, alkali scouring and industry chemical scouring as standards. Results showed that all treatments improved thermal stability of flax roves. The results indicated that glass transition temperature (Tg decreased after scouring besides the sample by directly bleaching. It is more difficult to determine the endothermic peak of flax treated by chemical scouring in industry because it takes a very flat course. A distinct endothermic peak was observed for the untreated flax rove, while a distinct exothermic peak in different temperature interval was revealed for other four treated flax rove samples. For TGA analysis, thermal degradation of flax roves studied consists of three regions of the initial, main, and char decomposition, and the third stage consists of secondary weight loss and carbonization for flax roves with biological scouring, one-bath and two-bath. Besides, different residue left indicates that the bio-scoured flax roves are lost with volatile products and does not contribute to char formation. These results provide valuable preferences for mechanism and top value added application of bio-scouring in flax roves.

  19. High Temperature Thermal Properties of Bentonite Foundry Sand

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2015-06-01

    Full Text Available The paper presents results of measuring thermal conductivity and heat capacity of bentonite foundry sand in temperature range ambient - 900­­°C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured casting.

  20. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  1. Thermal properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    Science.gov (United States)

    Vitorino, Maria B. C.; Reul, Lízzia T. A.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the thermal properties of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermo-plastic obtained from renewable resources through low-impact biotechno-logical process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB is a highly crystalline resin and this characteristic leads to suboptimal properties in some cases. Consequently, thermal properties, in particular those associated with the crystallization of the matrix, are important to judge the suitability of the compounds for specific applications. PHB/babassu composites with 0-50% load were prepared in an internal mixer. Two different types of babassu fibers with two different particle size ranges were compounded with PHB and test specimens molded by compression. Melting and crystallization behavior were studied by differential scanning calorimetry (DSC) at heating/cooling rates between 2 and 30°C/min. Several parameters, including melting point, crystallization temperature, crystallinity, and rate of crystallization, were estimated as functions of load and heating/cooling rates. Results indicate that fibers do not affect the melting process, but facilitate crystallization from the melt. Crystallization temperatures are 30 to 40°C higher for the compounds compared with the neat resin. However, the amount of fiber added has little effect on crystallinity and the degree of crystallinity is hardly affected by the load. Fiber type and initial particle size do not have a significant effect on thermal properties.

  2. Heat experiment design to estimate temperature dependent thermal properties

    International Nuclear Information System (INIS)

    Romanovski, M

    2008-01-01

    Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. A mathematical model of a specimen is the one-dimensional heat equation with boundary conditions of the second kind. Thermal properties are assumed to vary nonlinearly with temperature. Experimental conditions refer to the thermal loading scheme, sampling times and sensor location. A numerical model of experimental configurations is studied to elicit the optimal conditions. The numerical solution of the design problem is formulated on a regularization scheme with a stabilizer minimization without a regularization parameter. An explicit design criterion is used to reveal the optimal sensor location, heating duration and flux magnitude. Results obtained indicate that even the strongly nonlinear experimental design problem admits the aggregation of its solution and has a strictly defined optimal measurement scheme. Additional region of temperature measurements with allowable identification error is revealed.

  3. Parametric study of thermal and thermodynamic properties on pyrolysis of biomass in thermally thick regime

    International Nuclear Information System (INIS)

    Babu, B.V.; Chaurasia, A.S.

    2004-01-01

    In the present study, a simultaneous chemical kinetics and heat transfer model is used to predict the effects of the most important thermal and thermodynamic properties (thermal conductivity, heat transfer coefficient, emissivity and heat of reaction number) of the feedstock on the convective-radiant pyrolysis of biomass fuels. A finite difference pure implicit scheme utilizing the tri-diagonal matrix algorithm is employed for solving the heat transfer model equation. The Runge-Kutta fourth-order method is used for the chemical kinetics model equations. Simulations are performed considering cylindrical pellets of equivalent radius ranging from 0.003 to 0.011 m and temperatures ranging from 303 to 900 K. For conversion in the thermally thick regime (intra-particle heat transfer control), it is found that variations in the properties mainly affect the activity of the primary reactions. Sensitivity analysis is conducted to find the most dominant properties affecting the pyrolysis and found that the highest sensitivity is associated with the emissivity and thermal conductivity of the biomass. Applications of these findings in reactor design and operation are discussed. The results obtained using the improved models are in excellent agreement with the experimental data, much better than the agreement with the earlier models reported in the literature

  4. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Fuensanta, Mónica; Paiphansiri, Umaporn; Romero-Sánchez, María Dolores; Guillem, Celia; López-Buendía, Ángel M.; Landfester, Katharina

    2013-01-01

    Highlights: • A paraffin wax RT80 was encapsulated in styrene–butyl acrylate copolymer as polymer shell using miniemulsion polymerization process to obtain a novel nanoencapsulated PCM with 80 °C melting temperature. • Nano-PCMs have high compact structure, spherical morphology and thermal stability. • The nano-PCMs have potential applications as thermal energy storage materials. - Abstract: A novel nanoencapsulation of a paraffine type phase change material, RT80, in a styrene–butyl acrylate copolymer shell using the miniemulsion polymerization process was carried out. General characteristics of the RT80 nanoparticles in terms of thermal properties, morphology, chemical composition and particle size distribution were characterized by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Dynamic Light Scattering (DLS). The influence of different monomers (styrene, butyl acrylate) and the surfactant/paraffin mass ratios on nanoparticles properties such as thermal capacity, particle size and morphology were systematically investigated. In all cases studied, encapsulation efficiency was close to 80 wt% with a particle size distribution between 52 and 112 nm and regular spherical shape and uniform structure. The amount of encapsulated paraffin achieved was comprised between 8 and 20%. Melting and crystallization heats were found to be approximately 5–25 J g −1 , mainly depending on surfactant/paraffin mass ratio. Melting temperature of RT80 nanoparticles slightly decreased (1–7 °C) respect to the raw RT80. In addition, the encapsulated RT80 nanoparticles show thermal stability even after 200 thermal (heat-cooling) cycles

  5. Glass-Like Thermal and Elastic Properties of Boron - Solids.

    Science.gov (United States)

    Medwick, Paul Anthony

    1995-01-01

    An understanding of the mechanical and thermal properties of the icosahedral borides is critical to their successful use in high temperature thermoelectric power converters, soft x-ray monochromators, nuclear reactor control rods, and armor. It is also of fundamental interest because the physical properties of these boron-rich solids are not well-understood. I present measurements of the thermal conductivity, specific heat, internal friction, and speed of sound for two classes of crystalline icosahedral borides: boron carbide (B_{1-x}C_ x) and the rare earth boride MB_ {68-delta} (M = Y, Gd). The high temperature (T~300 K) thermal conductivity of MB_{68-delta } and carbon deficient (xx}C _ x is similar to amorphous solids. The low temperature (Tx}C_ x and MB_{68-delta} show the elastic signature of a glass thereby providing the first experimental evidence for two-level systems (TLS) in these crystalline borides. The data show that the TLS relax via phonons and via other channels. The combined elastic and thermal data definitively establish, for the first time, that the vibrational properties of crystalline B_{1-x}C_ x and MB_{68-delta} are intrinsically glass-like. As a means of comparison, I have measured the internal friction and speed of sound of a-rm B and a-rm B_9C at low temperatures (Tx}C_ x and MB _{68-delta}, thereby indicating the presence of TLS in the material. Using these data, I present the first theoretical calculation for the low temperature thermal conductivity of a-rm B and find excellent agreement with data for the crystalline icosahedral borides. The inherent glass-like nature of their vibrational excitations is thereby established.

  6. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.

    Science.gov (United States)

    Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo

    2017-05-03

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.

  7. Characterizing Thermal Properties of Melting Te Semiconductor: Thermal Diffusivity Measurements and Simulation

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Li, C.; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devises. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed in the presentation.

  8. Effective Thermal Expansion Property of Consolidated Granular Materials.

    Science.gov (United States)

    Küçük, Gülşad; Gonzalez, Marcial; Cuitiño, Alberto M

    2017-11-09

    Thermally-assisted compaction of granular materials is of keen interest in many engineering applications. A proper estimation of the material behavior of compacted granular materials is contingent upon the knowledge of microstructure formation, which is highly dependent on the bulk material properties and processing conditions, during the deformation stage. Originating from the pair interactions between particles, the macroscopic properties are obtained using various homogenization techniques and postulating continuum constitutive laws. While pioneers in this field have laid fundamental groundwork regarding effective medium descriptions, there exists a discrepancy between discrete and continuum level solutions. In our previous work, we elaborated a Particle Mechanics Approach (PMA) that integrates thermal contact and Hertzian deformation models to understand the thermo-mechanically-coupled consolidation problem. We also considered the analogous problem from the perspective of the conventional Continuum Mechanics Approach (CMA). In this study, following the multi-scale modeling framework, we propose an effective thermal expansion coefficient for the thermally-assisted compaction of granular materials.

  9. Thermal properties of graphene from path-integral simulations

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-03-01

    Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and "real" surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient αp of the in-plane area, which is negative at low temperatures and becomes positive for T ≳ 1000 K.

  10. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  11. Effect of thermal cycling on change of titanium alloy properties

    International Nuclear Information System (INIS)

    Anufriev, V.P.; Bogachev, I.N.; Veksler, Yu.G.

    1980-01-01

    Investigated are the change of mechanical and physical properties of VT1-0, VT3-1 and VT-16 alloys, as well as resistances of their thermal fatigue under thermocycling (TC). It is shown that mechanical properties of the investigated alloys increase in the result of thermocycling. Maximum of the strength characteristics is obtained at 10 cycles on fine-grained alloys after TC. Maximum of strength and hardness on the samples with coarse grain is described and is shifted towards the lower number of cycles. VT1-0, VT3-1 and VT-16 alloys have high resistant ability against thermal fatigue in themocycling with maximal cycle temperature below recrystallization threshold

  12. Measurement of thermal properties of soil and concrete samples

    DEFF Research Database (Denmark)

    Pagola, Maria Alberdi; Jensen, Rasmus Lund; Madsen, Søren

    This document aims to present the laboratory work undertaken to analyse the thermal properties of the soil at two test sites in Denmark and the concrete produced by Centrum Pæle A/S, used to produce the pile heat exchangers studied in the present PhD project. The tasks have been carried out between...... “Thermal response testing of precast pile heat exchangers: fieldwork report” by (Alberdi-Pagola et al., 2017). The report is organized as follows: first, the measurement methods and the test procedures are described. Second, the soils at both test sites are described, together with the measurements. Third......, the measurements of the properties of the concrete are treated. The work is extended in appendixes....

  13. Rheological and thermal properties of PP-based WPC

    Science.gov (United States)

    Mazzanti, V.; Mollica, F.; El Kissi, N.

    2014-05-01

    Wood Plastic Composite (WPC) has attracted great interest in outdoor building products for the reduced cost and the possibility of using recycled materials. Nevertheless the material shows two problems: the large viscosity due to the presence of high concentrations of filler and the degradation of cellulose during processing The aim of this work was to investigate the rheological and thermal properties of WPC. The material used for the experiments was a commercial PP-based WPC compound, with different concentrations of natural fibers (30, 50, 70% wt.). The thermal properties were studied to check for degradation of natural fibers during the subsequent rheological tests. Analyzing the storage and loss moduli and the complex viscosity curves obtained using a parallel plate rheometer it was possible to observe some features related to the viscoelastic nature of the composite.

  14. Characterization of mouthguard materials: thermal properties of commercialized products.

    Science.gov (United States)

    Gould, Trenton E; Piland, Scott G; Shin, Junghwan; McNair, Olivia; Hoyle, Charles E; Nazarenko, Sergei

    2009-12-01

    Several mechanisms have been purported to describe how mouthguards protect the orofacial complex against injury. As the properties needed for these mechanisms to be effective are temperature and frequency dependent, the specific aim of this study was to provide a comprehensive thermal characterization of commercial mouthguard materials. Five commercially representative thermoplastic mouthguard materials (Essix Resin, Erkoflex, Proform-regular, Proform-laminate, and Polyshok) were tested. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques were implemented to measure thermal transitions and mechanical properties. Measurements were conducted three times per sample. One-way ANOVA and one-sample t-tests were used to test for differences between commercial products on selected mean thermal property values. The DSC measurements indicated no differences between commercial materials for mean glass transition (p=0.053), onset melt (p=0.973), or peak melt (p=0.436) temperatures. Likewise, DMA measurements revealed no differences between commercial materials for the mean glass transition (p=0.093), storage modulus (p=0.257), or loss modulus (p=0.172) properties, respectively. The one-sample t-tests revealed that glass transition temperatures were different from intra-oral temperature (psensitive to repetitive heating and cooling cycles, prolonged thermal treatment, and have glass transitions well below their end-use intra-oral temperature. As such, these materials are functioning as elastomers and not optimal mechanical damping materials. Dental clinicians, healthcare practitioners, or end-users should be aware that these materials are at best problematic with respect to this protective mechanism.

  15. Electrical and thermal properties of PLA/CNT composite films

    OpenAIRE

    Ceregatti, Thayara; Pecharki, Paloma; Pachekoski, Wagner M.; Becker, Daniela; Dalmolin, Carla

    2017-01-01

    ABSTRACT Conducting polymers presents many potential applications such as biosensors and biofuelcells. However, to be used in those devices, a thin film must be deposited onto a conducting and biocompatible substrate. In this work, carbon nanotubes (CNT) were mixed in a poly (lactic acid) - PLA - matrix with different compositions (from 0.25 to 5.0 %) in order to form conducting composites suitable to the deposition of a conducting polymer. Thermal properties of PLA/CNT composites were evalua...

  16. Thermal properties of SFR-HPC exposed to high temperatures

    Science.gov (United States)

    Scheinherrová, Lenka; Pavlík, Zbyšek

    2017-07-01

    In this paper, a non-adiabatic method was used for the assessment of specific heat capacity of steel fibre reinforced high performance concrete in the temperature range 105-1000 °C. The tested SFR-HPC mix was produced from CEM II 42.5 R, ground granulated blast furnace slag, silica sand with maximum particle size of 2 mm, silica fume, brass-coated steel fibres, superplasticizer on polycarboxylate ether basis and batch water. For the studied material, properties after 2 hours thermal treatment at the temperatures of 105 °C, 200 °C, 400 °C, 600 °C, 800 °C, and 1000 °C respectively were tested. Among them, bulk density, matrix density, total open porosity and thermal parameters as thermal conductivity, thermal diffusivity and specific heat capacity were measured. The measured specific heat capacity exhibited high dependence on temperature and pointed to the structural changes that studied material underwent at high temperatures. Accordingly, the obtained residual parameters revealed the thermally induced damage of SFR-HPC and critical temperatures for its functionality.

  17. Thermal properties of degraded lowland peat-moorsh soils

    Science.gov (United States)

    Gnatowski, Tomasz

    2016-04-01

    Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat

  18. Compaction physics of solid additive blends a thermal properties study

    Science.gov (United States)

    Brown, Amy

    Compacted solid additive blends have attracted the interest of the polymers industry due to their ability to improve processability. However, limited research has been performed to analyze the thermal properties that these additives have during pelletization. This research studies the reaction behavior of erucamide and silica, when in a pure and mixed form, with each other when thermal conductivity and frictional heating experiments are conducted. During the thermal conductivity study, it was found that pure erucamide had a thermal conductivity of 0.37 W/mK. The thermal conductivity of pure silica could not be found since silica will not compact to itself. Therefore, the thermal conductivity was extrapolated and found to be 0.09 W/mK. With the higher thermal conductivity belonging to erucamide, the heat transference that occurs during pelletization is through the use of erucamide. During the frictional studies, it was found that erucamide had a lower coefficient of friction compared to silica. The samples used were not pure, meaning a presence of both silica and erucamide were present for all experiments. The value obtained for the sample with a 75wt% of erucamide was 0.26. The value obtained for the sample with 75wt% of silica was 0.53. The surface and cross-section morphology and composition of the samples was examined by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy. Through this a softened layer was seen that provided evidence of an outer protective layer that forms during the pelletization process. Further analysis into this formed softened layer for varying compositions provided critical temperatures that need to be reached during processing.

  19. [Research on the Thermal Infrared Polarization Properties of Fresh Snow].

    Science.gov (United States)

    Wang, Ting-ting; Li, Zhao-liang; Tang, Bo-hui; Sun, Wei-qi; Zhao, Yun-sheng

    2015-07-01

    Snow can directly affect the surface energy balance and climate change and has a significant impact on human life and production. It is therefore of great significance to study the fresh snow emission spectroscopy properties by using the thermal infrared Polarization technique. This can provide a basis for quantitative thermal infrared remote sensing monitoring of snow as well as a deeper understanding of global warming and appropriate countermeasures. This paper focuses on the investigation of the thermal infrared polarization properties of the fresh snow. The results show that the thermal emissive polarization properties of fresh snow depend significantly on the wavelengths (channels) and view angles used to measure them. Four channels are considered in this study, their spectral response ranges are 8-14 microm for channel 1 (CH1), 11.5-12.5 microm for channel 2 (CH2), 10.3-11.5 microm for channel 3 (CH) and 8.2-9.2 microm for channel 4 (CH4). The snow polarized radiance (L) and its polarized brightness temperature (T) manifest as L(CH1) >L(CH3) > L(CH4) > L(CH2) and T(CH4) > T(CH1) > T(CH2) > TCH3, respectively, while the degree of polarization (P) manifests as P0 > P30 > P40 > P20 > P0 > P50 where the subscript of P denotes the view angle. The maximum of both L and T occurs at the view angle of 50 degree and polarization angle of 90 degree while their minimum appears at the view angle of 30 degree and polarization angle of 75 degree for each channel. In addition, the results show that: CH3 is more appropriate for better investigation of the emissive polarization properties of snow. Linear relationship is found between the fresh snow polarized T and the polarization angle with the coefficient of determination larger than 0.77 for all four channels. The polarized brightness temperature of the fresh snow is found to be increased about 0.003 K per polarization angle within 0-135 degree. The degree of polarization of snow is almost independent of the channels we

  20. Thermal Properties of Moving UV Features in Prominences

    Science.gov (United States)

    Kucera, Therese A.

    2003-01-01

    Multi-thermal features with speeds of 5-70 kilometers per second perpendicular to the line of sight are common in the prominences which showed traceable motions. These speeds are noticeably higher than the typical speeds of 5-20 kilometers per second observed in H-alpha data from "quiet" prominences and are more typical of "activated" prominences in which H-alpha blob speeds of up to 40 kilometers per second have been reported. In order to make a more quantitative determination of the thermal properties of the moving features seen in the UV, we use the SOHO instruments SUMER and CDS to take a time series of exposures from a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The resulting observations in lines spectral lines in a range of "transition region" temperatures allow us to analyze the thermal properties of the moving prominence sources as a function of time.

  1. Thermal properties of lithium-ion battery and components

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, H.; Hallaj, S.A.; Selman, J.R. [Illinois Inst. of Tech., Chicago, IL (United States). Center for Electrochemical Science and Engineering; Dinwiddie, R.B.; Wang, H. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1999-03-01

    Experimental thermal property data of the Sony US-18650 lithium-ion battery and components are presented, as well as thermal property measuring techniques. The properties in question are specific heat capacity (C{sub p}), thermal diffusivity ({alpha}), and thermal conductivity ({kappa}), in the presence and absence of electrolyte [1 M LiPF{sub 6} in ethylene carbonate-dimethyl carbonate (EC:DMC, 1:1 wt %)]. The heat capacity of the battery, C{sub p}, is 0.96 {+-} 0.02 J/g K at an open-circuit voltage (OCV) of 2.75 V, and 1.04 {+-} 0.02 J/g K at 3.75 V. The thermal conductivity, {kappa}, was calculated from {kappa} {identical_to} {alpha}{rho}C{sub p} where {alpha} was measured by a xenon-flash technique. In the absence of electrolyte, {kappa} increases with OCV, for both the negative electrode (NE) and the positive electrode (PE). For the NE, the increase is 26% as the OCV increases from 2.75 to 3.75 V, whereas for the PE the increase is only 5 to 6%. The dependence of both C{sub p} and {kappa} on OCV is explained qualitatively by considering the effect of lithiation and delithiation on the electron carrier density, which leads to n-type semiconduction in the graphitic NE material, but a change from semiconducting to metallic character in Li{sub x}CoO{sub 2} PE material. The overall effect is an increase of C{sub p} and {kappa} with OCV. For {kappa} this dependence is eliminated by electrolyte addition, which, however, greatly increases the effective {kappa} of the layered battery components by lowering the thermal contact resistance. For both NE and PE, the in-plane {kappa} value (measured along layers) is nearly one order of magnitude higher than the cross-plane {kappa}. This is ascribed mostly to the high thermal conductivity of the current collectors and to a lesser extent to the orientation of particles in the layers of electrodes.

  2. The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy

    Science.gov (United States)

    Ismadi, A. I.; Othman, R. N.

    2017-12-01

    Multiwall nanotube (MWNT) was used as filler in various studies to improve thermal conductivity and mechanical properties of epoxy. Present study varied different weight loading (0, 0.1 %, 0.5 %, 1 %, 1.5 %, 3 % and 5 %) of MWNT in order to observe the effects on the epoxy. Nanocomposite was analyzed by dynamic-mechanical thermal analyser (DMTA) and KD2 pro analyzer. DMTA measured storage modulus (E') and glass transition temperature (Tg) of the nanocomposite. Result showed that Tg value of neat epoxy is higher than all MWNT epoxy nanocomposite. Tg values drop from 81.55 °C (neat epoxy) to 65.03 °C (at 0.1 wt%). This may happen due to the agglomeration of MWNT in the epoxy. However, Tg values increases with the increase of MWNT wt%. Tg values increased from 65.03 °C to 78.53 °C at 1 wt%. Increment of storage modulus (E') at 3 °C (glassy region) was observed as the MWNT loading increases. Maximum value of E' during glassy region was observed to be at 5 wt% with (7.26±0.7) E+08 Pa compared to neat epoxy. On the contrary, there is slight increased and slight decreased with E' values at 100 °C (rubbery region) for all nanocomposite. Since epoxy exhibits low thermal conductivity properties, addition of MWNT has enhanced the properties. Optimum value of thermal conductivity was observed at 3 wt%. The values increased up to 9.03 % compared to neat epoxy. As expected, the result showed decrease value in thermal conductivity at 5 wt% as a result of agglomeration of MWNT in the epoxy.

  3. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Strankowski Michał

    2015-12-01

    Full Text Available In this study, thermally reduced graphene oxide (TRG-containing polyurethane nanocomposites were obtained by the extrusion method. The content of TRG incorporated into polyurethane elastomer systems equaled 0.5, 1.0, 2.0 and 3.0 wt%. The morphology, static and dynamic mechanical properties, and thermal stability of the modified materials were investigated. The application of TRG resulted in a visible increase in material stiffness as confirmed by the measurements of complex compression modulus (E′ and glass transition temperature (Tg. The Tg increased with increasing content of nanofiller in the thermoplastic system. The addition of thermally reduced graphene oxide had a slight effect on thermal stability of the obtained materials. The incorporation of 0.5, 1.0, 2.0 and 3.0 wt% of TRG into a system resulted in increased char residues compared to unmodified PU elastomer. Also, this study demonstrated that after exceeding a specific amount of TRG, the physicomechanical properties of modified materials start to deteriorate.

  5. Thermal Properties Capability Development Workshop Summary to Support the Implementation Plan for PIE Thermal Conductivity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hurley, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Department of Energy (DOE)-Office of Nuclear Energy (NE), Idaho National Laboratory (INL), and associated nuclear fuels programs have invested heavily over the years in infrastructure and capability development. With the current domestic and international need to develop Accident Tolerant Fuels (ATF), increasing importance is being placed on understanding fuel performance in irradiated conditions and on the need to model and validate that performance to reduce uncertainty and licensing timeframes. INL’s Thermal Properties Capability Development Workshop was organized to identify the capability needed by the various nuclear programs and list the opportunities to meet those needs. In addition, by the end of fiscal year 2015, the decision will be made on the initial thermal properties instruments to populate the shielded cell in the Irradiated Materials Characterization Laboratory (IMCL).

  6. Comparative study of hygrothermal properties of five thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Laure Ducoulombier

    2017-09-01

    Full Text Available The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three parts. The first part presents the phenomena of hygrothermal transfers in walls in order to understand the need for determining specific properties of the insulating materials. The second part describes in details the five studied insulating materials and the methods used for the characterization and identification of their main properties. Finally, the last part presents the experimental results and makes comparisons between materials. The differences between the insulating materials are brought out, such as the strong dependence of the thermal conductivity of polystyrene on temperature, or the good permeability of fibrous insulating materials to water vapor. A detailed analysis of the obtained results is presented.

  7. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  8. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  9. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  10. Optical Property Evaluation of Next Generation Thermal Control Coatings

    Science.gov (United States)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  11. Thermal properties of typical chernozems in Kursk Oblast

    Science.gov (United States)

    Arkhangel'skaya, T. A.; Velichenko, M. V.; Tikhonravova, P. I.

    2016-10-01

    Thermal diffusivity and heat capacity of virgin and plowed heavy loamy typical chernozems of Kursk oblast were studied. Thermal diffusivity was determined in the course of step-by-step drying of the initially capillary-saturated samples to the air-dry state. Specific heat capacity was determined for absolutely dry samples. Volumetric heat capacity was calculated according to the de Vries equation. Thermal diffusivity varied within the ranges of (1.15-3.46) × 10-7 m2/s in the Ap horizon, (1.14-3.35) × 10-7 m2/s in the A1 horizon, (1.49-3.70) × 10-7 m2/s in the AB horizon, (1.49-3.91) × 10-7 m2/s in the B1 horizon, and (1.60-3.80) × 10-7 m2/s in the Bca horizon. The thermal diffusivity vs. water content dependencies had distinct maximums and were flattened in the range of low water contents. The maximums were most pronounced for the mineral B1 and Bca horizons; for the A1 and Ap horizons, the curves were rather S-shaped. Volumetric heat capacity of the air-dry soils varied from 0.96 J/(cm3 K) in the A1 horizon to 1.31 J/(cm3 K) in the Bca horizon; in the state of capillary saturation, it varied from 2.79 J/(cm3 K) in the A1 horizon to 3.28 J/(cm3 K) in the Bca horizon. Thermal properties of topsoil horizons were higher in the plowed chernozem compared with the virgin chernozem, which is explained by an increase in the bulk density and a decrease in the organic matter content in the plowed soil.

  12. Nanofluid enhancement of mineral oil and thermal properties instrument design

    Science.gov (United States)

    Wilborn, Eli

    thermal conductivities of various fluids. The second design calculated a thermal conductivity of water to be 0.59W/m2 c', while the commonly accepted value is 0.58W/ m2c', which is well within a tolerable range of error to accept this value as accurate at the experimental conditions. This heat transfer cell also calculated the thermal conductivity value for AMSOIL synthetic motor oil to be 0.12W/m2 c and 0.10W/m2c for mineral oil, both of these values are within the expected ranges of thermal conductivity for oils. The second goal of applying the heat transfer enhancement properties of a nanofluid to a transformer cooling application proved to be futile for Copper Oxide(40nm) and Carbon coated Copper nanoparticles(25nm) in mineral oil. All of the attempted nanofluids fell out of suspension within a timeframe of a day, and in a transformer cell where natural convection is the only means of flow available that contributes to keeping the nanoparticles suspended, there is not enough flow to keep the nanoparticles from falling out of suspension. That is why unless the transformer industry moves towards another coolant besides mineral oil, heat transfer enhancement using Copper Oxide (40nm) or Carbon Coated nanoparticles (25nm) in a mineral oil nanofluid is not a viable option.

  13. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties

    Science.gov (United States)

    Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.

    2015-11-01

    One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.

  14. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  15. Thermal properties of nuclear matter under the periodic boundary condition

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    1999-01-01

    We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)

  16. Electrical and thermal transport properties of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Lewis, H.D.; Kerrisk, J.F.

    1976-09-01

    Contributions of many authors are outlined with respect to the experimental measurement methods used and characteristics of the sample materials. Discussions treat the qualitative effects of sample material composition; oxygen, nitrogen, and nickel concentrations; porosity; microstructural variations; and the variability in transport property values obtained by the various investigators. Temperature-dependent values are suggested for the electrical resistivities and thermal conductivities of selected carbide compositions based on a comparative evaluation of the available data and the effects of variation in the characteristics of sample materials

  17. Crystallization and thermal properties of Polylactide/Palygorskite composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2014-06-01

    Full Text Available of Applied Polymer Science For Peer Review 1 Crystallization and thermal properties of polylactide/palygorskite composites Sreejarani Kesavan Pillai1*, Vincent Ojijo1 and Suprakas Sinha Ray1,2,3 1DST/CSIR Nanotechnology Innovation Centre, National... limits the processability of the polymer.3 This specifically becomes an issue when PLA is to be used in extrusion and injection moulding where it is hard to get high PLA crystallinity in a short time.4 Therefore, how to enhance crystallization kinetics...

  18. Elucidation technique on thermal properties data on material for nuclear power

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1999-01-01

    National Research Laboratory of Metrology developed a technology capable of measuring thermal diffusivity with more than 2% in precision at less than 2600degC by using laser flash method, specific heat volume and thermal emissivity with more than 3% in precision at less than 3000degC by using pulse electro-heating method, and thermal conductivity of micro specimen with 3% in precision at a range of room of room temperature to 500degC. On base of such technical potentials, this study aimed at rapidly measuring thermal properties (thermal conductivity, thermal diffusivity specific heat volume, and thermal emissivity) with precision at the highest precision in the world and ranging to ultrahigh temperature under identifying fundamental properties of materials. As a result, a data base on thermal properties capable of collecting all thermal property data obtained at this study and with excellent operability could be developed. (G.K.)

  19. Physicochemical, thermal and functional properties of gamma irradiated chickpea starch.

    Science.gov (United States)

    Bashir, Khalid; Aggarwal, Manjeet

    2017-04-01

    The study was conducted to evaluate the effect of gamma irradiation (0, 0.5, 1, 2.5, 5 and 10kGy) on physicochemical, functional and thermal properties of chickpea starch. Results revealed that the pasting properties showed a significant (p≤0.05) decrease in peak viscosity, final viscosity, setback viscosity, trough viscosity and pasting temperature in dose dependent manner. Swelling, solubility index, oil absorption capacity and water absorption capacity increased significantly with dose, while as syneresis decreased with dose. Gelatinization temperatures T o , T p and T c decreased significantly with dose. X-ray diffraction showed a characteristic C type pattern of the starches and the crystallinity decreased with dose. Scanning electron microscopy revealed small oval shaped starch granules and slight surface fissures were seen in the irradiated starch treated with 5 and 10kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  1. High-field thermal transports properties of REBCO coated conductors

    CERN Document Server

    Bonura, M

    2015-01-01

    The use of REBCO coated conductors is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (k) of REBCO coated conductors in magnetic fields up to 19 T applied both parallelly and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field k of coated conductors can be calculated with an accuracy of ‡ 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field k in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the ...

  2. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    Science.gov (United States)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected

  3. PROPERTIES OF FIBERBOARD OVERPACK MATERIAL IN THE 9975 SHIPPING PACKAGE FOLLOWING THERMAL AGING

    International Nuclear Information System (INIS)

    Daugherty, W

    2007-01-01

    Many radioactive material shipping packages incorporate cane fiberboard overpacks for thermal insulation and impact resistance. Mechanical, thermal and physical properties have been measured on cane fiberboard following thermal aging in several temperature/humidity environments. Several of the measured properties change significantly over time in the more severe environments, while other properties are relatively constant. These properties continue to be tracked, with the goal of developing a model for predicting a service life under long-term storage conditions

  4. Adjustment of Sensor Locations During Thermal Property Parameter Estimation

    Science.gov (United States)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    The temperature dependent thermal properties of a material may be evaluated from transient temperature histories using nonlinear parameter estimation techniques. The usual approach is to minimize the sum of the squared errors between measured and calculated temperatures at specific locations in the body. Temperature measurements are usually made with thermocouples and it is customary to take thermocouple locations as known and fixed during parameter estimation computations. In fact, thermocouple locations are never known exactly. Location errors on the order of the thermocouple wire diameter are intrinsic to most common instrumentation procedures (e.g., inserting a thermocouple into a drilled hole) and additional errors can be expected for delicate materials, difficult installations, large thermocouple beads, etc.. Thermocouple location errors are especially significant when estimating thermal properties of low diffusively materials which can sustain large temperature gradients during testing. In the present work, a parameter estimation formulation is presented which allows for the direct inclusion of thermocouple positions into the primary parameter estimation procedure. It is straightforward to set bounds on thermocouple locations which exclude non-physical locations and are consistent with installation tolerances. Furthermore, bounds may be tightened to an extent consistent with any independent verification of thermocouple location, such as x-raying, and so the procedure is entirely consonant with experimental information. A mathematical outline of the procedure is given and its implementation is illustrated through numerical examples characteristic of light-weight, high-temperature ceramic insulation during transient heating. The efficacy and the errors associated with the procedure are discussed.

  5. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  6. Thermal Properties of Unusual Local-Scale Features on Vesta

    Science.gov (United States)

    Capria, M.; DeSanctis, M.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; Sunshine, J. M.; Titus, T. N.; Mittlefehldt, D. W.; hide

    2012-01-01

    On Vesta, the thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. We used Dawn s Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta and pitted materials, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were reobserved by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low- Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. In this work we present temperature maps and emissivities of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Data from VIR's IR channel show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations, and not, for example, shadowing. During maximum daily insolation, dark features in the equatorial region may rise to temperatures greater than 270 K, while brightest features stop at roughly 258 K, local solar time being similar. However, pitted materials, showing relatively low reflectance, have significantly lower temperatures, as a result of differences in composition and/or structure (e.g, average grain size of the surface regolith, porosity, etc.). To complement this work, we provide preliminary values of thermal inertia for some bright and dark features.

  7. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Sari, Hayati; Oenal, Adem

    2004-01-01

    The present study deals with two subjects. The first one is to determine the thermal properties of lauric acid (LA)-stearic acid (SA), myristic acid (MA)-palmitic acid (PA) and palmitic acid (PA)-stearic acid (SA) eutectic mixtures as latent heat storage material. The properties were measured by the differential scanning calorimetry (DSC) analysis technique. The second one is to study the thermal reliability of these materials in view of the change in their melting temperatures and latent heats of fusion with respect to repeated thermal cycles. For this aim, the eutectic mixtures were subjected to 360 repeated melt/freeze cycles, and their thermal properties were measured after 0, 90,180 and 360 thermal cycles by the technique of DSC analysis. The DSC thermal analysis results show that the binary systems of LA-SA in the ratio of 75.5:24.5 wt.%, MA-PA in the ratio of 58:42 wt.% and PA-SA in the ratio of 64.2:35.8 wt.% form eutectic mixtures with melting temperatures of 37.0, 42.60 and 52.30 deg. C and with latent heats of fusion of 182.7, 169.7 and 181.7 J g -1 , respectively. These thermal properties make them possible for heat storage in passive solar heating applications with respect to climate conditions. The accelerated thermal cycle tests indicate that the changes in the melting temperatures and latent heats of fusion of the studied eutectic mixtures are not regular with increasing number of thermal cycles. However, these materials, latent heat energy storage materials, have good thermal reliability in terms of the change in their thermal properties with respect to thermal cycling for about a one year utility period

  8. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    Science.gov (United States)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  9. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).

    Science.gov (United States)

    Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S

    2016-12-01

    Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.

  10. Thermal properties of quantum devices in integrated circuits embedded in a chip environment

    Czech Academy of Sciences Publication Activity Database

    Käso, M.; Wulf, U.; Kučera, Jan; Richter, H.; Höntschel, J.

    2014-01-01

    Roč. 11, č. 1 (2014), 105-108 ISSN 1862-6351 Institutional support: RVO:68378271 Keywords : thermal properties * chip s * thermal stability * nanoelectronic Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. Influence of external thermal effect on structure sensitive properties of nickel alloys

    International Nuclear Information System (INIS)

    Statsenko, V.M.; Smolin, M.D.

    1985-01-01

    Influence of thermal shock on alloy relative elongation and behaviour during the differential thermal analysis has been studied on Ni+33 at.%Cr and Ni+10 at% Mo alloys. It is shown that changes of structural-sensitive properties have a reversible nature. Maximum of property changes reveals in some time (10-20 min.) after thermal attack influence. Also influence on alloy propertics of cyclic thermal shocks was considered

  12. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Energy Technology Data Exchange (ETDEWEB)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  13. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Science.gov (United States)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  14. In situ thermal properties characterization using frequential methods

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, O.; Defer, D.; Antczak, E.; Chauchois, A.; Duthoit, B. [Laboratoire dArtois de Mecanique Thermique Instrumentation (LAMTI), FSA Universite dArtois, Technoparc Futura, 62400 Bethune (France)

    2008-07-01

    In numerous fields, especially that of geothermal energy, we need to know about the thermal behaviour of the soil now that the monitoring of renewable forms of energy is an ecological, economic and scientific issue. Thus heat from the soil is widely used for air-conditioning systems in buildings both in Canada and in the Scandinavian countries, and it is spreading. The effectiveness of this technique is based on the soils calorific potential and its thermophysical properties which will define the quality of the exchanges between the soil and a heat transfer fluid. This article puts forward a method to be used for the in situ thermophysical characterisation of a soil. It is based upon measuring the heat exchanges on the surface of the soil and on measuring a temperature a few centimetres below the surface. The system is light, inexpensive, well-suited to the taking of measurements in situ without the sensors used introducing any disturbance into the heat exchanges. Whereas the majority of methods require excitation, the one presented here is passive and exploits natural signals. Based upon a few hours of recording, the natural signals allow us to identify the soils thermophysical properties continuously. The identification is based upon frequency methods the quality of which can be seen when the thermophysical properties are injected into a model with finite elements by means of a comparison of the temperatures modelled and those actually measured on site. (author)

  15. Improved Inversion of Needle Probe Data for the Determination of Rock Thermal Properties

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.

    Heat flow, thermal conductivity and thermal diffusivity are essential properties in subsurface temperature modelling. We present initial results of a novel inversion approach for laboratory measurements of rock thermal conductivity and thermal diffusivity by the needle probe method. Instead...... of analytical expressions, we use a numerical finite element procedure for the forward temperature response. A Markov Chain Monte Carlo Metropolis Hastings inversion procedure produces estimates of rock thermal parameters with uncertainties. .....

  16. Development of vacuum glazing with advanced thermal properties - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Manz, H.

    2009-03-15

    Windows constitute a weak link in the building envelope and hence contribute significantly to the total heating energy demand in buildings. By evacuating the glazing cavity a vacuum glazing is created and heat transfer can be significantly reduced. This project was designed to build knowledge and technology necessary to fabricate vacuum glazing with advanced thermal properties. More specifically, various strategies for improvement of conventional technology were investigated. Of central importance was the development of a novel edge sealing approach which can in theory circumvent the main limitation of conventional glass soldering technology. This approach which is rapid, low temperature, low cost and completely vacuum compatible was filed for patenting in 2008. With regards to thermal insulation performance and glazing deflection, numerical studies were performed demonstrating the importance of nonlinear behavior with glazing size and the results published. A detailed service life prediction model was elaborated which defines a set of parameters necessary to keep the expected pressure increase below a threshold value of 0.1 Pa after 30 years. The model takes into account four possible sources of pressure increase and a getter material which acts as a sink. For the production of 0.5 m by 0.5 m glazing assembly prototypes, a high vacuum chamber was constructed and a first sealing prototype realized therein. The manufacture of improved prototypes and optimization of the anodic bonding edge sealing technology with emphasis on process relevant aspects is the goal of a follow-up project. (authors)

  17. Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties

    International Nuclear Information System (INIS)

    Balakrishnan, Harintharavimal; Hassan, Azman; Wahit, Mat Uzir; Yussuf, A.A.; Razak, Shamsul Bahri Abdul

    2010-01-01

    The objective of the study is to develop a novel toughened polylactic acid (PLA) nanocomposite. The effects of linear low density polyethylene (LLDPE) and organophilic modified montmorillonite (MMT) on mechanical, thermal and morphological properties of PLA were investigated. LLDPE toughened PLA nanocomposites consisting of PLA/LLDPE blends, of composition 100/0 and 90/10 with MMT content of 2 phr and 4 phr were prepared. The Young's and flexural modulus improved with increasing content of MMT indicating that MMT is effective in increasing stiffness of LLDPE toughened PLA nanocomposite even at low content. LLDPE improved the impact strength of PLA nanocomposites with a sacrifice of tensile and flexural strength. The tensile and flexural strength also decreased with increasing content of MMT in PLA/LLDPE nanocomposites. The impact strength and elongation at break of LLDPE toughened PLA nanocomposites also declined steadily with increasing loadings of MMT. The crystallization temperature and glass transition temperature dropped gradually while the thermal stability of PLA improved with addition of MMT in PLA/LLDPE nanocomposites. The storage modulus of PLA/LLDPE nanocomposites below glass transition temperature increased with increasing content of MMT. X-ray diffraction and transmission electron microscope studies revealed that an intercalated LLDPE toughened PLA nanocomposite was successfully prepared at 2 phr MMT content.

  18. Mechanical, Thermal and Functional Properties of Green Lightweight Foamcrete

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available In recent times, the construction industry has revealed noteworthy attention in the use of lightweight foamcrete as a building material due to its many favourable characteristics such as lighter weight, easy to fabricate, durable and cost effective. Foamcrete is a material consisting of Portland cement paste or cement filler matrix (mortar with a homogeneous pore structure created by introducing air in the form of small bubbles. With a proper control in dosage of foam and methods of production, a wide range of densities (400 – 1600 kg/m 3 of foamcrete can be produced thus providing flexibility for application such as structural elements, partition, insulating materials and filling grades. Foamcrete has so far been applied primarily as a filler material in civil engineering works. However, its good thermal and acoustic performance indicates its strong potential as a material in building construction. The focus of this paper is to classify literature on foamcrete in terms of its mechanical, thermal and functional properties.

  19. Thermal properties of a ferromagnetic superconductor UGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tateiwa, Naoyuki [Osaka Univ., Graduate School of Engineering Science, Suita, Osaka (Japan); Kobayashi, Tatsuo C.; Amaya, Kichi [Osaka Univ., Research Center for Materials Science at Extreme Conditions, Toyonaka, Osaka (Japan); Haga, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Settai, Rikio; Onuki, Yoshichika [Osaka Univ., Graduate School of Science, Toyonaka, Osaka (Japan)

    2002-11-01

    Thermal properties of a ferromagnetic superconductor UGe{sub 2} were investigated by the heat capacity measurements. The bulk nature of the superconductivity was confirmed by the observation of a peak in the heat capacity at the superconducting transition temperature T{sub SC}. From the pressure dependence of the linear heat capacity coefficient {gamma}, it is suggested that the low energy magnetic excitation near the critical point P{sub C}{sup *}, where T* becomes 0 K, might play an important role on the superconductivity. The pressure dependence of the superconducting peak and the temperature dependence of C/T above T{sub SC} suggest that the order parameter of the superconducting state might be different between the phases below and above P{sub C}{sup *}. (author)

  20. Mechanical and thermal properties of physically-blended-plastic films

    International Nuclear Information System (INIS)

    Abu Issa, M. S.

    1983-10-01

    Low density polyethylene (LDPE) and isotactic polypropylene (PP) blend were produced in film form and were characterized by a number of techniques such as wide-angle x-ray diffraction (WAXD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and instron tensile testing. Results of WAXD and DTA showed conclusively that the two components in the blend are incompatible. SEM micrographs indicated that the 60/40 and 40/60 PP/PE blends show approximately fine homogeneous dispersion of the minor component into the matrix of the major component. The mechanical properties of the blend films improved with respect to the PE homo polymer. The improvement was more remarkable with the increase of the PP component in the blend. Results obtained in this work were explained in terms of crystallinity and the crystallite orientation. 28 refs., 29 figs., 5 tabs. (A.M.H.)

  1. Determination of viral capsid elastic properties from equilibrium thermal fluctuations.

    Science.gov (United States)

    May, Eric R; Brooks, Charles L

    2011-05-06

    We apply two-dimensional elasticity theory to viral capsids to develop a framework for calculating elastic properties of viruses from equilibrium thermal fluctuations of the capsid surface in molecular dynamics and elastic network model trajectories. We show that the magnitudes of the long wavelength modes of motion available in a simulation with all atomic degrees of freedom are recapitulated by an elastic network model. For the mode spectra to match, the elastic network model must be scaled appropriately by a factor which can be determined from an icosahedrally constrained all-atom simulation. With this method we calculate the two-dimensional Young's modulus Y, bending modulus κ, and Föppl-von Kármán number γ, for the T=1 mutant of the Sesbania mosaic virus. The values determined are in the range of previous theoretical estimates.

  2. From Tomography to Material Properties of Thermal Protection Systems

    Science.gov (United States)

    Mansour, Nagi N.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Barnhardt, Michael; Wright, Michael

    2017-01-01

    A NASA Ames Research Center (ARC) effort, under the Entry Systems Modeling (ESM) project, aims at developing micro-tomography (micro-CT) experiments and simulations for studying materials used in hypersonic entry systems. X-ray micro-tomography allows for non-destructive 3D imaging of a materials micro-structure at the sub-micron scale, providing fiber-scale representations of porous thermal protection systems (TPS) materials. The technique has also allowed for In-situ experiments that can resolve response phenomena under realistic environmental conditions such as high temperature, mechanical loads, and oxidizing atmospheres. Simulation tools have been developed at the NASA Ames Research Center to determine material properties and material response from the high-fidelity tomographic representations of the porous materials with the goal of informing macroscopic TPS response models and guiding future TPS design.

  3. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.

    Science.gov (United States)

    Liang, Xin M; Ding, Weiping; Chen, Hsiu-hung; Shu, Zhiquan; Zhao, Gang; Zhang, Hai-feng; Gao, Dayong

    2011-10-01

    Obtaining accurate thermal properties of biomaterials plays an important role in the field of cryobiology. Currently, thermal needle, which is constructed by enclosing a manually winded thin metal wire with an insulation coating in a metallic sheath, is the only available device that is capable of measuring thermal conductivity of biomaterials. Major drawbacks, such as macroscale sensor size, lack of versatile format to accommodate samples with various shapes and sizes, neglected effects of heat transfer inside the probe and thermal contact resistance between the sensing element and the probe body, difficult to mass produce, poor data repeatability and reliability and labor-intense sensor calibration, have significantly reduced their potential to be an essential measurement tool to provide key thermal property information of biological specimens. In this study, we describe the development of an approach to measure thermal conductivity of liquids and soft bio-tissues using a proof-of-concept MEMS based thermal probe. By employing a microfabricated closely-packed gold wire to function as the heater and the thermistor, the presented thermal sensor can be used to measure thermal conductivities of fluids and natural soft biomaterials (particularly, the sensor may be directly inserted into soft tissues in living animal/plant bodies or into tissues isolated from the animal/plant bodies), where other more standard approaches cannot be used. Thermal standard materials have been used to calibrate two randomly selected thermal probes at room temperature. Variation between the obtained system calibration constants is less than 10%. By incorporating the previously obtained system calibration constant, three randomly selected thermal probes have been successfully utilized to measure the thermal conductivities of various solutions and tissue samples under different temperatures. Overall, the measurements are in agreement with the recommended values (percentage error less than 5

  4. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials

    International Nuclear Information System (INIS)

    Lv, Peizhao; Liu, Chenzhen; Rao, Zhonghao

    2016-01-01

    Highlights: • Different particle sizes of kaolin were employed to load paraffin. • The effects and reasons of particle size on thermal conductivity were studied. • Thermal property and thermal stability of the composites were investigated. • The leakage and thermal storage and release rate of the composites were studied. • The effect of vacuum impregnation method on thermal conductivity was investigated. - Abstract: In this paper, different particle sizes of kaolin were employed to incorporate paraffin via vacuum impregnation method. The paraffin/kaolin composites were characterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeter (DSC) and Thermogravimetry (TG). The results showed that the paraffin/kaolin composite with the largest particle size of kaolin (K4) has the highest thermal conductivity (0.413 W/(m K) at 20 °C) among the diverse composites. The latent heat capacity of paraffin/K4 is 119.49 J/g and the phase change temperature is 62.4 °C. In addition, the thermal properties and thermal conductivities of paraffin/K4 with different mass fraction of K4 (0–60%) were investigated. The thermal conductivities of the composites were explained in microcosmic field. The phonon mean free path determines the thermal conductivity, and it can be significantly affected by temperature and the contact surface area. The leaks, thermal storage and release properties of pure paraffin and paraffin/kaolin composites were investigated and the composites presented good thermal stabilities.

  5. Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Cheng Wenlong; Liu Na; Wu Wanfan

    2012-01-01

    In order to overcome the difficulty of conventional phase change materials (PCMs) in packaging, the shape-stabilized PCMs are proposed to be used in the electronic device thermal control. However, the conventional shape-stabilized PCMs have the drawback of lower thermal conductivity, so a new shape-stabilized PCM with high thermal conductivity, which is suitable for thermal control of electronic devices, is prepared. The thermal properties of n-octadecane-based shape-stabilized PCM are tested and analyzed. The heat storage/release performance is studied by numerical simulation. Its thermal control effect for electronic devices is also discussed. The results show that the expanded graphite (EG) can greatly improve the thermal conductivity of the material with little effect on latent heat and phase change temperature. When the mass fraction of EG is 5%, thermal conductivity has reached 1.76 W/(m K), which is over 4 times than that of the original one. Moreover, the material has larger latent heat and good thermal stability. The simulation results show that the material can have good heat storage/release performance. The analysis of the effect of thermal parameters on thermal control effect for electronic devices provides references to the design of phase change thermal control unit. - Highlights: ► A new shape-stabilized PCM with higher thermal conductivity is prepared. ► The material overcomes the packaging difficulty of traditional PCMs used in thermal control unit. ► The EG greatly improves thermal conductivity with little effect on latent heat. ► The material has high thermal stability and good heat storage/release performance. ► The effectiveness of the material for electronic device thermal control is proved.

  6. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  7. Optical properties of mineral dust aerosol in the thermal infrared

    Science.gov (United States)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  8. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals.

    Science.gov (United States)

    Mukurumbira, Agnes; Mariano, Marcos; Dufresne, Alain; Mellem, John J; Amonsou, Eric O

    2017-09-01

    Amadumbe (Colocasia esculenta), commonly known as taro is a tropical tuber that produces starch-rich underground corms. In this study, the physicochemical properties of starch nanocrystals (SNC) prepared by acid hydrolysis of amadumbe starches were investigated. Two varieties of amadumbe corms were used for starch extraction. Amadumbe starches produced substantially high yield (25%) of SNC's. These nanocrystals appeared as aggregated and individual particles and possessed square-like platelet morphology with size: 50-100nm. FTIR revealed high peak intensities corresponding to OH stretch, CH stretch and H 2 O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A-type crystalline pattern. However, amadumbe SNCs showed higher degree of crystallinity and slightly reduced melting temperatures than their native starches. Amadumbe SNCs presented similar thermal decomposition property as their native starches. Amadumbe starch nanocrystals may have potential application in biocomposite films due to their square-like platelet morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structure, Mechanical Properties and Thermal Conductivity of Thermal Sprayed Nickel Coatings

    Science.gov (United States)

    Murakami, Kenji; Matsumoto, Hiroshi; Nakajima, Hideo

    Nickel powder was low pressure plasma sprayed onto a steel substrate, and the influence of the thermal history of the coating on the structures and the properties of the coating were examined. The lamellae of the coating was composed of fine columnar grains when the temperature of the coating was kept low during spraying. As the temperature of the coating during spraying increases, the length of the columnar grains became longer than the thickness of the lamellae. The coating heat-treated after spraying consisted of coarse equiaxed grains and had high porosity that came from the liberation of a plasma gas dissolved in rapidly solidified solid nickel. The hardness, apparent density and the tensile strength of the coating itself were the highest on the coating prepared at a low temperature and became low after heat-treatment. The thermal conductivity measured in the direction perpendicular to the coating was the largest on the coating that consisted of long columnar grains. The cause for the formation of the long columnar grains is discussed in terms of the momentary and local melting of the coating surface that is in contact with the sprayed droplet and the grain growth in the solid state due to the large temperature gradient in the coating.

  10. Thermal properties evaluation of insulation in overpack containers for UF6 transport

    International Nuclear Information System (INIS)

    Frazier, J.L.

    1989-01-01

    Two types of insulation are currently in use in overpacks utilized to protect UF 6 during transport. Phenolic foam has been used in the family of UF 6 overpacks under US Department of Transportation Specifications. Recently new generation overpacks have been developed which utilize polyurethane foam. A comparative analysis was made of the thermal characteristics of the phenolic foam with that of polyurethane in two different densities. Thermal properties of materials vary with temperature with the relationship being a complex interaction of basic materials properties, processing variables, and environmental conditions. Typically, the thermal conductivity of a material increases with increasing temperature, and adequate thermal models of materials systems or structures require temperature dependent thermal properties such as conductivity. In the event of an overpack container exposed to a fire as a heat source, the thermal properties of the materials of construction will vary with temperature which varies with time. Environmental interactions will result in material properties changes which will be reflected in changes in thermal properties. The need to incorporate temperature dependent thermal properties into analytical finite element codes led to an experimental program to measure thermal properties, principally thermal conductivity, for the 21PF-1 overpack phenolic foam. The thermal conductivity-temperature relationship for this insulator has been measured from room temperature to over 1000F. An alternate UF 6 product cylinder overpack container has recently entered service; an overpack design incorporating polyurethane as the primary thermal resistance in place of the phenolic foam in a 2 1/2 ton cylinder overpack. Elevated temperature thermal properties measurements for the polyurethane material system are presented

  11. Electronic and Thermal Properties of Puckered Orthorhombic Materials

    Science.gov (United States)

    Fei, Ruixiang

    Puckered orthorhombic crystals, such as black phosphorus and group IV monochalcogenides, are attracting tremendous attention because of their new exotic properties, which are of great interests for fundamental science and novel applications. Unlike those well studied layered hexagonal materials such as graphene and transition metal dichalcogenides, the puckered orthorhombic crystals possess highly asymmetrical in-plane crystal structures. Understanding the unique properties emerginge from their low symmetries is an intriguing and useful process, which gives insight into experimental observation and sheds light on manipulating their properties. In this thesis, we study and predict various properties of orthorhombic materials by using appropriate theoretical techniques such as first-principles calculations, Monte-Carlo simulations, and k · p models. In the first part of the thesis, we deal with the anisotropic electric and thermal properties of a typical puckered orthorhombic crystal, black phosphorus. We first study the electric properties in monolayer and few-layer black phosphorus, where the unique, anisotropic electrical conductance is founded. Furthermore, we find that the anisotropy of the electrical conductance can be rotated by 90° through applying appropriate uniaxial or biaxial strain. Beyond electrical conductance, we, for the first time, predict that the thermal conductance of black phosphorus is also anisotropic and, particularly, the preferred conducting direction is perpendicular to the preferred electrical conducting direction. Within the reasonable estimation regime, the thermoelectric figure of merit (ZT) ultimately reaches 1 at room temperature using only moderate doping. The second part of this thesis focuses on the electronic polarization of non-centrosymmetric puckered materials-group IV monochalcogenide. We propose that monolayer group IV monochalcogenides are a new class of two-dimensional (2D) ferroelectric materials with spontaneous in

  12. Research on technology of evaluating thermal property data of nuclear power materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1997-01-01

    For the materials of first wall and diverter of nuclear fusion reactor, in order to withstand steady and unsteady high heat flux load, excellent thermal characteristics are required. It is strongly demanded to measure such thermal property values as heat conductivity, heat diffusivity, specific heat capacity, emissivity and so using small test pieces up to higher than 2000degC. As the materials of nuclear reactors are subjected to neutron irradiation, in order to secure the long term reliability of the materials, it is very important to establish the techniques for forecasting the change of the thermal property values due to irradiation effect. Also the establishment of the techniques for estimating the thermal property values of new materials like low radioactivation material is important. In National Research Laboratory of Metrology, the research on the advancement of the measuring technology for high temperature thermal properties has resulted in the considerably successful development of such technologies. In this research, the rapid measurement of thermal property values up to superhigh temperature with highest accuracy, the making of thermal property data set of high level, the analysis and evaluation of the correlation of material characters and thermal property values, and the development of the basic techniques for estimating the thermal property values of solid materials are aimed at and advanced. These are explained. (K.I.)

  13. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  14. Viscoelastic and thermal properties of woven sisal fabric reinforced natural rubber biocomposites

    CSIR Research Space (South Africa)

    John, MJ

    2009-01-01

    Full Text Available on the viscoelastic properties of the textile composites has also been examined. An investigation into the viscoelastic properties with thermal resistance and morphology of woven sisal fabric reinforced natural rubber composites is presented. The damping factor...

  15. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  16. Soil thermal properties at Kalpakkam in coastal south India

    Indian Academy of Sciences (India)

    . ... two locations in Kalpakkam, coastal southeast India. The data were analysed to estimate soil thermal di usivity, thermal conductivity, volumetric heat capacity and soil heat ux. This paper describes the results and discusses their implications.

  17. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging.

    Science.gov (United States)

    Wang, Youyuan; Wang, Can; Zhang, Zhanxi; Xiao, Kun

    2017-10-12

    This paper investigates the morphology, thermal, and electrical properties of LDPE (low-density polyethylene)-based nanocomposites after thermal aging. The FTIR (Fourier transform infrared spectroscopy) spectra results show that thermo-oxidative reactions occur in neat LDPE and LDPE/SiO₂ nanocomposites when the aging time is 35 days and in LDPE/MgO nanocomposites when the aging time is 77 days. Specifically, LDPE/MgO nanocomposites delay the appearance of thermo-oxidative reactions, showing anti-thermal aging ability. Furthermore, nanocomposites present lower onset degradation temperature than neat LDPE, showing better thermal stabilization. With regard to the electrical properties, nanocomposites maintain the ability to suppress space charge accumulation after thermal aging. Additionally, in comparison with SiO₂ nanocomposites and neat LDPE, the permittivity of LDPE/MgO nanocomposites changes slightly after thermal aging. It is concluded that LDPE/MgO nanocomposites have better insulation properties than neat LDPE after thermal aging, which may be caused by the interface introduced by the nanoparticles.

  18. Properties of Starch Based Foams Made by Thermal Pressure Forming

    Directory of Open Access Journals (Sweden)

    J. Štancl

    2008-01-01

    Full Text Available Packaging materials based on expanded polystyrene can be substituted by biodegradable foam, manufactured by direct or indirect electrical heating of a potato starch suspension in a closed mold. This paper deals with an experimental evaluation of selected properties of potato starch and starch foam related to this technology: density, specific heat capacity and specific electrical conductivity of a water suspension of potato starch within the temperature range up to 100 °C, and mass fraction from 5 to 65 %. The electric conductivity and heat capacity changes were observed during direct ohmic heating of a starch suspension between electrodes in a closed cell (feeding voltage 100 V, frequency 50 Hz. Specific electric conductivity increases with temperature, with the exception of the gelatinization region at 60 to 70 °C, and decreases with increasing concentration of starch (the temperature and concentration dependencies were approximated using the Lorentz equation. Direct ohmic heating is restricted by a significant decrease in effective electrical conductivity above a temperature of 100 °C, when evaporated steam worsens the contact with the electrodes. Experiments show that when direct ohmic heating is not combined with indirect contact heating, only 20 % of the water can be evaporated from manufactured samples and the starch foam is not fully formed. This is manifested by only a slight expansion of the heated sample. Only the indirect contact heating from the walls of the mold, with the wall temperature above 180 °C, forms a fixed porous structure (expansion of about 300 % and a crust, ensuring suitable mechanical and thermal insulation properties of the manufactured product. The effective thermal conductivity of the foamed product (sandwich plates with a porous core and a compact crust was determined by the heated wire method, while the porosity of the foam and the thickness of the crust were evaluated by image analysis of colored cross

  19. 3omega method to measure thermal properties of electrically conducting small-volume liquid.

    Science.gov (United States)

    Choi, Sun Rock; Kim, Joonwon; Kim, Dongsik

    2007-08-01

    This work presents a method to measure the thermal conductivity and heat capacity of electrically conducting small-volume liquid samples using the 3omega technique. A mathematical model of heat transfer is derived to determine the thermal properties from the 3omega signal considering the device geometry. In order to validate the model, an experimental apparatus has been designed and set up to measure the thermal properties (thermal conductivity and heat capacity) of seven different liquid samples. The results show good agreement with other literature values, demonstrating that the suggested method is effective for measuring the thermal properties of electrically conducting liquids. More importantly, the result with a sample volume of 1 microl demonstrates the resolution of the thermal conductivity as precise as 0.01% which corresponds to a thermal-conductivity change of 10(-4) Wm K in the case of water-based solutions.

  20. Mechanical, Hygric and Thermal Properties of Flue Gas Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    P. Tesárek

    2004-01-01

    Full Text Available The reference measurements of basic mechanical, thermal and hygric parameters of hardened flue gas desulfurization gypsum are carried out. Moisture diffusivity, water vapor diffusion coefficient, thermal conductivity, volumetric heat capacity and linear thermal expansion coefficient are determined with the primary aim of comparison with data obtained for various types of modified gypsum in the future. 

  1. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    International Nuclear Information System (INIS)

    Cressault, Y.

    2015-01-01

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas

  2. Study of the thermal properties of selected PCMs for latent heat storage in buildings

    Science.gov (United States)

    Valentova, Katerina; Pechackova, Katerina; Prikryl, Radek; Ostry, Milan; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements of thermal properties of selected phase change materials (PCMs) which can be used for latent heat storage in building structures. The thermal properties were measured by the transient step-wise method and analyzed by the thermal spectroscopy. The results of three different materials (RT18HC, RT28HC, and RT35HC) and their thermal properties in solid, liquid, and phase change region were determined. They were correlated with the differential scanning calorimetry (DSC) measurement. The results will be used to determine the optimum ratio of components for the construction of drywall and plasters containing listed ingredients, respectively.

  3. La/Sm/Er Cation Doping Induced Thermal Properties of SrTiO3 Perovskite.

    Science.gov (United States)

    Rittiruam, Meena; Seetawan, Tosawat; Yokhasing, Sirakan; Matarat, Korakot; Bach Thang, Phan; Kumar, Manish; Han, Jeon Geon

    2016-09-06

    The La/Sm/Er cations with different radii doping SrTiO3 (STO) as model Sr0.9R0.1TiO3 (R = La, Sm, Er) were designed to investigate structural characteristics and thermal properties by the molecular dynamics simulation with the Green-Kubo relation at 300-2000 K. The structural characteristics were composed of lattice constant, atoms excursion, and pair correlation function (PCF). The thermal properties consisted of heat capacity and thermal conductivity. The lattice constant of R-doped exhibited less than the STO at 300-1100 K and more than STO at 1500-2000 K, which was encouraged by atom excursion and PCF. The thermal properties was compared with literature data at 300-1100 K. In addition, the thermal properties at 1100-2000 K were predicted. It highlights that thermal conductivity tends to decrease at high temperature, due to perturbation of La, Sm, and Er, respectively.

  4. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2014-01-01

    Highlights: • Classification of phase change materials. • Studies on phase change properties of various phase change materials. • Influence of nanomaterials on properties of phase change materials. - Abstract: Thermal energy storage system plays a critical role in developing an efficient solar energy device. As far as solar thermal devices are concerned, there is always a mismatch between supply and demand due to intermittent and unpredictable nature of solar radiation. A well designed thermal energy storage system is capable to alleviate this demerit by providing a constant energy delivery to the load. Many research works is being carried out to determine the suitability of thermal energy storage system to integrate with solar thermal gadgets. This review paper summarizes the numerous investigations on latent heat thermal energy storage using phase change materials (PCM) and its classification, properties, selection criteria, potential research areas and studies involved to analyze the thermal–physical properties of PCM

  5. Simultaneous Measurement of Thermal Diffusivity and Thermal Conductivity by Means of Inverse Solution for One-Dimensional Heat Conduction (Anisotropic Thermal Properties of CFRP for FCEV)

    Science.gov (United States)

    Kosaka, Masataka; Monde, Masanori

    2015-11-01

    For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.

  6. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  7. Thermal gelation properties of spent hen mince and surimi.

    Science.gov (United States)

    Nowsad, A A; Kanoh, S; Niwa, E

    2000-01-01

    Thermal gelation properties of spent hen mince and surimi were investigated. The mince from 98-wk-old spent hens was washed two times with 0.1% NaCl. A portion of unwashed and washed mince was mixed with 4% sugar, 4% sorbitol, and 0.2% Na-tripolyphosphate to produce surimi and was kept frozen at -20 C. The mince and surimi were ground with 3% NaCl and a small amount of water to adjust the final moisture content to 80%. A 6 to 8% potato starch was mixed with some pastes. The pastes were stuffed into sausage casings and heated by one-step and two-step heating. The effects of washing, heating, and addition of ingredients on the color, composition, and functional properties of the mince and gel were compared. Washed, spent hen mince was lighter and less red in color and higher in collagen, gel strength, water-holding ability, and cooking yield than unwashed mince. The best temperature and time schedule for the gelation of spent hen mince was 90 C for 15 min in one-step heating. Heating at 100 C for 5 min after preheating at 60 to 70 C for 30 min resulted a gel with distinctly improved gel strength. Sucrose (4%), sorbitol (4%), and Na-tripolyphosphate (0.2%) improved the gel quality of nonfrozen mince but showed little cryoprotective effect against the degradation of frozen-stored product. A 6% potato starch improved the gel texture, cooking yield, and water-holding ability compared with 8% starch.

  8. Thermal capacitator design rationale. Part 1: Thermal and mechanical property data for selected materials potentially useful in thermal capacitor design and construction

    Science.gov (United States)

    Bailey, J. A.; Liao, C. K.

    1975-01-01

    The thermal properties of paraffin hydrocarbons and hydrocarbon mixtures which may be used as the phase change material (PCM) in thermal capacitors are discussed. The paraffin hydrocarbons selected for consideration are those in the range from C11H24 (n-Undecane) to C20H42 (n-Eicosane). A limited amount of data is included concerning other properties of paraffin hydrocarbons and the thermal and mechanical properties of several aluminum alloys which may find application as constructional materials. Data concerning the melting temperature, transition temperature, latent heat of fusion, heat of transition, specific heat, and thermal conductivity of pure and commercial grades of paraffin hydrocarbons are given. An index of companies capable of producing paraffin hydrocarbons and information concerning the availability of various grades (purity levels) is provided.

  9. Comments on Thermal Physical Properties Testing Methods of Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Jingchao Xie

    2013-01-01

    Full Text Available There is no standard testing method of the thermal physical properties of phase change materials (PCM. This paper has shown advancements in this field. Developments and achievements in thermal physical properties testing methods of PCM were commented, including differential scanning calorimetry, T-history measurement, the water bath method, and differential thermal analysis. Testing principles, advantages and disadvantages, and important points for attention of each method were discussed. A foundation for standardized testing methods for PCM was made.

  10. Comparison on thermal transport properties of graphene and phosphorene nanoribbons

    Science.gov (United States)

    Peng, Xiao-Fang; Chen, Ke-Qiu

    2015-01-01

    We investigate ballistic thermal transport at low temperatures in graphene and phosphorene nanoribbons (PNRS) modulated with a double-cavity quantum structure. A comparative analysis for thermal transport in these two kinds of nanomaterials is made. The results show that the thermal conductance in PNRS is greater than that in graphene nanoribbons (GNRS). The ratio kG/kP (kG is the thermal conductivity in GNRS and kP is the thermal conductivity in PNRS) decreases with lower temperature or for narrower nanoribbons, and increases with higher temperature or for wider nanoribbons. The greater thermal conductance and thermal conductivity in PNRS originate from the lower cutoff frequencies of the acoustic modes. PMID:26577958

  11. Preparation and thermal properties of chitosan/bentonite composite beads

    Directory of Open Access Journals (Sweden)

    Teofilović Vesna

    2014-01-01

    Full Text Available Due to their biodegradable and nontoxic nature, biopolymer composites are often used as remarkable adsorbents in treatment of wastewater. In this study chitosan/bentonite composite beads were obtained by addition of clay into the polymer using solution process. Before the composite preparation, bentonite was modified with surfactant cetyltrimethyl ammonium bromide (CTAB. The morphology of beads was examined by scanning electron microscopy (SEM. Thermal properties of the composite beads were studied by simultaneous thermogravimetry coupled with differential scanning calorimetry (SDT and differential scanning calorimetry (DSC. TG results showed that the complex decomposition mechanism of the composites depends on the preparation procedure. It was observed that the concentration of NaOH used for composites precipitation affects the final structure of beads. The influence of preparation procedure on the glass transition temperature Tg of chitosan/bentonite samples was not found (Tg values for all samples were about 144 °C. [Projekat Ministarstva nauke Republike Srbije, br. III45022 and ON172014 and Provincial Secretariat of Vojvodina for Science and Technological Development 114-451-2396/2011-01.

  12. Effect of structure and thermal properties of the electrically heated rod on transient thermal-hydraulic experiment

    International Nuclear Information System (INIS)

    Wu Xiaohang; Fu Xiaohua

    2004-01-01

    The electrically heated rod is usually used as a substitute for fuel rod in thermal-hydraulic experiment. However, the different structure and thermal properties between nuclear fuel rod and electrically heated rod result in different steady-state distribution of temperature and stored energy and different response to thermal-hydraulic in simulation transient experiment. This paper analyses the effect of structure and thermal properties differences between nuclear fuel rod and electrically heated rod on experiment, and then introduce a feasible method, i.e. electric power is controlled by a program, to reduce the differences between the transient responses of nuclear fuel rod and electrically heated rod. At the same time, this paper points out the limits of the method. (authors)

  13. Thermally and Electrically Conductive Nanopapers from Reduced Graphene Oxide: Effect of Nanoflakes Thermal Annealing on the Film Structure and Properties.

    Science.gov (United States)

    Bernal, M Mar; Tortello, Mauro; Colonna, Samuele; Saracco, Guido; Fina, Alberto

    2017-12-05

    In this study, we report a novel strategy to prepare graphene nanopapers from direct vacuum filtration. Instead of the conventional method, i.e., thermal annealing nanopapers at extremely high temperatures prepared from graphene oxide (GO) or partially reduced GO, we fabricate our graphene nanopapers directly from suspensions of fully reduced graphene oxide (RGO), obtained after RGO and thermal annealing at 1700 °C in vacuum. By using this approach, we studied the effect of thermal annealing on the physical properties of the macroscopic graphene-based papers. Indeed, we demonstrated that the enhancement of the thermal and electrical properties of graphene nanopapers prepared from annealed RGO is strongly influenced by the absence of oxygen functionalities and the morphology of the nanoflakes. Hence, our methodology can be considered as a valid alternative to the classical approach.

  14. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  15. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin; Chu, Xiaodong; Li, Xuezhu [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@tsinghua.edu.cn [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). Black-Right-Pointing-Pointer Microcapsules using divinylbenzene as crosslinking agent have better quality. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has highest latent heat. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has greatest thermal stability. Black-Right-Pointing-Pointer Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA-DVB polymer was up to 248 Degree-Sign C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  16. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Song, Guolin; Chu, Xiaodong; Li, Xuezhu; Tang, Guoyi

    2013-01-01

    Highlights: ► n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). ► Microcapsules using divinylbenzene as crosslinking agent have better quality. ► Microcapsule with butyl methacrylate–divinylbenzene has highest latent heat. ► Microcapsule with butyl methacrylate–divinylbenzene has greatest thermal stability. ► Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA–DVB polymer was up to 248 °C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  17. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures.

    Science.gov (United States)

    Rossmanna, Christian; Haemmerich, Dieter

    2014-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes.

  18. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.

    Science.gov (United States)

    Tian, Mingwei; Qu, Lijun; Zhang, Xiansheng; Zhang, Kun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Tang, Xiaoning; Sun, Yaning

    2014-10-13

    In this study, a wet spinning method was applied to fabricate regenerated cellulose fibers filled with low graphene loading which was systematically characterized by SEM, TEM, FTIR and XRD techniques. Subsequently, the mechanical and thermal properties of the resulting fibers were investigated. With only 0.2 wt% loading of graphene, a ∼ 50% improvement of tensile strength and 25% enhancement of Young's modulus were obtained and the modified Halpin-Tsai model was built to predict the mechanical properties of composite fibers. Thermal analysis of the composite fibers showed remarkably enhanced thermal stability and dynamic heat transfer performance of graphene-filled cellulose composite fiber, also, the presence of graphene oxide can significantly enhance the thermal conductivity of the composite fiber. This work provided a facile way to improve mechanical and thermal properties of regenerated cellulose fibers. The resultant composite fibers have potential application in thermal insulation and reinforced fibrous materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Mineralogy and thermal properties of clay from Slatina (Ub, Serbia)

    Science.gov (United States)

    Milosevic, Maja; Logar, Mihovil; Kaludjerovic, Lazar; Jelic, Ivana

    2017-04-01

    The "Slatina" deposit, Ub, Serbia was opened in 1965 and represents one of few deposits exploited by "Kopovi" a.d., Ub, company. Deposit is composed of clay layers belonging to Neogene sediments that are widespread transgressive over granitoid rocks of Cer mountain and Paleozoic and Mesozoic sediments. Clay is mostly of illite-montmorillonite-kaolinite type and they are generally used as ceramic materials while some of the layers are used as fire-resistant materials. In this study we present mineralogical and thermal characterization of two samples to determine their application as industrial materials. Chemical and mineral composition was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) on powder and oriented samples, infrared spectroscopy (IR) and granulometry. Cationic exchange capacity (CEC) and specific surface area (SSA) was determined using spectrophotometry and methylene blue (MB). Thermal properties where determined by gravimetry (120, 350, 600 and 1000 oC) and differential thermal analysis (DTA). Quantitative mineral composition obtained by Rietveld refinement of combined chemical and XRD data shows that the sample 1(SC) is mainly smectite-illite (45%) and kaolinite (14%) clay with 19% of quartz, 10% feldspars and 7% of limonite, while sample 2(SV) is smectite-illite (43%) and kaolinite (11%) clay with 10% of quartz, 15% feldspars and 7% of limonite. Both samples have low content of impurities (carbonate minerals). Medium grain size (μm) goes from 1.02 (SSA = 104 m2/g) for sample 1(SC) to 0.71 (SSA = 117 m2/g) for sample 2(SV) while their CEC is 12.7 and 14.9 mmol/100g for 1(SC) and 2(SV) respectively. IR spectra of the samples shows larger amount of smectite clays with quartz and carbonate minerals for both samples which is in accordance with XRD data. DTA data shows couple of events that are endothermic. First one (100-200 oC) is associated with loss of moisture and constitutive water, second

  20. Thermal properties of carbon nanowall layers measured by a pulsed photothermal technique

    International Nuclear Information System (INIS)

    Achour, A.; Belkerk, B. E.; Ait Aissa, K.; Gautron, E.; Carette, M.; Jouan, P.-Y.; Brizoual, L. Le; Scudeller, Y.; Djouadi, M.-A.; Vizireanu, S.; Dinescu, G.

    2013-01-01

    We report the thermal properties of carbon nanowall layers produced by expanding beam radio-frequency plasma. The thermal properties of carbon nanowalls, grown at 600 °C on aluminium nitride thin-film sputtered on fused silica, were measured with a pulsed photo-thermal technique. The apparent thermal conductivity of the carbon at room temperature was found to increase from 20 to 80 Wm −1 K −1 while the thickness varied from 700 to 4300 nm, respectively. The intrinsic thermal conductivity of the carbon nanowalls attained 300 Wm −1 K −1 while the boundary thermal resistance with the aluminium nitride was 3.6 × 10 −8 Km 2 W −1 . These results identify carbon nanowalls as promising material for thermal management applications.

  1. Influence of pore structure parameters on thermal properties of corundum based castables

    International Nuclear Information System (INIS)

    Zhu, B Q; Fang, B X; Li, X C; Jiang, X; Zhao, F; Gao, X

    2011-01-01

    A series of corundum based castables bonded by ρ-Al 2 O 3 were prepared and fired at different temperature. Influences of apparent porosity and pore size distribution on thermal properties of the samples at different temperature were studied. The relationship between different pore size intervals and thermal conductivity of the samples was also discussed based on grey relational theory. The results show that thermal properties including thermal conductivity, thermal diffusivity and specific heat decline as apparent porosity of the samples increases. When apparent porosity of the samples keeps stable with little fluctuation, thermal conductivity increases as median pore size of the samples increases. It is found that thermal conductivity of the samples at a certain temperature presents the largest grey relational degree with the pore size interval that takes up the dominant volume ratio.

  2. Thermal exposure effects on the mechanical properties of a polycrystalline alumina fiber/aluminum matrix composite

    Science.gov (United States)

    Olsen, G. C.

    1979-01-01

    The effects of thermal exposures and elevated test temperature on the mechanical properties of a unidirectional polycrystalline alumina fiber reinforced aluminum matrix composite were investigated. Test temperatures up to 590 K and 2500 hours exposures at 590 K did not significantly affect fiber dominated properties but did severely degrade matrix dominated properties. Fiber strength, degraded by the fabrication process, was restored by post fabrication thermal exposures. Possible degradation mechanisms are discussed.

  3. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin, E-mail: shirleyqiu2009@gmail.com [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Lu, Lixin; Wang, Ju [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Tang, Guoyi [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-11-20

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g{sup −1}. • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g{sup −1}) and crystallization enthalpy (108.3 J g{sup −1}) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  4. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Lu, Lixin; Wang, Ju; Tang, Guoyi; Song, Guolin

    2015-01-01

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g −1 . • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g −1 ) and crystallization enthalpy (108.3 J g −1 ) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  5. Optimal experimental designs for the estimation of thermal properties of composite materials

    Science.gov (United States)

    Scott, Elaine P.; Moncman, Deborah A.

    1994-01-01

    Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.

  6. Thermal Properties of Some Organic Liquids Using Ultrasonic Velocity Measurements

    Directory of Open Access Journals (Sweden)

    P. Ramadoss

    2011-01-01

    Full Text Available Debye temperature and thermal relaxation time has been calculated in normal and boiling temperature. Using thermal relaxation time, the heat of fusion has been calculated for nineteen organic liquids and the results throw light on the method of calculating heat of fusion.

  7. Thermal Properties of Kerstingiella geocarpa Seeds as Influenced ...

    African Journals Online (AJOL)

    The specific heat capacity, thermal conductivity and thermal diffusivity of Kerstingiella geocarpa seeds were determined as a function of moisture content. The initial moisture content of the seeds determined using the ASAE standard test was 10.0 % (d.b). The specific heat capacity of Kerstingiella geocarpa seed increased ...

  8. Soil thermal properties at Kalpakkam in coastal south India

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    2012-02-01

    Feb 1, 2012 ... Time series of soil surface and subsurface temperatures, soil heat flux, net radiation, air temperature and wind speed were measured at two locations in Kalpakkam, coastal southeast India. The data were analysed to estimate soil thermal diffusivity, thermal conductivity, volumetric heat capacity and soil heat ...

  9. Soil thermal properties at Kalpakkam in coastal south India

    Indian Academy of Sciences (India)

    Time series of soil surface and subsurface temperatures, soil heat ux, net radiation, air temperature and wind speed were measured at two locations in Kalpakkam, coastal southeast India. The data were analysed to estimate soil thermal di usivity, thermal conductivity, volumetric heat capacity and soil heat ux. This paper ...

  10. Another Demo of the Unusual Thermal Properties of Rubber

    Science.gov (United States)

    Liff, Mark I.

    2010-01-01

    The unusual thermal behavior of rubbers, though discovered a long time ago, can still be mind-boggling for students and teachers who encounter this class of polymeric systems. Unlike other solids, stretched elastic polymers shrink upon heating. This is a manifestation of the Gough-Joule (G-J) effect. Joule in the 1850s studied the thermal behavior…

  11. Simulation of thermo-Elastics Properties of Thermal Barrier Coatings ...

    African Journals Online (AJOL)

    Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray ...

  12. Thermal properties of Avery Island salt to 5730K and 50-MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-01-01

    Thermal conductivity, thermal diffusivity, and thermal linear expansion were measured on two samples of Avery Island rock salt up to simultaneous temperatures and pressures of 573 0 K and 50 MPa. Thermal conductivity at room temperature measured 6.3 +- 0.6 W/mK and decreased monotonically to 3.3 +- 0.4 W/mK at 573 0 K. Thermal diffusivity decreased from 3.0 +- 0.8 x 10 -6 m 2 /s at room temperature to 1.4 +- 0.5 x 10 -6 m 2 /s at 573 0 K. Thermal linear expansivity increased from 4.8 +- 0.3 x 10 -5 K -1 at room temperature to 5.6 +- 0.3 x 10 -5 K -1 at 573 0 K. The thermal properties showed no measurable (+-5%) dependence on confining pressure from 0 to 50 MPa for any temperature tested. The thermal conductivity values were not distinguishable (+-5%) from intrinsic (single crystal) values measured by others. Diffusivity fell about 20% below intrinsic values, and linear expansivity about 20% above intrinsic values. Thermal conductivity values for Avery Island salt measured recently by Morgan are as much as 50% lower than values measured here and were probably strongly affected by sample handling prior to measurement. The pressure independence of the thermal properties measured in our study suggests that thermally-induced microfracturing is nearly nonexistent. This lack of thermal cracking is consistent with the high (cubic) symmetry of halite

  13. Tailoring thermal transport properties of graphene by nitrogen doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tingting; Li, Jianhua; Cao, Yuwei; Zhu, Liyan, E-mail: lyzhu@hytc.edu.cn; Chen, Guibin, E-mail: gbchen@hytc.edu.cn [Huaiyin Normal University, School of Physics and Electronic & Electrical Engineering (China)

    2017-02-15

    The influence of two different nitrogen doping configurations, graphite-like and pyridinic-like nitrogen doping (denoted as graphite-N and pyridinic-N hereafter, respectively), on the thermal conduction of graphene is carefully studied via non-equilibrium molecular dynamic (NEMD) simulations. The thermal conductivity is more strongly suppressed in the pyridinic-N-doped graphene than that in the graphite-N-doped sample, which can be well understood from the changes in bond strength between nitrogen and carbon atoms, phonon group velocities, phonon density of states, participation ratio, and phonon transmission. Our study indicates that the pyridinic-N doping is an efficient method to tune the thermal conduction in graphene, especially for the situation where low thermal conductivity is requested, e.g., thermoelectric applications and thermal shielding.

  14. Outcrop samples from Forsmark. Determination of thermal properties by the TPS-Method

    Energy Technology Data Exchange (ETDEWEB)

    Adl-Zarrabi, Bijan [Swedish National Testing and Research Inst., Boras (Sweden)

    2003-04-01

    Porosity, density and thermal properties were measured for five different outcrop samples from Forsmark namely: two samples of Metatonalit, Metadiorit, Metagranit and Metagranodiorit. Measurements were performed according to SKB's method descriptions SKB MD 191.001 (Determination of thermal properties, thermal conductivity and specific heat, by using TPS-method) and SKB MD 160.002 ( Determination of density and porosity of the intact rocks). In addition to material properties, the influence of orientation on thermal properties was investigated. The amount of material delivered was too small to produce all needed samples for measurement of thermal properties and determination of the influence of orientation. Thus the influence of orientation on thermal properties was not made in accordance with SKB MD 191.001. The influence of orientation is determined by using a single sided method, which gives the relative relation between two major orientations of the rock. Results obtained by these measurements were in the expected normal variation range. The results indicated that the samples of Metatonalit (MBS020002b) and Metagranit behaved as an anisotropic material (the difference between orientations was about 20-24%) and the samples made of Metatonalit (MBS020002b) and Metagranodiorit could be assumed as an isotropic material (the difference between orientations was about 0.5-2%). The difference in thermal properties of different orientation in sample Metadiorit is about 13%.

  15. Outcrop samples from Forsmark. Determination of thermal properties by the TPS-Method

    International Nuclear Information System (INIS)

    Adl-Zarrabi, Bijan

    2003-04-01

    Porosity, density and thermal properties were measured for five different outcrop samples from Forsmark namely: two samples of Metatonalit, Metadiorit, Metagranit and Metagranodiorit. Measurements were performed according to SKB's method descriptions SKB MD 191.001 (Determination of thermal properties, thermal conductivity and specific heat, by using TPS-method) and SKB MD 160.002 ( Determination of density and porosity of the intact rocks). In addition to material properties, the influence of orientation on thermal properties was investigated. The amount of material delivered was too small to produce all needed samples for measurement of thermal properties and determination of the influence of orientation. Thus the influence of orientation on thermal properties was not made in accordance with SKB MD 191.001. The influence of orientation is determined by using a single sided method, which gives the relative relation between two major orientations of the rock. Results obtained by these measurements were in the expected normal variation range. The results indicated that the samples of Metatonalit (MBS020002b) and Metagranit behaved as an anisotropic material (the difference between orientations was about 20-24%) and the samples made of Metatonalit (MBS020002b) and Metagranodiorit could be assumed as an isotropic material (the difference between orientations was about 0.5-2%). The difference in thermal properties of different orientation in sample Metadiorit is about 13%

  16. Temperature-dependent thermal properties of supported MoS2 monolayers.

    Science.gov (United States)

    Taube, Andrzej; Judek, Jarosław; Łapińska, Anna; Zdrojek, Mariusz

    2015-03-11

    Thermal properties can substantially affect the operation of various electronics and optoelectronics devices based on two-dimensional materials. In this work, we describe our investigation of temperature-dependent thermal conductivity and interfacial thermal conductance of molybdenum disulfide monolayers supported on SiO2/Si substrates, using Raman spectroscopy. We observed that the calculated thermal conductivity (κ) and interfacial thermal conductance (g) decreased with increasing temperature from 62.2 W m(-1) K(-1) and 1.94 MW m(-2) K(-1) at 300 K to 7.45 W m(-1) K(-1) and 1.25 MW m(-2) K(-1) at 450 K, respectively.

  17. Mechanical and thermal properties of HSC with fine natural pozzolana as SCM

    Science.gov (United States)

    KoÅ¥átková, Jaroslava; Čáchová, Monika; KoÅáková, Dana; Vejmelková, Eva; Reiterman, Pavel

    2017-07-01

    The paper is dealing with an influence of fine pozzolanic admixture supplementing a part of cement on various properties of high-strength concrete. The measured characteristics were basic physical properties, compressive strength and thermal properties (thermal conductivity and specific heat capacity). Replacing the cement by the natural pozzolana in higher dosages leads to the higher porosity and thus to the lower compressive strength of the developed material. Conversely, in case of lower amounts of pozzolana (up to 10% of weight) such replacement has an opposite consequence, the open porosity decreases which results in the higher compressive strength. Taking into account thermal properties which are enhanced by an increase of amount of pores, it is evident that it is necessary to optimize the amount of pozzolana (pozzolanic) admixture in order to obtain reasonable mechanical and thermal properties.

  18. The contribution of lysophospholipids to pasting and thermal properties of nonwaxy rice starch.

    Science.gov (United States)

    Tong, Chuan; Liu, Lei; Waters, Daniel L E; Huang, Yan; Bao, Jinsong

    2015-11-20

    It is known that lysophospholipids (LPLs) may affect rice starch pasting and thermal properties possibly through the formation of an amylose-lipid complex. However, whether these effects of rice LPLs are independent of amylose are still not understood. Here, the diversity of rice flour pasting and thermal properties and their relationship with individual LPL components in native rice endosperm were studied. Several significant correlations between LPLs and pasting properties, such as cool paste viscosity (CPV), breakdown (BD) and consistency (CS) were clearly evident. Thermal properties generally had no relationship with LPLs except for gelatinization enthalpy. Using partial correlation analysis we found that, irrespective of apparent amylose content, CPV and individual LPLs were positively correlated, while BD, CS and other individual LPLs were negatively correlated. This study suggests naturally occurring individual LPLs can contribute to rice flour pasting and thermal properties, either independently or in combination with amylose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Curry, N.; Markocsan, N.; Nylen, P.; Joshi, S.; Vilémová, Monika; Pala, Zdeněk

    2016-01-01

    Roč. 25, 1-2 (2016), s. 202-212 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] Institutional support: RVO:61389021 Keywords : axial injection * column ar microstructure * porosity * suspension plasma spraying * thermal conductivity * thermal diffusivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0355-7

  20. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  1. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Curry, N.; Markocsan, N.; Nylen, P.; Joshi, S.; Vilémová, Monika; Pala, Zdeněk

    2016-01-01

    Roč. 25, 1-2 (2016), s. 202-212 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] Institutional support: RVO:61389021 Keywords : axial injection * columnar microstructure * porosity * suspension plasma spraying * thermal conductivity * thermal diffusivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0355-7

  2. Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets

    International Nuclear Information System (INIS)

    Landwehr, Sean E.; Hilmas, Gregory E.; Fahrenholtz, William G.; Talmy, Inna G.; Wang Hsin

    2009-01-01

    The linear thermal expansion coefficient (CTE), heat capacity, and thermal conductivity, were investigated as a function of temperature for hot pressed ZrC and liquid phase sintered ZrC-Mo cermets. The ZrC and the ZrC-Mo cermets had the same CTE at 50 deg. C (∼5.1-5.5 ppm deg. C -1 ), but the CTE of ZrC increased to ∼12.2 ppm deg. C -1 at 1000 deg. C compared to ∼7.2-8.5 ppm deg. C -1 for the ZrC-Mo cermets. Heat capacity was calculated using a rule of mixtures and previously reported thermodynamic data. Thermal diffusivity was measured with a laser flash method and was, in turn, used to calculate thermal conductivity. Thermal conductivity increased linearly with increasing temperature for all compositions and was affected by solid solution formation and carbon deficiency of the carbide phases. Hot pressed ZrC had the highest thermal conductivity (∼30-37 W m -1 K -1 ). The nominally 20 and 30 vol% Mo compositions of the ZrC-Mo cermets had a lower thermal conductivity, but the thermal conductivity generally increased with increasing Mo content. Water quench thermal shock testing showed that ZrC-30 vol% Mo had a critical temperature difference of 350 deg. C, which was ∼120 deg. C higher than ZrC. This increase was due to the increased toughness of the cermet compared to ZrC.

  3. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  4. Thermal properties of PZT95/5(1.8Nb) and PSZT ceramics

    International Nuclear Information System (INIS)

    DiAntonio, Christopher Brian; Rae, David F.; Corelis, David J.; Yang, Pin; Burns, George Robert

    2006-01-01

    Thermal properties of niobium-modified PZT95/5(1.8Nb) and PSZT ceramics used for the ferroelectric power supply have been studied from -100 C to 375 C. Within this temperature range, these materials exhibit ferroelectric-ferroelectric and ferroelectric-paraelectric phase transformations. The thermal expansion coefficient, heat capacity, and thermal diffusivity of different phases were measured. Thermal conductivity and Grueneisen constant were calculated at several selected temperatures between -60 C and 100 C. Results show that thermal properties of these two solid solutions are very similar. Phase transformations in these ceramics possess first order transformation characteristics including thermal hysteresis, transformational strain, and enthalpy change. The thermal strain in the high temperature rhombohedral phase region is extremely anisotropic. The heat capacity for both materials approaches to 3R (or 5.938 cal/(g-mole*K)) near room temperature. The thermal diffusivity and the thermal conductivity are quite low in comparison to common oxide ceramics, and are comparable to amorphous silicate glass. Furthermore, the thermal conductivity of these materials between -60 C and 100 C becomes independent of temperature and is sensitive to the structural phase transformation. These phenomena suggest that the phonon mean free path governing the thermal conductivity in this temperature range is limited by the lattice dimensions, which is in good agreement with calculated values. Effects of small compositional changes and density/porosity variations in these ceramics on their thermal properties are also discussed. The implications of these transformation characteristics and unusual thermal properties are important in guiding processing and handling procedures for these materials

  5. Influence of the filler on thermal properties of porous VP-TRIM copolymers.

    Science.gov (United States)

    Maciejewska, M

    In this paper, the synthesis and characterization of thermal properties of porous copolymers 1-vinyl-2-pyrrolidone with trimethylolpropane trimethacrylate are presented. They were obtained by suspension polymerization as a pure polymers or composite materials with different inorganic fillers. The influence of the type of filler on the textural and thermal properties was investigated in details. It was found that the value of the porous surface area of composites is much lower than in the case of pure copolymers. Thermal properties of the obtained materials were investigated by the means of thermogravimetry and differential scanning calorimetry.

  6. Measurement on the Thermal Properties of Graphene Powder

    Science.gov (United States)

    Zhang, Wenchan; Dong, Hua; Wang, Yongchun; Zhang, Jingkui

    2017-08-01

    We report on an in-plane thermal diffusivity study of suspended graphene powder (GP) measured by the transient electro-thermal (TET) technique. The GP with a density of 0.24 \\hbox {g} \\cdot \\hbox {cm}^{-3} is made up of five-six-layer graphene. And the average size of graphene flakes used in our study is 0.98 \\upmu m. The intrinsic thermal conductivity perpendicular to in-plane of GP is determined at 18.8 \\hbox {W} \\cdot (\\hbox {m} \\cdot \\hbox {K})^{-1} using the thermal conductivity instrument, and the range of the in-plane thermal diffusivity of GP is identified from 0.86× 10^{-5 } \\hbox {m}^{2 } \\cdot \\hbox {s}^{-1} to 1.52× 10^{-5 } \\hbox {m}2 \\cdot \\hbox {s}^{-1} measured by the TET technique. Accordingly, the corresponding intrinsic thermal conductivity is 13.5 \\hbox {W} \\cdot (\\hbox {m} \\cdot \\hbox {K})^{-1}-23.8 \\hbox {W} \\cdot (\\hbox {m} \\cdot \\hbox {K})^{-1}. It is obvious that the two methods used in the experimental research on the intrinsic thermal conductivity of GP in different directions are not only the same order of magnitude but also have a maximum difference of only 5 \\hbox {W} \\cdot (\\hbox {m} \\cdot \\hbox {K})^{-1}. The results of our experiments are about one order of magnitude lower than those reported for four-five-layer graphene. There are various porosities in the whole sample after the compaction steps in the preparation of the samples, which gives rise to a large thermal contact resistance. And widely uneven surface defects observed under an optical microscope for the studied GP lead to substantial phonon scattering. Those factors combine together to give the observed significant reduction in the thermal conductivity.

  7. Experimental determinations of the pre- and postirradiation thermal transport and thermal expansion properties of simulated fuel rods for an HTGR

    International Nuclear Information System (INIS)

    Moore, J.P.; Godfrey, T.G.; Graves, R.S.; Weaver, F.J.; Eatherly, W.P.

    1978-01-01

    The thermal conductivity, electrical resistivity, coefficient of thermal expansion, volume, and Seebeck coefficient of simulated fuel rods for a high-temperature gas-cooled reactor (HTGR) have been measured before and after neutron irradiations to 13.5 X 10 25 n/m 2 at nominal irradiation temperatures of 1220 K. These measurements were made as functions of volume particle loading, temperature, and neutron fluence. The thermal conductivities decrease with increasing particle loading at all measurement temperatures. The large difference between the properties of specimens from two fabrication processes (extrusion and slug injection) is attributed to the fact that the densities of the continuous phases within the elements differ by a factor of 2.6. Increases in the thermal conductivity with initial neutron fluence of some of the extruded specimens are attributed to partial ordering of carbonaceous material within the composites, but an unambiguous quantitative analysis is difficult. (Auth.)

  8. Thermal Properties of Double-Aluminized Kapton at Low Temperatures

    Science.gov (United States)

    Tuttle, J.; DiPirro, M.; Canavan, E.; Hait, T.

    2007-01-01

    Double-aluminized kapton (DAK) is commonly used in multi-layer insulation blankets in cryogenic systems. NASA plans to use individual DAK sheets in lightweight deployable shields for satellites carrying instruments. A set of these shields will reflect away thermal radiation from the sun, the earth, and the instrument's warm side and allow the instrument's cold side to radiate its own heat to deep space. In order to optimally design such a shield system, it is important to understand the thermal characteristics of DAK down to low temperatures. We describe experiments which measured the thermal conductivity and electrical resistivity down to 4 Kelvin and the emissivity down to 10 Kelvin.

  9. Thermal and Transport Properties of Mafic and Ultramafic Rocks of Oman Ophiolite

    Directory of Open Access Journals (Sweden)

    Sayyadul Arafin

    2016-11-01

    Full Text Available Thermal and other physical properties of rocks and minerals are of considerable significance for deriving mineralogical and compositional models of the Earth's mantle. We have determined these properties for the mafic rock such as gabbro and ultramafic rock like harzburgite of the Oman ophiolite suite by utilizing the Debye characteristic property ,Θ-

  10. Estimation of oil reservoir thermal properties through temperature log data using inversion method

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Nian, Yong-Le; Li, Tong-Tong; Wang, Chang-Long

    2013-01-01

    Oil reservoir thermal properties not only play an important role in steam injection well heat transfer, but also are the basic parameters for evaluating the oil saturation in reservoir. In this study, for estimating reservoir thermal properties, a novel heat and mass transfer model of steam injection well was established at first, this model made full analysis on the wellbore-reservoir heat and mass transfer as well as the wellbore-formation, and the simulated results by the model were quite consistent with the log data. Then this study presented an effective inversion method for estimating the reservoir thermal properties through temperature log data. This method is based on the heat transfer model in steam injection wells, and can be used to predict the thermal properties as a stochastic approximation method. The inversion method was applied to estimate the reservoir thermal properties of two steam injection wells, it was found that the relative error of thermal conductivity for the two wells were 2.9% and 6.5%, and the relative error of volumetric specific heat capacity were 6.7% and 7.0%,which demonstrated the feasibility of the proposed method for estimating the reservoir thermal properties. - Highlights: • An effective inversion method for predicting the oil reservoir thermal properties was presented. • A novel model for steam injection well made full study on the wellbore-reservoir heat and mass transfer. • The wellbore temperature field and steam parameters can be simulated by the model efficiently. • Both reservoirs and formation thermal properties could be estimated simultaneously by the proposed method. • The estimated steam temperature was quite consistent with the field data

  11. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    Science.gov (United States)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  12. A study on thermal properties of biodegradable polymers using photothermal methods

    Science.gov (United States)

    Siqueira, A. P. L.; Poley, L. H.; Sanchez, R.; da Silva, M. G.; Vargas, H.

    2005-06-01

    In this work is reported the use of photothermal techniques applied to the thermal characterization of biodegradable polymers of Polyhydroxyalkanoates (PHAs) family. This is a family of polymer produced by bacteria using renewable resources. It exhibits thermoplastic properties and therefore it can be an alternative product for engineering plastics, being also applied as packages for food industry and fruits. Thermal diffusivities were determined using the open photoacoustic cell (OPC) configuration. Specific heat capacity measurements were performed monitoring temperature of the samples under white light illumination against time. Typical values obtained for the thermal properties are in good agreement with those found in the literature for other polymers. Due to the incorporation of hydroxyvalerate in the monomer structure, the thermal diffusivity and thermal conductivity increase reaching a saturation value, otherwise the specific thermal capacity decreases as the concentration of the hydroxyvalerate (HV) increases. These results can be explained by polymers internal structure and are allowing new applications of these materials.

  13. Effect of tuber skin on the thermal properties of whole tubers of potato and sweet potato

    Science.gov (United States)

    Oluwo, A. A.; Khan, R. M.; Salami, M. J. E.

    2013-12-01

    Temperature-dependent thermal coefficients of mathematical models of the postharvest storage process play an important role in determining the models accuracy. Thermal properties of tubers under storage available in literature are generally of those in semi processed form (skinless) such as those having undergone peeling, dicing and cutting actions. This study investigates the effect of tuber skin on the thermal properties of whole tubers of potato and sweet potato. A direct approach was used to measure the tubers' density and thermal conductivity and thermal diffusivity by the transient heat transfer method. Indirect approach was used to measure the tubers' specific heat. Experimental data were used to develop empirical models of the thermal coefficients as a function of temperature. Results of the study should find great use in the modeling of potato and sweet potato storage process.

  14. Thermal Effect of Ceramic Nanofiller Aluminium Nitride on Polyethylene Properties

    OpenAIRE

    Sohail, Omer Bin; Sreekumar, P. A.; De, S. K.; Jabarullah Khan, Masihullah; Hakeem, Abbas; Alshaiban, Ahmad A.; Al-Harthi, Mamdouh A.

    2012-01-01

    Ethylene polymerization was done to form polyethylene nano-composite with nanoaluminum nitride using zirconocene catalysts. Results show that the catalytic activity is maximum at a filler loading of 15 mg nanoaluminum nitride. Differential scanning calorimeter (DSC) and X-ray diffraction (XRD) results show that percentage crystallinity was also marginally higher at this amount of filler. Thermal behavior of polyethylene nanocomposites (0, 15, 30, and 45) mg was studied by DSC and thermal grav...

  15. Some aspects of thermal and elastic properties of thallium

    OpenAIRE

    Ramji Rao, R.; Rajput, A.

    1980-01-01

    A model based on Keating's approach is applied to the hcp metal thallium to work out its lattice heat capacity, third-order elastic (TOE) constants and thermal expansion. The calculated TOE constants are utilized to determine the low-temperature limit of volume thermal expansion and to investigate the pressure variation of the lattice parameters and volume of thallium. The results of calculations show good agreement with the corresponding available experimental data.

  16. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  17. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  18. Thermal transport properties of CaO-stabilized zirconia with varying amounts of stabilization

    International Nuclear Information System (INIS)

    Mirkovich, V.V.; Wheat, T.A.

    1985-01-01

    The thermal diffusivity of zirconia samples stabilized with 5.0, 7.6, 10.0, 15.0, 20.0 and 22.2 mol% CaO, and of a commercially available CaO-stabilized zirconia, was measured as a function of temperature. The thermal conductivity of samples with 7.5, 10.0, 15.0, and 20.0 mol% CaO was also measured as a function of temperature. The results have shown that the thermal transport properties for all compositions decrease with increasing temperature between 50 and 800 0 C. At lower temperatures (100-150 0 C), the transport properties depend principally on the CaO content of the specimen. Both thermal diffusivity and thermal conductivity show a minimum at 15.0 mol% CaO content. The grain size of the specimens appears to have no effect on these transport properties. (author)

  19. A New Method to Determine Thermal Properties of the Mixture of PCM and Concrete

    DEFF Research Database (Denmark)

    R., Cheng; Pomianowski, Michal Zbigniew; Heiselberg, Per

    Integration of phase change materials in building envelopes is a technology that with high potential to decrease the building energy consumption and improve indoor thermal comfort. Accurate measurement of thermal physical properties of PCM-concretes is very important for simulation and evaluation...... of its energy saving performance. However, there isn’t an effective way to measure thermal physical properties of PCM-concretes accurately. The shortcomings of using traditional testing methods to measure thermal physical properties of PCM-concretes were firstly analyzed. Then a new method based...... on the inverse problem was proposed to deal with the measurements of thermal conductivity and specific heat of PCM-concretes during the phase change process. This method transforms the determination process to an optimization problem, which regarded the difference between the measured and calculated heat flux...

  20. Cation Dynamics Governed Thermal Properties of Lead Halide Perovskite Nanowires.

    Science.gov (United States)

    Wang, Yuxi; Lin, Renxing; Zhu, Pengchen; Zheng, Qinghui; Wang, Qianjin; Li, Deyu; Zhu, Jia

    2018-04-09

    Metal halide perovskite (MHP) nanowires such as hybrid organic-inorganic CH 3 NH 3 PbX 3 (X = Cl, Br, I) have drawn significant attention as promising building blocks for high-performance solar cells, light-emitting devices, and semiconductor lasers. However, the physics of thermal transport in MHP nanowires is still elusive even though it is highly relevant to the device thermal stability and optoelectronic performance. Through combined experimental measurements and theoretical analyses, here we disclose the underlying mechanisms governing thermal transport in three different kinds of lead halide perovskite nanowires (CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 and CsPbBr 3 ). It is shown that the thermal conductivity of CH 3 NH 3 PbBr 3 nanowires is significantly suppressed as compared to that of CsPbBr 3 nanowires, which is attributed to the cation dynamic disorder. Furthermore, we observed different temperature-dependent thermal conductivities of hybrid perovskites CH 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 , which can be attributed to accelerated cation dynamics in CH 3 NH 3 PbBr 3 at low temperature and the combined effects of lower phonon group velocity and higher Umklapp scattering rate in CH 3 NH 3 PbI 3 at high temperature. These data and understanding should shed light on the design of high-performance MHP based thermal and optoelectronic devices.

  1. Heat pipes with variable thermal conductance property for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)

    2017-06-15

    The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.

  2. Thermal properties measurements on irradiated fuel. An overview of capabilities and developments at AEA Technology, Windscale

    International Nuclear Information System (INIS)

    Gomme, R.

    1998-01-01

    An overview is presented of the capabilities at AEA Technology Windscale for the measurement of thermal diffusivity and specific heat. Laser flash thermal diffusivity measurements have been performed at AEA Technology Windscale for a number of years. More recently, this capability has been supplemented by the acquisition of a differential scanning calorimeter, specially adapted for use in a shielded facility. The Windscale capability in the thermal properties and related areas are summarized highlighting recent developments and illustrating sample data. (author)

  3. Effect of nickel substitution on thermal properties of Na0⋅ 9CoO2

    Indian Academy of Sciences (India)

    Keywords. Sodium cobaltate; thermoelectric power; photoacoustics; thermal conductivity; figure of merit. Abstract. We report on the effect of nickel substitution in Na0.9CoO2 by examining their thermal properties at room temperature. Experimental results indicate that thermoelectric efficiency is enhanced upon nickel ...

  4. Prediction of Geomechanical Properties from Thermal Conductivity of Low-Permeable Reservoirs

    Science.gov (United States)

    Chekhonin, Evgeny; Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Ovcharenko, Yury; Zhukov, Vladislav; Martemyanov, Andrey

    2016-04-01

    A key to assessing a sedimentary basin's hydrocarbon prospect is correct reconstruction of thermal and structural evolution. It is impossible without adequate theory and reliable input data including among other factors thermal and geomechanical rock properties. Both these factors are also important in geothermal reservoirs evaluation and carbon sequestration problem. Geomechanical parameters are usually estimated from sonic logging and rare laboratory measurements, but sometimes it is not possible technically (low quality of the acoustic signal, inappropriate borehole and mud conditions, low core quality). No wonder that there are attempts to correlate the thermal and geomechanical properties of rock, but no one before did it with large amount of high quality thermal conductivity data. Coupling results of sonic logging and non-destructive non-contact thermal core logging opens wide perspectives for studying a relationship between the thermal and geomechanical properties. More than 150 m of full size cores have been measured at core storage with optical scanning technique. Along with results of sonic logging performed with Sonic Scanner in different wells drilled in low permeable formations in West Siberia (Russia) it provided us with unique data set. It was established a strong correlation between components of thermal conductivity (measured perpendicular and parallel to bedding) and compressional and shear acoustic velocities in Bazhen formation. As a result, prediction of geomechanical properties via thermal conductivity data becomes possible, corresponding results was demonstrated. The work was supported by the Russian Ministry of Education and Science, project No. RFMEFI58114X0008.

  5. Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

    Science.gov (United States)

    Greenhagen, B. T.; Paige, D. A.

    2012-01-01

    The Diviner Lunar Radiometer is the first multispectral thermal instrument to globally map the surface of the Moon. After over three years in operation, this unprecedented dataset has revealed the extreme nature of the Moon's thermal environment, thermophysical properties, and surface composition.

  6. A review of wood thermal pretreatments to improve wood composite properties

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Raul. Espinoza-Herrera

    2013-01-01

    The objective of this paper is to review the published literature on improving properties of wood composites through thermal pretreatment of wood. Thermal pretreatment has been conducted in moist environments using hot water or steam at temperatures up to 180 and 230 ˚C, respectively, or in dry environments using inert gases at temperatures up to 240 ...

  7. MAPTIP - Marine Aerosol Properties and Thermal Imager Performance : Summary and initial results

    NARCIS (Netherlands)

    Eijk, A.M.J. van; Leeuw, G. de; Jensen, D.R.

    1995-01-01

    The marine aerosol properties and thermal imager performance trial (MAPTIP) was conducted by NATO AC/243 Panel 04/RSG.8 and 04/RSG.5 in the Dutch coastal waters during the fall of 1993. The main objectives of the trial were (1) to assess marine boundary layer effects on thermal imaging systems and

  8. Hollow Polylactide Microcapsules with Controlled Morphology and Thermal and Mechanical Properties

    NARCIS (Netherlands)

    Sawalha, H.I.M.; Schroën, C.G.P.H.; Boom, R.M.

    2009-01-01

    Hollow polylactide microcapsules were prepared by multistage premix membrane emulsification of polylactide/dichloromethane/oil solutions in water (nonsolvent). The effects of the different oils on the morphology, thermal, and mechanical properties of the hollow microcapsules were investigated. All

  9. Effect of γ-irradiation on the thermal properties of UHMWPE ...

    Indian Academy of Sciences (India)

    irradiation on the thermal properties of UHMWPE/MWCNTs nanocomposites: a comparative study of incorporating unmodified and γ -ray-modified MWCNTs. SAQLAIN SAQIB MUKHTAR MALIK SAJJAD MEHMOOD SYED ASAD MAQBOOL ...

  10. Method for calculating thermal properties of lightweight floor heating panels based on an experimental setup

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    Lightweight floor heating systems consist of a plastic tube connected to a heat distribution aluminium plate and are used in wooden floor constructions. The thermal properties of lightweight floor heating systems cannot be described accurately. The reason is a very complex interaction of convection......, radiation and conduction of the heat transfer between pipe and surrounding materials. The European Standard for floor heating, EN1264, does not cover lightweight systems, while the supplemental Nordtest Method VVS127 is aimed at lightweight systems. The thermal properties can be found using tabulated values...... or experiments. Neither includes dynamic properties. This article describes a method to find steady-state and dynamical thermal properties in an experimental setup based on finding a characteristic thermal resistance between pipe and heat transfer plate, which can be directly implemented in a numerical...

  11. Basement Construction of Measurement Standardization for Thermal Property and Basement Preparation of Industrial Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Song, Kee Chan; Park, Chang Je

    2007-02-15

    There are three main categories in this report : 1)Basement construction of measurement standardization for nuclear material thermal property, 2) Reliability evaluation of measurement instrument, and 3) Standardization and industrial propagation.

  12. Role of surface thermal properties of HfB2 nanoparticles on heat ...

    Indian Academy of Sciences (India)

    2018-02-02

    technology applications such as thermal-protection systems. High-char .... Page 3 of 9 11. Table 1. Properties of novolac composites. Materials. Composite. Porosity (%). Density. (kg m. −3). Hardness. (shore D). Wear rate. (10. −6.

  13. Microstructural and thermal properties of piston aluminum alloy reinforced by nano-particles

    Science.gov (United States)

    Azadi, Mohammad; Safarloo, Sama; Loghman, Fatemeh; Rasouli, Roham

    2018-01-01

    Aluminum alloys have been widely utilized in engine pistons of automotive industries. Under such loading conditions, thermal stresses were applied to the piston material, due to the combustion process. Knowing the thermal behavior and microstructural properties of the material has an important rule for designers. Besides, the used material should withstand these thermal expansions and one way to increase this thermal strength is to add nano-particles for reinforcing the material. In the present article, the thermal behavior of piston aluminum alloys has been analyzed. This objective has been performed by thermal dilatometric measuring to find the thermal expansion coefficient. Then, the effect of adding nano-particles for reinforcing the aluminum alloy has been also investigated. In addition, the distribution of nano-particles in the aluminum matrix was also studied by the field emission scanning electron microscopy (FE-SEM). Besides, the microstructure of the piston aluminum alloy, with and without SiO2 nano-particles, was investigated.

  14. Material property measurements with post-processed thermal image data

    Science.gov (United States)

    Welch, Christopher S.; Winfree, William P.; Heath, D. M.; Cramer, Elliott; Howell, Patricia

    1990-01-01

    Some of the applications to materials evaluation and property determination of thermographic NDE using digital postprocessing of sequences of thermograms are demonstrated. A generic description is given of the steps used in postprocessing for obtaining material property values.

  15. Surface properties of thermally treated composite wood panels

    Science.gov (United States)

    Croitoru, Catalin; Spirchez, Cosmin; Lunguleasa, Aurel; Cristea, Daniel; Roata, Ionut Claudiu; Pop, Mihai Alin; Bedo, Tibor; Stanciu, Elena Manuela; Pascu, Alexandru

    2018-04-01

    Composite finger-jointed spruce and oak wood panels have been thermally treated under standard pressure and oxygen content conditions at two different temperatures, 180 °C and respectively 200 °C for short time periods (3 and 5 h). Due to the thermally-aided chemical restructuration of the wood components, a decrease in water uptake and volumetric swelling values with up to 45% for spruce and 35% for oak have been registered, comparing to the reference samples. In relation to water resistance, a 15% increase of the dispersive component of the surface energy has been registered for the thermal-treated spruce panels, which impedes water spreading on the surface. The thermal-treated wood presents superior resistance to accelerated UV exposure and subsequently, with up to 10% higher Brinell hardness values than reference wood. The proposed thermal treatment improves the durability of the finger-jointed wood through a more economically and environmental friendly method than traditional impregnation, with minimal degradative impact on the structural components of wood.

  16. Tabulated In-Drift Geometric and Thermal Properties Used In Drift-Scale Models for TSPA-SR

    International Nuclear Information System (INIS)

    N.D. Francis

    2000-01-01

    The objective of this calculation is to provide in-drift physical properties required by the drift-scale models (both two- and three-dimensional) used in total system performance assessments (TSPA). The physical properties include waste package geometry, waste package thermal properties, emplacement drift geometry including backfill and invert geometry and properties (both thermal and hydrologic), drip shield geometry and thermal properties, all tabulated in a single source

  17. Eutectic mixtures of some fatty acids for low temperature solar heating applications: Thermal properties and thermal reliability

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)]. E-mail: asari@gop.edu.tr

    2005-10-01

    The thermal properties and thermal reliability of the eutectic mixtures of lauric acid-myristic acid (LA-MA), lauric acid-palmitic acid (LA-PA), myristic acid-stearic acid (MA-SA) as phase change material (PCM) were determined after repeated melt/freeze cycles by the method of differential scanning calorimeter (DSC). The DSC thermal analysis results indicate that the binary systems of LA-MA in ratio of 66.0:34.0 wt.%, LA-PA in ratio of 69.0:31.0 wt.% and MA-SA in ratio of 64.0:36.0 wt.% form eutectic mixture with a melting temperature of 34.2 deg. C, 35.2 deg. C and 44.1 deg. C, and with a latent heat of fusion of 166.8 J g{sup -1}, 166.3 J g{sup -1} and 182.4 J g{sup -1}, respectively. The changes in the melting temperatures and the latent heats of fusion are in the range of -0.31 deg. C-0.14 deg. C and 0.9%-2.4% for LA-MA, -0.40 deg. C-0.23 deg. C and 1.5%-3.0% for LA-PA, and 1.11 deg. C-0.26 deg. C and -1.10%-2.2% for MA-SA during the 1460 thermal cycles. Based on the results, it can be concluded that the studied PCMs have good thermal properties and thermal reliability for a four-year energy storage period, which corresponds to 1460 thermal cycles, in terms of the change in their melting temperatures and latent heats of fusion.

  18. Numerical Investigation of Thermal and Thermo-mechanical Effective Properties for Short Fibre Reinforced Composite

    Science.gov (United States)

    Ioannou, Ioannis; Hodzic, Alma; Gitman, Inna M.

    2017-10-01

    This study aims to investigate the thermal conductivity and the linear coefficient of thermal expansion for short fibre reinforced composites. The study combines numerical and statistical analyses in order to primarily examine the representative size and the effective properties of the volume element. Effects of various micromechanical parameters, such as fibre's aspect ratio and fibre's orientation, on the minimum representative size are discussed. The numerically acquired effective properties, obtained for the representative size, are presented and compared with analytical models.

  19. RESULTS OF AN OPEN-LABEL COMPARATIVE RANDOMIZED CLINICAL TRIAL OF AXOGLATIRAN® FS (F-SINTEZ, RUSSIA EFFICIENCY AND SAFETY IN COMPARISON WITH COPAXONE®-TEVA (TEVA PHARMACEUTICAL INDUSTRIES LTD., ISRAEL IN PATIENTS WITH RELAPSING-REMITTING MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    F. A. Khabirov

    2016-01-01

    Full Text Available Objective. Comparison of Axoglatiran® FS (F-Sintez,  Russia and Copaxone®-Teva (Teva Pharmaceutical Industries Ltd.,  Israel efficiency and safety in patients with relapsing-remitting multiple sclerosis. Materials and methods. In the study 150 patients with relapsing-remitting multiple sclerosis were randomized into 2 groups: patients in the 1st group (n = 100 received treatment with Axoglatiran® FS, patients in the 2nd group (n = 50 received treatment with Copaxone®-Teva. Vital signs of every patient in the study were monitored accompanied by physical examinations, neurological examinations with EDSS (Expanded Disability Status Scale and MSFC (Multiple Sclerosis Functional Composite evaluations, magnetic resonance imaging of the brain and lab tests. Results. Mean age (M ± SD of the patients in the 1st group was 32.8 ± 8.7 years (20–54  years, percentages of men and women were 34 and 66 % respectively, mean age of multiple sclerosis onset was 27.93 ± 7.72 years (11–48 years. Median (Me, lower and upper quartiles estimates [LQ; UQ] on the EDSS scale were 2 [1.5; 3.0] steps (1.0–4.5  steps. In the 2nd group mean age of the patients was 35.2 ± 9.5 years (18–57  years, percentages of men and women were 24 and 76 % respectively, mean age of multiple sclerosis onset was 26.5 ± 6.9 years (18–47  years, EDSS estimates were 2.25 [1.5; 3.5] steps (1–5  steps. In the 1st group 88 (88 % patients completed the study, in the 2nd  group 44 (88 % patients completed the study. Among them in 73 (82.95 % patients in the 1st group and 34 (77.27 % patients in the 2nd  group the disease didn’t exacerbate (p > 0.05. In both groups no progression according to the EDSS and MSFC scale was observed (p > 0.05. Magnetic resonance imaging data showed that dynamics of the total number of T2 lesions, contrast-enhancing T1 lesions, atrophy degree estimated using internuclear index were comparable in both groups (p > 0.05. Safety profiles of

  20. Photoreactivities and thermal properties of psoralen cross-links

    International Nuclear Information System (INIS)

    Yeung, A.T.; Jones, B.K.; Chu, C.T.

    1988-01-01

    The authors have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. They have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. They found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-links isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link

  1. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    International Nuclear Information System (INIS)

    Visakh, P.M.; Nazarenko, O.B.; Sarath Chandran, C.; Melnikova, T.V.; Nazarenko, S.Yu.; Kim, J.-C.

    2017-01-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose. - Highlights: • The effects of electron beam irradiation on aluminum/epoxy composites were studied. • Changes in thermal and mechanical properties were analyzed. • Irradiation improved the thermal and mechanical properties of aluminum/epoxy composites up to dose of 100 kGy. • The aluminum/epoxy composites appeared more stable to irradiation than the neat epoxy polymer.

  2. DOLOČITEV KINETIKE SINTEZE ACETILSALICILNE KISLINE

    OpenAIRE

    Dragojlović, Vesna

    2011-01-01

    Aspirin, znan tudi kot acetilsalicilna kislina (CH3COOC6H4COOH), je salicilna droga, ki se pogosto uporablja kot učinkovito sredstvo za lajšanje manjših bolečin, antipiretik za zmanjšanje vročine in protivnetno zdravilo. Namen diplomskega dela je bila sinteza aspirina in določitev reda reakcije. Potek reakcije smo zasledovali z opazovanjem spreminjanja specifične prevodnosti šibkega elektrolita, ocetne kisline (CH3COOH), v odvisnosti od časa. Kinetiko reakcije proizvodnje ocetne kisline kot s...

  3. Anomalous thermal properties of glasses at low temperatures

    International Nuclear Information System (INIS)

    Salinger, G.L.

    1976-01-01

    It is shown that specific heat measurements above 0.1 K indicate a distribution of local modes independent of energy; ultrasonic attenuation at low powers indicate that the local mode systems can have at most a few levels; ultrasonic velocity measurements give information about phonon-local mode coupling parameters; the measured thermal conductivity agrees with that calculated from the above information assuming that the energy independent distribution of modes observed in the specific heat is responsible for phonon scattering; thermal expansion and far infrared experiments indicate a phonon assisted tunneling model; several experiments, however, indicate that the modes observed in the specific heat measurements may not all scatter phonons

  4. Characterisation of advanced windows. Determination of thermal properties by measurements

    Energy Technology Data Exchange (ETDEWEB)

    Duer, K.

    2001-04-01

    This report describes work carried out with the aim of facilitating a full energy performance characterisation of advanced windows and glazings by means of measurements. The energy performance of windows and glazings are characterised by two parameters: The thermal transmittance (U-value) and the total solar energy transmittance (g-value) and methods to determine these two parameters by measurements have been investigated. This process has included the improvement of existing equipment and existing measuring methods as well as the development of new measuring equipment and new methods of measuring and data treatment. Measurements of the thermal transmittance of windows and glazings in a guarded hot box have been investigated. The calibration and measuring procedures for determining the U-values of facade windows were analysed and a suggestion for a new calibration and measuring procedure for determining the U-values of roof windows in a guarded hot box was elaborated. The accuracy of the guarded hot box measurements was examined by comparisons to measurements in a hot-plate device and excellent agreement between the results was obtained. Analysis showed that the expected uncertainty in the U-value measurement is about 5% for a specimen with a U-value of 1.75 W/m{sup 2}K. The U-values of three different windows were measured in two separate round robin tests applying two different calibration procedures. The windows U-values where ranging from 1.1 to 2.5 W/m{sup 2}K and all measured results were within the expected uncertainties of the measurements. On the basis of the investigations on hot box measurements a high degree of confidence in the measurement accuracy and the measuring procedure of the guarded hot box at the Department of Buildings and Energy has been obtained. Indoor g-value measurements in a calorimetric test facility (the METSET) mounted in a solar simulator have been investigated and a number of problems regarding these measurements have been

  5. Moisture dependent thermal properties of hydrophilic mineral wool: application of the effective media theory

    Directory of Open Access Journals (Sweden)

    Iñigo Antepara

    2015-09-01

    Full Text Available Thermal properties of mineral wool based materials appear to be of particular importance for their practical applications because the majority of them is used in the form of thermal insulation boards. Every catalogue list of any material producer of mineral wool contains thermal conductivity, sometimes also specific heat capacity, but they give only single characteristic values for dry state of material mostly. Exposure to outside climate or any other environment containing moisture can negatively affect the thermal insulation properties of mineral wool. Nevertheless, the mineral wool materials due to their climatic loading and their environmental exposure contain moisture that can negatively affect their thermal insulation properties. Because the presence of water in mineral wool material is undesirable for the majority of applications, many products are provided with hydrophobic substances. Hydrophilic additives are seldom used in mineral wool products. However, this kind of materials has a good potential for application for instance in interior thermal insulation systems, masonry desalination, green roofs, etc. For these materials, certain moisture content must be estimated and thus their thermal properties will be different than for the dry state. On this account, moisture dependent thermal properties of hydrophilic mineral wool (HMW are studied in a wide range of moisture content using a pulse technique. The experimentally determined thermal conductivity data is analysed using several homogenization formulas based on the effective media theory. In terms of homogenization, a porous material is considered as a mixture of two or three phases. In case of dry state, material consists from solid and gaseous phase. When moistened, liquid phase is also present. Mineral wool consists of the solid phase represented by basalt fibers, the liquid phase by water and the gaseous phase by air. At first, the homogenization techniques are applied for the

  6. Thermal properties improvement of Lithium nitrate/Graphite composite phase change materials

    International Nuclear Information System (INIS)

    Lachheb, Mohamed; Adili, Ali; Albouchi, Fethi; Mzali, Foued; Ben Nasrallah, Sassi

    2016-01-01

    Highlights: • Preparation of new Lithium nitrate/Graphite PCM-composites. • Experimental investigation of the thermo-physical properties of PCM-composites. • Prediction of theoretical thermo-physical properties by using different analytical models. - Abstract: This paper addresses the development and the thermal investigation of new composite materials with improved thermo-physical properties destined for solar thermal energy storage at high temperature. The thermo-physical properties of composites are characterized by using several techniques based on the temperature measurement and the obtained results are compared to the theoretical values calculated by different analytical models. The results of these experiments revealed a clear improvement in the different thermal properties when integrating graphite particles in the composite. In the other hand, a good agreement between experimental and theoretical values was obtained.

  7. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  8. Rock properties and their effect on thermally-induced displacements and stresses

    International Nuclear Information System (INIS)

    Chan, T.; Hood, M.; Board, M.

    1980-02-01

    A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (1) temperature independent, (2) temperature dependent thermal and thermomechanical properties and (3) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions for rock stresses is the in-situ modulus

  9. Mechanical and Thermal Properties of Polymethyl Methacrylate-BN Nanotube Composites

    Directory of Open Access Journals (Sweden)

    C. Y. Zhi

    2008-01-01

    Full Text Available Polymethyl methacrylate (PMMA-BN nanotube (BNNT composites were fabricated and their mechanical and thermal properties were analyzed. Using a 1 wt.% BNNTs fraction in a polymer, the elastic modulus of PMMA was increased up to 19%. In addition, thermal stability and glass transition temperature of PMMA were also positively affected. The thermal conductivity of PMMA with BNNT additions increased three times. The resultant BNNT-PMMA composites possess the high electrical breakover voltages. Thus our studies clearly indicate that BNNTs are promising nanofillers for improvement of mechanical and thermal conductivity of dielectric polymers under preservation of their electrical insulation.

  10. Low temperature thermal radiative properties of gold coated metals

    Czech Academy of Sciences Publication Activity Database

    Frolec, Jiří; Králík, Tomáš; Srnka, Aleš

    2017-01-01

    Roč. 82, OCT (2017), s. 51-55 ISSN 0140-7007 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : gold films * heat transfer * thermal radiation * cryogenics Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.779, year: 2016

  11. Thermally sensitive dual fluorescent polymeric micelles for probing cell properties

    NARCIS (Netherlands)

    Li Feng, F.; Westphal, A.H.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2011-01-01

    Dual fluorescent micelles with a hydrophobic probe (HMA) embedded in the micelle core and a hydrophilic probe (TRITC) attached on the micelle corona were prepared. These micelles can act as nanometre-sized thermal sensors. Within a short temperature range, the fluorescent emission of the micelles

  12. Crack propagation studies and bond coat properties in thermal

    Indian Academy of Sciences (India)

    Ceramic based thermal barrier coatings (TBC) are currently considered as a candidate material for advanced stationary gas turbine components. Crack propagation studies under bending are described that were performed on plasma sprayed ZrO2, bonded by MCrAlY layer to Ni base superalloy. The crack propagation ...

  13. Thermal properties of Australian sedimentary opals and Czech moldavites

    Czech Academy of Sciences Publication Activity Database

    Thomas, P.S.; Šesták, Jaroslav; Heide, K.; Fueglein, E.; Šimon, P.

    2010-01-01

    Roč. 99, č. 3 (2010), s. 861-867 ISSN 1388-6150. [Mediterranean Conference on Calorimetry and Thermal Analysis /9./. Marseille, 15.06.2009-18.06.2009] Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous silica * DEGAS * moldavite * opal * TG-DSC * TMA Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.752, year: 2010

  14. Thermal properties of the pelages of selected African ungulates ...

    African Journals Online (AJOL)

    In wild African ungulates the thickness of the pelage decreases with increasing body size. Thermal conductance decreases with increasing pelage depth, despite the fact that conductivity increases with increasing depth. Forced convection has a more pronounced effect upon the insulation of thin pelages than on thicker ...

  15. Tracking the thermal properties of the lower continental crust

    DEFF Research Database (Denmark)

    Ray, Labani; Förster, Hans-Jürgen; Förster, Andrea

    2015-01-01

    In this study, the bulk thermal conductivity (TC) of 26 rock samples representing different types of granulite-facies rocks, i.e., felsic, intermediate and mafic granulites, from the Southern Granulite Province, India, is measured at dry and saturated conditions with the optical-scanning method. ...

  16. Silicate bonding properties: Investigation through thermal conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzini, M; Cesarini, E; Cagnoli, G; Campagna, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F [INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Haughian, K; Hough, J; Martin, I; Reid, S; Rowan, S; Veggel, A A van, E-mail: lorenzini@fi.infn.i [SUPA, University of Glasgow, Department of Physics and Astronomy, Kelvin Building G12 8QQ Glasgow, Scotland (United Kingdom)

    2010-05-01

    A direct approach to reduce the thermal noise contribution to the sensitivity limit of a GW interferometric detector is the cryogenic cooling of the mirrors and mirrors suspensions. Future generations of detectors are foreseen to implement this solution. Silicon has been proposed as a candidate material, thanks to its very low intrinsic loss angle at low temperatures and due to its very high thermal conductivity, allowing the heat deposited in the mirrors by high power lasers to be efficiently extracted. To accomplish such a scheme, both mirror masses and suspension elements must be made of silicon, then bonded together forming a quasi-monolithic stage. Elements can be assembled using hydroxide-catalysis silicate bonding, as for silica monolithic joints. The effect of Si to Si bonding on suspension thermal conductance has therefore to be experimentally studied. A measurement of the effect of silicate bonding on thermal conductance carried out on 1 inch thick silicon bonded samples, from room temperature down to 77 K, is reported. In the explored temperature range, the silicate bonding does not seem to affect in a relevant way the sample conductance.

  17. Thermal Optical Properties of Lunar Dust Simulants and Their Constituents

    Science.gov (United States)

    Gaier, James R.; Ellis, Shaneise; Hanks, Nichole

    2011-01-01

    The total reflectance spectra of lunar simulant dusts (thermal emittance (epsilon) for the purpose of analyzing the effect of dust on the performance of thermal control surfaces. All of the simulants except one had a wavelength-dependent reflectivity (p (lambda)) near 0.10 over the wavelength range of 8 to 25 microns and so are highly emitting at room temperature and lower. The 300 K emittance (epsilon) of all the lunar simulants except one ranged from 0.78 to 0.92. The exception was Minnesota Lunar Simulant 1 (MLS-1), which has little or no glassy component. In all cases the epsilon was lower for the thermal infrared. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The integrated solar absorptance (alpha) of the simulants ranged from 0.39 to 0.75. This is lower than values reported earlier for larger particles of the same simulants (0.41 to 0.82), and for representative mare and highlands lunar soils (0.74 to 0.91). Since the of some mare simulants more closely matched that of highlands lunar soils, it is recommended that and values be the criteria for choosing a simulant for assessing the effects of dust on thermal control surfaces, rather than whether a simulant has been formulated as a highlands or a mare simulant.

  18. Thermal and dynamic mechanical properties of hydroxypropyl cellulose films

    Science.gov (United States)

    Timothy G. Rials; Wolfgang G. Glasser

    1988-01-01

    Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were used to characterize the morphology of slovent cast hydroxypropyl cellulose (HPC) films. DSC results were indicative of a semicrystalline material with a melt of 220°C and a glass transition at 19°C (T1), although an additional event was suggested by a...

  19. Synthesis, thermal properties and photoisomerization of trans-[Ru ...

    Indian Academy of Sciences (India)

    chemsci

    Keywords. Ruthenium nitrosyl complexes; pyridine; X-ray crystallography-thermal analysis; photoinduced linkage isomer; ruthenium phosphide; DSC. 1. Introduction. Ruthenium phosphides RuP and Ru2P are known as stable catalysts for electrochemical oxygen reduction, seem to be good candidates as substrate in fuel ...

  20. Worldwide distribution of soil dielectric and thermal properties

    NARCIS (Netherlands)

    Hendrickx, J.M.H.; Dam, R.L. van; Borchers, B.; Curtis, J.; Lensen, H.A.; Harmon, R.

    2003-01-01

    Ground penetrating radar and thermal sensors hold much promise for the detection of non-metallic land mines. In previous work we have shown that the performance of ground penetrating radar strongly depends on field soil conditions such as texture, water content, and soil-water salinity since these

  1. Investigation of thermal and optical properties of thin WO3 films by the photothermal Deflection Technique

    International Nuclear Information System (INIS)

    Gaied, I; Yacoubi, N; Dabbous, S; Nasrallah, T Ben

    2010-01-01

    Owing to its novel physical properties, as well as its technological implication in many fields, the thermal and optical properties of WO 3 thin films are studied here. These thin films are prepared from Ammonium Tungstate and deposited on a glass substrate at 400 0 C by the Spray Pyrolysis Technique. The thermal properties (Thermal conductivity and thermal diffusivity) were studied by the Photothermal Deflection method in its uniform heating case instead of traditionally a non uniform heating one by comparing the experimental amplitude and phase variations versus square root modulation frequency to the corresponding theoretical ones. The best coincidence between theory and experience is obtained for well-defined values of thermal conductivity and thermal diffusivity. The optical properties (optical absorption spectrum and gap energy) were measured using the Photothermal Deflection Spectroscopy (PDS) by drawing the amplitude and phase variation versus wavelength in experimental way and versus absorption coefficient in theoretical one at a fixed modulation frequency. By comparing point by point the normalised experimental and corresponding theoretical amplitude variation, one can deduce the optical absorption spectrum. Using the Tauc law for energies above the gap we can deduce the gap energy. We notice that these films show low thermal conductivity and high transparency in the visible range.

  2. Preparation and Properties Study of Thermally Conductive Epoxy/Modified Boron Nitride/Graphene Nanosheets Composites

    Science.gov (United States)

    Chen, Hexiang; Zhao, Chunbao; Xu, Suichun; Yang, Xujie

    2017-12-01

    A series of thermally conductive and electric-insulating epoxy composites filled with boron nitride (BN) modified by octadecyl trimethyl ammonium bromide and graphene nanosheets (GNP) were prepared. The effects of modified-BN (BNOTAB) and GNP content on thermal conductivity, electric-insulating and thermal stability properties of epoxy composite were investigated. The results indicate that the BNOTAB can homogeneously disperse into epoxy system. When the mass ratio of BNOTAB/GNP is 6:4 (total filler content is 10%), the thermal conductivity of the composites reached 0.48 W/(m·K), which is 108.7% higher than that of the neat epoxy. Meanwhile, the composite retains excellent electric-insulating property. TGA and DSC results showed that the addition of BNOTAB/GNP filler particles can improve the thermal stability of epoxy resin composites.

  3. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.

    Science.gov (United States)

    Jiménez-Saelices, Clara; Seantier, Bastien; Cathala, Bernard; Grohens, Yves

    2017-02-10

    Nanofibrillated cellulose (NFC) aerogels were prepared by spray freeze-drying (SFD). Their structural, mechanical and thermal insulation properties were compared to those of NFC aerogels prepared by conventional freeze-drying (CFD). The purpose of this investigation is to develop superinsulating bioaerogels by reducing their pore size. Severe reduction of the aerogel pore size and skeleton architecture were observed by SEM, aerogels prepared by SFD method show a fibril skeleton morphology, which defines a mesoporous structure. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, the thermal insulation properties were significantly improved for SFD materials compared to CFD aerogel, reaching values of thermal conductivity as low as 0.018W/(mK). Moreover, NFC aerogels have a thermal conductivity below that of air in ambient conditions, making them one of the best cellulose based thermal superinsulating material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of interfacial treatment on the thermal properties of thermal conductive plastics

    Directory of Open Access Journals (Sweden)

    2007-09-01

    Full Text Available In this paper, ZnO, which is processed by different surface treatment approaches, is blended together with polypropylene to produce thermal conductive polymer composites. The composites are analyzed by Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM to investigate the surface modification of filler, their distribution in the matrix and the condition of two-phase interface. Optimized content of filler surface modifier is investigated as well. The results showed that using low-molecular coupling agent produces positive effect to improve the interface adhesion between filler and matrix, and the thermal conductivity of the composite as well. Macro-molecular coupling agent can strongly improve two-phase interface, but it is not beneficial at obtaining a high thermal conductivity. The blend of ZnO without modification and polypropylene has many defects in the two-phase interface, and the thermal conductivity of the composite is between those of composites produced by previous two approaches. The surface treatment of the filler also allowed producing the composites with lower coefficient of thermal expansion (CTE. As for the content of low-molecular coupling agent, it obtains the best effect at 1.5 wt%.

  5. Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites

    International Nuclear Information System (INIS)

    Madakbaş, Seyfullah; Çakmakçı, Emrah; Kahraman, Memet Vezir

    2013-01-01

    Highlights: ► PAN/h-BN composites with improved thermal stability were prepared. ► Thermal properties of composites were analysed by TGA and DSC. ► Flame retardancy of the composites increased up to 27%. - Abstract: Polyacrylonitrile is a thermoplastic polymer with unique properties and it has several uses. However its flammability is a major drawback for certain applications. In this study it was aimed to prepare polyacrylonitrile (PAN)/hexagonal boron nitride (h-BN) composites with improved flame retardancy and thermal stability. Chemical structures of the composites were characterized by FTIR analysis. Thermal properties of these novel composites were analysed by TGA and DSC measurements. Glass transition temperatures and char yields increased with increasing h-BN percentage. Flame retardancy of the PAN composite materials improved with the addition of h-BN and the LOI value reached to 27% from 18%. Furthermore, the surface morphology of the composites was investigated by SEM analysis.

  6. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Rohan Stanger

    2014-01-01

    Full Text Available A new technique that allows dynamic measurement of thermal properties, expansion and the elemental chemistry of the volatile matter being evolved as coal is pyrolysed is described. The thermal and other properties are measured dynamically as a function of temperature of the coal without the need for equilibration at temperature. In particular, the technique allows for continuous elemental characterisation of tars as they are evolved during pyrolysis and afterwards as a function of boiling point. The technique is demonstrated by measuring the properties of maceral concentrates from a coal. The variation in heats of reaction, thermal conductivity and expansion as a function of maceral composition is described. Combined with the elemental analysis, the results aid in the interpretation of the chemical processes contributing to the physical and thermal behaviour of the coal during pyrolysis. Potential applications in cokemaking studies are discussed.

  7. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  8. Influence of Textile Structure and Silica Based Finishing on Thermal Insulation Properties of Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    G. Rosace

    2016-01-01

    Full Text Available The aim of this work is to investigate the influence of weave structures and silica coatings obtained via sol-gel process on the thermal insulation properties of cotton samples. For this reason three main weave structures (plain, satin, and piqué of cotton fabric were selected with different yarn count, threads per cm, and mass per square meter values. Thereafter, only for the plain weave, the samples were padded using silica sol formed by hydrolysis and subsequent condensation of 3-glycidoxypropyltrimethoxysilane under acidic conditions. The silanized plain weave samples were characterized by TGA and FT-IR techniques. The thermal properties were measured with a home-made apparatus in order to calculate thermal conductivity, resistance, and absorption of all the treated fabric samples. The relationship between the thermal insulation properties of the plain weave fabrics and the concentration of sol solutions has been investigated. Fabrics weave and density were found to strongly influence the thermal properties: piqué always shows the lowest values and satin shows the highest values while plain weave lies in between. The thermal properties of treated high-density cotton plain weave fabric were proved to be strongly influenced by finishing agent concentration.

  9. Measurement of thermal properties of white radish (R. raphanistrum using easily constructed probes.

    Directory of Open Access Journals (Sweden)

    Mfrekemfon Samuel Obot

    Full Text Available Thermal properties are necessary for the design and control of processes and storage facilities of food materials. This study proposes the measurement of thermal properties using easily constructed probes with specific heat capacity calculated, as opposed to the use of Differential Scanning Calorimeter (DSC or other. These probes were constructed and used to measure thermal properties of white radish in the temperature range of 80-20°C and moisture content of 91-6.1% wb. Results showed thermal properties were within the range of 0.71-0.111 Wm-1 C-1 for thermal conductivity, 1.869×10-7-0.72×10-8 m2s-1 for thermal diffusivity and 4.316-1.977 kJ kg-1C-1for specific heat capacity. These results agree with reports for similar products studied using DSC and commercially available line heat source probes. Empirical models were developed for each property through linear multiple regressions. The data generated would be useful in modeling and control of its processing and equipment design.

  10. Measurement of thermal properties of white radish (R. raphanistrum) using easily constructed probes.

    Science.gov (United States)

    Obot, Mfrekemfon Samuel; Li, Changcheng; Fang, Ting; Chen, Jinquan

    2017-01-01

    Thermal properties are necessary for the design and control of processes and storage facilities of food materials. This study proposes the measurement of thermal properties using easily constructed probes with specific heat capacity calculated, as opposed to the use of Differential Scanning Calorimeter (DSC) or other. These probes were constructed and used to measure thermal properties of white radish in the temperature range of 80-20°C and moisture content of 91-6.1% wb. Results showed thermal properties were within the range of 0.71-0.111 Wm-1 C-1 for thermal conductivity, 1.869×10-7-0.72×10-8 m2s-1 for thermal diffusivity and 4.316-1.977 kJ kg-1C-1for specific heat capacity. These results agree with reports for similar products studied using DSC and commercially available line heat source probes. Empirical models were developed for each property through linear multiple regressions. The data generated would be useful in modeling and control of its processing and equipment design.

  11. Thermal properties of clay-based buffer materials for a nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    Radhakrishna, H.S.

    1984-06-01

    The thermal properties of three types of bentonite clay, one illite-rich shale and one kaolin mixed with crushed granite were investigated. Thermal conductivity measurements were made over a range of mix proportions, moisture content, density and ambient temperature using the transient heat-probe method. The effects of thermal drying in the buffer zone prior to water uptake were investigated by means of laboratory-scale heater experiments. Illite-rich shale (Sealbond) and kaolin exhibited better compactability and thermal conductivity than the bentonite clays. The thermal conductivity of all types of clay buffers showed a high degree of moisture dependency and relatively no effect due to elevated temperature under high fluid pressure conditions. Bentonite buffers compacted to a dry density of 1200 to 1400 kg/m 3 showed extensive cracking due to differential shrinkage. Addition of crushed granite, and/or compaction to a higher density, reduced the thermal cracking of the buffer material

  12. Thermal Effect of Ceramic Nanofiller Aluminium Nitride on Polyethylene Properties

    Directory of Open Access Journals (Sweden)

    Omer Bin Sohail

    2012-01-01

    Full Text Available Ethylene polymerization was done to form polyethylene nano-composite with nanoaluminum nitride using zirconocene catalysts. Results show that the catalytic activity is maximum at a filler loading of 15 mg nanoaluminum nitride. Differential scanning calorimeter (DSC and X-ray diffraction (XRD results show that percentage crystallinity was also marginally higher at this amount of filler. Thermal behavior of polyethylene nanocomposites (0, 15, 30, and 45 mg was studied by DSC and thermal gravimetric analyzer (TGA. Morphology of the component with 15 mg aluminium nitride is more fibrous as compared to 0 mg aluminium nitride and higher filler loading as shown by SEM images. In order to understand combustibility behavior, tests were performed on microcalorimeter. Its results showed decrease in combustibility in polyethylene nanocomposites as the filler loading increases.

  13. Irradiation effects on thermal properties of LWR hydride fuel

    Science.gov (United States)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  14. Surfactant assisted surface morphology and thermal properties of polythiophene composites

    Science.gov (United States)

    Vijeth, H.; Niranjana, M.; Yesappa, L.; Chapi, Sharanappa; Raghu, S.; Ashokkumar, S. P.; Devendrappa, H.

    2017-06-01

    Conducting polythiophene (PTH)/aluminium oxide (Al2O3) composites was prepared with camphor sulphonic acid (CSA) as s anionic surfactant by means of in situ chemical oxidation polymerization. The morphology and material phase of PTH/Al2O3 (PTHA) composites were investigated by Field-Emission Scanning Electron Microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDX). The FESEM image shows alter the size of grain and EDX results consistent with the presence of Al2O3 and CSA chemical composition. Thermal stability of composites was characterized using TGA/DSC, the results indicate that the PTP/Al2O3 composites have higher thermal stability than that of PTP and decompose at higher temperatures due to addition of anionic surfactant.

  15. Synthesis, sintering properties and thermal conductivity of uranium carbonitrides

    International Nuclear Information System (INIS)

    Wolters, R.A.M.

    1978-01-01

    An introduction to the applications and chemistry of uranium carbonitrides is given including the potential use as a nuclear fuel. The powder synthesis of UC, UN and mixtures of UC and UN by a cyclic process is described. The correlation between the composition ratio UN/(UC+UN) in the final product and the parameters of the process is only determined qualitatively. Batch synthesis of a powder does not lead to an increase of the content of metallic impurities and oxygen. The impurity level is determined by that of the starting uranium metal and the thermal conductivity of the sintered compacts of uranium carbonitrides are determined via the measurement of the thermal diffusivity at 1100-1700 K. (Auth.)

  16. Dielectric, thermal and mechanical properties of ADP doped PVA composites

    Science.gov (United States)

    Naik, Jagadish; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Sheela, T.; Naik, Ishwar

    2015-06-01

    Polymer composites of poly(vinyl alcohol) (PVA), doped with different concentrations of ammonium dihydrogen phosphate (ADP) has been prepared by solution casting. The formation of complexation between ADP and PVA was confirmed with the help of Fourier transforms infrared (FTIR) spectroscopy. Thermogravimetric analysis (TGA) shows thermal stability of the prepared composites. Impedance analyzer study revealed the increase in dielectric constant and loss with increase the ADP concentration and the strain rate of the prepared composites decreases with ADP concentration.

  17. Thermal properties of African yam bean seeds as influenced by ...

    African Journals Online (AJOL)

    The specific heat capacity of African yam bean seeds, measured using copper calorimeter, increased from 2.035 to 2.816 KJ kg-1 k-1, as the moisture content and temperatures increased from 9.6 to 30 % (w.b) and 30 to 50oC respectively. The thermal conductivity of the seed was determined using the line heat source and ...

  18. Measurement of Thermal Dependencies of PBG Fiber Properties

    International Nuclear Information System (INIS)

    Laouar, Rachik

    2011-01-01

    Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so called photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air (γ SiO# sub 2# = 1.19 x 10 -6 1/K, γ air = -9 x 10 -7 1/K with γ = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k z ) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE 00 ), and the experimental demonstration of TM-like mode propagation in the HC-633-02 fiber.

  19. Analysis of the thermal properties of nanomodified epoxy composite

    Directory of Open Access Journals (Sweden)

    FOMIN Nikolay Egorovich

    2014-02-01

    Full Text Available The paper presents the results of experimental research of epoxy composites modified by nanoparticles. The results were obtained by the method of thermogravimetric analysis. The dependences between the intensity of the processes of thermal degradation in the air and technological factors and content of nanoparticles have been determined. The optimal concentration of 5 types of nanomodifiers besed on carbon nanoclusters adducts, which are functionalized carbon compounds has been revealed. The obvious advantage of these modifiers is their high solubility in polar solvents, that makes the use of these modifiers easier and allows disusing the additional sonication. Investigation of thermooxidation processes of modified epoxy resins was performed in a dynamic mode using TGA/SDTA851e module of STARe System in the temperature range 25÷800⁰C in air atmosphere with simultaneous removal of the gaseous decomposition products. Aluminum oxide (Al₂O₃ was used as the etalon, the temperature speed set was 10 deg./min. It was found out that the process of thermal degradation consists of two stages. The first step is characterized by the main oxidative degradation of polymer and the loss of up to 80% of the original sample weight, the second step is accompanied by the further oxidative decomposition of epoxy composite related to the carbon skeleton destruction. It was proved experimentally that injection of modifiers changes thermal-oxidative decomposition processes and also changes specific energy of epoxy composite according to the type and concentration of nanomodifier. It was shown that the injection of optimal amounts of modifier allows increase of the thermal and energy characteristics, and as a result, the durability of epoxy coatings exposed to aggressive climatic factors.

  20. The thermal properties of the subsurface – key parameters for geothermal energy utilization

    DEFF Research Database (Denmark)

    Norden, Ben; Bording, Thue Sylvester; Balling, N.

    Often the investigation of petrophysical properties is far behind the capabilities of sophisticated modelling techniques applied in basin and geothermal modelling and for which these data serve as an input. Therefore, more in-depth investigations especially of thermal properties are requested. We...

  1. Mechanical, thermal, and moisture properties of plastics with bean as filler

    Science.gov (United States)

    Experiments on polymers using beans as fillers are reported herein. We are looking for desirable mechanical, thermal and moisture properties at economical costs. Poly(lactic acid) (PLA) is studied as the polymeric matrix because it is available and biodegradable. Although the physical properties are...

  2. Study on Thermal Physical Properties of 304 Stainless Steel

    Science.gov (United States)

    Fang, Dong; Jun-mao, Qie; Hao-hua, Deng

    The DIL402C thermal dilatometer and STA449C thermal analyzer were employed to test the linear expansion and contraction coefficient, CP and DSC curve of 304 stainless steel. The result showed that the linear expansion coefficient range was 20.9700×10-6˜21.5712×10-6 and the linear contraction coefficient range was 21.2528×10-6˜21.9471×10-6. The linear expansion and contraction coefficient were higher than other steel grade, so the 304 stainless steel belonged to the crack sensitive steel. Because of the crystal phase transformation occurred during the 1000˜1400 °C,the curve of CP fluctuated obviously and the defects of casting blank occurred easily. Chosen 1414°C as the liquidus temperature of 304 stainless steel based on the analysis results of DSC. The curve of DSC was unsmooth during 1450˜1100°C, the crystal phase transformation occurs and thermal stability of slab was inferior.When the initial solidified shell formed in this temperature range,the thickness of the shell would be nonuniform and the surface defects occurred more easily.

  3. Effect of Functionalization of Graphene Nanoplatelets on the Mechanical and Thermal Properties of Silicone Rubber Composites.

    Science.gov (United States)

    Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong

    2016-02-02

    This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR.

  4. Effect of Functionalization of Graphene Nanoplatelets on the Mechanical and Thermal Properties of Silicone Rubber Composites

    Directory of Open Access Journals (Sweden)

    Guangwu Zhang

    2016-02-01

    Full Text Available This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs on the mechanical and thermal properties of silicone rubber (SR composites. GnPs were modified with aminopropyltriethoxysilane (APTES, vinyltrimethoxysilane (VTMS, and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR.

  5. Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Silverio, Hudson Alves; Flauzino Neto, Wilson Pires; Silva, Ingrid Souza Vieira da; Rosa, Joyce Rover; Pasquini, Daniel, E-mail: pasquini@iqufu.ufu.br, E-mail: danielpasquini2005@yahoo.com.br [Universidade de Uberlandia (USU), MG (Brazil). Instituto de Quimica; Assuncao, Rosana Maria Nascimento de [Universidade de Uberlandia (USU), Ituiutaba, MG (brazil). Fac. de Ciencias Integradas do Pontal; Barud, Hernane da Silva; Ribeiro, Sidney Jose Lima [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2014-11-15

    In this work, the effects of incorporating cellulose nanocrystals from soy hulls (WSH{sub 30}) on the mechanical, thermal, and barrier properties of methylcellulose (MC) nanocomposites were evaluated. MC/WSH{sub 30} nanocomposite films with different filler levels (2, 4, 6, 8, and 10%) were prepared by casting. Compared to neat MC film, improvements in the mechanical and barrier properties were observed, while thermal stability was retained. The improved mechanical properties of nanocomposites prepared may be attributed to mechanical percolation of WSH{sub 30}, formation of a continuous network of WSH{sub 30} linked by hydrogen interactions and a close association between filler and matrix. (author)

  6. Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites

    Directory of Open Access Journals (Sweden)

    Hudson Alves Silvério

    2014-12-01

    Full Text Available In this work, the effects of incorporating cellulose nanocrystals from soy hulls (WSH30 on the mechanical, thermal, and barrier properties of methylcellulose (MC nanocomposites were evaluated. MC/WSH30 nanocomposite films with different filler levels (2, 4, 6, 8, and 10% were prepared by casting. Compared to neat MC film, improvements in the mechanical and barrier properties were observed, while thermal stability was retained. The improved mechanical properties of nanocomposites prepared may be attributed to mechanical percolation of WSH30, formation of a continuous network of WSH30 linked by hydrogen interactions and a close association between filler and matrix.

  7. Thermal Exposure Effects on Properties of Al-Li Alloy Plate Products

    Science.gov (United States)

    Shah, Sandeep; Wells, Douglas; Wagner, John; Babel, Henry

    2003-01-01

    The objective of this viewgraph representation is to evaluate the effects of thermal exposure on the mechanical properties of both production mature and developmental Al-Li alloys. The researchers find for these alloys, the data clearly shows that there is no deficit in mechanical properties at lower exposure temperatures in some cases, and a signficant deficit in mechanical properties at higher exposure temperatures in all cases. Topics considered include: Al-Li alloys composition, key characteristics of Al-Li alloys and thermal exposure matrix.

  8. Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings

    Czech Academy of Sciences Publication Activity Database

    Oberste-Berghaus, J.; Legoux, J.-G.; Moreau, C.; Tarasi, F.; Chráska, Tomáš

    2008-01-01

    Roč. 17, č. 1 (2008), s. 91-104 ISSN 1059-9630 Institutional research plan: CEZ:AV0Z20430508 Keywords : thermal spraying * nanocrystalline composites * wear Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.200, year: 2008

  9. Effect of thermal annealing on the surface properties of electrospun polymer fibers.

    Science.gov (United States)

    Chen, Jiun-Tai; Chen, Wan-Ling; Fan, Ping-Wen; Yao, I-Chun

    2014-02-01

    Electrospun polymer fibers are gaining importance because of their unique properties and applications in areas such as drug delivery, catalysis, or tissue engineering. Most studies to control the morphology and properties of electrospun polymer fibers focus on changing the electrospinning conditions. The effects of post-treatment processes on the morphology and properties of electrospun polymer fibers, however, are little studied. Here, the effect of thermal annealing on the surface properties of electrospun polymer fibers is investigated. Poly(methyl methacrylate) and polystyrene fibers are fist prepared by electrospinning, followed by thermal annealing processes. Upon thermal annealing, the surface roughness of the electrospun polymer fibers decreases. The driving force of the smoothing process is the minimization of the interfacial energy between polymer fibers and air. The water contact angles of the annealed polymer fibers also decrease with the annealing time. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Response of mechanical properties of glasses to their chemical, thermal and mechanical histories

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    Mechanical properties are a key factor to be considered when designing new glass compositions, optimizing glass processing parameters and defining the glass application fields. However, mechanical properties of glasses are complex values since they are influenced by many factors such as structure......, surface, thermal history or excess entropy of the final glass state. Here I review recent progresses in understanding of the responses of mechanical properties of oxide glasses to the compositional variation, thermal history and mechanical deformation. The tensile strength, elastic modulus and hardness...... and micro-cracks occurring during indentation of a glass is discussed briefly. Finally I describe the future perspectives and challenges in understanding responses of mechanical properties of oxide glasses to compositional variation, thermal history and mechanical deformation....

  11. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  12. Effect of TiO2 pigment gradation on the properties of thermal insulation coatings

    Science.gov (United States)

    Shen, Lu-wei; Zhang, Ya-mei; Zhang, Pei-gen; Shi, Jin-jie; Sun, Zheng-ming

    2016-12-01

    This study was designed to evaluate the thermal performance and mechanical properties of coatings with different gradations of TiO2 pigments. The solar reflectance, cooling performance, wash resistance, and film adhesion strength of the coatings were investigated. The influence of TiO2 powder gradation on the final properties of the coatings was studed. The solar reflectance and the thermal insulation were observed to increase with increasing content of nanosized TiO2. The mechanical properties of the coatings, such as their wash resistance and film adhesion strength, were observed to increase with increased incorporation of nanosized TiO2. Such improvements in the properties of the coatings were attributed to the greater specific surface area and lower thermal conductivity of nanosized TiO2 particles compared to normal TiO2 particles.

  13. RESEARCH OF PROPERTIES KIESELGUHR AS OBJECT OF THERMAL REGENERATION

    Directory of Open Access Journals (Sweden)

    D. M. Vizir

    2012-01-01

    Full Text Available The physico-mechanical and thermophysical properties of diatomite аre investigated. The equations, allowing to define characteristics of diatomite in a wide range of temperature and humidity are received.

  14. Soil thermal diffusivity estimated from data of soil temperature and single soil component properties

    Directory of Open Access Journals (Sweden)

    Quirijn de Jong van Lier

    2013-02-01

    Full Text Available Under field conditions, thermal diffusivity can be estimated from soil temperature data but also from the properties of soil components together with their spatial organization. We aimed to determine soil thermal diffusivity from half-hourly temperature measurements in a Rhodic Kanhapludalf, using three calculation procedures (the amplitude ratio, phase lag and Seemann procedures, as well as from soil component properties, for a comparison of procedures and methods. To determine thermal conductivity for short wave periods (one day, the phase lag method was more reliable than the amplitude ratio or the Seemann method, especially in deeper layers, where temperature variations are small. The phase lag method resulted in coherent values of thermal diffusivity. The method using properties of single soil components with the values of thermal conductivity for sandstone and kaolinite resulted in thermal diffusivity values of the same order. In the observed water content range (0.26-0.34 m³ m-3, the average thermal diffusivity was 0.034 m² d-1 in the top layer (0.05-0.15 m and 0.027 m² d-1 in the subsurface layer (0.15-0.30 m.

  15. The effect of a thermal renal denervation cycle on the mechanical properties of the arterial wall.

    Science.gov (United States)

    Hopkins, Alan A; Sheridan, William S; Sharif, Faisal; Murphy, Bruce P

    2014-11-28

    The aim of this study was to determine the effect that a thermal renal denervation cycle has on the mechanical properties of the arterial wall. Porcine arterial tissue specimens were tested in three groups: native tissue, decellularized tissue, decellularized with collagen digestion (e.g. elastin only). One arterial specimen was used as an unheated control specimen while another paired specimen was subjected to a thermal cycle of 70°C for 120s (n=10). The specimens were subjected to tensile loading and a shrinkage analysis. We observed two key results: The mechanical properties associated with the elastin extracellular matrix (ECM) were not affected by the thermal cycle. The effect of the thermal cycle on the collagen (ECM) was significant, in both the native and decellularized groups the thermal cycle caused a statistically significant decrease in stiffness, and failure strength, moreover the native tissue demonstrated a 27% reduction in lumen area post exposure to the thermal cycle. We have demonstrated that a renal denervation thermal cycle can significantly affect the mechanical properties of an arterial wall, and these changes in stiffness and failure strength were associated with alterations to the collagen rather than the elastin extracellular matrix component. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Study of the Thermal Properties of Raffia Bamboo Vinifera L. Arecaceae

    Directory of Open Access Journals (Sweden)

    E. Foadieng

    2017-01-01

    Full Text Available Raffia is a kind of fast-growing palm tree, from the family of Arecaceae, encountered in marshy areas and along rivers. In this study, the “Raffia Bamboo” is the stalk of a palm, made of a fragile marrow inside a thin shell, smooth and hard to protect the latter. In our region, this material is widely used to build all the low-cost traditional houses and furniture, to make granaries storage of dry products, to build chicken coops, to make decoration. Thus, various jobs are organized around this material, with the fight against poverty. To our knowledge, information on its thermal properties is almost nonexistent. The experimental determination of the transverse thermal properties of the dry shell, the dry marrow, and the whole dry bamboo helped to find, for each, a specific heat, a thermal diffusivity, a thermal conductivity, and finally a thermal effusivity. From the analysis of results, we deduce that the thermal properties of raffia bamboo vinifera L. Arecacea make it a very good thermal insulator.

  17. Novel Radiofrequency-Assisted Thermal Processing Improves the Gelling Properties of Standard Egg White Powder.

    Science.gov (United States)

    Boreddy, Sreenivasula Reddy; Thippareddi, Harshavardhan; Froning, Glenn; Subbiah, Jeyamkondan

    2016-03-01

    Effect of radiofrequency (RF)-assisted thermal processing on quality and functional properties of high-foaming standard egg white powder (std. EWP, pH approximately 7.0) was investigated and compared with traditional processing (heat treatment in a hot room at 58 °C for at least 14 d). The RF-assisted thermal treatments were selected to meet the pasteurization requirements and to improve the functional properties of the std. EWP. The treatment conditions were: RF heating to 60, 70, 80, and 90 °C followed by holding in a hot air oven at those temperatures for different periods ranging from 4 h at 90 °C to 72 h at 60 °C. The quality (color and solubility) and functional properties (foaming properties: foaming capacity and foam stability; and gelling properties: water holding capacity and gel-firmness) of the std. EWP were investigated. RF-assisted thermal processing did not affect the color and solubility of std. EWP at any of the treatment conditions. In general, the foaming and gelling properties of RF-assisted thermally processed std. EWP increased with an increase in temperature and treatment duration. The optimal RF-assisted treatment conditions to produce std. EWP with similar functional properties as the traditionally processed (hot room processed) std. EWP were 90 °C for ≥8 h. These optimal conditions were similar to those for high gel egg white powder (HG-EWP, pH approximately 9.5). The RF-assisted thermal pasteurization improved the gelling properties of std. EWP to the levels of HG-EWP, leading to newer applications of this functionally improved safe product. The RF-assisted thermal processing allows the processor to produce a HG-EWP from std. EWP subsequent to processing while simultaneously pasteurizing the product, thus assuring the product safety. © 2016 Institute of Food Technologists®

  18. Multi-wall effects on the thermal transport properties of nanotube structures

    International Nuclear Information System (INIS)

    Hata, Tomoyuki; Kawai, Hiroki; Jono, Ryota; Yamashita, Koichi

    2014-01-01

    Understanding the role of inter-layer interactions in multi-walled carbon nanotubes is one of the challenges in the design of potential materials because of their large impact on the physical properties of carbon nanotubes. We focused on the thermal properties of double-walled carbon nanotubes (DWCNTs), which are promising materials due to their high durability and thermal efficiency. We investigated the thermal conductance of DWCNTs by using the nonequilibrium Green’s function method, and found that the quadratic temperature dependence of the thermal conductance at low temperatures consisted of three regions with different tendencies. Based on analysis of the transmission coefficients and the distribution of the normal modes, the three nonuniform regions were attributed to the energy shifts of the normal modes at the low-energy region. We examined the mechanism of these energy shifts using the coupled vibration model with the parameters from our simulations, and elucidated the multi-wall effects on the thermal transport properties of the nanotube structures. The effects we found demonstrated the significance of tailoring thermal properties to obtain the desired applications. (papers)

  19. Thermal properties of a new ecological building material / Granular cork embedded in white cement

    Directory of Open Access Journals (Sweden)

    Cherki Abou-bakr

    2014-04-01

    Full Text Available Cork, natural and renewable product, has thermal and acoustic properties very interesting because of its microstructure and porosity representing a significant portion of its apparent volume; it’s coming from Moroccan Maamora’s forest. This work is a contribution to understand the thermal behaviour of the composite material based on granular cork embedded in white cement. An experimental investigation of its thermal properties was mainly performed using the asymmetrical device of transient Hot Plate method. The effect of granular cork size on the thermal properties of the mixture was studied. The experimental study of this sustainable material aims to characterize its thermal properties and then compare them with those of white cement without cork for motivate the proposal that this composite material will be used as walls insulator. A comparison of the energy performances of the composite material and white cement was made; it allows deducing a very interesting energy gain. The findings of the experiments indicate that the composite is better than white cement in term of thermal insulation, energy storage capacity and lightness. So, it can be used to realize the internal walls insulation. Its utilization should contribute to the improvement of the energy efficiency in building especially that this is a mixture based on a sustainable and renewable material.

  20. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects.

    Science.gov (United States)

    Shao, Cheng; Bao, Hua

    2016-06-06

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring.

  1. Thermal and mechanical properties of 3D printed boron nitride - ABS composites

    Science.gov (United States)

    Quill, Tyler J.; Smith, Matthew K.; Zhou, Tony; Baioumy, Mohamed Gamal Shafik; Berenguer, Joao Paulo; Cola, Baratunde A.; Kalaitzidou, Kyriaki; Bougher, Thomas L.

    2017-11-01

    The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of 3 for injection molding and 4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.

  2. Reflectance and thermal properties of the urban fabric studied with aerial spectral imaging

    Science.gov (United States)

    Burud, Ingunn; Thiis, Thomas; Gaitani, Niki

    2017-09-01

    The properties of materials used in the urban fabric play an essential role to the microclimate. Their thermal performance, one of the main impacting factors to urban heat island effects, is mainly determined by the physical characteristics, optical and thermal. The present research approach aims at analyzing the relation between material properties and their thermal behavior using airborne multispectral imaging in VIS/NIR and IR with sensors mounted on Unmanned Aerial Vehicle (UAV), at a survey in Athens. The images have been combined to form maps of surface temperature distribution and of material properties. Normalized Differential Vegetation Index (NDVI) maps were computed from the VIS/NIR images and were used to classify the surface material. Calibration of the temperatures was obtained by applying correct emissivity for different materials from the classified surface material map. Maps of estimated albedo and of apparent thermal inertia were derived from the VIS/NIR images and the temperature images. Combining the surface temperature maps with maps of NDVI, albedo and apparent thermal inertia makes it is possible to identify reflectance characteristics of a variety materials utilized in the urban setting in Athens and to relate these to their thermal properties. The applied multisensory technique demonstrates how novel advances in sensor development combined with advanced data analysis provide new and unique tools for urban climate studies. The results give new perspectives of urban features for revealing the complex mechanisms that lead to microclimatic modifications and to quantify their relative contribution.

  3. Thermal Properties of Jojoba Oil Between 20°C and 45°C

    Science.gov (United States)

    Lara-Hernández, G.; Flores-Cuautle, J. J. A.; Hernandez-Aguilar, C.; Suaste-Gómez, E.; Cruz-Orea, A.

    2017-08-01

    Vegetable oils have been widely studied as biofuel candidates. Among these oils, jojoba ( Simmondsia chinensis) oil has attracted interest because it is composed almost entirely of wax esters that are liquid at room temperature. Consequently, it is widely used in the cosmetic and pharmaceutical industries. To date, research on S. chinensis oil has focused on to its use as a fuel and its thermal stability, and information about its thermal properties is scarce. In the present study, the thermal effusivity and conductivity of jojoba oil between 20°C and 45°C were obtained using the inverse photopyroelectric and hot-ball techniques. The feasibility of an inverse photopyroelectric method and a hot-ball technique to monitor the thermal conductivity, and the thermal effusivity of the S. chinensis is demonstrated. The thermal effusivity decreased from 538 W\\cdot s^{1/2}\\cdot m^{-2}\\cdot K^{-1} to 378 W\\cdot s^{1/2}m^{-2}\\cdot K^{-1} as the temperature increased, whereas the thermal conductivity remained the same over the temperature range investigated in this study. The obtained results provide insight into the thermal properties of S. chinensis oil between 20°C and 45°C.

  4. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  5. Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets.

    Science.gov (United States)

    Uetani, Kojiro; Okada, Takumi; Oyama, Hideko T

    2015-07-13

    The thermal conductive properties, including the thermal diffusivity and resultant thermal conductivity, of nonwoven nanocellulose sheets were investigated by separately measuring the thermal diffusivity of the sheets in the in-plane and thickness directions with a periodic heating method. The cross-sectional area (or width) of the cellulose crystallites was the main determinant of the thermal conductive properties. Thus, the results strongly indicate that there is a crystallite size effect on phonon conduction within the nanocellulose sheets. The results also indicated that there is a large interfacial thermal resistance between the nanocellulose surfaces. The phonon propagation velocity (i.e., the sound velocity) within the nanocellulose sheets was estimated to be ∼800 m/s based on the relationship between the thermal diffusivities and crystallite widths. The resulting in-plane thermal conductivity of the tunicate nanocellulose sheet was calculated to be ∼2.5 W/mK, markedly higher than other plastic films available for flexible electronic devices.

  6. Thermal repellent properties of surface coating using silica

    Science.gov (United States)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  7. Bulk Nanolaminated Nickel: Preparation, Microstructure, Mechanical Property, and Thermal Stability

    Science.gov (United States)

    Liu, Fan; Yuan, Hao; Goel, Sunkulp; Liu, Ying; Wang, Jing Tao

    2018-02-01

    A bulk nanolaminated (NL) structure with distinctive fractions of low- and high-angle grain boundaries ( f LAGBs and f HAGBs) is produced in pure nickel, through a two-step process of primary grain refinement by equal-channel angular pressing (ECAP), followed by a secondary geometrical refinement via liquid nitrogen rolling (LNR). The lamellar boundary spacings of 2N and 4N nickel are refined to 40 and 70 nm, respectively, and the yield strength of the NL structure in 2N nickel reaches 1.5 GPa. The impacts of the deformation path, material purity, grain boundary (GB) misorientation, and energy on the microstructure, refinement ability, mechanical strength, and thermal stability are investigated to understand the inherent governing mechanisms. GB migration is the main restoration mechanism limiting the refinement of an NL structure in 4N nickel, while in 2N nickel, shear banding occurs and mediates one-fifth of the total true normal rolling strain at the mesoscale, restricting further refinement. Three typical structures [ultrafine grained (UFG), NL with low f LAGBs, and NL with high f LAGBs] obtained through three different combinations of ECAP and LNR were studied by isochronal annealing for 1 hour at temperatures ranging from 433 K to 973 K (160 °C to 700 °C). Higher thermal stability in the NL structure with high f LAGBs is shown by a 50 K (50 °C) delay in the initiation temperature of recrystallization. Based on calculations and analyses of the stored energies of deformed structures from strain distribution, as characterized by kernel average misorientation (KAM), and from GB misorientations, higher thermal stability is attributed to high f LAGBs in this type of NL structure. This is confirmed by a slower change in the microstructure, as revealed by characterizing its annealing kinetics using KAM maps.

  8. Thermal properties of ruthenium alkylidene-polymerized dicyclopentadiene

    Directory of Open Access Journals (Sweden)

    Yuval Vidavsky

    2015-08-01

    Full Text Available Differential scanning calorimetry (DSC analysis of ring opening methatesis polymerization (ROMP derived polydicyclopentadiene (PDCPD revealed an unexpected thermal behavior. A recurring exothermic signal can be observed in the DSC analysis after an elapsed time period. This exothermic signal was found to be proportional to the resting period and was accompanied by a constant increase in the glass-transition temperature. We hypothesize that a relaxation mechanism within the cross-linked scaffold, together with a long-lived stable ruthenium alkylidene species are responsible for the observed phenomenon.

  9. Hot gauge field properties from the thermal variational principle

    International Nuclear Information System (INIS)

    Schroeder, Y.; Schulz, H.

    1995-10-01

    A Feynman-Jensen version of the thermal variational principle is applied to hot gauge fields, abelian as well as nonabelian: scalar electrodynamics (without scalar self-coupling) and the gluon plasma. The perturbatively known self-energies are shown to derive by variation from a free quadratic (''gaussian'') trial Lagrangian. Independence of the covariant gauge fixing parameter is reached (within the order g 2 studies and for scalar ED) after a reformulation of the partition function such that it depends on only even powers of the gauge field. This way, however, the potential non-perturbative power of the calculus seems to be ruined. (orig.)

  10. Synthesis, thermal properties and photoisomerization of trans-[Ru ...

    Indian Academy of Sciences (India)

    chemsci

    Ruthenium nitrosyl complexes; pyridine; X-ray crystallography-thermal analysis; photoinduced ... for 30 min while cooling with liquid nitrogen and then the IR ... details for trans-[Ru(NO)Py2Cl2(H2O)]H2PO4·2H3PO4·H2O (I). Empirical formula. C5H11ClN1.50O7.50P1.50Ru0.50. Formula weight. 344.59. Crystal system.

  11. Thermal and electrical transport properties of ? single crystals

    Science.gov (United States)

    Gamal, G. A.; Nassary, M. M.; Nagat, A. T.; Abou-Alwafa, A. M.

    1996-04-01

    Electrical conductivity, Hall effect and thermoelectric power measurements are made for the compound 0268-1242/11/4/009/img2. This compound, which is a semiconductor grown in a single-crystal form, is studied over a wide range of temperature from 150 to 375 K. The crystal is grown by a modification of the Bridgman method. The combination of the electrical and thermal measurements in the present investigation makes it possible to find various physical parameters and to reveal the general behaviour of this semiconductor.

  12. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications

    International Nuclear Information System (INIS)

    Madathil, Pramod Kandoth; Balagi, Nagaraj; Saha, Priyanka; Bharali, Jitalaxmi; Rao, Peddy V.C.; Choudary, Nettem V.; Ramesh, Kanaparthi

    2016-01-01

    Highlights: • Prepared and characterized inorganic ternary molten salt based nanothermic fluids. • MoS 2 and CuO nanoparticles incorporated ternary molten salts have been prepared. • Thermal properties enhanced by the addition of MoS 2 and CuO nanoparticles. • The amount of nanoparticles has been optimized. - Abstract: In the current energy scenario, solar energy is attracting considerable attention as a renewable energy source with ample research and commercial opportunities. The novel and efficient technologies in the solar energy are directed to develop methods for solar energy capture, storage and utilization. High temperature thermal energy storage systems can deal with a wide range of temperatures and therefore they are highly recommended for concentrated solar power (CSP) applications. In the present study, a systematic investigation has been carried out to identify the suitable inorganic nanoparticles and their addition in the molten salt has been optimized. In order to enhance the thermo-physical properties such as thermal conductivity and specific heat capacity of molten salt based HTFs, we report the utilization of MoS 2 and CuO nanoparticles. The enhancement in the above mentioned thermo-physical properties has been demonstrated for optimized compositions and the morphologies of nanoparticle-incorporated molten salts have been studied by scanning electron microscopy (SEM). Nanoparticle addition to molten salts is an efficient method to prepare thermally stable molten salt based heat transfer fluids which can be used in CSP plants. It is also observed that the sedimentation of nanoparticles in molten salt is negligible compared to that in organic heat transfer fluids.

  13. Bread making properties of wheat flour supplemented with thermally processed hypoallergenic lupine flour

    Energy Technology Data Exchange (ETDEWEB)

    Guillamon, E.; Cuadrado, C.; Pedrosa, M. M.; Varela, A.; Cabellos, B.

    2010-07-01

    In recent years there has been increased interest in using lupine for human nutrition due to its nutritional properties and health benefits. Moreover, lupine is used as an ingredient in bread making because of its functional and technological properties. However, a higher number of allergic reactions to this legume have recently been reported as a consequence of a more widespread consumption of lupine-based foods. In a previous study, several thermal treatments were applied to lupine seeds and flours resulting in reduced allergenicity. In order to study how this thermal processing (autoclaving and boiling) affects the bread making properties, raw and thermally processed lupine flours were used to replace 10% of wheat flour. The effect of supplementing wheat flour with lupine flour on physical dough properties, bread structure and sensory characteristics were analysed. The results indicated that thermally-treated lupine flours, had similar bread making and sensorial properties as untreated lupine flour. These thermal treatments could increase the potential use of lupine flour as a food ingredient while reducing the risk to provoke allergic reactions. (Author) 36 refs.

  14. Thermal properties of light-weight concrete with waste polypropylene aggregate

    Science.gov (United States)

    Záleská, Martina; Pokorný, Jaroslav; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    Thermal properties of a sustainable light-weight concrete incorporating high volume of waste polypropylene as partial substitution of natural aggregate were studied in the paper. Glass fiber reinforced polypropylene (GFPP), a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40, and 50 mass%. In order to quantify the effect of GFPP use on concrete properties, a reference concrete mix without plastic waste was studied as well. For the applied GFPP, bulk density, matrix density, and particle size distribution were measured. Specific attention was paid to thermal transport and storage properties of GFPP that were examined in dependence on compaction time. For the developed light-weight concrete, thermal properties were accessed using transient impulse technique, whereas the measurement was done in dependence on moisture content, from the dry state to fully water saturated state. Additionally, the investigated thermal properties were plotted as function of porosity. The tested light-weight concrete was found to be prospective construction material possessing improved thermal insulation function. Moreover, the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view considering plastics low biodegradability and safe disposal.

  15. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Moon il Kim

    2017-12-01

    Full Text Available Liquid epoxy resins have received much attention from both academia and the chemical industry as eco-friendly volatile organic compound (VOC-free alternatives for applications in coatings and adhesives, especially in those used in households. Epoxy resins show high chemical resistance and high creep resistance. However, due to their brittleness and lack of thermal stability, additional fillers are needed for improving the mechanical and thermal properties. Halloysite nanotubes (HNTs are naturally abundant, inexpensive, and eco-friendly clay minerals that are known to improve the mechanical and thermal properties of epoxy composites after suitable surface modification. Zirconium is well known for its high resistance to heat and wear. In this work, zirconium oxide-impregnated HNTs (Zr/HNTs were added to epoxy resins to obtain epoxy composites with improved mechanical and thermal properties. Zr/HNTs were characterized by field-emission transmission electron microscopy, transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Changes in the thermal properties of the epoxy composites were characterized by thermo mechanical analysis and differential scanning calorimetry. Furthermore, flexural properties of the composites were analyzed using a universal testing machine.

  16. Thermal aggregation properties of nanoparticles modified with temperature sensitive copolymers.

    Science.gov (United States)

    Hamner, Kristen L; Maye, Mathew M

    2013-12-10

    In this paper, we describe the use of a temperature responsive polymer to reversibly assemble gold nanoparticles of various sizes. Temperature responsive, low critical solution temperature (LCST) pNIPAAm-co-pAAm polymers, with transition temperatures (T(C)) of 51 and 65 °C, were synthesized with a thiol modification, and grafted to the surface of 11 and 51 nm gold nanoparticles (AuNPs). The thermal-responsive behavior of the polymer allowed for the reversible aggregation of the nanoparticles, where at T polymers were hydrophilic and extended between particles. In contrast, at T > T(C), the polymer shell undergoes a hydrophilic to hydrophobic phase transition and collapses, decreasing interparticle distances between particles, allowing aggregation to occur. The AuNP morphology and polymer conjugation were probed by TEM, FTIR, and (1)H NMR. The thermal response was probed by UV-vis and DLS. The structure of the assembled aggregates at T > T(C) was studied via in situ small-angle X-ray scattering, which revealed interparticle distances defined by polymer conformation.

  17. Synthesis, characterization and thermal properties of inorganic-organic hybrid

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available Poly (St-MAn-APTES/silica hybrid materials were successfully prepared from styrene (St, maleic anhydride (MAn and tetraethoxysilane (TEOS in the presence of a coupling agent 3-aminopropyltriethoxysilane (APTES, by freeradical solution polymerization and in situ sol-gel process. The TEOS content varied from 0 to 25 wt%. Fourier transform infrared spectroscopy and 29Si nuclear magnetic resonance spectroscopy were used to characterize the structure of the hybrids (condensed siloxane bonds designated as Q1, Q2, Q3, Q4, with 3-aminopropyltriethoxysilane having mono-, di-, tri, tetra-substituted siloxane bonds designated as T1, T2 and T3. The results revealed that Q3, Q4 and T3 were the major microstructure elements in forming a network structure. The hybrid materials were also characterized by the methods of solvent extraction, Transmission Electron Microscopy (TEM, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA for determining the gel contents, particle size and thermal performance. The results showed that gel contents in the hybrid materials were much higher, the SiO2 phase were well dispersed in the polymer matrix, silicon dioxide existed at nanoscale in the composites, which had excellent thermal stability.

  18. Thermal properties photonic crystal fiber transducers with ferromagnetic nanoparticles

    Science.gov (United States)

    Przybysz, N.; Marć, P.; Kisielewska, A.; Jaroszewicz, L. R.

    2015-12-01

    The main aim of the research is to design new types of fiber optic transducers based on filled photonic crystal fibers for sensor applications. In our research we propose to use as a filling material nanoparticles' ferrofluids (Fe3O4 NPs). Optical properties of such transducers are studied by measurements of spectral characteristics' changes when transducers are exposed to temperature and magnetic field changes. From synthesized ferrofluid several mixtures with different NPs' concentrations were prepared. Partially filled commercially available photonic crystal fiber LMA 10 (NKT Photonics) was used to design PCF transducers. Their thermo-optic properties were tested in a temperature chamber. Taking into account magnetic properties of synthetized NPs the patch cords based on a partially filled PM 1550 PCF were measured.

  19. Preparation and properties of mesoporous silica/bismaleimide/diallylbisphenol composites with improved thermal stability, mechanical and dielectric properties

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available New composites with improved thermal stability, mechanical and dielectric properties were developed, which consist of 2,2'-diallylbisphenol A (DBA/4,4'-bismaleimidodiphenylmethane (BDM resin and a new kind of organic/inorganic mesoporous silica (MPSA. Typical properties (curing behavior and mechanism, thermal stability, mechanical and dielectric properties of the composites were systematically investigated, and their origins were discussed. Results show that MPSA/DBA/BDM composites have similar curing temperature as DBA/BDM resin does; however, they have different curing mechanisms, and thus different crosslinked networks. The content of MPSA has close relation with the integrated performance of cured composites. Compared with cured DBA/BDM resin, composites with suitable content of MPSA show obviously improved flexural strength and modulus as well as impact strength; in addition, all composites not only have lower dielectric constant and similar frequency dependence, more interestingly, they also exhibit better stability of frequency on dielectric loss. For thermal stability, the addition of MPSA to DBA/BDM resin significantly decreases the coefficient of thermal expansion, and improves the char yield at high temperature with a slightly reduced glass transition temperature. All these differences in macro-properties are attributed to the different crosslinked networks between MPSA/DBA/BDM composites and DBA/BDM resin.

  20. Investigation on Thermal Properties of Kenaf Fibre Reinforced Polyurethane Bio-Composites

    Science.gov (United States)

    Athmalingam, Mathan; Vicki, W. V.

    2018-01-01

    This research focuses on the effect of Kenaf fibre on thermal properties of Polyurethane (PU) reinforced kenaf bio-composites. The samples were prepared using the polymer casting method with different percentages of kenaf fibre content (5 wt%, 10 wt%, 15 wt%). The thermal properties of Kenaf/PU bio-composite are determined through the Thermogravimetric Analysis and Differential Scanning Calorimeter test. The TGA results revealed that 10 wt% Kenaf/PU bio-composite appeared to be more stable. DSC results show that the glass transition temperature (Tg) value of 10 wt% Kenaf/PU composite is significant to pure polyurethane. It can be said that the thermal stability of 10 wt% Kenaf/PU bio-composite exhibits higher thermal stability compared to other samples.

  1. A novel test method for measuring the thermal properties of clothing ensembles under dynamic conditions

    International Nuclear Information System (INIS)

    Wan, X; Fan, J

    2008-01-01

    The dynamic thermal properties of clothing ensembles are important to thermal transient comfort, but have so far not been properly quantified. In this paper, a novel test procedure and new index based on measurements on the sweating fabric manikin-Walter are proposed to quantify and measure the dynamic thermal properties of clothing ensembles. Experiments showed that the new index is correlated to the changing rate of the body temperature of the wearer, which is an important indicator of thermal transient comfort. Clothing ensembles having higher values of the index means the wearer will have a faster changing rate of body temperature and shorter duration before approaching a dangerous thermo-physiological state, when he changes from 'resting' to 'exercising' mode. Clothing should therefore be designed to reduce the value of the index

  2. Straightforward measurement of anisotropic thermal properties of a Bi2Se3 single crystal.

    Science.gov (United States)

    Fournier, Danièle; Marangolo, Massimiliano; Eddrief, Mahmoud; Kolesnikov, Nicolai N; Fretigny, Christian

    2018-02-06

    We demonstrate here a simple measurement protocol which allows the thermal properties of anisotropic crystalline materials to be determined. This protocol is validated by the measurement of Bi2Se3, a layered material consisting of covalently bonded sheets with weak van-der-Waals bonds between each layer, which has highly anisotropic thermal properties. Thermoreflectance microscopy measurements were carried out on a single-crystal Bi2Se3 sample, firstly on the bare sample and then after capping wih a 100 nm thick gold layer. Whereas on the bare sample lateral heat diffusion is dominated by the in-plane thermal diffusivity, on the metal-capped substrate heat diffusion perpendicular to the sample surface dominates. Using a simple theoretical model, we show how this double measurement protocol allows the anisotropic thermal conductivity coefficients of bulk Bi2Se3 to be evaluated. © 2018 IOP Publishing Ltd.

  3. A new method for measuring the thermal regulatory properties of phase change material (PCM) fabrics

    International Nuclear Information System (INIS)

    Wan, X; Fan, J

    2009-01-01

    Several methods already exist for the measurement of the thermal regulatory properties of fabrics containing phase change materials (PCMs). However, they do not adequately simulate the actual use condition; consequently the measurements may not have relevance to the performance of PCM fabrics in actual use. Here we report on the development of a new method, which better simulates the real use situation. In this method, a hot plate, simulating the human body, generates a constant amount of heat depending on the type of human activity to be simulated. The hot plate covered by the PCM fabric is then exposed to a thermal transient simulating a wearer moving from one thermal environment to another; the changes of surface temperature and heat loss of the hot plate are then recorded and used to characterize the thermal regulatory properties of the PCM fabrics

  4. The effect of linear imperfection in [001] direction on the thermal properties of silver crystal

    Directory of Open Access Journals (Sweden)

    J Davoodi

    2013-09-01

    Full Text Available  The aim of this investigation was to calculate the thermal properties of silver crystal in the presence of linear imperfection. The simulations were performed by molecular dynamics simulation technique in NPT as well as NVT ensemble based on quantum Sutton-Chen many body potential. The thermal properties including cohesive energy, melting temperature, isobaric heat capacity and thermal expansion of imperfect silver crystal were calculated and compared to those of the perfect crystal. Moreover, the quantities such as radial distribution function, order parameter and lindemann index were calculated in order to obtain information on crystal structure and disorder in atoms. All calculations were done both with liner imperfection in [001] direction and without imperfection at different temperature. The simulation results show that cohesive energy, linear thermal expansion coefficient increase and melting temperature, latent heat of fusion decrease with increasing linear imperfection. Also, the results show that linear imperfection has no effect on the heat capacity.

  5. Synthesis, Characterization, Thermal Analyses, and Spectroscopic Properties of Novel Naphthyl-Functionalized Imidazolium Ionic Liquids

    Science.gov (United States)

    Yao, Meihuan; Li, Qing; Xia, Yanqiu; Liang, Yongmin

    2018-03-01

    A series of novel ionic liquids based on naphthyl-functionalized imidazolium cation have been prepared. Their structure was characterized by NMR. The thermal stabilities of the prepared liquids were studied by thermal gravimetric analysis. The new ionic liquids containing NTf- 2 anion display significantly higher thermal stabilities (>400°C). Anion exchange to PF- 6, BF- 4, and Br- decreases the thermal stabilities of such ionic liquids. Fluorescence and UV-Vis absorption spectroscopy were used to study the spectroscopic properties of the ionic liquids. Compared with common ionic liquids, the described ionic liquids provide robust fluorescence properties and remarkably increased UV-Vis absorption. This research may enrich the field of functionalized ionic liquids and provide a platform for extension of ionic liquid applications.

  6. Structural, thermal and optical properties of Cu doped methacrylic ...

    Indian Academy of Sciences (India)

    2017-08-16

    Aug 16, 2017 ... The amorphous feature of the copolymer was depicted using X-ray diffraction scans and degree of crystallinity was found to vary ... ties, mechanical and electrical properties of the polymer films viz., polymer blending .... are due to the extensive degradation of the polymer backbone. According to Zain et al ...

  7. Synthesis, structure, thermal, transport and magnetic properties of VN ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Klimová, K.; Hejtmánek, Jiří; Sofer, Z.

    2016-01-01

    Roč. 42, č. 16 (2016), s. 18779-18784 ISSN 0272-8842 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : vanadium mononitride * phase transition * electronic structure * heat capacity * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.986, year: 2016

  8. Morphological and thermal properties of photodegradable biocomposite films

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2013-07-01

    Full Text Available wt % of titanium dioxide (TiO2) and Ag-TiO2 (silver nanoparticles decorated TiO2) nanoparticles to impart the photodegradable properties. The films were exposed to UV radiation for different time periods and morphology of the composite films before...

  9. Chapter 6: Thermal properties, combustion, and fire retardancy of wood

    Science.gov (United States)

    Roger M. Rowell; Mark A. Dietenberger

    2013-01-01

    One of the greatest assets of cellulosic resources is their compatibility with nature, including their combustibility and degradability which allow for constant turnover and regeneration of these natural resources. A fundamental understanding of these properties and possible methods for controlling them is essential for protection and better utilization of these...

  10. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Administrator

    The surface morphology of these films was analysed by atomic force microscopy (AFM) and scanning electron ... been investigated using spectrophotometric measurements of absorbance in the wavelength range of 200–. 1100 nm and the ... Phthalocyanine; thin films; optical properties; absorption spectra. 1. Introduction.

  11. The effect of laser power, blood perfusion, thermal and optical properties of human liver tissue on thermal damage in LITT.

    Science.gov (United States)

    Shibib, Khalid Salem; Munshid, Mohammed A; Lateef, Hind Ali

    2017-12-01

    In this work, the finite-element method (FEM) was used to predict the temperature distribution, and the thermal damage volume in human liver tissue subjected to laser in laser-induced interstitial thermotherapy (LITT). The effect of laser power, blood perfusion, and thermal and optical properties on maximum temperature and thermal damage volume were predicted using the finite-element method. A computer program was written in visual basic language, which was verified by comparing its result with data published elsewhere. The bio-heat equation together with the effect of linear laser source were used to simulate heat transfer through tissue from which the temperature distributions, and the subsequent thermal damage, were obtained based on Arrhenius equation. In this mathematical model for LITT, it was found that increasing laser power, absorption, and scattering coefficient increased the damage zone while increasing tissue water content, perfusion rate, and tissue anisotropy factor decreased the damage zone. These findings are important aspects for doctors in the pre-estimation of the damage zone before starting the therapy so as to kill only the desired zone.

  12. THERMAL properties and morphology of Polypropylene/Polycarbonate/Polypropylene-Graft-Maleic anhydride blends

    OpenAIRE

    Mat-Shayuti M. S.; Abdullah M. Z.; Megat-Yusoff P. S. M.

    2016-01-01

    This work investigates the effect of blending polycarbonate (PC) into polypropylene (PP) matrix polymer on thermal properties and morphology. The blends, containing 5% to 35% of polycarbonate and 5% compatibilizer, were compounded using twin-screw extruder and fabricated into standard tests samples using injection or compression molding. The compatibilizer used was polypropylene-graft-maleic anhydride (PP-g-MA). Thermogravimetric analysis (TGA) showed improved thermal degradation temperature ...

  13. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes

    OpenAIRE

    Moon il Kim; Suhyun Kim; Taehee Kim; Dong Koo Lee; Bongkuk Seo; Choong-Sun Lim

    2017-01-01

    Liquid epoxy resins have received much attention from both academia and the chemical industry as eco-friendly volatile organic compound (VOC)-free alternatives for applications in coatings and adhesives, especially in those used in households. Epoxy resins show high chemical resistance and high creep resistance. However, due to their brittleness and lack of thermal stability, additional fillers are needed for improving the mechanical and thermal properties. Halloysite nanotubes (HNTs) are nat...

  14. Experimental investigation of thermal inertia properties in hemp-lime concrete walls

    OpenAIRE

    Kinnane, Oliver; McGranaghan, G.; Walker, R.; Pavia, S.; Byrne, G.; Robinson, A.

    2015-01-01

    Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not ge...

  15. ZnO Micro- and Nanostructures Obtained by Thermal Oxidation: Microstructure, Morphogenesis, Optical, and Photoluminescence Properties

    OpenAIRE

    Alejandro Escobedo-Morales; Rubén J. Aranda-García; Ernesto Chigo-Anota; Armando Pérez-Centeno; Antonio Méndez-Blas; Carlos G. Arana-Toro

    2016-01-01

    ZnO micro- and nanostructures were obtained through thermal oxidation of Zn powders at high temperature under air atmosphere. A detailed study of the microstructure, morphology, optical, and photoluminescence properties of the generated products at different stages of thermal oxidation is presented. It was found that the exposure time has a strong influence on the resulting morphology. The morphogenesis of the different ZnO structures is discussed, and experimental parameters for fabricating ...

  16. Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander powder

    OpenAIRE

    Barnwal, P.; Singh, K. K.; Sharma, Alka; Choudhary, A. K.; Saxena, S. N.

    2015-01-01

    In present study, influence of grinding (hammer and pin mills) and moisture content (range: 6.4–13.6 % dry basis) on the quality traits of coriander powder were investigated. These include grinding parameters, colour parameters, specific heat, thermal conductivity, thermal diffusivity, glass transition temperature, essential oil, total phenolic content, total flavonoid content and DPPH scavenging (%) of coriander powder. For coriander seed, the geometric properties such as major, medium, mino...

  17. Thermal Properties of West Siberian Sediments in Application to Basin and Petroleum Systems Modeling

    Science.gov (United States)

    Romushkevich, Raisa; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Myasnikov, Artem; Kazak, Andrey; Belenkaya, Irina; Zagranovskaya, Dzhuliya

    2016-04-01

    Quality of heat flow and rock thermal property data is the crucial question in basin and petroleum system modeling. A number of significant deviations in thermal conductivity values were observed during our integral geothermal study of West Siberian platform reporting that the corrections should be carried out in basin models. The experimental data including thermal anisotropy and heterogeneity measurements were obtained along of more than 15 000 core samples and about 4 500 core plugs. The measurements were performed in 1993-2015 with the optical scanning technique within the Continental Super-Deep Drilling Program (Russia) for scientific super-deep well Tyumenskaya SG-6, parametric super-deep well Yen-Yakhinskaya, and deep well Yarudeyskaya-38 as well as for 13 oil and gas fields in the West Siberia. Variations of the thermal conductivity tensor components in parallel and perpendicular direction to the layer stratification (assessed for 2D anisotropy model of the rock studied), volumetric heat capacity and thermal anisotropy coefficient values and average values of the thermal properties were the subject of statistical analysis for the uppermost deposits aged by: T3-J2 (200-165 Ma); J2-J3 (165-150 Ma); J3 (150-145 Ma); K1 (145-136 Ma); K1 (136-125 Ma); K1-K2 (125-94 Ma); K2-Pg+Ng+Q (94-0 Ma). Uncertainties caused by deviations of thermal conductivity data from its average values were found to be as high as 45 % leading to unexpected errors in the basin heat flow determinations. Also, the essential spatial-temporal variations in the thermal rock properties in the study area is proposed to be taken into account in thermo-hydrodynamic modeling of hydrocarbon recovery with thermal methods. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  18. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.

    Science.gov (United States)

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-04-27

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  19. Properties of stable nonstoichiometric nanoceria produced by thermal plasma

    Science.gov (United States)

    Lan, Yuan-Pei; Sohn, Hong Yong; Mohassab, Yousef; Liu, Qingcai; Xu, Baoqiang

    2017-08-01

    Thermally stable blue nonstoichiometric nanoceria was produced by feeding nanoceria with an average size of 50 nm into a DC thermal plasma reactor. The effects of different plasma power levels and atmospheres were investigated. XRD results showed the ceria lattice parameter increased with plasma power. SEM and TEM results showed that the shape of nanoparticles changed after plasma treatment; the blue nonstoichiometric nanoceria had highly regular shapes such as triangular pyramids and polyhedral in contrast to the irregular shape of the raw nanoceria. Significant downshift was found in the Raman spectra of the plasma products, with a 7.9-cm-1 shift compared with raw nanoceria, which was explained by the reduction of Ce4+. X-ray photoelectron spectroscopy results showed that the Ce3+ fraction increased from 14% in the raw nanoceria to 38-39% for the product CeO2- x , indicating the high reduction state on the ceria surface. It was determined that this blue nonstoichiometric nanoceria was stable up to 400 °C in air, but the color changed to pale yellow after 4 h at 500 °C in air indicating oxidation to CeO2. Additionally, this novel stable nano-CeO2- x caused a red shift in the UV-visible absorption results; a 48-nm red shift occurred for the nonstoichiometric nanoceria produced at 15 kW compared with the raw nanoceria. The band gap was calculated to be 2.5 eV while it was 3.2 eV for the raw nanoceria, indicating that this novel stable blue nonstoichiometric nanoceria should be a promising material for optical application.

  20. THERMAL PROPERTIES OF TRANSPARENT BARRIER MODIFIED WITH ORGANIC PCMS

    Directory of Open Access Journals (Sweden)

    Michał MUSIAŁ

    2016-03-01

    Full Text Available Renewable energy sources are increasingly often applied in civil engineering as a mean to reduce buildings energy demand for heating. One of the ways to reduce HVAC energy demand is to limit heat transfer and excessive solar gain through building's glazed barriers. Preliminary results of the research conducted on organic PCM-modified transparent barrier are presented in this paper. Multiple publications concerning PCMs application in structural materials have recently appeared. Most of them are focused on modification of structure of non-transparent sections of buildings' envelope. Augmenting a glazed barrier with PCMs increases its heat capacity and thermal resistance. The most important feature of the assembly is the thermal buffer, a product of PCM's considerable value of specific latent heat. Research were conducted on a triple-pane transparent rectangular barrier, that constituted one of the faces of cubic chamber. Internal volume of the chamber was 1m3. The applied PCM was a mixture of saturated and non-saturated hydrocarbons. The described assembly was subjected to temperature and radiation that occur in Poland during winter. Glazing temperature, melted/total PCM ratio were measured, as well as energy demand for keeping internal temperature at constant level. Measurements were made in steady states, for various PCM layer thickness. The influence of the modification on energy demand was determined, along with the most effective and rational thickness of PCM layer to be applied. Conducted research enabled to develop a basis for further investigation of PCMs application in civil engineering.

  1. Thermal properties of contemporary bipolar systems using infrared imaging.

    Science.gov (United States)

    Keshavarzi, Sassan; Bolour, Armon; Yarbrough, Chester; Mendez, Karen; Behrouzi, Behzad; Kasasbeh, Aimen S; Levy, Michael L

    2015-03-01

    Bipolar coagulation has enhanced the capabilities and safety profile of contemporary neurosurgery and has become indispensable in the neurosurgical armamentarium. Nevertheless, significant heat transfer issues remain to be resolved before it can achieve the status of minimal risk. The Codman irrigating forceps, Codman ISOCOOL forceps, and Ellman bipolar forceps, powered by either Synergy or Ellman generators set at various power levels, were compared to investigate the combinations that would allow for the lowest rate of heat transfer. Using an infrared camera and ThermaGRAM imaging software, the temperature was calculated and used to estimate the degree of heat transfer. Codman ISOCOOL forceps powered the Ellman Surgitron generator showed the greatest dissipation (at mid-power, the luminance decreased from 250 units to 80 units within 60 seconds) and the least production of heat after activation. Codman ISOCOOL forceps powered by the Codman SYNERGY MALIS generator showed less heat dissipation (at mid-power, the luminance decreased from 250 units to 195 units within 60 seconds) than the Ellman forceps and Ellman Surgitron generator combination (at mid-power, the luminance decreased from 250 units to 125 units within 60 seconds). These data suggest that the incorporation of the Ellman Surgitron Generator can result in the reduction of thermal transfer with conventional bipolar forceps compared with other generators. The combination with Codman ISOCOOL forceps can maximize the potential safety associated with bipolar coagulation. With regard to the use of comarketed pairs of forceps and generators, the combination of Ellman Surgitron Generator and Ellman bipolar forceps provided the best thermal profile. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Experimental Enhancement for Electric Properties of Polyethylene Nanocomposites under Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet

    2017-01-01

    Full Text Available Polymer properties can be experimentally tailored by adding small amounts of different nanoparticles for enhancing their mechanical, thermal and electrical properties. The work in this paper investigates enhancing the electric and dielectric properties of Low Density Polyethylene (LDPE, and High Density Polyethylene (HDPE polymer materials with cheap nanoparticles. Certain percentages of clay and fumed silica nanoparticles are used to enhance electric and dielectric properties of polyethylene nanocomposites films. By using the Dielectric Spectroscopy; the electric and dielectric properties of each polyethylene nanocomposites have been measured with and without nanoparticles at various frequencies up to 1kHz under different thermal conditions (20°C and 60°C. And so, we were successful in specifying the optimal nanoparticles types and their concentrations for the control of electric and dielectric characterization.

  3. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes.

    Science.gov (United States)

    Niazi, Muhammad Bilal Khan; Jahan, Zaib; Berg, Sigrun Sofie; Gregersen, Øyvind Weiby

    2017-12-01

    Cellulose nanofibrils (CNF) have strong reinforcing properties when incorporated in a compatible polymer matrix. This work reports the effect of the addition of phosphorylated nanocellulose (PCNF) on the mechanical, thermal and swelling properties of poly(vinyl alcohol) (PVA) nanocomposite membranes. The incorporation of nanocellulose in PVA reduced the crystallinity at 0%RH. However, when the films were exposed to higher humidities the crystallinity increased. No apparent trend is observed for mechanical properties for dry membranes (0% RH). However, at 93% RH the elastic modulus increased strongly from 0.12MPa to 0.82MPa when adding 6% PCNF. At higher humidities, the moisture uptake has large influence on storage modulus, tan δ and tensile properties. Membranes containing 1% PCNF absorbed most moisture. Swelling, thermal and mechanical properties indicate a good potential for applying of PVA/phosphorylated nanocellulose composite membranes for CO 2 separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature

    Science.gov (United States)

    Cebe, Peggy; Chung, Shirley Y.; Hong, Su-Don

    1987-01-01

    The effect of thermal history on the tensile properties of polyetheretherketone neat resin films was investigated at different test temperatures (125, 25, and -100) using four samples: fast-quenched amorphous (Q); quenched, then crystallized at 180 C (C180); slowly cooled (for about 16 h) from the melt (SC); and air-cooled (2-3 h) from the melt (AC). It was found that thermal history significantly affects the tensile properties of the material below the glass transition. Fast quenched amorphous films were most tough, could be drawn to greatest strain before rupture, and undergo densification during necking; at the test temperature of -100 C, these films had the best ultimate mechanical properties. At higher temperatures, the semicrystalline films AC and C180 had properties that compared favorably with the Q films. The SC films exhibited poor mechanical properties at all test temperatures.

  5. Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films.

    Science.gov (United States)

    Aguirre-Loredo, Rocío Yaneli; Rodríguez-Hernández, Adriana Inés; Morales-Sánchez, Eduardo; Gómez-Aldapa, Carlos Alberto; Velazquez, Gonzalo

    2016-04-01

    Water molecules modify the properties of biodegradable films obtained from hydrophilic materials. Most studies dealing with thermal, mechanical and barrier properties of hydrophilic films are carried out under one relative humidity (RH) condition. The objective of this work was to evaluate the effect of the moisture content on the thermal, mechanical and barrier properties of chitosan films under several RH conditions. Microclimates, obtained with saturated salt solutions were used for conditioning samples and the properties of the films were evaluated under each RH condition. Chitosan films absorbed up to 40% of moisture at the higher RH studied. The percentage of elongation and the water vapour permeability increased while tensile strength, Young's modulus and glass transition temperature decreased, when the moisture content increased. The results suggest that the water molecules plasticized the polymer matrix, changing the properties when the films were in contact with high RH environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Microstructural evolution and mechanical properties of Inconel 718 after thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.S., E-mail: yuzaisong@tpri.com.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China); Zhang, J.X. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Yuan, Y.; Zhou, R.C.; Zhang, H.J.; Wang, H.Z. [Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China)

    2015-05-14

    Inconel 718 was subjected to various heat treatments, i.e., solution heat treatment, standard ageing treatment and standard ageing plus 700 °C thermal exposure. The mechanical properties of the alloys were determined using tensile tests and Charpy pendulum impact tests at 650 °C and room temperature, respectively. The highest yield strength of 988 MPa was attained in the standard aged specimen, whereas a maximum impact toughness of 217 J cm{sup −2} was attained in the solution-treated specimen. After thermal exposure, the mechanical properties of the specimens degrade. Both the yield strength and impact toughness decreased monotonically with increasing thermal exposure time. Subjected to a 10000-h long-term thermal exposure, the yield strength dramatically decreased to 475 MPa (almost 50% of the maximum strength), and the impact toughness reduced to only 18 J cm{sup −2}. The microstructures of the specimens were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Coarsening of γ′ and γ″ and the transformation of γ″ to δ-Ni{sub 3}Nb was observed after thermal exposure. However, a complete transformation from metastable γ″ to δ-Ni{sub 3}Nb was never accomplished, even after the 10000-h long-term thermal exposure. Based on the obtained experimental results, the effects of the microstructural evolution on the mechanical properties are discussed.

  7. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe2.

    Science.gov (United States)

    Shafique, Aamir; Shin, Young-Han

    2017-12-06

    The effect of strain on the phonon properties such as phonon group velocity, phonon anharmonicity, phonon lifetime, and lattice thermal conductivity of monolayer 2H-MoTe 2 is studied by solving the Boltzmann transport equation based on first principles calculations. The phonon thermal transport properties of the unstrained monolayer 2H-MoTe 2 are compared to those of the strained case under different biaxial tensile strains. One of the common features of two-dimensional materials is the quadratic nature near the Γ point of the out-of-plane phonon flexural mode that disappears by applying tensile strain. We find that the lattice thermal conductivity of the monolayer 2H-MoTe 2 is very sensitive to strain, and the lattice thermal conductivity is reduced by approximately 2.5 times by applying 8% biaxial tensile strain due to the reduction in phonon group velocities and phonon lifetime. We also analyze how the contribution of each mode to lattice thermal conductivity changes with tensile strain. These results highlight that tensile strain is a key parameter in engineering phonon thermal transport properties in monolayer 2H-MoTe 2 .

  8. Phonon thermal properties of graphene from molecular dynamics using different potentials.

    Science.gov (United States)

    Zou, Ji-Hang; Ye, Zhen-Qiang; Cao, Bing-Yang

    2016-10-07

    Phonon thermal transport in graphene has attracted significant interest in recent years. Phonon thermal properties of graphene are investigated by molecular dynamics simulations using the Tersoff, Tersoff-2010, REBO, and AIREBO potentials. By calculating the phonon properties and thermal conductivity of graphene, the performance of the potentials is evaluated based on comparisons with experimental data. It shows that the Tersoff-2010 and REBO display better dispersion curves for graphene than the original Tersoff and AIREBO. The Tersoff-2010 correctly provides the Γ point phonon velocities of the LA and TA branches as well as the G peak frequency with a value of 46 THz. In addition, the acoustic phonon relaxation time derived from the Tersoff-2010 satisfies the ideal relation "τ -1 ∝ ν 2 ." It is also found that the Tersoff-2010 provides the highest graphene thermal conductivity among the used potentials, and estimates about 30.0% contribution for flexural phonons to the total thermal conductivity. By comparison, the Tersoff-2010 potential is demonstrated to be the most suitable one to describe the phonon thermal properties of graphene.

  9. Effect of Mo content on thermal and mechanical properties of Mo–Ru–Rh–Pd alloys

    International Nuclear Information System (INIS)

    Masahira, Yusuke; Ohishi, Yuji; Kurosaki, Ken; Muta, Hiroaki; Yamanaka, Shinsuke; Komamine, Satoshi; Fukui, Toshiki; Ochi, Eiji

    2015-01-01

    Metallic inclusions are precipitated in irradiated oxide fuels. The composition of the phases varies with the burnup and the conditions such as temperature gradients and oxygen potential of the fuel. In the present work, Mo x/(0.7+x) (Ru 0.5 Rh 0.1 Pd 0.1 ) (0.7)/(0.7+x) (x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25) alloys were prepared by arc melting, followed by annealing in a high vacuum. The thermal and mechanical properties of the alloys such as elastic moduli, Debye temperature, micro-Vickers hardness, electrical resistivity, and thermal conductivity have been evaluated to elucidate the effect of Mo content on these physical properties of the alloys. The alloys with lower Mo contents show higher thermal conductivity. The thermal conductivity of the alloy with x = 0 is almost twice of that of the alloy with x = 0.25. The thermal conductivities of the alloys are dominated by electronic contribution, which has been evaluated using the Wiedemann–Franz–Lorenz relation from the electrical resistivity data. It is confirmed that the variation of the Mo contents of the alloys considerably affects the mechanical and thermal properties of the alloys

  10. Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal

    Science.gov (United States)

    Cheng, Y.; Zhang, H. J.; Yu, Y. G.; Wang, J. Y.; Tao, X. T.; Liu, J. H.; Petrov, V.; Ling, Z. C.; Xia, H. R.; Jiang, M. H.

    2007-03-01

    A laser crystal of Yb:LuVO4 with high optical quality was grown by the Czochralski technique. Its thermal properties including specific heat, thermal expansion coefficients, and thermal conductivities along the a- and c-axis have been measured for the first time. Continuous-wave laser output up to 3.5 W at 1031 nm was obtained at room temperature through end-pumping by a high-power diode laser. The corresponding optical conversion efficiency was 43% and the slope efficiency was 72%.

  11. Study on the effect of thermal property of metals in ultrasonic-assisted laser machining

    International Nuclear Information System (INIS)

    Lee, Hu Seung; Kim, Gun Woo; Park, Jong Eun; Cho, Sung Hak; Yang, Min Yang; Park, Jong Kweon

    2015-01-01

    The laser machining process has been proposed as an advanced process for the selective fabrication of electrodes without a mask. In this study, we adapt laser machining to metals that have different thermal properties. Based on the results, the metals exhibit a different surface morphology, heat-affected zone (HAZ), and a recast layer around the machined surface according to their thermal conductivity, boiling point, and thermal diffusivity. Then, we apply ultrasonic-assisted laser machining to remove the recast layer. The ultrasonic-assisted laser machining exhibits a better surface quality in metals with higher diffusivity than those having lower diffusivity

  12. Thermal and mechanical properties of bio-based plasticizers mixtures on poly (vinyl chloride

    Directory of Open Access Journals (Sweden)

    Boussaha Bouchoul

    2017-09-01

    Full Text Available Abstract The use of mixtures of nontoxic and biodegradable plasticizers coming from natural resources is a good way to replace conventional phthalates plasticizers. In this study, two secondary plasticizers of epoxidized sunflower oil (ESO and epoxidized sunflower oil methyl ester (ESOME were synthesized and have been used with two commercially available biobased plasticizers; isosorbide diesters (ISB and acetyl tributyl citrate (ATBC in order to produce flexible PVC. Different mixtures of these plasticizers have been introduced in PVC formulations. Thermal, mechanical and morphological properties have been studied by using discoloration, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, dynamic mechanical thermal analysis (DMTA, tensile - strain and scanning electron microscopy (SEM. Studies have shown that PVC plasticization and stabilization were improved by addition of plasticizers blends containing ISB, ATBC, ESO and ESOME. An increase in the content of ESO or ESOME improved thermal and mechanical properties, whereas ESOME/ATBC formulations exhibited the best properties.

  13. Thermal and Mechanical Properties of UO2 and PuO2

    International Nuclear Information System (INIS)

    Kato, M.; Matsumoto, T.

    2015-01-01

    It is important to evaluate basic properties of UO 2 and PuO 2 as fundamental aspects of MA-bearing MOX fuel development. In this work, mechanical properties of UO 2 and PuO 2 were investigated by an ultrasound pulse-echo method. Longitudinal and transversal wave velocities were measured in UO 2 and PuO 2 pellets, and Young's modulus and shear modulus were evaluated, which were 219 MPa and 89 MPa for PuO 2 , and 249 MPa and 95 MPa for UO 2 , respectively. Poisson's ratio was 0.32 in both materials. The relationship between mechanical and thermal properties was described by using thermal expansion data which had been reported previously, and the heat capacity and thermal conductivity were analysed. (authors)

  14. Irradiation effects on the mechanical and thermal properties and surface tension of plasticised PVC

    International Nuclear Information System (INIS)

    Bellili, Nadira; Djidjelli, Hocine; Boukerrou, Amar

    2013-01-01

    Irradiation effects on the mechanical and thermal properties and surface tension of plasticised PVC. The mechanical and thermal behavior of 1 mm thick sheets of plasticised PVC after gamma irradiation at doses of 10 and 70 kGy was studied and compared to untreated PVC. The use of gamma irradiation treatment as plasticised PVC induces better mechanical properties, good thermal stability, with an increase in its wettability as compared to untreated PVC. The results showed that gamma irradiation PVC film improved mechanical properties. Young's modulus and tensile strength increased respectively from 297 MPa to 189 and 24 to 28 MPa, respectively, and the ultimate elongation increased from 124 to 154%. The gamma irradiation of the polyvinyl chloride caused significant increase of the surface tension, from 3 mN/m for the unirradiated to 5 to 11 mN/m up to 10 after irradiation at 70 kGy. (authors)

  15. Effects of Thermal Aging on Microstructure and Impact Properties of 316LN Stainless Steel Weld

    Directory of Open Access Journals (Sweden)

    LUO Qiang

    2017-12-01

    Full Text Available To study the thermal aging of nuclear primary pipe material 316LN stainless steel weld, accelerated thermal aging experiment was performed at 400℃ for 15000h. Microstructure evolution of weld after aging was investigated by TEM and HREM. Impact properties of weld thermally aged at different time was measured by Charpy impact test. Meanwhile, taking Charpy impact energy as the standard of thermal aging embrittlement, the thermal kinetics formula was obtained by the fitting method. Finally, the Charpy impact properties of the weld during 60 years of service at the actual operation temperature were estimated by the thermal kinetics formula. The results indicate that the spinodal decomposition occurs in the ferrite of the weld after thermal aging at 400℃ for 1000h, results in α (Fe-rich and α'(Cr-rich phases, and meanwhile, the G-phase is precipitated in the ferrite; the spinodal decomposition and the G-phase precipitation lead to the decrease in the impact energy of weld as time prolongs; the prediction results show that the Charpy impact energy of weld decreases quickly in the early 25 years, and then undergoes a slow decrease during the subsequent operation process.

  16. Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques

    Science.gov (United States)

    Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.

    2015-06-01

    Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.

  17. Anisotropic thermal transport property of defect-free GaN

    International Nuclear Information System (INIS)

    Ju, Wenjing; Zhou, Zhongyuan; Wei, Zhiyong

    2016-01-01

    Non-equilibrium molecular dynamics (MD) simulation is performed to calculate the thermal conductivity of defect-free GaN along three high-symmetry directions. It is found that the thermal conductivity along [001] direction is about 25% higher than that along [100] or [120] direction. The calculated phonon dispersion relation and iso-energy surface from lattice dynamics show that the difference of the sound speeds among the three high-symmetry directions is quite small for the same mode. However, the variation of phonon irradiation with direction is qualitatively consistent with that of the calculated thermal conductivity. Our results indicate that the anisotropic thermal conductivity may partly result from the phonons in the low-symmetry region of the first Brillouin zone due to phonon focus effects, even though the elastic properties along the three high-symmetry directions are nearly isotropic. Thus, the phonon irradiation is able to better describe the property of thermal conductivity as compared to the commonly used phonon dispersion relation. The present investigations uncover the physical origin of the anisotropic thermal conductivity in defect-free GaN, which would provide an important guide for optimizing the thermal management of GaN-based device.

  18. Quantifying the Properties of Elastic, Liquid Metal Based Thermal Interface Materials

    Science.gov (United States)

    Kemme, Nicholas

    Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if these TIMs are elastic in nature, their effectiveness can greatly increase as they can deal with changing interfaces without degradation of their properties. The research performed delves into this idea, creating elastic TIMs using liquid metal (LM), in this case galinstan, along with other matrix particles embedded in Polydimethylsiloxane (PDMS) to create an easy to use, relatively inexpensive, thermally conductive, but electrically insulative, pad with increased thermal conductivity from industrial solutions. The pads were created using varying amounts of LM and matrix materials ranging from copper microspheres to diamond powder mixed into PDMS using a high-speed mixer. The material was then cast into molds and cured to create the pads. Once the pads were created, the difficulty came in quantifying their thermal properties. A stepped bar apparatus (SBA) following ASTM D5470 was created to measure the thermal resistance of the pads but it was determined that thermal conductivity was a more usable metric of the pads' performance. This meant that the pad's in-situ thickness was needed during testing, prompting the installation of a linear encoder to measure the thickness. The design and analysis of the necessary modification and proposed future design is further detailed in the following paper.

  19. New approaches to improving thermal regulating property of cellulosic fabric.

    Science.gov (United States)

    Hassabo, Ahmed G

    2014-01-30

    To enhance the thermoregulation property of cotton fabric, new materials have been prepared to be used for encapsulating phase change materials (PCMs). The new material has been prepared via esterification reaction between different carboxylic acids and different fatty acids crossed with diglycol compounds, these materials were characterised to be used as hosting materials for octadecane, which is heat storing material suitable for textile applications. FT-IR and DSC analysis were used to characterise the prepared hosting material. The prepared materials have special shape which has different cavity distance between its side chains, and also have a reactive group on the backbone of its structure which make these materials able to react chemically with cotton fabric to help it to be not leakage from the treated surface (permanent) and the material will be stable on the fibre surface even after washing. When applied onto textile materials, the treated fabric shows good thermoregulation property. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Determination of physical properties of fibrous thermal insulation

    Directory of Open Access Journals (Sweden)

    Jeandel G.

    2012-10-01

    Full Text Available The objective of this study is to characterize both experimentally and theoretically, conductive and radiative heat transfer within polyester batting. This material is derived from recycled bottles (PET with fibres of constant diameters. Two other mineral and plant fibrous insulation materials, (glass wool and hemp wool are also characterized for comparative purposes. To determine the overall thermophysical properties of the tested materials, heat flux measurement are carried out using a device developed in house. The radiative properties of the material are determined by an inverse method based on measurements of transmittance and reflectance using a FTIR spectrometer and by solving the equation of radiative heat transfer. These measures are compared to results of numerical simulations.

  1. Densification and Thermal Properties of Zirconium Diboride Based Ceramics

    Science.gov (United States)

    2012-01-01

    117   Figure 2: Raman patterns for AM3C and a polycrystalline graphite standard showing that two forms of carbon were present...covalent in nature with a limited amount (~8% for ZrB2) of ionic character.16,17 The 10 characteristic properties of the MB2 complex are...experimental data.116 While correction factors have been 43 determined for some metallic systems such as nickel or chromium ,123 these have

  2. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.

    Science.gov (United States)

    Chamsa-Ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-05-31

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  3. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review

    Directory of Open Access Journals (Sweden)

    Wisut Chamsa-ard

    2017-05-01

    Full Text Available The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  4. Thermal, chemical, and optical properties of Crater Lake, Oregon

    Science.gov (United States)

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was

  5. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    International Nuclear Information System (INIS)

    Sun, Tao; Kang, Wei; Wang, Jianxiang

    2015-01-01

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion

  6. Thermal Properties of SiOC Glasses and Glass Ceramics at Elevated Temperatures.

    Science.gov (United States)

    Stabler, Christina; Reitz, Andreas; Stein, Peter; Albert, Barbara; Riedel, Ralf; Ionescu, Emanuel

    2018-02-10

    In the present study, the effect of the chemical and phase composition on the thermal properties of silicon oxide carbides (SiOC) has been investigated. Dense monolithic SiOC materials with various carbon contents were prepared and characterized with respect to their thermal expansion, as well as thermal conductivity. SiOC glass has been shown to exhibit low thermal expansion (e.g., ca. 3.2 × 10 -6 K -1 for a SiOC sample free of segregated carbon) and thermal conductivity (ca. 1.5 W/(m∙K)). Furthermore, it has been observed that the phase separation, which typically occurs in SiOC exposed to temperatures beyond 1000-1200 °C, leads to a decrease of the thermal expansion (i.e., to 1.83 × 10 -6 K -1 for the sample above); whereas the thermal conductivity increases upon phase separation (i.e., to ca. 1.7 W/(m∙K) for the sample mentioned above). Upon adjusting the amount of segregated carbon content in SiOC, its thermal expansion can be tuned; thus, SiOC glass ceramics with carbon contents larger than 10-15 vol % exhibit similar coefficients of thermal expansion to that of the SiOC glass. Increasing the carbon and SiC content in the studied SiOC glass ceramics leads to an increase in their thermal conductivity: SiOC with relatively large carbon and silicon carbides (SiC) volume fractions (i.e., 12-15 and 20-30 vol %, respectively) were shown to possess thermal conductivities in the range from 1.8 to 2.7 W/(m∙K).

  7. Radioactivity and hydrochemical properties of certain thermal Turkish spa waters.

    Science.gov (United States)

    Karakaya, Muazzez Çelik; Doğru, Mahmut; Karakaya, Necati; Kuluöztürk, Fatih; Nalbantçılar, Mahmut Tahir

    2017-08-01

    The study aims to determine the radioactivity levels of thermal waters which have been used seasonally or permanently in spas for therapeutic intentions. Samples were collected from spas in different regions of Turkey. Some radionuclides ( 40 K, 232 Th, 226 Ra, 137 Cs), gross alpha (GA) and gross beta (GB) activities, and physical and some chemical parameters were measured. Gamma radiation measurements for 226 Ra, 232 Th and 40 K radionuclides were performed by using a high purity germanium (HPGe) detector. The results of the gamma spectrometry ranged from 1.385 to 11.025 Bql -1 for 226 Ra,

  8. Low-temperature thermal properties of yttrium and lutetium dodecaborides

    International Nuclear Information System (INIS)

    Czopnik, A; Shitsevalova, N; Pluzhnikov, V; Krivchikov, A; Paderno, Yu; Onuki, Y

    2005-01-01

    The heat capacity (C p ) and dilatation (α) of YB 12 and LuB 12 are studied. C p of the zone-melted YB 12 tricrystal is measured in the range 2.5-70 K, of the zone-melted LuB 12 single crystal in the range 0.6-70 K, and of the LuB 12 powder sample in the range 4.3-300 K; α of the zone-melted YB 12 tricrystal and LuB 12 single crystals is measured in the range 5-200 K. At low temperatures a negative thermal expansion (NTE) is revealed for both compounds: for YB 12 at 50-70 K, for LuB 12 at 10-20 K and 60-130 K. Their high-temperature NTE is a consequence of nearly non-interacting freely oscillating metal ions (Einstein oscillators) in cavities of a simple cubic rigid Debye lattice formed by B 12 cage units. The Einstein temperatures are ∼254 and ∼164 K, and the Debye temperatures are ∼1040 K and ∼1190 K for YB 12 and LuB 12 respectively. The LuB 12 low-temperature NTE is connected with an induced low-energy defect mode. The YB 12 superconducting transition has not been detected up to 2.5 K

  9. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K. (Nuclear Engineering Division)

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures

  10. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material

    International Nuclear Information System (INIS)

    Tao, Y.B.; Lin, C.H.; He, Y.L.

    2015-01-01

    Highlights: • Nanocomposite phase change materials were prepared and characterized. • Larger specific surface area is more efficient to enhance specific heat. • Columnar structure is more efficient to enhance thermal conductivity. • Thermal conductivity enhancement is the key. • Single walled carbon nanotube is the optimal nanomaterial additive. - Abstract: To enhance the performance of high temperature salt phase change material, four kinds of carbon nanomaterials with different microstructures were mixed into binary carbonate eutectic salts to prepare carbonate salt/nanomaterial composite phase change material. The microstructures of the nanomaterial and composite phase change material were characterized by scanning electron microscope. The thermal properties such as melting point, melting enthalpy, specific heat, thermal conductivity and total thermal energy storage capacity were characterized. The results show that the nanomaterial microstructure has great effects on composite phase change material thermal properties. The sheet structure Graphene is the best additive to enhance specific heat, which could be enhanced up to 18.57%. The single walled carbon nanotube with columnar structure is the best additive to enhance thermal conductivity, which could be enhanced up to 56.98%. Melting point increases but melting enthalpy decreases with nanomaterial specific surface area increase. Although the additives decrease the melting enthalpy of composite phase change material, they also enhance the specific heat. As a combined result, the additives have little effects on thermal energy storage capacity. So, for phase change material performance enhancement, more emphasis should be placed on thermal conductivity enhancement and single walled carbon nanotube is the optimal nanomaterial additive

  11. Changes in Physical Properties of Graphene Oxide with Thermal Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Bhishma; Jo, Chang Hee; Joo, Kwan Seon; Cho, Jaehee [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-08-15

    Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable two dimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 ℃ in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 ℃, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 ℃, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

  12. Influence of thermal cycling on flexural properties of composites reinforced with unidirectional silica-glass fibers.

    Science.gov (United States)

    Meriç, Gökçe; Ruyter, I Eystein

    2008-08-01

    The purpose was to investigate the effect of water storage and thermal cycling on the flexural properties of differently sized unidirectional fiber-reinforced composites (FRCs) containing different quantities of fibers. The effect of fiber orientation on the thermal expansion of FRCs as well as how the stresses in the composites can be affected was considered. An experimental polymeric base material was reinforced with silica-glass fibers. The cleaned and silanized fibers were sized with either linear PBMA-size or crosslinked PMMA-size. For the determination of flexural properties and water uptake, specimens were processed with various quantities of differently sized unidirectional fibers. Water uptake of FRC was measured. Water immersed specimens were thermally cycled for 500 and 12,000 cycles (5 degrees C/55 degrees C). Flexural properties of "dry" and wet specimens with and without thermal cycling were determined by a three-point bending test. The linear coefficients of thermal expansion (LCTE) for FRC samples with different fiber orientations were determined using a thermomechanical analyzer. Water uptake of the FRC specimens increased with a decrease in fiber content of the FRC. Flexural properties of FRCs improved with increasing fiber content, whereas the flexural properties were not influenced significantly by water and thermal cycling. Fiber orientation had different effects on LCTE of FRCs. Unidirectional FRCs had two different LCTE in longitudinal and transverse directions whereas bidirectional FRCs had similar LCTE in two directions and a higher one in the third direction. The results of the study suggest that the surface-treated unidirectional silica-glass FRC can be used for long-term clinical applications in the oral cavity.

  13. Associated with aerospace vehicles development of methodologies for the estimation of thermal properties

    Science.gov (United States)

    Scott, Elaine P.

    1994-01-01

    Thermal stress analyses are an important aspect in the development of aerospace vehicles at NASA-LaRC. These analyses require knowledge of the temperature distributions within the vehicle structures which consequently necessitates the need for accurate thermal property data. The overall goal of this ongoing research effort is to develop methodologies for the estimation of the thermal property data needed to describe the temperature responses of these complex structures. The research strategy undertaken utilizes a building block approach. The idea here is to first focus on the development of property estimation methodologies for relatively simple conditions, such as isotropic materials at constant temperatures, and then systematically modify the technique for the analysis of more and more complex systems, such as anisotropic multi-component systems. The estimation methodology utilized is a statistically based method which incorporates experimental data and a mathematical model of the system. Several aspects of this overall research effort were investigated during the time of the ASEE summer program. One important aspect involved the calibration of the estimation procedure for the estimation of the thermal properties through the thickness of a standard material. Transient experiments were conducted using a Pyrex standard at various temperatures, and then the thermal properties (thermal conductivity and volumetric heat capacity) were estimated at each temperature. Confidence regions for the estimated values were also determined. These results were then compared to documented values. Another set of experimental tests were conducted on carbon composite samples at different temperatures. Again, the thermal properties were estimated for each temperature, and the results were compared with values obtained using another technique. In both sets of experiments, a 10-15 percent off-set between the estimated values and the previously determined values was found. Another effort

  14. Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins

    International Nuclear Information System (INIS)

    Sabato, S.F.; Nakamurakare, N.; Sobral, P.J.A.

    2007-01-01

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia (Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction

  15. Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sabato, S.F. [Radiation Technology Center, IPEN-CNEN/SP, Av. Lineu Prestes 2242, 05508 900 Sao Paulo, SP (Brazil)], E-mail: sfsabato@ipen.br; Nakamurakare, N.; Sobral, P.J.A. [Food Engineering Department, ZEA/FZEA/USP, Av. Duque de Caxias Norte 225, 13635 900 Pirassununga, SP (Brazil)

    2007-11-15

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia (Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  16. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  17. Thermal creep effects on 20% cold worked AISI 316 mechanical properties

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1980-09-01

    The effects of thermal creep on subsequent mechanical properties of 20% cold worked AISI 316 pressurized tubes were investigated. Specimens were subjected to temperatures of 811 to 977 0 K and stresses of 86 MPa to 276 MPa. This resulted in strains up to 1.3%. Subsequent mechanical property tests included load change stress rupture tests (original test pressure increased or decreased), uniaxial tensile tests, and temperature ramp burst tests. Load change stress rupture tests were consistent with predictions from isobaric tests, and thus, consistent with the linear life fraction rule. Tests with large stress increases and tests at 866 0 K displayed a tendency for earlier than predicted failure. Tensile and temperature ramp burst tests had only slight effects on material properties (property changes were attributed to thermal recovery). The test results showed that, under the conditions of investigation, dislocation structure recovery was the most significant effect of creep. 9 figures, 5 tables

  18. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics.

    Science.gov (United States)

    Gheribi, Aïmen E; Salanne, Mathieu; Chartrand, Patrice

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  19. Mutations in the SH1 helix alter the thermal properties of myosin II.

    Science.gov (United States)

    Shibata, Kotomi; Koyama, Tsubasa; Inde, Shohei; Iwai, Sosuke; Chaen, Shigeru

    2017-01-01

    The myosin II SH1 helix is a joint that links the converter subdomain to the rest of the myosin motor domain and possibly plays a key role in the arrangement of the converter/lever arm. Several point mutations within the SH1 helix in human myosin IIs have been shown to cause diseases. To reveal whether these SH1 helix mutations affect not only motile activities but also thermal properties of myosin II, here we introduced the E683K or R686C point mutation into the SH1 helix in Dictyostelium myosin II. Thermal inactivation as well as thermal aggregation rates of these mutant proteins demonstrated that these mutations decreased the thermal stability of myosin II. Temperature dependence of sliding velocities of actin filaments showed that these mutations also reduced the activation energy of a rate-limiting process involved in actin movement. Given that these mutations are likely to alter coupling between the subdomains, and thus their thermal fluctuations, we propose that the SH1 helix is a key structural element that determines the flexibility and thermal properties of the myosin motor. These characteristics of the SH1 helix may contribute to the pathogenesis of the human diseases caused by mutations within this structural element.

  20. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties

    International Nuclear Information System (INIS)

    Chung, C.Y.; Lam, C.W.H.

    1999-01-01

    Cu-based shape memory alloys were developed in the 1960s. They show excellent thermoelastic martensitic transformation. However the problems in mechanical properties and thermal instability have inhibited them from becoming promising engineering alloys. A new Cu-Zn-Al-Mn-Zr Cu-based shape memory alloy has been developed. With the addition of Mn and Zr, the martensitic transformation behaviour and the grain size ca be better controlled. The new alloys demonstrates good mechanical properties with ultimate tensile strenght and ductility, being 460 MPa and 9%, respectively. Experimental results revealed that the alloy has better thermal stability, i.e. martensite stabilisation is less serious. In ordinary Cu-Zn-Al alloys, martensite stabilisation usually occurs at room temperature. The new alloy shows better thermal stability even at elevated temperature (∝150 C, >A f =80 C). A limited small amount of martensite stabilisation was observed upon ageing of the direct quenched samples as well as the step quenched samples. This implies that the thermal stability of the new alloy is less dependent on the quenching procedure. Furthermore, such minor martensite stabilisation can be removed by subsequent suitable parent phase ageing. The new alloy is ideal for engineering applications because of its better thermal stability and better mechanical properties. (orig.)

  1. Multi-layer structures with thermal and acoustic properties for building rehabilitation

    Science.gov (United States)

    Bessa, J.; Mota, C.; Cunha, F.; Merino, F.; Fangueiro, R.

    2017-10-01

    This work compares the use of different sustainable materials in the design of multilayer structures for the rehabilitation of buildings in terms of thermal and acoustic properties. These structures were obtained by compression moulding and thermal and acoustic tests were further carried out for the quantification of the respective insulation properties of composite materials obtained. The experimental results show that the use of polyurethane (PUR) foams and jute fabric reinforcing biocomposites promotes interesting properties of thermal and acoustic insulation. A multi-layer structure composed by PUR foam on the intermediate layer revealed thermal resistances until 0.272 m2 K W-1. On the other hand, the use of jute fabric reinforcing biocomposites on exterior layer promoted a noise reduction at 500 Hz until 8.3 dB. These results allow to conclude that the use of PUR foams and jute fabric reinforcing biocomposites can be used successfully in rehabilitation of buildings, when the thermal and acoustic insulation is looked for.

  2. Effect of cooking time on the physical, chemical and thermal properties of acha seeds

    Directory of Open Access Journals (Sweden)

    Akeem O. Raji

    2017-10-01

    Full Text Available Acha is a less utilized cereal grain in Africa. Scaling up of the processing technology of acha seeds is desirable if accurate information on effect of processing on its properties is available. This study investigated the effect of cooking duration on the chemical and physical properties of acha seeds. Cooking times (2.5, 5, 7.5 and 10 minutes at 100oC were used. The volume, length, breadth, thickness, porosity, density, sphericity, aspect ratio, specific heat capacity, thermal conductivity, thermal diffusivity, moisture, protein, fat, ash, crude fibre and carbohydrate were determined using standard methods. Data were analysed using ANOVA at p = 0.05. The results obtained revealed that varietal difference had a significant effect on volume, length, breadth, thickness, true density, bulk density, porosity, sphericity and aspect ratio. The moisture content, ash, protein, crude fibre, fat, carbohydrate, specific heat capacity, thermal conductivity and thermal diffusivity varied from 8.80 - 56.17 %, 0.32 - 1.87%, 1.92 - 11.50%, 0.29 - 1.58%, 0.32 - 2.81%, 40.94 - 76.26%, 1.66 -2.97 kJkg-1K-1, 0.26 -0.43 Wm-1K-1 and 0.85 x 10-7 - 1.17 x 10-7 ms-2 respectively, as significantly influenced by cooking time. Cooking for 7.5 minutes was appropriate using the moisture uptakes and thermal properties as criteria. 

  3. Thermoelectric properties and thermal stability of layered chalcogenides, TlScQ2, Q = Se, Te.

    Science.gov (United States)

    Aswathy, Vijayakumar Sajitha; Sankar, Cheriyedath Raj; Varma, Manoj Raama; Assoud, Abdeljalil; Bieringer, Mario; Kleinke, Holger

    2017-12-12

    A few thallium based layered chalcogenides of α-NaFeO 2 structure-type are known for their excellent thermoelectric properties and interesting topological insulator nature. TlScQ 2 belongs to this structural category. In the present work, we have studied the electronic structure, electrical and thermal transport properties and thermal stability of the title compounds within the temperature range 2-600 K. Density functional theory (DFT) predicts a metallic nature for TlScTe 2 and a semiconducting nature for TlScSe 2 . DFT calculations also show significant lowering of energies of frontier bands upon inclusion of spin-orbit coupling contribution in the calculation. The electronic structure also shows the simultaneous occurrence of holes and electron pockets for the telluride. Experiments reveal that the telluride shows a semi-metallic behaviour whereas the selenide is a semiconductor. The thermoelectric properties for both the materials were also investigated. Both these materials possess very low thermal conductivity which is an attractive feature for thermoelectrics. However, they lack thermal stability and decompose upon warming above room temperature, as evidenced from high temperature powder X-ray diffraction and thermal analysis.

  4. Thermal and mechanical properties of electro-slag cast steel for hot working tools

    International Nuclear Information System (INIS)

    Moon, Young Hoon; Kang, Boo Hyun; Tyne, Chester J. van

    2005-01-01

    The thermal and mechanical properties of an electro-slag cast steel of a similar chemical composition with an AISI-6F2 steel are investigated and compared with a forged AISI-6F2 steel. AISI-6F2 is a hot-working tool steel. Electro-Slag Casting (ESC) is a method of producing ingots in a water-cooled metal mold by the heat generated in an electrically conductive slag when current passes through a consumable electrode. The ESC method provides the possibility of producing material for the high quality hot-working tools and ingots directly into a desirable shape. In the present study, the thermal and mechanical properties of yield strength, tensile strength, hardness, impact toughness, wear resistance, thermal fatigue resistance, and thermal shock resistance for electro-slag cast and forged steel are experimentally measured for both annealed and quenched and tempered heat treatment conditions. It has been found that the electro-slag cast steel has comparable thermal and mechanical properties to the forged steel

  5. Pd-catalyzed terpolymerization of alkynes, CO, and ethylene: Modification of thermal property of polyketones

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yu Na; Cho, Yu Jin; Jang, Hye Young [Div. of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2016-10-15

    The terpolymerization of CO, ethylene, and additional olefins varies the properties of polyketones depending on olefins. In this study, monomer candidates for the terpolymerization of polyketones were expanded to alkynes, in addition to olefins. Thermal properties of polyketones were modified by adding aromatic alkynes during Pd-catalyzed terpolymerization with CO and ethylene. The Tm values of terpolymers were reduced to 192–215°C.

  6. Effect of thermal treatment on electrical properties and varistors degradation of ZnO

    International Nuclear Information System (INIS)

    Leite, E.R.; Cerri, J.A.; Longo, E.; Catao, P.S.P.; Varela, J.A.

    1990-01-01

    ZnO varistors obstained by conventional processing was heat treated and their electrical properties and degradation was analyzed. Infra-red spectroscopy, X-Ray diffraction and current-voltage curves were used to analize the properties with type of thermal cycle. The results showed that heat treatment promote stabilization against degradation and that exist a linear dependence of leakage current with square root of time. (author) [pt

  7. Strain-modulated electronic and thermal transport properties of two-dimensional O-silica

    Science.gov (United States)

    Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming

    2016-07-01

    Silica is one of the most abundant materials in the Earth’s crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  8. Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach.

    Science.gov (United States)

    Kharazmi, Alireza; Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    This work describes a fast, clean and low-cost approach to synthesize ZnS-PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV-visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated.

  9. Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach

    Science.gov (United States)

    Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    Summary This work describes a fast, clean and low-cost approach to synthesize ZnS–PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV–visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated. PMID:25821695

  10. Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach

    Directory of Open Access Journals (Sweden)

    Alireza Kharazmi

    2015-02-01

    Full Text Available This work describes a fast, clean and low-cost approach to synthesize ZnS–PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM for determining the shape morphology and average particle size, powder X-ray diffraction (XRD for confirming the formation and crystalline structure of ZnS nanoparticles, UV–visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated.

  11. Magnetic and thermal properties of high Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonchoon.

    1990-09-21

    Measurements of the normal state magnetic susceptibility {chi}(T) of YBa{sub 2}Cu{sub 3}O{sub 7}, Bi{sub 1.8}Pb{sub 0.2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}, and Bi{sub 2{minus}x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}} (x = 0.2 and 0.25) were carried out. All {chi}(T) data show negative curvature below {approximately}2{Tc}. The data for YBa{sub 2}Cu{sub 3}O{sub 7} are in excellent agreement with a new calculation of the superconducting fluctuation diamagnetism. From the analysis, we infer s-wave pairing and microscopic parameters are obtained. For {chi}(T) of YBa{sub 2}Cu{sub 3}O{sub 7}, part of the negative curvature is inferred to arise from the normal state background. We find a strong temperature dependent anisotropy {delta}{chi} {equivalent to} {chi}{sub c} {minus} {chi}{sub ab} and estimate the normal state spin contributions to {chi}(T). The heat capacity C(T) of YBa{sub 2}Cu{sub 3}O{sub 7} is reported for 0.4 K < T < 400 K in zero and 70 kG magnetic fields. In addition to the feature associated with the onset of the superconductivity at {Tc}, two anomalies in C(T) were observed near 74 K and 330 K, with another possible anomaly near 102 K; the temperatures at which they occur correlate with anomalies in {chi}(T) and ultransonic measurements. The occurrence of the anomaly at {approx equal} 330 K is found to be sample-dependent. The influences of a magnetic field and the thermal and/or magnetic field treatment history dependence of a pellet sample on C(T), the entropy and the influence of superconducting fluctuations on C(T) near {Tc}, and the possible source of the observed intrinsic nonzero {gamma}(0) at low T are discussed.

  12. Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors

    Science.gov (United States)

    Huang, Shouting

    Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the

  13. Thermal and Mechanical Properties of Poly(butylene succinate Films Reinforced with Silica

    Directory of Open Access Journals (Sweden)

    Sangviroon Nanthaporn

    2015-01-01

    Full Text Available In recent year, bioplastics have become more popular resulting from the growing concerns on environmental issues and the rising fossil fuel price. However, their applications were limited by its mechanical and thermal properties. The aim of this research is thus to improve mechanical and thermal properties of PBS bioplastic films by reinforcing with silica. Due to the poor interfacial interaction between the PBS matrix and silica, glycidyl methacrylate grafted poly(butylene succinate (PBS-g-GMA was used as a compatibilizer in order to improve the interaction between bioplastic films and filler. PBS-g-GMA was prepared in a twin-screw extruder and analyzed by the FTIR spectrometer. PBS and silica were then mixed in a twin-screw extruder and processed into films by a chill-roll cast extruder. The effects of silica loading on thermal and mechanical properties of the prepared bioplastic films were investigated. It was found that the mechanical properties of PBS/silica composite films were improved when 1%wt of silica was added. However, the mechanical properties decreased with increasing silica loading due to the agglomeration of silica particles. The results also show that the silica/PBS films with PBS-g-GMA possessed improved mechanical properties over the films without the compatibilizer.

  14. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    Science.gov (United States)

    Hudson, Troy L.; Hecht, Michael H.

    2011-01-01

    As shown by the Phoenix Mars Lander's Thermal and Electrical Conductivity Probe (TECP), contact measurements of thermal conductivity and diffusivity (using a modified flux-plate or line-source heat-pulse method) are constrained by a number of factors. Robotic resources must be used to place the probe, making them unavailable for other operations for the duration of the measurement. The range of placement is also limited by mobility, particularly in the case of a lander. Placement is also subject to irregularities in contact quality, resulting in non-repeatable heat transfer to the material under test. Most important from a scientific perspective, the varieties of materials which can be measured are limited to unconsolidated or weakly-cohesive regolith materials, rocks, and ices being too hard for nominal insertion strengths. Accurately measuring thermal properties in the laboratory requires significant experimental finesse, involving sample preparation, controlled and repeatable procedures, and, practically, instrumentation much more voluminous than the sample being tested (heater plates, insulation, temperature sensors). Remote measurements (infrared images from orbiting spacecraft) can reveal composite properties like thermal inertia, but suffer both from a large footprint (low spatial resolution) and convolution of the thermal properties of a potentially layered medium. In situ measurement techniques (the Phoenix TECP is the only robotic measurement of thermal properties to date) suffer from problems of placement range, placement quality, occupation of robotic resources, and the ability to only measure materials of low mechanical strength. A spacecraft needs the ability to perform a non-contact thermal properties measurement in situ. Essential components include low power consumption, leveraging of existing or highly-developed flight technologies, and mechanical simplicity. This new in situ method, by virtue of its being non-contact, bypasses all of these

  15. Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development

    Energy Technology Data Exchange (ETDEWEB)

    Lenihan, Elizabeth M [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch was representative of typical corn starch. The values for each ratio within a mutant type were unique (α < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (ToG), narrower range of gelatinization (RG), and greater enthalpy of gelatinization (ΔHG). The coolest location, Illinois, generally resulted in starch with lower ToG, wider RG, and lower ΔHG. Starch from the Ames 1 farm had thermal properties similar to those of Illinois, whereas starch from the Ames 2 farm had thermal properties similar to those of Missouri. The temperature at Ames 2 may have been warmer since it was located near a river; however, soil type and quality also were different. Final corn starch structure and function change during development and maturity. Thus, the changes in starch thermal properties during 5 stages of endosperm development from exotic by adapted corn and Corn Belt lines at two locations were

  16. Effects of Sintering on the Thermal and Optical Properties of Zinc Oxide Ceramic

    Science.gov (United States)

    Tabasco-Novelo, C.; May-Crespo, J.; Ramírez-Rincón, J. A.; Forero-Sandoval, I. Y.; Rodríguez-Gattorno, G.; Quintana, P.; Alvarado-Gil, J. J.

    2018-02-01

    Microstructure and composition are factors determining heat transfer in ZnO ceramic materials, which define the performance of the material after Joule heating, generated by electron transport. In this study, photothermal radiometry was applied to investigate the influence of the sintering temperature, ranging from 800 {°}C to 1300 {°}C, by measuring the thermal diffusivity and thermal conductivity at room temperature, of commercial and sol-gel ZnO pellets. Our results show that the values of these thermal properties for both types of ZnO increase when the sintering temperature increases, displaying maximum energy dissipation at 1200 {°}C. Additionally, the role of the sintering temperature on the optical properties was also analyzed using diffuse reflectance spectroscopy, and from these data the optical band-gap was obtained.

  17. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    International Nuclear Information System (INIS)

    Azira, A. A.; Rusop, M.

    2010-01-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  18. Effect of high thermal expansion glass infiltration on mechanical properties of alumina-zirconia composite

    International Nuclear Information System (INIS)

    Balakrishnan, A.; Panigrahi, B.B.; Chu, Min-Cheol; Cho, Seong-Jai; Sanosh, K.P.; Kim, T.N.

    2009-01-01

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol % yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature. This could be attributed to the drastic drop in the coefficient of thermal expansion due to the compositional change in the soda lime glass during infiltration. There was a significant improvement in the Weibull modulus after glass infiltration. Glass infiltrated samples showed better thermal shock resistance. The magnitude of strength increment was found to be in the order of the surface residual stress generated by thermo-elastic properties mismatch between the composite and the penetrated glass. (author)

  19. Extraction of Curcumin Pigment from Indonesian Local Turmeric with Its Infrared Spectra and Thermal Decomposition Properties

    Science.gov (United States)

    Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Ana; Widiaty, I.; Hurriyati, R.

    2017-03-01

    Curcumin is one of the pigments which is used as a spice in Asian cuisine, traditional cosmetic, and medicine. Therefore, process for getting curcumin has been widely studied. Here, the purpose of this study was to demonstrate the simple method for extracting curcumin from Indonesian local turmeric and investigate the infrared spectra and thermal decomposition properties. In the experimental procedure, the washed turmeric was dissolved into an ethanol solution, and then put into a rotary evaporator to enrich curcumin concentration. The result showed that the present method is effective to isolate curcumin compound from Indonesian local turmeric. Since the process is very simple, this method can be used for home industrial application. Further, understanding the thermal decomposition properties of curcumin give information, specifically relating to the selection of treatment when curcumin must face the thermal-related process.

  20. Influence of Sonication on the Stability and Thermal Properties of Al2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    2014-01-01

    Full Text Available Nanofluids containing Al2O3 nanoparticles (either 11 or 30 nm in size dispersed in distilled water at low concentrations (0.125–0.5 wt% were prepared using two different ultrasonic devices (a probe and a bath sonicator as the dispersant. The effect of the ultrasonic system on the stability and thermal diffusivity of the nanofluids was investigated. Thermal diffusivity measurements were conducted using a photopyroelectric technique. The dispersion characteristics and morphology of the nanoparticles, as well as the optical absorption properties of the nanofluids, were studied using photon cross correlation spectroscopy with a Nanophox analyzer, transmission electron microscopy, and ultraviolet-visible spectroscopy. At higher particle concentration, there was greater enhancement of the thermal diffusivity of the nanofluids resulting from sonication. Moreover, greater stability and enhancement of thermal diffusivity were obtained by sonicating the nanofluids with the higher power probe sonicator prior to measurement.

  1. ZnO Micro- and Nanostructures Obtained by Thermal Oxidation: Microstructure, Morphogenesis, Optical, and Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Alejandro Escobedo-Morales

    2016-10-01

    Full Text Available ZnO micro- and nanostructures were obtained through thermal oxidation of Zn powders at high temperature under air atmosphere. A detailed study of the microstructure, morphology, optical, and photoluminescence properties of the generated products at different stages of thermal oxidation is presented. It was found that the exposure time has a strong influence on the resulting morphology. The morphogenesis of the different ZnO structures is discussed, and experimental parameters for fabricating ZnO tetrapods, hollow, core-shell, elongated, or rounded structures by thermal oxidation method are proposed on the basis on the obtained results. Notoriously, the crystal lattice of the ZnO structures has negligible residual strain, although, the density of point defects increases when the thermal treatment is extended; as consequence, their visible luminescence upon UV excitation enhances.

  2. Effect of thermal modification on the physical properties of juvenile and mature woods of Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Fred Willians Calonego

    Full Text Available This study aimed to evaluate the effect of thermal treatment on the physical properties of juvenile and mature woods of Eucalyptus grandis. Boards were taken from 30-year-old E. grandis trees. The boards were thermally modified at 180 °C in the Laboratory of Wood Drying and Preservation at UNESP, Botucatu, Sao Paulo state, Brazil. The results showed that thermal modification caused: (1 decrease of 6.8% in the density at 0% equilibrium moisture content of mature wood; (2 significant decreases of 14.7% and 35.6% in the maximum volumetric swellings of juvenile and mature woods, respectively; (3 significant decreases of 13.7% and 21.3% in the equilibrium moisture content of juvenile and mature woods, respectively. The influence of thermal modification in juvenile wood was lower than in mature wood and caused greater uniformity in the physical variations between these types of wood in E. grandis.

  3. Gamma irradiation effects on the thermal properties of Bayfol nuclear track detector

    International Nuclear Information System (INIS)

    Marie, H.K.; Said, A.F.; Hegazy, T.M.

    2007-01-01

    Non isothermal studies were carried out using thermogravimetry (T G) and differential thermogravimetry (DTG) to obtain the thermal activation energy of decomposition for Bayfol solid state nuclear track detector (SSNTD) before and after exposure to gamma doses at levels between 5.0 and 100 KGy. Thermo-gravimetric analysis (TGA) indicated that the Bayfol detector decomposes in one main weight loss stage. Also, the thermal activation energy of decomposition was found to be dependent on the gamma dose. In addition, the variation of transition temperatures with the gamma dose has been determined using differential scanning calorimetry (DSC). The results indicate that the exposure to gamma doses at levels between 10 and 60 kGy further enhances the thermal stability of the polymer samples due to the crosslinking phenomenon. This suggests that gamma irradiation could be a suitable technique for producing a plastic material with enhanced thermal properties that can be suitable candidate for high temperature applications

  4. Morphological and thermal properties of PLA/OMMT nanocomposites prepared via vane extruder

    Science.gov (United States)

    Luo, Y.; Liu, H. Y.; Zhang, G. Z.; Qu, J. P.

    2017-06-01

    Polylactide/Organo-Montmorillonite (PLA/OMMT) Nanocomposites were prepared by melting extrusion using a novel vane extruder (VE), which can induce global elongational flow. In the study, the influence of different concentrations of the OMMT on the morphological and thermal properties were investigated. The morphology and structure of the nanocomposites were evaluated using Fourier Transform Infrared Spectroscopy (FTIR), the X-ray diffraction (XRD) and transmission electron microscopy (TEM) respectively, whereas the thermal behaviors and thermal stabilities were characterized using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) respectively. The results illustrate that PLA/OMMT nanocomposites displayed clear intercalation and/or exfoliation structures. Interestingly, increasing the clay content did not lead to the agglomeration of OMMT layers. Moreover, the presence of nanoclay decreased the enthalpy of crystallization of PLA/OMMT composites. Also, the melting temperatures of the nanocomposites were reduced by the addition of nanoclay.

  5. Facile preparation of carbon microcapsules containing phase-change material with enhanced thermal properties.

    Science.gov (United States)

    Tahan Latibari, Sara; Mehrali, Mohammad; Mehrali, Mehdi; Mahlia, Teuku Meurah Indra; Metselaar, Hendrik Simon Cornelis

    2014-01-01

    This study describes the hydrothermal synthesis of a novel carbon/palmitic acid (PA) microencapsulated phase change material (MEPCM). The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images confirm that spherical capsules of uniform size were formed with a mean diameter of 6.42 μm. The melting and freezing temperature were found to be slightly lower than those of pure PA with little undercooling. The composite retained 75% of the latent heat of pure PA. Thermal stability of the MEPCM was found to be better than that of pure PA. The thermal conductivity of MEPCM was increased by as much as 41% at 30°C. Due to its good thermal properties and chemical and mechanical stability, the carbon/PA MEPCM displays a good potential for thermal energy storage systems.

  6. Predicting thermal conductivity of rocks from the Los Azufres geothermal field, Mexico, from easily measurable properties

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Alfonso; Contreras, Enrique; Dominquez, Bernardo A.

    1988-01-01

    A correlation is developed to predict thermal conductivity of drill cores from the Los Azufres geothermal field. Only andesites are included as they are predominant. Thermal conductivity of geothermal rocks is in general scarce and its determination is not simple. Almost all published correlations were developed for sedimentary rocks. Typically, for igneous rocks, chemical or mineral analyses are used for estimating conductivity by using some type of additive rule. This requires specialized analytical techniques and the procedure may not be sufficiently accurate if, for instance, a chemical analysis is to be changed into a mineral analysis. Thus a simple and accurate estimation method would be useful for engineering purposes. The present correlation predicts thermal conductivity from a knowledge of bulk density and total porosity, properties which provide basic rock characterization and are easy to measure. They may be determined from drill cores or cuttings, and the procedures represent a real advantage given the cost and low availability of cores. The multivariate correlation proposed is a quadratic polynomial and represents a useful tool to estimate thermal conductivity of igneous rocks since data on this property is very limited. For porosities between 0% and 25%, thermal conductivity is estimated with a maximum deviation of 22% and a residual mean square deviation of 4.62E-3 n terms of the log{sub 10}(k{rho}{sub b}) variable. The data were determined as part of a project which includes physical, thermal and mechanical properties of drill cores from Los Azufres. For the correlation, sixteen determinations of thermal conductivity, bulk density and total porosity are included. The conductivity data represent the first determinations ever made on these rocks.

  7. Differential scanning calorimetry thermal properties and oxidative stability indices of microwave heated extra virgin olive oils.

    Science.gov (United States)

    Chiavaro, Emma; Rodriguez-Estrada, Maria Teresa; Bendini, Alessandra; Rinaldi, Massimiliano; Cerretani, Lorenzo

    2011-01-30

    The use of differential scanning calorimetry (DSC) for assessing the deterioration effect of microwave heating on vegetable oils, and on olive oils in particular, has been partially explored in literature. The aim of this work was to evaluate the potential of DSC to discriminate among microwaved extra virgin olive oils (EvOo from different olive cultivar and origin), according to changes on thermal properties (upon cooling and heating) and traditional oxidative stability indices (peroxide, p-anisidine and TOTOX values). An elevated value of lipid oxidation was reached by the most unsaturated EvOo sample (9.5% of linoleic acid) at 6 min of microwave treatment. Free acidity significantly increased (0.42%) only for the oil sample with the highest water content (874 mg kg(-1) oil) at the longest time of treatment. Crystallisation enthalpies significantly decreased and the major exothermic peak shifted towards lower temperature, leading to enlargement of the transition range in all samples due to the formation of weak and mixed crystals among triacylglycerols and lipid degradation products. On the contrary, thermal properties upon heating appeared to similarly vary among samples. The analysis of DSC thermal properties upon cooling seemed to clearly discriminate among different EvOo samples after microwaving. The relation between changes of thermal properties and oxidation parameters should be further studied using additional oxidative stability indices on a larger set of oil samples, due to the complexity of EvOo composition. 2010 Society of Chemical Industry.

  8. A fresh study of optical and thermal properties of polystyrene solutions

    Indian Academy of Sciences (India)

    Polymers have immense practical applications and one such polymer is polystyrene. It is a linear polymer and useful for plastic optical components. The optical and thermal properties of polystyrene solutions are investigated in this paper making use of the ultrasonic velocity and fluid parameters. The results reveal a number ...

  9. Poly(para-dioxanone) and poly(l-lactic acid) blends : Thermal, mechanical, and morphological properties

    NARCIS (Netherlands)

    Pezzin, A.P.T.; Alberda van Ekenstein, G.O.R.; Zavaglia, C.A.C.; ten Brinke, G.; Deuk, E.A.R.

    2003-01-01

    Blends of two semicrystalline polymers, poly(L-lactic acid) (PLLA) and poly-p-dioxanone (PPD) have been prepared by solvent casting in different compositions. Thermal, morphological, and mechanical properties of the blends were studied using modulated differential scanning calorimetry, wide-angle

  10. Thermal and electrical properties of porphyrin derivatives and their relevance for molecule interferometry

    NARCIS (Netherlands)

    Deachapunya, S.; Stefanov, A.; Berninger, M.; Ulbricht, H.; Reiger, E.; Doltsinis, N.L.; Arndt, M.

    2007-01-01

    The authors present new measurements of thermal and electrical properties for two porphyrin derivatives. They determine their sublimation enthalpy from the temperature dependence of the effusive beam intensity. The authors study H2TPP and Fe(TPP)Cl in matter-wave interferometry. Both molecules have

  11. Humidity Effects on Soluble Core Mechanical and Thermal Properties (Polyvinyl Alcohol/Microballoon Composite)

    Science.gov (United States)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties. This report describes test results, procedures employed, and any unusual occurrences or specific observations associated with this test program.

  12. Thermal and structural properties of spray pyrolysed CdS thin film

    Indian Academy of Sciences (India)

    Unknown

    Thermal and structural properties of CdS thin film. 235. 235 by photoacoustic technique. Polycrystalline CdTe films having 55 µm thickness were grown onto the glass slides using the close space vapour technique. The total thick- ness of two-layer system (glass and CdSe thin film) could be changed by varying the thickness ...

  13. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    Science.gov (United States)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  14. Application of Glass Fiber Waste Polypropylene Aggregate in Lightweight Concrete – thermal properties

    Science.gov (United States)

    Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.

    2018-03-01

    Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.

  15. Montmorillonite/poly(urethane-siloxane) nanocomposites: morphological, thermal, mechanical and surface properties

    Czech Academy of Sciences Publication Activity Database

    Stefanović, I. S.; Špírková, Milena; Ostojić, S.; Stefanov, P.; Pavlović, V. B.; Pergal, M. V.

    2017-01-01

    Roč. 149, 1 December (2017), s. 136-146 ISSN 0169-1317 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : polyurethane nanocomposites * thermal properties * clay nano-fillers Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.101, year: 2016

  16. The structure and thermal properties of novel polyurethane/organoclay nanocomposites obtained by pre-polymerization

    Czech Academy of Sciences Publication Activity Database

    Pavličević, J.; Špírková, Milena; Jovičić, M.; Bera, O.; Poreba, Rafal; Budinski-Simendic, J.

    2013-01-01

    Roč. 45, č. 1 (2013), s. 232-238 ISSN 1359-8368 R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : layered structures * polymer–matrix composites (PMCs) * thermal properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.602, year: 2013

  17. Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals

    Science.gov (United States)

    Shanhong Xu; Natalie Girouard; Gregory Schueneman; Meisha L. Shofner; J. Carson Meredith

    2013-01-01

    Cellulose nanocrystals (CNCs) are reinforcing fillers of emerging interest for polymers due to their high modulus and potential for sustainable production. In this study, CNC-based composites with a waterborne epoxy resin matrix were prepared and characterized to determine morphology, water content, and thermal and mechanical properties. While some CNC aggregation was...

  18. Anisotropy of thermal fatigue properties of cold-rolled TiNi sheet

    NARCIS (Netherlands)

    Mulder, J.H.; Mulder, J.H.; Thoma, P.E.; Beyer, J.

    1994-01-01

    The texture of cold-rolled and heat-treated TiNi sheet has been measured and designated as {110}(110)p. This material has been used in thermal fatigue tests during and after which the anisotropy and development of several thermomechanical properties, such as transformation temperatures and strains,

  19. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils

    International Nuclear Information System (INIS)

    Bagrets, N; Otten, S; Weiss, K-P; Kario, A; Goldacker, W

    2015-01-01

    In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K. (paper)

  20. Suggested Courseware for the Non-Calculus Physics Student: Fluid Dynamics, Kinetic Theory, and Thermal Properties.

    Science.gov (United States)

    Grable-Wallace, Lisa; And Others

    1989-01-01

    Evaluates seven courseware packages covering the topics of fluid dynamics, kinetic theory, and thermal properties. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects some packages based on the criteria. (YP)