WorldWideScience

Sample records for thermal processing conditions

  1. Thermal behaviour of used resin during conditioning process

    International Nuclear Information System (INIS)

    Arsene, C.

    2016-01-01

    In the nuclear power plants using light water and heavy water as coolant, as well as in most waste treatment installations, the ion-exchange resins are used to purify water circuits. Since the resins retain both radionuclide and chemical impurities, it represents a low- and intermediate- radioactive waste that requires special management for storage and disposal. From experimental studies it was found that the conditioning of the used resin in bitumen has several advantages. But there are some disadvantages, too, one being the significant amount of gas produced during the bituminization process because of the high temperature (1200C). Besides water vapours, the condensable gas mixture (formed by a liquid fraction and an oil fraction) contains products generated from the partial decomposition of the resin and release of degradation products of bitumen: dimethyl and trimethylamine, methanol - compounds resulting from the destruction of functional groups and hydrocarbon fraction formed by n-paraffins (C6-C32), iso-paraffins and aromatics. (authors)

  2. Thermal processing of conditioned waste and fuel substitutes; Thermische Behandlung vorbehandelter Abfaelle und Ersatzbrennstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Velden, F. van der; Engweiler, J. [Von Roll Umwelttechnik AG, Zurich (Switzerland)

    1998-12-31

    Different technologies for the thermal processing of mechanical-biologically conditioned waste are described and compared in terms of cost and flexibility. (orig.) [Deutsch] Es werden verschiedene Technologien der thermischen Behandlung mechanisch-biologisch vorbehandelter Abfaelle vorgestellt und im Hinblick auf Kosten und Flexibilitaet verglichen. (orig.)

  3. Effect of processing conditions on quality of green beans subjected to reciprocating agitation thermal processing.

    Science.gov (United States)

    Singh, Anika; Singh, Anubhav Pratap; Ramaswamy, Hosahalli S

    2015-12-01

    The effect of reciprocating agitation thermal processing (RA-TP) on quality of canned beans was evaluated in a lab-scale reciprocating retort. Green beans were selected due to their soft texture and sensitive color. Green beans (2.5cm length×0.8cm diameter) were filled into 307×409 cans with carboxylmethylcellulose (0-2%) solutions and processed at different temperatures (110-130°C) and reciprocation frequency (1-3Hz) for predetermined heating times to achieve a process lethality (F o ) of 10min. Products processed at higher temperatures and higher reciprocation frequencies resulted in better retention of chlorophyll and antioxidant activity. However, high reciprocation frequency also resulted in texture losses, with higher breakage of beans, increased turbidity and higher leaching. There was total loss of product quality at the highest agitation speed, especially with low viscosity covering solutions. Results suggest that reciprocating agitation frequency needs to be adequately moderated to get the best quality. For getting best quality, particularly for canned liquid particulate foods with soft particulates and those susceptible to high impact agitation, a gentle reciprocating motion (~1Hz) would be a good compromise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mathematical Modelling of Thermal Process to Aquatic Environment with Different Hydrometeorological Conditions

    Directory of Open Access Journals (Sweden)

    Alibek Issakhov

    2014-01-01

    Full Text Available This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm. Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions.

  5. Optimization of the thermal conditions for processing hatchery waste eggs as meal for feed.

    Science.gov (United States)

    Chiu, W Z; Wei, H W

    2011-05-01

    The purpose of this study was to optimize the thermal conditions for processing hatchery waste eggs (HWE) into rich feedstuff with lower electricity consumption by using response surface methodology. In the study, the effects of processing temperature and time on HWE meal (HWEM) quality and production were evaluated. As the results indicate, optimization was obtained when the processing lasted for 23 h at the fixed temperature of 65°C, resulting in higher protein digestibility in vitro (89.6%) and DM (88.5%) content of HWEM with lower electricity consumption (82.4 kWh/60 kg of HWE). No significant differences existed between the quality values predicted by mathematical formulae and those obtained through practical analyses in DM (87 vs. 88.5%), CP (39.2 vs. 38.3%), protein digestibility in vitro (90.7 vs. 89.6%), and electricity consumed (80.8 vs. 82.4 kWh/60 kg of HWE). Furthermore, the product derived from the optimized processing conditions had better biosecurity; Salmonella spp. were not found and Escherichia coli levels were substantially reduced (from 10(7) to 10(4) cfu/g). In summary, HWEM of superior quality can be produced when the processing conditions optimized in the current research are utilized.

  6. Thermal processing of bone: in vitro response of mesenchymal cells to bone-conditioned medium.

    Science.gov (United States)

    Sawada, K; Caballé-Serrano, J; Schuldt Filho, G; Bosshardt, D D; Schaller, B; Buser, D; Gruber, R

    2015-08-01

    The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Influence of thermal processing conditions on flavor stability in fluid milk: benzaldehyde.

    Science.gov (United States)

    Potineni, R V; Peterson, D G

    2005-01-01

    Flavor loss in dairy products has been associated with enzymatic degradation by xanthine oxidase. This study was conducted to investigate the influence of milk thermal processing conditions (or xanthine oxidase inactivation) on benzaldehyde stability. Benzaldehyde was added to whole milk which had been thermally processed at 4 levels: (1) none or raw, (2) high temperature, short time (HTST) pasteurization, (3) HTST pasteurization, additionally heated to 100 degrees C (PAH), and (4) UHT sterilized. Additionally, PAH and UHT milk samples containing benzaldehyde (with and without ferrous sulfate) were spiked with xanthine oxidase. Azide was added as an antimicrobial agent (one additional pasteurized sample without) and the microbial load (total plate count) was determined on d 0, 2, and 6. The concentration of benzaldehyde and benzoic acid in all milk samples were determined at d 0, 1, 2, 4, and 6 (stored at 5 degrees C) by gas chromatography/mass spectrometry in selective ion monitory mode. Over the 6-d storage period, more than 80% of the benzaldehyde content was converted (oxidized) to benzoic acid in raw and pasteurized milk, whereas no change in the benzaldehyde concentration was found in PAH or UHT milk samples. Furthermore, the addition of xanthine oxidase or xanthine oxidase plus ferrous sulfate to PAH or UHT milk samples did not result in benzaldehyde degradation over the storage period.

  8. Investigation on the asymmetry of thermal condition and grain defect formation in the customary directional solidification process

    International Nuclear Information System (INIS)

    Ma, D; Wu, Q; Hollad, S; Bührig-Polaczek, A

    2012-01-01

    In the present study, the non-uniformity of the thermal condition and the corresponding grain defect formation in the customary Bridgman process were investigated. The casting clusters in radial alignment were directionally solidified in a Bridgman furnace. It was found that in the casting cluster, the shadow side facing the central rod was ineffectively heated in the hot zone and ineffectively cooled in the cooling zone during withdrawal, compared with the heater side facing the furnace heater. The metallographic examination of the simplified turbine blades exhibited that the platforms on the shadow side are very prone to stray grain formation, while the heater side reveals a markedly lower tendency for that. The asymmetric thermal condition causes the asymmetrical formation of these grain defects. This non-uniformity of the thermal condition should be minimized as far as possible, in order to effectively optimize the quality of the SC superalloy components.

  9. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, L G [Federal Institute of Rio Grande do Sul, IFRS, Campus Restinga, Estrada Joao Antonio da Silveira, 351, Porto Alegre 91790-400 (Brazil); Ferreira, C I; Dal Castel, C; Santos, K S; Mello, A C.E. [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil); Liberman, S A; Oviedo, M A.S. [Braskem S.A., III Polo Petroquimico, Via Oeste, Lote 5, Triunfo 95853-000 (Brazil); Mauler, R.S., E-mail: mauler@iq.ufrgs.br [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil)

    2011-08-25

    Highlights: {yields} Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. {yields} Polypropylene Nanocomposites with higher increase on impact resistance. {yields} Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  10. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Furlan, L.G.; Ferreira, C.I.; Dal Castel, C.; Santos, K.S.; Mello, A.C.E.; Liberman, S.A.; Oviedo, M.A.S.; Mauler, R.S.

    2011-01-01

    Highlights: → Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. → Polypropylene Nanocomposites with higher increase on impact resistance. → Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  11. Conditions of Thermal Reclamation Process Realization on a Sample of Spent Moulding Sand from an Aluminum Alloy Foundry Plant

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2017-06-01

    Full Text Available The results of investigations of thermal reclamation of spent moulding sands originating from an aluminum alloy foundry plant are presented in this paper. Spent sands were crushed by using two methods. Mechanical fragmentation of spent sand chunks was realized in the vibratory reclaimer REGMAS. The crushing process in the mechanical device was performed either with or without additional crushing-grinding elements. The reclaimed material obtained in this way was subjected to thermal reclamations at two different temperatures. It was found that a significant binder gathering on grain surfaces favors its spontaneous burning, even in the case when a temperature lower than required for the efficient thermal reclamation of furan binders is applied in the thermal reclaimer. The burning process, initiated by gas burners in the reclaimer chamber, generates favorable conditions for self-burning (at a determined amount of organic binders on grain surfaces. This process is spontaneously sustained and decreases the demand for gas. However, due to the significant amount of binder, this process is longer than in the case of reclaiming moulding sand prepared with fresh components.

  12. Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films.

    Science.gov (United States)

    Fortunati, Elena; Puglia, Debora; Iannoni, Antonio; Terenzi, Andrea; Kenny, José Maria; Torre, Luigi

    2017-07-16

    Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) based films containing two different plasticizers [Acetyl Tributyl Citrate (ATBC) and isosorbide diester (ISE)] at three different contents (15 wt %, 20 wt % and 30 wt %) were produced by extrusion method. Thermal, morphological, mechanical and wettability behavior of produced materials was investigated as a function of plasticizer content. Filmature parameters were also adjusted and optimized for different formulations, in order to obtain similar thickness for different systems. Differential scanning calorimeter (DSC) results and evaluation of solubility parameter confirmed that similar miscibility was obtained for ATBC and ISE in PLA, while the two selected plasticizers resulted as not efficient for plasticization of PBS, to the limit that the PBS-30ATBC resulted as not processable. On the basis of these results, isosorbide-based plasticizer was considered a suitable agent for modification of a selected blend (PLA/PBS 80:20) and two mixing approaches were used to identify the role of ISE in the plasticization process: results from mechanical analysis confirmed that both produced PLA-PBS blends (PLA85-ISE15)-PBS20 and (PLA80-PBS20)-ISE15 could guarantee advantages in terms of deformability, with respect to the PLA80-PBS20 reference film, suggesting that the promising use of these stretchable PLA-PBS based films plasticized with isosorbide can provide novel solutions for food packaging applications.

  13. Effect of thermal processes on critical operation conditions of high-power laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Parashchuk, V V [Institute of Physics, Belarus Academy of Sciences, Minsk (Belarus); Vu Doan Mien [Institute of Materials Science, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam)

    2013-10-31

    Using numerical and analytical techniques in a threedimensional approximation, we have modelled the effect of spatial thermoelastic stress nonuniformity in a laser diode – heat sink system on the output characteristics of the device in different operation modes. We have studied the influence of the pulse duration, the geometry of the laser system and its thermophysical parameters on the critical pump current density, in particular for state-of-the-art heat conductive substrate materials. The proposed approach has been used to optimise the laser diode assembly process in terms of the quality of laser crystal positioning (bonding) on a heat sink. (lasers)

  14. Experimentale Study of Alkaline Precipitation on Thermal Process SeaWater Desalination Condition

    International Nuclear Information System (INIS)

    Sumijanto

    2000-01-01

    The experiment of alkaline precipitation by separated method has beencarry out. Experiment took please by heating sea water simulation with eachother consist of a).142 ppm bicarbonate and 400 ppm calcium ion b). 142 ppmbicarbonate and magnesium ion at temperature 40,50,60,70,80,90,100,110 and120 o C respectively by using autoclave. Sampling has been done periodicalfor 30 minute in interval 300 minute for each temperature. The calculation ofalkaline precipitation on each step calculated through the decreasing ofcalcium and magnesium concentration with analysis by AAS. From experimentdata have the information that alkaline precipitation have been formed since40 o C. From time variable have been the information that the precipitationformed at 30 th minute rapidly. Whether at further time the increasing ofprecipitation are not significant. This phenomena can explained that at eachheating step from 40 o C bicarbonate ion be come decomposition with theresult carbonate and hydroxide ion and react with calcium and magnesium formcalcium carbonate and magnesium hydroxide. From this information could beimplemented as base for avoiding using chemical material in desalinationthermal process. (author)

  15. Rapid thermal processing of semiconductors

    CERN Document Server

    Borisenko, Victor E

    1997-01-01

    Rapid thermal processing has contributed to the development of single wafer cluster processing tools and other innovations in integrated circuit manufacturing environments Borisenko and Hesketh review theoretical and experimental progress in the field, discussing a wide range of materials, processes, and conditions They thoroughly cover the work of international investigators in the field

  16. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  17. Monitoring Thermal Conditions in Footwear

    Science.gov (United States)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  18. Rapid thermal conditioning of sewage sludge

    Science.gov (United States)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This

  19. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1985-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)

  20. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1984-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  1. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  2. Qualification of conditioning process

    International Nuclear Information System (INIS)

    Wolf, J.

    1989-01-01

    A conditioning process is qualified by the PTB if the execution of pre-treatment and conditioning occurs so that a safe and orderly final storage of the products and waste containers produced can be assumed. All the relevant operating conditions for the plant are laid down by the producer/conditioner of the waste in a handbook. The elements of product inspection by process qualification are shown in tabular form. (DG) [de

  3. Stochastic conditional intensity processes

    DEFF Research Database (Denmark)

    Bauwens, Luc; Hautsch, Nikolaus

    2006-01-01

    model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...

  4. Rapid thermal processing by stamping

    Science.gov (United States)

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  5. Non-thermal plasma modified growth and differentiation process of Capsicum annuum PP805 Godiva in in vitro conditions

    Science.gov (United States)

    Safari, Nasrin; Iranbakhsh, Alireza; Ardebili, Zahra Oraghi

    2017-05-01

    With the aim of evaluating the possible impacts of cold plasma on the structure and growth pattern of Capsicum annuum, the current study was carried out. The seeds were exposed to an argon-derived plasma (0.84 W cm-2 surface power densities) for 0, 1 or 2 minutes. Plasma-treated seeds were grown in the Murashige and Skoog (MS) medium or MS medium supplemented with BA and IAA. The presence of purple stems was recorded in plasma-treated plants grown in the medium supplemented with hormones. The recorded morphological differences were dependent on the exposure time of plasma treatments and/or the presence of hormones in the culture media. Plasma treatment of 1 minute had an improving effect on the shoot and root lengths as well as total leaf area, whereas plasma treatment of 2 minutes had an adverse effect. In contrast to the 1 minute treatment, plasma treatment of 2 minutes significantly impaired growth and hence reduced the total biomass. Alterations in stem diameter and differences in tissue patterns (especially in the vascular system) occurred, and were mainly dependent on the plasma exposure time and/or the presence of hormones. This is a first report on the effects of cold plasma on plant growth in in vitro conditions.

  6. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  7. A time-resolved current method and TSC under vacuum conditions of SEM: Trapping and detrapping processes in thermal aged XLPE insulation cables

    Science.gov (United States)

    Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.

    2017-03-01

    Thermal aging of cross-linked polyethylene (XLPE) can cause serious concerns in the safety operation in high voltage system. To get a more detailed picture on the effect of thermal aging on the trapping and detrapping process of XLPE in the melting temperature range, Thermal Stimulated Current (TSC) have been implemented in a Scanning Electron Microscope (SEM) with a specific arrangement. The XLPE specimens are molded and aged at two temperatures (120 °C and 140 °C) situated close to the melting temperature of the material. The use of SEM allows us to measure both leakage and displacement currents induced in samples under electron irradiation. The first represents the conduction process of XLPE and the second gives information on the trapping of charges in the bulk of the material. TSC associated to the SEM leads to show spectra of XLPE discharge under thermal stimulation using both currents measured after electron irradiation. It was found that leakage current in the charging process may be related to the physical defects resulting in crystallinity variation under thermal aging. However the trapped charge can be affected by the carbonyl groups resulting from the thermo-oxidation degradation and the disorder in the material. It is evidenced from the TSC spectra of unaged XLPE that there is no detrapping charge under heat stimulation. Whereas the presence of peaks in the TSC spectra of thermally aged samples indicates that there is some amount of trapped charge released by heating. The detrapping behavior of aged XLPE is supported by the supposition of the existence of two trap levels: shallow traps and deep traps. Overall, physico-chemical reactions under thermal aging at high temperatures leads to the enhancement of shallow traps density and changes in range of traps depth. These changes induce degradation of electrical properties of XLPE.

  8. Furnace for rapid thermal processing

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2001-01-01

    A Method (1) for Rapid Thermal Processing of a wafer (7), wherein the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is

  9. Thermal analysis of a glass bending process

    International Nuclear Information System (INIS)

    Buonanno, G.; Dell'Isola, M.; Frattolillo, A.; Giovinco, G.

    2005-01-01

    The paper presents the thermal simulation of naturally ventilated ovens used in glass sheets hot forming for windscreen production. The determination of thermal and flow conditions in the oven and, consequently, the windshield temperature distribution is necessary both for the productive process optimisation and to assure beforehand, without any iterative tuning process, the required characteristics of the product considered. To this purpose, the authors carried out a 3D numerical simulation of the thermal interaction between the glass and the oven internal surfaces during the whole heating process inside the oven. In particular, a finite volumes method was used to take into account both the convective, conductive and radiative heat transfer in the oven. The numerical temperature distribution in the glass was validated through the comparison with the data obtained from an experimental apparatus designed and built for the purpose

  10. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  11. Quaternion Based Thermal Condition Monitoring System

    Science.gov (United States)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  12. Fossilization Processes in Thermal Springs

    Science.gov (United States)

    Farmer, Jack D.; Cady, Sherry; Desmarais, David J.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    surfaces that produce palisade and "shrub" fabrics, respectively. At finer scales, composite fabrics are seen to consist distinctive associations of microstructures formed by the encrustation of individual cells and filaments. Composite fabrics survive the diagenetic transitions from primary opaline silica to quartz and are known from subaerial thermal spring deposits as old as Lower Carboniferous. However, fossil microorganisms tend to be rare in older deposits, and are usually preserved only where cells or sheaths have been stained by iron oxides. In subaqueous mineralizing springs at lower temperatures, early infilling leads to a more rapid and complete reduction in porosity and permeability. This process, along with the slower rates of microbial degradation at lower temperatures, creates a more favorable situation for organic matter preservation. Application of this taphonomic model to the Rhynie Chert, previously interpreted as subaerial, suggest it was probably deposited in a subaqueous spring setting at lower temperatures.

  13. Incineration ash conditioning processes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Incinerable wastes consist of the following standard composition corresponding to projected wastes from a future mixed oxide fuel fabrication plant with an annual throughput of 1700 kg (i.e. 5.7 m 3 ) of ashes produced by the incineration facility: . 50% polyvinyl chloride (glove box sleeves), . 5% polyethylene (bags), . 35% rubber (equal amounts of latex and neoprene), . 10% cellulose (equal amounts of cotton and cleansing tissues). The work focused mainly on compaction by high-temperature isostatic pressing, is described in some detail with the results obtained. An engineering study was also carried out to compare this technology with two other ash containment processes: direct-induction (cold crucible) melting and cement-resin matrix embedding. Induction melting is considerably less costly than isostatic pressing; the operating costs are about 1.5 times higher than for cement-resin embedding, but the volume reduction is nearly 3 times greater

  14. Technical guide to thermal processes

    International Nuclear Information System (INIS)

    Gosse, J.

    1986-01-01

    This book is an attempt to present the necessary formulae and numerical data for research programs. The most recent data have been used wherever possible. The work is not limited merely to statements of thermal laws; emphasis has been given to the important thermodynamic ideas and to the thermophysical properties of the working fluids. It discusses the thermodynamic concepts which govern the amount of energy transferred to, or from, a system undergoing any process as well as those concepts which allow rates of heat transfer to be predicted. In the same way, mass, momentum and energy balances are presented in a single section to emphasize that the three balances must always be considered together in the analysis of a system. It has been necessary to select the information to be presented in order to provide the essential ideas of thermal analysis. This technical guide summarises the fundamental laws and the experimental data on which the engineer can base his methods of calculation in order to provide an optimum thermal design

  15. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  16. Influence of anomalous thermal losses of ignition conditions

    International Nuclear Information System (INIS)

    Coppi, B.; Tang, W.M.

    1986-05-01

    In the process of achieving ignition conditions, it is likely that microinstabilities, which lead to anomalous thermal transport of the fusing nuclei, will be present. When such phenomena are taken into account, an appropriate formulation of ignition criteria becomes necessary. In particular, a new type of plasma density limit is identified

  17. Towards Biochar and Hydrochar Engineering—Influence of Process Conditions on Surface Physical and Chemical Properties, Thermal Stability, Nutrient Availability, Toxicity and Wettability

    Directory of Open Access Journals (Sweden)

    Alba Dieguez-Alonso

    2018-02-01

    Full Text Available The impact of conversion process parameters in pyrolysis (maximum temperature, inert gas flow rate and hydrothermal carbonization (maximum temperature, residence time and post-washing on biochar and hydrochar properties is investigated. Pine wood (PW and corn digestate (CD, with low and high inorganic species content respectively, are used as feedstock. CD biochars show lower H/C ratios, thermal recalcitrance and total specific surface area than PW biochars, but higher mesoporosity. CD and PW biochars present higher naphthalene and phenanthrene contents, respectively, which may indicate different reaction pathways. High temperatures (>500 °C lead to lower PAH (polycyclic aromatic hydrocarbons content (<12 mg/kg and higher specific surface area. With increasing process severity the biochars carbon content is also enhanced, as well as the thermal stability. High inert gas flow rates increase the microporosity and wettability of biochars. In hydrochars the high inorganic content favor decarboxylation over dehydration reactions. Hydrochars show mainly mesoporosity, with a higher pore volume but generally lower specific surface area than biochars. Biochars present negligible availability of NO 3 − and NH 4 + , irrespective of the nitrogen content of the feedstock. For hydrochars, a potential increase in availability of NO 3 − , NH 4 + , PO 4 3 − , and K + with respect to the feedstock is possible. The results from this work can be applied to “engineer” appropriate biochars with respect to soil demands and certification requirements.

  18. Design and optimization of food processing conditions

    OpenAIRE

    Silva, C. L. M.

    1996-01-01

    The main research objectives of the group are the design and optimization of food processing conditions. Most of the work already developed is on the use of mathematical modeling of transport phenomena and quantification of degradation kinetics as two tools to optimize the final quality of thermally processed food products. Recently, we initiated a project with the main goal of studying the effects of freezing and frozen storage on orange and melon juice pectinesterase activity and q...

  19. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    International Nuclear Information System (INIS)

    Clough, D; Fletcher, S; Longstaff, A P; Willoughby, P

    2012-01-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  20. Thermal energy management process experiment

    Science.gov (United States)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  1. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  2. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  3. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  4. Thermal properties of bentonite under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vasicek, R. [Czech Technical Univ., Centre of Experimental Geotechnics, Faculty of Civil Engineering, Prague (Czech Republic)

    2005-07-01

    Centre of Experimental Geotechnics (CEG) deals with the research of the behaviour of bentonite and clays. The measurement of thermal properties is not so frequent test in geotechnical laboratory but in relation to deep repository it is a part which should not be overlooked. The reason is the heat generated by canister with spent nuclear fuel and possible influence of the heat on the materials of the engineered barrier. In the initial stages following the burial of canister with the waste the barrier materials will be exposed to elevated temperature. According to existing information, these temperatures should not exceed 90 C. That heat can induce a creation of cracks and opening of joint between highly compacted blocks. It will predispose the bentonite barrier to penetration of water from surrounding towards to canister. Therefore easy removal of heat through the barrier is required. It is essential that the tests aimed at determining the real values of measured parameters are carried out in conditions identical with those anticipated in a future disposal system. These relatively complicated thermophysical tests are logical continuation of the simple ones, carried out under laboratory temperature and on not fully saturated samples without possibility to measure the swelling pressure. Thermophysical properties and swelling pressure are dominantly influenced by water content (which is influenced by temperature). Therefore is important to realize the tests under different moisture and thermal conditions. These tests are running at the APT-PO1 Analyser, designed to fulfill mentioned requirements - it allows measurement of thermal properties under temperature up to 200 C and swelling pressure up to 20 MPa. The device is capable to register the evolution of temperature, swelling and vapor pressure. The measurement of thermal conductivity and volume heat capacity is realized by the dynamic impulse method with point source of heat. Four types of tests are possible: at

  5. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  6. Reflow process stabilization by chemical characteristics and process conditions

    Science.gov (United States)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  7. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  8. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  9. Synthesis report on thermally driven coupled processes

    International Nuclear Information System (INIS)

    Hardin, E.L.

    1997-01-01

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  10. Rapid thermal processing and beyond applications in semiconductor processing

    CERN Document Server

    Lerch, W

    2008-01-01

    Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a

  11. Viscous and thermal modelling of thermoplastic composites forming process

    Science.gov (United States)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  12. 9 CFR 318.302 - Thermal processing.

    Science.gov (United States)

    2010-01-01

    ... 318.302 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... Canning and Canned Products § 318.302 Thermal processing. (a) Process schedules. Prior to the processing...

  13. Thermal modelling of the multi-stage heating system with variable boundary conditions in the wafer based precision glass moulding process

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2012-01-01

    pressures. Finally, the three-dimensional modelling of the multi-stage heating system in the wafer based glass moulding process is simulated with the FEM software ABAQUS for a particular industrial application for mobile phone camera lenses to obtain the temperature distribution in the glass wafer...

  14. Carotenes in processed tomato after thermal treatment

    NARCIS (Netherlands)

    Luterotti, S.; Bicanic, D.D.; Markovic, K.; Franko, M.

    2015-01-01

    This report adds to the ongoing vivid dispute on the fate of carotenes in tomato upon thermal processing. Although many papers dealing with changes in the raw tomatoes during industrial treatment have already appeared, data on the fate of finished, processed tomato products when they are

  15. Thermal conductivity at different humidity conditions

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Rode, Carsten

    1999-01-01

    by an accumulation of moisture as condensation in the parts of the insulation that lie immediately close to the cold side of the apparatus. The high l-values found are therefore of no practical importance in structures where no condensation occurs. Disregarding these condensation situations, the maximum increase...... humidified air can pass. Thus, it is possible to build up different degrees of moisture on each side of the test specimen.The thermal conductivity is determined for the following types of alternative insulation: sheep's wool, flax, paper insulation, perlite and mineral wool. The insulation products were...... Ekofiber Vind, Herawool (without support fibres), Heraflax, Isodan with and without salts, Miljø Isolering with and without salts, Perlite (water-repellent), and Rockwool A-batts for comparison.All measurements of the materials started with no affection of moisture. Nevertheless, results were achieved...

  16. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Science.gov (United States)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  17. Thermal processes identification using virtual instrumentation

    Directory of Open Access Journals (Sweden)

    Iosif OLAH

    2007-12-01

    Full Text Available In this paper the experimental identification problem of thermal processes is presented, in order to establish their mathematical models which permit the adoption of the automation solutions, respectively the specification of a suitable control law. With this aim in view, the authors resorted to use Virtual Instrumentation with the aid of the LabVIEW development medium. In order to solve the problem of acquisition and processing data from physical real processes, Virtual Instruments which provide at the end a mathematical model which is basis of choosing the automation equipment of the aim followed was designed and achieved. The achieved Virtual Instruments get the opportunity to be used either in student instruction field with the virtual processes identification techniques or to put the identification of some real processes to good use of diverse beneficiaries. The results of some experimental attempts which were achieved during different thermal processes, illustrate the utility of the demarches performed in this paper.

  18. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  19. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  20. Dissociable Learning Processes Underlie Human Pain Conditioning.

    Science.gov (United States)

    Zhang, Suyi; Mano, Hiroaki; Ganesh, Gowrishankar; Robbins, Trevor; Seymour, Ben

    2016-01-11

    Pavlovian conditioning underlies many aspects of pain behavior, including fear and threat detection [1], escape and avoidance learning [2], and endogenous analgesia [3]. Although a central role for the amygdala is well established [4], both human and animal studies implicate other brain regions in learning, notably ventral striatum and cerebellum [5]. It remains unclear whether these regions make different contributions to a single aversive learning process or represent independent learning mechanisms that interact to generate the expression of pain-related behavior. We designed a human parallel aversive conditioning paradigm in which different Pavlovian visual cues probabilistically predicted thermal pain primarily to either the left or right arm and studied the acquisition of conditioned Pavlovian responses using combined physiological recordings and fMRI. Using computational modeling based on reinforcement learning theory, we found that conditioning involves two distinct types of learning process. First, a non-specific "preparatory" system learns aversive facial expressions and autonomic responses such as skin conductance. The associated learning signals-the learned associability and prediction error-were correlated with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive (fear) learning circuit. Second, a specific lateralized system learns "consummatory" limb-withdrawal responses, detectable with electromyography of the arm to which pain is predicted. Its related learned associability was correlated with responses in ipsilateral cerebellar cortex, suggesting a novel computational role for the cerebellum in pain. In conclusion, our results show that the overall phenotype of conditioned pain behavior depends on two dissociable reinforcement learning circuits. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. 9 CFR 381.302 - Thermal processing.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Canning and Canned Products § 381.302... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Thermal processing. 381.302 Section 381.302 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  2. Thermal process of an air column

    International Nuclear Information System (INIS)

    Lee, F.T.

    1994-01-01

    Thermal process of a hot air column is discussed based on laws of thermodynamics. The kinetic motion of the air mass in the column can be used as a power generator. Alternatively, the column can also function as a exhaust/cooler

  3. Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-07-15

    In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.

  4. Conditioned sounds enhance visual processing.

    Directory of Open Access Journals (Sweden)

    Fabrizio Leo

    Full Text Available This psychophysics study investigated whether prior auditory conditioning influences how a sound interacts with visual perception. In the conditioning phase, subjects were presented with three pure tones ( =  conditioned stimuli, CS that were paired with positive, negative or neutral unconditioned stimuli. As unconditioned reinforcers we employed pictures (highly pleasant, unpleasant and neutral or monetary outcomes (+50 euro cents, -50 cents, 0 cents. In the subsequent visual selective attention paradigm, subjects were presented with near-threshold Gabors displayed in their left or right hemifield. Critically, the Gabors were presented in synchrony with one of the conditioned sounds. Subjects discriminated whether the Gabors were presented in their left or right hemifields. Participants determined the location more accurately when the Gabors were presented in synchrony with positive relative to neutral sounds irrespective of reinforcer type. Thus, previously rewarded relative to neutral sounds increased the bottom-up salience of the visual Gabors. Our results are the first demonstration that prior auditory conditioning is a potent mechanism to modulate the effect of sounds on visual perception.

  5. Thermal food processing: new technologies and quality issues

    National Research Council Canada - National Science Library

    Sun, Da-Wen

    2012-01-01

    .... Part I, Modeling of Thermal Food Processes, discusses the thermal physical properties of foods, recent developments in heat and mass transfer, innovative modeling techniques including artificial...

  6. Thermal tests of a transport / Storage cask in buried conditions

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Saegusa, T.; Ito, C.

    1998-01-01

    Thermal tests for a hypothetical accident which simulated accidents caused by building collapse in case of an earthquake were conducted using a full-scale dry type transport and storage cask (total heat load: 23 kW). The objectives of these tests were to clarify the heat transfer features of the buried cask under such accidents and the time limit for maintaining the thermal integrity of the cask. Moreover, thermal analyses of the test cask under the buried conditions were carried out on basis of experimental results to establish methodology for the thermal analysis. The characteristics of the test cask are described as well as the test method used. The heat transfer features of the buried cask under such accidents and a time for maintaining the thermal integrity of the cask have been obtained. (O.M.)

  7. Development of thermal conditioning technology for alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, H. Y.; Kim, J. G.

    2001-04-01

    To develop a thermal conditioning technology for alpha-contaminated wastes, which are presumed to generate from pyrochemical processing of spent fuel, research on the three different fields have been performed; incineration, off-gas treatment, and vitrification/cementation technology. Through the assessment on the amount of alpha-contaminated waste and incineration characterises, an oxygen-enriched incineration process, which can greatly reduce the off-gas volume, was developed by our own technology. Trial burn test with paper waste resulted in a reduction of off-gas volume by 3.5. A study on the behavior and adsorption of nuclides/heavy metals at high-temperature was performed to develop an efficient removal technology. Off-gas treatment technologies for radioiodine at high-temperature and 14 CO 2 , acidic gases, and radioactive gaseous wastes such as Xe/Kr at room temperature were established. As a part of development of high-level waste solidification technology, manufacture of high-frequency induction melter, fabrication and characterization of base-glass media fabricated with spent HEPA filter medium, and development of titanate ceramic material as a precursor of SYNROC by a self-combustion method were performed. To develop alpha-contaminated waste solidification technology, a process to convert periodontal in the cement matrix to calcite with SuperCritical Carbon Dioxide (SCCD) was manufactured. The SCCD treatment enhanced the physicochemical properties of cement matrices, which increase the long-term integrity of cement waste forms during transportation and storage

  8. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  9. Perspective of Micro Process Engineering for Thermal Food Treatment.

    Science.gov (United States)

    Mathys, Alexander

    2018-01-01

    Micro process engineering as a process synthesis and intensification tool enables an ultra-short thermal treatment of foods within milliseconds (ms) using very high surface-area-to-volume ratios. The innovative application of ultra-short pasteurization and sterilization at high temperatures, but with holding times within the range of ms would allow the preservation of liquid foods with higher qualities, thereby avoiding many unwanted reactions with different temperature-time characteristics. Process challenges, such as fouling, clogging, and potential temperature gradients during such conditions need to be assessed on a case by case basis and optimized accordingly. Owing to the modularity, flexibility, and continuous operation of micro process engineering, thermal processes from the lab to the pilot and industrial scales can be more effectively upscaled. A case study on thermal inactivation demonstrated the feasibility of transferring lab results to the pilot scale. It was shown that micro process engineering applications in thermal food treatment may be relevant to both research and industrial operations. Scaling of micro structured devices is made possible through the use of numbering-up approaches; however, reduced investment costs and a hygienic design must be assured.

  10. Isoconversional kinetics of thermally stimulated processes

    CERN Document Server

    Vyazovkin, Sergey

    2015-01-01

    The use of isoconversional kinetic methods for analysis of thermogravimetric and calorimetric data on thermally stimulated processes is quickly growing in popularity. The purpose of this book is to create the first comprehensive resource on the theory and applications of isoconversional methodology. The book introduces the reader to the kinetics of physical and chemical condensed phase processes that occur as a result of changing temperature and discusses how isoconversional analysis can provide important kinetic insights into them. The book will help the readers to develop a better understanding of the methodology, and promote its efficient usage and successful development.

  11. Thermal processes evaluation for RWMC wastes

    International Nuclear Information System (INIS)

    1991-01-01

    The objective of this activity was to provide a white paper that identifies, collects information, and presents a preliminary evaluation of ''core'' thermal technologies that could be applied to RWMC stored and buried mixed waste. This paper presents the results of the following activities: General thermal technology identification, collection of technical and cost information on each technology, identification of thermal technologies applicable to RWMC waste, evaluation of each technology as applied to RWMC waste in seven process attributes, scoring each technology on a one to five scale (five highest) in each process attribute. Reaching conclusions about the superiority of one technology over others is not advised based on this preliminary study alone. However, the highly rated technologies (i.e., overall score of 2.9 or better) are worthy of a more detailed evaluation. The next step should be a more detailed evaluation of the technologies that includes onsite visits with operational facilities, preconceptual treatment facility design analysis, and visits with developers for emerging technologies. 2 figs., 6 tabs

  12. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  13. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  14. Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, Van der L.; Grauwet, T.; Verlinde, P.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2012-01-01

    This report describes the first study comparing different high pressure (HP) and thermal treatments at intensities ranging from mild pasteurization to sterilization conditions. To allow a fair comparison, the processing conditions were selected based on the principles of equivalence. Moreover,

  15. The analysis of thermally stimulated processes

    CERN Document Server

    Chen, R; Pamplin, Brian

    1981-01-01

    Thermally stimulated processes include a number of phenomena - either physical or chemical in nature - in which a certain property of a substance is measured during controlled heating from a 'low' temperature. Workers and graduate students in a wide spectrum of fields require an introduction to methods of extracting information from such measurements. This book gives an interdisciplinary approach to various methods which may be applied to analytical chemistry including radiation dosimetry and determination of archaeological and geological ages. In addition, recent advances are included, such

  16. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  17. Optimization of thermal processing of canned mussels.

    Science.gov (United States)

    Ansorena, M R; Salvadori, V O

    2011-10-01

    The design and optimization of thermal processing of solid-liquid food mixtures, such as canned mussels, requires the knowledge of the thermal history at the slowest heating point. In general, this point does not coincide with the geometrical center of the can, and the results show that it is located along the axial axis at a height that depends on the brine content. In this study, a mathematical model for the prediction of the temperature at this point was developed using the discrete transfer function approach. Transfer function coefficients were experimentally obtained, and prediction equations fitted to consider other can dimensions and sampling interval. This model was coupled with an optimization routine in order to search for different retort temperature profiles to maximize a quality index. Both constant retort temperature (CRT) and variable retort temperature (VRT; discrete step-wise and exponential) were considered. In the CRT process, the optimal retort temperature was always between 134 °C and 137 °C, and high values of thiamine retention were achieved. A significant improvement in surface quality index was obtained for optimal VRT profiles compared to optimal CRT. The optimization procedure shown in this study produces results that justify its utilization in the industry.

  18. Inactivation of Salmonella and Listeria in ground chicken breast meat during thermal processing.

    Science.gov (United States)

    Murphy, R Y; Marks, B P; Johnson, E R; Johnson, M G

    1999-09-01

    Thermal inactivation of six Salmonella spp. and Listeria innocua was evaluated in ground chicken breast and liquid medium. Survival of Salmonella and Listeria was affected by the medium composition. Under the same thermal process condition, significantly more Salmonella and Listeria survived in chicken breast meat than in 0.1% peptone-agar solution. The thermal lethality of six tested Salmonella spp. was additive in chicken meat. Survival of Listeria in chicken meat during thermal processing was not affected by the presence of the six Salmonella spp. Sample size and shape affected the inactivation of Salmonella and Listeria in chicken meat during thermal processing.

  19. Influence of thermal buoyancy on vertical tube bundle thermal density head predictions under transient conditions

    International Nuclear Information System (INIS)

    Lin, H.C.; Kasza, K.E.

    1984-01-01

    The thermal-hydraulic behavior of an LMFBR system under various types of plant transients is usually studied using one-dimensional (1-D) flow and energy transport models of the system components. Many of the transient events involve the change from a high to a low flow with an accompanying change in temperature of the fluid passing through the components which can be conductive to significant thermal bouyancy forces. Thermal bouyancy can exert its influence on system dynamic energy transport predictions through alterations of flow and thermal distributions which in turn can influence decay heat removal, system-response time constants, heat transport between primary and secondary systems, and thermal energy rejection at the reactor heat sink, i.e., the steam generator. In this paper the results from a comparison of a 1-D model prediction and experimental data for vertical tube bundle overall thermal density head and outlet temperature under transient conditions causing varying degrees of thermal bouyancy are presented. These comparisons are being used to generate insight into how, when, and to what degree thermal buoyancy can cause departures from 1-D model predictions

  20. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  1. Operational Markov Condition for Quantum Processes

    Science.gov (United States)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides with the classical one in the relevant limit. Our condition unifies all previously known definitions for quantum Markov processes by accounting for all potentially detectable memory effects. We then derive a family of measures of non-Markovianity with clear operational interpretations, such as the size of the memory required to simulate a process or the experimental falsifiability of a Markovian hypothesis.

  2. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  3. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  4. INDOOR THERMAL CONDITION OF FACTORY BUILDING IN BANGLADESH

    OpenAIRE

    Muhammed Abdullah Al Sayem Khan; Mohd. Hamdan Ahmad; Tareef Hayat Khan

    2011-01-01

    Bangladesh is a developing country and has a lot of factories for different products for local use and also export to abroad. Garments industries are one of the top most items of exported items. A huge number of populations are working in garments industries. But these factories are not well designed in sense of the thermal environment. Workers experiences sickness related to indoor environment. The productions of these factories are affected due to employees’ health condition. The research i...

  5. Numerical study on lithium titanate battery thermal response under adiabatic condition

    International Nuclear Information System (INIS)

    Sun, Qiujuan; Wang, Qingsong; Zhao, Xuejuan; Sun, Jinhua; Lin, Zijing

    2015-01-01

    Highlights: • The thermal behavior of lithium titanate battery during cycling was investigated. • The temperature rate in charging was less than that of discharging in the cycling. • The temperature difference was less than 0.02 °C at 0.5 C in adiabatic condition. • The temperature distribution and thermal runaway of the battery were predicted. - Abstract: To analyze the thermal behavior of 945 mA h lithium titanate battery during charging and discharging processes, the experimental and numerical studies are performed in this work. The cathode and anode of the 945 mA h lithium titanate soft package battery are the lithium nickel–cobalt–manganese-oxide and lithium titanate, respectively. In the experiment, an Accelerating Rate Calorimeter combined with battery cycler is employed to investigate the electrochemical–thermal behavior during charge–discharge cycling under the adiabatic condition. In numerical simulation, one electrochemical-thermal model is adopted to predict the thermal response and validated with the experimental results. From both experimental and simulated results, the profile of potential and current, the heat generation, the temperature, the temperature changing rate and the temperature distribution in the cell are obtained and thermal runaway is predicted. The analysis of the electrochemical and thermal behavior is beneficial for the commercial application of lithium titanate battery in the fields of electric vehicles and hybrid electric vehicles

  6. Multi-pass TIG welding process: simulating thermal SS304

    International Nuclear Information System (INIS)

    Harinadh, Vemanaboina; Akella, S.; Buddu, Ramesh Kumar; Edision, G.

    2015-01-01

    Welding is basic requirement in the construction of nuclear reactors, power plants and structural components development. A basic studies on various aspects of the welding is essential to ensure the stability and structural requirement conditions. The present study explored the thermo-mechanical analysis of the multipass welds of austenitic stainless steels which are widely used in fusion and fission reactor components development. A three-dimensional (3D) finite element model is developed to investigate thermally induced stress field during TIG welding process for SS304 material. The transient thermal analysis is performed to obtain the temperature history, which then is applied to the mechanical (stress) analysis. The present thermal analysis is conducted using element type DC3D8. This element type has a three dimensional thermal conduction capability and eight nodes. The 6 mm thick plated is welded with six numbers of passes. The geometry and meshed model with tetrahedral shape with volume sweep. The analysis is on TIG welding process using 3D-weld interface plug-in on ABAQUS-6.14. The results are reported in the present paper

  7. Chemical Changes in Proteins Produced by Thermal Processing.

    Science.gov (United States)

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  8. Effect of Galleries on Thermal Conditions of Urban Open Areas

    Directory of Open Access Journals (Sweden)

    Shahab Kariminia

    2016-06-01

    Full Text Available Computer simulations were performed by ENVI-met model along with physical measurements in two urban squares under hot summer conditions in Isfahan, central Iran. Each scenario concentrated on adding or extending galleries in each square. The results confirmed the role of galleries on thermal conditions; however, it was found that the effectiveness of this strategy depends on the square geometry. It presented higher efficiency for the small square with higher H/W ratio. This solution is advisable for smaller squares and when the peripheral parts are frequently used compared to the middle areas. Galleries are most efficient when allowing enough natural ventilation.

  9. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da.

    1984-01-01

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt

  10. Thermal conditions and functional requirements for molten fuel containment

    International Nuclear Information System (INIS)

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed

  11. Conditioned pain modulation dampens the thermal grill illusion.

    Science.gov (United States)

    Harper, D E; Hollins, M

    2017-10-01

    The thermal grill illusion (TGI) refers to the perception of burning heat and often pain that arises from simultaneous cutaneous application of innocuous warm and cool stimuli. This study utilized conditioned pain modulation (CPM) to help elucidate the TGI's underlying neural mechanisms, including the debated role of ascending nociceptive signals in generating the illusion. To trigger CPM, subjects placed the left hand in noxious cold (6 °C) water before placing the right volar forearm onto a thermal grill. Lower pain and unpleasantness ratings of the grill in this CPM run compared to those in a control run (i.e. 33 °C water) were taken as evidence of CPM. To determine whether CPM reduces noxious heat pain and illusory heat pain equally, an experimental group of subjects rated pain and unpleasantness of a grill consisting of innocuous alternating warm (42 °C) and cool (18 °C) bars, while a control group rated a grill with all bars controlled to a noxious temperature (45 °C). CPM produced significant and comparable reductions in pain, unpleasantness and perceived heat of both noxious heat and the TGI. This result suggests that the TGI results from signals in nociceptive dorsal horn convergent neurons, since CPM involves descending inhibition with high selectivity for this neuronal population. More broadly, CPM's ability to produce a shift in perceived thermal sensation of both noxious heat and the TGI from 'hot' to 'warm' implies that nociceptive signals generated by a cutaneous stimulus can contribute to its perceived thermal intensity. Conditioned pain modulation reduces the perceived painfulness, unpleasantness and heat of the thermal grill illusion and noxious heat similarly. The results have important theoretical implications for both types of pain. © 2017 European Pain Federation - EFIC®.

  12. The minimum work required for air conditioning process

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2006-01-01

    This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods

  13. Application of a thermally assisted mechanical dewatering process to biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, A.; Arlabosse, P. [Universite de Toulouse, Mines Albi, CNRS, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Centre RAPSODEE, Campus Jarlard, F-81013 Albi (France); Fernandez, A. [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31400 Toulouse (France); INRA, UMR792 Ingenierie des Systemes Biologiques et des Procedes, CNRS, UMR5504, F-31400 Toulouse (France)

    2011-01-15

    Thermally assisted mechanical dewatering (TAMD) is a new process for energy-efficient liquid/solids separation which enhances conventional-device efficiency. The main idea of this process is to supply a flow of heat in mechanical dewatering processes to favour the reduction of the liquid content. This is not a new idea but the proposed combination, especially the chosen operating conditions (T < 100 C and P < 3000 kPa) constitutes an original approach and a significant energy saving since the liquid is kept in liquid state. Response surface methodology was used to evaluate the effects of the processing parameters of TAMD on the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of TAMD. In this study, a two-factor central composite design was used to establish the optimum conditions for the TAMD of alfalfa biomass. Experiments were carried out on a laboratory compression cell. Experiments showed that the dewatering enhancement results only from thermal effects. With a moderate heat supply (T{sub piston} = 80 C), the dry solid content of the press cake can reach 66%, compared to 36% at ambient temperature. A significant regression model, describing changes on final dry solids content with respect to independent variables, was established with determination coefficient, R{sup 2}, greater than 88%. With an energy consumption of less than 150 kWh/m{sup 3}, the use of the TAMD process before a thermal drying process leads to an energy saving of at least 30% on the overall separation chain. (author)

  14. Radiation-thermal processes of conversion in the coals

    International Nuclear Information System (INIS)

    Mustafaev, I.I.

    2002-01-01

    Full text: The brief review, history, modern condition and bibliographic data on research of radiation-stimulated processes in coals are adduced in the report. Results of new researches of influence of gamma - radiation and accelerated electrons on pyrolysis, gasification, desulphurization, paramagnetism, adsorption and optical properties of coals in wide intervals of change of absorbed dose, dose rate, temperature, radiation type and other parameters of processes are stated. As object of researches Turkish (Yeni koy, Yatagan) and Russian (Siberia) coals were used. Specific peculiarities of influence of ionizing radiations on fossil fuels, bringing in change of their reactivity as result of destruction and polycondensation processes are considered. a)Pyrolysis: Under action of gamma-radiation and accelerated electrons the rate of thermal (t) pyrolysis grows and the ratio of radiation-thermal (rt) and thermal (t) processes: Wrt/ Wt depends on dose rate and temperature. By increase of dose rate the radiation effects grows, and at increase of temperature this effect is reduced. The influence of high rate heating of coals under pulls action of accelerated electrons on conversion degree and product composition has been established. The investigation regularities of formation liquid and gas products is resulted at radiation - thermal processing of mixtures of lignites with fuel oil. These experiments were conducted in flowing conditions in the interval of temperature T=350-500 degrees centigrade, power of the pulls accelerated electrons P=30-50 W, flow velocity of fuel oil 0,2-2 ml/minute. As a index of process were controlled conversion degree of coals, overall yield, contents and characteristic of liquid and gas products. The products of thermal treatment of these mixtures and also radiation-thermal treatment of separate components significantly less than radiation-thermal conversion of binary mixtures. It has been established that radiation effect has a positive

  15. Influence of thermal conditioning media on Charpy specimen test temperature

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range -100 to 100 degree C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs

  16. Thermal resistivity of tungsten grades under fusion relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, M.; Linke, J.; Pintsuk, G. [Forschungszentrum Juelich (Germany). EURATOM Association

    2010-05-15

    Controlled nuclear fusion on earth is a very promising but also a very challenging task. Fusion devices like ITER and DEMO are major steps on the way of solving the energy problems of the future. However, the realisation of such thermonuclear fusion reactors still needs high efforts in many areas of research. One of the most critical issues is the field of in - vessel materials and components and in particular the plasma facing material (PFM). This not only has to be compatible to the heat sink material being able to withstand thermal fatigue loading conditions during steady state heat loading (up to 20 MW/m{sup 2}) but also has to withstand extreme thermal loads during transient events. The latter are divided into normal and off normal events, such as plasma disruptions or vertical displacement events (VDEs), resulting in irreversible damage of the material. Therefore they have to be avoided in future fusion devices by an improved plasma control. In contrast, edge localized modes (ELMs) occur during normal operation and are the result of complex plasma configuration. In the next step experiment ITER they are generated with a frequency of {>=} 1 Hz and a duration of 200 - 500 {mu}s depositing energies of {<=} 1 MJ/m{sup 2}. One of the most promising materials for the application as PFM in particular in the divertor region is tungsten. Its main advantages are a high thermal conductivity, a high melting temperature, a low tritium inventory and a low erosion rate. However there are some drawbacks like a high ductile to brittle transitions temperature (DBTT), its high atomic number Z and the remarkable neutron irradiation induced activation and degradation of its mechanical properties. The main aim of future R and D will be to understand the mechanisms of thermal induced damages and subsequently to minimize these types of damages. Therefore various tungsten grades have to be tested under fusion relevant conditions, e.g. by electron, ion or plasma beam exposure; the

  17. Decomposability and convex structure of thermal processes

    Science.gov (United States)

    Mazurek, Paweł; Horodecki, Michał

    2018-05-01

    We present an example of a thermal process (TP) for a system of d energy levels, which cannot be performed without an instant access to the whole energy space. This TP is uniquely connected with a transition between some states of the system, that cannot be performed without access to the whole energy space even when approximate transitions are allowed. Pursuing the question about the decomposability of TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we determine the set of extremal points of these operations, as well as the minimal set of operations needed to perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the structure of the set depends on temperature, which is associated with the fact that TPs cannot increase deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We also connect the decomposability problem with detailed balance symmetry of an extremal TPs.

  18. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  19. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm -2 at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced damages

  20. Evaluation of combustion experiments conducted during the research and development project ``Mechanical-biological waste conditioning in combination with thermal processing of partial waste fractions``; Auswertung der Verbrennungsversuche zum Forschungs- und Entwicklungsvorhaben ``mechanisch-biologische Restmuellbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen``

    Energy Technology Data Exchange (ETDEWEB)

    Jager, J.; Lohf, A.; Herr, C. [Institut WAR, Darmstadt (Germany)

    1998-12-31

    The technical code on municipal waste makes specific demands on waste to be deposited at landfills which can only be met if mechanical-biological conditioning of waste as well as thermal processing of partial waste fractions are continued also in the future. But waste that has undergone mechanical or mechanical-biological conditioning presents different combustion properties from those of unconditioned waste. In this second stage of the research project, the thermal processability of waste having undergone mechanical or mechanical-biological conditioning was studied. Together with the results from the first project stage, where the throughput represented exclusively mechanically conditioned material, the results of the latter measuring campaigns comprehensively demonstrate possibilities for the thermal processing of partial waste fractions having undergone biological-mechanical conditioning, and inform on changes in plant performance. (orig.) [Deutsch] Um die in der TA-Siedlungsabfall an den abzulagernden Restmuell gestellten Deponieeingangsbedingungen zu erfuellen, muss neben einer mechanisch-biologischen Aufbereitung bei Teilfraktionen auch weiterhin eine thermische Behandlung eingeplant werden. Die Verbrennungseigenschaften von mechanisch oder mechanisch-biologisch vorbehandeltem Restmuell weichen allerdings von denen von unbehandeltem Restmuell ab. In dieser zweiten Projektphase des Forschungsvorhabens wurde eine Untersuchung bezueglich der thermischen Behandelbarkeit von mechanisch und auch biologisch vorbehandeltem Muell durchgefuehrt. Die Ergebnisse der Messkampagnen bilden zusammen mit den Ergebnissen der ersten Projektphase, in der ausschliesslich mechanisch vorbehandeltes Material durchgesetzt wurde, eine umfassende Darstellung ueber Moeglichkeiten und veraenderte Anlagenverhalten bei der thermischen Behandlung von Teilfraktionen aus der biologisch-mechanisch Vorbehandlung. (orig.)

  1. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  2. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  3. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions

    Science.gov (United States)

    Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.; Christidou, V.; Kittas, C.

    2016-03-01

    The aim of this paper was to study qualitatively and quantitatively the thermal perception and corresponding heat stress conditions that prevail in two schoolyards in a coastal city in central Greece. For this purpose, meteorological parameters (i.e., wind speed, temperature, relative humidity, solar radiation) were recorded at 70 and 55 measuring points in the schoolyards, from 14:00 to 15:30 local time, during May and June of 2011. The measuring points were distributed so as to get measurements at points (a) directly exposed to the sun, (b) under the shadow of trees and building structures, and (c) near building structures. Cluster analysis was applied to group observations and revealed places that are microclimatically homogeneous. Thermal perception and heat stress conditions were assessed by means of the physiologically equivalent temperature (PET, °C), and the results are presented in relevant charts. The impact of material's albedo, radiation's reflection by structures and obstacles, and different tree species on thermal perception and heat stress conditions was also assessed. The analysis showed that trees triggered a reduction of incident solar radiation that ranged between 79 and 94 % depending on tree's species, crown dimension, tree height, and leaf area. PET values were mainly affected by solar radiation and wind speed. Trees caused a reduction of up to 37 % in PET values, while a 1-m s-1 increase in wind speed triggered a reduction of 3.7-5.0 °C in PET value. The effective shading area in the two schoolyards was small, being 27.5 and 11 %. The results of this study could be exploited by urban planning managers when designing or improving the outdoor environment of a school complex.

  4. Commercial aspects of rapid thermal processing (RTP)

    International Nuclear Information System (INIS)

    Graham, R.G.; Huffman, D.R.

    1996-01-01

    In its broadest sense, Rapid Thermal Processing (RTP TM ) covers the conversion of all types of carbonaceous materials to liquid fuels, high quality fuel gases, and chemicals. Commercial RTP TM activities (including the actual implementation in the market as well as the short-term R and D initiatives) are much narrower in scope, and are focused on the production of high yields of light, non-tarry liquids (i.e. 'bio-crude') from biomass for fuel and chemical markets. RTP TM is not an incineration process. In commercial applications, it is simply the liquification of biomass by the addition of heat at atmospheric pressure in the absence of air or oxygen. There is no direct combustion in the conversion unit. In effect, wood is converted to liquid wood, bagasse to liquid bagasse, straw to liquid straw, etc. The liquid is pourable and pumpable at room temperature, and has approximately the same heating value as the feedstock entering the conversion unit. The typical liquid yield from a representative hardwood at 10 - 15 % moisture content is about 73 % by mass in industrial operations. In general, the yield increases slightly with an increase in feedstock cellulose composition and slightly decreases with an increase in feedstock lignin composition. However, the energy yield remains approximately constant since lignin-derived liquids have a higher energy content than cellulose-derived liquids. RTP TM was commercialised in 1989 after about 10 years of research, development and demonstration. Current product applications include boiler fuel and food chemicals. It is important to note that the primary liquid product or 'bio-crude' is essentially the same whether it is destined for the fuel or the food chemicals markets. refs

  5. Thermal properties of nuclear matter under the periodic boundary condition

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    1999-01-01

    We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)

  6. INDOOR THERMAL CONDITION OF FACTORY BUILDING IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Muhammed Abdullah Al Sayem Khan

    2011-12-01

    Full Text Available Bangladesh is a developing country and has a lot of factories for different products for local use and also export to abroad. Garments industries are one of the top most items of exported items. A huge number of populations are working in garments industries. But these factories are not well designed in sense of the thermal environment. Workers experiences sickness related to indoor environment. The productions of these factories are affected due to employees’ health condition. The research is done in two different methods. One is empirical data collection using thermal data loggers and the other is questionnaire survey on the spots for three factory buildings. The field study was conducted in four different months of the same year during winter and summer period. Expected findings of this research are that the indoor environment is not comfortable for works at day time during summer season. This research will help the factory workers in providing a comfortable thermal environment and also help the employers or factory owners to increase their production margin.

  7. Effect of thermal processing methods on the proximate composition ...

    African Journals Online (AJOL)

    The nutritive value of raw and thermal processed castor oil seed (Ricinus communis) was investigated using the following parameters; proximate composition, gross energy, mineral constituents and ricin content. Three thermal processing methods; toasting, boiling and soaking-and-boiling were used in the processing of the ...

  8. Thermal comfort study of plastics manufacturing industry in converting process

    Directory of Open Access Journals (Sweden)

    Sugiono Sugiono

    2017-09-01

    Full Text Available Thermal comfort is one of ergonomics factors that can create a significant impact to workers performance. For a better thermal comfort, several environment factors (air temperature, wind speed and relative humidity should be considered in this research. The object of the study is a building for converting process of plastics manufacturing industry located in Malang, Indonesia. The maximum air temperature inside the building can reach as high as 36°C. The result of this study shows that heat stress is dominantly caused by heat source from machine and wall building. The computational fluid dynamics (CFD simulation is used to show the air characteristic through inside the building. By using the CFD simulation, some scenarios of solution are successfully presented. Employees thermal comfort was investigated based on predicted mean vote model (PMV and predicted percentage of dissatisfied model (PPD. Existing condition gives PMV in range from 1.83 to 2.82 and PPD in range from 68.9 to 98%. Meanwhile, modification of ventilation and replacing ceiling material from clear glass into reflective clear glass gave significant impact to reduce PMV into range from 1.63 to 2.18 and PPD into range from 58.2 to 84.2%. In sort, new design converting building process has more comfortable for workers.

  9. Towards the control of car underhood thermal conditions

    International Nuclear Information System (INIS)

    Khaled, Mahmoud; Harambat, Fabien; Peerhossaini, Hassan

    2011-01-01

    The present paper reports an experimental study of the aerothermal phenomena in the vehicle underhood compartment as investigated by measuring temperature, convective heat flux, and radiative heat flux. Measurements are carried out on a passenger vehicle in wind tunnel S4 of Saint-Cyr-France. The underhood space is instrumented by 120 surface and air thermocouples and 20 fluxmeters. Measurements are performed for three thermal functioning conditions while the engine is in operation and the front wheels are positioned on the test facility with power-absorption-controlled rollers. In the thermal analysis, particular attention is given to measuring absorbed convective heat fluxes at component surfaces. It is shown that, in some components, the outside air entering the engine compartment (for cooling certain components) can in fact heat other components. This problem arises from the underhood architecture, specifically the positioning of some components downstream of warmer components in the same airflow. Optimized thermal management suggests placing these components further upstream or isolating them from the hot stream by deflectors. Given style constraints, however, the use of air deflectors is more suitable than underhood architectural changes. Much of the present paper is devoted to heat flux analysis of the specific thermal behaviours in the underhood compartment (especially the absorption of convective heat fluxes) and to a description of a new control approach exploiting air deflectors to optimize underhood aerothermal management. - Research highlights: → We present a physical analysis of particular underhood aerothermal behaviors. → In this analysis, convective heat flux absorption should be noted. → A new optimization procedure based on this physical analysis is proposed. → It entails airflow redistribution in the underhood through deflectors. → The new procedures are simple and easy to implement in the car underhood.

  10. Air conditioning for data processing system areas

    Directory of Open Access Journals (Sweden)

    Hernando Camacho García

    1996-09-01

    Full Text Available The appropiate selection of air conditioners for data processing system areas requires the knowledge of the environmental desing conditions, the air conditioning systems succssfully used computer and the cooling loads to handle. This work contains information about a wide variety of systems designed for computer room applications. a complete example of calculation to determine the amount of heat to be removed for satisfactory operation, is also included.

  11. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  12. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  13. Thermal characteristics during hydrogen fueling process of type IV cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chan [Department of Fire and Disaster Prevention, Kyungil University, 33, Buhori, Hayang, Kyungsan 712-701 (Korea); Lee, Seung Hoon; Yoon, Kee Bong [Department of Mechanical Engineering, Chung Ang University, 221, Huksuk, Dongjak, Seoul 156-756 (Korea)

    2010-07-15

    Temperature increase during hydrogen fueling process is a significant safety concern of a high pressure hydrogen vessel. Hence, thermal characteristics of a Type IV cylinder during hydrogen filling process need to be understood. In this study, a series of experiments were conducted to quantify the temperature change of the cylinder during hydrogen filling to 35 MPa. Computational fluid dynamics (CFD) analysis was also conducted to simulate the conditions of the experiments. The results predicted by the CFD analysis show reasonable agreement with the experiments and the discrepancy between the CFD results and experimental results decrease with higher initial gas pressures. The upper and the lower parts of the vessel showed a temperature difference in the vertical direction. The upper gas temperature was higher than that of the lower part due to the buoyancy effect in the vessel. The maximum gas temperature was higher than the maximum temperature allowed in the ISO safety code (85 C) for the case in which the vessel was pressurized from 0 MPa to 35 MPa. This work contributes to the understanding of the thermal flow characteristics of the hydrogen filling process and notes that additional efforts should be made to guarantee the safety of a type IV cylinder during the hydrogen fueling process. (author)

  14. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  15. Predicting thermal reference conditions for USA streams and rivers

    Science.gov (United States)

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most

  16. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  17. Rapid Thermal Processing to Enhance Steel Toughness.

    Science.gov (United States)

    Judge, V K; Speer, J G; Clarke, K D; Findley, K O; Clarke, A J

    2018-01-11

    Quenching and Tempering (Q&T) has been utilized for decades to alter steel mechanical properties, particularly strength and toughness. While tempering typically increases toughness, a well-established phenomenon called tempered martensite embrittlement (TME) is known to occur during conventional Q&T. Here we show that short-time, rapid tempering can overcome TME to produce unprecedented property combinations that cannot be attained by conventional Q&T. Toughness is enhanced over 43% at a strength level of 1.7 GPa and strength is improved over 0.5 GPa at an impact toughness of 30 J. We also show that hardness and the tempering parameter (TP), developed by Holloman and Jaffe in 1945 and ubiquitous within the field, is insufficient for characterizing measured strengths, toughnesses, and microstructural conditions after rapid processing. Rapid tempering by energy-saving manufacturing processes like induction heating creates the opportunity for new Q&T steels for energy, defense, and transportation applications.

  18. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...... effects are analyzed. The applied consolidation pressure is found to have a marked effect on the volumetric composition. A power-law relationship is found to well describe the found relations between the maximum obtainable fiber volume fraction and the consolidation pressure. The degree of fiber...

  19. Thermal physics of gas-thermal coatings formation processes. State of investigations

    International Nuclear Information System (INIS)

    Fialko, N.M.; Prokopov, V.G.; Meranova, N.O.; Borisov, Yu.S.; Korzhik, V.N.; Sherenkovskaya, G.P.; AN Ukrainskoj SSR, Kiev

    1993-01-01

    The analysis of state of investigations of gas-thermal coatings formation processes in presented. Classification of approaches to mathematical simulation of thermal phenomena studies is offered. The general characteristics of three main approaches to the analysis of heat transport processes is given. Some problems of mathematical simulation of single particle thermal interaction with solid surface are considered in details. The main physical assumptions are analysed

  20. Commercial aspects of rapid thermal processing (RTP)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R G; Huffman, D R [Ensyn Technologies Inc., Greely, ON (Canada)

    1997-12-31

    In its broadest sense, Rapid Thermal Processing (RTP{sup TM}) covers the conversion of all types of carbonaceous materials to liquid fuels, high quality fuel gases, and chemicals. Scientifically, it is based on the general premise that products which result from the extremely rapid application of heat to a given feedstock are inherently more valuable than those which are produced when heat is applied much more slowly over longer periods of processing time. Commercial RTP{sup TM} activities (including the actual implementation in the market as well as the short-term R and D initiatives) are much narrower in scope, and are focused on the production of high yields of light, non-tarry liquids (i.e. `bio-crude`) from biomass for fuel and chemical markets. Chemicals are of significant interest from an economical point of view since they typically have a higher value than fuel products. Liquid fuels are of interest for many reasons: (1) Liquid fuels do not have to be used immediately after production, such as is the case with hot combustion gases or combustible gases produced via gasification. This allows the decoupling of fuel production from the end-use (ie. the conversion of fuel to energy). (2) The higher energy density of liquid fuels vs. that of fuel gases and solid biomass results in a large reduction in the costs associated with storage and transportation. (3) The costs to retrofit an existing gas or oil fired combustion system are much lower than replacement with a solid fuel combustor. (4) In general, liquid fuel combustion is much more efficient, controllable, and cleaner than the combustion of solid fuels. (5) The production of liquid `bio-crude` permits the removal of ash from the biomass prior to combustion or other end-use applications. (6) Gas or liquid fuel-fired diesel or turbine engines cannot operate commercially on solid fuels. Although wood represents the biomass which is of principal commercial interest (including a vast array of wood residues

  1. Commercial aspects of rapid thermal processing (RTP)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.G.; Huffman, D.R. [Ensyn Technologies Inc., Greely, ON (Canada)

    1996-12-31

    In its broadest sense, Rapid Thermal Processing (RTP{sup TM}) covers the conversion of all types of carbonaceous materials to liquid fuels, high quality fuel gases, and chemicals. Scientifically, it is based on the general premise that products which result from the extremely rapid application of heat to a given feedstock are inherently more valuable than those which are produced when heat is applied much more slowly over longer periods of processing time. Commercial RTP{sup TM} activities (including the actual implementation in the market as well as the short-term R and D initiatives) are much narrower in scope, and are focused on the production of high yields of light, non-tarry liquids (i.e. `bio-crude`) from biomass for fuel and chemical markets. Chemicals are of significant interest from an economical point of view since they typically have a higher value than fuel products. Liquid fuels are of interest for many reasons: (1) Liquid fuels do not have to be used immediately after production, such as is the case with hot combustion gases or combustible gases produced via gasification. This allows the decoupling of fuel production from the end-use (ie. the conversion of fuel to energy). (2) The higher energy density of liquid fuels vs. that of fuel gases and solid biomass results in a large reduction in the costs associated with storage and transportation. (3) The costs to retrofit an existing gas or oil fired combustion system are much lower than replacement with a solid fuel combustor. (4) In general, liquid fuel combustion is much more efficient, controllable, and cleaner than the combustion of solid fuels. (5) The production of liquid `bio-crude` permits the removal of ash from the biomass prior to combustion or other end-use applications. (6) Gas or liquid fuel-fired diesel or turbine engines cannot operate commercially on solid fuels. Although wood represents the biomass which is of principal commercial interest (including a vast array of wood residues

  2. An optimal thermal condition for maximal chlorophyll extraction

    Directory of Open Access Journals (Sweden)

    Fu Jia-Jia

    2017-01-01

    Full Text Available This work describes an environmentally friendly process for chlorophyll extraction from bamboo leaves. Shaking water bath and ultrasound cleaner are adopted in this technology, and the influence of temperature of the water bath and ultrasonic cleaner is evaluated. Results indicated that there is an optimal condition for maximal yield of chlorophyll.

  3. Relation of the physical and hydrobiological processes of thermal pollution

    International Nuclear Information System (INIS)

    Szolnoky, Cs.

    1981-01-01

    The process of thermal pollution of the rivers is discussed from the point of the living-space of the waters. The effects of fresh water-cooled thermal power stations on components of the biosphere of the rivers are described following the cooling process step-by-step. The characteristics of the thermal pollution of the Danube and Tisza are discussed and the effect of the Paks Nuclear Power Plant on the Danube is estimated. The regulation of the thermal pollution in the form of limiting values is proposed. (R.J.)

  4. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Estimation of trigger condition for vapor explosion. JAERI's nuclear research promotion program, H10-027-1. Contract research

    International Nuclear Information System (INIS)

    Nariai, Hideki

    2002-03-01

    The experimental and analytical researches were conducted to study melted core material and coolant interaction including solidification and vapor explosion which is one of the most unidentified thermal hydraulic phenomena during sever accident of nuclear reactor. At first, the effect of the material properties on vapor explosion and solidification was examined to clarify the dominant factors for the spontaneous vapor explosion. Next, the interfacial phenomena of the high temperature melt material and violent boiling behavior of water at the interface was visually observed in the experiment. The interfacial phenomena were physically modeled. Finally, trigger phenomena from liquid-liquid contact to atomization were clarified through the forced collapse experiment of vapor film around a molten droplet by using pressure wave generation device. It is indicated by applying the results obtained in the present study to the actual reactor conditions that the possibility of the vapor explosion is extremely unlikely in the actual reactor accident sequence, since the surface of the molten uranium oxide is solidified in the water and the liquid-liquid contact can not be achieved. It should be noted that the decrease of the solidified temperature by metal compounds and the increase of the molten core temperature. (author)

  5. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Estimation of trigger condition for vapor explosion. JAERI's nuclear research promotion program, H10-027-1. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Hideki [Tsukuba Univ., Institute of Engineering Mechanics and Systems, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The experimental and analytical researches were conducted to study melted core material and coolant interaction including solidification and vapor explosion which is one of the most unidentified thermal hydraulic phenomena during sever accident of nuclear reactor. At first, the effect of the material properties on vapor explosion and solidification was examined to clarify the dominant factors for the spontaneous vapor explosion. Next, the interfacial phenomena of the high temperature melt material and violent boiling behavior of water at the interface was visually observed in the experiment. The interfacial phenomena were physically modeled. Finally, trigger phenomena from liquid-liquid contact to atomization were clarified through the forced collapse experiment of vapor film around a molten droplet by using pressure wave generation device. It is indicated by applying the results obtained in the present study to the actual reactor conditions that the possibility of the vapor explosion is extremely unlikely in the actual reactor accident sequence, since the surface of the molten uranium oxide is solidified in the water and the liquid-liquid contact can not be achieved. It should be noted that the decrease of the solidified temperature by metal compounds and the increase of the molten core temperature. (author)

  6. Gaussian Process-Mixture Conditional Heteroscedasticity.

    Science.gov (United States)

    Platanios, Emmanouil A; Chatzis, Sotirios P

    2014-05-01

    Generalized autoregressive conditional heteroscedasticity (GARCH) models have long been considered as one of the most successful families of approaches for volatility modeling in financial return series. In this paper, we propose an alternative approach based on methodologies widely used in the field of statistical machine learning. Specifically, we propose a novel nonparametric Bayesian mixture of Gaussian process regression models, each component of which models the noise variance process that contaminates the observed data as a separate latent Gaussian process driven by the observed data. This way, we essentially obtain a Gaussian process-mixture conditional heteroscedasticity (GPMCH) model for volatility modeling in financial return series. We impose a nonparametric prior with power-law nature over the distribution of the model mixture components, namely the Pitman-Yor process prior, to allow for better capturing modeled data distributions with heavy tails and skewness. Finally, we provide a copula-based approach for obtaining a predictive posterior for the covariances over the asset returns modeled by means of a postulated GPMCH model. We evaluate the efficacy of our approach in a number of benchmark scenarios, and compare its performance to state-of-the-art methodologies.

  7. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    2000-01-01

    The release of the majority of radionuclides from spent nuclear fuel under permanent disposal conditions will be controlled by the rate of dissolution of the UO 2 fuel matrix. In this manuscript the mechanism of the coupled anodic (fuel dissolution) and cathodic (oxidant reduction) reactions which constitute the overall fuel corrosion process is reviewed, and the many published observations on fuel corrosion under disposal conditions discussed. The primary emphasis is on summarizing the overall mechanistic behaviour and establishing the primary factors likely to control fuel corrosion. Included are discussions on the influence of various oxidants including radiolytic ones, pH, temperature, groundwater composition, and the formation of corrosion product deposits. The relevance of the data recorded on unirradiated UO 2 to the interpretation of spent fuel behaviour is included. Based on the review, the data used to develop fuel corrosion models under the conditions anticipated in Yucca Mountain (NV, USA) are evaluated

  8. Influence of winding construction on starter-generator thermal processes

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  9. Conditioning from an information processing perspective.

    Science.gov (United States)

    Gallistel, C R.

    2003-04-28

    The framework provided by Claude Shannon's [Bell Syst. Technol. J. 27 (1948) 623] theory of information leads to a quantitatively oriented reconceptualization of the processes that mediate conditioning. The focus shifts from processes set in motion by individual events to processes sensitive to the information carried by the flow of events. The conception of what properties of the conditioned and unconditioned stimuli are important shifts from the tangible properties to the intangible properties of number, duration, frequency and contingency. In this view, a stimulus becomes a CS if its onset substantially reduces the subject's uncertainty about the time of occurrence of the next US. One way to represent the subject's knowledge of that time of occurrence is by the cumulative probability function, which has two limiting forms: (1) The state of maximal uncertainty (minimal knowledge) is represented by the inverse exponential function for the random rate condition, in which the US is equally likely at any moment. (2) The limit to the subject's attainable certainty is represented by the cumulative normal function, whose momentary expectation is the CS-US latency minus the time elapsed since CS onset. Its standard deviation is the Weber fraction times the CS-US latency.

  10. Optimum Thermal Processing for Extended Shelf-Life (ESL) Milk.

    Science.gov (United States)

    Deeth, Hilton

    2017-11-20

    Extended shelf-life (ESL) or ultra-pasteurized milk is produced by thermal processing using conditions between those used for traditional high-temperature, short-time (HTST) pasteurization and those used for ultra-high-temperature (UHT) sterilization. It should have a refrigerated shelf-life of more than 30 days. To achieve this, the thermal processing has to be quite intense. The challenge is to produce a product that has high bacteriological quality and safety but also very good organoleptic characteristics. Hence the two major aims in producing ESL milk are to inactivate all vegetative bacteria and spores of psychrotrophic bacteria, and to cause minimal chemical change that can result in cooked flavor development. The first aim is focused on inactivation of spores of psychrotrophic bacteria, especially Bacillus cereus because some strains of this organism are pathogenic, some can grow at ≤7 °C and cause spoilage of milk, and the spores of some strains are very heat-resistant. The second aim is minimizing denaturation of β-lactoglobulin (β-Lg) as the extent of denaturation is strongly correlated with the production of volatile sulfur compounds that cause cooked flavor. It is proposed that the heating should have a bactericidal effect, B * (inactivation of thermophilic spores), of >0.3 and cause ≤50% denaturation of β-Lg. This can be best achieved by heating at high temperature for a short holding time using direct heating, and aseptically packaging the product.

  11. Optimum Thermal Processing for Extended Shelf-Life (ESL Milk

    Directory of Open Access Journals (Sweden)

    Hilton Deeth

    2017-11-01

    Full Text Available Extended shelf-life (ESL or ultra-pasteurized milk is produced by thermal processing using conditions between those used for traditional high-temperature, short-time (HTST pasteurization and those used for ultra-high-temperature (UHT sterilization. It should have a refrigerated shelf-life of more than 30 days. To achieve this, the thermal processing has to be quite intense. The challenge is to produce a product that has high bacteriological quality and safety but also very good organoleptic characteristics. Hence the two major aims in producing ESL milk are to inactivate all vegetative bacteria and spores of psychrotrophic bacteria, and to cause minimal chemical change that can result in cooked flavor development. The first aim is focused on inactivation of spores of psychrotrophic bacteria, especially Bacillus cereus because some strains of this organism are pathogenic, some can grow at ≤7 °C and cause spoilage of milk, and the spores of some strains are very heat-resistant. The second aim is minimizing denaturation of β-lactoglobulin (β-Lg as the extent of denaturation is strongly correlated with the production of volatile sulfur compounds that cause cooked flavor. It is proposed that the heating should have a bactericidal effect, B* (inactivation of thermophilic spores, of >0.3 and cause ≤50% denaturation of β-Lg. This can be best achieved by heating at high temperature for a short holding time using direct heating, and aseptically packaging the product.

  12. A statistical approach to define some tofu processing conditions

    Directory of Open Access Journals (Sweden)

    Vera de Toledo Benassi

    2011-12-01

    Full Text Available The aim of this work was to make tofu from soybean cultivar BRS 267 under different processing conditions in order to evaluate the influence of each treatment on the product quality. A fractional factorial 2(5-1 design was used, in which independent variables (thermal treatment, coagulant concentration, coagulation time, curd cutting, and draining time were tested at two different levels. The response variables studied were hardness, yield, total solids, and protein content of tofu. Polynomial models were generated for each response. To obtain tofu with desirable characteristics (hardness ~4 N, yield 306 g tofu.100 g-1 soybeans, 12 g proteins.100 g-1 tofu and 22 g solids.100 g-1 tofu, the following processing conditions were selected: heating until boiling plus 10 minutes in water bath, 2% dihydrated CaSO4 w/w, 10 minutes coagulation, curd cutting, and 30 minutes draining time.

  13. Rotating thermal flows in natural and industrial processes

    CERN Document Server

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  14. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    International Nuclear Information System (INIS)

    Adamopoulou, Theodora; Papadaki, Maria I.; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M.Sam

    2013-01-01

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH 2 OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g −1 . The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate

  15. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulou, Theodora [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Papadaki, Maria I., E-mail: mpapadak@cc.uoi.gr [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Kounalakis, Manolis [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Vazquez-Carreto, Victor; Pineda-Solano, Alba [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Wang, Qingsheng [Department of Fire Protection and Safety and Department of Chemical Engineering, Oklahoma State University, 494 Cordell South, Stillwater, OK 74078 (United States); Mannan, M.Sam [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2013-06-15

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH{sub 2}OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g{sup −1}. The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate.

  16. Analysis of thermal process of pozzolan production

    Directory of Open Access Journals (Sweden)

    Mejía De Gutiérrez, R.

    2004-06-01

    Full Text Available The objective of this study was evaluated the effect of heat treatment parameters on the pozzolanic activity of natural kaolin clays. The experimental design included three factors: kaolin type, temperature and time. Five types of Colombian kaolin clays were thermally treated from 400 to 1000 °C by 1, 2, and 3 hours. The raw materials and the products obtained were characterized by X-Ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR and Differential Thermal / Thermo gravimetric Analysis (DTAJ TGA. The pozzolanic activity of thermally treated samples according to chemical and mechanical tests was investigated.

    El objetivo de este estudio fue caracterizar las variables de producción de un metacaolín de alta reactividad puzolánica. El diseño experimental utilizó un modelo factorial que consideró tres factores: tipo de caolín (C, temperatura y tiempo. A partir del conocimiento de las fuentes de caolín y el contacto con proveedores y distribuidores del producto a nivel nacional, se seleccionaron cinco muestras representativas de arcillas caoliníticas, las cuales se sometieron a un tratamiento térmico entre 400 y 1.000 ºC (seis niveles de temperatura y tres tiempos de exposición, 1, 2 y 3 horas. Los caolines de origen y los productos obtenidos de cada proceso térmico fueron evaluados mediante técnicas de tipo físico y químico, difracción de rayos X, infrarrojo FTIR, y análisis térmico diferencial (OTA, TGA. Complementariamente se evalúa la actividad puzolánica, tanto química como mecánica, del producto obtenido a diferentes temperaturas de estudio.

  17. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...

  18. Kinetics of Thermally Activated Physical Processes in Disordered Media

    Directory of Open Access Journals (Sweden)

    Bertrand Poumellec

    2015-07-01

    Full Text Available We describe a framework for modeling the writing and erasure of thermally-distributed activated processes that we can specifically apply to UV-induced refractive index change, particularly in fibers. From experimental measurements (isochrons and/or isotherms, this framework allows to find the distribution function of the activation energy by providing only a constant, which can be determined by a simple variable change when a few assumptions are fulfilled. From this modeling, it is possible to know the complete evolution in time of the system. It is also possible to determine the annealing conditions for extending a lifetime. This approach can also be used for other physical quantities, such as photodarkening, stress relaxation, and luminescence decay, provided that it can be described by a distribution function.

  19. Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders

    Science.gov (United States)

    Surzhikov, A. P.; Galtseva, O. V.; Vasendina, E. A.; Vlasov, V. A.; Nikolaev, E. V.

    2016-02-01

    The paper considers the issues of industrial production of doped lithium ferrite powders by radiation-thermal method. A technological scheme of the processing line is suggested. The radiation-thermal technological scheme enables production of powders with technical characteristics close to the required ones under relatively low temperature annealing conditions without intermediate mixing. The optimal conditions of the radiation-thermal synthesis are achieved isothermally under irradiation by the electron beam with energy of 2.5 MeV in the temperature range of 700-750 0C within- 120 min.

  20. Can bread processing conditions alter glycaemic response?

    Science.gov (United States)

    Lau, Evelyn; Soong, Yean Yean; Zhou, Weibiao; Henry, Jeyakumar

    2015-04-15

    Bread is a staple food that is traditionally made from wheat flour. This study aimed to compare the starch digestibility of western baked bread and oriental steamed bread. Four types of bread were prepared: western baked bread (WBB) and oriental steamed bread (OSB), modified baked bread (MBB) made with the OSB recipe and WBB processing, and modified steamed bread (MSB) made with the WBB recipe and OSB processing. MBB showed the highest starch digestibility in vitro, followed by WBB, OSB and MSB. A similar trend was observed for glycaemic response in vivo. MBB, WBB, OSB and MSB had a glycaemic index of 75±4, 71±5, 68±5 and 65±4, respectively. Processing differences had a more pronounced effect on starch digestibility in bread, and steamed bread was healthier in terms of glycaemic response. The manipulation of processing conditions could be an innovative route to alter the glycaemic response of carbohydrate-rich foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Thermal denaturation of sunflower globulins in low moisture conditions

    International Nuclear Information System (INIS)

    Rouilly, A.; Orliac, O.; Silvestre, F.; Rigal, L.

    2003-01-01

    DSC analysis in pressure resisting pans of sunflower oil cake makes appear the endothermic peak of sunflower globulins denaturation. Its temperature decreases from 189.5 to 119.9 deg. C while the corresponding enthalpy increases from 2.6 to 3.3 J/g of sample, or from 6.7 to 12.2 J/g of dry protein, when the samples moisture content varies from 0 to 30.0% of the total weight. The plot of the denaturation temperature versus the moisture content is not linear but has a rounded global shape and seems to follow the hydration behavior of the proteins, modeled with the sorption isotherm. As it can be seen on scanning electron microscopy (SEM) micrographs, protein corpuscles 'melt' after such a thermal treatment and large aggregates form by coagulation. Moisture dependence of the 'fusion' temperature of native proteic organization, in low moisture conditions, offers so a new characterization method for the use of vegetable proteins in agro-materials

  2. Thermal denaturation of sunflower globulins in low moisture conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rouilly, A.; Orliac, O.; Silvestre, F.; Rigal, L

    2003-03-05

    DSC analysis in pressure resisting pans of sunflower oil cake makes appear the endothermic peak of sunflower globulins denaturation. Its temperature decreases from 189.5 to 119.9 deg. C while the corresponding enthalpy increases from 2.6 to 3.3 J/g of sample, or from 6.7 to 12.2 J/g of dry protein, when the samples moisture content varies from 0 to 30.0% of the total weight. The plot of the denaturation temperature versus the moisture content is not linear but has a rounded global shape and seems to follow the hydration behavior of the proteins, modeled with the sorption isotherm. As it can be seen on scanning electron microscopy (SEM) micrographs, protein corpuscles 'melt' after such a thermal treatment and large aggregates form by coagulation. Moisture dependence of the 'fusion' temperature of native proteic organization, in low moisture conditions, offers so a new characterization method for the use of vegetable proteins in agro-materials.

  3. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  4. Thermal food processing: new technologies and quality issues

    National Research Council Canada - National Science Library

    Sun, Da-Wen

    2012-01-01

    .... The editor of Thermal Food Processing: New Technologies and Quality Issues presents a comprehensive reference through authors that assist in meeting this challenge by explaining the latest developments and analyzing the latest trends...

  5. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  6. Simulation of Thermal-hydraulic Process in Reactor of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2014-01-01

    This paper provides the physical process in the reactor of High Temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM) and introduces the standard operation conditions. The FORTRAN code developed for the thermal hydraulic module of Full-Scale Simulator (FSS) of HTR-PM is used to simulate two typical operation transients including cold startup process and cold shutdown process. And the results were compared to the safety analysis code, namely TINTE. The good agreement indicates that the code is applicable for simulating the thermal-hydraulic process in reactor of HTR-PM. And for long time transient process, the code shows good stability and convergence. (author)

  7. Enthalpy estimation for thermal comfort and energy saving in air conditioning system

    International Nuclear Information System (INIS)

    Chu, C.-M.; Jong, T.-L.

    2008-01-01

    The thermal comfort control of a room must consider not only the thermal comfort level but also energy saving. This paper proposes an enthalpy estimation that is conducive for thermal comfort control and energy saving. The least enthalpy estimator (LEE) combines the concept of human thermal comfort with the theory of enthalpy to predict the load for a suitable setting pair in order to maintain more precisely the thermal comfort level and save energy in the air conditioning system

  8. Significant improvement in the thermal annealing process of optical resonators

    Science.gov (United States)

    Salzenstein, Patrice; Zarubin, Mikhail

    2017-05-01

    Thermal annealing performed during process improves the quality of the roughness of optical resonators reducing stresses at the periphery of their surface thus allowing higher Q-factors. After a preliminary realization, the design of the oven and the electronic method were significantly improved thanks to nichrome resistant alloy wires and chopped basalt fibers for thermal isolation during the annealing process. Q-factors can then be improved.

  9. Thermal science under extreme conditions. Proceedings of the annual congress of the French Society of Thermal science - SFT 2012, 29 May-1 June, Bordeaux-Talence

    International Nuclear Information System (INIS)

    Gendrhi, Philippe; Perrin, Bernard; Journeau, Christophe; MOST, Jean-Michel; Nicolai, Philippe

    2012-06-01

    This publication proposes the contributions made during plenary sessions, and those made on various themes (Multi-physical couplings combustion; Contacts and interfaces; Natural, hybrid and forced convection, Energy and the environment; High temperatures and high flows; Metrology and identification; Micro- and nano-thermal science; Radiation; Control of systems and thermal process; System thermal science; Life thermal science; Transfer in multi-phase media; Transfer in porous media). Among the plenary session conferences some authors more particularly addressed the following issues: Thermal science at the heart of thermonuclear fusion (presentation of thermonuclear fusion by magnetic confinement); Thermal science of severe accidents of nuclear reactors (study of the thermal science of corium-water interaction which could result in a thermal detonation, study of corium baths at the vessel bottom or in interaction with the vessel well concrete, proposition of technological solutions for corium recovery); Fusion by inertial confinement and associated energy exchanges (case of inertial confinement by power lasers, presentation of needed conditions to obtain an energetic gain, of different energy and heat transfers under extreme conditions)

  10. Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions

    Directory of Open Access Journals (Sweden)

    Florian Ries

    2017-08-01

    Full Text Available In the present paper, thermal transport and entropy production mechanisms in a turbulent round jet of compressed nitrogen at supercritical thermodynamic conditions are investigated using a direct numerical simulation. First, thermal transport and its contribution to the mixture formation along with the anisotropy of heat fluxes and temperature scales are examined. Secondly, the entropy production rates during thermofluid processes evolving in the supercritical flow are investigated in order to identify the causes of irreversibilities and to display advantageous locations of handling along with the process regimes favorable to mixing. Thereby, it turned out that (1 the jet disintegration process consists of four main stages under supercritical conditions (potential core, separation, pseudo-boiling, turbulent mixing, (2 causes of irreversibilities are primarily due to heat transport and thermodynamic effects rather than turbulence dynamics and (3 heat fluxes and temperature scales appear anisotropic even at the smallest scales, which implies that anisotropic thermal diffusivity models might be appropriate in the context of both Reynolds-averaged Navier–Stokes (RANS and large eddy simulation (LES approaches while numerically modeling supercritical fluid flows.

  11. Application of thermal technologies for processing of radioactive waste

    International Nuclear Information System (INIS)

    2006-12-01

    The primary objective of this publication is to provide an overview of the various thermal technologies for processing various solid, liquid, organic and inorganic radioactive waste streams. The advantages, limitations and operating experience of various thermal technologies are explained. This publication also goes beyond previous work on thermal processes by addressing the applicability of each technology to national or regional nuclear programmes of specific relative size (major advanced programmes, small to medium programmes, and emerging programmes with other nuclear applications). The most commonly used thermal processing technologies are reviewed, and the key factors influencing the selection of thermal technologies as part of a national waste management strategy are discussed. Accordingly, the structure and content of this publication is intended to assist decision-makers, regulators, and those charged with developing such strategies to identify and compare thermal technologies for possible inclusion in the mix of available, country-specific waste management processes. This publication can be used most effectively as an initial cutting tool to identify whether any given technology will best serve the local waste management strategy in terms of the waste generated, technical complexity, available economic resources, environmental impact considerations, and end product (output) of the technology. If multiple thermal technologies are being actively considered, this publication should be instrumental in comparing the technologies and assisting the user to reach an informed decision based on local needs, economics and priorities. A detailed set of conclusions is provided in Section 7

  12. Integration thermal processes through Pinch technology

    International Nuclear Information System (INIS)

    Rios H, Carlos Mario; Grisales Rincon, Rogelio; Cardona, Carlos Ariel

    2004-01-01

    This paper presents the techniques of heat integration used for process optimization, their fortresses and weaknesses during the implementation in several specific process are also discussed. It is focused to the pinch technology, explaining algorithms for method applications in the industry. The paper provides the concepts and models involved in different types of commercial software applying this method for energy cost reduction, both in design of new plants and improve of old ones. As complement to benefits of the energy cost reduction it is analysed other favorable aspects of process integration, as the emissions waste reduction and the combined heat end power systems

  13. Effects of source, water conditioning and thermal treatment on ...

    African Journals Online (AJOL)

    at 15 % moisture content amounting to 61.3 MJ was the optimum thermal treatment for achieving germination of 69 %. R. heudelotii seeds soaked in water for 15 days at moisture content of 24 % over dry weight followed by thermal treatment improved germination by 22 %. The highest germination of 79 % was obtained for ...

  14. Process and device for thermal energy production

    International Nuclear Information System (INIS)

    Mangus, J.D.

    1977-01-01

    The main aim of the invention is to create a heating cycle arrangement, for the energy production facilities as from liquid metal cooled nuclear reactors, that will stand up to the temperature changes of the heated steam at least as from the high pressure turbine. This arrangement includes a first system in which flows a liquid metal coolant between a heat source, a steam generator and a utilisation system on which flows a vaporisable fluid from this generator, passing through a first turbine, a heater, at least a second turbine and a condenser. The steam heated in the heater is heated by the liquid metal coolant. A preheater is located in the heated steam system upstream of the heater. This preheater is connected so as to heat the steam to a preset, practically constant value, before this steam to be heated enters the heater heated by the liquid metal. This arrangement reduces the thermal transitions in the superheater and the heater during load changes. In a preferential design mode, the steam from the steam generator is sent to a moisture extraction drum and the heater is exposed to the steam in this drum [fr

  15. Recent developments in numerical simulation techniques of thermal recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Tamim, M. [Bangladesh University of Engineering and Technology, Bangladesh (Bangladesh); Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain 17555 (United Arab Emirates); Farouq Ali, S.M. [University of Alberta, Alberta (Canada)

    2000-05-01

    Numerical simulation of thermal processes (steam flooding, steam stimulation, SAGD, in-situ combustion, electrical heating, etc.) is an integral part of a thermal project design. The general tendency in the last 10 years has been to use commercial simulators. During the last decade, only a few new models have been reported in the literature. More work has been done to modify and refine solutions to existing problems to improve the efficiency of simulators. The paper discusses some of the recent developments in simulation techniques of thermal processes such as grid refinement, grid orientation, effect of temperature on relative permeability, mathematical models, and solution methods. The various aspects of simulation discussed here promote better understanding of the problems encountered in the simulation of thermal processes and will be of value to both simulator users and developers.

  16. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    Science.gov (United States)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  17. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  18. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  19. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate

  20. Fuel corrosion processes under waste disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada)

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate.

  1. Significance of fundamental processes of radiation chemistry in hot atom chemical processes: electron thermalization

    International Nuclear Information System (INIS)

    Nishikawa, M.

    1984-01-01

    The author briefly reviews the current understanding of the course of electron thermalization. An outline is given of the physical picture without going into mathematical details. The analogy of electron thermalization with hot atom processes is taken as guiding principle in this paper. Content: secondary electrons (generation, track structure, yields); thermalization (mechanism, time, spatial distribution); behaviour of hot electrons. (Auth.)

  2. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  3. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  4. Processing of baby food using pressure-assisted thermal sterilization (PATS) and comparison with thermal treatment

    Science.gov (United States)

    Wang, Yubin; Ismail, Marliya; Farid, Mohammed

    2017-10-01

    Currently baby food is sterilized using retort processing that gives an extended shelf life. However, this type of heat processing leads to reduction of organoleptic and nutrition value. Alternatively, the combination of pressure and heat could be used to achieve sterilization at reduced temperatures. This study investigates the potential of pressure-assisted thermal sterilization (PATS) technology for baby food sterilization. Here, baby food (apple puree), inoculated with Bacillus subtilis spores was treated using PATS at different operating temperatures, pressures and times and was compared with thermal only treatment. The results revealed that the decimal reduction time of B. subtilis in PATS treatment was lower than that of thermal only treatment. At a similar spore inactivation, the retention of ascorbic acid of PATS-treated sample was higher than that of thermally treated sample. The results indicated that PATS could be a potential technology for baby food processing while minimizing quality deterioration.

  5. Power and thermal efficient numerical processing

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Numerical processing is at the core of applications in many areas ranging from scientific and engineering calculations to financial computing. These applications are usually executed on large servers or supercomputers to exploit their high speed, high level of parallelism and high bandwidth...

  6. Thermal condition of open KBS.3H tunnel

    International Nuclear Information System (INIS)

    Ikonen, Kari

    2008-12-01

    This report contains the temperature calculations of open KBS-3H type spent nuclear fuel repository, where the fuel canisters are disposed at horizontal position in horizontal tunnels according to the preliminary SKB (Swedish Nuclear Fuel and Waste Management Co) and Posiva plan. The objective of the study is to simulate the operation phase atmospheric conditions in open horizontal tunnels, where the KBS-3H type canister containers and distance blocks are installed. The analyses concern BWR type canisters. The analyses were made as heat conduction problem by taking into account radiation over gaps. A perforated steel plate surrounds a canister and bentonite. Heat transfer through a perforated plate and surrounding air gaps is a complicated three-dimensional heat transfer problem. To simplify the analysis, the gaps around a container and a distance block were taken into account by describing them by a homogenous layer having effective thermal properties. Convection due to natural circulation of humid air in horizontal gaps between the container and rock was not considered. Convection could reduce the temperature variation in the gap. On the other hand, the perforated steel plate has good conductivity and transfers quite well heat in horizontal gaps. Since the actual temperatures of disposal canisters depend in a complicated way on considered time and position, two extreme cases were studied to make the analyses easier. In the first extreme case an infinite queue of canisters are disposed simultaneously. This case overestimates temperatures, since the actual number of canisters is finite and they are not disposed simultaneously. In other extreme case only the first single canister and the first distance block are disposed. This case underestimates temperatures, since the actual number of canisters is greater than one and the canisters heat each other in later phase. The analysis showed that temperatures differ only a little from each other in the two extreme cases

  7. Thermal condition of open KBS.3H tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, Kari (VTT Processes (Finland))

    2008-12-15

    This report contains the temperature calculations of open KBS-3H type spent nuclear fuel repository, where the fuel canisters are disposed at horizontal position in horizontal tunnels according to the preliminary SKB (Swedish Nuclear Fuel and Waste Management Co) and Posiva plan. The objective of the study is to simulate the operation phase atmospheric conditions in open horizontal tunnels, where the KBS-3H type canister containers and distance blocks are installed. The analyses concern BWR type canisters. The analyses were made as heat conduction problem by taking into account radiation over gaps. A perforated steel plate surrounds a canister and bentonite. Heat transfer through a perforated plate and surrounding air gaps is a complicated three-dimensional heat transfer problem. To simplify the analysis, the gaps around a container and a distance block were taken into account by describing them by a homogenous layer having effective thermal properties. Convection due to natural circulation of humid air in horizontal gaps between the container and rock was not considered. Convection could reduce the temperature variation in the gap. On the other hand, the perforated steel plate has good conductivity and transfers quite well heat in horizontal gaps. Since the actual temperatures of disposal canisters depend in a complicated way on considered time and position, two extreme cases were studied to make the analyses easier. In the first extreme case an infinite queue of canisters are disposed simultaneously. This case overestimates temperatures, since the actual number of canisters is finite and they are not disposed simultaneously. In other extreme case only the first single canister and the first distance block are disposed. This case underestimates temperatures, since the actual number of canisters is greater than one and the canisters heat each other in later phase. The analysis showed that temperatures differ only a little from each other in the two extreme cases

  8. Safeguardability of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. K. (Tien K.); Lee, S. Y. (Sang Yoon); Burr, Tom; Russo, P. A. (Phyllis A.); Menlove, Howard O.; Kim, H. D.; Ko, W. I. (Won Il); Park, S. W.; Park, H. S.

    2004-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology since 1977 for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. By using of this technology, a significant reduction of the volume and heat load of spent fuel is expected, which would lighten the burden of final disposal in terms of disposal size, safety and economics. In the framework of collaboration agreement to develop the safeguards system for the ACP, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and the KAERI since 2002. In this study, the safeguardability of the ACP technology was examined for the pilot-scale facility. The process and material flows were conceptually designed, and the uncertainties in material accounting were estimated with international target values.

  9. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  10. Thermal process for immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.; Kupfer, M.J.; Schulz, W.W.

    1971-01-01

    The Thermalt process involves an exothermic, thermite-like reaction of aluminum metal with basalt, quartz sand, and radioactive waste. The resulting melt when solidified is a silicious stone-like material that is similar in chemical composition to basalt. The process utilizes low cost ingredients: basalt rock, which occurs naturally in the Hanford region, inexpensive aluminum metal such as aluminum scrap which need not be pure, and the waste which is predominately sodium nitrate salt. The waste itself along with the basalt provides the oxygen necessary for the reaction. The exothermic reaction provides the necessary heat to melt the ingredients thus eliminating the need for external heat sources such as furnaces which are necessary with most other melt methods. The final product is highly stable and essentially nonleachable; leach rates appear as low or lower than other melt products described in the literature. Initial studies indicate the process is effective for both low-level and high-level wastes. (U.S.)

  11. Thermal performance of marketed SDHW systems under laboratory conditions

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Fan, Jianhua

    A test facility for solar domestic hot water systems, SDHW systems was established at the Technical University of Denmark in 1992. During the period 1992-2012 21 marketed SDHW systems, 16 systems from Danish manufacturers and 5 systems from manufacturers from abroad, have been tested in the test...... comfort, avoiding simple errors, using the low flow principle and heat stores with a high degree of thermal stratification and by using components with good thermal characteristics....

  12. Thermal quenching of luminescence processes in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Duller, G.A.T.

    1995-01-01

    , which display very different behaviour. The first involves the internal transitions of common transition metal ions. The second is typical of centres not displaying excited states within the band gap that are likely to arise from direct recombination between the conduction band and the ground state......The technique of optically stimulated luminescence has important uses in the dose evaluation of irradiated feldspars. The luminescence process involves the eviction of electrons from donor traps, charge transfer through the conduction band, and recombination at acceptor sites; each...

  13. An Improvement in Thermal Modelling of Automated Tape Placement Process

    International Nuclear Information System (INIS)

    Barasinski, Anaies; Leygue, Adrien; Poitou, Arnaud; Soccard, Eric

    2011-01-01

    The thermoplastic tape placement process offers the possibility of manufacturing large laminated composite parts with all kinds of geometries (double curved i.e.). This process is based on the fusion bonding of a thermoplastic tape on a substrate. It has received a growing interest during last years because of its non autoclave abilities.In order to control and optimize the quality of the manufactured part, we need to predict the temperature field throughout the processing of the laminate. In this work, we focus on a thermal modeling of this process which takes in account the imperfect bonding existing between the different layers of the substrate by introducing thermal contact resistance in the model. This study is leaning on experimental results which inform us that the value of the thermal resistance evolves with temperature and pressure applied on the material.

  14. Thermal spraying of polyethylene-based polymers: Processing and characterization

    Science.gov (United States)

    Otterson, David Mark

    This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational

  15. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients

    Science.gov (United States)

    Cady, S. L.; Farmer, J. D.

    1996-01-01

    To enhance our ability to extract palaeobiological and palaeoenvironmental information from ancient thermal spring deposits, we have studied the processes responsible for the development and preservation of stromatolites in modern subaerial thermal spring systems in Yellowstone National Park (USA). We investigated specimens collected from silica-depositing thermal springs along the thermal gradient using petrographic techniques and scanning electron microscopy. Although it is known that thermophilic cyanobacteria control the morphogenesis of thermal spring stromatolites below 73 degrees C, we have found that biofilms which contain filamentous thermophiles contribute to the microstructural development of subaerial geyserites that occur along the inner rims of thermal spring pools and geyser effluents. Biofilms intermittently colonize the surfaces of subaerial geyserites and provide a favoured substrate for opaline silica precipitation. We have also found that the preservation of biotically produced microfabrics of thermal spring sinters reflects dynamic balances between rates of population growth, decomposition of organic matter, silica deposition and early diagenesis. Major trends in preservation of thermophilic organisms along the thermal gradient are defined by differences in the mode of fossilization, including replacement, encrustation and permineralization.

  16. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    Science.gov (United States)

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  17. Combination of irradiation and thermal processing

    International Nuclear Information System (INIS)

    Hozova, B.; Sorman, L.

    1991-01-01

    Recently, the technology and methods of food preservation have searched for ever better and less destructive methods and procedures which prolong the shelf-life of the primary products so that they do not undergo degradation processes. New non-traditional methods of preservation, as well as the procedures based on scientifically controlled combination of two or more preservation methods give increasingly higher chances for the improvement of the quality of canned products. Such combinations should reduce the intensity of the adverse effects of separately applied preservation methods. The aim is to achieve synergic or additive effects of the decisive factors, which would ensure microbiological adequacy and storage stability of canned foods, including maximum retention of their nutritional and sensory characteristics. If the published scientific papers dealing with non-traditional methods of food preservation and application of combination of preservation methods are evaluated, it can be seen that there is no work which provides an analysis of this problem. The use of ionizing radiation can reduce the number of microorganisms on foods and doses of up to 10 kGy are not considered to present any toxicological risks. However results have not been satisfactory mainly due to the interaction of ionizing radiation with the components of the irradiated foods. It is desirable to reduce the side effects of radiosterilizing doses by reducing the dose and using another method to complete the processing. Special attention is paid particularly to the use of combinations of heat and irradiation, since this is suitable mainly for the preservation of meat products but can also be applied to vegetables and other products. (author)

  18. Processing Conditions, Rice Properties, Health and Environment

    Directory of Open Access Journals (Sweden)

    Nobutaka Nakamura

    2011-06-01

    Full Text Available Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR, germinated brown rice (GBR and partially-milled rice (PMR contains more health beneficial food components compared to the well milled rice (WMR. Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled, and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society.

  19. Value conditioning modulates visual working memory processes.

    Science.gov (United States)

    Thomas, Paul M J; FitzGibbon, Lily; Raymond, Jane E

    2016-01-01

    Learning allows the value of motivationally salient events to become associated with stimuli that predict those events. Here, we asked whether value associations could facilitate visual working memory (WM), and whether such effects would be valence dependent. Our experiment was specifically designed to isolate value-based effects on WM from value-based effects on selective attention that might be expected to bias encoding. In a simple associative learning task, participants learned to associate the color of tinted faces with gaining or losing money or neither. Tinted faces then served as memoranda in a face identity WM task for which previously learned color associations were irrelevant and no monetary outcomes were forthcoming. Memory was best for faces with gain-associated tints, poorest for faces with loss-associated tints, and average for faces with no-outcome-associated tints. Value associated with 1 item in the WM array did not modulate memory for other items in the array. Eye movements when studying faces did not depend on the valence of previously learned color associations, arguing against value-based biases being due to differential encoding. This valence-sensitive value-conditioning effect on WM appears to result from modulation of WM maintenance processes. (c) 2015 APA, all rights reserved).

  20. Millisecond photo-thermal process on significant improvement of supercapacitor’s performance

    International Nuclear Information System (INIS)

    Wang, Kui; Wang, Jixiao; Wu, Ying; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-01-01

    Graphical abstract: A high way for charge transfer is created by a millisecond photo-thermal process which could decrease contact resistance among nanomaterials and improve the electrochemical performances. - Highlights: • Improve conductivity among nanomaterials with a millisecond photo-thermal process. • The specific capacitance can increase about 25% with an photo-thermal process. • The circle stability and rate capability can be improved above 10% with photo-thermal process. • Provide a new way that create electron path to improve electrochemical performance. - Abstract: Supercapacitors fabricated with nanomaterials usually have high specific capacitance and excellent performance. However, the small size of nanomaterials renders a considerable limitation of the contact area among nanomaterials, which is harmful to charge carrier transfer. This fact may hinder the development and application of nanomaterials in electrochemical storage systems. Here, a millisecond photo-thermal process was introduced to create a charge carries transfer path to decrease the contact resistance among nanomaterials, and enhance the electrochemical performance of supercapacitors. Polyaniline (PANI) nanowire, as a model nanomaterial, was used to modify electrodes under different photo-thermal process conditions. The modified electrodes were characterized by scanning electronic microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and the results were analysed by equivalent circuit simulation. These results demonstrate that the photo-thermal process can alter the morphology of PANI nanowires, lower the charge transfer resistances and thus improve the performance of electrodes. The specific capacitance increase of the modified electrodes is about 25%. The improvement of the circle stability and rate capability are above 10%. To the best of our knowledge, this is the first attempt on research the effect of photo-thermal process on the conductivity

  1. Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.

    Science.gov (United States)

    Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S

    2017-05-03

    During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.

  2. A dynamic switching strategy for air-conditioning systems operated in light-thermal-load conditions

    International Nuclear Information System (INIS)

    Lin, Jin-Long; Yeh, T.-J.; Hwang, Wei-Yang

    2009-01-01

    Recently, modern air-conditioners have begun to incorporate variable-speed compressors and variable-opening expansion valves, together with feedback control to improve the performance and energy efficiency. However, for the compressor there usually exists a low-speed limit below which its speed can not be continuously modulated unless it is completely turned off. When the air-conditioning system is operated in light-thermal-load conditions, the low-speed limit causes the compressor to run in an on-off manner which can significantly degrade the performance and efficiency. In this paper, a dynamic switching strategy is proposed for such scenarios. The strategy is basically an integration of a cascading control structure, an intuitive switching strategy, and a dynamic compensator. While the control structure provides the nominal performance, the intuitive switching strategy and the dynamic compensator together can account for the compressor's low-speed limitation. Theoretical analysis reveals that when the output matrix of the dynamic compensator is chosen properly, the proposed strategy can effectively reduce the output error caused by the on-off operation of the compressor. Experiments also demonstrate that the proposed strategy can simultaneously provide better regulation for the indoor temperature and improve the energy efficiency at steady state.

  3. Thermal Analysis of a Power Conditioning Unit for a Howitzer

    Science.gov (United States)

    2009-08-01

    contact resistance Interface ( mA2 -K / W) AL-PCB 0.000389 AL-AL (thermal grease) 0.000083 AL-power chips 0.003891 AL-power chips (thermal grease...1120 W/ mA2 . Figure 3 shows the view of the box that the source of the solar radiation sees. The inside of the box is cluttered with cables, wiring, and...temperature (130°F) and a conservative convective heat transfer coefficient (5 W/ mA2 ) to all of the outer surfaces. These outer surfaces would

  4. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  5. Synthesis of functional nanocrystallites through reactive thermal plasma processing

    Directory of Open Access Journals (Sweden)

    Takamasa Ishigaki and Ji-Guang Li

    2007-01-01

    Full Text Available A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. The synthesis of nanosized titanium oxide powders was performed by the oxidation of solid and liquid precursors. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate, and therefore the particle size, of the resultant powders. The experimental results are well supported by numerical analysis on the effects of the quench gas on the flow pattern and temperature field of the thermal plasma as well as on the trajectory and temperature history of the particles. The plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nanosized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing.

  6. Process for fabricating composite material having high thermal conductivity

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  7. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  8. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.; German Aerospace Center

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  9. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    velocity and turbulent intensity were measured and draft rate levels calculated in the room. Manikin-based equivalent temperature (MBET) was determined by two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants’ thermal comfort. The results......The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  10. Simple method of calculating the transient thermal performance of composite material and its applicable condition

    Institute of Scientific and Technical Information of China (English)

    张寅平; 梁新刚; 江忆; 狄洪发; 宁志军

    2000-01-01

    Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.

  11. Integrating Thermal Tools Into the Mechanical Design Process

    Science.gov (United States)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  12. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  13. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  14. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  15. Harvesting thermal fluctuations: Activation process induced by a nonlinear chain in thermal equilibrium

    International Nuclear Information System (INIS)

    Reigada, Ramon; Sarmiento, Antonio; Romero, Aldo H.; Sancho, J. M.; Lindenberg, Katja

    2000-01-01

    We present a model in which the immediate environment of a bistable system is a molecular chain which in turn is connected to a thermal environment of the Langevin form. The molecular chain consists of masses connected by harmonic or by anharmonic springs. The distribution, intensity, and mobility of thermal fluctuations in these chains is strongly dependent on the nature of the springs and leads to different transition dynamics for the activated process. Thus, all else (temperature, damping, coupling parameters between the chain and the bistable system) being the same, the hard chain may provide an environment described as diffusion-limited and more effective in the activation process, while the soft chain may provide an environment described as energy-limited and less effective. The importance of a detailed understanding of the thermal environment toward the understanding of the activation process itself is thus highlighted. (c) 2000 American Institute of Physics

  16. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    Science.gov (United States)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  17. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    Science.gov (United States)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  18. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements

    Directory of Open Access Journals (Sweden)

    Georgeta Voicu

    2016-02-01

    Full Text Available In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h followed by rapid cooling in air. The resulted material (clinker was ground for one hour in a laboratory planetary mill (v = 150 rot/min, in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD, scanning electron microscopy (SEM, infrared spectroscopy (FT-IR and thermal analysis (DTA-DTG-TG. The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1 was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2. The compressive strength values were 18.5 MPa (MTA1 and 22.9 MPa (MTA2. Both MTA cements showed good bioactivity (assessed by an in vitro test, good cytocompatibility and stimulatory effect on the proliferation of cells.

  19. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique

    International Nuclear Information System (INIS)

    Taheri-Garavand, Amin; Ahmadi, Hojjat; Omid, Mahmoud; Mohtasebi, Seyed Saeid; Mollazade, Kaveh; Russell Smith, Alan John; Carlomagno, Giovanni Maria

    2015-01-01

    This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator. - Highlights: • Intelligent fault diagnosis of cooling radiator using thermal image processing. • Thermal image processing in a multiscale representation structure by 2D-DWT. • Selection features based on a hybrid system that uses both GA and ANN. • Application of ANN as classifier. • Classification accuracy of fault detection up to 93.83%

  20. Evaluation of supercapacitors for space applications under thermal vacuum conditions

    Science.gov (United States)

    Chin, Keith C.; Green, Nelson W.; Brandon, Erik J.

    2018-03-01

    Commercially available supercapacitor cells from three separate vendors were evaluated for use in a space environment using thermal vacuum (Tvac) testing. Standard commercial cells are not hermetically sealed, but feature crimp or double seam seals between the header and the can, which may not maintain an adequate seal under vacuum. Cells were placed in a small vacuum chamber, and cycled between three separate temperature set points. Charging and discharging of cells was executed following each temperature soak, to confirm there was no significant impact on performance. A final electrical performance check, visual inspection and mass check following testing were also performed, to confirm the integrity of the cells had not been compromised during exposure to thermal cycling under vacuum. All cells tested were found to survive this testing protocol and exhibited no significant impact on electrical performance.

  1. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  2. Dry processing versus dense medium processing for preparing thermal coal

    CSIR Research Space (South Africa)

    De Korte, GJ

    2013-10-01

    Full Text Available of the final product. The separation efficiency of dry processes is, however, not nearly as good as that of dense medium and, as a result, it is difficult to effectively beneficiate coals with a high near-dense content. The product yield obtained from some raw...

  3. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  4. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  5. Starch hydrolysis under low water conditions: a conceptual process design

    NARCIS (Netherlands)

    Veen, van der M.E.; Veelaert, S.; Goot, van der A.J.; Boom, R.M.

    2006-01-01

    A process concept is presented for the hydrolysis of starch to glucose in highly concentrated systems. Depending on the moisture content, the process consists of two or three stages. The two-stage process comprises combined thermal and enzymatic liquefaction, followed by enzymatic saccharification.

  6. Thermal decomposition of uranylnitrate by the Spray-Dryer process

    International Nuclear Information System (INIS)

    Wildhagen, G.R.S.; Silva, G.C. da

    1988-01-01

    The proposal of this work consist in the thermal decomposition of uranyl nitrate solutions by the Spray-Dryer process aiming the production of highly reactive fluidized UO 3 , adequate for the use in posterior of reduction to UO 2 and hydrofluorination to UF 4 , in a fluidized bed for the obtention of UF 6 in the cicle of nuclear fuels. (author) [pt

  7. Experimental research of solid waste drying in the process of thermal processing

    Science.gov (United States)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  8. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    Science.gov (United States)

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  9. Treatment of waste salt from the advanced spent fuel conditioning process (II) : optimum immobilization condition

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    Since zeolite is known to be stable at a high temperature, it has been reported as a promising immobilization matrix for waste salt. The crystal structure of dehydrated zeolite A breaks down above 1060 K, resulting in the formation of an amorphous solid and re-crystallization to beta-Cristobalite. This structural degradation depends on the existence of chlorides. When contacted to HCl, zeolite 4A is not stable even at 473 K. The optimum consolidation condition for LiCl salt waste from the oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) has been studied using zeolite A since 2001. Actually the constituents of waste salt are water-soluble. And, alkali halides are known to be readily radiolyzed to yield interstitial halogens and metal colloids. For disposal in a geological repository, the waste salt must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are leach resistance and waste form durability. In this work, we prepared some samples with different mixing ratios of LiCl salt to zeolite A, and then compared some characteristics such as thermal stability, salt occlusion, free chloride content, leach resistance, mixing effect, etc

  10. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  11. Three-party quantum teleportation using thermal states in Heisenberg XX model with open boundary condition

    International Nuclear Information System (INIS)

    Bhan, Jaemi; Kwon, Younghun

    2007-01-01

    Recently Yeo showed that thermal states in Heisenberg XX model with periodic boundary condition could be used for three-party quantum teleportation. However it is hard to implement the periodic boundary condition in spin chain. So instead of imposing the periodic boundary condition, we consider open boundary condition in Heisenberg XX model and investigate the possibility of using thermal states in Heisenberg XX model with open boundary condition. Using this way, we find the best fidelity conditions to three known protocols in three-party quantum teleportation. It turns out that the best fidelity in every protocol would be 23

  12. Thermal operations conditions in a national waste terminal storage facility

    International Nuclear Information System (INIS)

    1976-09-01

    Some of the major technical questions associated with the burial of radioactive high-level wastes in geologic formations are related to the thermal environments generated by the waste and the impact of this dissipated heat on the surrounding environment. The design of a high level waste storage facility must be such that the temperature variations that occur do not adversely affect operating personnel and equipment. The objective of this investigation was to assist OWI by determining the thermal environment that would be experienced by personnel and equipment in a waste storage facility in salt. Particular emphasis was placed on determining the maximum floor and air temperatures with and without ventilation in the first 30 years after waste emplacement. The assumed facility design differs somewhat from those previously analyzed and reported, but many of the previous parametric surveys are useful for comparison. In this investigation a number of 2-dimensional and 3-dimensional simulations of the heat flow in a repository have been performed on the HEATING5 and TRUMP heat transfer codes. The representative repository constructs used in the simulations are described, as well as the computational models and computer codes. Results of the simulations are presented and discussed. Comparisons are made between the recent results and those from previous analyses. Finally, a summary of study limitations, comparisons, and conclusions is given

  13. Process and Economic Optimisation of a Milk Processing Plant with Solar Thermal Energy

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    . Based on the case study of a dairy factory, where first a heat integration is performed to optimise the system, a model for solar thermal process integration is developed. The detailed model is based on annual hourly global direct and diffuse solar radiation, from which the radiation on a defined......This work investigates the integration of solar thermal systems for process energy use. A shift from fossil fuels to renewable energy could be beneficial both from environmental and economic perspectives, after the process itself has been optimised and efficiency measures have been implemented...... surface is calculated. Based on hourly process stream data from the dairy factory, the optimal streams for solar thermal process integration are found, with an optimal thermal storagetank volume. The last step consists of an economic optimisation of the problem to determine the optimal size...

  14. Unvented thermal process for treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Nelson, P.A.; Swift, W.M.

    1993-01-01

    An Unvented Thermal Process is being developed that does not release gases during the thermal treatment operation. The main unit in the process is a fluidized-bed processor containing a bed of calcined limestone (CaO), which reacts with gases given off during oxidation of organic materials. Gases that will react with CaO include CO 2 , SO 2 , HCI, HBr, and other acid gases. Water vapor formed during the oxidation process is carried off with the fluidizing gas and is removed in a condenser. Oxygen is added to the remaining gas (mainly nitrogen), which is recirculated to the oxidizer. The most flexible arrangement of equipment involves separating the processor into two units: An oxidizer, which may be any of a variety of types including standard incinerators, and a carbon dioxide sorber

  15. Process optimization of friction stir welding based on thermal models

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup

    2010-01-01

    This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed....... Also an optimization problem based on a microstructure model is solved, allowing the hardness distribution in the plate to be optimized. The use of purely thermal models represents a simplification of the real process; nonetheless, it shows the applicability of the optimization methods considered...

  16. Performance of thermal solvent process in Athabasca reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan [Marathon Oil (Canada)

    2011-07-01

    In the petroleum industry, due to depletion of conventional resources and high demand operators are looking into heavy oil and bitumen production. Different recovery methods exist, some of them based on heating the reservoir and others on the use of solvent. Thermal solvent process is a combination of both: a small amount of heat is used to maintain a solvent vapor phase in the reservoir. This process has advantages, solvent is mostly recycled which increases bitumen recovery efficiency and reduces the need for fresh solvent, but it also poses challenges, such as maintaining a vapor chamber and the fact that solvent solubility might be affected by heating. The aim of this paper is to discuss these issues. Simulations and field tests were conducted on bitumen in the the Athabasca region. This paper presented a thermal solvent process and its application's results in Athabasca reservoir.

  17. Do sex, body size and reproductive condition influence the thermal preferences of a large lizard? A study in Tupinambis merianae.

    Science.gov (United States)

    Cecchetto, Nicolas Rodolfo; Naretto, Sergio

    2015-10-01

    Body temperature is a key factor in physiological processes, influencing lizard performances; and life history traits are expected to generate variability of thermal preferences in different individuals. Gender, body size and reproductive condition may impose specific requirements on preferred body temperatures. If these three factors have different physiological functions and thermal requirements, then the preferred temperature may represent a compromise that optimizes these physiological functions. Therefore, the body temperatures that lizards select in a controlled environment may reflect a temperature that maximizes their physiological needs. The tegu lizard Tupinambis merianae is one of the largest lizards in South America and has wide ontogenetic variation in body size and sexual dimorphism. In the present study we evaluate intraspecific variability of thermal preferences of T. merianae. We determined the selected body temperature and the rate at which males and females attain their selected temperature, in relation to body size and reproductive condition. We also compared the behavior in the thermal gradient between males and females and between reproductive condition of individuals. Our study show that T. merianae selected body temperature within a narrow range of temperatures variation in the laboratory thermal gradient, with 36.24±1.49°C being the preferred temperature. We observed no significant differences between sex, body size and reproductive condition in thermal preferences. Accordingly, we suggest that the evaluated categories of T. merianae have similar thermal requirements. Males showed higher rates to obtain heat than females and reproductive females, higher rates than non-reproductive ones females. Moreover, males and reproductive females showed a more dynamic behavior in the thermal gradient. Therefore, even though they achieve the same selected temperature, they do it differentially. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Conditional Granger Causality of Diffusion Processes

    Czech Academy of Sciences Publication Activity Database

    Wahl, B.; Feudel, U.; Hlinka, Jaroslav; Wächter, M.; Peinke, J.; Freund, J.A.

    2017-01-01

    Roč. 90, č. 10 (2017), č. článku 197. ISSN 1434-6028 R&D Projects: GA ČR GA13-23940S; GA MZd(CZ) NV15-29835A Institutional support: RVO:67985807 Keywords : Granger causality * stochastic process * diffusion process * nonlinear dynamical systems Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 1.461, year: 2016

  19. Transient thermal modeling of permafrost conditions in Southern Norway

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2013-04-01

    Full Text Available Thermal modeling is a powerful tool to infer the temperature regime of the ground in permafrost areas. We present a transient permafrost model, CryoGrid 2, that calculates ground temperatures according to conductive heat transfer in the soil and in the snowpack. CryoGrid 2 is forced by operational air temperature and snow-depth products for potential permafrost areas in Southern Norway for the period 1958 to 2009 at 1 km2 spatial resolution. In total, an area of about 80 000 km2 is covered. The model results are validated against borehole temperatures, permafrost probability maps from "bottom temperature of snow" measurements and inventories of landforms indicative of permafrost occurrence. The validation demonstrates that CryoGrid 2 can reproduce the observed lower permafrost limit to within 100 m at all validation sites, while the agreement between simulated and measured borehole temperatures is within 1 K for most sites. The number of grid cells with simulated permafrost does not change significantly between the 1960s and 1990s. In the 2000s, a significant reduction of about 40% of the area with average 2 m ground temperatures below 0 °C is found, which mostly corresponds to degrading permafrost with still negative temperatures in deeper ground layers. The thermal conductivity of the snow is the largest source of uncertainty in CryoGrid 2, strongly affecting the simulated permafrost area. Finally, the prospects of employing CryoGrid 2 as an operational soil-temperature product for Norway are discussed.

  20. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  1. Influence of Absorption of Thermal Radiation in the Surface Water Film on the Characteristics and Ignition Conditions

    Directory of Open Access Journals (Sweden)

    Syrodoy Samen V.

    2016-01-01

    Full Text Available The results of the mathematical modeling of homogeneous particle ignition process of coal-water fuel covered with water film have been presented in article. The set co-occurring physical (inert heating, evaporation of water film and thermochemical (thermal degradation, inflammation process have been considered. Heat inside the film has been considered as the model of radiation-conductive heat transfer. Delay times have been determined according to the results of numerical modeling of the ignition. It has been shown that the water film can have a significant impact on performance and the ignition conditions. It has been found that heating main fuel layer occurs in the process of evaporation of water film. For this reason, the next (after the evaporation of the water film thermal preparation (coal heating, thermal decomposition of the organic part of the fuel and inflammation occur faster.

  2. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  3. Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pairojpiriyakul, Thirasak; Soottitantawat, Apinan; Arpornwichanop, Amornchai; Assabumrungrat, Suttichai [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University (Thailand); Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University (Thailand); Wiyaratn, Wisitsree [Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut' s University of Technology Thonburi (Thailand); Laosiripojana, Navadol [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Croiset, Eric [Department of Chemical Engineering, University of Waterloo (Canada)

    2010-10-15

    Thermodynamic analysis of hydrogen production from glycerol under thermal neutral conditions is studied in this work. Heat requirement from the process can be achieved from the exothermic reaction of glycerol with oxygen in air fed to the system. Two modes of operation for air feeding are considered including (i) Single-feed mode in which air is fed in combination with water and glycerol to the reformer, and (ii) Split-feed mode in which air and part of glycerol is fed to a combustor in order to generate heat. The thermal neutral conditions are considered for two levels including Reformer and System levels. It was found that the H{sub 2} yield from both modes is not significantly different at the Reformer level. In contrast, the difference becomes more pronounced at the System level. Single-feed and Split-feed modes offer high H{sub 2} yield in low (600-900 K) and high (900-1200 K) temperature ranges, respectively. The maximum H{sub 2} yields are 5.67 (water to glycerol ratio, WGR = 12, oxygen to glycerol ratio, OGR = 0.37, T = 900 K, Split-feed mode), and 3.28 (WGR = 3, OGR = 1.40, T = 900 K, Single-feed mode), for the Reformer and System levels, respectively. The difference between H{sub 2} yields in both levels mainly arises from the huge heat demand for preheating feeds in the System level, and therefore, a higher amount of air is needed to achieve the thermal neutral condition. Split-feed mode is a favorable choice in term of H{sub 2} purity because the gas product is not diluted with N{sub 2} from the air. The use of pure O{sub 2} and afterburner products (ABP) stream were also considered at the System level. The maximum H{sub 2} yield becomes 3.75 (WGR = 5.21, OGR = 1.28, T = 900 K, Split-feed mode) at thermal neutral condition when utilizing heat from the ABP stream. Finally comparisons between the different modes and levels are addressed in terms of yield of by-products, and carbon formation. (author)

  4. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  5. Investigation on the Temporal Surface Thermal Conditions for Thermal Comfort Researches Inside A Vehicle Cabin Under Summer Season Climate

    Directory of Open Access Journals (Sweden)

    Zhang Wencan

    2016-01-01

    Full Text Available With the proposes of improving occupant's thermal comfort and reducing the air conditioning power consumption, the present research carried out a comprehensive study on the surface thermal conductions and their influence parameters. A numerical model was built considering the transient conduction, convective and radiation heat transfer inside a vehicle cabin. For more accurate simulation of the radiation heat transfer behaviors, the radiation was considered into two spectral bands (short wave and long wave radiation, and the solar radiation was calculated by two solar fluxes (beam and diffuse solar radiation. An experiment was conducted to validate the numerical approach, showing a good agreement with the surface temperature. The surface thermal conditions were numerically simulated. The results show that the solar radiation is the most important factor in determining the internal surface thermal conditions. Effects of the window glass properties and the car body surface conditions were investigated. The numerical calculation results indicate that reducing the transitivity of window glass can effectively reduce the internal surface temperature. And the reflectivity of the vehicle cabin also has an important influence on the surface temperature, however, it's not so obvious as comparison to the window glass.

  6. Theoretical and experimental investigations of thermal conditions of household biogas plant

    Directory of Open Access Journals (Sweden)

    Zhelykh Vasil

    2016-06-01

    Full Text Available The construction of domestic continuous bioreactor is proposed. The modeling of thermal modes of household biogas plant using graph theory was done. The correction factor taking into account with the influence of variables on its value was determined. The system of balance equations for the desired thermal conditions in the bioreactor was presented.

  7. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  8. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    International Nuclear Information System (INIS)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios

  9. Constraining the thermal conditions of impact environments through integrated low-temperature thermochronometry and numerical modeling

    Science.gov (United States)

    Kelly, N. M.; Marchi, S.; Mojzsis, S. J.; Flowers, R. M.; Metcalf, J. R.; Bottke, W. F., Jr.

    2017-12-01

    Impacts have a significant physical and chemical influence on the surface conditions of a planet. The cratering record is used to understand a wide array of impact processes, such as the evolution of the impact flux through time. However, the relationship between impactor size and a resulting impact crater remains controversial (e.g., Bottke et al., 2016). Likewise, small variations in the impact velocity are known to significantly affect the thermal-mechanical disturbances in the aftermath of a collision. Development of more robust numerical models for impact cratering has implications for how we evaluate the disruptive capabilities of impact events, including the extent and duration of thermal anomalies, the volume of ejected material, and the resulting landscape of impacted environments. To address uncertainties in crater scaling relationships, we present an approach and methodology that integrates numerical modeling of the thermal evolution of terrestrial impact craters with low-temperature, (U-Th)/He thermochronometry. The approach uses time-temperature (t-T) paths of crust within an impact crater, generated from numerical simulations of an impact. These t-T paths are then used in forward models to predict the resetting behavior of (U-Th)/He ages in the mineral chronometers apatite and zircon. Differences between the predicted and measured (U-Th)/He ages from a modeled terrestrial impact crater can then be used to evaluate parameters in the original numerical simulations, and refine the crater scaling relationships. We expect our methodology to additionally inform our interpretation of impact products, such as lunar impact breccias and meteorites, providing robust constraints on their thermal histories. In addition, the method is ideal for sample return mission planning - robust "prediction" of ages we expect from a given impact environment enhances our ability to target sampling sites on the Moon, Mars or other solar system bodies where impacts have strongly

  10. Thermal comfort of heterogeneous and dynamic indoor conditions - An overview

    NARCIS (Netherlands)

    Mishra, A.K.; Loomans, M.G.L.C.; Hensen, J.L.M.

    2016-01-01

    The buildings sector, being a leading energy consumer, would need to lead in conservation efforts as well. There is a growing consensus that variability in indoor conditions can be acceptable to occupants, improve comfort perception, and lower building energy consumption. This work endeavours to

  11. Effects of Operating Conditions on Gas Release Thermal ...

    African Journals Online (AJOL)

    The gas release rates and the flame length of the potential jet fires were initially estimated using Simplex Source Term Models which pay limited attention to operating conditions. Finally a more detailed follow-up study, accounting for a range of practical factors was conducted. A number of useful risk management metrics ...

  12. Thermal decomposition of hydroxylamine: isoperibolic calorimetric measurements at different conditions.

    Science.gov (United States)

    Adamopoulou, Theodora; Papadaki, Maria I; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M Sam

    2013-06-15

    Thermal decomposition of hydroxylamine, NH2OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130-150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30-80 ml solutions containing 1.4-20 g of pure hydroxylamine (2.8-40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3-5 kJ g(-1). The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    Science.gov (United States)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this

  14. Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. [Architectural Engineering Department, KFUPM, Dhahran 31261 (Saudi Arabia)

    2009-06-15

    In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately. (author)

  15. Evaluation of Haney-Type Surface Thermal Boundary Conditions Using a Coupled Atmosphere and Ocean Model

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    2001-01-01

    ... (Russell et al,, 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference DeltaT by a relaxation coefficient K...

  16. Role of thermal analysis in uranium oxide fuel fabrication process

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Yadav, R.B.

    2006-01-01

    The present paper discusses the application of thermal analysis, particularly, differential thermal analysis (Dta) at various stages of fuel fabrication process. The useful role of Dta in knowing the decomposition pattern and calcination temperature of Adu along with de-nitration temperature is explained. The decomposition pattern depends upon the type of drying process adopted for wet ADU cake (ADU C). Also, the paper highlights the utility of DTA in determining the APS and SSA of UO 2+x and U 3 O 8 powders as an alternate technique. Further, the temperature difference (ΔT max ) between the two exothermic peaks obtained in UO 2+x powder oxidation is related to sintered density of UO 2 pellets. (author)

  17. Titanium contacts to graphene: process-induced variability in electronic and thermal transport

    Science.gov (United States)

    Freedy, Keren M.; Giri, Ashutosh; Foley, Brian M.; Barone, Matthew R.; Hopkins, Patrick E.; McDonnell, Stephen

    2018-04-01

    Contact resistance (R C) is a major limiting factor in the performance of graphene devices. R C is sensitive to the quality of the interface and the composition of the contact, which are affected by the graphene transfer process and contact deposition conditions. In this work, a linear correlation is observed between the composition of Ti contacts, characterized by x-ray photoelectron spectroscopy, and the Ti/graphene contact resistance measured by the transfer length method. We find that contact composition is tunable via deposition rate and base pressure. Reactor base pressure is found to effect the resultant contact resistance. The effect of contact deposition conditions on thermal transport measured by time-domain thermoreflectance is also reported. Interfaces with higher oxide composition appear to result in a lower thermal boundary conductance. Possible origins of this thermal boundary conductance change with oxide composition are discussed.

  18. Modelling aging effects on a thermal cycling absorption process column

    Energy Technology Data Exchange (ETDEWEB)

    Laquerbe, C.; Contreras, S. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France); Baudouin, O. [ProSim SA, Stratege Bat. A, BP 27210, F-31672 Labege Cedex (France); Demoment, J. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France)

    2008-07-15

    Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)

  19. Processes in N-channel MOSFETs during postirradiation thermal annealing

    International Nuclear Information System (INIS)

    Pejovic, M.; Jaksic, A.; Ristic, G.; Baljosevic, B.

    1997-01-01

    The processes during postirradiation thermal annealing of γ-ray irradiated n-channel MOSFETs with both wet and dry gate oxides are investigated. For both analysed technologies, a so-called ''latent'' interface trap buildup is observed, followed at very late annealing times by the decrease in the interface-trap density. A model is proposed that successfully accounts for the experimental results. Implications of observed effects for total dose hardness assurance test methods implementation are discussed. (author)

  20. Thermally-driven Coupled THM Processes in Shales

    Science.gov (United States)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation

  1. The importance of thermal loading conditions to waste package performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-10-01

    Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period

  2. A Controlled Agitation Process for Improving Quality of Canned Green Beans during Agitation Thermal Processing.

    Science.gov (United States)

    Singh, Anika; Pratap Singh, Anubhav; Ramaswamy, Hosahalli S

    2016-06-01

    This work introduces the concept of a controlled agitation thermal process to reduce quality damage in liquid-particulate products during agitation thermal processing. Reciprocating agitation thermal processing (RA-TP) was used as the agitation thermal process. In order to reduce the impact of agitation, a new concept of "stopping agitations after sufficient development of cold-spot temperature" was proposed. Green beans were processed in No. 2 (307×409) cans filled with liquids of various consistency (0% to 2% CMC) at various frequencies (1 to 3 Hz) of RA-TP using a full-factorial design and heat penetration results were collected. Corresponding operator's process time to impart a 10-min process lethality (Fo ) and agitation time (AT) were calculated using heat penetration results. Accordingly, products were processed again by stopping agitations as per 3 agitation regimes, namely; full time agitation, equilibration time agitation, and partial time agitation. Processed products were photographed and tested for visual quality, color, texture, breakage of green beans, turbidity, and percentage of insoluble solids in can liquid. Results showed that stopping agitations after sufficient development of cold-spot temperatures is an effective way of reducing product damages caused by agitation (for example, breakage of beans and its leaching into liquid). Agitations till one-log temperature difference gave best color, texture and visual product quality for low-viscosity liquid-particulate mixture and extended agitations till equilibration time was best for high-viscosity products. Thus, it was shown that a controlled agitation thermal process is more effective in obtaining high product quality as compared to a regular agitation thermal process. © 2016 Institute of Food Technologists®

  3. Advanced Signal Processing for Thermal Flaw Detection; TOPICAL

    International Nuclear Information System (INIS)

    VALLEY, MICHAEL T.; HANSCHE, BRUCE D.; PAEZ, THOMAS L.; URBINA, ANGEL; ASHBAUGH, DENNIS M.

    2001-01-01

    Dynamic thermography is a promising technology for inspecting metallic and composite structures used in high-consequence industries. However, the reliability and inspection sensitivity of this technology has historically been limited by the need for extensive operator experience and the use of human judgment and visual acuity to detect flaws in the large volume of infrared image data collected. To overcome these limitations new automated data analysis algorithms and software is needed. The primary objectives of this research effort were to develop a data processing methodology that is tied to the underlying physics, which reduces or removes the data interpretation requirements, and which eliminates the need to look at significant numbers of data frames to determine if a flaw is present. Considering the strengths and weakness of previous research efforts, this research elected to couple both the temporal and spatial attributes of the surface temperature. Of the possible algorithms investigated, the best performing was a radiance weighted root mean square Laplacian metric that included a multiplicative surface effect correction factor and a novel spatio-temporal parametric model for data smoothing. This metric demonstrated the potential for detecting flaws smaller than 0.075 inch in inspection areas on the order of one square foot. Included in this report is the development of a thermal imaging model, a weighted least squares thermal data smoothing algorithm, simulation and experimental flaw detection results, and an overview of the ATAC (Automated Thermal Analysis Code) software that was developed to analyze thermal inspection data

  4. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    International Nuclear Information System (INIS)

    Clark, E.A.

    1992-01-01

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns

  5. Thermal homogeneity of plastication processes in single-screw extruders

    Science.gov (United States)

    Bu, L. X.; Agbessi, Y.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    Single-screw plastication, used in extrusion and in injection moulding, is a major way of processing commodity thermoplastics. During the plastication phase, the polymeric material is melted by the combined effects of shear-induced self-heating (viscous dissipation) and heat conduction coming from the barrel. In injection moulding, a high level of reliability is usually achieved that makes this process ideally suited to mass market production. Nonetheless, process fluctuations still appear that make moulded part quality control an everyday issue. In this work, we used a combined modelling of plastication, throughput calculation and laminar dispersion, to investigate if, and how, thermal fluctuations could propagate along the screw length and affect the melt homogeneity at the end of the metering section. To do this, we used plastication models to relate changes in processing parameters to changes in the plastication length. Moreover, a simple model of throughput calculation is used to relate the screw geometry, the polymer rheology and the processing parameters to get a good estimate of the mass flow rate. Hence, we found that the typical residence time in a single screw is around one tenth of the thermal diffusion time scale. This residence time is too short for the dispersion coefficient to reach a steady state, but too long to be able to neglect radial thermal diffusion and resort to a purely convective solution. Therefore, a full diffusion/convection problem has to be solved with a base flow described by the classic pressure and drag velocity field. Preliminary results already show the major importance of the processing parameters in the breakthrough curve of an arbitrary temperature fluctuation at the end of the metering section of injection moulding screw. When the flow back-pressure is high, the temperature fluctuation is spread more evenly with time, whereas a pressure drop in the flow will results in a breakthrough curve which presents a larger peak of

  6. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  7. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  8. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2017-02-01

    Full Text Available Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC. This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  9. Thermal behavior of hazardous and radioactive metals under incineration conditions

    International Nuclear Information System (INIS)

    Seo, Y.C.; Kang, K.H.; Yang, H.C.; Park, H.H.

    1993-01-01

    The behavior of heavy metals and their effects on air pollution at temperatures up to 900 C under incineration conditions were observed. Pure metals and their oxide compounds, except arsenic, were very stable in the tested range of temperatures. However, the chlorides of some metals were evaporated or decomposed to result in gas emission to the environment at lower temperatures, while other chloride compounds were converted into their stable oxide forms. Evaporation of such compounds were analyzed using an equation of maximum evaporation flux based on the kinetic theory with a fitted parameter, α, the fraction of impinging gas molecules to the condensing surface. Values of α, were obtained in the range of 10 -6 to 10 -9 . Such volatile metal compounds and arsenic must be carefully controlled

  10. Significant thermal energy reduction in lactic acid production process

    International Nuclear Information System (INIS)

    Mujtaba, Iqbal M.; Edreder, Elmahboub A.; Emtir, Mansour

    2012-01-01

    Lactic acid is widely used as a raw material for the production of biodegradable polymers and in food, chemical and pharmaceutical industries. The global market for lactic acid is expected to reach 259 thousand metric tons by the year 2012. For batch production of lactic acid, the traditional process includes the following steps: (i) esterification of impure lactic acid with methanol in a batch reactor to obtain methyl lactate (ester), (ii) separation of the ester in a batch distillation, (iii) hydrolysis of the ester with water in a batch reactor to produce lactic acid and (iv) separation of lactic acid (in high purity) in a batch distillation. Batch reactive distillation combines the benefit of both batch reactor and batch distillation and enhances conversion and productivity (Taylor and Krishna, 2000 ; Mujtaba and Macchietto, 1997 ). Therefore, the first and the last two steps of the lactic acid production process can be combined together in batch reactive distillation () processes. However, distillation (batch or continuous) is an energy intensive process and consumes large amount of thermal energy (via steam). This paper highlights how significant (over 50%) reduction in thermal energy consumption can be achieved for lactic acid production process by carefully controlling the reflux ratio but without compromising the product specification. In this paper, only the simultaneous hydrolysis of methyl lactate ester and the separation of lactic acid using batch reactive distillation is considered.

  11. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods

    Science.gov (United States)

    Sohrabi, Salman; Liu, Yaling

    2018-03-01

    Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the

  12. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods.

    Science.gov (United States)

    Sohrabi, Salman; Liu, Yaling

    2018-03-01

    Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the

  13. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model......The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...

  14. Determining the thermal and physicals properties of oil processing products

    Directory of Open Access Journals (Sweden)

    Viktoria I. Kryvda

    2015-03-01

    Full Text Available In the last decades both technological process’ improvement and primary energy resources saving are the main tasks of oil refineries. Using various oil products does impose an accurate knowledge of their properties. The dispersion analysis applied makes possible to construct a model simulating the primary oil refining products’ and raw materials’ thermal physical properties. As a result of data approximation there were obtained polynomials with coefficients differing from attributable to the studied oil products fractions. The research represents graphic dependences of thermal physical properties on temperature values for diesel oil fraction. The linear character of density and calorific capacity dependencies from temperature is represented with a proportional error in calculations. The relative minimum error is below 2% that confirms the implemented calculations’ adequacy. The resulting model can be used in calculations for further technological process improvements.

  15. Pulsed electric fields for pasteurization: defining processing conditions

    Science.gov (United States)

    Application of pulsed electric fields (PEF) technology in food pasteurization has been extensively studied. Optimal PEF treatment conditions for maximum microbial inactivation depend on multiple factors including PEF processing conditions, production parameters and product properties. In order for...

  16. Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions.

    Science.gov (United States)

    Yang, Man; Chen, Xianfeng; Wang, Yujie; Yuan, Bihe; Niu, Yi; Zhang, Ying; Liao, Ruoyu; Zhang, Zumin

    2017-09-05

    In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H 2 O, NH 3 , N 2 O, NO, NO 2 and HNO 3 , while in nitrogen, H 2 O, NH 3 , NO and HNO 3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Design parameters of a non-air-conditioned cinema hall for thermal comfort under arid-zone climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, G.N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Lugani, N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Singh, A.K. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies)

    1993-01-01

    In this communication, a design of a cinema hall suitable for climatic conditions in an arid zone has been presented. The various cooling techniques, namely evaporative cooling, wind tower, ventilation/infiltration and natural cooling, have been incorporated in the design to achieve thermal comfort during the period of operation. The design parameters have been optimized on the basis of numerical computations after establishing an energy balance for each component of a cinema hall. It is observed that cooling treatment, i.e., a wind tower with a cooling pool on the roof provides reasonable thermal comfort inside the enclosure. (orig.)

  18. Thermal analysis on x-ray tube for exhaust process

    Science.gov (United States)

    Kumar, Rakesh; Rao Ratnala, Srinivas; Veeresh Kumar, G. B.; Shivakumar Gouda, P. S.

    2018-02-01

    It is great importance in the use of X-rays for medical purposes that the dose given to both the patient and the operator is carefully controlled. There are many types of the X- ray tubes used for different applications based on their capacity and power supplied. In present thesis maxi ray 165 tube is analysed for thermal exhaust processes with ±5% accuracy. Exhaust process is usually done to remove all the air particles and to degasify the insert under high vacuum at 2e-05Torr. The tube glass is made up of Pyrex material, 95%Tungsten and 5%rhenium is used as target material for which the melting point temperature is 3350°C. Various materials are used for various parts; during the operation of X- ray tube these waste gases are released due to high temperature which in turn disturbs the flow of electrons. Thus, before using the X-ray tube for practical applications it has to undergo exhaust processes. Initially we build MX 165 model to carry out thermal analysis, and then we simulate the bearing temperature profiles with FE model to match with test results with ±5%accuracy. At last implement the critical protocols required for manufacturing processes like MF Heating, E-beam, Seasoning and FT.

  19. Chemical and physical reactions under thermal plasmas conditions

    International Nuclear Information System (INIS)

    Fauchais, P.; Vardelle, A.; Vardelle, M.; Coudert, J.F.

    1987-01-01

    Basic understanding of the involved phenomena lags far behind industrial development that requires now a better knowledge of the phenomena to achieve a better control of the process allowing to improve the quality of the products. Thus the authors try to precise what is their actual knowledge in the fields of: plasma generators design; plasma flow models with the following key points: laminar or turbulent flow, heat transfer to walls, 2D or 3D models, non equilibrium effects, mixing problems when chemical reactions are to be taken into account with very fast kinetics, electrode regions, data for transport properties and kinetic rates; nucleation problems; plasma flow characteristics measurements: temperature or temperatures and population of excited states (automatized emission spectroscopy, LIF, CARS) as well as flow velocity (LDA with small particles, Doppler effects...); plasma and particles momentum and heat transfer either with models taking into account particles size and injection velocity distributions, heat propagation, vaporization, Kundsen effect, turbulences ... or with measurements: particles velocity and flux distributions (Laser Anemometry) as well as surface temperature distributions (two colour pyrometry in flight statistical or not)

  20. On the determination of the thermal comfort conditions of a metropolitan city underground railway.

    Science.gov (United States)

    Katavoutas, George; Assimakopoulos, Margarita N; Asimakopoulos, Dimosthenis N

    2016-10-01

    Although the indoor thermal comfort concept has received increasing research attention, the vast majority of published work has been focused on the building environment, such as offices, residential and non-residential buildings. The present study aims to investigate the thermal comfort conditions in the unique and complex underground railway environment. Field measurements of air temperature, air humidity, air velocity, globe temperature and the number of passengers were conducted in the modern underground railway of Athens, Greece. Environmental monitoring was performed in the interior of two types of trains (air-conditioned and forced air ventilation cabins) and on selected platforms during the summer period. The thermal comfort was estimated using the PMV (predicted mean vote) and the PPD (predicted percentage dissatisfied) scales. The results reveal that the recommended thermal comfort requirements, although at relatively low percentages are met only in air-conditioned cabins. It is found that only 33% of the PPD values in air-conditioned cabins can be classified in the less restrictive comfort class C, as proposed by ISO-7730. The thermal environment is "slightly warm" in air-conditioned cabins and "warm" in forced air ventilation cabins. In addition, differences of the thermal comfort conditions on the platforms are shown to be associated with the depth and the design characteristics of the stations. The average PMV at the station with small depth is 0.9 scale points higher than that of the station with great depth. The number of passengers who are waiting at the platforms during daytime reveals a U-shaped pattern for a deep level station and an inverted course of PMV for a small depth station. Further, preliminary observations are made on the distribution of air velocity on the platforms and on the impact of air velocity on the thermal comfort conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy

    Science.gov (United States)

    Yang, Ling

    The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta

  2. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    Science.gov (United States)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  3. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  4. Sol-gel process for thermal reactor fuel fabrication

    International Nuclear Information System (INIS)

    Mukerjee, S.K.

    2008-01-01

    Full text: Sol-gel processes have revolutionized conventional ceramic technology by providing extremely fine and uniform powders for the fabrication of ceramics. The use of this technology for nuclear fuel fabrication has also been explored in many countries. Unlike the conventional sol-gel process, sol-gel process for nuclear fuels tries to eliminate the preparation of powders in view of the toxic nature of the powders particularly those of plutonium and 233 U. The elimination of powder handling thus makes this process more readily amenable for use in glove boxes or for remote handling. In this process, the first step is the preparation of microspheres of the fuel material from a solution which is then followed by vibro-compaction of these microspheres of different sizes to obtain the required smear density of fuel inside a pin. The maximum achievable packing density of 92 % makes it suitable for fast reactors only. With a view to extend the applicability of sol-gel process for thermal reactor fuel fabrication the concept of converting the gel microspheres derived from sol-gel process, to the pellets, has been under investigation for several years. The unique feature of this process is that it combines the advantages of sol-gel process for the preparation of fuel oxide gel microspheres of reproducible quality with proven irradiation behavior of the pellet fuel. One of the important pre-requisite for the success of this process is the preparation of soft oxide gel microspheres suitable for conversion to dense pellets free from berry structure. Studies on the internal gelation process, one of the many variants of sol-gel process, for obtaining soft oxide gel microspheres suitable for gel pelletisation is now under investigation at BARC. Some of the recent findings related to Sol-Gel Microsphere Pelletisation (SGMP) in urania-plutonia and thoria-urania systems will be presented

  5. Analysis of Zinc 65 Contamination after Vacuum Thermal Process

    International Nuclear Information System (INIS)

    Korinko, Paul S.; Tosten, Michael H.

    2013-01-01

    Radioactive contamination with a gamma energy emission consistent with 65 Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor

  6. Design, fabrication, and application of a directional thermal processing system for controlled devitrification of metallic glasses

    Science.gov (United States)

    Meyer, Megan Anne Lamb

    The potential of using metallic glass as a pathway to obtaining novel morphologies and metastable phases has been garnering attention since their discovery. Several rapid solidification techniques; such as gas atomization, melt spinning, laser melting, and splat quenching produce amorphous alloys. A directional thermal processing system (DTPS) was designed, fabricated and characterized for the use of zone processing or gradient-zone processing of materials. Melt-spun CuZr metallic glass alloy was subjected to the DTPS and the relaxation and crystallization responses of the metallic glass were characterized. A range of processing parameters were developed and analyzed that would allow for devitrification to occur. The relaxation and crystallization responses were compared with traditional heat treatment methods of metallic glasses. The new processing method accessed equilibrium and non-equilibrium phases of the alloy and the structures were found to be controllable and sensitive to processing conditions. Crystallized fraction, crystallization onset temperature, and structural relaxation were controlled through adjusting the processing conditions, such as the hot zone temperature and sample velocity. Reaction rates computed from isothermal (TTT) transformation data were not found to be reliable, suggesting that the reaction kinetics are not additive. This new processing method allows for future studying of the thermal history effects of metallic glasses.

  7. Thermal sensations and comfort investigations in transient conditions in tropical office.

    Science.gov (United States)

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal

  8. Representation and properties of a class of conditionally Gaussian processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Pedersen, Jan

    2009-01-01

    It is shown that the class of conditionally Gaussian processes with independent increments is stable under marginalisation and conditioning. Moreover, in general such processes can be represented as integrals of a time changed Brownian motion where the time change and the integrand are jointly in...

  9. Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Runming [The School of Construction Management and Engineering, The University of Reading, Whiteknights, PO Box 219, Reading RG6 6AW (United Kingdom); The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400042 (China); Liu, Jing [The School of Construction Management and Engineering, The University of Reading, Whiteknights, PO Box 219, Reading RG6 6AW (United Kingdom); Li, Baizhan [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400042 (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing 400042 (China)

    2010-03-15

    A year-long field study of the thermal environment in university classrooms was conducted from March 2005 to May 2006 in Chongqing, China. This paper presents the occupants' thermal sensation votes and discusses the occupants' adaptive response and perception of the thermal environment in a naturally conditioned space. Comparisons between the Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) have been made as well as between the Actual Percentage of Dissatisfied (APD) and Predicted Percentage of Dissatisfied (PPD). The adaptive thermal comfort zone for the naturally conditioned space for Chongqing, which has hot summer and cold winter climatic characteristics, has been proposed based on the field study results. The Chongqing adaptive comfort range is broader than that of the ASHRAE Standard 55-2004 in general, but in the extreme cold and hot months, it is narrower. The thermal conditions in classrooms in Chongqing in summer and winter are severe. Behavioural adaptation such as changing clothing, adjusting indoor air velocity, taking hot/cold drinks, etc., as well as psychological adaptation, has played a role in adapting to the thermal environment. (author)

  10. Computer aided analysis, simulation and optimisation of thermal sterilisation processes.

    Science.gov (United States)

    Narayanan, C M; Banerjee, Arindam

    2013-04-01

    Although thermal sterilisation is a widely employed industrial process, little work is reported in the available literature including patents on the mathematical analysis and simulation of these processes. In the present work, software packages have been developed for computer aided optimum design of thermal sterilisation processes. Systems involving steam sparging, jacketed heating/cooling, helical coils submerged in agitated vessels and systems that employ external heat exchangers (double pipe, shell and tube and plate exchangers) have been considered. Both batch and continuous operations have been analysed and simulated. The dependence of del factor on system / operating parameters such as mass or volume of substrate to be sterilised per batch, speed of agitation, helix diameter, substrate to steam ratio, rate of substrate circulation through heat exchanger and that through holding tube have been analysed separately for each mode of sterilisation. Axial dispersion in the holding tube has also been adequately accounted for through an appropriately defined axial dispersion coefficient. The effect of exchanger characteristics/specifications on the system performance has also been analysed. The multiparameter computer aided design (CAD) software packages prepared are thus highly versatile in nature and they permit to make the most optimum choice of operating variables for the processes selected. The computed results have been compared with extensive data collected from a number of industries (distilleries, food processing and pharmaceutical industries) and pilot plants and satisfactory agreement has been observed between the two, thereby ascertaining the accuracy of the CAD softwares developed. No simplifying assumptions have been made during the analysis and the design of associated heating / cooling equipment has been performed utilising the most updated design correlations and computer softwares.

  11. Life stages of an aphid living under similar thermal conditions differ in thermal performance.

    Science.gov (United States)

    Zhao, Fei; Hoffmann, Ary A; Xing, Kun; Ma, Chun-Sen

    2017-05-01

    Heat responses can vary ontogenetically in many insects with complex life cycles, reflecting differences in thermal environments they experience. Such variation has rarely been considered in insects that develop incrementally and experience common microclimates across stages. To test if there is a low level of ontogenetic variation for heat responses in one such species, the English grain aphid Sitobion avenae, basal tolerance [upper lethal temperature (ULT 50 ) and maximum critical temperature (CT max )], hardening capacity (CT max ) and hardening costs (adult longevity and fecundity) were measured across five stages (1st, 2nd, 3rd and 4th-instar nymphs and newly moulted adults). We found large tolerance differences among stages of this global pest species, and a tendency for the stage with lower heat tolerance to show a stronger hardening response. There were also substantial reproductive costs of hardening responses, with the level of stress experienced, and not the proximity of the exposed stage to the reproductive adult stage, influencing the magnitude of this cost. Hence hardening in this aphid may counter inherently low tolerance levels of some life stages but at a cost to adult longevity and fecundity. Our findings highlight the significance of ontogenetic variation in predicting responses of a species to climate change, even in species without a complex life cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The processing of aluminum gasarites via thermal decomposition of interstitial hydrides

    Science.gov (United States)

    Licavoli, Joseph J.

    Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.

  13. Effects of thermal processing by nanofluids on vitamin C, total phenolics and total soluble solids of tomato juice.

    Science.gov (United States)

    Jafari, S M; Jabari, S S; Dehnad, D; Shahidi, S A

    2017-03-01

    In this research, our main idea was to apply thermal processing by nanofluids instead of conventional pasteurization processes, to shorten duration of thermal procedure and improve nutritional contents of fruit juices. Three different variables of temperature (70, 80 and 90 °C), nanofluid concentration (0, 2 and 4%) and time (30, 60 and 90 s) were selected for thermal processing of tomato juices by a shell and tube heat exchanger. The results demonstrated that 4% nanofluid concentration, at 30 °C for 30 s could result in 66% vitamin C retention of fresh juice while it was about 56% for the minimum nanofluid concentration and maximum temperature and time. Higher nanoparticle concentrations made tomato juices that require lowered thermal durations, because of better heat transfer to the product, and total phenolic compounds dwindle less severely; In fact, after 30 s thermal processing at 70 °C with 0 and 4% nanoparticles, total phenolic compounds were maintained by 71.9 and 73.6%, respectively. The range of total soluble solids for processed tomato juices was 5.4-5.6, meaning that nanofluid thermal processing could preserve the natural condition of tomato juices successfully. Based on the indices considered, a nanofluid thermal processing with 4% nanoparticle concentration at the temperature of 70 °C for 30 s will result in the best nutritional contents of final tomato juices.

  14. Process-based quality for thermal spray via feedback control

    Science.gov (United States)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  15. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    Science.gov (United States)

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh

    International Nuclear Information System (INIS)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Kraemer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. - Highlights: → Temperature exhibits a strong influence on mortality in Bangladesh. → Mortality increases at low and high end of the temperature range. → Temperature is increased in the urban area of Dhaka, particular during summer. → Urban areas are facing increased risk of heat-related mortality. → Urbanization and climate change are likely to increase heat-related mortality. - Mortality in Bangladesh is strongly affected by thermal atmospheric conditions with particularly urban areas facing excess mortality above a specific threshold temperature.

  17. Peculiar features of modeling of thermal processes of the cutting area in the SOLIDWORKS SIMULATION system

    Directory of Open Access Journals (Sweden)

    Stepchin Ya.A.

    2017-04-01

    Full Text Available Management of thermo-physical process of cutting zone by changing certain parameters of the cutting regime, tool geometry or coolant using allows to achieve a higher level of handling performance. The forecasting of thermal processes during metal cutting is characterized by the multifactor of the model and the nonlinearity of the connection between the temperature field of the cutting zone and the processing parameters. Therefore realistic modeling of these processes with regard to the maximum number of influencing factors which will minimize the time and cost of experimental studies is very important. The research investigates the use of computer-aided design SolidWorks Simulation system to analyze the thermal processes occurring in the cutting zone during finishing turning of hardened circular steel cutting blade of superhard material. While modeling, the distribution of heat generated in cut (in the zone of plastic deformation of the workpiece and on the surfaces of friction of the cutting blade with chips and the treated surface is observed by four flows: to the tool, chips, workpiece and the environment. The limiting conditions for the existence of the developed model-geometric, physical and temporal limits are defined. Simulation is performed in steady and transient modes. Control of adequacy of simulation results is made. The conclusions of the analysis of opportunities of CAD SolidWorks Simulation System for research of thermal processes the cutting zone are drawn.

  18. Implementation and verification of a coupled fire model as a thermal boundary condition within P3/THERMAL

    International Nuclear Information System (INIS)

    Hensinger, D.M.; Gritzo, L.A.; Koski, J.A.

    1996-01-01

    A user-defined boundary condition subroutine has been implemented within P3/THERMAL to represent the heat flux between a noncombusting object and an engulfing fire. The heat flux calculations includes a simple 2D fire model in which energy and radiative heat transport equations are solved to produce estimates of the heat fluxes at the fire-object interface. These estimates reflect radiative coupling between a cold object and the flow of hot combustion gases which has been observed in fire experiments. The model uses a database of experimental pool fire measurements for far field boundary conditions and volumetric heat release rates. Taking into account the coupling between a structure and the fire is an improvement over the σT 4 approximation frequently used as a boundary condition for engineered system response and is the preliminary step in the development of a fire model with a predictive capability. This paper describes the implementation of the fire model as a P3/THERMAL boundary condition and presents the results of a verification calculation carried out using the model

  19. Thermal evolution of nitrate precursors for processing of lanthanide perovskites

    Directory of Open Access Journals (Sweden)

    Kozhukharov, V. S.

    1998-12-01

    Full Text Available Studies on thermal decomposition of ceramic powder with a general formula of (La1-x Ba x (Co0.8 Fe0.2O3 have been achieved. Precursors as nitrate solutions with additive of EDTA as complexion agent are used for powder processing. The black powders obtained are dried and their thermal evolution up to 1000ºC has been investigated by Differential Thermal Analysis. The powders was analyzed by EDX and ICP- AES, as well. It was established that the powder compositions are very close to the nominal one. The resulting DTA, TA, TG and DTG curves are analyzed as function of the composition and heating rate applied. At polythermal scanning regime three regions the powder thermal evolution are discussed. The correlation dependence has been examined for both Sr- and Ba- doped multicomponent lanthanide samples. The multicomponent nature of the samples have been shown on the base of the thermal treatment applied and XRD phase control carried out.

    Se han realizado estudios sobre la descomposición térmica de polvos cerámicos de fórmula general (La1-x Ba x (Co0.8 Fe0.2O3. Se utilizaron como precursores soluciones de nitratos con EDTA como agente acomplejante. La evolución térmica del polvo negro obtenido se estudió hasta la temperatura de 1000 ºC por medio de análisis térmico diferencial. Los polvos se analizaron así mismo por EDX e ICP-A ES. Se estableció que la composición de los polvos esta muy próxima a la composición nominal. Se distingue tres regímenes en la evolución térmica. Se examina la dependencia con el contenido en lantanidas multicomponentes de pulsos con Sr y Ba. La naturaleza multicomponente se ha mostrado sobre la base del tratamiento térmico empleado y el análisis de las fases cristalinas.

  20. HNS steelmaking process using thermal plasma in a ceramic crucible

    International Nuclear Information System (INIS)

    Siwka, J.; Svyazhin, A.G.; Jowsa, J.; Derda, W.

    1999-01-01

    The problems related to HNS (high nitrogen steels) steelmaking technology in a laboratory plasma furnace (100 kW DC, 25 kg liquid metal) are discussed in the paper. Results of investigations on mass transfer in the bath, modelling of the temperature fields by the FEM method, the dynamics of nitriding and refining of the liquid metal are presented. The results show many advantageous features of this technology and identify the necessary modifications. Realization of the one-stage production process of HNS is possible using thermal plasma. This means that any kind of metallic scrap can be used with simultaneous nitriding of liquid metal by nitrogen gas phase and its refining. A technological scheme of the discussed process is presented. (orig.)

  1. Powder processing and spheroidizing with thermal inductively coupled plasma

    International Nuclear Information System (INIS)

    Nutsch, G.; Linke, P.; Zakharian, S.; Dzur, B.; Weiss, K.-H.

    2001-01-01

    Processing of advanced powder materials for the spraying industry is one of the most promising applications of the thermal RF inductively coupled plasma. By selecting the feedstock carefully and adjusting the RF plasma parameters, unique materials with high quality can be achieved. Powders injected in the hot plasma core emerge with modified shapes, morphology, crystal structure and chemical composition. Ceramic oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 are spheroidized with a high spheroidization rate. By using the RF induction plasma spheroidizing process tungsten melt carbide powders are obtained with a high spheroidization rate at high feeding rates by densification of agglomerated powders consisting of di-tungsten carbide and monocarbide with a definite composition. This kind of ball-like powders is particularly suited for wear resistant applications. (author)

  2. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh.

    Science.gov (United States)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Environmental conditions using thermal-hydraulics computer code GOTHIC for beyond design basis external events

    International Nuclear Information System (INIS)

    Pleskunas, R.J.

    2015-01-01

    In response to the Fukushima Dai-ichi beyond design basis accident in March 2011, the Nuclear Regulatory Commission (NRC) issued Order EA-12-049, 'Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies Beyond-Design-Basis-External-Events'. To outline the process to be used by individual licensees to define and implement site-specific diverse and flexible mitigation strategies (FLEX) that reduce the risks associated with beyond design basis conditions, Nuclear Energy Institute document NEI 12-06, 'Diverse and Flexible Coping Strategies (FLEX) Implementation Guide', was issued. A beyond design basis external event (BDBEE) is postulated to cause an Extended Loss of AC Power (ELAP), which will result in a loss of ventilation which has the potential to impact room habitability and equipment operability. During the ELAP, portable FLEX equipment will be used to achieve and maintain safe shutdown, and only a minimal set of instruments and controls will be available. Given these circumstances, analysis is required to determine the environmental conditions in several vital areas of the Nuclear Power Plant. The BDBEE mitigating strategies require certain room environments to be maintained such that they can support the occupancy of personnel and the functionality of equipment located therein, which is required to support the strategies associated with compliance to NRC Order EA-12-049. Three thermal-hydraulic analyses of vital areas during an extended loss of AC power using the GOTHIC computer code will be presented: 1) Safety-related pump and instrument room transient analysis; 2) Control Room transient analysis; and 3) Auxiliary/Control Building transient analysis. GOTHIC (Generation of Thermal-Hydraulic Information for Containment) is a general purpose thermal-hydraulics software package for the analysis of nuclear power plant containments, confinement buildings, and system components. It is a volume/path/heat sink

  4. The testing of thermal-mechanical-hydrological-chemical processes using a large block

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Chesnut, D.A.; Glassley, W.E.; Lee, K.; Roberts, J.J.

    1994-01-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical, hydrological, and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated with one heater in each borehole and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress and displacement will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes

  5. Identification of complex model thermal boundary conditions based on exterior temperature measurement

    International Nuclear Information System (INIS)

    Lu Jianming; Ouyang Guangyao; Zhang Ping; Rong Bojun

    2012-01-01

    Combining the advantages of the finite element software in temperature field analyzing with the multivariate function optimization arithmetic, a feasibility method based on the exterior temperature was proposed to get the thermal boundary conditions, which was required in temperature field analyzing. The thermal boundary conditions can be obtained only by some temperature measurement values. Taking the identification of the convection heat transfer coefficient of a high power density diesel engine cylinder head as an example, the calculation result shows that when the temperature measurement error was less than 0.5℃, the maximum relative error was less than 2%. It is shown that the new method was feasible (authors)

  6. Influence of pulsed plasma streams processing on wear behavior of steels in different friction conditions

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Tereshin, V.I.; Bovda, A.M.; Tortika, A.S.

    2000-01-01

    Pulsed plasma streams processing was applied for surface modification of industrial steel samples. Different types of wear tests (pin-on-disk,flat-on-flat, abrasive,cavitation) were carried out for samples irradiated by pulsed nitrogen plasma streams. There was achieved essential decrease of wear and tear of processed surfaces of all kinds of steels including previously thermally quenched ones. Obtained results are of importance for both determination of optimal regimes of plasma streams processing and the most resulting use of pulsed plasma streams for technology purpose, i.e. for identification of wear modes and optimal friction conditions for steels processed by plasma streams

  7. Research on the characterization and conditioning of uranium mill tailings. II. Thermal stabilization of uranium mill tailings: technical and economic evaluation. Volume 2

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Cokal, E.J.; Thode, E.F.; Wangen, L.E.; Williams, J.M.

    1983-06-01

    A method of conditioning uranium mill tailings has been devised to greatly reduce radon emanation and contaminant leachability by using high-temperature treatments, i.e., thermal stabilization. The thermally stabilized products appear resistant to weathering as measured by the effects of grinding and water leaching. The technical feasibility of the process has been partially verified in pilot-scale experiments. A conceptual thermal stabilization process has been designed and the economics of the process show that the thermal stabilization of tailings can be cost competitive compared with relocation of tailings during remedial action. The alteration of morphology, structure, and composition during thermal treatment would indicate that this stabilization method may be a long-lasting solution to uranium mill tailings disposal problems

  8. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    International Nuclear Information System (INIS)

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab

  9. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  10. Thermal Performance for Wet Cooling Tower with Different Layout Patterns of Fillings under Typical Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2017-01-01

    Full Text Available A thermal-state model experimental study was performed in lab to investigate the thermal performance of a wet cooling tower with different kinds of filling layout patterns under windless and 0.4 m/s crosswind conditions. In this paper, the contrast analysis was focused on comparing a uniform layout pattern and one kind of optimal non-uniform layout pattern when the environmental crosswind speed is 0 m/s and 0.4 m/s. The experimental results proved that under windless conditions, the heat transfer coefficient and total heat rejection of circulating water for the optimal non-uniform layout pattern can enhance by approximately 40% and 28%, respectively, compared with the uniform layout pattern. It was also discovered that the optimal non-uniform pattern can dramatically relieve the influence of crosswind on the thermal performance of the tower when the crosswind speed is equal to 0.4 m/s. For the uniform layout pattern, the heat transfer coefficient under 0.4 m/s crosswind conditions decreased by 9.5% compared with the windless conditions, while that value lowered only by 2.0% for the optimal non-uniform layout pattern. It has been demonstrated that the optimal non-uniform layout pattern has the better thermal performance under 0.4 m/s crosswind condition.

  11. A predictive thermal dynamic model for parameter generation in the laser assisted direct write process

    International Nuclear Information System (INIS)

    Shang Shuo; Fearon, Eamonn; Wellburn, Dan; Sato, Taku; Edwardson, Stuart; Dearden, G; Watkins, K G

    2011-01-01

    The laser assisted direct write (LADW) method can be used to generate electrical circuitry on a substrate by depositing metallic ink and curing the ink thermally by a laser. Laser curing has emerged over recent years as a novel yet efficient alternative to oven curing. This method can be used in situ, over complicated 3D contours of large parts (e.g. aircraft wings) and selectively cure over heat sensitive substrates, with little or no thermal damage. In previous studies, empirical methods have been used to generate processing windows for this technique, relating to the several interdependent processing parameters on which the curing quality and efficiency strongly depend. Incorrect parameters can result in a track that is cured in some areas and uncured in others, or in damaged substrates. This paper addresses the strong need for a quantitative model which can systematically output the processing conditions for a given combination of ink, substrate and laser source; transforming the LADW technique from a purely empirical approach, to a simple, repeatable, mathematically sound, efficient and predictable process. The method comprises a novel and generic finite element model (FEM) that for the first time predicts the evolution of the thermal profile of the ink track during laser curing and thus generates a parametric map which indicates the most suitable combination of parameters for process optimization. Experimental data are compared with simulation results to verify the accuracy of the model.

  12. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  13. Thermal Dehydration Kinetics of Gypsum and Borogypsum under Non-isothermal Conditions

    Institute of Scientific and Technical Information of China (English)

    I.Y.Elbeyli; S.Piskin

    2004-01-01

    Thermal dehydration of gypsum and borogypsum was investigated under nonisothermal conditions in air by using simultaneous thermogravimetric-differential thermal analyzer. Nonisothermal experiments were carried out at various linear heating rates. Kinetics of dehydration in the temperature range of 373-503 K were evaluated from the DTA (differential thermal analysis)-TGA (thermogravimetric analysis) data by means of Coats-Redfern,Kissinger and Doyle Equations. Values of the activation energy and the pre-exponential factor of the dehydration were calculated. The results of thermal experiments and kinetic parameters indicated that borogypsum is similar to gypsum from dehydration mechanism point of view although it consists of boron and small amount of alkali metal oxides.

  14. Characterization of a thermoelectric cooler based thermal management system under different operating conditions

    International Nuclear Information System (INIS)

    Russel, M.K.; Ewing, D.; Ching, C.Y.

    2013-01-01

    The performance of a thermoelectric cooler (TEC) based thermal management system for an electronic packaging design that operates under a range of ambient conditions and system loads is examined using a standard model for the TEC and a thermal resistance network for the other components. Experiments were performed and it was found that the model predictions were in good agreement with the experimental results. An operating envelope is developed to characterize the TEC based thermal management system for peak and off peak operating conditions. Parametric studies were performed to analyze the effect of the number of TEC module(s) in the system, geometric factor of the thermo-elements and the cold to hot side thermal resistances on the system performance. The results showed that there is a tradeoff between the extent of off peak heat fluxes and ambient temperatures when the system can be operated at a low power penalty region and the maximum capacity of the system. - Highlights: ► A model was developed for thermal management systems using thermoelectric coolers. ► Model predictions were in good agreement with experimental results. ► An operating envelope was developed for peak and off peak conditions. ► The effect of the number of thermoelectric coolers on the system was determined.

  15. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park

    Science.gov (United States)

    Saaroni, Hadas; Pearlmutter, David; Hatuka, Tali

    2015-10-01

    This study looks at the interrelation of human-biometeorological conditions, physiological thermal stress and subjective thermal perception in the design and use of a new waterfront park in Tel-Aviv, Israel. Our initial assumption was that the park's design would embody a comprehensive response to the area's ever-increasing heat stress and water shortage. However, almost half of it is covered by grass lawns, irrigated with fresh water, while the remaining area is mainly covered with concrete paving, with minimal shading and sparse trees. We hypothesized that stressful thermal conditions would prevail in the park in the summer season and would be expressed in a high discomfort perception of its users. Thermo-physiological stress conditions in a typical summer month were compared with the subjective comfort perceptions of pedestrians surveyed in the park. It was found that even during mid-day hours, the level of thermal stress tends to be relatively mild, owing largely to the strong sea breeze and despite the high intensity of solar radiation. Moreover, it appears that the largely favorable perception of comfort among individuals may also result from socio-cultural aspects related to their satisfaction with the park's aesthetic attractiveness and in fact its very existence. Adaptive planning is proposed for such vulnerable regions, which are expected to experience further aggravation in thermal comfort due to global as well as localized warming trends.

  16. Thermal imaging of solid oxide fuel cell anode processes

    Energy Technology Data Exchange (ETDEWEB)

    Pomfret, Michael B.; Kidwell, David A.; Owrutsky, Jeffrey C. [Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Steinhurst, Daniel A. [Nova Research Inc., Alexandria, VA 22308 (United States)

    2010-01-01

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H{sub 2} and carbon deposition lead to the fragment cooling by 5 {+-} 2 C and 16 {+-} 1 C, respectively. When air is flowed over the fragments, the temperature rises 24 {+-} 1 C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 {+-} 0.1 C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a {delta}T of +2.2 {+-} 0.2 C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial ({proportional_to}0.1 mm) and temperature ({proportional_to}0.1 C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. (author)

  17. Thermal imaging of solid oxide fuel cell anode processes

    Science.gov (United States)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  18. Thermal processing of EVA encapsulants and effects of formulation additives

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F.J.; Glick, S.H. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.

  19. Project W-320 SAR and process control thermal analyses

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1997-01-01

    This report summarizes the results of thermal hydraulic computer modeling supporting Project W-320 for process control and SAR documentation. Parametric analyses were performed for the maximum steady state waste temperature. The parameters included heat load distribution, tank heat load, fluffing factor and thermal conductivity. Uncertainties in the fluffing factor and heat load distribution had the largest effect on maximum waste temperature. Safety analyses were performed for off normal events including loss of ventilation, loss of evaporation and loss of secondary chiller. The loss of both the primary and secondary ventilation was found to be the most limiting event with saturation temperature in the bottom waste reaching in just over 30 days. An evaluation was performed for the potential lowering of the supernatant level in tank 241-AY-102. The evaluation included a loss of ventilation and steam bump analysis. The reduced supernatant level decreased the time to reach saturation temperature in the waste for the loss of ventilation by about one week. However, the consequence of a steam bump were dramatically reduced

  20. Structure of carbon and boron nitride nanotubes produced by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Conway, M.; FitzGerald, J.; Williams, J.S.; Chadderton, L.T.

    2002-01-01

    Full text: Structure of carbon and boron nitride (BN) nanotubes produced by mechano-thermal process has been investigated by using field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) including high resolution TEM. FESEM and TEM reveal that nanotubes obtained have a diameter varying from several nm to 200 nm and a length of several micrometers. The size of the nanotubes appears to depend on both milling and heating conditions. Many nanotubes are extruded from particle clusters, implying a special growth mechanism. TEM reveals single- and multi- wall tubular structures and different caps. Bomboo-type nanotubes containing small metal particles inside are also observed in both carbon and BN tubes. This investigation shows that nanotubes with controlled size and structure could be produced by the mechano-thermal process

  1. Automatic Traffic Data Collection under Varying Lighting and Temperature Conditions in Multimodal Environments: Thermal versus Visible Spectrum Video-Based Systems

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2017-01-01

    Full Text Available Vision-based monitoring systems using visible spectrum (regular video cameras can complement or substitute conventional sensors and provide rich positional and classification data. Although new camera technologies, including thermal video sensors, may improve the performance of digital video-based sensors, their performance under various conditions has rarely been evaluated at multimodal facilities. The purpose of this research is to integrate existing computer vision methods for automated data collection and evaluate the detection, classification, and speed measurement performance of thermal video sensors under varying lighting and temperature conditions. Thermal and regular video data was collected simultaneously under different conditions across multiple sites. Although the regular video sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians and cyclists. Retraining the algorithm on thermal data yielded an improvement in the global accuracy of 48%. Thermal speed measurements were consistently more accurate than for the regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and pavement temperature, solves issues associated with visible light cameras for traffic data collection, and offers other benefits such as privacy, insensitivity to glare, storage space, and lower processing requirements.

  2. Thermal processing of diblock copolymer melts mimics metallurgy

    Science.gov (United States)

    Kim, Kyungtae; Schulze, Morgan W.; Arora, Akash; Lewis, Ronald M.; Hillmyer, Marc A.; Dorfman, Kevin D.; Bates, Frank S.

    2017-05-01

    Small-angle x-ray scattering experiments conducted with compositionally asymmetric low molar mass poly(isoprene)-b-poly(lactide) diblock copolymers reveal an extraordinary thermal history dependence. The development of distinct periodic crystalline or aperiodic quasicrystalline states depends on how specimens are cooled from the disordered state to temperatures below the order-disorder transition temperature. Whereas direct cooling leads to the formation of documented morphologies, rapidly quenched samples that are then heated from low temperature form the hexagonal C14 and cubic C15 Laves phases commonly found in metal alloys. Self-consistent mean-field theory calculations show that these, and other associated Frank-Kasper phases, have nearly degenerate free energies, suggesting that processing history drives the material into long-lived metastable states defined by self-assembled particles with discrete populations of volumes and polyhedral shapes.

  3. Stability of prebiotic, laminaran oligosaccharide under food processing conditions

    Science.gov (United States)

    Chamidah, A.

    2018-04-01

    Prebiotic stability tests on laminaran oligosaccharide under food processing conditions were urgently performed to determine the ability of prebiotics deal with processing. Laminaran, oligosaccharide is produced from enzymatic hydrolysis. To further apply this prebiotic, it is necessary to test its performance on food processing. Single prebiotic or in combination with probiotic can improve human digestive health. The effectiveness evaluation of prebiotic should be taken into account in regards its chemical and functional stabilities. This study aims to investigate the stability of laminaran, oligosaccharide under food processing condition.

  4. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone

    Directory of Open Access Journals (Sweden)

    Andrés Gallardo

    2016-07-01

    Full Text Available This study aims to determine the optimal approach for evaluating thermal comfort in an office that uses natural ventilation as the main conditioning strategy; the office is located in Quito-Ecuador. The performance of the adaptive model included in CEN Standard EN15251 and the traditional PMV model are compared with reports of thermal environment satisfaction surveys presented simultaneously to all occupants of the office to determine which of the two comfort models is most suitable to evaluate the thermal environment. The results indicate that office occupants have developed some degree of adaptation to the climatic conditions of the city where the office is located (which only demands heating operation, and tend to accept and even prefer lower operative temperatures than those considered optimum by applying the PMV model. This is an indication that occupants of naturally conditioned buildings are usually able to match their comfort temperature to their normal environment. Therefore, the application of the adaptive model included in CEN Standard EN15251 seems like the optimal approach for evaluating thermal comfort in naturally conditioned buildings, because it takes into consideration the adaptive principle that indicates that if a change occurs such as to produce discomfort, people tend to react in ways which restore their comfort.

  5. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  6. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  7. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  8. Emission of Polychlorinated Naphthalenes during Thermal Related Processes

    Science.gov (United States)

    Liu, Guorui; Zheng, Minghui; Du, Bing; Liu, Wenbin; Zhang, Bing; Xiao, Ke

    2010-05-01

    Due to the structural similarity of polychlorinated naphthalenes (PCNs) to those of dioxins, PCNs exhibit toxicological properties similar to dioxins (Olivero-Verbel et al., 2004). Based on their high toxicity, persistence, bioaccumulation, and long-distance transmission, PCNs were also selected as a candidate POP for the UN-ECE (United Nations Economic Commission for Europe) POP protocol (Lerche et al., 2002). In addition, some studies suggested that PCNs contributed a greater proportion of the dioxin-like activity than polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) contributed in some locations (Kannan et al., 1998). However, the identification and quantitation for PCN sources are very scarce compared with PCDD/Fs. Understanding the emission levels and developing the emission inventory of PCNs is important for regulatory and source reduction purposes. In this study, several potential sources were preliminarily investigated for PCN release. Coking process (CP), iron ore sintering (IOS), and electric arc furnace steel making units (AF) were selected due to their huge activity level of industrial production in China. Municipal solid waste incineration (MSWI) and medical waste incineration (MWI) were also investigated because of the possible high concentration of PCNs in stack gas. Two plants were investigated for each thermal related process, except for MWI with one incinerator was investigated. The stack gas samples were collected by automatic isokinetic sampling system (Isostack Basic, TCR TECORA, Milan Italy). Isotope dilution high resolution gas chromatography coupled with high resolution mass spectrometry (HRGC/HRMS) technique was used for the identification and quantitation of PCN congeners. The concentrations of PCNs from the selected thermal processes were determined in this study. The average concentrations of total PCNs were 26 ng Nm-3 for CP, 65 ng Nm-3 for IOS, 720 ng Nm-3 for AF, 443 ng Nm-3 for MSWI, and

  9. Limiting conditional distributions for birth-death processes

    NARCIS (Netherlands)

    Kijima, M.; Nair, M.G.; Pollett, P.K.; van Doorn, Erik A.

    1997-01-01

    In a recent paper one of us identified all of the quasi-stationary distributions for a non-explosive, evanescent birth-death process for which absorption is certain, and established conditions for the existence of the corresponding limiting conditional distributions. Our purpose is to extend these

  10. Conditional Stochastic Processes Applied to Wave Load Predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    The concept of conditional stochastic processes provides a powerful tool for evaluation and estimation of wave loads on ships and offshore structures. This article first considers conditional waves with a focus on critical wave episodes. Then the inherent uncertainty in the results is illustrated...

  11. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  12. In-Pile thermal fatigue of First Wall mock-ups under ITER relevant conditions

    International Nuclear Information System (INIS)

    Blom, F.; Schmalz, F.; Kamer, S.; Ketema, D.J.

    2006-01-01

    The objective of this study is to perform in-pile thermal fatigue testing of three actively cooled First Wall (FW) mock-ups to check the effect of neutron irradiation on the Be/CuCrZr joints under representative FW operation conditions. Three FW mock-ups with Beryllium armor tiles will be neutron irradiated at 1 dpa (in Be) with parallel thermal fatigue testing for 30,000 cycles. The temperatures, stress distributions and stress amplitudes at the Be/CuCrZr interface of the mock-ups will be as close as possible to the values calculated for ITER FW panels. For this objective the PWM mocks-up subjected to thermal fatigue will be integrated with high density (W) plates on the Be-side to provide heat flux by nuclear heating. The assembly will be placed in the pool-side facility of the HFR and thermal cycling is then arranged by mechanical movement towards and from the core box. As the thermal design of the irradiation rig is very critical a pilot-irradiation will be performed to cross check the models used in the thermal design of the rig. The project is currently in the design phase of both the pilot and actual irradiation rig. The irradiation of the actual rig is planned to start at mid 2007 and last for two years. (author)

  13. Normal conditions of transport thermal analysis and testing of a Type B drum package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed

  14. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    Science.gov (United States)

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  15. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Science.gov (United States)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  16. Development of the thermal denitration in-storage-can step in the CEUSP process

    International Nuclear Information System (INIS)

    Vedder, R.J.; Collins, E.D.; Haas, P.A.

    1986-01-01

    A thermal denitration in-the-storage-can process has been developed for use in the Consolidated Edison Uranium Solidification Program Facility. This process is being used to convert approx.1000 kg of highly fissile and radioactive uranium to a solid form for safe long-term storage. The material being solidified also contains approx.300 kg of cadmium and approx.40 kg of gadolinium which had been combined with the uranium to provide criticality safety. The unique thermal denitration process was found to be extremely susceptible to entrainment of solids by splattering, foaming, or expulsion actions. The process connection nozzle, through which the feed solution and purging air are supplied and the emerging off-gases are discharged, and the off-gas handling system were modified extensively to permit operation without development of nozzle or line pluggage due to accumulation of solid deposits. A process study was made to determine the effects of feed components and process variables on the tendency of the reacting mixture to splatter, foam, or be expelled. Because of the equipment modifications and the selection of appropriate processing conditions, the feed material is being denitrated without significant problems

  17. Distributed automatic control of technological processes in conditions of weightlessness

    Science.gov (United States)

    Kukhtenko, A. I.; Merkulov, V. I.; Samoylenko, Y. I.; Ladikov-Royev, Y. P.

    1986-01-01

    Some problems associated with the automatic control of liquid metal and plasma systems under conditions of weightlessness are examined, with particular reference to the problem of stability of liquid equilibrium configurations. The theoretical fundamentals of automatic control of processes in electrically conducting continuous media are outlined, and means of using electromagnetic fields for simulating technological processes in a space environment are discussed.

  18. The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition

    Science.gov (United States)

    Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika

    2018-04-01

    Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not

  19. The influence of local effects on thermal sensation under non-uniform environmental conditions — Gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling

    DEFF Research Database (Denmark)

    Schellen, L.; Loomans, M.G.L.C.; de Wit, M.H.

    2012-01-01

    , thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20–29years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During...... the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more...... of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended...

  20. Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians

    Science.gov (United States)

    Kim, Young-Jae; Lee, Chanam; Kim, Jun-Hyun

    2018-01-01

    Walking is being promoted for health and transportation purposes across all climatic regions in the US and beyond. Despite this, an uncomfortable microclimate condition along sidewalks is one of the major deterrents of walking, and more empirical research is needed to determine the risks of heat exposure to pedestrians while walking. This study examined the effect of street trees and grass along sidewalks on air temperatures. A series of thermal images were taken at the average heights of adults and children in the US to objectively measure the air temperatures of 10 sidewalk segments in College Station, TX, USA. After controlling the other key physical environmental conditions, sidewalks with more trees or wider grass buffer areas had lower air temperatures than those with less vegetation. Children were exposed to higher temperatures due to the greater exposure or proximity to the pavement surface, which tends to have higher radiant heat. Multivariate regression analysis suggested that the configuration of trees and grass buffers along the sidewalks helped to promote pleasant thermal conditions and reduced the differences in ambient air temperatures measured at child and adult heights. This study suggests that street trees and vegetated ground help reduce the air temperatures, leading to more thermally comfortable environments for both child and adult pedestrians in warm climates. The thermal implications of street landscape require further attention by researchers and policy makers that are interested in promoting outdoor walking. PMID:29346312

  1. Validation of the thermal balance of Laguna Verde turbine under conditions of extended power increase

    International Nuclear Information System (INIS)

    Castaneda G, M. A.; Cruz B, H. J.; Mercado V, J. J.; Cardenas J, J. B.; Garcia de la C, F. M.

    2012-10-01

    The present work is a continuation of the task: Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt) in which the modeling of the vapor cycle of the nuclear power plant of Laguna Verde was realized with PEPSE code (Performance Evaluation of Power System Efficiencies). Once reached the conditions of nominal operation of extended power increase, operating both units to 2371 MWt; after the tests phase of starting-up and operation is necessary to carry out a verification of the proposed design of the vapor cycle for the new operation conditions. All this, having in consideration that the vapor cycle designer only knows the detail of the prospective performance of the main turbine, for all the other components (for example pumps, heat inter changers, valves, reactor, humidity separators and re-heaters, condensers, etc.) makes generic suppositions based on engineering judgment. This way carries out the calculations of thermal balance to determine the guaranteed gross power. The purpose of the present work is to comment the detail of the validation carried out of the specific thermal balance (thermal kit) of the nuclear power plant, making use of the design characteristics of the different components that conform the vapor cycle. (Author)

  2. Effects of Urban Configuration on Human Thermal Conditions in a Typical Tropical African Coastal City

    Directory of Open Access Journals (Sweden)

    Emmanuel Lubango Ndetto

    2013-01-01

    Full Text Available A long-term simulation of urban climate was done using the easily available long-term meteorological data from a nearby synoptic station in a tropical coastal city of Dar es Salaam, Tanzania. The study aimed at determining the effects of buildings’ height and street orientations on human thermal conditions at pedestrian level. The urban configuration was represented by a typical urban street and a small urban park near the seaside. The simulations were conducted in the microscale applied climate model of RayMan, and results were interpreted in terms of the thermal comfort parameters of mean radiant (Tmrt and physiologically equivalent (PET temperatures. PET values, high as 34°C, are observed to prevail during the afternoons especially in the east-west oriented streets, and buildings’ height of 5 m has less effect on the thermal comfort. The optimal reduction of Tmrt and PET values for pedestrians was observed on the nearly north-south reoriented streets and with increased buildings’ height especially close to 100 m. Likewise, buildings close to the park enhance comfort conditions in the park through additional shadow. The study provides design implications and management of open spaces like urban parks in cities for the sake of improving thermal comfort conditions for pedestrians.

  3. Biologic phosphorus elimination - influencing parameters, boundary conditions, process optimation

    International Nuclear Information System (INIS)

    Dai Xiaohu.

    1992-01-01

    This paper first presents a systematic study of the basic process of biologic phosphorus elimination as employed by the original 'Phoredox (Main Stream) Process'. The conditions governing the process and the factors influencing its performance were determined by trial operation. A stationary model was developed for the purpose of modelling biologic phosphorus elimination in such a main stream process and optimising the dimensioning. The validity of the model was confirmed by operational data given in the literature and by operational data from the authors' own semitechnical-scale experimental plant. The model permits simulation of the values to be expected for effluent phosphorus and phosphate concentrations for given influent data and boundary conditions. It is thus possible to dimension a plant for accomodation of the original Phoredox (Main Stream) Process or any similar phosphorus eliminating plant that is to work according to the principle of the main stream process. (orig./EF) [de

  4. Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile.

    Science.gov (United States)

    Tapia, Fabian J; Largier, John L; Castillo, Manuel; Wieters, Evie A; Navarrete, Sergio A

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30-32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4-10 years at 15 sites between 28-35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30-31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30-31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species

  5. Processing counterfactual and hypothetical conditionals: an fMRI investigation.

    Science.gov (United States)

    Kulakova, Eugenia; Aichhorn, Markus; Schurz, Matthias; Kronbichler, Martin; Perner, Josef

    2013-05-15

    Counterfactual thinking is ubiquitous in everyday life and an important aspect of cognition and emotion. Although counterfactual thought has been argued to differ from processing factual or hypothetical information, imaging data which elucidate these differences on a neural level are still scarce. We investigated the neural correlates of processing counterfactual sentences under visual and aural presentation. We compared conditionals in subjunctive mood which explicitly contradicted previously presented facts (i.e. counterfactuals) to conditionals framed in indicative mood which did not contradict factual world knowledge and thus conveyed a hypothetical supposition. Our results show activation in right occipital cortex (cuneus) and right basal ganglia (caudate nucleus) during counterfactual sentence processing. Importantly the occipital activation is not only present under visual presentation but also with purely auditory stimulus presentation, precluding a visual processing artifact. Thus our results can be interpreted as reflecting the fact that counterfactual conditionals pragmatically imply the relevance of keeping in mind both factual and supposed information whereas the hypothetical conditionals imply that real world information is irrelevant for processing the conditional and can be omitted. The need to sustain representations of factual and suppositional events during counterfactual sentence processing requires increased mental imagery and integration efforts. Our findings are compatible with predictions based on mental model theory. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Modeling texture kinetics during thermal processing of potato products.

    Science.gov (United States)

    Moyano, P C; Troncoso, E; Pedreschi, F

    2007-03-01

    A kinetic model based on 2 irreversible serial chemical reactions has been proposed to fit experimental data of texture changes during thermal processing of potato products. The model links dimensionless maximum force F*(MAX) with processing time. Experimental texture changes were obtained during frying of French fries and potato chips at different temperatures, while literature data for blanching/cooking of potato cubes have been considered. A satisfactory agreement between experimental and predicted values was observed, with root mean square values (RMSs) in the range of 4.7% to 16.4% for French fries and 16.7% to 29.3% for potato chips. In the case of blanching/cooking, the proposed model gave RMSs in the range of 1.2% to 17.6%, much better than the 6.2% to 44.0% obtained with the traditional 1st-order kinetics. The model is able to predict likewise the transition from softening to hardening of the tissue during frying.

  7. Safer operating conditions and optimal scaling-up process for cyclohexanone peroxide reaction

    International Nuclear Information System (INIS)

    Zang, Na; Qian, Xin-Ming; Liu, Zhen-Yi; Shu, Chi-Min

    2015-01-01

    Highlights: • Thermal hazard of cyclohexanone peroxide reaction was measured by experimental techniques. • Levenberg–Marquardt algorithm was adopted to evaluate kinetic parameters. • Safer operating conditions at laboratory scale were acquired by BDs and TDs. • The verified safer operating conditions were used to obtain the optimal scale-up parameters applied in industrial plants. - Abstract: The cyclohexanone peroxide reaction process, one of the eighteen hazardous chemical processes identified in China, is performed in indirectly cooled semibatch reactors. The peroxide reaction is added to a mixture of hydrogen peroxide and nitric acid, which form heterogeneous liquid–liquid systems. A simple and general procedure for building boundary and temperature diagrams of peroxide process is given here to account for the overall kinetic expressions. Such a procedure has been validated by comparison with experimental data. Thermally safer operating parameters were obtained at laboratory scale, and the scaled-up procedure was performed to give the minimum dosing time in an industrial plant, which is in favor of maximizing industrial reactor productivity. The results are of great significance for governing the peroxide reaction process apart from the thermal runaway region. It also greatly aids in determining optimization on operating parameters in industrial plants.

  8. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  9. System and method of providing quick thermal comfort with reduced energy by using directed spot conditioning

    Science.gov (United States)

    Wang, Mingyu; Kadle, Prasad S.; Ghosh, Debashis; Zima, Mark J.; Wolfe, IV, Edward; Craig, Timothy D

    2016-10-04

    A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.

  10. Thermo-active building systems and sound absorbers: Thermal comfort under real operation conditions

    DEFF Research Database (Denmark)

    Köhler, Benjamin; Rage, Nils; Chigot, Pierre

    2018-01-01

    Radiant systems are established today and have a high ecological potential in buildings while ensuring thermal comfort. Free-hanging sound absorbers are commonly used for room acoustic control, but can reduce the heat exchange when suspended under an active slab. The aim of this study...... is to evaluate the impact on thermal comfort of horizontal and vertical free-hanging porous sound absorbers placed in rooms of a building cooled by Thermo-Active Building System (TABS), under real operation conditions. A design comparing five different ceiling coverage ratios and two room types has been...... implemented during three measurement periods. A clear correlation between increase of ceiling coverage ratio and reduction of thermal comfort could not be derived systematically for each measurement period and room type, contrarily to what was expected from literature. In the first two monitoring periods...

  11. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  12. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  13. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  14. Hydrogen storage by adsorption on activated carbon: investigation of the thermal effects during the charging process

    International Nuclear Information System (INIS)

    Hermosilla-Lara, G.

    2007-02-01

    This work presents an experimental and numerical investigation of the thermal effects occurring during the charge of adsorbent fixed bed tank. The influence of these thermal effects, which result from the exothermal character of the adsorption process and the pressure forces work, on the storage capacity is specially analysed. An experimental setup allowing the dynamic measurements of the temperature and pressure profiles has been used. Then the numerical protocol with the Fluent software, has been validated by comparison of the simulated pressure, flow rate and temperature fields in the tank with the results obtained from an experimental investigation carried out the dynamic storage. Several predictive simulations have been carried out in order to study the effect of the boundary conditions, as the wall temperature or effective thermal conductivity of the porous bed, on the storage capacity of the reservoir. We searched the optimal geometry of an interbed thermal dissipator for a given industrial tank. To do this we made vary the H/L ratio, which represents the ratio of the height of an elementary stage and the total length of the tank. We could determine an optimal geometry which corresponds to the value 1/3 of the ratio H/L. From this optimum we studied the effect of five additional cooling tubes on the tank storage capacity. The stored mass is 15 % higher than that obtained without these tubes. (author)

  15. Microstructure and thermal conductivity of Mo-TiC cermets processed by hot isostatic pressing

    International Nuclear Information System (INIS)

    Le Flem, Marion; Allemand, Alexandre; Urvoy, Stephane; Cedat, Denis; Rey, Colette

    2008-01-01

    In the scope of refractory material development for structural applications in the core of future nuclear reactors (gas fast reactors working between 500 o C and at least 800 o C in nominal conditions and up to 1650 o C in accidental scenarios), five Mo-TiC cermets, and single-phase TiC and Mo, were processed by hot isostatic pressing. Starting TiC volume contents were 0%, 12.5%, 25%, 37.5%, 50%, 75% and 100%. First, high dense specimens were characterized in terms of microstructure, composition and phase volume fractions. Cermets exhibited two phases in agreement with phase diagram previsions (Mo-TiC 1-2at.% and TiC-Mo 10-15at.% ), and a residual non-reacted TiC-rich phase (TiC-Mo 1at.% ). Second, heat capacity and thermal diffusivity were measured up to 1000 o C which allowed to evaluate the thermal conductivity of each cermet: this lays between TiC conductivity (12-18 W/m K) and Mo conductivity (95-125 W/m K), thermal properties continuously decreasing with starting TiC content. An analytical approach based on the volume fraction and properties of each constituent allowed to highlight the existence of thermal resistance at the interphases at low temperature

  16. Average thermal stress in the Al+SiC composite due to its manufacturing process

    International Nuclear Information System (INIS)

    Miranda, Carlos A.J.; Libardi, Rosani M.P.; Marcelino, Sergio; Boari, Zoroastro M.

    2013-01-01

    The numerical analyses framework to obtain the average thermal stress in the Al+SiC Composite due to its manufacturing process is presented along with the obtained results. The mixing of Aluminum and SiC powders is done at elevated temperature and the usage is at room temperature. A thermal stress state arises in the composite due to the different thermal expansion coefficients of the materials. Due to the particles size and randomness in the SiC distribution, some sets of models were analyzed and a statistical procedure used to evaluate the average stress state in the composite. In each model the particles position, form and size are randomly generated considering a volumetric ratio (VR) between 20% and 25%, close to an actual composite. The obtained stress field is represented by a certain number of iso stress curves, each one weighted by the area it represents. Systematically it was investigated the influence of: (a) the material behavior: linear x non-linear; (b) the carbide particles form: circular x quadrilateral; (c) the number of iso stress curves considered in each analysis; and (e) the model size (the number of particles). Each of above analyzed condition produced conclusions to guide the next step. Considering a confidence level of 95%, the average thermal stress value in the studied composite (20% ≤ VR ≤ 25%) is 175 MPa with a standard deviation of 10 MPa. Depending on its usage, this value should be taken into account when evaluating the material strength. (author)

  17. Evaluation of advanced hot conditioning process for PHWRS

    International Nuclear Information System (INIS)

    Chandramohan, P.; Srinivasan, M.P.; Velmurugan, S.

    2015-01-01

    Hot-conditioning/hot functional test process is carried out to the PHT system of reactor before reactor going to critical/operational. The process is aimed in checking the component functionalities at high temperature and high pressure conditions, the process also checks/removes the suspended corrosion products in heat transport circuit. This process leads to formation of a passive or corrosion oxide film on the heat transport circuit surfaces which protects/mitigates the corrosion of the system circuits during the operation of plant. Major concerned alloy in the Primary Heat Transport (PHT) system of Indian PHWRs during the hot conditioning process and also during operation is the carbon steel due to its high corrosion. Hot-conditioning process mitigates the corrosion of carbon steel by the formation of iron oxide (Fe 3 O 4 ) as major oxide phase layer on the carbon steel surface with a typical thickness of 1.0 μm with particle size of 1μm after 336 h of process at 250 °C. But this passive oxide film thickness increase with time of operation of system with c.a. 10μm for 2.2 EFYP. The protectiveness of passive layer can be further enhanced by reducing the particle sizes in the passive film to nano meter range. The process can impact on the compactness of passive oxide layer with reduced pores in the oxide layer and properties of the nano nature oxide (transport properties) impacting the corrosion mitigation. The corrosion mitigation reduce the source term in the activated corrosion product generation. To achieve this a new process 'Advanced hot conditioning' was developed in water steam chemistry division, BARC for getting a passive oxide film with a lowered particle size in the passive film. The AHC process with 1g/L of PEG-8000 at 250 °C for 336 h showed a particle size <100 nm. The process was tested under the normal operating conditions as function of the time, the corrosion parameter like oxide film thickness, corrosion rate and metal ion

  18. Experimental study of human thermal sensation under hypobaric conditions in winter clothes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiying; Hu, Songtao; Liu, Guodan [Department of Environment and Municipal Engineering, Qingdao Technological University, Qingdao (China); Li, Angui [Department of Environment and Municipal Engineering, Xi' an University of Architecture and Technology, Xi' an (China)

    2010-11-15

    Hypobaric conditions, with pressures about 20-30% below that at sea level, are often experienced at mountain resorts and plateau areas. The diffusive transfer of water evaporation increases at hypobaric conditions whereas dry heat loss by convection decreases. In order to clarify the effects of barometric on human thermal comfort, experiments are conducted in a decompression chamber where the air parameters were controllable. During experiments, air temperature is set at a constant of 20, air velocity is controlled at <0.1 m/s, 0.2 m/s, 0.25 m/s, and 0.3 m/s by stages. The barometric condition is examined stepwise for 1atm, 0.85 atm and 0.75 atm of simulated hypobaric conditions, which is equivalent to altitude of 0 m, 1300 m, and 2300 m respectively. Ten males and ten females in winter clothes participate in the experiments. Thermal sensations are measured with ASHRAE seven-point rating scales and skin temperatures were tested at each altitude. The main results are as follows: when the altitude rises, (1) the mean thermal sensation drops; (2) people become more sensitive to draught and expect lower air movements; (3) no significant change of mean skin temperature has been found. The results of the present study indicate that hypobaric environment tends to make people feel cooler. (author)

  19. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    Science.gov (United States)

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  20. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki; Mansfield, Andrew B.; Wooldridge, Margaret S.; Im, Hong G.

    2015-01-01

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  1. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  2. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  3. Development of Processing Techniques for Advanced Thermal Protection Materials

    Science.gov (United States)

    Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar

    1997-01-01

    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.

  4. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Diaz, Sergio H; Nelson, J Stuart; Wong, Brian J F

    2003-01-01

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x10 70 s -1 and E a =4.5x10 5 J mole -1 , were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  5. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  6. Predicting speech intelligibility in conditions with nonlinearly processed noisy speech

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    The speech-based envelope power spectrum model (sEPSM; [1]) was proposed in order to overcome the limitations of the classical speech transmission index (STI) and speech intelligibility index (SII). The sEPSM applies the signal-tonoise ratio in the envelope domain (SNRenv), which was demonstrated...... to successfully predict speech intelligibility in conditions with nonlinearly processed noisy speech, such as processing with spectral subtraction. Moreover, a multiresolution version (mr-sEPSM) was demonstrated to account for speech intelligibility in various conditions with stationary and fluctuating...

  7. Conditions and constraints of food processing in space

    Science.gov (United States)

    Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.

  8. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  9. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  10. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    Science.gov (United States)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  11. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-01-01

    An investigation is described for the study of structural breakdown of coke by thermochemical action of alkali and alkaline-earth metal vapors under blast furnace operating conditions. Bench-scale test facilities are described in which a pair of coke samples are exposed to the metal vapors then subjected to gasification. Structural strength tests were performed before and after each experiment. Coke samples were obtained in either moist or thermally prepared condition. The value of thermal charge preparation (heat treatment of the coal at 150/sup 0/C in a fluidized bed) was established, since it shifts the pore size distribution to the smaller size, thereby retarding adsorption of the metal vapors. 16 references, 4 figures, 2 tables.

  12. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition

    NARCIS (Netherlands)

    Schellen, L.; Marken Lichtenbelt, van W.D.; Loomans, M.G.L.C.; Toftum, J.; Wit, de M.H.

    2010-01-01

    Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum

  13. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    Science.gov (United States)

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-12-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication.

  14. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M. [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904-4746 (United States)

    2014-10-13

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3ω technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  15. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    OpenAIRE

    Yu. A. Rounov; O. G. Shirokov; D. I. Zalizny; D. M. Los

    2004-01-01

    The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  16. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    Directory of Open Access Journals (Sweden)

    Yu. A. Rounov

    2004-01-01

    Full Text Available The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  17. Exergy and energy analyses of two different types of PCM based thermal management systems for space air conditioning applications

    International Nuclear Information System (INIS)

    Tyagi, V.V.; Pandey, A.K.; Buddhi, D.; Tyagi, S.K.

    2013-01-01

    Highlights: ► Calcium chloride hexahydrate (CaCl 2 ⋅6H 2 O) as a PCM was used in this study. ► Two different capsulated system (HDPE based panel and balls) were designed. ► The results of CaCl 2 ⋅6H 2 O are very attractive for space air conditioning. ► Energy and exergy analyses for space cooling applications. - Abstract: This communication presents the experimental study of PCM based thermal management systems for space heating and cooling applications using energy and exergy analysis. Two different types of based thermal management system (TMS-I and TMS-II) using calcium chloride hexahydrate as the heat carrier has been designed, fabricated and studied for space heating and cooling applications at a typical climatic zone in India. In the first experimental arrangement the charging of PCM has been carried out with air conditioning system while discharging has been carried out using electric heater for both the thermal management systems. While in the second arrangement the charging of PCM has been carried out by solar energy and the discharging has been carried out by circulating the cooler ambient air during the night time. In the first experiment, TMS-I is found to be more effective than that of TMS-II while it was found to be reverse in the case of second experiment for both the charging and discharging processes not only for energetic but also for the exergetic performances

  18. Internal thermotopography and shifts in general thermal balance in man under special heat transfer conditions

    Science.gov (United States)

    Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.

    1974-01-01

    Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.

  19. Efficacy of Thermally Conditioned Sisal FRP Composite on the Shear Characteristics of Reinforced Concrete Beams

    OpenAIRE

    Sen, Tara; Reddy, H. N. Jagannatha

    2013-01-01

    The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flex...

  20. Process Formulations And Curing Conditions That Affect Saltstone Properties

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  1. Energy and costs scoping study for plasma pyrolysis thermal processing system

    International Nuclear Information System (INIS)

    Sherick, K.E.; Findley, J.E.

    1992-01-01

    The purpose of this study was to provide information in support of an investigation of thermal technologies as possible treatment process for buried wastes at the INEL. Material and energy balances and a cost estimate were generated for a representative plasma torch-based thermal waste treatment system operating in a pyrolysis mode. Two waste streams were selected which are representative of INEL buried wastes, large in volume, and difficult to treat by other technologies. These streams were a solidified nitrate sludge waste stream and a waste/soil mix of other buried waste components. The treatment scheme selected includes a main plasma chamber operating under pyrolyzing conditions; a plasma afterburner to provide additional residence time at high temperature to ensure complete destruction of hazardous organics; an off-gas treatment system; and a incinerator and stack to oxidize carbon monoxide to carbon dioxide and vent the clean, oxidized gases to atmosphere. The material balances generated provide materials flow and equipment duty information of sufficient accuracy to generate initial rough-order-of-magnitude (ROM) system capital and operating cost estimates for a representative plasma thermal processing system

  2. Comparison of different test methods to assess thermal stresses of metal oxide surge arresters under pollution conditions

    International Nuclear Information System (INIS)

    Bargigia, A.; de Nigris, M.; Pigini, A.; Sironi, A.

    1992-01-01

    The report deals with the research conducted by ENEL, the Italian Electricity Board, to assess the performance of zinc oxide surge arresters under pollution condition, with special reference to the consequent thermal stress on internal active parts which can affect the energy handling capabality of the arrester and may lead, in particular conditions, even to thermal runaway

  3. Colosed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Ppart Qualification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  4. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  5. A numerical study of thermal conditions in the THM growth of HgTe

    Science.gov (United States)

    Martínez-Tomás, M. C.; Muñoz-Sanjosé, V.; Reig, C.

    2002-09-01

    A numerical simulation of the travelling heater method (THM) process in the growth of HgTe is carried out. The whole system (furnace, ampoule and charge) is taken into account in the frame of a quasi-steady-state model. The mass conservation condition for the solute in the liquid zone permits the determination of the rate of advance of the crystallisation isotherm as a function of the heater position. We claim to study the evolution of different magnitudes along the growth process, searching for the physical reasons which could be at the origin of defects in the form of thin layers observed in some growing experiences. To solve the governing equations of fluid flow, heat transfer and mass transport we have made use of a commercial code which can run in a PC. The simulation is made by using a three-level strategy, which allows the reduction of the computational effort. In the first level, heat transport is assumed to be by conduction, convection and radiation between the furnace and the ampoule, and by conduction through the ampoule wall, coating, solid and liquid zones. The temperature calculated at this level in the air/ampoule boundary is used as boundary condition for the second and third level. In these two levels the ampoule and its content are studied in detail. Convection in the liquid zone is considered at the second level and thermosolutal convection is finally included at the third level. The analysis of the incoming/outcoming heat flux per second through the ampoule for the whole system shows that the lower part of the ampoule exhibits some ineffectiveness for the heat evacuation at certain positions of the growth run, depending on thermal properties of the whole system and the particular material to be grown. As a consequence, the growth rate suffers a significant variation just for these positions of the heater. From these considerations a plausible interpretation has been proposed to understand the apparition of solvent inclusions in the form of thin

  6. Consideration of loading conditions initiated by thermal transients in PWR pressure vessels

    International Nuclear Information System (INIS)

    Azodi; Glahn; Kersting; Schulz; Jansky.

    1983-01-01

    This report describes the present state of PWR-plants in the Federal Republic of Germany with respect to - the design of the primary pressure boundary - the analysis of thermal transients and resulting loads - the material conditions and neutron fluence - the requirements for protection against fast fracture. The experimental and analytical research and development programs are delineated together with some foreign R and D programs. It is shown that the parameters investigated (loading condition, crack shape and orientation etc.) cover a broad range. Extensive analytical investigations are emphasized. (orig./RW) [de

  7. Multiregion, multigroup collision probability method with white boundary condition for light water reactor thermalization calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2005-01-01

    A multiregion, multigroup collision probability method with white boundary condition is developed for thermalization calculations of light water moderated reactors. Hydrogen scatterings are treated by Nelkin's kernel while scatterings from other nuclei are assumed to obey the free-gas scattering kernel. The isotropic return (white) boundary condition is applied directly by using the appropriate collision probabilities. Comparisons with alternate numerical methods show the validity of the present formulation. Comparisons with some experimental results indicate that the present formulation is capable of calculating disadvantage factors which are closer to the experimental results than alternative methods

  8. Thermal convection in a closed cavity in zero-gravity space conditions with stationary magnetic forces

    International Nuclear Information System (INIS)

    Lyubimova, T; Mailfert, A

    2013-01-01

    The paper deals with the investigation of thermo-magnetic convection in a paramagnetic liquid subjected to a non-uniform magnetic field in weightlessness conditions. Indeed, in zero-g space conditions such as realized in International Space Station (ISS), or in artificial satellite, or in free-flight space vessels, the classical thermo-gravitational convection in fluid disappears. In any cases, it may be useful to restore the convective thermal exchange inside fluids such as liquid oxygen. In this paper, the restoration of heat exchange by the way of creation of magnetic convection is numerically studied.

  9. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...

  10. Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens T.; Tsang, Yvonne W.

    1998-01-01

    The Single Heater Test (SHT) is one of two in-situ thermal tests included in the site characterization program for the potential underground nuclear waste repository at Yucca Mountain. The heating phase of the SHT started in August 1996, and was completed in May 1997 after 9 months of heating. The coupled processes in the unsaturated fractured rock mass around the heater were monitored by numerous sensors for thermal, hydrological, mechanical and chemical data. In addition to passive monitoring, active testing of the rock mass moisture content was performed using geophysical methods and air injection testing. The extensive data set available from this test gives a unique opportunity to improve the understanding of the thermal-hydrological situation in the natural setting of the repository rocks. The present paper focuses on the 3-D numerical simulation of the thermal-hydrological processes in the SHT using TOUGH2. In the comparative analysis, they are particularly interested in the accuracy of different fracture-matrix-interaction concepts such as the Effective Continuum (ECM), the Dual Continuum (DKM), and the Multiple Interacting Continua (MINC) method

  11. Application of rapid thermal processing on SiNx thin film to solar cells

    Institute of Scientific and Technical Information of China (English)

    Youjie LI; Peiqing LUO; Zhibin ZHOU; Rongqiang CUI; Jianhua HUANG; Jingxiao WANG

    2008-01-01

    Rapid thermal processing (RTP) of SiNx thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were dis-cussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiNx thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.

  12. Optimizing access to conditions data in ATLAS event data processing

    CERN Document Server

    Rinaldi, Lorenzo; The ATLAS collaboration

    2018-01-01

    The processing of ATLAS event data requires access to conditions data which is stored in database systems. This data includes, for example alignment, calibration, and configuration information that may be characterized by large volumes, diverse content, and/or information which evolves over time as refinements are made in those conditions. Additional layers of complexity are added by the need to provide this information across the world-wide ATLAS computing grid and the sheer number of simultaneously executing processes on the grid, each demanding a unique set of conditions to proceed. Distributing this data to all the processes that require it in an efficient manner has proven to be an increasing challenge with the growing needs and number of event-wise tasks. In this presentation, we briefly describe the systems in which we have collected information about the use of conditions in event data processing. We then proceed to explain how this information has been used to refine not only reconstruction software ...

  13. Effect of processing conditions on shrinkage in injection moulding

    NARCIS (Netherlands)

    Jansen, K.M.B.; van Dijk, D.J.; Husselman, M.H.

    1998-01-01

    A systematic study on the effect of processing conditions on mold shrinkage was undertaken for seven common thermoplastic polymers. It turned out that the holding pressure was always the key parameter. The effect of the melt temperature is slightly less important. Injection velocity and mold

  14. Clarification process: Resolution of decision-problem conditions

    Science.gov (United States)

    Dieterly, D. L.

    1980-01-01

    A model of a general process which occurs in both decisionmaking and problem-solving tasks is presented. It is called the clarification model and is highly dependent on information flow. The model addresses the possible constraints of individual indifferences and experience in achieving success in resolving decision-problem conditions. As indicated, the application of the clarification process model is only necessary for certain classes of the basic decision-problem condition. With less complex decision problem conditions, certain phases of the model may be omitted. The model may be applied across a wide range of decision problem conditions. The model consists of two major components: (1) the five-phase prescriptive sequence (based on previous approaches to both concepts) and (2) the information manipulation function (which draws upon current ideas in the areas of information processing, computer programming, memory, and thinking). The two components are linked together to provide a structure that assists in understanding the process of resolving problems and making decisions.

  15. Eye Movement Analysis of Information Processing under Different Testing Conditions.

    Science.gov (United States)

    Dillon, Ronna F.

    1985-01-01

    Undergraduates were given complex figural analogies items, and eye movements were observed under three types of feedback: (1) elaborate feedback; (2) subjects verbalized their thinking and application of rules; and (3) no feedback. Both feedback conditions enhanced the rule-governed information processing during inductive reasoning. (Author/GDC)

  16. Working conditions in the European meat processing industry

    NARCIS (Netherlands)

    Nossent, S.; Groot, B. de; Verschuren, R.

    1995-01-01

    This report reflects the main results of one part of the study 'Monitoring the work environment at sectorial level'. This part regards the meat processing industry in Europe. In this study, which was a project of the European Foundation for Living and Working Conditions, ten member states of the

  17. The improving of the heat networks operating process under the conditions of the energy efficiency providing

    Directory of Open Access Journals (Sweden)

    Blinova Tatiana

    2016-01-01

    Full Text Available Among the priorities it is important to highlight the modernization and improvement of energy efficiency of housing and communal services, as well as the transition to the principle of using the most efficient technologies used in reproduction (construction, creation of objects of municipal infrastructure and housing modernization. The main hypothesis of this study lies in the fact that in modern conditions the realization of the most important priorities of the state policy in the sphere of housing and communal services, is possible in the conditions of use of the most effective control technologies for the reproduction of thermal networks. It is possible to raise the level of information security Heat Distribution Company, and other market participants by improving business processes through the development of organizational and economic mechanism in the conditions of complex monitoring of heat network operation processes

  18. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  19. Modifying yeast tolerance to inhibitory conditions of ethanol production processes

    Directory of Open Access Journals (Sweden)

    Luis eCaspeta

    2015-11-01

    Full Text Available Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated –omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.

  20. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    DEFF Research Database (Denmark)

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S....... cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular...... functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose....

  1. Experimental study on occupant's thermal responses under the non-uniform conditions in vehicle cabin during the heating period

    Science.gov (United States)

    Zhang, Wencan; Chen, Jiqing; Lan, Fengchong

    2014-03-01

    The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in

  2. Mashing of Rice with Barley Malt Under Nonconventional Process Conditions for Use in Food Processes

    DEFF Research Database (Denmark)

    Moe, T.; Adler-Nissen, Jens

    1994-01-01

    Non-conventional mashing conditions are relevant in the development of a lactic acid-fermented soymilk beverage where mashed rice is the source of carbohydrates for the fermentation and sweetness of the beverage. Advantages in the process layout could be achieved by mashing at higher pH and lower...... conditions when a mashing step is integrated in other food processes....

  3. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  4. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  5. Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing

    International Nuclear Information System (INIS)

    Ceresoli, Monica; Ferrarese Lupi, Federico; Seguini, Gabriele; Perego, Michele; Sparnacci, Katia; Gianotti, Valentina; Antonioli, Diego; Laus, Michele; Boarino, Luca

    2014-01-01

    This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190–340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s. (paper)

  6. Deciphering the influence of the thermal processes on the early passive margins formation

    Science.gov (United States)

    Bousquet, Romain; Nalpas, Thierry; Ballard, Jean-François; Ringenbach, Jean-Claude; Chelalou, Roman; Clerc, Camille

    2015-04-01

    Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie , 1978), as a dogma, is used to understanding and modeling the formation and evolution of sedimentary basins . This model is based on the assumption that the extension is only by pure shear and it is instantaneous. Under this approach, the sedimentary deposits occur in two stages. i) A short step , 1 to 10 Ma , controlled by tectonics. ii) A longer step , at least 50 Ma as a result of the thermal evolution of the lithosphere.
However, most stratigraphic data indicate that less thermal model can account for documented vertical movements. The study of the thermal evolution , coupled with other tectonic models , and its consequences have never been studied in detail , although the differences may be significant and it is clear that the petrological changes associated with changes in temperature conditions , influence changes reliefs.
In addition, it seems that the relationship between basin formation and thermal evolution is not always the same:
- Sometimes the temperature rise above 50 to 100 Ma tectonic extension. In the Alps, a significant rise in geothermal gradient Permo -Triassic followed by a "cold" extension , leading to the opening of the Ligurian- Piedmont ocean, from the Middle Jurassic .

  7. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  8. Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging

    Directory of Open Access Journals (Sweden)

    Hoffmann Nico

    2016-09-01

    Full Text Available Intraoperative thermal neuroimaging is a novel intraoperative imaging technique for the characterization of perfusion disorders, neural activity and other pathological changes of the brain. It bases on the correlation of (sub-cortical metabolism and perfusion with the emitted heat of the cortical surface. In order to minimize required computational resources and prevent unwanted artefacts in subsequent data analysis workflows foreground detection is a important preprocessing technique to differentiate pixels representing the cerebral cortex from background objects. We propose an efficient classification framework that integrates characteristic dynamic thermal behaviour into this classification task to include additional discriminative features. The first stage of our framework consists of learning this representation of characteristic thermal time-frequency behaviour. This representation models latent interconnections in the time-frequency domain that cover specific, yet a priori unknown, thermal properties of the cortex. In a second stage these features are then used to classify each pixel’s state with conditional random fields. We quantitatively evaluate several approaches to learning high-level features and their impact to the overall prediction accuracy. The introduction of high-level features leads to a significant accuracy improvement compared to a baseline classifier.

  9. Comparison of silicon pin diode detector fabrication processes using ion implantation and thermal doping

    International Nuclear Information System (INIS)

    Zhou, C.Z.; Warburton, W.K.

    1996-01-01

    Two processes for the fabrication of silicon p-i-n diode radiation detectors are described and compared. Both processes are compatible with conventional integrated-circuit fabrication techniques and yield very low leakage currents. Devices made from the process using boron thermal doping have about a factor of 2 lower leakage current than those using boron ion implantation. However, the boron thermal doping process requires additional process steps to remove boron skins. (orig.)

  10. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  11. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  12. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  13. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  14. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  15. Human biometeorological analysis of the thermal conditions of the hot Turkish city of Şanliurfa

    Science.gov (United States)

    Toy, Süleyman; Aytaç, Ahmet Serdar; Kántor, Noémi

    2018-01-01

    This paper offers a throughout human biometeorological assessment about the thermal conditions of Şanliurfa in one of the hottest parts of Turkey, in the hottest period of the year (from April to October), and a comparative analysis of three built-up types (urban, suburban and rural). Therefore, the values of physiologically equivalent temperature (PET), one of the most extensively used indices, were calculated from basic climate data with the help of the RayMan model. It was found by regarding the resulted mean PET values and the occurrence frequency of extreme heat stress periods (PET values above 41 °C) that the urban area exhibited the most unfavourable properties, followed by the suburban and rural areas. We also found very severe heat stress conditions in the summer, which may be explained by the torrid and arid climate, calm air conditions and the lack of abundant vegetation. Aiming to optimise human thermal conditions, thereby improving local life quality and facilitating international tourism, increment of vegetated areas and water surfaces would be required and, of course, highlighting the traditional methods taking into account the important aspects of sustainability.

  16. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    Science.gov (United States)

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  17. Analysis of Reactor Pressurized Thermal Shock Conditions Considering Upgrading of Systems Important to Safety

    International Nuclear Information System (INIS)

    Mazurok, A.S; Vyshemirskyij, M.P.

    2015-01-01

    The paper analyzes conditions of pressurized thermal shock on the reactor pressure vessel taking into account upgrading of the emergency core cooling system and primary overpressure protection system. For representative accident scenarios, calculation and comparative analysis was carried out. These scenarios include a small leak from the hot leg and PRZ SV stuck opening with re closure after 3600 sec and 3 SG heat transfer tube rupture. The efficiency of mass flow control by valves on the pump head (emergency core cooling systems) and cold overpressure protection (primary overpressure protection system) was analyzed. The thermal hydraulic model for RELAP5/Mod3.2 code with detailed downcomer (DC) model and changes in accordance with upgrades was used for calculations. Detailed (realistic) modeling of piping and equipment was performed. The upgrades prevent excessive primary cooling and, consequently, help to preserve the RPV integrity and to avoid the formation of a through crack, which can lead to a severe accident

  18. Expression for the thermal H-mode energy confinement time under ELM-free conditions

    International Nuclear Information System (INIS)

    Ryter, F.; Gruber, O.; Kardaun, O.J.W.F.; Menzler, H.P.; Wagner, F.; Schissel, D.P.; DeBoo, J.C.; Kaye, S.M.

    1992-07-01

    The design of future tokamaks, which are supposed to reach ignition with the H-mode, requires a reliable scaling expression for the H-mode energy confinement time. In the present work, an H-mode scaling expression for the thermal plasma energy confinement time has been developed by combining data from four existing divertor tokamaks, ASDEX, DIII-D, JET and PBX-M. The plasma conditions, which were as similar as possible to ensure a coherent set of data, were ELM-free deuterium discharges heated by deuterium neutral beam injection. By combining four tokamaks, the parametric dependence of the thermal energy confinement on the main plasma parameters, including the three main geometrical variables, was determined. (orig./WL)

  19. Influence of Urban Microclimate on Air-Conditioning Energy Needs and Indoor Thermal Comfort in Houses

    Directory of Open Access Journals (Sweden)

    Feng-Chi Liao

    2015-01-01

    Full Text Available A long-term climate measurement was implemented in the third largest city of Taiwan, for the check of accuracy of morphing approach on generating the hourly data of urban local climate. Based on observed and morphed meteorological data, building energy simulation software EnergyPlus was used to simulate the cooling energy consumption of an air-conditioned typical flat and the thermal comfort level of a naturally ventilated typical flat. The simulated results were used to quantitatively discuss the effect of urban microclimate on the energy consumption as well as thermal comfort of residential buildings. The findings of this study can serve as a reference for city planning and energy management divisions to study urban sustainability strategies in the future.

  20. Fracture appraisal of large scale glass block under various realistic thermal conditions

    International Nuclear Information System (INIS)

    Laude, F.; Vernaz, E.; Saint-Gaudens, M.

    1982-06-01

    Fracturing of nuclear waste glass caused primarily by thermal and residual stresses during cooling increases the potential leaching surface area and the number of small particles. A theoretical study shows that it is possible to calculate the stresses created but it is difficult to evaluate the state of fracture. Theoretical results are completed by an experimental study with inactive industrial scale glass blocks. The critical stages of its thermal history are simulated and the total surface area of the pieces is measured by comparison of leaching rate of the fractured glass with known samples in the same conditions. Quenching due to water impact, air cooling in a storage fit and experimental reassembly of fractured glass by re-heating are examined

  1. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions

    International Nuclear Information System (INIS)

    Ye, Jiana; Chen, Haodong; Wang, Qingsong; Huang, Peifeng; Sun, Jinhua; Lo, Siuming

    2016-01-01

    Highlights: • The modified adiabatic method is used to measure the heat generation under overcharge. • Side reactions contribute 80% heat to thermal runaway in the cases with cycling rate below 1.0 C. • The inflection and maximum voltages increase linearly with the increasing current rates. • The decomposed products of cathode materials are soluble with that of SiO_x. • Lithium plating on anode is due to changes of distance between the cathode and anode. - Abstract: Cells in battery packs are easily overcharged when battery management system (BMS) is out of order, causing thermal runaway. However, the traditional calorimetry could not estimate dynamic overcharging heat release. In this study, commercial LiCoO_2 + Li(Ni_0_._5Co_0_._2Mn_0_._3)O_2/C + SiO_x cells are employed to investigate the dynamic thermal behaviors during overcharge under adiabatic condition by combining a multi-channel battery cycler with an accelerating rate calorimeter. The results indicate that overcharging with galvanostatic - potentiostatic - galvanostatic regime is more dangerous than that with galvanostatic way. Side reactions contribute 80% heat to thermal runaway in cases below 1.0 C charging rate. To prevent the thermal runaway, the effective methods should be taken within 2 min to cool down the batteries as soon as the cells pass inflection point voltage. Hereinto, the inflection and maximum voltages increase linearly with the increasing current rates. By scanning electron microscope and energy dispersive spectrometer, the decomposed products of cathode materials are suspected to be soluble with SiOx. The overcharge induced decomposition reaction of Li(Ni_0_._5Co_0_._2Mn_0_._3)O_2 is also proposed. These results can provide support for the safety designs of lithium ion batteries and BMS.

  2. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  3. Method of thermally processing superplastically formed aluminum-lithium alloys to obtain optimum strengthening

    Science.gov (United States)

    Anton, Claire E. (Inventor)

    1993-01-01

    Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.

  4. 76 FR 81363 - Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically...

    Science.gov (United States)

    2011-12-28

    ... amended FDA's regulations for thermally processed low-acid foods packaged in hermetically sealed... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 113 [Docket No. FDA-2007-N-0265] (formerly 2007N-0026) Temperature-Indicating Devices; Thermally Processed Low-Acid...

  5. Engineering Analysis of Thermal-Load Components in the Process of Heating of Pet Preforms

    Science.gov (United States)

    Sidorov, D. É.; Kolosov, A. E.; Kazak, I. A.; Pogorelyi, A. V.

    2018-05-01

    The influence of thermal-load components (convection, collimated and uncollimated components of infrared radiation) in the process of production of PET packaging on the heating of PET preforms has been assessed. It has been established that the collimated component of infrared radiation ensures most (up to 70%) of the thermal energy in the process of heating of a PET preform.

  6. Application of optical character recognition in thermal image processing

    Science.gov (United States)

    Chan, W. T.; Sim, K. S.; Tso, C. P.

    2011-07-01

    This paper presents the results of a study on the reliability of the thermal imager compared to other devices that are used in preventive maintenance. Several case studies are used to facilitate the comparisons. When any device is found to perform unsatisfactorily where there is a suspected fault, its short-fall is determined so that the other devices may compensate, if possible. This study discovered that the thermal imager is not suitable or efficient enough for systems that happen to have little contrast in temperature between its parts or small but important parts that have their heat signatures obscured by those from other parts. The thermal imager is also found to be useful for preliminary examinations of certain systems, after which other more economical devices are suitable substitutes for further examinations. The findings of this research will be useful to the design and planning of preventive maintenance routines for industrial benefits.

  7. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  8. Smelting Associated with the Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    Hur, J-M.; Jeong, M-S.; Lee, W-K.; Cho, S-H.; Seo, C-S.; Park, S-W.

    2004-01-01

    The smelting process associated with the advanced spent fuel conditioning process (ACP) of Korea Atomic Energy Research Institute was studied by using surrogate materials. Considering the vaporization behaviors of input materials, the operation procedure of smelting was set up as (1) removal of residual salts, (2) melting of metal powder, and (3) removal of dross from a metal ingot. The behaviors of porous MgO crucible during smelting were tested and the chemical stability of MgO in the salt-being atmosphere was confirmed

  9. Thermal processing of polycrystalline NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Frick, Carl P.; Ortega, Alicia M.; Tyber, Jeffrey; Maksound, A.El.M.; Maier, Hans J.; Liu Yinong; Gall, Ken

    2005-01-01

    The objective of this study is to examine the effect of heat treatment on polycrystalline Ti-50.9 at.% Ni in hot-rolled and cold-drawn states. In particular, we examine microstructure, transformation temperatures as well as mechanical behavior in terms of both uniaxial monotonic testing and instrumented Vickers micro-indentation. The results constitute a fundamental understanding of the effect of heat treatment on thermal/stress-induced martensite and resistance to plastic flow in NiTi, all of which are critical for optimizing the mechanical properties. The high temperature of the hot-rolling process caused recrystallization, recovery, and hindered precipitate formation, essentially solutionizing the NiTi. The subsequent cold-drawing-induced a high density of dislocations and martensite. Heat treatments were carried out on hot-rolled, as well as, hot-rolled then cold-drawn materials at various temperatures for 1.5 h. Transmission Electron Microscopy observations revealed that Ti 3 Ni 4 precipitates progressively increased in size and changed their interface with the matrix from being coherent to incoherent with increasing heat treatment temperature. Accompanying the changes in precipitate size and interface coherency, transformation temperatures were observed to systematically shift, leading to the occurrence of the R-phase and multiple-stage transformations. Room temperature stress-strain tests illustrated a variety of mechanical responses for the various heat treatments, from pseudoelasticity to shape memory. The changes in stress-strain behavior are interpreted in terms of shifts in the primary martensite transformation temperatures, rather then the occurrence of the R-phase transformation. The results confirm that Ti 3 Ni 4 precipitates can be used to elicit a desired isothermal stress-strain behavior in polycrystalline NiTi. Instrumented micro-indention tests revealed that Martens (Universal) Hardness values are more dependent on the resistance to dislocation

  10. Management applications for thermal IR imagery of lake processes

    Science.gov (United States)

    Whipple, J. M.; Haynes, R. B.

    1971-01-01

    A thermal infrared scanning program was conducted in the Lake Ontario Basin region in an effort to determine: (1) limonologic data that could be collected by remote sensing techniques, and (2) local interest in and routine use of such data in water management programs. Difficulties encountered in the development of an infrared survey program in New York suggest that some of the major obstacles to acceptance of remotely sensed data for routine use are factors of psychology rather than technology. Also, terminology used should suit the measurement technique in order to encourage acceptance of the surface thermal data obtained.

  11. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Sohel, M. Imroz; Ma, Zhenjun; Cooper, Paul; Adams, Jamie; Scott, Robert

    2014-01-01

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  12. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ng, Kim Choon

    2017-01-01

    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven

  13. Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Cristina Cornaro

    2018-01-01

    Full Text Available Dye-sensitized solar cell technology is having an important role in renewable energy research due to its features and low-cost manufacturing processes. Devices based on this technology appear very well suited for integration into glazing systems due to their characteristics of transparency, color tuning and manufacturing directly on glass substrates. Field data of thermal and electrical characteristics of dye-sensitized solar modules (DSM are important since they can be used as input of building simulation models for the evaluation of their energy saving potential when integrated into buildings. However, still few studies in the literature provide this information. The study presented here aims to contribute to fill this lack providing a thermal and electrical characterization of a DSM in real operating conditions using a method developed in house. This method uses experimental data coming from test boxes exposed outdoor and dynamic simulation to provide thermal transmittance (U-value and solar heat gain coefficient (SHGC of a DSM prototype. The device exhibits a U-value of 3.6 W/m2·K, confirmed by an additional measurement carried on in the lab using a heat flux meter, and a SHGC of 0.2, value compliant with literature results. Electrical characterization shows an increase of module power with respect to temperature resulting DSM being suitable for integration in building facades.

  14. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    Science.gov (United States)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  15. Thermal conditions in selected urban and semi-natural habitats, important for the forensic entomology.

    Science.gov (United States)

    Michalski, Marek; Nadolski, Jerzy

    2018-06-01

    A long-term study on thermal conditions in selected urban and semi-natural habitats, where human corpses are likely to be found, was conducted in the city of Lodz (Central Poland). Thermal data were collected during two years at nine sites and compared with corresponding data from the nearest permanent meteorological station at Lodz Airport (ICAO code: EPLL). The conditions closest to those at the meteorological station prevailed in the deciduous forest, coefficient of determination R 2 for those sets of data was above 0.96. The open field was characterized by high daily amplitudes, especially during spring, while the site in the allotment gardens was characterized by relatively high winter temperatures. The conditions prevailing in all closed space sites were very diverse and only slightly similar to the external ones. The most distinct site was an unheated basement in a tenement house, where temperature was almost always above 0°C and daily amplitudes were negligible. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  17. Thermal treatment of radioactive wastes by the PLASMARC process

    International Nuclear Information System (INIS)

    Hoffelner, W.; Haefeli, V.; Fuenfschilling, M.R.

    1996-01-01

    The plasma plant for the thermal treatment of radioactive wastes to be supplied to ZWILAG is briefly described and the results of experiments with simulated waste are provided. The experiments led to the conclusion that the plant is well suited for handling low- and intermediate level radioactive wastes. (author) 1 fig., 3 tabs

  18. Kinetic Analysis of the Thermal Processing of Silica and Organosilica

    NARCIS (Netherlands)

    Kappert, Emiel; Bouwmeester, Henricus J.M.; Benes, Nieck Edwin; Nijmeijer, Arian

    2014-01-01

    The incorporation of an organic group into sol–gel-derived silica causes significant changes in the structure and properties of these materials. Therefore, the thermal treatment of organosilica materials may require a different approach. In the present paper, kinetic parameters (activation energy,

  19. Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties

    International Nuclear Information System (INIS)

    Gruenling, H.W.; Mannsmann, W.

    1993-01-01

    Thermal barrier coatings out of fully or partially stabilized zirconia offer a unique chance in gas turbines to increase the gas inlet temperature significantly while keeping the temperature of the structural material of the component within conventional limits. The protection of combustor parts and transition pieces as well as of some stationary gas turbine parts however is state of the art. As a consequence of still insufficient reliability, the application for hot rotating parts is very limited. The introduction as a design element requires safe life within defined time intervals. These depend on the overhaul and repair intervals of the engines. For large land based industrial or utility gas turbines, for example, coating life between 25.000 and 30.000 hrs. is a minimum requirement. Premature failure of a coating by e.g. local spalling causes local overheating of the component with the consequence of its total destruction or even more expensive secondary damages. Life limiting is the corrosion rate at the ceramic-metal interface and the behavior of the coated system under transient operating conditions, where multiaxial strain and stress distributions are generated. Sufficient strain tolerance of the coating both under tensile as well as compressive conditions is required. The properties of thermal barrier coating systems depend strongly on the structure and phase composition of the coating layers and the morphology of and the adhesion at the ceramic-metal interface. They have to be controlled by the process itself, the process parameters and the characteristics of the applied materials (e.g. chemical composition, processing, morphology, particle size and size distribution). It will be reviewed, how properties and structures of coating systems correlate and how structures can be modified by careful control of the process parameters. (orig.)

  20. Thermal energy analysis of a lime production process: Rotary kiln, preheater and cooler

    International Nuclear Information System (INIS)

    Shahin, Hamed; Hassanpour, Saeid; Saboonchi, Ahmad

    2016-01-01

    Highlights: • The integrated model for lime production unit which includes cooler, preheater and rotary kiln is developed. • The effect of residence time in each section on efficiency is investigated. • Influence of material feed rate and excess air on specific fuel consumption is analyzed. • The significant effect of particle size on efficiency and specific fuel consumption is shown. - Abstract: In this paper, thermal energy analysis of three zones of a lime production process, which are preheater, rotary kiln and cooler, is performed. In order to perform a proper quantitative estimation, the system was modeled using energy balance equations including coupled heat transfer and chemical reaction mechanisms. A mathematical model was developed, and consequently, the thermal and chemical behavior of limestone was investigated. The model was verified using empirical data. After model confirmation, the variation of Specific Fuel Consumption (SFC) versus production rate was predicted and the optimum condition was determined. Subsequently, fuel consumption was calculated regarding to altered residence time inside each zone of lime production process, for a constant output. Results indicate that increasing the residence time inside each zone of lime production process, will enhance thermal efficiency and saves fuel consumption. Relative enhancement will be the same for different sizes of limestone. It was found that a 10-min increase in material residence time inside the preheater or rotary kiln can reduce fuel consumption by around two percent. Whereas, a 5-min increase in material residence time inside the cooler would be enough to obtain a similar result. Finally, the ratio of air-to-fuel and production rate are changed in such a way that the same product is achieved. The model predicts that lowering excess air from 15% to 10% leads to a 2.5% reduction of Specific Fuel Consumption (SFC).

  1. Electro-thermal Modeling of Modern Power Devices for Studying Abnormal Operating Conditions

    DEFF Research Database (Denmark)

    Wu, Rui

    in industrial power electronic systems in the range above 10 kW. The failure of IGBTs can be generally classified as catastrophic failures and wear out failures. A wear out failure is mainly induced by accumulated degradation with time, while a catastrophic failure is triggered by a single-event abnormal....... The objective of this project has been to model and predict the electro-thermal behavior of IGBT power modules under abnormal conditions, especially short circuits. A thorough investigation on catastrophic failure modes and mechanisms of modern power semiconductor devices, including IGBTs and power diodes, has...

  2. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  3. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    International Nuclear Information System (INIS)

    Scalerandi, M; Delsanto, P P; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model

  4. Determination of equilibrium composition of thermally ionized monoatomic gas under different physical conditions

    Science.gov (United States)

    Romanova, M. S.; Rydalevskaya, M. A.

    2017-05-01

    Perfect gas mixtures that result from thermal ionization of spatially and chemically homogeneous monoatomic gases are considered. Equilibrium concentrations of the components of such mixtures are determined using integration over the momentum space and summation with respect to energy levels of the distribution functions that maximize the entropy of system under condition for constancy of the total number of nuclei and electrons. It is demonstrated that such a method allows significant simplification of the calculation of the equilibrium composition for ionized mixtures at different temperatures and makes it possible to study the degree of ionization of gas versus gas density and number in the periodic table of elements.

  5. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  6. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    International Nuclear Information System (INIS)

    Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D.; Anderson, G.L.

    1992-04-01

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities

  7. Dynamic thermal reaction analysis of wall structures in various cooling operation conditions

    International Nuclear Information System (INIS)

    Yan, Biao; Long, Enshen; Meng, Xi

    2015-01-01

    Highlights: • Four different envelop structures are separately built in the same test building. • Cooling temperature and operation time were chosen as perturbations. • State Space Method is used to analyze the influence of wall sequence order. • The numerical models are validated by the comparisons of theory and test results. • The contrast of temperature change of different envelop structures was stark. - Abstract: This paper proposes a methodology of performance assessing of envelops under different cooling operation conditions, by focusing on indoor temperature change and dynamic thermal behavior performance of walls. To obtain a general relationship between the thermal environment change and the reaction of envelop, variously insulated walls made with the same insulation material are separately built in the same wall of a testing building with the four different structures, namely self-heat insulation (full insulation material), exterior insulation, internal insulation and intermediate insulation. The advantage of this setting is that the test targets are exposed to the same environmental variables, and the tests results are thus comparable. The target responses to two types of perturbations, cooling temperature and operation time were chosen as the important variations in the tests. Parameters of cooling set temperature of 22 °C and 18 °C, operation and restoring time 10 min and 15 min are set in the test models, and discussed with simulation results respectively. The results reveal that the exterior insulation and internal insulation are more sensitive to thermal environment change than self-heat insulation and intermediate insulation.

  8. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    Science.gov (United States)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  9. Penitentiary Resocialization – three conditionings of the process

    Directory of Open Access Journals (Sweden)

    Henryk Machel

    2011-12-01

    Full Text Available Penitentiary resocialization, its form, content, organization and effectiveness depends on many conditionings. Among the most important are: the penitentiary system which makes the general decisions, conditions characteristic for the particular penitentiary, including social conditions of the prison and the human material (convicts’ community which as a subject are both within the scope of interest of those conducting the resocialization and are included in the penitentiary treatment. The goal of this treatment is to yield the expected effectiveness of resocialization. That is why the penitentiary system which is the most important to produce the expected effect has to take many conditionings under consideration and, foremost, factors characteristic for the particular penitentiary and the human material (convicts’ community which is the subject of penitentiary treatment. As many research show the nature of the penitentiary doesn’t work in favour of the process of resocialization. The interaction of conflict, the subculture of the penitentiary and other factors, including troubles of penitentiary isolation, often occurring disorders between the prisoner and his family or his close relatives amount to the reduction in the influence of the resocialization. Another of the three important conditionings described here that stymie the process are certain categories of prisoners. The subject in question are the ones addicted to alcohol and drugs, showing non-psychotic personality disorders, psychopaths and those connected with organized crime, kidnappers, assassins and hit-men and terrorists. Separate category of convicts who are hard to resocialize are those convicted of sexual offences, including paedophiles. So far no effective psycho-correction methods have been formed, especially for paedophiles. Certain difficulties are also experienced when dealing with long-term convicts: sentenced for 25 years or lifetime – sometimes it is not clear

  10. An analytically resolved model of a potato's thermal processing using Heun functions

    Science.gov (United States)

    Vargas Toro, Agustín.

    2014-05-01

    A potato's thermal processing model is solved analytically. The model is formulated using the equation of heat diffusion in the case of a spherical potato processed in a furnace, and assuming that the potato's thermal conductivity is radially modulated. The model is solved using the method of the Laplace transform, applying Bromwich Integral and Residue Theorem. The temperatures' profile in the potato is presented as an infinite series of Heun functions. All computations are performed with computer algebra software, specifically Maple. Using the numerical values of the thermal parameters of the potato and geometric and thermal parameters of the processing furnace, the time evolution of the temperatures in different regions inside the potato are presented analytically and graphically. The duration of thermal processing in order to achieve a specified effect on the potato is computed. It is expected that the obtained analytical results will be important in food engineering and cooking engineering.

  11. Processing of nanocrystalline diamond thin films for thermal management of wide-bandgap semiconductor power electronics

    International Nuclear Information System (INIS)

    Govindaraju, N.; Singh, R.N.

    2011-01-01

    Highlights: → Studied effect of nanocrystalline diamond (NCD) deposition on device metallization. → Deposited NCD on to top of High Electron Mobility Transistors (HEMTs) and Si devices. → Temperatures below 290 deg. C for Si devices and 320 deg. C for HEMTs prevent metal damage. → Development of novel NCD-based thermal management for power electronics feasible. - Abstract: High current densities in wide-bandgap semiconductor electronics operating at high power levels results in significant self-heating of devices, which necessitates the development thermal management technologies to effectively dissipate the generated heat. This paper lays the foundation for the development of such technology by ascertaining process conditions for depositing nanocrystalline diamond (NCD) on AlGaN/GaN High Electron Mobility Transistors (HEMTs) with no visible damage to device metallization. NCD deposition is carried out on Si and GaN HEMTs with Au/Ni metallization. Raman spectroscopy, optical and scanning electron microscopy are used to evaluate the quality of the deposited NCD films. Si device metallization is used as a test bed for developing process conditions for NCD deposition on AlGaN/GaN HEMTs. Results indicate that no visible damage occurs to the device metallization for deposition conditions below 290 deg. C for Si devices and below 320 deg. C for the AlGaN/GaN HEMTs. Possible mechanisms for metallization damage above the deposition temperature are enumerated. Electrical testing of the AlGaN/GaN HEMTs indicates that it is indeed possible to deposit NCD on GaN-based devices with no significant degradation in device performance.

  12. Processing of thermal scattering data with NJOY experience and comments

    International Nuclear Information System (INIS)

    Mattes, M.

    1989-01-01

    The THERMR module of NJOY-89 generates pointwise integrated cross sections and double differential neutron scattering cross sections in the thermal energy range where the binding of the scatterer in a material or the motion of atoms in a gas is important. The results are added to an existing PENDF tape using special MT numbers in the range 221 to 250. The cross sections can then be group-averaged with the GROUPR module or plotted and reformated in subsequent modules

  13. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    Science.gov (United States)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  14. Study of the thermal behavior of a latent heat cold storage unit operating under frosting conditions

    International Nuclear Information System (INIS)

    Simard, A.P.; Lacroix, M.

    2003-01-01

    A study is performed of the thermal behavior of a latent heat cold storage unit operating under frosting conditions. This unit is employed to maintain the temperature inside the refrigerated compartment of a truck below 265 K. The system consists of parallel plates filled with a phase change material (PCM) that absorbs heat from the flow of warm moist air. A mathematical model for the system is first presented and, next, validated with numerical and experimental data. It is then exploited to assess the effects of design parameters and operating conditions on the performance of the system. The recommended thickness and distance separating the PCM plates are found to be 50x10 -3 and 30x10 -3 m, respectively. The results indicate that the performance of the unit is enhanced by turbulent air flow in spite of the increased pressure loss and accentuated frost growth. The unit also performs well even when the surrounding relative humidity is 100%

  15. Providing better thermal and air quality conditions in school classrooms would be cost-effective

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David Peter

    2013-01-01

    codes stipulate that they should be. This is sometimes because financial resources for the maintenance and upgrade of school buildings are inadequate, but it is also because schools are increasingly allowing classroom temperatures to drift above the recommended range of 20–22 °C in warm weather......This paper is an overall summary of research by the authors on how classroom conditions affect the performance of schoolwork by children, motivated by the fact that the thermal and air quality conditions in school classrooms are now almost universally worse than the relevant standards and building...... and allowing outdoor air supply rates to remain so low that carbon dioxide (CO2) levels during school hours exceed 1000 ppm for long periods, in order to conserve energy. The research that is summarized in this paper shows that the indoor environmental consequences of either of these investment-free but ill...

  16. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herer, C. [RRAMATOME EP/TC, Paris (France); Souyri, A. [EdF DER/RNE/TTA, Chatou (France); Garnier, J. [CEA DRN/DTP/STR/LETC, Grenoble (France)

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  17. Hypothetical accident conditions free drop and thermal tests USA/5791/BLF (ERDA-AL)

    International Nuclear Information System (INIS)

    Blankenship, R.W.

    1980-05-01

    The USA/5791/BLF (ERDA-AL) shipping container with rolled-top food pack cans as inner containers is evaluated under conditions required by 10 CFR 71.42. One kilogram of depleted uranium as UO 2 was packaged in each of the inner containers. After completion of a free drop test and a simulated thermal test, the maximum observed leakage of UO 2 for the following week was 3.0 μg. This leakage is well below the allowable leakage per week for most plutonium isotopic mixtures. Using the examples provided, any plutonium isotopic mixture can be easily compared with the allowable leakage per week. Test conditions and results are reported

  18. Hypothetical accident conditions, free drop and thermal tests: Specification 6M

    International Nuclear Information System (INIS)

    Blankenship, R.W.

    1980-05-01

    The 30 gallon Specification 6M shipping container with rolled-top food pack cans as inner containers is evaluated under conditions required by 10 CFR 71.42. One kilogram of depleted uranium as UO 2 was packaged in each of the inner containers. After completion of a free drop test and a simulated thermal test, the maximum observed leakage of UO 2 for the following week was 3.2 μg. This leakage is well below the allowable leakage per week for most plutonium isotopic mixtures. Using the examples provided, any plutonium isotopic mixture can be easily compared with the allowable leakage per week. Test conditions and results are reported

  19. Effect of the combined stress on the life of components under thermal cycling conditions

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1987-01-01

    The life of structural components subjected to temperature changes is affected, among other factors, by the nature of the stress field. If life prediction for axially stressed components can be accomplished with a number of well established techniques, the behaviour under a complex state of stress and varying temperature conditions still is the object of intensive research. The present study was aimed at assessing the influence of the stress field upon the life of specimens made of chromium-nickel H23N18 steel under thermal cycling conditions. The designation of steel is in accordance with Polish Standards. The experiments were made on thin-walled tubular specimens loaded with various combinations of a static axial force and a static torque. (orig./GL)

  20. Genotypic Influence on Aversive Conditioning in Honeybees, Using a Novel Thermal Reinforcement Procedure

    Science.gov (United States)

    Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe

    2014-01-01

    In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee’s body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive. PMID:24828422

  1. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

    Directory of Open Access Journals (Sweden)

    Floris M van Beest

    Full Text Available BACKGROUND: Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. METHODOLOGY/PRINCIPAL FINDINGS: Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer. We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat at low ambient temperatures and mature coniferous forest (thermal shelter during thermally stressful conditions, lost less mass in winter and gained more mass in summer. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in

  2. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

    Science.gov (United States)

    van Beest, Floris M; Milner, Jos M

    2013-01-01

    Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance are likely contributory factors. Climate-related effects on animal

  3. Processing of oil products using complex radiation-thermal treatment and radiation oxonolysis

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Zaikina, R.F.

    2002-01-01

    Most of industrial radiation facilities afford an opportunity to produce a considerable amount of reactive ozone-containing gaseous mixtures parallel to the basic production that causes no detriment to the output of the main designed product. The synergetic action of the ozone-containing mixtures and ionizing radiation is of a special interest for industrial application since it can be efficiently used in a wide range of technologies, in particular, for stimulation of chemical conversion in hydrocarbons accompanied by intensive oxidizing processes. In this paper the effect of simultaneous radiation-thermal processing and radiation oxonolysis on hydrocarbon chemical conversion, and subsequent alterations in composition and properties of oil products were studied on the example of high-viscous oil (Karazhanbas field, Kazakhstan) subjected to irradiation by 2 MeV electrons combined with radiation ozonization in the bubbling mode. It was stated that application of the bubbling mode for radiation-induced ozonization of high-viscous oil leads to decrease in the yields of engine fuels in average by 8-10 % compared with those obtained in the conditions when radiation-thermal cracking was applied without bubbling. In the latter case mean yields of the wide gas-oil fraction with boiling start temperature of 350 deg. C, that included gasoline, kerosene, and diesel fuel, were about 76-80 %. Decrease in the gasoline yields does not lead to noticeable alterations in hydrocarbon contents of the gasoline fraction (boiling beginning bellow 175 deg. C) compared with gasoline produced be radiation-thermal cracking, in both cases it meets requirements for high quality standards. However, essential difference was observed in properties of heavy residua of oil processing (oil fractions with T boil >350 deg. C), i.e. the fractions that contained high concentrations of asphaltenes and pitches. Application of radiation oxonolysis diminishes concentrations of high-molecular aromatic

  4. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  5. Thermal Conditions in the City of Poznań (Poland during Selected Heat Waves

    Directory of Open Access Journals (Sweden)

    Marek Półrolniczak

    2018-01-01

    Full Text Available The aim of the study was to characterise the occurrence of hot days and heat waves in Poznań in the 1966–2015 period, as well as to describe the thermal conditions in the city during selected heat waves between 2008 and 2015. The basis of the study was the daily maximum and minimum air temperature values for Poznań–Ławica station from 1966–2015 and the daily values of air temperature from eight measuring points located in the city in various land types from 2008 to 2015. A hot day was defined as a day with Tmax above the 95th annual percentile (from 1966 to 2015, while a heat wave was assumed to be at least five consecutive hot days. The research study conducted shows the increase of Tmax, number of hot days and frequency of heat waves in Poznań over the last 50 years. Across the area of the city (differentiation of urban area types according to Urban Atlas 2012, there was a great diversity of thermal conditions during the heat waves analysed.

  6. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Ibukun Sarah Oyelakin

    2016-06-01

    Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.

  7. Numerical simulation of time-dependent deformations under hygral and thermal transient conditions

    International Nuclear Information System (INIS)

    Roelfstra, P.E.

    1987-01-01

    Some basic concepts of numerical simulation of the formation of the microstructure of HCP are outlined. The aim is to replace arbitrary terms like aging by more realistic terms like bond density in the xerogel and bonds between hydrating particles of HCP. Actual state parameters such as temperature, humidity and degree of hydration can be determined under transient hygral and thermal conditions by solving numerically a series of appropriate coupled differential equations with given boundary conditions. Shrinkage of a composite structure without crack formation, based on calculated moisture distributions, has been determined with numerical concrete codes. The influence of crack formation, tensile strain-hardening and softening on the total deformation of a quasi-homogeneous drying material has been studied by means of model based on FEM. The difference between shrinkage without crack formation and shrinkage with crack formation can be quantified. Drying shrinkage and creep of concrete cannot be separated. The total deformation depends on the superimposed stress fields. Transient hygral deformation can be realistically predicted if the concept of point properties is applied rigorously. Transient thermal deformation has to be dealt with in the same way. (orig./HP)

  8. Studies in the statistical and thermal properties of hadronic matter under some extreme conditions

    International Nuclear Information System (INIS)

    Chase, K.C.; Mekjian, A.Z.; Bhattacharyya, P.

    1997-01-01

    The thermal and statistical properties of hadronic matter under some extreme conditions are investigated using an exactly solvable canonical ensemble model. A unified model describing both the fragmentation of nuclei and the thermal properties of hadronic matter is developed. Simple expressions are obtained for quantities such as the hadronic equation of state, specific heat, compressibility, entropy, and excitation energy as a function of temperature and density. These expressions encompass the fermionic aspect of nucleons, such as degeneracy pressure and Fermi energy at low temperatures and the ideal gas laws at high temperatures and low density. Expressions are developed which connect these two extremes with behavior that resembles an ideal Bose gas with its associated Bose condensation. In the thermodynamic limit, an infinite cluster exists below a certain critical condition in a manner similar to the sudden appearance of the infinite cluster in percolation theory. The importance of multiplicity fluctuations is discussed and some recent data from the EOS collaboration on critical point behavior of nuclei can be accounted for using simple expressions obtained from the model. copyright 1997 The American Physical Society

  9. Efficacy of Thermally Conditioned Sisal FRP Composite on the Shear Characteristics of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flexural behaviour was characterized. It was observed that thermal conditioning improved the tensile strength and the flexural strength of the woven sisal fibre composites, which were observed to bear superior values than those in the untreated ones. Then, the efficacy of woven sisal fibre reinforced polymer composite for shear strengthening of reinforced concrete beams was evaluated using two types of techniques: full and strip wrapping techniques. Detailed analysis of the load deflection behaviour and fracture study of reinforced concrete beams strengthened with woven sisal under shearing load were carried out, and it was concluded that woven sisal FRP strengthened beams, underwent very ductile nature of failure, without any delamination or debonding of sisal FRP, and also increased the shear strength and the first crack load of the reinforced concrete beams.

  10. Flux behaviour under different operational conditions in osmosis process

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Zarebska, Agata; Buksek, Hermina

    the active membrane layer is facing draw solution. Osmosis process can be affected by several factors, such as operating conditions (temperature and cross flow velocity), feed and draw solution properties, and membrane characteristics. These factors can significantly contribute to the efficiency......, and total dissolved solids. Taken together our results can contribute understanding of the how performance of asymmetric FO membranes can be enhanced by feed and draw properties, membrane characteristics and operational conditions.......The transport of water molecules across a semi-permeable membrane is driven by the osmotic pressure difference between feed and draw solution. Two different operational modes can be distinguished, namely FO mode when the active membrane layer is facing the wastewater (feed), and PRO mode when...

  11. Thermal decomposition of solder flux activators under simulated wave soldering conditions

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    /methodology/approach: Changes in the chemical structure of the activators were studied using Fourier transform infrared spectroscopy technique and were correlated to the exposure temperatures within the range of wave soldering process. The amount of residue left on the surface was estimated using standardized acid-base...... titration method as a function of temperature, time of exposure and the substrate material used. Findings: The study shows that there is a possibility of anhydride-like species formation during the thermal treatment of fluxes containing weak organic acids (WOAs) as activators (succinic and DL...

  12. Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes

    Directory of Open Access Journals (Sweden)

    W. Wang

    2005-01-01

    Full Text Available Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average models for seasonal streamflow series. However, with McLeod-Li test and Engle's Lagrange Multiplier test, clear evidences are found for the existence of autoregressive conditional heteroskedasticity (i.e. the ARCH (AutoRegressive Conditional Heteroskedasticity effect, a nonlinear phenomenon of the variance behaviour, in the residual series from linear models fitted to daily and monthly streamflow processes of the upper Yellow River, China. It is shown that the major cause of the ARCH effect is the seasonal variation in variance of the residual series. However, while the seasonal variation in variance can fully explain the ARCH effect for monthly streamflow, it is only a partial explanation for daily flow. It is also shown that while the periodic autoregressive moving average model is adequate in modelling monthly flows, no model is adequate in modelling daily streamflow processes because none of the conventional time series models takes the seasonal variation in variance, as well as the ARCH effect in the residuals, into account. Therefore, an ARMA-GARCH (Generalized AutoRegressive Conditional Heteroskedasticity error model is proposed to capture the ARCH effect present in daily streamflow series, as well as to preserve seasonal variation in variance in the residuals. The ARMA-GARCH error model combines an ARMA model for modelling the mean behaviour and a GARCH model for modelling the variance behaviour of the residuals from the ARMA model. Since the GARCH model is not followed widely in statistical hydrology, the work can be a useful addition in terms of statistical modelling of daily streamflow processes for the hydrological community.

  13. Structural analysis of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Gu, J. H.; Jung, W. M.; Jo, I. J.; Gug, D. H.; Yoo, K. S.

    2003-01-01

    An advanced spent fuel conditioning process (ACP) is developing for the safe and effective management of spent fuels which arising from the domestic nuclear power plants. And its demonstration facility is under design. This facility will be prepared by modifying IMEF's reserve hot cell facility which reserved for future usage by considering the characteristics of ACP. This study presents a basic structural architecture design and analysis results of ACP hot cell including modification of the IMEF. The results of this study will be used for the detail design of ACP demonstration facility, and utilized as basic data for the licensing of the ACP facility

  14. Boron evaporation in thermally-driven seawater desalination: Effect of temperature and operating conditions

    KAUST Repository

    Alpatova, Alla; Alsaadi, Ahmad Salem; Ghaffour, NorEddine

    2018-01-01

    The volatilization of boron in thermal desalination processes, namely multi-stage flash (MSF) and air-gap membrane distillation (AGMD) was investigated for the first time. This phenomenon was observed at feed temperatures above 55 °C in both studied processes. In simulated MSF process with two feeds, model boric acid and Red Sea water, boron concentration in distillate increased with feed temperature increase from 55 °C to 104 °C because of the increase in boric acid vapor pressure. Salinity and pH were the main factors controlling boron evaporation. The achieved boron concentrations in simulated MSF process were consistent with those measured in distillate samples collected from commercial MSF plants. The AGMD process also revealed a strong influence of operating temperature on boron removal. However, unlike MSF process, the boron concentration in AGMD permeate decreased with the feed temperature increase from 55 °C to 80 °C due probably to increase in vapor production and corresponding permeate dilution. When AGMD was operated in concentrating mode at a constant feed temperature of 80 °C, permeate boron concentration increased with process time due to concentration polarization and membrane fouling. A 10% flux decline observed after 21 h was attributed to CaCO scaling on the membrane surface.

  15. Boron evaporation in thermally-driven seawater desalination: Effect of temperature and operating conditions.

    Science.gov (United States)

    Alpatova, A; Alsaadi, A; Ghaffour, N

    2018-06-05

    The volatilization of boron in thermal desalination processes, namely multi-stage flash (MSF) and air-gap membrane distillation (AGMD) was investigated for the first time. This phenomenon was observed at feed temperatures above 55 °C in both studied processes. In simulated MSF process with two feeds, model boric acid and Red Sea water, boron concentration in distillate increased with feed temperature increase from 55 °C to 104 °C because of the increase in boric acid vapor pressure. Salinity and pH were the main factors controlling boron evaporation. The achieved boron concentrations in simulated MSF process were consistent with those measured in distillate samples collected from commercial MSF plants. The AGMD process also revealed a strong influence of operating temperature on boron removal. However, unlike MSF process, the boron concentration in AGMD permeate decreased with the feed temperature increase from 55 °C to 80 °C due probably to increase in vapor production and corresponding permeate dilution. When AGMD was operated in concentrating mode at a constant feed temperature of 80 °C, permeate boron concentration increased with process time due to concentration polarization and membrane fouling. A 10% flux decline observed after 21 h was attributed to CaCO 3 scaling on the membrane surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Boron evaporation in thermally-driven seawater desalination: Effect of temperature and operating conditions

    KAUST Repository

    Alpatova, Alla

    2018-03-26

    The volatilization of boron in thermal desalination processes, namely multi-stage flash (MSF) and air-gap membrane distillation (AGMD) was investigated for the first time. This phenomenon was observed at feed temperatures above 55 °C in both studied processes. In simulated MSF process with two feeds, model boric acid and Red Sea water, boron concentration in distillate increased with feed temperature increase from 55 °C to 104 °C because of the increase in boric acid vapor pressure. Salinity and pH were the main factors controlling boron evaporation. The achieved boron concentrations in simulated MSF process were consistent with those measured in distillate samples collected from commercial MSF plants. The AGMD process also revealed a strong influence of operating temperature on boron removal. However, unlike MSF process, the boron concentration in AGMD permeate decreased with the feed temperature increase from 55 °C to 80 °C due probably to increase in vapor production and corresponding permeate dilution. When AGMD was operated in concentrating mode at a constant feed temperature of 80 °C, permeate boron concentration increased with process time due to concentration polarization and membrane fouling. A 10% flux decline observed after 21 h was attributed to CaCO scaling on the membrane surface.

  17. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  18. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  19. Degradation tests for C 32/40 concrete used for perimetral wall, reactor base and components of Cernavoda NPP containment, under thermal stress conditions and liner degradation

    International Nuclear Information System (INIS)

    Carlan, P.; Paraschiv, I.; Dinu, A.; Stanciulescu, M.; Olteanu, A. M.; Voica, I.; Stelian, R.; Buc, G.

    2016-01-01

    In order to evaluate the effect of thermal degradation on C 32/40 concrete used in nuclear constructions at Cernavoda NPP, continuous thermal stress tests were performed at 65, 80 and 100°C and cyclic thermal stress tests at 65°C in dry conditions. This paper presents the macroscopic properties of concrete, obtained after these treatments and also the microstructural changes that occur in the cement paste from the concrete composition, which has been tested in the same conditions as the concrete samples. Determinations performed for macroscopic properties of concrete included: compressive strength, loss of density, permeability and modulus of elasticity. Cement paste samples were analysed by XRD (for mineralogical composition) and SEM (for morphology). The obtained results shown an appropriate behaviour of the concrete used in this study; changes are insignificant and follow the normal evolution process of concrete, proving that concrete will preserve its safety functions, as part of the containment structure. (authors)

  20. Medial prefrontal cortex stimulation modulates the processing of conditioned fear

    Directory of Open Access Journals (Sweden)

    Anne eGuhn

    2014-02-01

    Full Text Available The extinction of conditioned fear is dependent on an efficient interplay between the amygdala and the medial prefrontal cortex (mPFC. In rats, high-frequency electrical mPFC stimulation was shown to improve extinction by a reduction of amygdala activity. However, so far it is unclear whether stimulation of homologues regions in humans might have similar beneficial effects.Healthy volunteers received one-session of either active or sham repetitive transcranial magnetic stimulation (rTMS covering the mPFC while undergoing a two-day fear conditioning and extinction paradigm. rTMS was applied offline after fear acquisition in which one of two faces (CS+ but not CS- was associated with an aversive scream (UCS. Immediate extinction learning (day 1 and extinction recall (day 2 were conducted without UCS delivery. Conditioned responses were assessed in a multimodal approach using fear-potentiated startle (FPS, skin conductance responses (SCR, functional near-infrared spectroscopy (fNIRS and self-report scales. Consistent with the hypothesis of a modulated processing of conditioned fear after high-frequency rTMS, the active group showed a reduced CS+/CS- discrimination during extinction learning as evident in FPS as well as in SCR and arousal ratings. FPS responses to CS+ further showed a linear decrement throughout both extinction sessions. This study describes the first experimental approach of influencing conditioned fear by using rTMS which can be a basis for future studies investigating a complementation of mPFC stimulation to cognitive behavioral therapy.

  1. Self-organization process of a magnetohydrodynamic plasma in the presence of thermal conduction

    International Nuclear Information System (INIS)

    Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya; Watanabe, K.; Hayashi, T.; Todo, Y.; Watanabe, T.H.; Kageyama, A.; Takamaru, H.

    1995-12-01

    A self-organization process of a magnetohydrodynamic(MHD) plasma with a finite thermal conductivity is investigated by means of a three-dimensional MHD simulation. With no thermal conduction an MHD system self-organizes to a non-Taylor's state in which the electric current perpendicular to the magnetic field remains comparable to the parallel electric current. In the presence of thermal conductivity the perpendicular component of electric current and the nonuniformity of thermal pressure generated by driven reconnection tend to be smoothened. Thus, the self-organized state approaches to a force-free minimum energy state under the influence of thermal conduction. Detailed energy conversion processes are also studied to find that the rapid decay of magnetic energy during the self-organization process is caused not only through the ohmic heating, but also through the work done by the j x B force. (author)

  2. Visualization and measurement by image processing of thermal hydraulic phenomena by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki

    1996-01-01

    Neutron Radiography was applied to visualization of thermal hydraulic phenomena and measurement was carried out by image processing the visualized images. Since attenuation of thermal neutron rays is high in ordinary liquids like water and organic fluid while it is low in most of metals, liquid flow behaviors can be visualized through a metallic wall by neutron radiography. Measurement of void fraction and flow vector field which is important to study thermal hydraulic phenomena can be carried out by image processing the images obtained by the visualization. Various two-phase and liquid metal flows were visualized by a JRR-3M thermal neutron radiography system in the present study. Multi-dimensional void fraction distributions in two-phase flows and flow vector fields in liquid metals, which are difficult to measure by the other methods, were successfully measured by image processing. It was shown that neutron radiography was efficiently applicable to study thermal hydraulic phenomena. (author)

  3. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    Science.gov (United States)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  4. VII International scientific conference Radiation-thermal effects and processes in inorganic materials. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    In the collection there are the reports of the VII International scientific conference and the VII All-Russian school-conference Radiation-thermal effects and processes in inorganic materials which were conducted on October 2-10, 2010, in Tomsk. The reports deal with new developments of charged particles high-intensity beam sources, high-temperature metrology of high-current beams and work materials, radiation-thermal stimulated effects and processes in inorganic materials, physical basics of technological processes, radiation-thermal technologies and equipment for their realization, allied branches of science and technology, specifically, nanotechnologies [ru

  5. Accuracy Enhancement with Processing Error Prediction and Compensation of a CNC Flame Cutting Machine Used in Spatial Surface Operating Conditions

    Directory of Open Access Journals (Sweden)

    Shenghai Hu

    2017-04-01

    Full Text Available This study deals with the precision performance of the CNC flame-cutting machine used in spatial surface operating conditions and presents an accuracy enhancement method based on processing error modeling prediction and real-time compensation. Machining coordinate systems and transformation matrix models were established for the CNC flame processing system considering both geometric errors and thermal deformation effects. Meanwhile, prediction and compensation models were constructed related to the actual cutting situation. Focusing on the thermal deformation elements, finite element analysis was used to measure the testing data of thermal errors, the grey system theory was applied to optimize the key thermal points, and related thermal dynamics models were carried out to achieve high-precision prediction values. Comparison experiments between the proposed method and the teaching method were conducted on the processing system after performing calibration. The results showed that the proposed method is valid and the cutting quality could be improved by more than 30% relative to the teaching method. Furthermore, the proposed method can be used under any working condition by making a few adjustments to the prediction and compensation models.

  6. Phenols and aromatic amines as thermal stabilizers in polyolefin processing

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Jan; Habicher, W. D.; Al-Malaika, S.; Zweifel, H.; Nešpůrek, Stanislav

    2001-01-01

    Roč. 176, - (2001), s. 55-63 ISSN 1022-1360. [International Conference on Polymer Modification, Degradation and Stabilization /1./. Palermo , 03.09.2000-07.09.2000] R&D Projects: GA AV ČR IAA1050901; GA MŠk ME 184; GA MŠk ME 372; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : thermal stabilizers * phenols * aromatic amines Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.634, year: 2001

  7. PETher - Physical Properties of Thermal Water under In-situ-Conditions

    Science.gov (United States)

    Herfurth, Sarah; Schröder, Elisabeth

    2016-04-01

    The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically

  8. Modeling and Simulation of Thermal Performance of Solar-Assisted Air Conditioning System under Iraq Climate

    Directory of Open Access Journals (Sweden)

    Najim Abid Jassim

    2016-08-01

    Full Text Available In Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of compressor and the performance of system. The results show that refrigeration capacity is increased from 2.7 kW to 4.4kW, as the evaporating temperature increased from 3 to 18 ºC. Also the power consumption is increased from 0.89 kW to 1.08 kW. So the COP of the system is increased from 3.068 to 4.117. The power consumption is increased from 0.897 kW to 1.031 kW as the condensing temperature increased from 35 ºC to 45 ºC. While the COP is decreased from 3.89 to 3.1. The power consumption is decreased from 1.05 kW to 0.7kW as the solar radiation intensity increased from 300 W/m2 to 1000 W/m2, while the COP is increased from 3.15 to 4.8. A comparison between the simulation and available experimental data showed acceptable agreement.

  9. Cemented carbide cutting tool: Laser processing and thermal stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)]. E-mail: bsyilbas@kfupm.edu.sa; Arif, A.F.M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia); Karatas, C. [Engineering Faculty, Hacettepe University, Ankara (Turkey); Ahsan, M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)

    2007-04-15

    Laser treatment of cemented carbide tool surface consisting of W, C, TiC, TaC is examined and thermal stress developed due to temperature gradients in the laser treated region is predicted numerically. Temperature rise in the substrate material is computed numerically using the Fourier heating model. Experiment is carried out to treat the tool surfaces using a CO{sub 2} laser while SEM, XRD and EDS are carried out for morphological and structural characterization of the treated surface. Laser parameters were selected include the laser output power, duty cycle, assisting gas pressure, scanning speed, and nominal focus setting of the focusing lens. It is found that temperature gradient attains significantly high values below the surface particularly for titanium and tantalum carbides, which in turn, results in high thermal stress generation in this region. SEM examination of laser treated surface and its cross section reveals that crack initiation below the surface occurs and crack extends over the depth of the laser treated region.

  10. Impact of building forms on thermal performance and thermal comfort conditions in religious buildings in hot climates: a case study in Sharjah city

    Science.gov (United States)

    Mushtaha, Emad; Helmy, Omar

    2017-11-01

    The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.

  11. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  12. The effect of adiabatic and conducting wall boundary conditions on LES of a thermal mixing tee

    International Nuclear Information System (INIS)

    Howard, Richard J.A.; Pasutto, Thomas

    2009-01-01

    In this paper preliminary LES simulations are carried out of the FATHERINO mixing T junction experiment. In this experiment 80degC hot water enters a lateral steel pipe which has a diameter of D=0.054m, at a speed of 1.04m/s and meets 5degC cold water which enters a perpendicular steel pipe branch that also has a diameter D=0.054m but this time at a lower speed of 0.26m/s. The modelling of the steel pipe walls is tested by comparing adiabatic and 1D conducting wall boundary conditions. The numerical grid used contains approximately 440,000 hexahedral elements. The near wall refinement is not sufficient to resolve the near wall boundary layer (y + approx. = 32) and a standard logarithmic boundary condition is used. A method known as the synthetic eddy method is used to generate the turbulent flow at the pipe inlets. Three different LES models are used (Smagorinsky, dynamic Smagorinsky and wale) to resolve the subgrid turbulent motion beyond the wall grid. An additional test is carried out where no subgrid model is used with only the wall modelling being applied. The results show that the wale model generates much less resolved turbulence than the other cases and this model shows virtually no difference between the two methods of wall thermal modelling. The dynamic Smagorinsky model shows that, downstream of the mixing T, the lower wall remains at a lower temperature for longer when the adiabatic boundary condition is applied. The Smagorinsky model is found to produce the highest level of resolved temperature fluctuation. For this model the 1D thermal modelling approach increases the unsteadiness of both the velocity and temperature fields at the onset of the mixing and in the middle of the pipe downstream of the T junction. However near the lower wall the 1D thermal modelling approach tends to reduce the unsteadiness. The case with no subgrid modelling shows higher levels of turbulence kinetic energy but lower levels of temperature fluctuation than the cases with

  13. Optimum thermal sizing and operating conditions for once through steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Ju, Kyongin; Im, Inyoung; Kim, Eunkee [KEPCO Engineering and Construction Company., Inc., Daejeon (Korea, Republic of)

    2014-10-15

    The steam generator is designed to be optimized so as to remove heat and to produce steam vapor. Because of its importance, theoretical and experimental researches have been performed on forced convection boiling heat transfer. The purpose of this study is to predict the thermal behavior and to perform optimum thermal sizing of once through steam generator. To estimate the tube thermal sizing and operating conditions of the steam generator, the analytical modeling is employed on the basis of the empirical correlation equations and theory. The optimized algorithm model, Non-dominated Sorting Genetic Algorithm (NSGA)-II, uses for this analysis. This research is focused on the design of in-vessel steam generator. An one dimensional analysis code is developed to evaluate previous researches and to optimize steam generator design parameters. The results of one-dimensional analysis need to be verified with experimental data. Goals of multi-objective optimization are to minimize tube length, pressure drop and tube number. Feedwater flow rate up to 115.425kg/s is selected so as to have margin of feedwater temperature 20 ..deg. C. For the design of 200MWth once through steam generator, it is evaluated that the tube length shall be over 12.0m for the number of tubes, 2500ea, and the length of the tube shall be over 8.0m for the number of tubes, 4500ea. The parallel coordinates chart can be provided to determine the optimal combination of number of tube, pressure drop, tube diameter and length.

  14. Theoretical assessment of evaporation rate of isolated water drop under the conditions of cooling tower of thermal power plant

    Directory of Open Access Journals (Sweden)

    Shevelev Sergey

    2017-01-01

    Full Text Available The purpose of the work is numerical modelling of heat and mass transfer at evaporation of water drops under the conditions which are typical for a modern chimney-type cooling tower of a thermal power plant. The dual task of heat and mass transfer with movable boundary at convective cooling and evaporation for a ‘drop–humid air’ system in a spherical coordinate system has been solved. It has been shown that there is a rapid decline of water evaporation rate at the initial stage of the process according to temperature decrease of its surface. It has been stated that the effect of evaporation rate decrease appears greatly in the area of small radiuses.

  15. Diagnostic System of Drill Condition in Laminated Chipboard Drilling Process

    Directory of Open Access Journals (Sweden)

    Swiderski Bartosz

    2017-01-01

    Full Text Available The paper presents an on-line automatic system for recognition of the drill condition in a laminated chipboard drilling process. Two states of the drill are considered: the sharp enough (still able to drill holes acceptable for processing quality and worn out (excessive drill wear, not satisfactory from the quality point of view of the process. The automatic system requires defining the diagnostic features, which are used as the input attributes to the classifier. The features have been generated from 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. The statistical parameters defined on the basis of the auto regression model of these signals have been used as the diagnostic features. The sequential step-wise feature selection is applied for choosing the most discriminative set of features. The final step of recognition is done by support vector machine classifier working in leave one out mode. The results of numerical experiments have confirmed good quality of the proposed diagnostic system.

  16. Thermal behaviour of high burnup PWR fuel under different fill gas conditions

    International Nuclear Information System (INIS)

    Tverberg, T.

    2001-01-01

    During its more than 40 years of existence, a large number of experiments have been carried out at the Halden Reactor Project focusing on different aspects related to nuclear reactor fuel. During recent years, the fuels testing program has mainly been focusing on aspects related to high burnup, in particular in terms of fuel thermal performance and fission gas release, and often involving reinstrumentation of commercially irradiated fuel. The paper describes such an experiment where a PWR rod, previously irradiated in a commercial reactor to a burnup of ∼50 MWd/kgUO 2 , was reinstrumented with a fuel central oxide thermocouple and a cladding extensometer together with a high pressure gas flow line, allowing for different fill gas compositions and pressures to be applied. The paper focuses on the thermal behaviour of such LWR rods with emphasis on how different fill gas conditions influence the fuel temperatures and gap conductance. Rod growth rate was also monitored during the irradiation in the Halden reactor. (author)

  17. Measurement of thermal transmittance of opaque facade wall relationship with meteorological conditions

    Directory of Open Access Journals (Sweden)

    Antunović Biljana S.

    2015-01-01

    Full Text Available This paper presents the results of measurements of thermal transmittance or as otherwise called U-value [W/m2⋅K] of opaque facade wall of preschool institution built in 1977. The building has an incomplete technical documentation according to which considered wall was built of brick and masonry mortar. Thermal characteristics of the incorporated materials have not been specified. Considering that in the period of building construction JUS standards was used, a possible range of calculated U-vales was obtained (1,241-1,404 W/m2·K. Measurements were performed in accordance with ISO 9869 during three time periods with the resulting U-values (1,269±0,276 W/m2·K; 1,025±0,175 W/m2·K; 1,200±0,212 W/m2·K that do not differ from each other within experimental uncertainty. Furthermore, the correlation of the measured U-values and meteorological conditions that prevailed during the measurements was analyzed. In the second measurement period, the average values of the total cloud cover and low cloud cover were less, and the average duration of sunshine was longer than in the other two measurement periods.

  18. Thermal and economical optimization of air conditioning units with vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, S.; Malekmohammadi, H.R. [Iran University of Science and Technology, Tehran (Iran). Dept. of Mechanical Engineering

    2004-09-01

    A new method of thermal and economical optimum design of air conditioning units with vapor compression refrigeration system, is presented. Such a system includes compressor, condenser, evaporator, centrifugal and axial fans. Evaporator and condenser temperatures, their heating surface areas (frontal surface area and number of tubes), centrifugal and axial fan powers, and compressor power are among the design variables. The data provided by manufacturers for fan (volume flow rate versus pressure drop) and compressor power (using evaporator and condenser temperatures) was used to choose these components directly from available data for consumers. To study the performance of the system under various situations, and implementing the optimization procedure, a simulation program including all thermal and geometrical parameters was developed. The objective function for optimization was the total cost per unit cooling load of the system including capital investment for components as well as the required electricity cost. To find the system design parameters, this objective function was minimized by Lagrange multipliers method. The effects of changing the cooling load on optimal design parameters were studied. (author)

  19. Storage effects on anthocyanins, phenolics and antioxidant activity of thermally processed conventional and organic blueberries.

    Science.gov (United States)

    Syamaladevi, Roopesh M; Andrews, Preston K; Davies, Neal M; Walters, Thomas; Sablani, Shyam S

    2012-03-15

    Consumer demand for products rich in phytochemicals is increasing as a result of greater awareness of their potential health benefits. However, processed products are stored for long-term and the phytochemicals are susceptible to degradation during storage. The objective of this study was to assess the storage effects on phytochemicals in thermally processed blueberries. Thermally processed canned berries and juice/puree were analysed for phytochemicals during their long-term storage. The phytochemical retention of thermally processed blueberries during storage was not influenced by production system (conventional versus organic). During 13 months of storage, total anthocyanins, total phenolics and total antioxidant activity in canned blueberry solids decreased by up to 86, 69 and 52% respectively. In canned blueberry syrup, total anthocyanins and total antioxidant activity decreased by up to 68 and 15% respectively, while total phenolic content increased by up to 117%. Similar trends in phytochemical content were observed in juice/puree stored for 4 months. The extent of changes in phytochemicals of thermally processed blueberries during storage was significantly influenced by blanching. Long-term storage of thermally processed blueberries had varying degrees of influence on degradation of total anthocyanins, total phenolics and total antioxidant activity. Blanching before thermal processing helped to preserve the phytochemicals during storage of blueberries. Copyright © 2011 Society of Chemical Industry.

  20. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation

    Science.gov (United States)

    Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri

    2017-11-01

    In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.

  1. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    DEFF Research Database (Denmark)

    Wickman, B.; da Silva Fanta, Alice Bastos; Burrows, Andrew

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes...

  2. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  3. DNS, LES and RANS of turbulent heat transfer in boundary layer with suddenly changing wall thermal conditions

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Yamada, Shohei; Tanaka, Masahiro; Houra, Tomoya; Nagano, Yasutaka

    2013-01-01

    Highlights: • We study the turbulent boundary layer with heat transfer by DNS. • Turbulent boundary layers with suddenly changing wall thermal conditions are observed. • The detailed turbulent statistics and structures in turbulent thermal boundary layer are discussed. • Turbulence models in LES and RANS are evaluated using DNS results. • LES and RANS are almost in good agreement with DNS results. -- Abstract: The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are

  4. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-05-05

    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven technologies 33%, but in Gulf Cooperation Council (GCC) countries their shares are 42% and 56% respectively due to severe feed water quality. In RO processes, intake, pretreatment and brine disposal cost 25% of total desalination cost at 30–35% recovery. We proposed a tri-hybrid system to enhance overall recovery up to 81%. The conditioned brine leaving from RO processes supplied to proposed multi-evaporator adsorption cycle driven by low temperature industrial waste heat sources or solar energy. RO membrane simulation has been performed using WinFlow and IMSDesign commercial softwares developed by GE and Nitto. Detailed mathematical model of overall system is developed and simulation has been conducted in FORTRAN. The final brine reject concentration from tri-hybrid cycle can vary from 166,000ppm to 222,000ppm if RO retentate concentration varies from 45,000ppm to 60,000ppm. We also conducted economic analysis and showed that the proposed tri-hybrid cycle can achieve highest recovery, 81%, and lowest energy consumption, 1.76kWhelec/m3, for desalination reported in the literature up till now.

  5. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    Science.gov (United States)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  6. Measured versus calculated thermal conductivity of high-grade metamorphic rocks – inferences on the thermal properties of the lower crust at ambient and in-situ conditions

    DEFF Research Database (Denmark)

    Ray, Labani; Förster, Hans-Jürgen; Förster, Andrea

    in the literature are applied. Thus, if appropriate samples (in terms of sample size or physical-chemical-mechanical condition) for laboratory measurement are not available, bulk TC of high-grade metamorphic rocks with low anisotropy and porosity could be satisfactorily good assessed from modal mineralogy, using......The bulk thermal conductivity (TC) of 26 rock samples representing felsic, intermediate and mafic granulites, from the Southern Granulite Province, India, is measured at dry and saturated conditions with the optical-scanning method. Thermal conductivity is also calculated from modal mineralogy...... (determined by XRD and EPMA), applying mixing models commonly used in thermal studies. Most rocks are fine- to medium -grained equigranular in texture. All samples are isotropic to weakly anisotropic and possess low porosities (

  7. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-12-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof-mounted photovoltaic modules. The modules are fixed on special cradles which fold at night to expose the roof to the night sky, thereby enhancing night-time cooling, which is substantial in the desert environment. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. Application to a typical Middle-Eastern desert site reveals that indeed such a design is feasible with present-day technology; and should be even more attractive with future advances in technology. © 2011 Copyright Taylor and Francis Group, LLC.

  8. Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation

  9. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  10. Relationship of core exit-temperature noise to thermal-hydraulic conditions in PWRs

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Upadhyaya, B.R.

    1983-01-01

    Core exit thermocouple temperature noise and neutron detector noise measurements were performed at the Loss of Fluid Test Facility (LOFT) reactor and a Westinghouse, 1148 MW(e) PWR to relate temperature noise to core thermal-hydraulic conditions. The noise analysis results show that the RMS of the temperature noise increases linearly with increasing core δT at LOFT and the commercial PWR. Out-of-core test loop temperature noise has shown similar behavior. The phase angle between core exit temperature noise and in-core or ex-core neutron noise is directly related to the core coolant flow velocity. However, if the thermocouple response time is slow, compared to the coolant transit time between the sensors, velocities inferred from the phase angle are lower than measured coolant flow velocities

  11. Operating modes of high-Tc composite superconductors and thermal runaway conditions under current charging

    International Nuclear Information System (INIS)

    Romanovskii, V R; Watanabe, K

    2006-01-01

    The operating thermal and electric modes of a high-T c superconducting composite in partially and fully penetrated states induced by the charging current are investigated. They were studied under conditions in which the current charging rate, the volume fraction of the superconductor in a composite or the temperature of the cooling bath were changed. The transient behaviour of the voltage-current dependence, which is characteristic during stable and unstable increases in electric field inside the composite under a continuous current charging, is discussed. Simulations were done using zero- and one-dimensional steady and unsteady thermoelectric models with a power equation describing the virgin voltage-current characteristic of a superconductor. It is found that some thermoelectric trends underlie the shape of the voltage-current characteristic of the high-T c superconducting composite. These have to be considered during experiments in which the critical or quench currents are defined. First, in the initial stage of the fully penetrated regime (in the low voltage range), the electric field distribution does not have a uniform character. These states depend on the volume fraction of the superconductor and the current charging rate: the higher these quantities, the higher the heterogeneity of the electric field. Second, during the stable over-critical regime (in the high voltage range) occurring in complete penetration modes, the evolution of the electric field may depend on the relevant temperature increase of a composite according to the corresponding increase in its temperature-dependent heat capacity. Consequently, the shape of the voltage-current characteristic of a composite high-T c superconductor during continuous current charging, both before and after thermal runaway, has only a positive slope. Moreover, it is proved that the growth of the fully penetrated part of the voltage-current characteristic becomes less intensive when the current charging rate or the

  12. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    Science.gov (United States)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  13. The study of thermal processes in control systems of heat consumption of buildings

    Science.gov (United States)

    Tsynaeva, E.; A, Tsynaeva

    2017-11-01

    The article discusses the main thermal processes in the automated control systems for heat consumption (ACSHC) of buildings, schematic diagrams of these systems, mathematical models used for description of thermal processes in ACSHC. Conducted verification represented by mathematical models. It was found that the efficiency of the operation of ACSHC depend from the external and internal factors. Numerical study of dynamic modes of operation of ACSHC.

  14. EXAMINATION OF THE SIMULATED THERMAL CONDITIONS IN A POPULAR PLAYGROUND RELATED TO THE HUMAN REACTIONS AND THE JUDGMENT OF THE AREA DESIGN

    OpenAIRE

    L.A. ÉGERHÁZI; A. KOVÁCS; N. KÁNTOR; J. UNGER

    2013-01-01

    In the field of urban bioclimatology an important and timely research direction today is to examine the thermal conditions of public places. In our study, human thermal comfort analysis was performed in a modern and well-attended children playground located in Szeged (Hungary). The aim of the paper is to reveal the changes in the thermal comfort conditions between two seasons and also the resulting subjective thermal reactions of visitors in this relatively small area. Thermal comfort conditi...

  15. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  16. Safeguards System for the Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Kim, Ho-dong; Lee, T.H.; Yoon, J.S.; Park, S.W; Lee, S.Y.; Li, T.K.; Menlove, H.; Miller, M.C.; Tolba, A.; Zarucki, R.; Shawky, S.; Kamya, S.

    2007-01-01

    The advanced spent fuel conditioning process (ACP) which is a part of a pyro-processing has been under development at Korean Atomic Energy Research Institute (KAERI) since 1997 to tackle the problem of an accumulation of spent fuel. The concept is to convert spent oxide fuel into a metallic form in a high temperature molten salt in order to reduce the heat energy, volume, and radioactivity of a spent fuel. Since the inactive tests of the ACP have been successfully implemented to confirm the validity of the electrolytic reduction technology, a lab-scale hot test will be undertaken in a couple of years to validate the concept. For this purpose, the KAERI has built the ACP Facility (ACPF) at the basement of the Irradiated Material Examination Facility (IMEF) of KAERI, which already has a reserved hot-cell area. Through the bilateral arrangement between US Department of Energy (DOE) and Korean Ministry of Science and Technology (MOST) for safeguards R and D, the KAERI has developed elements of safeguards system for the ACPF in cooperation with the Los Alamos National Laboratory (LANL). The reference safeguards design conditions and equipment were established for the ACPF. The ACPF safeguards system has many unique design specifications because of the particular characteristics of the pyro-process materials and the restrictions during a facility operation. For the material accounting system, a set of remote operation and maintenance concepts has been introduced for a non-destructive assay (NDA) system. The IAEA has proposed a safeguards approach to the ACPF for the different operational phases. Safeguards measures at the ACPF will be implemented during all operational phases which include a 'Cold Test', a 'Hot Test' and at the end of a 'Hot test'. Optimization of the IAEA's inspection efforts was addressed by designing an effective safeguards approach that relies on, inter alia, remote monitoring using cameras, installed NDA instrumentation, gate monitors and seals

  17. Welding thermal cycle-triggered precipitation processes in steel S700MC subjected to the thermo-mechanical control processing

    OpenAIRE

    Górka J.

    2017-01-01

    This study presents tests concerned with welding thermal process-induced precipitation processes taking place in 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP) with accelerated cooling. The thermomechanical processing of steel S700MC leads to its refinement, structural defects and solutioning with hardening constituents. Tests of thin foils performed using a transmission electron microscope revealed that the hardening of steel S700MC was primarily caused by...

  18. Thermal annealing of recoil 56Mn in strontium permanganate under (n,γ) process

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Vijaya

    2002-01-01

    Chemical stabilization of recoil 56 Mn in strontium permanganate (hydrous and anhydrous) has been investigated with a special reference to pre-and post-activation thermal annealing treatments. The retention of 56 Mn in neutron irradiated strontium permanganate showed significant variation on thermal annealing in both pre-and post-activation heated target. The recoil re-entry process obeys simple first order kinetics and the activation energy deduced for thermal annealing process is very low as computed by classical Arrhenius plots. The results observed are discussed in the light of existing ideas for understanding the recoil stabilization mechanism of parent reformation and the nature of precursors in permanganates. (author)

  19. Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results

    Science.gov (United States)

    Kántor, Noémi; Kovács, Attila; Takács, Ágnes

    2016-11-01

    Wide research attention has been paid in the last two decades to the thermal comfort conditions of different outdoor and semi-outdoor urban spaces. Field studies were conducted in a wide range of geographical regions in order to investigate the relationship between the thermal sensation of people and thermal comfort indices. Researchers found that the original threshold values of these indices did not describe precisely the actual thermal sensation patterns of subjects, and they reported neutral temperatures that vary among nations and with time of the year. For that reason, thresholds of some objective indices were rescaled and new thermal comfort categories were defined. This research investigates the outdoor thermal perception patterns of Hungarians regarding the Physiologically Equivalent Temperature ( PET) index, based on more than 5800 questionnaires. The surveys were conducted in the city of Szeged on 78 days in spring, summer, and autumn. Various, frequently applied analysis approaches (simple descriptive technique, regression analysis, and probit models) were adopted to reveal seasonal differences in the thermal assessment of people. Thermal sensitivity and neutral temperatures were found to be significantly different, especially between summer and the two transient seasons. Challenges of international comparison are also emphasized, since the results prove that neutral temperatures obtained through different analysis techniques may be considerably different. The outcomes of this study underline the importance of the development of standard measurement and analysis methodologies in order to make future studies comprehensible, hereby facilitating the broadening of the common scientific knowledge about outdoor thermal comfort.

  20. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    Science.gov (United States)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.