WorldWideScience

Sample records for thermal processing conditions

  1. Mathematical Modelling of Thermal Process to Aquatic Environment with Different Hydrometeorological Conditions

    Directory of Open Access Journals (Sweden)

    Alibek Issakhov

    2014-01-01

    Full Text Available This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm. Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions.

  2. Rapid thermal conditioning of sewage sludge

    Science.gov (United States)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This

  3. Thermal processing of conditioned waste and fuel substitutes; Thermische Behandlung vorbehandelter Abfaelle und Ersatzbrennstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Velden, F. van der; Engweiler, J. [Von Roll Umwelttechnik AG, Zurich (Switzerland)

    1998-12-31

    Different technologies for the thermal processing of mechanical-biologically conditioned waste are described and compared in terms of cost and flexibility. (orig.) [Deutsch] Es werden verschiedene Technologien der thermischen Behandlung mechanisch-biologisch vorbehandelter Abfaelle vorgestellt und im Hinblick auf Kosten und Flexibilitaet verglichen. (orig.)

  4. Investigation on the asymmetry of thermal condition and grain defect formation in the customary directional solidification process

    International Nuclear Information System (INIS)

    Ma, D; Wu, Q; Hollad, S; Bührig-Polaczek, A

    2012-01-01

    In the present study, the non-uniformity of the thermal condition and the corresponding grain defect formation in the customary Bridgman process were investigated. The casting clusters in radial alignment were directionally solidified in a Bridgman furnace. It was found that in the casting cluster, the shadow side facing the central rod was ineffectively heated in the hot zone and ineffectively cooled in the cooling zone during withdrawal, compared with the heater side facing the furnace heater. The metallographic examination of the simplified turbine blades exhibited that the platforms on the shadow side are very prone to stray grain formation, while the heater side reveals a markedly lower tendency for that. The asymmetric thermal condition causes the asymmetrical formation of these grain defects. This non-uniformity of the thermal condition should be minimized as far as possible, in order to effectively optimize the quality of the SC superalloy components.

  5. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  6. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1985-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)

  7. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1984-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  8. Optimization of the thermal conditions for processing hatchery waste eggs as meal for feed.

    Science.gov (United States)

    Chiu, W Z; Wei, H W

    2011-05-01

    The purpose of this study was to optimize the thermal conditions for processing hatchery waste eggs (HWE) into rich feedstuff with lower electricity consumption by using response surface methodology. In the study, the effects of processing temperature and time on HWE meal (HWEM) quality and production were evaluated. As the results indicate, optimization was obtained when the processing lasted for 23 h at the fixed temperature of 65°C, resulting in higher protein digestibility in vitro (89.6%) and DM (88.5%) content of HWEM with lower electricity consumption (82.4 kWh/60 kg of HWE). No significant differences existed between the quality values predicted by mathematical formulae and those obtained through practical analyses in DM (87 vs. 88.5%), CP (39.2 vs. 38.3%), protein digestibility in vitro (90.7 vs. 89.6%), and electricity consumed (80.8 vs. 82.4 kWh/60 kg of HWE). Furthermore, the product derived from the optimized processing conditions had better biosecurity; Salmonella spp. were not found and Escherichia coli levels were substantially reduced (from 10(7) to 10(4) cfu/g). In summary, HWEM of superior quality can be produced when the processing conditions optimized in the current research are utilized.

  9. Rapid thermal processing of semiconductors

    CERN Document Server

    Borisenko, Victor E

    1997-01-01

    Rapid thermal processing has contributed to the development of single wafer cluster processing tools and other innovations in integrated circuit manufacturing environments Borisenko and Hesketh review theoretical and experimental progress in the field, discussing a wide range of materials, processes, and conditions They thoroughly cover the work of international investigators in the field

  10. Influence of thermal processing conditions on flavor stability in fluid milk: benzaldehyde.

    Science.gov (United States)

    Potineni, R V; Peterson, D G

    2005-01-01

    Flavor loss in dairy products has been associated with enzymatic degradation by xanthine oxidase. This study was conducted to investigate the influence of milk thermal processing conditions (or xanthine oxidase inactivation) on benzaldehyde stability. Benzaldehyde was added to whole milk which had been thermally processed at 4 levels: (1) none or raw, (2) high temperature, short time (HTST) pasteurization, (3) HTST pasteurization, additionally heated to 100 degrees C (PAH), and (4) UHT sterilized. Additionally, PAH and UHT milk samples containing benzaldehyde (with and without ferrous sulfate) were spiked with xanthine oxidase. Azide was added as an antimicrobial agent (one additional pasteurized sample without) and the microbial load (total plate count) was determined on d 0, 2, and 6. The concentration of benzaldehyde and benzoic acid in all milk samples were determined at d 0, 1, 2, 4, and 6 (stored at 5 degrees C) by gas chromatography/mass spectrometry in selective ion monitory mode. Over the 6-d storage period, more than 80% of the benzaldehyde content was converted (oxidized) to benzoic acid in raw and pasteurized milk, whereas no change in the benzaldehyde concentration was found in PAH or UHT milk samples. Furthermore, the addition of xanthine oxidase or xanthine oxidase plus ferrous sulfate to PAH or UHT milk samples did not result in benzaldehyde degradation over the storage period.

  11. Conditions of Thermal Reclamation Process Realization on a Sample of Spent Moulding Sand from an Aluminum Alloy Foundry Plant

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2017-06-01

    Full Text Available The results of investigations of thermal reclamation of spent moulding sands originating from an aluminum alloy foundry plant are presented in this paper. Spent sands were crushed by using two methods. Mechanical fragmentation of spent sand chunks was realized in the vibratory reclaimer REGMAS. The crushing process in the mechanical device was performed either with or without additional crushing-grinding elements. The reclaimed material obtained in this way was subjected to thermal reclamations at two different temperatures. It was found that a significant binder gathering on grain surfaces favors its spontaneous burning, even in the case when a temperature lower than required for the efficient thermal reclamation of furan binders is applied in the thermal reclaimer. The burning process, initiated by gas burners in the reclaimer chamber, generates favorable conditions for self-burning (at a determined amount of organic binders on grain surfaces. This process is spontaneously sustained and decreases the demand for gas. However, due to the significant amount of binder, this process is longer than in the case of reclaiming moulding sand prepared with fresh components.

  12. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  13. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  14. Reflow process stabilization by chemical characteristics and process conditions

    Science.gov (United States)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  15. Thermal processing of bone: in vitro response of mesenchymal cells to bone-conditioned medium.

    Science.gov (United States)

    Sawada, K; Caballé-Serrano, J; Schuldt Filho, G; Bosshardt, D D; Schaller, B; Buser, D; Gruber, R

    2015-08-01

    The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Thermal analysis of a glass bending process

    International Nuclear Information System (INIS)

    Buonanno, G.; Dell'Isola, M.; Frattolillo, A.; Giovinco, G.

    2005-01-01

    The paper presents the thermal simulation of naturally ventilated ovens used in glass sheets hot forming for windscreen production. The determination of thermal and flow conditions in the oven and, consequently, the windshield temperature distribution is necessary both for the productive process optimisation and to assure beforehand, without any iterative tuning process, the required characteristics of the product considered. To this purpose, the authors carried out a 3D numerical simulation of the thermal interaction between the glass and the oven internal surfaces during the whole heating process inside the oven. In particular, a finite volumes method was used to take into account both the convective, conductive and radiative heat transfer in the oven. The numerical temperature distribution in the glass was validated through the comparison with the data obtained from an experimental apparatus designed and built for the purpose

  17. Influence of anomalous thermal losses of ignition conditions

    International Nuclear Information System (INIS)

    Coppi, B.; Tang, W.M.

    1986-05-01

    In the process of achieving ignition conditions, it is likely that microinstabilities, which lead to anomalous thermal transport of the fusing nuclei, will be present. When such phenomena are taken into account, an appropriate formulation of ignition criteria becomes necessary. In particular, a new type of plasma density limit is identified

  18. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    International Nuclear Information System (INIS)

    Clough, D; Fletcher, S; Longstaff, A P; Willoughby, P

    2012-01-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  19. Synthesis report on thermally driven coupled processes

    International Nuclear Information System (INIS)

    Hardin, E.L.

    1997-01-01

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  20. Perspective of Micro Process Engineering for Thermal Food Treatment.

    Science.gov (United States)

    Mathys, Alexander

    2018-01-01

    Micro process engineering as a process synthesis and intensification tool enables an ultra-short thermal treatment of foods within milliseconds (ms) using very high surface-area-to-volume ratios. The innovative application of ultra-short pasteurization and sterilization at high temperatures, but with holding times within the range of ms would allow the preservation of liquid foods with higher qualities, thereby avoiding many unwanted reactions with different temperature-time characteristics. Process challenges, such as fouling, clogging, and potential temperature gradients during such conditions need to be assessed on a case by case basis and optimized accordingly. Owing to the modularity, flexibility, and continuous operation of micro process engineering, thermal processes from the lab to the pilot and industrial scales can be more effectively upscaled. A case study on thermal inactivation demonstrated the feasibility of transferring lab results to the pilot scale. It was shown that micro process engineering applications in thermal food treatment may be relevant to both research and industrial operations. Scaling of micro structured devices is made possible through the use of numbering-up approaches; however, reduced investment costs and a hygienic design must be assured.

  1. Quaternion Based Thermal Condition Monitoring System

    Science.gov (United States)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  2. Inactivation of Salmonella and Listeria in ground chicken breast meat during thermal processing.

    Science.gov (United States)

    Murphy, R Y; Marks, B P; Johnson, E R; Johnson, M G

    1999-09-01

    Thermal inactivation of six Salmonella spp. and Listeria innocua was evaluated in ground chicken breast and liquid medium. Survival of Salmonella and Listeria was affected by the medium composition. Under the same thermal process condition, significantly more Salmonella and Listeria survived in chicken breast meat than in 0.1% peptone-agar solution. The thermal lethality of six tested Salmonella spp. was additive in chicken meat. Survival of Listeria in chicken meat during thermal processing was not affected by the presence of the six Salmonella spp. Sample size and shape affected the inactivation of Salmonella and Listeria in chicken meat during thermal processing.

  3. Rapid thermal processing and beyond applications in semiconductor processing

    CERN Document Server

    Lerch, W

    2008-01-01

    Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a

  4. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  5. Simulation of Thermal-hydraulic Process in Reactor of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2014-01-01

    This paper provides the physical process in the reactor of High Temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM) and introduces the standard operation conditions. The FORTRAN code developed for the thermal hydraulic module of Full-Scale Simulator (FSS) of HTR-PM is used to simulate two typical operation transients including cold startup process and cold shutdown process. And the results were compared to the safety analysis code, namely TINTE. The good agreement indicates that the code is applicable for simulating the thermal-hydraulic process in reactor of HTR-PM. And for long time transient process, the code shows good stability and convergence. (author)

  6. Numerical study on lithium titanate battery thermal response under adiabatic condition

    International Nuclear Information System (INIS)

    Sun, Qiujuan; Wang, Qingsong; Zhao, Xuejuan; Sun, Jinhua; Lin, Zijing

    2015-01-01

    Highlights: • The thermal behavior of lithium titanate battery during cycling was investigated. • The temperature rate in charging was less than that of discharging in the cycling. • The temperature difference was less than 0.02 °C at 0.5 C in adiabatic condition. • The temperature distribution and thermal runaway of the battery were predicted. - Abstract: To analyze the thermal behavior of 945 mA h lithium titanate battery during charging and discharging processes, the experimental and numerical studies are performed in this work. The cathode and anode of the 945 mA h lithium titanate soft package battery are the lithium nickel–cobalt–manganese-oxide and lithium titanate, respectively. In the experiment, an Accelerating Rate Calorimeter combined with battery cycler is employed to investigate the electrochemical–thermal behavior during charge–discharge cycling under the adiabatic condition. In numerical simulation, one electrochemical-thermal model is adopted to predict the thermal response and validated with the experimental results. From both experimental and simulated results, the profile of potential and current, the heat generation, the temperature, the temperature changing rate and the temperature distribution in the cell are obtained and thermal runaway is predicted. The analysis of the electrochemical and thermal behavior is beneficial for the commercial application of lithium titanate battery in the fields of electric vehicles and hybrid electric vehicles

  7. Viscous and thermal modelling of thermoplastic composites forming process

    Science.gov (United States)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  8. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  9. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  10. Radiation-thermal processes of conversion in the coals

    International Nuclear Information System (INIS)

    Mustafaev, I.I.

    2002-01-01

    Full text: The brief review, history, modern condition and bibliographic data on research of radiation-stimulated processes in coals are adduced in the report. Results of new researches of influence of gamma - radiation and accelerated electrons on pyrolysis, gasification, desulphurization, paramagnetism, adsorption and optical properties of coals in wide intervals of change of absorbed dose, dose rate, temperature, radiation type and other parameters of processes are stated. As object of researches Turkish (Yeni koy, Yatagan) and Russian (Siberia) coals were used. Specific peculiarities of influence of ionizing radiations on fossil fuels, bringing in change of their reactivity as result of destruction and polycondensation processes are considered. a)Pyrolysis: Under action of gamma-radiation and accelerated electrons the rate of thermal (t) pyrolysis grows and the ratio of radiation-thermal (rt) and thermal (t) processes: Wrt/ Wt depends on dose rate and temperature. By increase of dose rate the radiation effects grows, and at increase of temperature this effect is reduced. The influence of high rate heating of coals under pulls action of accelerated electrons on conversion degree and product composition has been established. The investigation regularities of formation liquid and gas products is resulted at radiation - thermal processing of mixtures of lignites with fuel oil. These experiments were conducted in flowing conditions in the interval of temperature T=350-500 degrees centigrade, power of the pulls accelerated electrons P=30-50 W, flow velocity of fuel oil 0,2-2 ml/minute. As a index of process were controlled conversion degree of coals, overall yield, contents and characteristic of liquid and gas products. The products of thermal treatment of these mixtures and also radiation-thermal treatment of separate components significantly less than radiation-thermal conversion of binary mixtures. It has been established that radiation effect has a positive

  11. Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders

    Science.gov (United States)

    Surzhikov, A. P.; Galtseva, O. V.; Vasendina, E. A.; Vlasov, V. A.; Nikolaev, E. V.

    2016-02-01

    The paper considers the issues of industrial production of doped lithium ferrite powders by radiation-thermal method. A technological scheme of the processing line is suggested. The radiation-thermal technological scheme enables production of powders with technical characteristics close to the required ones under relatively low temperature annealing conditions without intermediate mixing. The optimal conditions of the radiation-thermal synthesis are achieved isothermally under irradiation by the electron beam with energy of 2.5 MeV in the temperature range of 700-750 0C within- 120 min.

  12. The minimum work required for air conditioning process

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2006-01-01

    This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods

  13. Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.

    Science.gov (United States)

    Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S

    2017-05-03

    During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.

  14. Design and optimization of food processing conditions

    OpenAIRE

    Silva, C. L. M.

    1996-01-01

    The main research objectives of the group are the design and optimization of food processing conditions. Most of the work already developed is on the use of mathematical modeling of transport phenomena and quantification of degradation kinetics as two tools to optimize the final quality of thermally processed food products. Recently, we initiated a project with the main goal of studying the effects of freezing and frozen storage on orange and melon juice pectinesterase activity and q...

  15. Rapid thermal processing by stamping

    Science.gov (United States)

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  16. Millisecond photo-thermal process on significant improvement of supercapacitor’s performance

    International Nuclear Information System (INIS)

    Wang, Kui; Wang, Jixiao; Wu, Ying; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-01-01

    Graphical abstract: A high way for charge transfer is created by a millisecond photo-thermal process which could decrease contact resistance among nanomaterials and improve the electrochemical performances. - Highlights: • Improve conductivity among nanomaterials with a millisecond photo-thermal process. • The specific capacitance can increase about 25% with an photo-thermal process. • The circle stability and rate capability can be improved above 10% with photo-thermal process. • Provide a new way that create electron path to improve electrochemical performance. - Abstract: Supercapacitors fabricated with nanomaterials usually have high specific capacitance and excellent performance. However, the small size of nanomaterials renders a considerable limitation of the contact area among nanomaterials, which is harmful to charge carrier transfer. This fact may hinder the development and application of nanomaterials in electrochemical storage systems. Here, a millisecond photo-thermal process was introduced to create a charge carries transfer path to decrease the contact resistance among nanomaterials, and enhance the electrochemical performance of supercapacitors. Polyaniline (PANI) nanowire, as a model nanomaterial, was used to modify electrodes under different photo-thermal process conditions. The modified electrodes were characterized by scanning electronic microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and the results were analysed by equivalent circuit simulation. These results demonstrate that the photo-thermal process can alter the morphology of PANI nanowires, lower the charge transfer resistances and thus improve the performance of electrodes. The specific capacitance increase of the modified electrodes is about 25%. The improvement of the circle stability and rate capability are above 10%. To the best of our knowledge, this is the first attempt on research the effect of photo-thermal process on the conductivity

  17. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique

    International Nuclear Information System (INIS)

    Taheri-Garavand, Amin; Ahmadi, Hojjat; Omid, Mahmoud; Mohtasebi, Seyed Saeid; Mollazade, Kaveh; Russell Smith, Alan John; Carlomagno, Giovanni Maria

    2015-01-01

    This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator. - Highlights: • Intelligent fault diagnosis of cooling radiator using thermal image processing. • Thermal image processing in a multiscale representation structure by 2D-DWT. • Selection features based on a hybrid system that uses both GA and ANN. • Application of ANN as classifier. • Classification accuracy of fault detection up to 93.83%

  18. Effect of processing conditions on quality of green beans subjected to reciprocating agitation thermal processing.

    Science.gov (United States)

    Singh, Anika; Singh, Anubhav Pratap; Ramaswamy, Hosahalli S

    2015-12-01

    The effect of reciprocating agitation thermal processing (RA-TP) on quality of canned beans was evaluated in a lab-scale reciprocating retort. Green beans were selected due to their soft texture and sensitive color. Green beans (2.5cm length×0.8cm diameter) were filled into 307×409 cans with carboxylmethylcellulose (0-2%) solutions and processed at different temperatures (110-130°C) and reciprocation frequency (1-3Hz) for predetermined heating times to achieve a process lethality (F o ) of 10min. Products processed at higher temperatures and higher reciprocation frequencies resulted in better retention of chlorophyll and antioxidant activity. However, high reciprocation frequency also resulted in texture losses, with higher breakage of beans, increased turbidity and higher leaching. There was total loss of product quality at the highest agitation speed, especially with low viscosity covering solutions. Results suggest that reciprocating agitation frequency needs to be adequately moderated to get the best quality. For getting best quality, particularly for canned liquid particulate foods with soft particulates and those susceptible to high impact agitation, a gentle reciprocating motion (~1Hz) would be a good compromise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Multi-pass TIG welding process: simulating thermal SS304

    International Nuclear Information System (INIS)

    Harinadh, Vemanaboina; Akella, S.; Buddu, Ramesh Kumar; Edision, G.

    2015-01-01

    Welding is basic requirement in the construction of nuclear reactors, power plants and structural components development. A basic studies on various aspects of the welding is essential to ensure the stability and structural requirement conditions. The present study explored the thermo-mechanical analysis of the multipass welds of austenitic stainless steels which are widely used in fusion and fission reactor components development. A three-dimensional (3D) finite element model is developed to investigate thermally induced stress field during TIG welding process for SS304 material. The transient thermal analysis is performed to obtain the temperature history, which then is applied to the mechanical (stress) analysis. The present thermal analysis is conducted using element type DC3D8. This element type has a three dimensional thermal conduction capability and eight nodes. The 6 mm thick plated is welded with six numbers of passes. The geometry and meshed model with tetrahedral shape with volume sweep. The analysis is on TIG welding process using 3D-weld interface plug-in on ABAQUS-6.14. The results are reported in the present paper

  20. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  1. Application of a thermally assisted mechanical dewatering process to biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, A.; Arlabosse, P. [Universite de Toulouse, Mines Albi, CNRS, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Centre RAPSODEE, Campus Jarlard, F-81013 Albi (France); Fernandez, A. [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31400 Toulouse (France); INRA, UMR792 Ingenierie des Systemes Biologiques et des Procedes, CNRS, UMR5504, F-31400 Toulouse (France)

    2011-01-15

    Thermally assisted mechanical dewatering (TAMD) is a new process for energy-efficient liquid/solids separation which enhances conventional-device efficiency. The main idea of this process is to supply a flow of heat in mechanical dewatering processes to favour the reduction of the liquid content. This is not a new idea but the proposed combination, especially the chosen operating conditions (T < 100 C and P < 3000 kPa) constitutes an original approach and a significant energy saving since the liquid is kept in liquid state. Response surface methodology was used to evaluate the effects of the processing parameters of TAMD on the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of TAMD. In this study, a two-factor central composite design was used to establish the optimum conditions for the TAMD of alfalfa biomass. Experiments were carried out on a laboratory compression cell. Experiments showed that the dewatering enhancement results only from thermal effects. With a moderate heat supply (T{sub piston} = 80 C), the dry solid content of the press cake can reach 66%, compared to 36% at ambient temperature. A significant regression model, describing changes on final dry solids content with respect to independent variables, was established with determination coefficient, R{sup 2}, greater than 88%. With an energy consumption of less than 150 kWh/m{sup 3}, the use of the TAMD process before a thermal drying process leads to an energy saving of at least 30% on the overall separation chain. (author)

  2. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  3. Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions

    Directory of Open Access Journals (Sweden)

    Florian Ries

    2017-08-01

    Full Text Available In the present paper, thermal transport and entropy production mechanisms in a turbulent round jet of compressed nitrogen at supercritical thermodynamic conditions are investigated using a direct numerical simulation. First, thermal transport and its contribution to the mixture formation along with the anisotropy of heat fluxes and temperature scales are examined. Secondly, the entropy production rates during thermofluid processes evolving in the supercritical flow are investigated in order to identify the causes of irreversibilities and to display advantageous locations of handling along with the process regimes favorable to mixing. Thereby, it turned out that (1 the jet disintegration process consists of four main stages under supercritical conditions (potential core, separation, pseudo-boiling, turbulent mixing, (2 causes of irreversibilities are primarily due to heat transport and thermodynamic effects rather than turbulence dynamics and (3 heat fluxes and temperature scales appear anisotropic even at the smallest scales, which implies that anisotropic thermal diffusivity models might be appropriate in the context of both Reynolds-averaged Navier–Stokes (RANS and large eddy simulation (LES approaches while numerically modeling supercritical fluid flows.

  4. Thermal physics of gas-thermal coatings formation processes. State of investigations

    International Nuclear Information System (INIS)

    Fialko, N.M.; Prokopov, V.G.; Meranova, N.O.; Borisov, Yu.S.; Korzhik, V.N.; Sherenkovskaya, G.P.; AN Ukrainskoj SSR, Kiev

    1993-01-01

    The analysis of state of investigations of gas-thermal coatings formation processes in presented. Classification of approaches to mathematical simulation of thermal phenomena studies is offered. The general characteristics of three main approaches to the analysis of heat transport processes is given. Some problems of mathematical simulation of single particle thermal interaction with solid surface are considered in details. The main physical assumptions are analysed

  5. Thermal science under extreme conditions. Proceedings of the annual congress of the French Society of Thermal science - SFT 2012, 29 May-1 June, Bordeaux-Talence

    International Nuclear Information System (INIS)

    Gendrhi, Philippe; Perrin, Bernard; Journeau, Christophe; MOST, Jean-Michel; Nicolai, Philippe

    2012-06-01

    This publication proposes the contributions made during plenary sessions, and those made on various themes (Multi-physical couplings combustion; Contacts and interfaces; Natural, hybrid and forced convection, Energy and the environment; High temperatures and high flows; Metrology and identification; Micro- and nano-thermal science; Radiation; Control of systems and thermal process; System thermal science; Life thermal science; Transfer in multi-phase media; Transfer in porous media). Among the plenary session conferences some authors more particularly addressed the following issues: Thermal science at the heart of thermonuclear fusion (presentation of thermonuclear fusion by magnetic confinement); Thermal science of severe accidents of nuclear reactors (study of the thermal science of corium-water interaction which could result in a thermal detonation, study of corium baths at the vessel bottom or in interaction with the vessel well concrete, proposition of technological solutions for corium recovery); Fusion by inertial confinement and associated energy exchanges (case of inertial confinement by power lasers, presentation of needed conditions to obtain an energetic gain, of different energy and heat transfers under extreme conditions)

  6. Safer operating conditions and optimal scaling-up process for cyclohexanone peroxide reaction

    International Nuclear Information System (INIS)

    Zang, Na; Qian, Xin-Ming; Liu, Zhen-Yi; Shu, Chi-Min

    2015-01-01

    Highlights: • Thermal hazard of cyclohexanone peroxide reaction was measured by experimental techniques. • Levenberg–Marquardt algorithm was adopted to evaluate kinetic parameters. • Safer operating conditions at laboratory scale were acquired by BDs and TDs. • The verified safer operating conditions were used to obtain the optimal scale-up parameters applied in industrial plants. - Abstract: The cyclohexanone peroxide reaction process, one of the eighteen hazardous chemical processes identified in China, is performed in indirectly cooled semibatch reactors. The peroxide reaction is added to a mixture of hydrogen peroxide and nitric acid, which form heterogeneous liquid–liquid systems. A simple and general procedure for building boundary and temperature diagrams of peroxide process is given here to account for the overall kinetic expressions. Such a procedure has been validated by comparison with experimental data. Thermally safer operating parameters were obtained at laboratory scale, and the scaled-up procedure was performed to give the minimum dosing time in an industrial plant, which is in favor of maximizing industrial reactor productivity. The results are of great significance for governing the peroxide reaction process apart from the thermal runaway region. It also greatly aids in determining optimization on operating parameters in industrial plants.

  7. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  8. Thermal behaviour of used resin during conditioning process

    International Nuclear Information System (INIS)

    Arsene, C.

    2016-01-01

    In the nuclear power plants using light water and heavy water as coolant, as well as in most waste treatment installations, the ion-exchange resins are used to purify water circuits. Since the resins retain both radionuclide and chemical impurities, it represents a low- and intermediate- radioactive waste that requires special management for storage and disposal. From experimental studies it was found that the conditioning of the used resin in bitumen has several advantages. But there are some disadvantages, too, one being the significant amount of gas produced during the bituminization process because of the high temperature (1200C). Besides water vapours, the condensable gas mixture (formed by a liquid fraction and an oil fraction) contains products generated from the partial decomposition of the resin and release of degradation products of bitumen: dimethyl and trimethylamine, methanol - compounds resulting from the destruction of functional groups and hydrocarbon fraction formed by n-paraffins (C6-C32), iso-paraffins and aromatics. (authors)

  9. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  10. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  11. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  12. Monitoring Thermal Conditions in Footwear

    Science.gov (United States)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  13. The processing of aluminum gasarites via thermal decomposition of interstitial hydrides

    Science.gov (United States)

    Licavoli, Joseph J.

    Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.

  14. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  15. Titanium contacts to graphene: process-induced variability in electronic and thermal transport

    Science.gov (United States)

    Freedy, Keren M.; Giri, Ashutosh; Foley, Brian M.; Barone, Matthew R.; Hopkins, Patrick E.; McDonnell, Stephen

    2018-04-01

    Contact resistance (R C) is a major limiting factor in the performance of graphene devices. R C is sensitive to the quality of the interface and the composition of the contact, which are affected by the graphene transfer process and contact deposition conditions. In this work, a linear correlation is observed between the composition of Ti contacts, characterized by x-ray photoelectron spectroscopy, and the Ti/graphene contact resistance measured by the transfer length method. We find that contact composition is tunable via deposition rate and base pressure. Reactor base pressure is found to effect the resultant contact resistance. The effect of contact deposition conditions on thermal transport measured by time-domain thermoreflectance is also reported. Interfaces with higher oxide composition appear to result in a lower thermal boundary conductance. Possible origins of this thermal boundary conductance change with oxide composition are discussed.

  16. Chemical Changes in Proteins Produced by Thermal Processing.

    Science.gov (United States)

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  17. Thermal sensations and comfort investigations in transient conditions in tropical office.

    Science.gov (United States)

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal

  18. Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-07-15

    In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.

  19. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  20. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  1. Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, Van der L.; Grauwet, T.; Verlinde, P.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2012-01-01

    This report describes the first study comparing different high pressure (HP) and thermal treatments at intensities ranging from mild pasteurization to sterilization conditions. To allow a fair comparison, the processing conditions were selected based on the principles of equivalence. Moreover,

  2. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  3. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  4. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    velocity and turbulent intensity were measured and draft rate levels calculated in the room. Manikin-based equivalent temperature (MBET) was determined by two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants’ thermal comfort. The results......The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  5. Automatic Traffic Data Collection under Varying Lighting and Temperature Conditions in Multimodal Environments: Thermal versus Visible Spectrum Video-Based Systems

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2017-01-01

    Full Text Available Vision-based monitoring systems using visible spectrum (regular video cameras can complement or substitute conventional sensors and provide rich positional and classification data. Although new camera technologies, including thermal video sensors, may improve the performance of digital video-based sensors, their performance under various conditions has rarely been evaluated at multimodal facilities. The purpose of this research is to integrate existing computer vision methods for automated data collection and evaluate the detection, classification, and speed measurement performance of thermal video sensors under varying lighting and temperature conditions. Thermal and regular video data was collected simultaneously under different conditions across multiple sites. Although the regular video sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians and cyclists. Retraining the algorithm on thermal data yielded an improvement in the global accuracy of 48%. Thermal speed measurements were consistently more accurate than for the regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and pavement temperature, solves issues associated with visible light cameras for traffic data collection, and offers other benefits such as privacy, insensitivity to glare, storage space, and lower processing requirements.

  6. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  7. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Science.gov (United States)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  8. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  9. Influence of Absorption of Thermal Radiation in the Surface Water Film on the Characteristics and Ignition Conditions

    Directory of Open Access Journals (Sweden)

    Syrodoy Samen V.

    2016-01-01

    Full Text Available The results of the mathematical modeling of homogeneous particle ignition process of coal-water fuel covered with water film have been presented in article. The set co-occurring physical (inert heating, evaporation of water film and thermochemical (thermal degradation, inflammation process have been considered. Heat inside the film has been considered as the model of radiation-conductive heat transfer. Delay times have been determined according to the results of numerical modeling of the ignition. It has been shown that the water film can have a significant impact on performance and the ignition conditions. It has been found that heating main fuel layer occurs in the process of evaporation of water film. For this reason, the next (after the evaporation of the water film thermal preparation (coal heating, thermal decomposition of the organic part of the fuel and inflammation occur faster.

  10. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  11. Process and Economic Optimisation of a Milk Processing Plant with Solar Thermal Energy

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    . Based on the case study of a dairy factory, where first a heat integration is performed to optimise the system, a model for solar thermal process integration is developed. The detailed model is based on annual hourly global direct and diffuse solar radiation, from which the radiation on a defined......This work investigates the integration of solar thermal systems for process energy use. A shift from fossil fuels to renewable energy could be beneficial both from environmental and economic perspectives, after the process itself has been optimised and efficiency measures have been implemented...... surface is calculated. Based on hourly process stream data from the dairy factory, the optimal streams for solar thermal process integration are found, with an optimal thermal storagetank volume. The last step consists of an economic optimisation of the problem to determine the optimal size...

  12. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    Science.gov (United States)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  13. 9 CFR 318.302 - Thermal processing.

    Science.gov (United States)

    2010-01-01

    ... 318.302 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... Canning and Canned Products § 318.302 Thermal processing. (a) Process schedules. Prior to the processing...

  14. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  15. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  16. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  17. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  18. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  19. Influence of winding construction on starter-generator thermal processes

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  20. Thermal processes identification using virtual instrumentation

    Directory of Open Access Journals (Sweden)

    Iosif OLAH

    2007-12-01

    Full Text Available In this paper the experimental identification problem of thermal processes is presented, in order to establish their mathematical models which permit the adoption of the automation solutions, respectively the specification of a suitable control law. With this aim in view, the authors resorted to use Virtual Instrumentation with the aid of the LabVIEW development medium. In order to solve the problem of acquisition and processing data from physical real processes, Virtual Instruments which provide at the end a mathematical model which is basis of choosing the automation equipment of the aim followed was designed and achieved. The achieved Virtual Instruments get the opportunity to be used either in student instruction field with the virtual processes identification techniques or to put the identification of some real processes to good use of diverse beneficiaries. The results of some experimental attempts which were achieved during different thermal processes, illustrate the utility of the demarches performed in this paper.

  1. Influence of thermal buoyancy on vertical tube bundle thermal density head predictions under transient conditions

    International Nuclear Information System (INIS)

    Lin, H.C.; Kasza, K.E.

    1984-01-01

    The thermal-hydraulic behavior of an LMFBR system under various types of plant transients is usually studied using one-dimensional (1-D) flow and energy transport models of the system components. Many of the transient events involve the change from a high to a low flow with an accompanying change in temperature of the fluid passing through the components which can be conductive to significant thermal bouyancy forces. Thermal bouyancy can exert its influence on system dynamic energy transport predictions through alterations of flow and thermal distributions which in turn can influence decay heat removal, system-response time constants, heat transport between primary and secondary systems, and thermal energy rejection at the reactor heat sink, i.e., the steam generator. In this paper the results from a comparison of a 1-D model prediction and experimental data for vertical tube bundle overall thermal density head and outlet temperature under transient conditions causing varying degrees of thermal bouyancy are presented. These comparisons are being used to generate insight into how, when, and to what degree thermal buoyancy can cause departures from 1-D model predictions

  2. Experimental research of solid waste drying in the process of thermal processing

    Science.gov (United States)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  3. Thermal comfort study of plastics manufacturing industry in converting process

    Directory of Open Access Journals (Sweden)

    Sugiono Sugiono

    2017-09-01

    Full Text Available Thermal comfort is one of ergonomics factors that can create a significant impact to workers performance. For a better thermal comfort, several environment factors (air temperature, wind speed and relative humidity should be considered in this research. The object of the study is a building for converting process of plastics manufacturing industry located in Malang, Indonesia. The maximum air temperature inside the building can reach as high as 36°C. The result of this study shows that heat stress is dominantly caused by heat source from machine and wall building. The computational fluid dynamics (CFD simulation is used to show the air characteristic through inside the building. By using the CFD simulation, some scenarios of solution are successfully presented. Employees thermal comfort was investigated based on predicted mean vote model (PMV and predicted percentage of dissatisfied model (PPD. Existing condition gives PMV in range from 1.83 to 2.82 and PPD in range from 68.9 to 98%. Meanwhile, modification of ventilation and replacing ceiling material from clear glass into reflective clear glass gave significant impact to reduce PMV into range from 1.63 to 2.18 and PPD into range from 58.2 to 84.2%. In sort, new design converting building process has more comfortable for workers.

  4. Integrating Thermal Tools Into the Mechanical Design Process

    Science.gov (United States)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  5. Conditioned pain modulation dampens the thermal grill illusion.

    Science.gov (United States)

    Harper, D E; Hollins, M

    2017-10-01

    The thermal grill illusion (TGI) refers to the perception of burning heat and often pain that arises from simultaneous cutaneous application of innocuous warm and cool stimuli. This study utilized conditioned pain modulation (CPM) to help elucidate the TGI's underlying neural mechanisms, including the debated role of ascending nociceptive signals in generating the illusion. To trigger CPM, subjects placed the left hand in noxious cold (6 °C) water before placing the right volar forearm onto a thermal grill. Lower pain and unpleasantness ratings of the grill in this CPM run compared to those in a control run (i.e. 33 °C water) were taken as evidence of CPM. To determine whether CPM reduces noxious heat pain and illusory heat pain equally, an experimental group of subjects rated pain and unpleasantness of a grill consisting of innocuous alternating warm (42 °C) and cool (18 °C) bars, while a control group rated a grill with all bars controlled to a noxious temperature (45 °C). CPM produced significant and comparable reductions in pain, unpleasantness and perceived heat of both noxious heat and the TGI. This result suggests that the TGI results from signals in nociceptive dorsal horn convergent neurons, since CPM involves descending inhibition with high selectivity for this neuronal population. More broadly, CPM's ability to produce a shift in perceived thermal sensation of both noxious heat and the TGI from 'hot' to 'warm' implies that nociceptive signals generated by a cutaneous stimulus can contribute to its perceived thermal intensity. Conditioned pain modulation reduces the perceived painfulness, unpleasantness and heat of the thermal grill illusion and noxious heat similarly. The results have important theoretical implications for both types of pain. © 2017 European Pain Federation - EFIC®.

  6. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  7. Structure of carbon and boron nitride nanotubes produced by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Conway, M.; FitzGerald, J.; Williams, J.S.; Chadderton, L.T.

    2002-01-01

    Full text: Structure of carbon and boron nitride (BN) nanotubes produced by mechano-thermal process has been investigated by using field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) including high resolution TEM. FESEM and TEM reveal that nanotubes obtained have a diameter varying from several nm to 200 nm and a length of several micrometers. The size of the nanotubes appears to depend on both milling and heating conditions. Many nanotubes are extruded from particle clusters, implying a special growth mechanism. TEM reveals single- and multi- wall tubular structures and different caps. Bomboo-type nanotubes containing small metal particles inside are also observed in both carbon and BN tubes. This investigation shows that nanotubes with controlled size and structure could be produced by the mechano-thermal process

  8. Dissociable Learning Processes Underlie Human Pain Conditioning.

    Science.gov (United States)

    Zhang, Suyi; Mano, Hiroaki; Ganesh, Gowrishankar; Robbins, Trevor; Seymour, Ben

    2016-01-11

    Pavlovian conditioning underlies many aspects of pain behavior, including fear and threat detection [1], escape and avoidance learning [2], and endogenous analgesia [3]. Although a central role for the amygdala is well established [4], both human and animal studies implicate other brain regions in learning, notably ventral striatum and cerebellum [5]. It remains unclear whether these regions make different contributions to a single aversive learning process or represent independent learning mechanisms that interact to generate the expression of pain-related behavior. We designed a human parallel aversive conditioning paradigm in which different Pavlovian visual cues probabilistically predicted thermal pain primarily to either the left or right arm and studied the acquisition of conditioned Pavlovian responses using combined physiological recordings and fMRI. Using computational modeling based on reinforcement learning theory, we found that conditioning involves two distinct types of learning process. First, a non-specific "preparatory" system learns aversive facial expressions and autonomic responses such as skin conductance. The associated learning signals-the learned associability and prediction error-were correlated with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive (fear) learning circuit. Second, a specific lateralized system learns "consummatory" limb-withdrawal responses, detectable with electromyography of the arm to which pain is predicted. Its related learned associability was correlated with responses in ipsilateral cerebellar cortex, suggesting a novel computational role for the cerebellum in pain. In conclusion, our results show that the overall phenotype of conditioned pain behavior depends on two dissociable reinforcement learning circuits. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  10. Effect of thermal processing methods on the proximate composition ...

    African Journals Online (AJOL)

    The nutritive value of raw and thermal processed castor oil seed (Ricinus communis) was investigated using the following parameters; proximate composition, gross energy, mineral constituents and ricin content. Three thermal processing methods; toasting, boiling and soaking-and-boiling were used in the processing of the ...

  11. Research on the characterization and conditioning of uranium mill tailings. II. Thermal stabilization of uranium mill tailings: technical and economic evaluation. Volume 2

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Cokal, E.J.; Thode, E.F.; Wangen, L.E.; Williams, J.M.

    1983-06-01

    A method of conditioning uranium mill tailings has been devised to greatly reduce radon emanation and contaminant leachability by using high-temperature treatments, i.e., thermal stabilization. The thermally stabilized products appear resistant to weathering as measured by the effects of grinding and water leaching. The technical feasibility of the process has been partially verified in pilot-scale experiments. A conceptual thermal stabilization process has been designed and the economics of the process show that the thermal stabilization of tailings can be cost competitive compared with relocation of tailings during remedial action. The alteration of morphology, structure, and composition during thermal treatment would indicate that this stabilization method may be a long-lasting solution to uranium mill tailings disposal problems

  12. Thermal food processing: new technologies and quality issues

    National Research Council Canada - National Science Library

    Sun, Da-Wen

    2012-01-01

    .... Part I, Modeling of Thermal Food Processes, discusses the thermal physical properties of foods, recent developments in heat and mass transfer, innovative modeling techniques including artificial...

  13. Energy and costs scoping study for plasma pyrolysis thermal processing system

    International Nuclear Information System (INIS)

    Sherick, K.E.; Findley, J.E.

    1992-01-01

    The purpose of this study was to provide information in support of an investigation of thermal technologies as possible treatment process for buried wastes at the INEL. Material and energy balances and a cost estimate were generated for a representative plasma torch-based thermal waste treatment system operating in a pyrolysis mode. Two waste streams were selected which are representative of INEL buried wastes, large in volume, and difficult to treat by other technologies. These streams were a solidified nitrate sludge waste stream and a waste/soil mix of other buried waste components. The treatment scheme selected includes a main plasma chamber operating under pyrolyzing conditions; a plasma afterburner to provide additional residence time at high temperature to ensure complete destruction of hazardous organics; an off-gas treatment system; and a incinerator and stack to oxidize carbon monoxide to carbon dioxide and vent the clean, oxidized gases to atmosphere. The material balances generated provide materials flow and equipment duty information of sufficient accuracy to generate initial rough-order-of-magnitude (ROM) system capital and operating cost estimates for a representative plasma thermal processing system

  14. Thermal characteristics during hydrogen fueling process of type IV cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chan [Department of Fire and Disaster Prevention, Kyungil University, 33, Buhori, Hayang, Kyungsan 712-701 (Korea); Lee, Seung Hoon; Yoon, Kee Bong [Department of Mechanical Engineering, Chung Ang University, 221, Huksuk, Dongjak, Seoul 156-756 (Korea)

    2010-07-15

    Temperature increase during hydrogen fueling process is a significant safety concern of a high pressure hydrogen vessel. Hence, thermal characteristics of a Type IV cylinder during hydrogen filling process need to be understood. In this study, a series of experiments were conducted to quantify the temperature change of the cylinder during hydrogen filling to 35 MPa. Computational fluid dynamics (CFD) analysis was also conducted to simulate the conditions of the experiments. The results predicted by the CFD analysis show reasonable agreement with the experiments and the discrepancy between the CFD results and experimental results decrease with higher initial gas pressures. The upper and the lower parts of the vessel showed a temperature difference in the vertical direction. The upper gas temperature was higher than that of the lower part due to the buoyancy effect in the vessel. The maximum gas temperature was higher than the maximum temperature allowed in the ISO safety code (85 C) for the case in which the vessel was pressurized from 0 MPa to 35 MPa. This work contributes to the understanding of the thermal flow characteristics of the hydrogen filling process and notes that additional efforts should be made to guarantee the safety of a type IV cylinder during the hydrogen fueling process. (author)

  15. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  16. A statistical approach to define some tofu processing conditions

    Directory of Open Access Journals (Sweden)

    Vera de Toledo Benassi

    2011-12-01

    Full Text Available The aim of this work was to make tofu from soybean cultivar BRS 267 under different processing conditions in order to evaluate the influence of each treatment on the product quality. A fractional factorial 2(5-1 design was used, in which independent variables (thermal treatment, coagulant concentration, coagulation time, curd cutting, and draining time were tested at two different levels. The response variables studied were hardness, yield, total solids, and protein content of tofu. Polynomial models were generated for each response. To obtain tofu with desirable characteristics (hardness ~4 N, yield 306 g tofu.100 g-1 soybeans, 12 g proteins.100 g-1 tofu and 22 g solids.100 g-1 tofu, the following processing conditions were selected: heating until boiling plus 10 minutes in water bath, 2% dihydrated CaSO4 w/w, 10 minutes coagulation, curd cutting, and 30 minutes draining time.

  17. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park

    Science.gov (United States)

    Saaroni, Hadas; Pearlmutter, David; Hatuka, Tali

    2015-10-01

    This study looks at the interrelation of human-biometeorological conditions, physiological thermal stress and subjective thermal perception in the design and use of a new waterfront park in Tel-Aviv, Israel. Our initial assumption was that the park's design would embody a comprehensive response to the area's ever-increasing heat stress and water shortage. However, almost half of it is covered by grass lawns, irrigated with fresh water, while the remaining area is mainly covered with concrete paving, with minimal shading and sparse trees. We hypothesized that stressful thermal conditions would prevail in the park in the summer season and would be expressed in a high discomfort perception of its users. Thermo-physiological stress conditions in a typical summer month were compared with the subjective comfort perceptions of pedestrians surveyed in the park. It was found that even during mid-day hours, the level of thermal stress tends to be relatively mild, owing largely to the strong sea breeze and despite the high intensity of solar radiation. Moreover, it appears that the largely favorable perception of comfort among individuals may also result from socio-cultural aspects related to their satisfaction with the park's aesthetic attractiveness and in fact its very existence. Adaptive planning is proposed for such vulnerable regions, which are expected to experience further aggravation in thermal comfort due to global as well as localized warming trends.

  18. Enthalpy estimation for thermal comfort and energy saving in air conditioning system

    International Nuclear Information System (INIS)

    Chu, C.-M.; Jong, T.-L.

    2008-01-01

    The thermal comfort control of a room must consider not only the thermal comfort level but also energy saving. This paper proposes an enthalpy estimation that is conducive for thermal comfort control and energy saving. The least enthalpy estimator (LEE) combines the concept of human thermal comfort with the theory of enthalpy to predict the load for a suitable setting pair in order to maintain more precisely the thermal comfort level and save energy in the air conditioning system

  19. Investigation on the Temporal Surface Thermal Conditions for Thermal Comfort Researches Inside A Vehicle Cabin Under Summer Season Climate

    Directory of Open Access Journals (Sweden)

    Zhang Wencan

    2016-01-01

    Full Text Available With the proposes of improving occupant's thermal comfort and reducing the air conditioning power consumption, the present research carried out a comprehensive study on the surface thermal conductions and their influence parameters. A numerical model was built considering the transient conduction, convective and radiation heat transfer inside a vehicle cabin. For more accurate simulation of the radiation heat transfer behaviors, the radiation was considered into two spectral bands (short wave and long wave radiation, and the solar radiation was calculated by two solar fluxes (beam and diffuse solar radiation. An experiment was conducted to validate the numerical approach, showing a good agreement with the surface temperature. The surface thermal conditions were numerically simulated. The results show that the solar radiation is the most important factor in determining the internal surface thermal conditions. Effects of the window glass properties and the car body surface conditions were investigated. The numerical calculation results indicate that reducing the transitivity of window glass can effectively reduce the internal surface temperature. And the reflectivity of the vehicle cabin also has an important influence on the surface temperature, however, it's not so obvious as comparison to the window glass.

  20. Thermal tests of a transport / Storage cask in buried conditions

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Saegusa, T.; Ito, C.

    1998-01-01

    Thermal tests for a hypothetical accident which simulated accidents caused by building collapse in case of an earthquake were conducted using a full-scale dry type transport and storage cask (total heat load: 23 kW). The objectives of these tests were to clarify the heat transfer features of the buried cask under such accidents and the time limit for maintaining the thermal integrity of the cask. Moreover, thermal analyses of the test cask under the buried conditions were carried out on basis of experimental results to establish methodology for the thermal analysis. The characteristics of the test cask are described as well as the test method used. The heat transfer features of the buried cask under such accidents and a time for maintaining the thermal integrity of the cask have been obtained. (O.M.)

  1. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients

    Science.gov (United States)

    Cady, S. L.; Farmer, J. D.

    1996-01-01

    To enhance our ability to extract palaeobiological and palaeoenvironmental information from ancient thermal spring deposits, we have studied the processes responsible for the development and preservation of stromatolites in modern subaerial thermal spring systems in Yellowstone National Park (USA). We investigated specimens collected from silica-depositing thermal springs along the thermal gradient using petrographic techniques and scanning electron microscopy. Although it is known that thermophilic cyanobacteria control the morphogenesis of thermal spring stromatolites below 73 degrees C, we have found that biofilms which contain filamentous thermophiles contribute to the microstructural development of subaerial geyserites that occur along the inner rims of thermal spring pools and geyser effluents. Biofilms intermittently colonize the surfaces of subaerial geyserites and provide a favoured substrate for opaline silica precipitation. We have also found that the preservation of biotically produced microfabrics of thermal spring sinters reflects dynamic balances between rates of population growth, decomposition of organic matter, silica deposition and early diagenesis. Major trends in preservation of thermophilic organisms along the thermal gradient are defined by differences in the mode of fossilization, including replacement, encrustation and permineralization.

  2. A time-resolved current method and TSC under vacuum conditions of SEM: Trapping and detrapping processes in thermal aged XLPE insulation cables

    Science.gov (United States)

    Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.

    2017-03-01

    Thermal aging of cross-linked polyethylene (XLPE) can cause serious concerns in the safety operation in high voltage system. To get a more detailed picture on the effect of thermal aging on the trapping and detrapping process of XLPE in the melting temperature range, Thermal Stimulated Current (TSC) have been implemented in a Scanning Electron Microscope (SEM) with a specific arrangement. The XLPE specimens are molded and aged at two temperatures (120 °C and 140 °C) situated close to the melting temperature of the material. The use of SEM allows us to measure both leakage and displacement currents induced in samples under electron irradiation. The first represents the conduction process of XLPE and the second gives information on the trapping of charges in the bulk of the material. TSC associated to the SEM leads to show spectra of XLPE discharge under thermal stimulation using both currents measured after electron irradiation. It was found that leakage current in the charging process may be related to the physical defects resulting in crystallinity variation under thermal aging. However the trapped charge can be affected by the carbonyl groups resulting from the thermo-oxidation degradation and the disorder in the material. It is evidenced from the TSC spectra of unaged XLPE that there is no detrapping charge under heat stimulation. Whereas the presence of peaks in the TSC spectra of thermally aged samples indicates that there is some amount of trapped charge released by heating. The detrapping behavior of aged XLPE is supported by the supposition of the existence of two trap levels: shallow traps and deep traps. Overall, physico-chemical reactions under thermal aging at high temperatures leads to the enhancement of shallow traps density and changes in range of traps depth. These changes induce degradation of electrical properties of XLPE.

  3. The testing of thermal-mechanical-hydrological-chemical processes using a large block

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Chesnut, D.A.; Glassley, W.E.; Lee, K.; Roberts, J.J.

    1994-01-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical, hydrological, and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated with one heater in each borehole and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress and displacement will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes

  4. The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy

    Science.gov (United States)

    Yang, Ling

    The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta

  5. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    Science.gov (United States)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  6. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements

    Directory of Open Access Journals (Sweden)

    Georgeta Voicu

    2016-02-01

    Full Text Available In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h followed by rapid cooling in air. The resulted material (clinker was ground for one hour in a laboratory planetary mill (v = 150 rot/min, in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD, scanning electron microscopy (SEM, infrared spectroscopy (FT-IR and thermal analysis (DTA-DTG-TG. The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1 was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2. The compressive strength values were 18.5 MPa (MTA1 and 22.9 MPa (MTA2. Both MTA cements showed good bioactivity (assessed by an in vitro test, good cytocompatibility and stimulatory effect on the proliferation of cells.

  7. Harvesting thermal fluctuations: Activation process induced by a nonlinear chain in thermal equilibrium

    International Nuclear Information System (INIS)

    Reigada, Ramon; Sarmiento, Antonio; Romero, Aldo H.; Sancho, J. M.; Lindenberg, Katja

    2000-01-01

    We present a model in which the immediate environment of a bistable system is a molecular chain which in turn is connected to a thermal environment of the Langevin form. The molecular chain consists of masses connected by harmonic or by anharmonic springs. The distribution, intensity, and mobility of thermal fluctuations in these chains is strongly dependent on the nature of the springs and leads to different transition dynamics for the activated process. Thus, all else (temperature, damping, coupling parameters between the chain and the bistable system) being the same, the hard chain may provide an environment described as diffusion-limited and more effective in the activation process, while the soft chain may provide an environment described as energy-limited and less effective. The importance of a detailed understanding of the thermal environment toward the understanding of the activation process itself is thus highlighted. (c) 2000 American Institute of Physics

  8. A Controlled Agitation Process for Improving Quality of Canned Green Beans during Agitation Thermal Processing.

    Science.gov (United States)

    Singh, Anika; Pratap Singh, Anubhav; Ramaswamy, Hosahalli S

    2016-06-01

    This work introduces the concept of a controlled agitation thermal process to reduce quality damage in liquid-particulate products during agitation thermal processing. Reciprocating agitation thermal processing (RA-TP) was used as the agitation thermal process. In order to reduce the impact of agitation, a new concept of "stopping agitations after sufficient development of cold-spot temperature" was proposed. Green beans were processed in No. 2 (307×409) cans filled with liquids of various consistency (0% to 2% CMC) at various frequencies (1 to 3 Hz) of RA-TP using a full-factorial design and heat penetration results were collected. Corresponding operator's process time to impart a 10-min process lethality (Fo ) and agitation time (AT) were calculated using heat penetration results. Accordingly, products were processed again by stopping agitations as per 3 agitation regimes, namely; full time agitation, equilibration time agitation, and partial time agitation. Processed products were photographed and tested for visual quality, color, texture, breakage of green beans, turbidity, and percentage of insoluble solids in can liquid. Results showed that stopping agitations after sufficient development of cold-spot temperatures is an effective way of reducing product damages caused by agitation (for example, breakage of beans and its leaching into liquid). Agitations till one-log temperature difference gave best color, texture and visual product quality for low-viscosity liquid-particulate mixture and extended agitations till equilibration time was best for high-viscosity products. Thus, it was shown that a controlled agitation thermal process is more effective in obtaining high product quality as compared to a regular agitation thermal process. © 2016 Institute of Food Technologists®

  9. On the determination of the thermal comfort conditions of a metropolitan city underground railway.

    Science.gov (United States)

    Katavoutas, George; Assimakopoulos, Margarita N; Asimakopoulos, Dimosthenis N

    2016-10-01

    Although the indoor thermal comfort concept has received increasing research attention, the vast majority of published work has been focused on the building environment, such as offices, residential and non-residential buildings. The present study aims to investigate the thermal comfort conditions in the unique and complex underground railway environment. Field measurements of air temperature, air humidity, air velocity, globe temperature and the number of passengers were conducted in the modern underground railway of Athens, Greece. Environmental monitoring was performed in the interior of two types of trains (air-conditioned and forced air ventilation cabins) and on selected platforms during the summer period. The thermal comfort was estimated using the PMV (predicted mean vote) and the PPD (predicted percentage dissatisfied) scales. The results reveal that the recommended thermal comfort requirements, although at relatively low percentages are met only in air-conditioned cabins. It is found that only 33% of the PPD values in air-conditioned cabins can be classified in the less restrictive comfort class C, as proposed by ISO-7730. The thermal environment is "slightly warm" in air-conditioned cabins and "warm" in forced air ventilation cabins. In addition, differences of the thermal comfort conditions on the platforms are shown to be associated with the depth and the design characteristics of the stations. The average PMV at the station with small depth is 0.9 scale points higher than that of the station with great depth. The number of passengers who are waiting at the platforms during daytime reveals a U-shaped pattern for a deep level station and an inverted course of PMV for a small depth station. Further, preliminary observations are made on the distribution of air velocity on the platforms and on the impact of air velocity on the thermal comfort conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Application of thermal technologies for processing of radioactive waste

    International Nuclear Information System (INIS)

    2006-12-01

    The primary objective of this publication is to provide an overview of the various thermal technologies for processing various solid, liquid, organic and inorganic radioactive waste streams. The advantages, limitations and operating experience of various thermal technologies are explained. This publication also goes beyond previous work on thermal processes by addressing the applicability of each technology to national or regional nuclear programmes of specific relative size (major advanced programmes, small to medium programmes, and emerging programmes with other nuclear applications). The most commonly used thermal processing technologies are reviewed, and the key factors influencing the selection of thermal technologies as part of a national waste management strategy are discussed. Accordingly, the structure and content of this publication is intended to assist decision-makers, regulators, and those charged with developing such strategies to identify and compare thermal technologies for possible inclusion in the mix of available, country-specific waste management processes. This publication can be used most effectively as an initial cutting tool to identify whether any given technology will best serve the local waste management strategy in terms of the waste generated, technical complexity, available economic resources, environmental impact considerations, and end product (output) of the technology. If multiple thermal technologies are being actively considered, this publication should be instrumental in comparing the technologies and assisting the user to reach an informed decision based on local needs, economics and priorities. A detailed set of conclusions is provided in Section 7

  11. Effects of thermal processing by nanofluids on vitamin C, total phenolics and total soluble solids of tomato juice.

    Science.gov (United States)

    Jafari, S M; Jabari, S S; Dehnad, D; Shahidi, S A

    2017-03-01

    In this research, our main idea was to apply thermal processing by nanofluids instead of conventional pasteurization processes, to shorten duration of thermal procedure and improve nutritional contents of fruit juices. Three different variables of temperature (70, 80 and 90 °C), nanofluid concentration (0, 2 and 4%) and time (30, 60 and 90 s) were selected for thermal processing of tomato juices by a shell and tube heat exchanger. The results demonstrated that 4% nanofluid concentration, at 30 °C for 30 s could result in 66% vitamin C retention of fresh juice while it was about 56% for the minimum nanofluid concentration and maximum temperature and time. Higher nanoparticle concentrations made tomato juices that require lowered thermal durations, because of better heat transfer to the product, and total phenolic compounds dwindle less severely; In fact, after 30 s thermal processing at 70 °C with 0 and 4% nanoparticles, total phenolic compounds were maintained by 71.9 and 73.6%, respectively. The range of total soluble solids for processed tomato juices was 5.4-5.6, meaning that nanofluid thermal processing could preserve the natural condition of tomato juices successfully. Based on the indices considered, a nanofluid thermal processing with 4% nanoparticle concentration at the temperature of 70 °C for 30 s will result in the best nutritional contents of final tomato juices.

  12. Thermal processes evaluation for RWMC wastes

    International Nuclear Information System (INIS)

    1991-01-01

    The objective of this activity was to provide a white paper that identifies, collects information, and presents a preliminary evaluation of ''core'' thermal technologies that could be applied to RWMC stored and buried mixed waste. This paper presents the results of the following activities: General thermal technology identification, collection of technical and cost information on each technology, identification of thermal technologies applicable to RWMC waste, evaluation of each technology as applied to RWMC waste in seven process attributes, scoring each technology on a one to five scale (five highest) in each process attribute. Reaching conclusions about the superiority of one technology over others is not advised based on this preliminary study alone. However, the highly rated technologies (i.e., overall score of 2.9 or better) are worthy of a more detailed evaluation. The next step should be a more detailed evaluation of the technologies that includes onsite visits with operational facilities, preconceptual treatment facility design analysis, and visits with developers for emerging technologies. 2 figs., 6 tabs

  13. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    International Nuclear Information System (INIS)

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab

  14. Thermal resistivity of tungsten grades under fusion relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, M.; Linke, J.; Pintsuk, G. [Forschungszentrum Juelich (Germany). EURATOM Association

    2010-05-15

    Controlled nuclear fusion on earth is a very promising but also a very challenging task. Fusion devices like ITER and DEMO are major steps on the way of solving the energy problems of the future. However, the realisation of such thermonuclear fusion reactors still needs high efforts in many areas of research. One of the most critical issues is the field of in - vessel materials and components and in particular the plasma facing material (PFM). This not only has to be compatible to the heat sink material being able to withstand thermal fatigue loading conditions during steady state heat loading (up to 20 MW/m{sup 2}) but also has to withstand extreme thermal loads during transient events. The latter are divided into normal and off normal events, such as plasma disruptions or vertical displacement events (VDEs), resulting in irreversible damage of the material. Therefore they have to be avoided in future fusion devices by an improved plasma control. In contrast, edge localized modes (ELMs) occur during normal operation and are the result of complex plasma configuration. In the next step experiment ITER they are generated with a frequency of {>=} 1 Hz and a duration of 200 - 500 {mu}s depositing energies of {<=} 1 MJ/m{sup 2}. One of the most promising materials for the application as PFM in particular in the divertor region is tungsten. Its main advantages are a high thermal conductivity, a high melting temperature, a low tritium inventory and a low erosion rate. However there are some drawbacks like a high ductile to brittle transitions temperature (DBTT), its high atomic number Z and the remarkable neutron irradiation induced activation and degradation of its mechanical properties. The main aim of future R and D will be to understand the mechanisms of thermal induced damages and subsequently to minimize these types of damages. Therefore various tungsten grades have to be tested under fusion relevant conditions, e.g. by electron, ion or plasma beam exposure; the

  15. Simple method of calculating the transient thermal performance of composite material and its applicable condition

    Institute of Scientific and Technical Information of China (English)

    张寅平; 梁新刚; 江忆; 狄洪发; 宁志军

    2000-01-01

    Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.

  16. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    Science.gov (United States)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  17. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  18. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.; German Aerospace Center

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  19. Processing of baby food using pressure-assisted thermal sterilization (PATS) and comparison with thermal treatment

    Science.gov (United States)

    Wang, Yubin; Ismail, Marliya; Farid, Mohammed

    2017-10-01

    Currently baby food is sterilized using retort processing that gives an extended shelf life. However, this type of heat processing leads to reduction of organoleptic and nutrition value. Alternatively, the combination of pressure and heat could be used to achieve sterilization at reduced temperatures. This study investigates the potential of pressure-assisted thermal sterilization (PATS) technology for baby food sterilization. Here, baby food (apple puree), inoculated with Bacillus subtilis spores was treated using PATS at different operating temperatures, pressures and times and was compared with thermal only treatment. The results revealed that the decimal reduction time of B. subtilis in PATS treatment was lower than that of thermal only treatment. At a similar spore inactivation, the retention of ascorbic acid of PATS-treated sample was higher than that of thermally treated sample. The results indicated that PATS could be a potential technology for baby food processing while minimizing quality deterioration.

  20. Development of the thermal denitration in-storage-can step in the CEUSP process

    International Nuclear Information System (INIS)

    Vedder, R.J.; Collins, E.D.; Haas, P.A.

    1986-01-01

    A thermal denitration in-the-storage-can process has been developed for use in the Consolidated Edison Uranium Solidification Program Facility. This process is being used to convert approx.1000 kg of highly fissile and radioactive uranium to a solid form for safe long-term storage. The material being solidified also contains approx.300 kg of cadmium and approx.40 kg of gadolinium which had been combined with the uranium to provide criticality safety. The unique thermal denitration process was found to be extremely susceptible to entrainment of solids by splattering, foaming, or expulsion actions. The process connection nozzle, through which the feed solution and purging air are supplied and the emerging off-gases are discharged, and the off-gas handling system were modified extensively to permit operation without development of nozzle or line pluggage due to accumulation of solid deposits. A process study was made to determine the effects of feed components and process variables on the tendency of the reacting mixture to splatter, foam, or be expelled. Because of the equipment modifications and the selection of appropriate processing conditions, the feed material is being denitrated without significant problems

  1. Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Runming [The School of Construction Management and Engineering, The University of Reading, Whiteknights, PO Box 219, Reading RG6 6AW (United Kingdom); The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400042 (China); Liu, Jing [The School of Construction Management and Engineering, The University of Reading, Whiteknights, PO Box 219, Reading RG6 6AW (United Kingdom); Li, Baizhan [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400042 (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing 400042 (China)

    2010-03-15

    A year-long field study of the thermal environment in university classrooms was conducted from March 2005 to May 2006 in Chongqing, China. This paper presents the occupants' thermal sensation votes and discusses the occupants' adaptive response and perception of the thermal environment in a naturally conditioned space. Comparisons between the Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) have been made as well as between the Actual Percentage of Dissatisfied (APD) and Predicted Percentage of Dissatisfied (PPD). The adaptive thermal comfort zone for the naturally conditioned space for Chongqing, which has hot summer and cold winter climatic characteristics, has been proposed based on the field study results. The Chongqing adaptive comfort range is broader than that of the ASHRAE Standard 55-2004 in general, but in the extreme cold and hot months, it is narrower. The thermal conditions in classrooms in Chongqing in summer and winter are severe. Behavioural adaptation such as changing clothing, adjusting indoor air velocity, taking hot/cold drinks, etc., as well as psychological adaptation, has played a role in adapting to the thermal environment. (author)

  2. Design, fabrication, and application of a directional thermal processing system for controlled devitrification of metallic glasses

    Science.gov (United States)

    Meyer, Megan Anne Lamb

    The potential of using metallic glass as a pathway to obtaining novel morphologies and metastable phases has been garnering attention since their discovery. Several rapid solidification techniques; such as gas atomization, melt spinning, laser melting, and splat quenching produce amorphous alloys. A directional thermal processing system (DTPS) was designed, fabricated and characterized for the use of zone processing or gradient-zone processing of materials. Melt-spun CuZr metallic glass alloy was subjected to the DTPS and the relaxation and crystallization responses of the metallic glass were characterized. A range of processing parameters were developed and analyzed that would allow for devitrification to occur. The relaxation and crystallization responses were compared with traditional heat treatment methods of metallic glasses. The new processing method accessed equilibrium and non-equilibrium phases of the alloy and the structures were found to be controllable and sensitive to processing conditions. Crystallized fraction, crystallization onset temperature, and structural relaxation were controlled through adjusting the processing conditions, such as the hot zone temperature and sample velocity. Reaction rates computed from isothermal (TTT) transformation data were not found to be reliable, suggesting that the reaction kinetics are not additive. This new processing method allows for future studying of the thermal history effects of metallic glasses.

  3. Thermal Dehydration Kinetics of Gypsum and Borogypsum under Non-isothermal Conditions

    Institute of Scientific and Technical Information of China (English)

    I.Y.Elbeyli; S.Piskin

    2004-01-01

    Thermal dehydration of gypsum and borogypsum was investigated under nonisothermal conditions in air by using simultaneous thermogravimetric-differential thermal analyzer. Nonisothermal experiments were carried out at various linear heating rates. Kinetics of dehydration in the temperature range of 373-503 K were evaluated from the DTA (differential thermal analysis)-TGA (thermogravimetric analysis) data by means of Coats-Redfern,Kissinger and Doyle Equations. Values of the activation energy and the pre-exponential factor of the dehydration were calculated. The results of thermal experiments and kinetic parameters indicated that borogypsum is similar to gypsum from dehydration mechanism point of view although it consists of boron and small amount of alkali metal oxides.

  4. Theoretical and experimental investigations of thermal conditions of household biogas plant

    Directory of Open Access Journals (Sweden)

    Zhelykh Vasil

    2016-06-01

    Full Text Available The construction of domestic continuous bioreactor is proposed. The modeling of thermal modes of household biogas plant using graph theory was done. The correction factor taking into account with the influence of variables on its value was determined. The system of balance equations for the desired thermal conditions in the bioreactor was presented.

  5. Thermal properties of bentonite under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vasicek, R. [Czech Technical Univ., Centre of Experimental Geotechnics, Faculty of Civil Engineering, Prague (Czech Republic)

    2005-07-01

    Centre of Experimental Geotechnics (CEG) deals with the research of the behaviour of bentonite and clays. The measurement of thermal properties is not so frequent test in geotechnical laboratory but in relation to deep repository it is a part which should not be overlooked. The reason is the heat generated by canister with spent nuclear fuel and possible influence of the heat on the materials of the engineered barrier. In the initial stages following the burial of canister with the waste the barrier materials will be exposed to elevated temperature. According to existing information, these temperatures should not exceed 90 C. That heat can induce a creation of cracks and opening of joint between highly compacted blocks. It will predispose the bentonite barrier to penetration of water from surrounding towards to canister. Therefore easy removal of heat through the barrier is required. It is essential that the tests aimed at determining the real values of measured parameters are carried out in conditions identical with those anticipated in a future disposal system. These relatively complicated thermophysical tests are logical continuation of the simple ones, carried out under laboratory temperature and on not fully saturated samples without possibility to measure the swelling pressure. Thermophysical properties and swelling pressure are dominantly influenced by water content (which is influenced by temperature). Therefore is important to realize the tests under different moisture and thermal conditions. These tests are running at the APT-PO1 Analyser, designed to fulfill mentioned requirements - it allows measurement of thermal properties under temperature up to 200 C and swelling pressure up to 20 MPa. The device is capable to register the evolution of temperature, swelling and vapor pressure. The measurement of thermal conductivity and volume heat capacity is realized by the dynamic impulse method with point source of heat. Four types of tests are possible: at

  6. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    Science.gov (United States)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  7. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  8. Accuracy Enhancement with Processing Error Prediction and Compensation of a CNC Flame Cutting Machine Used in Spatial Surface Operating Conditions

    Directory of Open Access Journals (Sweden)

    Shenghai Hu

    2017-04-01

    Full Text Available This study deals with the precision performance of the CNC flame-cutting machine used in spatial surface operating conditions and presents an accuracy enhancement method based on processing error modeling prediction and real-time compensation. Machining coordinate systems and transformation matrix models were established for the CNC flame processing system considering both geometric errors and thermal deformation effects. Meanwhile, prediction and compensation models were constructed related to the actual cutting situation. Focusing on the thermal deformation elements, finite element analysis was used to measure the testing data of thermal errors, the grey system theory was applied to optimize the key thermal points, and related thermal dynamics models were carried out to achieve high-precision prediction values. Comparison experiments between the proposed method and the teaching method were conducted on the processing system after performing calibration. The results showed that the proposed method is valid and the cutting quality could be improved by more than 30% relative to the teaching method. Furthermore, the proposed method can be used under any working condition by making a few adjustments to the prediction and compensation models.

  9. Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhehao, E-mail: ccgri_lzh@163.com [Changchun Gold Research Institute, 130012 (China); Peng, Yuelian, E-mail: pyl@live.com.au [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Dong, Yajun; Fan, Hongwei [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Chen, Ping [The Research Institute of Environmental Protection, North China Pharmaceutical Group Corporation, 050015 (China); Qiu, Lin [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Qi [National Major Science and Technology Program Management Office for Water Pollution Control and Treatment, MEP, 100029 (China)

    2014-10-30

    Highlights: • The effects on vapor flux and thermal efficiency were simulated. • The conditions favoring vapor flux also favored thermal efficiency. • Four microporous polymer membranes were compared. • The SiO{sub 2} aerogel coating reduced the thermal conductivity of polymer membranes. • A 3ω technique was used to measure the thermal conductivity of membranes. - Abstract: The effects of the membrane characteristics and operational conditions on the vapor flux and thermal efficiency in a direct contact membrane distillation (DCMD) process were studied with a mathematical simulation. The membrane temperature, driving force of vapor transfer, membrane distillation coefficient, etc. were used to analyze the effects. The operating conditions that increased the vapor flux improved the thermal efficiency. The membrane characteristics of four microporous membranes and their performances in DCMD were compared. A polysulfone (PSf) membrane prepared via vapor-induced phase separation exhibited the lowest thermal conductivity. The PSf and polyvinylidene difluoride (PVDF) membranes were modified using SiO{sub 2} aerogel blending and coating to reduce the thermal conductivity of the membrane. The coating process was more effective than the blending process toward this end. The changes in the structure of the modified membrane were observed with a scanning electron microscope. Si was found on the modified membrane surface with an energy spectrometer. The PVDF composite and support membranes were tested during the DCMD process; the composite membrane had a higher vapor flux and a better thermal efficiency than the support. A new method based on a 3ω technique was used to measure the thermal conductivity of the membranes.

  10. Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity

    International Nuclear Information System (INIS)

    Li, Zhehao; Peng, Yuelian; Dong, Yajun; Fan, Hongwei; Chen, Ping; Qiu, Lin; Jiang, Qi

    2014-01-01

    Highlights: • The effects on vapor flux and thermal efficiency were simulated. • The conditions favoring vapor flux also favored thermal efficiency. • Four microporous polymer membranes were compared. • The SiO 2 aerogel coating reduced the thermal conductivity of polymer membranes. • A 3ω technique was used to measure the thermal conductivity of membranes. - Abstract: The effects of the membrane characteristics and operational conditions on the vapor flux and thermal efficiency in a direct contact membrane distillation (DCMD) process were studied with a mathematical simulation. The membrane temperature, driving force of vapor transfer, membrane distillation coefficient, etc. were used to analyze the effects. The operating conditions that increased the vapor flux improved the thermal efficiency. The membrane characteristics of four microporous membranes and their performances in DCMD were compared. A polysulfone (PSf) membrane prepared via vapor-induced phase separation exhibited the lowest thermal conductivity. The PSf and polyvinylidene difluoride (PVDF) membranes were modified using SiO 2 aerogel blending and coating to reduce the thermal conductivity of the membrane. The coating process was more effective than the blending process toward this end. The changes in the structure of the modified membrane were observed with a scanning electron microscope. Si was found on the modified membrane surface with an energy spectrometer. The PVDF composite and support membranes were tested during the DCMD process; the composite membrane had a higher vapor flux and a better thermal efficiency than the support. A new method based on a 3ω technique was used to measure the thermal conductivity of the membranes

  11. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  12. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm -2 at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced damages

  13. Relation of the physical and hydrobiological processes of thermal pollution

    International Nuclear Information System (INIS)

    Szolnoky, Cs.

    1981-01-01

    The process of thermal pollution of the rivers is discussed from the point of the living-space of the waters. The effects of fresh water-cooled thermal power stations on components of the biosphere of the rivers are described following the cooling process step-by-step. The characteristics of the thermal pollution of the Danube and Tisza are discussed and the effect of the Paks Nuclear Power Plant on the Danube is estimated. The regulation of the thermal pollution in the form of limiting values is proposed. (R.J.)

  14. Evaluation of combustion experiments conducted during the research and development project ``Mechanical-biological waste conditioning in combination with thermal processing of partial waste fractions``; Auswertung der Verbrennungsversuche zum Forschungs- und Entwicklungsvorhaben ``mechanisch-biologische Restmuellbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen``

    Energy Technology Data Exchange (ETDEWEB)

    Jager, J.; Lohf, A.; Herr, C. [Institut WAR, Darmstadt (Germany)

    1998-12-31

    The technical code on municipal waste makes specific demands on waste to be deposited at landfills which can only be met if mechanical-biological conditioning of waste as well as thermal processing of partial waste fractions are continued also in the future. But waste that has undergone mechanical or mechanical-biological conditioning presents different combustion properties from those of unconditioned waste. In this second stage of the research project, the thermal processability of waste having undergone mechanical or mechanical-biological conditioning was studied. Together with the results from the first project stage, where the throughput represented exclusively mechanically conditioned material, the results of the latter measuring campaigns comprehensively demonstrate possibilities for the thermal processing of partial waste fractions having undergone biological-mechanical conditioning, and inform on changes in plant performance. (orig.) [Deutsch] Um die in der TA-Siedlungsabfall an den abzulagernden Restmuell gestellten Deponieeingangsbedingungen zu erfuellen, muss neben einer mechanisch-biologischen Aufbereitung bei Teilfraktionen auch weiterhin eine thermische Behandlung eingeplant werden. Die Verbrennungseigenschaften von mechanisch oder mechanisch-biologisch vorbehandeltem Restmuell weichen allerdings von denen von unbehandeltem Restmuell ab. In dieser zweiten Projektphase des Forschungsvorhabens wurde eine Untersuchung bezueglich der thermischen Behandelbarkeit von mechanisch und auch biologisch vorbehandeltem Muell durchgefuehrt. Die Ergebnisse der Messkampagnen bilden zusammen mit den Ergebnissen der ersten Projektphase, in der ausschliesslich mechanisch vorbehandeltes Material durchgesetzt wurde, eine umfassende Darstellung ueber Moeglichkeiten und veraenderte Anlagenverhalten bei der thermischen Behandlung von Teilfraktionen aus der biologisch-mechanisch Vorbehandlung. (orig.)

  15. Do sex, body size and reproductive condition influence the thermal preferences of a large lizard? A study in Tupinambis merianae.

    Science.gov (United States)

    Cecchetto, Nicolas Rodolfo; Naretto, Sergio

    2015-10-01

    Body temperature is a key factor in physiological processes, influencing lizard performances; and life history traits are expected to generate variability of thermal preferences in different individuals. Gender, body size and reproductive condition may impose specific requirements on preferred body temperatures. If these three factors have different physiological functions and thermal requirements, then the preferred temperature may represent a compromise that optimizes these physiological functions. Therefore, the body temperatures that lizards select in a controlled environment may reflect a temperature that maximizes their physiological needs. The tegu lizard Tupinambis merianae is one of the largest lizards in South America and has wide ontogenetic variation in body size and sexual dimorphism. In the present study we evaluate intraspecific variability of thermal preferences of T. merianae. We determined the selected body temperature and the rate at which males and females attain their selected temperature, in relation to body size and reproductive condition. We also compared the behavior in the thermal gradient between males and females and between reproductive condition of individuals. Our study show that T. merianae selected body temperature within a narrow range of temperatures variation in the laboratory thermal gradient, with 36.24±1.49°C being the preferred temperature. We observed no significant differences between sex, body size and reproductive condition in thermal preferences. Accordingly, we suggest that the evaluated categories of T. merianae have similar thermal requirements. Males showed higher rates to obtain heat than females and reproductive females, higher rates than non-reproductive ones females. Moreover, males and reproductive females showed a more dynamic behavior in the thermal gradient. Therefore, even though they achieve the same selected temperature, they do it differentially. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    Science.gov (United States)

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Furnace for rapid thermal processing

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2001-01-01

    A Method (1) for Rapid Thermal Processing of a wafer (7), wherein the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is

  18. INDOOR THERMAL CONDITION OF FACTORY BUILDING IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Muhammed Abdullah Al Sayem Khan

    2011-12-01

    Full Text Available Bangladesh is a developing country and has a lot of factories for different products for local use and also export to abroad. Garments industries are one of the top most items of exported items. A huge number of populations are working in garments industries. But these factories are not well designed in sense of the thermal environment. Workers experiences sickness related to indoor environment. The productions of these factories are affected due to employees’ health condition. The research is done in two different methods. One is empirical data collection using thermal data loggers and the other is questionnaire survey on the spots for three factory buildings. The field study was conducted in four different months of the same year during winter and summer period. Expected findings of this research are that the indoor environment is not comfortable for works at day time during summer season. This research will help the factory workers in providing a comfortable thermal environment and also help the employers or factory owners to increase their production margin.

  19. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    Science.gov (United States)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips

  20. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  1. Technical guide to thermal processes

    International Nuclear Information System (INIS)

    Gosse, J.

    1986-01-01

    This book is an attempt to present the necessary formulae and numerical data for research programs. The most recent data have been used wherever possible. The work is not limited merely to statements of thermal laws; emphasis has been given to the important thermodynamic ideas and to the thermophysical properties of the working fluids. It discusses the thermodynamic concepts which govern the amount of energy transferred to, or from, a system undergoing any process as well as those concepts which allow rates of heat transfer to be predicted. In the same way, mass, momentum and energy balances are presented in a single section to emphasize that the three balances must always be considered together in the analysis of a system. It has been necessary to select the information to be presented in order to provide the essential ideas of thermal analysis. This technical guide summarises the fundamental laws and the experimental data on which the engineer can base his methods of calculation in order to provide an optimum thermal design

  2. Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians

    Science.gov (United States)

    Kim, Young-Jae; Lee, Chanam; Kim, Jun-Hyun

    2018-01-01

    Walking is being promoted for health and transportation purposes across all climatic regions in the US and beyond. Despite this, an uncomfortable microclimate condition along sidewalks is one of the major deterrents of walking, and more empirical research is needed to determine the risks of heat exposure to pedestrians while walking. This study examined the effect of street trees and grass along sidewalks on air temperatures. A series of thermal images were taken at the average heights of adults and children in the US to objectively measure the air temperatures of 10 sidewalk segments in College Station, TX, USA. After controlling the other key physical environmental conditions, sidewalks with more trees or wider grass buffer areas had lower air temperatures than those with less vegetation. Children were exposed to higher temperatures due to the greater exposure or proximity to the pavement surface, which tends to have higher radiant heat. Multivariate regression analysis suggested that the configuration of trees and grass buffers along the sidewalks helped to promote pleasant thermal conditions and reduced the differences in ambient air temperatures measured at child and adult heights. This study suggests that street trees and vegetated ground help reduce the air temperatures, leading to more thermally comfortable environments for both child and adult pedestrians in warm climates. The thermal implications of street landscape require further attention by researchers and policy makers that are interested in promoting outdoor walking. PMID:29346312

  3. The importance of thermal loading conditions to waste package performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-10-01

    Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period

  4. The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition

    Science.gov (United States)

    Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika

    2018-04-01

    Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not

  5. Characterization of a thermoelectric cooler based thermal management system under different operating conditions

    International Nuclear Information System (INIS)

    Russel, M.K.; Ewing, D.; Ching, C.Y.

    2013-01-01

    The performance of a thermoelectric cooler (TEC) based thermal management system for an electronic packaging design that operates under a range of ambient conditions and system loads is examined using a standard model for the TEC and a thermal resistance network for the other components. Experiments were performed and it was found that the model predictions were in good agreement with the experimental results. An operating envelope is developed to characterize the TEC based thermal management system for peak and off peak operating conditions. Parametric studies were performed to analyze the effect of the number of TEC module(s) in the system, geometric factor of the thermo-elements and the cold to hot side thermal resistances on the system performance. The results showed that there is a tradeoff between the extent of off peak heat fluxes and ambient temperatures when the system can be operated at a low power penalty region and the maximum capacity of the system. - Highlights: ► A model was developed for thermal management systems using thermoelectric coolers. ► Model predictions were in good agreement with experimental results. ► An operating envelope was developed for peak and off peak conditions. ► The effect of the number of thermoelectric coolers on the system was determined.

  6. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  7. Carotenes in processed tomato after thermal treatment

    NARCIS (Netherlands)

    Luterotti, S.; Bicanic, D.D.; Markovic, K.; Franko, M.

    2015-01-01

    This report adds to the ongoing vivid dispute on the fate of carotenes in tomato upon thermal processing. Although many papers dealing with changes in the raw tomatoes during industrial treatment have already appeared, data on the fate of finished, processed tomato products when they are

  8. Qualification of conditioning process

    International Nuclear Information System (INIS)

    Wolf, J.

    1989-01-01

    A conditioning process is qualified by the PTB if the execution of pre-treatment and conditioning occurs so that a safe and orderly final storage of the products and waste containers produced can be assumed. All the relevant operating conditions for the plant are laid down by the producer/conditioner of the waste in a handbook. The elements of product inspection by process qualification are shown in tabular form. (DG) [de

  9. Thermal process of an air column

    International Nuclear Information System (INIS)

    Lee, F.T.

    1994-01-01

    Thermal process of a hot air column is discussed based on laws of thermodynamics. The kinetic motion of the air mass in the column can be used as a power generator. Alternatively, the column can also function as a exhaust/cooler

  10. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  11. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone

    Directory of Open Access Journals (Sweden)

    Andrés Gallardo

    2016-07-01

    Full Text Available This study aims to determine the optimal approach for evaluating thermal comfort in an office that uses natural ventilation as the main conditioning strategy; the office is located in Quito-Ecuador. The performance of the adaptive model included in CEN Standard EN15251 and the traditional PMV model are compared with reports of thermal environment satisfaction surveys presented simultaneously to all occupants of the office to determine which of the two comfort models is most suitable to evaluate the thermal environment. The results indicate that office occupants have developed some degree of adaptation to the climatic conditions of the city where the office is located (which only demands heating operation, and tend to accept and even prefer lower operative temperatures than those considered optimum by applying the PMV model. This is an indication that occupants of naturally conditioned buildings are usually able to match their comfort temperature to their normal environment. Therefore, the application of the adaptive model included in CEN Standard EN15251 seems like the optimal approach for evaluating thermal comfort in naturally conditioned buildings, because it takes into consideration the adaptive principle that indicates that if a change occurs such as to produce discomfort, people tend to react in ways which restore their comfort.

  12. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  13. Implementation and verification of a coupled fire model as a thermal boundary condition within P3/THERMAL

    International Nuclear Information System (INIS)

    Hensinger, D.M.; Gritzo, L.A.; Koski, J.A.

    1996-01-01

    A user-defined boundary condition subroutine has been implemented within P3/THERMAL to represent the heat flux between a noncombusting object and an engulfing fire. The heat flux calculations includes a simple 2D fire model in which energy and radiative heat transport equations are solved to produce estimates of the heat fluxes at the fire-object interface. These estimates reflect radiative coupling between a cold object and the flow of hot combustion gases which has been observed in fire experiments. The model uses a database of experimental pool fire measurements for far field boundary conditions and volumetric heat release rates. Taking into account the coupling between a structure and the fire is an improvement over the σT 4 approximation frequently used as a boundary condition for engineered system response and is the preliminary step in the development of a fire model with a predictive capability. This paper describes the implementation of the fire model as a P3/THERMAL boundary condition and presents the results of a verification calculation carried out using the model

  14. Recent developments in numerical simulation techniques of thermal recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Tamim, M. [Bangladesh University of Engineering and Technology, Bangladesh (Bangladesh); Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain 17555 (United Arab Emirates); Farouq Ali, S.M. [University of Alberta, Alberta (Canada)

    2000-05-01

    Numerical simulation of thermal processes (steam flooding, steam stimulation, SAGD, in-situ combustion, electrical heating, etc.) is an integral part of a thermal project design. The general tendency in the last 10 years has been to use commercial simulators. During the last decade, only a few new models have been reported in the literature. More work has been done to modify and refine solutions to existing problems to improve the efficiency of simulators. The paper discusses some of the recent developments in simulation techniques of thermal processes such as grid refinement, grid orientation, effect of temperature on relative permeability, mathematical models, and solution methods. The various aspects of simulation discussed here promote better understanding of the problems encountered in the simulation of thermal processes and will be of value to both simulator users and developers.

  15. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    Science.gov (United States)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  16. Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. [Architectural Engineering Department, KFUPM, Dhahran 31261 (Saudi Arabia)

    2009-06-15

    In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately. (author)

  17. Rotating thermal flows in natural and industrial processes

    CERN Document Server

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  18. High thermal stability solution-processable narrow-band gap molecular semiconductors.

    Science.gov (United States)

    Liu, Xiaofeng; Hsu, Ben B Y; Sun, Yanming; Mai, Cheng-Kang; Heeger, Alan J; Bazan, Guillermo C

    2014-11-19

    A series of narrow-band gap conjugated molecules with specific fluorine substitution patterns has been synthesized in order to study the effect of fluorination on bulk thermal stability. As the number of fluorine substituents on the backbone increase, one finds more thermally robust bulk structures both under inert and ambient conditions as well as an increase in phase transition temperatures in the solid state. When integrated into field-effect transistor devices, the molecule with the highest degree of fluorination shows a hole mobility of 0.15 cm(2)/V·s and a device thermal stability of >300 °C. Generally, the enhancement in thermal robustness of bulk organization and device performance correlates with the level of C-H for C-F substitution. These findings are relevant for the design of molecular semiconductors that can be introduced into optoelectronic devices to be operated under a wide range of conditions.

  19. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  20. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, L G [Federal Institute of Rio Grande do Sul, IFRS, Campus Restinga, Estrada Joao Antonio da Silveira, 351, Porto Alegre 91790-400 (Brazil); Ferreira, C I; Dal Castel, C; Santos, K S; Mello, A C.E. [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil); Liberman, S A; Oviedo, M A.S. [Braskem S.A., III Polo Petroquimico, Via Oeste, Lote 5, Triunfo 95853-000 (Brazil); Mauler, R.S., E-mail: mauler@iq.ufrgs.br [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil)

    2011-08-25

    Highlights: {yields} Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. {yields} Polypropylene Nanocomposites with higher increase on impact resistance. {yields} Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  1. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Furlan, L.G.; Ferreira, C.I.; Dal Castel, C.; Santos, K.S.; Mello, A.C.E.; Liberman, S.A.; Oviedo, M.A.S.; Mauler, R.S.

    2011-01-01

    Highlights: → Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. → Polypropylene Nanocomposites with higher increase on impact resistance. → Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  2. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  3. Experimental study on occupant's thermal responses under the non-uniform conditions in vehicle cabin during the heating period

    Science.gov (United States)

    Zhang, Wencan; Chen, Jiqing; Lan, Fengchong

    2014-03-01

    The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in

  4. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    Science.gov (United States)

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  5. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  6. Significance of fundamental processes of radiation chemistry in hot atom chemical processes: electron thermalization

    International Nuclear Information System (INIS)

    Nishikawa, M.

    1984-01-01

    The author briefly reviews the current understanding of the course of electron thermalization. An outline is given of the physical picture without going into mathematical details. The analogy of electron thermalization with hot atom processes is taken as guiding principle in this paper. Content: secondary electrons (generation, track structure, yields); thermalization (mechanism, time, spatial distribution); behaviour of hot electrons. (Auth.)

  7. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  8. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  9. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  10. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  11. Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions.

    Science.gov (United States)

    Yang, Man; Chen, Xianfeng; Wang, Yujie; Yuan, Bihe; Niu, Yi; Zhang, Ying; Liao, Ruoyu; Zhang, Zumin

    2017-09-05

    In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H 2 O, NH 3 , N 2 O, NO, NO 2 and HNO 3 , while in nitrogen, H 2 O, NH 3 , NO and HNO 3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  13. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  14. Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing

    International Nuclear Information System (INIS)

    Ceresoli, Monica; Ferrarese Lupi, Federico; Seguini, Gabriele; Perego, Michele; Sparnacci, Katia; Gianotti, Valentina; Antonioli, Diego; Laus, Michele; Boarino, Luca

    2014-01-01

    This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190–340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s. (paper)

  15. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  16. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  17. 9 CFR 381.302 - Thermal processing.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Canning and Canned Products § 381.302... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Thermal processing. 381.302 Section 381.302 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  18. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    Science.gov (United States)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  19. Thermal conditions and functional requirements for molten fuel containment

    International Nuclear Information System (INIS)

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed

  20. Three-party quantum teleportation using thermal states in Heisenberg XX model with open boundary condition

    International Nuclear Information System (INIS)

    Bhan, Jaemi; Kwon, Younghun

    2007-01-01

    Recently Yeo showed that thermal states in Heisenberg XX model with periodic boundary condition could be used for three-party quantum teleportation. However it is hard to implement the periodic boundary condition in spin chain. So instead of imposing the periodic boundary condition, we consider open boundary condition in Heisenberg XX model and investigate the possibility of using thermal states in Heisenberg XX model with open boundary condition. Using this way, we find the best fidelity conditions to three known protocols in three-party quantum teleportation. It turns out that the best fidelity in every protocol would be 23

  1. The influence of local effects on thermal sensation under non-uniform environmental conditions — Gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling

    DEFF Research Database (Denmark)

    Schellen, L.; Loomans, M.G.L.C.; de Wit, M.H.

    2012-01-01

    , thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20–29years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During...... the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more...... of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended...

  2. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    International Nuclear Information System (INIS)

    Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D.; Anderson, G.L.

    1992-04-01

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities

  3. A progress report for the large block test of the coupled thermal-mechanical-hydrological-chemical processes

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.

    1994-10-01

    This is a progress report on the Large Block Test (LBT) project. The purpose of the LBT is to study some of the coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near field of a nuclear waste repository under controlled boundary conditions. To do so, a large block of Topopah Spring tuff will be heated from within for about 4 to 6 months, then cooled down for about the same duration. Instruments to measure temperature, moisture content, stress, displacement, and chemical changes will be installed in three directions in the block. Meanwhile, laboratory tests will be conducted on small blocks to investigate individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The fractures in the large block will be characterized from five exposed surfaces. The minerals on fracture surfaces will be studied before and after the test. The results from the LBT will be useful for testing and building confidence in models that will be used to predict TMHC processes in a repository. The boundary conditions to be controlled on the block include zero moisture flux and zero heat flux on the sides, constant temperature on the top, and constant stress on the outside surfaces of the block. To control these boundary conditions, a load-retaining frame is required. A 3 x 3 x 4.5 m block of Topopah Spring tuff has been isolated on the outcrop at Fran Ridge, Nevada Test Site. Pre-test model calculations indicate that a permeability of at least 10 -15 m 2 is required so that a dryout zone can be created within a practical time frame when the block is heated from within. Neutron logging was conducted in some of the vertical holes to estimate the initial moisture content of the block. It was found that about 60 to 80% of the pore volume of the block is saturated with water. Cores from the vertical holes have been used to map the fractures and to determine the properties of the rock. A current schedule is included in the report

  4. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    Science.gov (United States)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this

  5. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...

  6. Synthesis of functional nanocrystallites through reactive thermal plasma processing

    Directory of Open Access Journals (Sweden)

    Takamasa Ishigaki and Ji-Guang Li

    2007-01-01

    Full Text Available A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. The synthesis of nanosized titanium oxide powders was performed by the oxidation of solid and liquid precursors. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate, and therefore the particle size, of the resultant powders. The experimental results are well supported by numerical analysis on the effects of the quench gas on the flow pattern and temperature field of the thermal plasma as well as on the trajectory and temperature history of the particles. The plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nanosized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing.

  7. Process for fabricating composite material having high thermal conductivity

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  8. Optimum Thermal Processing for Extended Shelf-Life (ESL) Milk.

    Science.gov (United States)

    Deeth, Hilton

    2017-11-20

    Extended shelf-life (ESL) or ultra-pasteurized milk is produced by thermal processing using conditions between those used for traditional high-temperature, short-time (HTST) pasteurization and those used for ultra-high-temperature (UHT) sterilization. It should have a refrigerated shelf-life of more than 30 days. To achieve this, the thermal processing has to be quite intense. The challenge is to produce a product that has high bacteriological quality and safety but also very good organoleptic characteristics. Hence the two major aims in producing ESL milk are to inactivate all vegetative bacteria and spores of psychrotrophic bacteria, and to cause minimal chemical change that can result in cooked flavor development. The first aim is focused on inactivation of spores of psychrotrophic bacteria, especially Bacillus cereus because some strains of this organism are pathogenic, some can grow at ≤7 °C and cause spoilage of milk, and the spores of some strains are very heat-resistant. The second aim is minimizing denaturation of β-lactoglobulin (β-Lg) as the extent of denaturation is strongly correlated with the production of volatile sulfur compounds that cause cooked flavor. It is proposed that the heating should have a bactericidal effect, B * (inactivation of thermophilic spores), of >0.3 and cause ≤50% denaturation of β-Lg. This can be best achieved by heating at high temperature for a short holding time using direct heating, and aseptically packaging the product.

  9. Optimum Thermal Processing for Extended Shelf-Life (ESL Milk

    Directory of Open Access Journals (Sweden)

    Hilton Deeth

    2017-11-01

    Full Text Available Extended shelf-life (ESL or ultra-pasteurized milk is produced by thermal processing using conditions between those used for traditional high-temperature, short-time (HTST pasteurization and those used for ultra-high-temperature (UHT sterilization. It should have a refrigerated shelf-life of more than 30 days. To achieve this, the thermal processing has to be quite intense. The challenge is to produce a product that has high bacteriological quality and safety but also very good organoleptic characteristics. Hence the two major aims in producing ESL milk are to inactivate all vegetative bacteria and spores of psychrotrophic bacteria, and to cause minimal chemical change that can result in cooked flavor development. The first aim is focused on inactivation of spores of psychrotrophic bacteria, especially Bacillus cereus because some strains of this organism are pathogenic, some can grow at ≤7 °C and cause spoilage of milk, and the spores of some strains are very heat-resistant. The second aim is minimizing denaturation of β-lactoglobulin (β-Lg as the extent of denaturation is strongly correlated with the production of volatile sulfur compounds that cause cooked flavor. It is proposed that the heating should have a bactericidal effect, B* (inactivation of thermophilic spores, of >0.3 and cause ≤50% denaturation of β-Lg. This can be best achieved by heating at high temperature for a short holding time using direct heating, and aseptically packaging the product.

  10. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  11. Deciphering the influence of the thermal processes on the early passive margins formation

    Science.gov (United States)

    Bousquet, Romain; Nalpas, Thierry; Ballard, Jean-François; Ringenbach, Jean-Claude; Chelalou, Roman; Clerc, Camille

    2015-04-01

    Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie , 1978), as a dogma, is used to understanding and modeling the formation and evolution of sedimentary basins . This model is based on the assumption that the extension is only by pure shear and it is instantaneous. Under this approach, the sedimentary deposits occur in two stages. i) A short step , 1 to 10 Ma , controlled by tectonics. ii) A longer step , at least 50 Ma as a result of the thermal evolution of the lithosphere.
However, most stratigraphic data indicate that less thermal model can account for documented vertical movements. The study of the thermal evolution , coupled with other tectonic models , and its consequences have never been studied in detail , although the differences may be significant and it is clear that the petrological changes associated with changes in temperature conditions , influence changes reliefs.
In addition, it seems that the relationship between basin formation and thermal evolution is not always the same:
- Sometimes the temperature rise above 50 to 100 Ma tectonic extension. In the Alps, a significant rise in geothermal gradient Permo -Triassic followed by a "cold" extension , leading to the opening of the Ligurian- Piedmont ocean, from the Middle Jurassic .

  12. Development of thermal conditioning technology for alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, H. Y.; Kim, J. G.

    2001-04-01

    To develop a thermal conditioning technology for alpha-contaminated wastes, which are presumed to generate from pyrochemical processing of spent fuel, research on the three different fields have been performed; incineration, off-gas treatment, and vitrification/cementation technology. Through the assessment on the amount of alpha-contaminated waste and incineration characterises, an oxygen-enriched incineration process, which can greatly reduce the off-gas volume, was developed by our own technology. Trial burn test with paper waste resulted in a reduction of off-gas volume by 3.5. A study on the behavior and adsorption of nuclides/heavy metals at high-temperature was performed to develop an efficient removal technology. Off-gas treatment technologies for radioiodine at high-temperature and 14 CO 2 , acidic gases, and radioactive gaseous wastes such as Xe/Kr at room temperature were established. As a part of development of high-level waste solidification technology, manufacture of high-frequency induction melter, fabrication and characterization of base-glass media fabricated with spent HEPA filter medium, and development of titanate ceramic material as a precursor of SYNROC by a self-combustion method were performed. To develop alpha-contaminated waste solidification technology, a process to convert periodontal in the cement matrix to calcite with SuperCritical Carbon Dioxide (SCCD) was manufactured. The SCCD treatment enhanced the physicochemical properties of cement matrices, which increase the long-term integrity of cement waste forms during transportation and storage

  13. An Improvement in Thermal Modelling of Automated Tape Placement Process

    International Nuclear Information System (INIS)

    Barasinski, Anaies; Leygue, Adrien; Poitou, Arnaud; Soccard, Eric

    2011-01-01

    The thermoplastic tape placement process offers the possibility of manufacturing large laminated composite parts with all kinds of geometries (double curved i.e.). This process is based on the fusion bonding of a thermoplastic tape on a substrate. It has received a growing interest during last years because of its non autoclave abilities.In order to control and optimize the quality of the manufactured part, we need to predict the temperature field throughout the processing of the laminate. In this work, we focus on a thermal modeling of this process which takes in account the imperfect bonding existing between the different layers of the substrate by introducing thermal contact resistance in the model. This study is leaning on experimental results which inform us that the value of the thermal resistance evolves with temperature and pressure applied on the material.

  14. Identification of complex model thermal boundary conditions based on exterior temperature measurement

    International Nuclear Information System (INIS)

    Lu Jianming; Ouyang Guangyao; Zhang Ping; Rong Bojun

    2012-01-01

    Combining the advantages of the finite element software in temperature field analyzing with the multivariate function optimization arithmetic, a feasibility method based on the exterior temperature was proposed to get the thermal boundary conditions, which was required in temperature field analyzing. The thermal boundary conditions can be obtained only by some temperature measurement values. Taking the identification of the convection heat transfer coefficient of a high power density diesel engine cylinder head as an example, the calculation result shows that when the temperature measurement error was less than 0.5℃, the maximum relative error was less than 2%. It is shown that the new method was feasible (authors)

  15. INDOOR THERMAL CONDITION OF FACTORY BUILDING IN BANGLADESH

    OpenAIRE

    Muhammed Abdullah Al Sayem Khan; Mohd. Hamdan Ahmad; Tareef Hayat Khan

    2011-01-01

    Bangladesh is a developing country and has a lot of factories for different products for local use and also export to abroad. Garments industries are one of the top most items of exported items. A huge number of populations are working in garments industries. But these factories are not well designed in sense of the thermal environment. Workers experiences sickness related to indoor environment. The productions of these factories are affected due to employees’ health condition. The research i...

  16. Experimental study of human thermal sensation under hypobaric conditions in winter clothes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiying; Hu, Songtao; Liu, Guodan [Department of Environment and Municipal Engineering, Qingdao Technological University, Qingdao (China); Li, Angui [Department of Environment and Municipal Engineering, Xi' an University of Architecture and Technology, Xi' an (China)

    2010-11-15

    Hypobaric conditions, with pressures about 20-30% below that at sea level, are often experienced at mountain resorts and plateau areas. The diffusive transfer of water evaporation increases at hypobaric conditions whereas dry heat loss by convection decreases. In order to clarify the effects of barometric on human thermal comfort, experiments are conducted in a decompression chamber where the air parameters were controllable. During experiments, air temperature is set at a constant of 20, air velocity is controlled at <0.1 m/s, 0.2 m/s, 0.25 m/s, and 0.3 m/s by stages. The barometric condition is examined stepwise for 1atm, 0.85 atm and 0.75 atm of simulated hypobaric conditions, which is equivalent to altitude of 0 m, 1300 m, and 2300 m respectively. Ten males and ten females in winter clothes participate in the experiments. Thermal sensations are measured with ASHRAE seven-point rating scales and skin temperatures were tested at each altitude. The main results are as follows: when the altitude rises, (1) the mean thermal sensation drops; (2) people become more sensitive to draught and expect lower air movements; (3) no significant change of mean skin temperature has been found. The results of the present study indicate that hypobaric environment tends to make people feel cooler. (author)

  17. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  18. Predicting thermal reference conditions for USA streams and rivers

    Science.gov (United States)

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most

  19. Influence of thermal conditioning media on Charpy specimen test temperature

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range -100 to 100 degree C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs

  20. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    Science.gov (United States)

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  1. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...

  2. Significant improvement in the thermal annealing process of optical resonators

    Science.gov (United States)

    Salzenstein, Patrice; Zarubin, Mikhail

    2017-05-01

    Thermal annealing performed during process improves the quality of the roughness of optical resonators reducing stresses at the periphery of their surface thus allowing higher Q-factors. After a preliminary realization, the design of the oven and the electronic method were significantly improved thanks to nichrome resistant alloy wires and chopped basalt fibers for thermal isolation during the annealing process. Q-factors can then be improved.

  3. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions

    Science.gov (United States)

    Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.; Christidou, V.; Kittas, C.

    2016-03-01

    The aim of this paper was to study qualitatively and quantitatively the thermal perception and corresponding heat stress conditions that prevail in two schoolyards in a coastal city in central Greece. For this purpose, meteorological parameters (i.e., wind speed, temperature, relative humidity, solar radiation) were recorded at 70 and 55 measuring points in the schoolyards, from 14:00 to 15:30 local time, during May and June of 2011. The measuring points were distributed so as to get measurements at points (a) directly exposed to the sun, (b) under the shadow of trees and building structures, and (c) near building structures. Cluster analysis was applied to group observations and revealed places that are microclimatically homogeneous. Thermal perception and heat stress conditions were assessed by means of the physiologically equivalent temperature (PET, °C), and the results are presented in relevant charts. The impact of material's albedo, radiation's reflection by structures and obstacles, and different tree species on thermal perception and heat stress conditions was also assessed. The analysis showed that trees triggered a reduction of incident solar radiation that ranged between 79 and 94 % depending on tree's species, crown dimension, tree height, and leaf area. PET values were mainly affected by solar radiation and wind speed. Trees caused a reduction of up to 37 % in PET values, while a 1-m s-1 increase in wind speed triggered a reduction of 3.7-5.0 °C in PET value. The effective shading area in the two schoolyards was small, being 27.5 and 11 %. The results of this study could be exploited by urban planning managers when designing or improving the outdoor environment of a school complex.

  4. An analytically resolved model of a potato's thermal processing using Heun functions

    Science.gov (United States)

    Vargas Toro, Agustín.

    2014-05-01

    A potato's thermal processing model is solved analytically. The model is formulated using the equation of heat diffusion in the case of a spherical potato processed in a furnace, and assuming that the potato's thermal conductivity is radially modulated. The model is solved using the method of the Laplace transform, applying Bromwich Integral and Residue Theorem. The temperatures' profile in the potato is presented as an infinite series of Heun functions. All computations are performed with computer algebra software, specifically Maple. Using the numerical values of the thermal parameters of the potato and geometric and thermal parameters of the processing furnace, the time evolution of the temperatures in different regions inside the potato are presented analytically and graphically. The duration of thermal processing in order to achieve a specified effect on the potato is computed. It is expected that the obtained analytical results will be important in food engineering and cooking engineering.

  5. Four-phonon processes in the thermal conductivity of GaSb

    International Nuclear Information System (INIS)

    Aliev, M.I.; Arasly, D.G.; Guseinov, R.E.

    1978-01-01

    Phonon thermal conductivity of GaSb in the 300-700 K temperature range is studied by the light pulsed heating which is aimed at estimation of contributions of different polarized branches of acoustic oscillations into lattice thermal conductivity. The role of optico-acoustic interactions and multiphonon processes in phonon-phonon scattering at high temperatures is discussed. It is shown that the X thermal conductivity caused by the current carriers is negligibly small, and the Xsub(ph) phonon conductivity changes depending on temperature according to the Xsub(ph) approximately Tsup(-1.4) law. While calculating Xsub(ph) according to the Holland model taking into account phonon scattering on point defects the phonon thermal conductivity is given as a sum of contributions from longitudinal and transverse low-frequency Xsub(th1) and high-frequency Xsub(th2) acoustic phonons. It is established that at T>500 K Xsub(ph) is caused only by high-frequency transverse phonons and to explain the observed Xsub(ph) dependence on temperature it is necessary to introduce four-phonon process along with the three-phonon processes into intraphonon scattering

  6. Treatment of waste salt from the advanced spent fuel conditioning process (II) : optimum immobilization condition

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    Since zeolite is known to be stable at a high temperature, it has been reported as a promising immobilization matrix for waste salt. The crystal structure of dehydrated zeolite A breaks down above 1060 K, resulting in the formation of an amorphous solid and re-crystallization to beta-Cristobalite. This structural degradation depends on the existence of chlorides. When contacted to HCl, zeolite 4A is not stable even at 473 K. The optimum consolidation condition for LiCl salt waste from the oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) has been studied using zeolite A since 2001. Actually the constituents of waste salt are water-soluble. And, alkali halides are known to be readily radiolyzed to yield interstitial halogens and metal colloids. For disposal in a geological repository, the waste salt must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are leach resistance and waste form durability. In this work, we prepared some samples with different mixing ratios of LiCl salt to zeolite A, and then compared some characteristics such as thermal stability, salt occlusion, free chloride content, leach resistance, mixing effect, etc

  7. A predictive thermal dynamic model for parameter generation in the laser assisted direct write process

    International Nuclear Information System (INIS)

    Shang Shuo; Fearon, Eamonn; Wellburn, Dan; Sato, Taku; Edwardson, Stuart; Dearden, G; Watkins, K G

    2011-01-01

    The laser assisted direct write (LADW) method can be used to generate electrical circuitry on a substrate by depositing metallic ink and curing the ink thermally by a laser. Laser curing has emerged over recent years as a novel yet efficient alternative to oven curing. This method can be used in situ, over complicated 3D contours of large parts (e.g. aircraft wings) and selectively cure over heat sensitive substrates, with little or no thermal damage. In previous studies, empirical methods have been used to generate processing windows for this technique, relating to the several interdependent processing parameters on which the curing quality and efficiency strongly depend. Incorrect parameters can result in a track that is cured in some areas and uncured in others, or in damaged substrates. This paper addresses the strong need for a quantitative model which can systematically output the processing conditions for a given combination of ink, substrate and laser source; transforming the LADW technique from a purely empirical approach, to a simple, repeatable, mathematically sound, efficient and predictable process. The method comprises a novel and generic finite element model (FEM) that for the first time predicts the evolution of the thermal profile of the ink track during laser curing and thus generates a parametric map which indicates the most suitable combination of parameters for process optimization. Experimental data are compared with simulation results to verify the accuracy of the model.

  8. Influence of pulsed plasma streams processing on wear behavior of steels in different friction conditions

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Tereshin, V.I.; Bovda, A.M.; Tortika, A.S.

    2000-01-01

    Pulsed plasma streams processing was applied for surface modification of industrial steel samples. Different types of wear tests (pin-on-disk,flat-on-flat, abrasive,cavitation) were carried out for samples irradiated by pulsed nitrogen plasma streams. There was achieved essential decrease of wear and tear of processed surfaces of all kinds of steels including previously thermally quenched ones. Obtained results are of importance for both determination of optimal regimes of plasma streams processing and the most resulting use of pulsed plasma streams for technology purpose, i.e. for identification of wear modes and optimal friction conditions for steels processed by plasma streams

  9. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  10. Kinetics of Thermally Activated Physical Processes in Disordered Media

    Directory of Open Access Journals (Sweden)

    Bertrand Poumellec

    2015-07-01

    Full Text Available We describe a framework for modeling the writing and erasure of thermally-distributed activated processes that we can specifically apply to UV-induced refractive index change, particularly in fibers. From experimental measurements (isochrons and/or isotherms, this framework allows to find the distribution function of the activation energy by providing only a constant, which can be determined by a simple variable change when a few assumptions are fulfilled. From this modeling, it is possible to know the complete evolution in time of the system. It is also possible to determine the annealing conditions for extending a lifetime. This approach can also be used for other physical quantities, such as photodarkening, stress relaxation, and luminescence decay, provided that it can be described by a distribution function.

  11. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    Science.gov (United States)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  12. Quantifying the Interactions Between Soil Thermal Characteristics, Soil Physical Properties, Hydro-geomorphological Conditions and Vegetation Distribution in an Arctic Watershed

    Science.gov (United States)

    Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.

    2017-12-01

    Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation

  13. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da.

    1984-01-01

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt

  14. Fossilization Processes in Thermal Springs

    Science.gov (United States)

    Farmer, Jack D.; Cady, Sherry; Desmarais, David J.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    surfaces that produce palisade and "shrub" fabrics, respectively. At finer scales, composite fabrics are seen to consist distinctive associations of microstructures formed by the encrustation of individual cells and filaments. Composite fabrics survive the diagenetic transitions from primary opaline silica to quartz and are known from subaerial thermal spring deposits as old as Lower Carboniferous. However, fossil microorganisms tend to be rare in older deposits, and are usually preserved only where cells or sheaths have been stained by iron oxides. In subaqueous mineralizing springs at lower temperatures, early infilling leads to a more rapid and complete reduction in porosity and permeability. This process, along with the slower rates of microbial degradation at lower temperatures, creates a more favorable situation for organic matter preservation. Application of this taphonomic model to the Rhynie Chert, previously interpreted as subaerial, suggest it was probably deposited in a subaqueous spring setting at lower temperatures.

  15. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  16. Role of process conditions on the microstructure, stoichiometry and functional performance of atmospheric plasma sprayed La(Sr)MnO3 coatings

    Science.gov (United States)

    Han, Su Jung; Chen, Yikai; Sampath, Sanjay

    2014-08-01

    Strontium doped lanthanum manganite (LSM) perovskite coatings were produced via atmospheric plasma spray technique to examine their applicability as electrically conductive coatings to protect chromium-poisoning of cathode side metallic interconnects in solid oxide fuel cells. Various plasma spray process conditions were manipulated including plasma power, total gas flow and content of H2 in the plasma gas in order to understand their effects on coating properties as well as efficacy as a protectant against Cr-poisoning. In-flight temperatures and velocities of spray particles were monitored for the various plasma spray conditions enabling assessment of thermal and kinetic energies of LSM particles. As anticipated, coating density improves with increasing thermal and/or kinetic energies of the LSM particles. However, the LSM particles also experienced significant phase decomposition at higher thermal exposure and longer residence time conditions. Due to preferential loss of oxygen and manganese, La2O3 phase is also formed under certain processing regimes. The resultant mixed-phase coating is ineffective both from electrical transport and as a protective coating for the metallic interconnect. Concomitantly, coatings with limited decomposition show excellent conductivity and protection characteristics demonstrating the need for mechanism driven process optimization for these functional oxide coatings.

  17. Performance of thermal solvent process in Athabasca reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan [Marathon Oil (Canada)

    2011-07-01

    In the petroleum industry, due to depletion of conventional resources and high demand operators are looking into heavy oil and bitumen production. Different recovery methods exist, some of them based on heating the reservoir and others on the use of solvent. Thermal solvent process is a combination of both: a small amount of heat is used to maintain a solvent vapor phase in the reservoir. This process has advantages, solvent is mostly recycled which increases bitumen recovery efficiency and reduces the need for fresh solvent, but it also poses challenges, such as maintaining a vapor chamber and the fact that solvent solubility might be affected by heating. The aim of this paper is to discuss these issues. Simulations and field tests were conducted on bitumen in the the Athabasca region. This paper presented a thermal solvent process and its application's results in Athabasca reservoir.

  18. Design parameters of a non-air-conditioned cinema hall for thermal comfort under arid-zone climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, G.N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Lugani, N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Singh, A.K. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies)

    1993-01-01

    In this communication, a design of a cinema hall suitable for climatic conditions in an arid zone has been presented. The various cooling techniques, namely evaporative cooling, wind tower, ventilation/infiltration and natural cooling, have been incorporated in the design to achieve thermal comfort during the period of operation. The design parameters have been optimized on the basis of numerical computations after establishing an energy balance for each component of a cinema hall. It is observed that cooling treatment, i.e., a wind tower with a cooling pool on the roof provides reasonable thermal comfort inside the enclosure. (orig.)

  19. Peculiar features of modeling of thermal processes of the cutting area in the SOLIDWORKS SIMULATION system

    Directory of Open Access Journals (Sweden)

    Stepchin Ya.A.

    2017-04-01

    Full Text Available Management of thermo-physical process of cutting zone by changing certain parameters of the cutting regime, tool geometry or coolant using allows to achieve a higher level of handling performance. The forecasting of thermal processes during metal cutting is characterized by the multifactor of the model and the nonlinearity of the connection between the temperature field of the cutting zone and the processing parameters. Therefore realistic modeling of these processes with regard to the maximum number of influencing factors which will minimize the time and cost of experimental studies is very important. The research investigates the use of computer-aided design SolidWorks Simulation system to analyze the thermal processes occurring in the cutting zone during finishing turning of hardened circular steel cutting blade of superhard material. While modeling, the distribution of heat generated in cut (in the zone of plastic deformation of the workpiece and on the surfaces of friction of the cutting blade with chips and the treated surface is observed by four flows: to the tool, chips, workpiece and the environment. The limiting conditions for the existence of the developed model-geometric, physical and temporal limits are defined. Simulation is performed in steady and transient modes. Control of adequacy of simulation results is made. The conclusions of the analysis of opportunities of CAD SolidWorks Simulation System for research of thermal processes the cutting zone are drawn.

  20. Impact of building forms on thermal performance and thermal comfort conditions in religious buildings in hot climates: a case study in Sharjah city

    Science.gov (United States)

    Mushtaha, Emad; Helmy, Omar

    2017-11-01

    The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.

  1. PETher - Physical Properties of Thermal Water under In-situ-Conditions

    Science.gov (United States)

    Herfurth, Sarah; Schröder, Elisabeth

    2016-04-01

    The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically

  2. Effect of ohmic heating processing conditions on color stability of fungal pigments.

    Science.gov (United States)

    Aguilar-Machado, Diederich; Morales-Oyervides, Lourdes; Contreras-Esquivel, Juan C; Aguilar, Cristóbal; Méndez-Zavala, Alejandro; Raso, Javier; Montañez, Julio

    2017-06-01

    The aim of this work was to analyze the effect of ohmic heating processing conditions on the color stability of a red pigment extract produced by Penicillium purpurogenum GH2 suspended in a buffer solution (pH 6) and in a beverage model system (pH 4). Color stability of pigmented extract was evaluated in the range of 60-90 ℃. The degradation pattern of pigments was well described by the first-order (fractional conversion) and Bigelow model. Degradation rate constants ranged between 0.009 and 0.088 min -1 in systems evaluated. Significant differences in the rate constant values of the ohmic heating-treated samples in comparison with conventional thermal treatment suggested a possible effect of the oscillating electric field generated during ohmic heating. The thermodynamic analysis also indicated differences in the color degradation mechanism during ohmic heating specifically when the pigment was suspended in the beverage model system. In general, red pigments produced by P. purpurogenum GH2 presented good thermal stability under the range of the evaluated experimental conditions, showing potential future applications in pasteurized food matrices using ohmic heating treatment.

  3. DNS, LES and RANS of turbulent heat transfer in boundary layer with suddenly changing wall thermal conditions

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Yamada, Shohei; Tanaka, Masahiro; Houra, Tomoya; Nagano, Yasutaka

    2013-01-01

    Highlights: • We study the turbulent boundary layer with heat transfer by DNS. • Turbulent boundary layers with suddenly changing wall thermal conditions are observed. • The detailed turbulent statistics and structures in turbulent thermal boundary layer are discussed. • Turbulence models in LES and RANS are evaluated using DNS results. • LES and RANS are almost in good agreement with DNS results. -- Abstract: The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are

  4. Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties

    International Nuclear Information System (INIS)

    Gruenling, H.W.; Mannsmann, W.

    1993-01-01

    Thermal barrier coatings out of fully or partially stabilized zirconia offer a unique chance in gas turbines to increase the gas inlet temperature significantly while keeping the temperature of the structural material of the component within conventional limits. The protection of combustor parts and transition pieces as well as of some stationary gas turbine parts however is state of the art. As a consequence of still insufficient reliability, the application for hot rotating parts is very limited. The introduction as a design element requires safe life within defined time intervals. These depend on the overhaul and repair intervals of the engines. For large land based industrial or utility gas turbines, for example, coating life between 25.000 and 30.000 hrs. is a minimum requirement. Premature failure of a coating by e.g. local spalling causes local overheating of the component with the consequence of its total destruction or even more expensive secondary damages. Life limiting is the corrosion rate at the ceramic-metal interface and the behavior of the coated system under transient operating conditions, where multiaxial strain and stress distributions are generated. Sufficient strain tolerance of the coating both under tensile as well as compressive conditions is required. The properties of thermal barrier coating systems depend strongly on the structure and phase composition of the coating layers and the morphology of and the adhesion at the ceramic-metal interface. They have to be controlled by the process itself, the process parameters and the characteristics of the applied materials (e.g. chemical composition, processing, morphology, particle size and size distribution). It will be reviewed, how properties and structures of coating systems correlate and how structures can be modified by careful control of the process parameters. (orig.)

  5. Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films.

    Science.gov (United States)

    Fortunati, Elena; Puglia, Debora; Iannoni, Antonio; Terenzi, Andrea; Kenny, José Maria; Torre, Luigi

    2017-07-16

    Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) based films containing two different plasticizers [Acetyl Tributyl Citrate (ATBC) and isosorbide diester (ISE)] at three different contents (15 wt %, 20 wt % and 30 wt %) were produced by extrusion method. Thermal, morphological, mechanical and wettability behavior of produced materials was investigated as a function of plasticizer content. Filmature parameters were also adjusted and optimized for different formulations, in order to obtain similar thickness for different systems. Differential scanning calorimeter (DSC) results and evaluation of solubility parameter confirmed that similar miscibility was obtained for ATBC and ISE in PLA, while the two selected plasticizers resulted as not efficient for plasticization of PBS, to the limit that the PBS-30ATBC resulted as not processable. On the basis of these results, isosorbide-based plasticizer was considered a suitable agent for modification of a selected blend (PLA/PBS 80:20) and two mixing approaches were used to identify the role of ISE in the plasticization process: results from mechanical analysis confirmed that both produced PLA-PBS blends (PLA85-ISE15)-PBS20 and (PLA80-PBS20)-ISE15 could guarantee advantages in terms of deformability, with respect to the PLA80-PBS20 reference film, suggesting that the promising use of these stretchable PLA-PBS based films plasticized with isosorbide can provide novel solutions for food packaging applications.

  6. Thermally-driven Coupled THM Processes in Shales

    Science.gov (United States)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation

  7. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  8. Perceptual-Semantic Congruency Facilitates Semantic Discrimination of Thermal Qualities

    Directory of Open Access Journals (Sweden)

    Yizhen Zhou

    2017-12-01

    Full Text Available The ability to sense temperature is vital to our life. It signals the environmental condition, reflects the physiological conditions of our own body, and generates feelings of pleasantness or unpleasantness. Moreover, recent studies have demonstrated implicit associations between physical temperature and social/emotional concepts, suggesting the processing of temperature may even influence cognition. In this work, we examined the effect of physical warmth and coldness on semantic cognition. Participants performed speeded target categorization for thermal descriptors in the form of semantic words or illustrative figures representing the thermal qualities “warm” or “cold” while physical thermal stimulation was presented. We compared the average reaction time (RT for the congruent and incongruent conditions managed by response key assignments. In the congruent condition, the response key for the symbol associated with warmth (coldness was assigned to the hand with warm (cold thermal stimulation, and in the incongruent condition the key assignment was reversed. Our results demonstrate that the average RT in the congruent condition was faster than in the incongruent one for both forms of thermal descriptors, suggesting that the experience of physical temperature facilitates the internal processing of the meaning of thermal quality.

  9. Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pairojpiriyakul, Thirasak; Soottitantawat, Apinan; Arpornwichanop, Amornchai; Assabumrungrat, Suttichai [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University (Thailand); Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University (Thailand); Wiyaratn, Wisitsree [Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut' s University of Technology Thonburi (Thailand); Laosiripojana, Navadol [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Croiset, Eric [Department of Chemical Engineering, University of Waterloo (Canada)

    2010-10-15

    Thermodynamic analysis of hydrogen production from glycerol under thermal neutral conditions is studied in this work. Heat requirement from the process can be achieved from the exothermic reaction of glycerol with oxygen in air fed to the system. Two modes of operation for air feeding are considered including (i) Single-feed mode in which air is fed in combination with water and glycerol to the reformer, and (ii) Split-feed mode in which air and part of glycerol is fed to a combustor in order to generate heat. The thermal neutral conditions are considered for two levels including Reformer and System levels. It was found that the H{sub 2} yield from both modes is not significantly different at the Reformer level. In contrast, the difference becomes more pronounced at the System level. Single-feed and Split-feed modes offer high H{sub 2} yield in low (600-900 K) and high (900-1200 K) temperature ranges, respectively. The maximum H{sub 2} yields are 5.67 (water to glycerol ratio, WGR = 12, oxygen to glycerol ratio, OGR = 0.37, T = 900 K, Split-feed mode), and 3.28 (WGR = 3, OGR = 1.40, T = 900 K, Single-feed mode), for the Reformer and System levels, respectively. The difference between H{sub 2} yields in both levels mainly arises from the huge heat demand for preheating feeds in the System level, and therefore, a higher amount of air is needed to achieve the thermal neutral condition. Split-feed mode is a favorable choice in term of H{sub 2} purity because the gas product is not diluted with N{sub 2} from the air. The use of pure O{sub 2} and afterburner products (ABP) stream were also considered at the System level. The maximum H{sub 2} yield becomes 3.75 (WGR = 5.21, OGR = 1.28, T = 900 K, Split-feed mode) at thermal neutral condition when utilizing heat from the ABP stream. Finally comparisons between the different modes and levels are addressed in terms of yield of by-products, and carbon formation. (author)

  10. Isoconversional kinetics of thermally stimulated processes

    CERN Document Server

    Vyazovkin, Sergey

    2015-01-01

    The use of isoconversional kinetic methods for analysis of thermogravimetric and calorimetric data on thermally stimulated processes is quickly growing in popularity. The purpose of this book is to create the first comprehensive resource on the theory and applications of isoconversional methodology. The book introduces the reader to the kinetics of physical and chemical condensed phase processes that occur as a result of changing temperature and discusses how isoconversional analysis can provide important kinetic insights into them. The book will help the readers to develop a better understanding of the methodology, and promote its efficient usage and successful development.

  11. Towards the control of car underhood thermal conditions

    International Nuclear Information System (INIS)

    Khaled, Mahmoud; Harambat, Fabien; Peerhossaini, Hassan

    2011-01-01

    The present paper reports an experimental study of the aerothermal phenomena in the vehicle underhood compartment as investigated by measuring temperature, convective heat flux, and radiative heat flux. Measurements are carried out on a passenger vehicle in wind tunnel S4 of Saint-Cyr-France. The underhood space is instrumented by 120 surface and air thermocouples and 20 fluxmeters. Measurements are performed for three thermal functioning conditions while the engine is in operation and the front wheels are positioned on the test facility with power-absorption-controlled rollers. In the thermal analysis, particular attention is given to measuring absorbed convective heat fluxes at component surfaces. It is shown that, in some components, the outside air entering the engine compartment (for cooling certain components) can in fact heat other components. This problem arises from the underhood architecture, specifically the positioning of some components downstream of warmer components in the same airflow. Optimized thermal management suggests placing these components further upstream or isolating them from the hot stream by deflectors. Given style constraints, however, the use of air deflectors is more suitable than underhood architectural changes. Much of the present paper is devoted to heat flux analysis of the specific thermal behaviours in the underhood compartment (especially the absorption of convective heat fluxes) and to a description of a new control approach exploiting air deflectors to optimize underhood aerothermal management. - Research highlights: → We present a physical analysis of particular underhood aerothermal behaviors. → In this analysis, convective heat flux absorption should be noted. → A new optimization procedure based on this physical analysis is proposed. → It entails airflow redistribution in the underhood through deflectors. → The new procedures are simple and easy to implement in the car underhood.

  12. Thermal food processing: new technologies and quality issues

    National Research Council Canada - National Science Library

    Sun, Da-Wen

    2012-01-01

    .... The editor of Thermal Food Processing: New Technologies and Quality Issues presents a comprehensive reference through authors that assist in meeting this challenge by explaining the latest developments and analyzing the latest trends...

  13. Thermal Performance for Wet Cooling Tower with Different Layout Patterns of Fillings under Typical Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2017-01-01

    Full Text Available A thermal-state model experimental study was performed in lab to investigate the thermal performance of a wet cooling tower with different kinds of filling layout patterns under windless and 0.4 m/s crosswind conditions. In this paper, the contrast analysis was focused on comparing a uniform layout pattern and one kind of optimal non-uniform layout pattern when the environmental crosswind speed is 0 m/s and 0.4 m/s. The experimental results proved that under windless conditions, the heat transfer coefficient and total heat rejection of circulating water for the optimal non-uniform layout pattern can enhance by approximately 40% and 28%, respectively, compared with the uniform layout pattern. It was also discovered that the optimal non-uniform pattern can dramatically relieve the influence of crosswind on the thermal performance of the tower when the crosswind speed is equal to 0.4 m/s. For the uniform layout pattern, the heat transfer coefficient under 0.4 m/s crosswind conditions decreased by 9.5% compared with the windless conditions, while that value lowered only by 2.0% for the optimal non-uniform layout pattern. It has been demonstrated that the optimal non-uniform layout pattern has the better thermal performance under 0.4 m/s crosswind condition.

  14. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    Science.gov (United States)

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  15. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    Science.gov (United States)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  16. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  17. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  18. Thermal re-ignition processes of switching arcs with various gas-blast using voltage application highly controlled by powersemiconductors

    Science.gov (United States)

    Nakano, Tomoyuki; Tanaka, Yasunori; Murai, K.; Uesugi, Y.; Ishijima, T.; Tomita, K.; Suzuki, K.; Shinkai, T.

    2018-05-01

    This paper focuses on a fundamental experimental approach to thermal arc re-ignition processes in a variety of gas flows in a nozzle. Using power semiconductor switches in the experimental system, the arc current and the voltage applied to the arc were controlled with precise timing. With this system, residual arcs were created in decaying phase under free recovery conditions; arc re-ignition was then intentionally instigated by application of artificial voltage—i.e. quasi-transient recovery voltage—to study the arc behaviour in both decaying and re-ignition phases. In this study, SF6, CO2, N2, O2, air and Ar arcs were intentionally re-ignited by quasi-TRV application at 20 μs delay time from initiation of free recovery condition. Through these experiments, the electron density at the nozzle throat was measured using a laser Thomson scattering method together with high speed video camera observation during the re-ignition process. Temporal variations in the electron density from the arc decaying to re-ignition phases were successfully obtained for each gas-blast arc at the nozzle throat. In addition, initial dielectric recovery properties of SF6, CO2, air and Ar arcs were measured under the same conditions. These data will be useful in the fundamental elucidation of thermal arc re-ignition processes.

  19. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-01-01

    An investigation is described for the study of structural breakdown of coke by thermochemical action of alkali and alkaline-earth metal vapors under blast furnace operating conditions. Bench-scale test facilities are described in which a pair of coke samples are exposed to the metal vapors then subjected to gasification. Structural strength tests were performed before and after each experiment. Coke samples were obtained in either moist or thermally prepared condition. The value of thermal charge preparation (heat treatment of the coal at 150/sup 0/C in a fluidized bed) was established, since it shifts the pore size distribution to the smaller size, thereby retarding adsorption of the metal vapors. 16 references, 4 figures, 2 tables.

  20. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  1. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  2. Self-organization process of a magnetohydrodynamic plasma in the presence of thermal conduction

    International Nuclear Information System (INIS)

    Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya; Watanabe, K.; Hayashi, T.; Todo, Y.; Watanabe, T.H.; Kageyama, A.; Takamaru, H.

    1995-12-01

    A self-organization process of a magnetohydrodynamic(MHD) plasma with a finite thermal conductivity is investigated by means of a three-dimensional MHD simulation. With no thermal conduction an MHD system self-organizes to a non-Taylor's state in which the electric current perpendicular to the magnetic field remains comparable to the parallel electric current. In the presence of thermal conductivity the perpendicular component of electric current and the nonuniformity of thermal pressure generated by driven reconnection tend to be smoothened. Thus, the self-organized state approaches to a force-free minimum energy state under the influence of thermal conduction. Detailed energy conversion processes are also studied to find that the rapid decay of magnetic energy during the self-organization process is caused not only through the ohmic heating, but also through the work done by the j x B force. (author)

  3. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  4. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2017-02-01

    Full Text Available Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC. This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  5. Thermal conditions of the grape growing season within the North-Eastern steppe land of Ukraine (on the example of Kharkiv region

    Directory of Open Access Journals (Sweden)

    Борис Шуліка

    2016-10-01

    Full Text Available The article analyzes the results of the thermal conditions observations within the North-Eastern steppe land of Ukraine as one of the most important factors for successful cultivation of grapes, thus providing crop productivity. Considering the effect of thermal factors, it can be noted that the intensity and speed of life processes of plants are well- defined under temperature conditions only in the circumstances where other environmental factors are not limited. The thermal regime was initially taken into account in practice in XVII century. In XIX century the agro-climatic areas to grow grapes were determined in North-Eastern steppe land of Ukraine. Detailed studies of agro-climatic conditions of specific areas can more thoroughly to make conclusions and recommendations for the cultivation of grapes as a whole in the territory, and specifically in those areas were given. In studying the thermal balance of the territory the average and extreme temperature should be paid attention to. Characteristic features of the thermal regime are given in this paper based on the study of atmospheric phenomena, geomorphology and territories with radiation influence and water flow regime. Thermal treatment is subjected to anthropogenic influence, and in cultivating tenants can use appropriate agricultural practices (conceal bushes, warm soil and air, and even crops in protective ground, in greenhouses. Characteristically, technology of greenhouses growers is even used in Kherson region. These data can be used in neighborhood and the adjacent areas, especially they are useful for the practice of growing grapes. The possibility of successful cultivation of dozens of grape varieties in the North-Eastern steppe land of Ukraine has been well-grounded.

  6. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  7. Stochastic conditional intensity processes

    DEFF Research Database (Denmark)

    Bauwens, Luc; Hautsch, Nikolaus

    2006-01-01

    model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...

  8. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki; Mansfield, Andrew B.; Wooldridge, Margaret S.; Im, Hong G.

    2015-01-01

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  9. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  10. VII International scientific conference Radiation-thermal effects and processes in inorganic materials. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    In the collection there are the reports of the VII International scientific conference and the VII All-Russian school-conference Radiation-thermal effects and processes in inorganic materials which were conducted on October 2-10, 2010, in Tomsk. The reports deal with new developments of charged particles high-intensity beam sources, high-temperature metrology of high-current beams and work materials, radiation-thermal stimulated effects and processes in inorganic materials, physical basics of technological processes, radiation-thermal technologies and equipment for their realization, allied branches of science and technology, specifically, nanotechnologies [ru

  11. Comparison of different test methods to assess thermal stresses of metal oxide surge arresters under pollution conditions

    International Nuclear Information System (INIS)

    Bargigia, A.; de Nigris, M.; Pigini, A.; Sironi, A.

    1992-01-01

    The report deals with the research conducted by ENEL, the Italian Electricity Board, to assess the performance of zinc oxide surge arresters under pollution condition, with special reference to the consequent thermal stress on internal active parts which can affect the energy handling capabality of the arrester and may lead, in particular conditions, even to thermal runaway

  12. Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    International Nuclear Information System (INIS)

    Becker, Eric; Gu Guochao; Langlois, Laurent; Bigot, Regis; Pesci, Raphael

    2011-01-01

    Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.

  13. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh

    International Nuclear Information System (INIS)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Kraemer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. - Highlights: → Temperature exhibits a strong influence on mortality in Bangladesh. → Mortality increases at low and high end of the temperature range. → Temperature is increased in the urban area of Dhaka, particular during summer. → Urban areas are facing increased risk of heat-related mortality. → Urbanization and climate change are likely to increase heat-related mortality. - Mortality in Bangladesh is strongly affected by thermal atmospheric conditions with particularly urban areas facing excess mortality above a specific threshold temperature.

  14. Thermal energy management process experiment

    Science.gov (United States)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  15. Microstructure and thermal conductivity of Mo-TiC cermets processed by hot isostatic pressing

    International Nuclear Information System (INIS)

    Le Flem, Marion; Allemand, Alexandre; Urvoy, Stephane; Cedat, Denis; Rey, Colette

    2008-01-01

    In the scope of refractory material development for structural applications in the core of future nuclear reactors (gas fast reactors working between 500 o C and at least 800 o C in nominal conditions and up to 1650 o C in accidental scenarios), five Mo-TiC cermets, and single-phase TiC and Mo, were processed by hot isostatic pressing. Starting TiC volume contents were 0%, 12.5%, 25%, 37.5%, 50%, 75% and 100%. First, high dense specimens were characterized in terms of microstructure, composition and phase volume fractions. Cermets exhibited two phases in agreement with phase diagram previsions (Mo-TiC 1-2at.% and TiC-Mo 10-15at.% ), and a residual non-reacted TiC-rich phase (TiC-Mo 1at.% ). Second, heat capacity and thermal diffusivity were measured up to 1000 o C which allowed to evaluate the thermal conductivity of each cermet: this lays between TiC conductivity (12-18 W/m K) and Mo conductivity (95-125 W/m K), thermal properties continuously decreasing with starting TiC content. An analytical approach based on the volume fraction and properties of each constituent allowed to highlight the existence of thermal resistance at the interphases at low temperature

  16. Effect of Galleries on Thermal Conditions of Urban Open Areas

    Directory of Open Access Journals (Sweden)

    Shahab Kariminia

    2016-06-01

    Full Text Available Computer simulations were performed by ENVI-met model along with physical measurements in two urban squares under hot summer conditions in Isfahan, central Iran. Each scenario concentrated on adding or extending galleries in each square. The results confirmed the role of galleries on thermal conditions; however, it was found that the effectiveness of this strategy depends on the square geometry. It presented higher efficiency for the small square with higher H/W ratio. This solution is advisable for smaller squares and when the peripheral parts are frequently used compared to the middle areas. Galleries are most efficient when allowing enough natural ventilation.

  17. EXAMINATION OF THE SIMULATED THERMAL CONDITIONS IN A POPULAR PLAYGROUND RELATED TO THE HUMAN REACTIONS AND THE JUDGMENT OF THE AREA DESIGN

    Directory of Open Access Journals (Sweden)

    L.A. ÉGERHÁZI

    2013-03-01

    Full Text Available In the field of urban bioclimatology an important and timely research direction today is to examine the thermal conditions of public places. In our study, human thermal comfort analysis was performed in a modern and well-attended children playground located in Szeged (Hungary. The aim of the paper is to reveal the changes in the thermal comfort conditions between two seasons and also the resulting subjective thermal reactions of visitors in this relatively small area. Thermal comfort conditions were quantified by the Physiologically Equivalent Temperature (PET. For typical summer and autumn days of 2011 numerical simulations of thermal comfort conditions in the playground were carried out by means of the urban microclimate model ENVI-met. Spatial distribution of the simulated PET, i.e. thermal stress maps were created in two different times of the selected days in order to characterize the distinct microclimatological conditions appearing in the area. The relationship between the momentary spatial patterns of visitors and the thermal conditions was also under investigation. Additionally, onsite questionnaire survey was implemented which highlights the people’s subjective evaluation related to the design of the playground.

  18. The improving of the heat networks operating process under the conditions of the energy efficiency providing

    Directory of Open Access Journals (Sweden)

    Blinova Tatiana

    2016-01-01

    Full Text Available Among the priorities it is important to highlight the modernization and improvement of energy efficiency of housing and communal services, as well as the transition to the principle of using the most efficient technologies used in reproduction (construction, creation of objects of municipal infrastructure and housing modernization. The main hypothesis of this study lies in the fact that in modern conditions the realization of the most important priorities of the state policy in the sphere of housing and communal services, is possible in the conditions of use of the most effective control technologies for the reproduction of thermal networks. It is possible to raise the level of information security Heat Distribution Company, and other market participants by improving business processes through the development of organizational and economic mechanism in the conditions of complex monitoring of heat network operation processes

  19. Validation of the thermal balance of Laguna Verde turbine under conditions of extended power increase

    International Nuclear Information System (INIS)

    Castaneda G, M. A.; Cruz B, H. J.; Mercado V, J. J.; Cardenas J, J. B.; Garcia de la C, F. M.

    2012-10-01

    The present work is a continuation of the task: Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt) in which the modeling of the vapor cycle of the nuclear power plant of Laguna Verde was realized with PEPSE code (Performance Evaluation of Power System Efficiencies). Once reached the conditions of nominal operation of extended power increase, operating both units to 2371 MWt; after the tests phase of starting-up and operation is necessary to carry out a verification of the proposed design of the vapor cycle for the new operation conditions. All this, having in consideration that the vapor cycle designer only knows the detail of the prospective performance of the main turbine, for all the other components (for example pumps, heat inter changers, valves, reactor, humidity separators and re-heaters, condensers, etc.) makes generic suppositions based on engineering judgment. This way carries out the calculations of thermal balance to determine the guaranteed gross power. The purpose of the present work is to comment the detail of the validation carried out of the specific thermal balance (thermal kit) of the nuclear power plant, making use of the design characteristics of the different components that conform the vapor cycle. (Author)

  20. Effects of Urban Configuration on Human Thermal Conditions in a Typical Tropical African Coastal City

    Directory of Open Access Journals (Sweden)

    Emmanuel Lubango Ndetto

    2013-01-01

    Full Text Available A long-term simulation of urban climate was done using the easily available long-term meteorological data from a nearby synoptic station in a tropical coastal city of Dar es Salaam, Tanzania. The study aimed at determining the effects of buildings’ height and street orientations on human thermal conditions at pedestrian level. The urban configuration was represented by a typical urban street and a small urban park near the seaside. The simulations were conducted in the microscale applied climate model of RayMan, and results were interpreted in terms of the thermal comfort parameters of mean radiant (Tmrt and physiologically equivalent (PET temperatures. PET values, high as 34°C, are observed to prevail during the afternoons especially in the east-west oriented streets, and buildings’ height of 5 m has less effect on the thermal comfort. The optimal reduction of Tmrt and PET values for pedestrians was observed on the nearly north-south reoriented streets and with increased buildings’ height especially close to 100 m. Likewise, buildings close to the park enhance comfort conditions in the park through additional shadow. The study provides design implications and management of open spaces like urban parks in cities for the sake of improving thermal comfort conditions for pedestrians.

  1. Large quantity production of carbon and boron nitride nanotubes by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Fitzgerald, J.D.; Chadderton, L.; Williams, J.S.; Campbell, S.J.

    2002-01-01

    Full text: Nanotube materials including carbon and boron nitride have excellent properties compared with bulk materials. The seamless graphene cylinders with a high length to diameter ratio make them as superstrong fibers. A high amount of hydrogen can be stored into nanotubes as future clean fuel source. Theses applications require large quantity of nanotubes materials. However, nanotube production in large quantity, fully controlled quality and low costs remains challenges for most popular synthesis methods such as arc discharge, laser heating and catalytic chemical decomposition. Discovery of new synthesis methods is still crucial for future industrial application. The new low-temperature mechano-thermal process discovered by the current author provides an opportunity to develop a commercial method for bulk production. This mechano-thermal process consists of a mechanical ball milling and a thermal annealing processes. Using this method, both carbon and boron nitride nanotubes were produced. I will present the mechano-thermal method as the new bulk production technique in the conference. The lecture will summarise main results obtained. In the case of carbon nanotubes, different nanosized structures including multi-walled nanotubes, nanocells, and nanoparticles have been produced in a graphite sample using a mechano-thermal process, consisting of I mechanical milling at room temperature for up to 150 hours and subsequent thermal annealing at 1400 deg C. Metal particles have played an important catalytic effect on the formation of different tubular structures. While defect structure of the milled graphite appears to be responsible for the formation of small tubes. It is found that the mechanical treatment of graphite powder produces a disordered and microporous structure, which provides nucleation sites for nanotubes as well as free carbon atoms. Multiwalled carbon nanotubes appear to grow via growth of the (002) layers during thermal annealing. In the case of BN

  2. Processing of nanocrystalline diamond thin films for thermal management of wide-bandgap semiconductor power electronics

    International Nuclear Information System (INIS)

    Govindaraju, N.; Singh, R.N.

    2011-01-01

    Highlights: → Studied effect of nanocrystalline diamond (NCD) deposition on device metallization. → Deposited NCD on to top of High Electron Mobility Transistors (HEMTs) and Si devices. → Temperatures below 290 deg. C for Si devices and 320 deg. C for HEMTs prevent metal damage. → Development of novel NCD-based thermal management for power electronics feasible. - Abstract: High current densities in wide-bandgap semiconductor electronics operating at high power levels results in significant self-heating of devices, which necessitates the development thermal management technologies to effectively dissipate the generated heat. This paper lays the foundation for the development of such technology by ascertaining process conditions for depositing nanocrystalline diamond (NCD) on AlGaN/GaN High Electron Mobility Transistors (HEMTs) with no visible damage to device metallization. NCD deposition is carried out on Si and GaN HEMTs with Au/Ni metallization. Raman spectroscopy, optical and scanning electron microscopy are used to evaluate the quality of the deposited NCD films. Si device metallization is used as a test bed for developing process conditions for NCD deposition on AlGaN/GaN HEMTs. Results indicate that no visible damage occurs to the device metallization for deposition conditions below 290 deg. C for Si devices and below 320 deg. C for the AlGaN/GaN HEMTs. Possible mechanisms for metallization damage above the deposition temperature are enumerated. Electrical testing of the AlGaN/GaN HEMTs indicates that it is indeed possible to deposit NCD on GaN-based devices with no significant degradation in device performance.

  3. Visualization and measurement by image processing of thermal hydraulic phenomena by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki

    1996-01-01

    Neutron Radiography was applied to visualization of thermal hydraulic phenomena and measurement was carried out by image processing the visualized images. Since attenuation of thermal neutron rays is high in ordinary liquids like water and organic fluid while it is low in most of metals, liquid flow behaviors can be visualized through a metallic wall by neutron radiography. Measurement of void fraction and flow vector field which is important to study thermal hydraulic phenomena can be carried out by image processing the images obtained by the visualization. Various two-phase and liquid metal flows were visualized by a JRR-3M thermal neutron radiography system in the present study. Multi-dimensional void fraction distributions in two-phase flows and flow vector fields in liquid metals, which are difficult to measure by the other methods, were successfully measured by image processing. It was shown that neutron radiography was efficiently applicable to study thermal hydraulic phenomena. (author)

  4. Composite material having high thermal conductivity and process for fabricating same

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  5. Experimentation of a LiBr–H2O absorption process for long-term solar thermal storage: Prototype design and first results

    International Nuclear Information System (INIS)

    N'Tsoukpoe, K.E.; Le Pierrès, N.; Luo, L.

    2013-01-01

    The long-term thermal storage by absorption process studied in this paper is devoted to building heating. A demonstrative prototype that can store 8 kWh of heat and produce a heating power of 1 kW has been designed and built. It has been tested in static and dynamic operating conditions, which are compatible with domestic solar thermal and heating plants. The process operating principle, the prototype design and first experimental results are presented and discussed in this contribution. The charging process has been proved successful. The observed power during the charging phases is satisfactory, according to the process design for a real plant (2–5 kW). Absorption during discharging phase is also verified. Discharging tests show that absorption operates in conditions that could allow house heating as the absorber outlet solution temperature can reach 40 °C. However, some problems related to the absorber design have not allowed observing the heat recovery by the heat transfer fluid as expected. Some avenues are explored prior to a new and more appropriate design and eventually a new operating mode. Various aspects such as the use of a heat and mass transfer enhancement additive and stratification in the solution storage tank have also been addressed. - Highlights: ► A long-term thermal storage prototype is tested under practical conditions. ► For the prototype design, a separate reactor is used with integrated components. ► The observed powers during the charging phases are satisfactory (2–5 kW). ► Following crystallisation phases, discharging tests enabled the crystal dissolution. ► Absorber temperature that could allow house heating (up to 40°C) has been observed

  6. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  7. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    International Nuclear Information System (INIS)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios

  8. Electro-thermal dynamic stripping process : integrating environmentalism with bitumen production

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.W.; McDonald, C.W. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[E-T Energy, Calgary, AB (Canada); Little, L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Energy Research Inst., Edmonton, AB (Canada)

    2008-10-15

    This paper presented a new method of in situ oil sands extraction developed by Calgary-based E-T Energy. The Electro-Thermal Dynamic Stripping Process (ET-DSP) uses electricity to melt oil sands deposits that are too deep for open pit mining. The energy intensity of production compares favourably with alternative thermal bitumen extraction techniques and water consumption for the process is comparatively low, with all produced water being re-injected into the producing formation without any treatment. With ET-DSP, electrodes are drilled and completed next to the oil sands formation which ensures that the electrical currents are forced to flow to the oil sands formation. The viscosity of the bitumen is lowered by the heat from the current, thereby making the fluid flow more readily into vertical extraction wells. ET-DSP uses electricity directly from the power grid, and does not produce any greenhouse gas (GHG) emissions of its own. The process has the potential to allow operators to focus on areas of oil sands reservoirs that have remained inaccessible. Field studies confirmed that the production of bitumen using this method was achieved with reduced greenhouse gas emissions as compared to other thermal recovery process. The bitumen had trace amount of sand and no emulsions. 5 refs., 5 figs.

  9. Thermal energy analysis of a lime production process: Rotary kiln, preheater and cooler

    International Nuclear Information System (INIS)

    Shahin, Hamed; Hassanpour, Saeid; Saboonchi, Ahmad

    2016-01-01

    Highlights: • The integrated model for lime production unit which includes cooler, preheater and rotary kiln is developed. • The effect of residence time in each section on efficiency is investigated. • Influence of material feed rate and excess air on specific fuel consumption is analyzed. • The significant effect of particle size on efficiency and specific fuel consumption is shown. - Abstract: In this paper, thermal energy analysis of three zones of a lime production process, which are preheater, rotary kiln and cooler, is performed. In order to perform a proper quantitative estimation, the system was modeled using energy balance equations including coupled heat transfer and chemical reaction mechanisms. A mathematical model was developed, and consequently, the thermal and chemical behavior of limestone was investigated. The model was verified using empirical data. After model confirmation, the variation of Specific Fuel Consumption (SFC) versus production rate was predicted and the optimum condition was determined. Subsequently, fuel consumption was calculated regarding to altered residence time inside each zone of lime production process, for a constant output. Results indicate that increasing the residence time inside each zone of lime production process, will enhance thermal efficiency and saves fuel consumption. Relative enhancement will be the same for different sizes of limestone. It was found that a 10-min increase in material residence time inside the preheater or rotary kiln can reduce fuel consumption by around two percent. Whereas, a 5-min increase in material residence time inside the cooler would be enough to obtain a similar result. Finally, the ratio of air-to-fuel and production rate are changed in such a way that the same product is achieved. The model predicts that lowering excess air from 15% to 10% leads to a 2.5% reduction of Specific Fuel Consumption (SFC).

  10. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition

    NARCIS (Netherlands)

    Schellen, L.; Marken Lichtenbelt, van W.D.; Loomans, M.G.L.C.; Toftum, J.; Wit, de M.H.

    2010-01-01

    Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum

  11. Evaluation of risk and benefit in thermal effusivity sensor for monitoring lubrication process in pharmaceutical product manufacturing.

    Science.gov (United States)

    Uchiyama, Jumpei; Kato, Yoshiteru; Uemoto, Yoshifumi

    2014-08-01

    In the process design of tablet manufacturing, understanding and control of the lubrication process is important from various viewpoints. A detailed analysis of thermal effusivity data in the lubrication process was conducted in this study. In addition, we evaluated the risk and benefit in the lubrication process by a detailed investigation. It was found that monitoring of thermal effusivity detected mainly the physical change of bulk density, which was changed by dispersal of the lubricant and the coating powder particle by the lubricant. The monitoring of thermal effusivity was almost the monitoring of bulk density, thermal effusivity could have a high correlation with tablet hardness. Moreover, as thermal effusivity sensor could detect not only the change of the conventional bulk density but also the fractional change of thermal conductivity and thermal capacity, two-phase progress of lubrication process could be revealed. However, each contribution of density, thermal conductivity, or heat capacity to thermal effusivity has the risk of fluctuation by formulation. After carefully considering the change factor with the risk to be changed by formulation, thermal effusivity sensor can be a useful tool for monitoring as process analytical technology, estimating tablet hardness and investigating the detailed mechanism of the lubrication process.

  12. Application of rapid thermal processing on SiNx thin film to solar cells

    Institute of Scientific and Technical Information of China (English)

    Youjie LI; Peiqing LUO; Zhibin ZHOU; Rongqiang CUI; Jianhua HUANG; Jingxiao WANG

    2008-01-01

    Rapid thermal processing (RTP) of SiNx thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were dis-cussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiNx thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.

  13. Analysis of metal forming processes by using physical modeling and new plastic similarity condition

    International Nuclear Information System (INIS)

    Gronostajski, Z.; Hawryluk, M.

    2007-01-01

    In recent years many advances have been made in numerical methods, for linear and non-linear problems. However the success of them depends very much on the correctness of the problem formulation and the availability of the input data. Validity of the theoretical results can be verified by an experiment using the real or soft materials. An essential reduction of time and costs of the experiment can be obtained by using soft materials, which behaves in a way analogous to that of real metal during deformation. The advantages of using of the soft materials are closely connected with flow stress 500 to 1000 times lower than real materials. The accuracy of physical modeling depend on the similarity conditions between physical model and real process. The most important similarity conditions are materials similarity in the range of plastic and elastic deformation, geometrical, frictional and thermal similarities. New original plastic similarity condition for physical modeling of metal forming processes is proposed in the paper. It bases on the mathematical description of similarity of the flow stress curves of soft materials and real ones

  14. Storage effects on anthocyanins, phenolics and antioxidant activity of thermally processed conventional and organic blueberries.

    Science.gov (United States)

    Syamaladevi, Roopesh M; Andrews, Preston K; Davies, Neal M; Walters, Thomas; Sablani, Shyam S

    2012-03-15

    Consumer demand for products rich in phytochemicals is increasing as a result of greater awareness of their potential health benefits. However, processed products are stored for long-term and the phytochemicals are susceptible to degradation during storage. The objective of this study was to assess the storage effects on phytochemicals in thermally processed blueberries. Thermally processed canned berries and juice/puree were analysed for phytochemicals during their long-term storage. The phytochemical retention of thermally processed blueberries during storage was not influenced by production system (conventional versus organic). During 13 months of storage, total anthocyanins, total phenolics and total antioxidant activity in canned blueberry solids decreased by up to 86, 69 and 52% respectively. In canned blueberry syrup, total anthocyanins and total antioxidant activity decreased by up to 68 and 15% respectively, while total phenolic content increased by up to 117%. Similar trends in phytochemical content were observed in juice/puree stored for 4 months. The extent of changes in phytochemicals of thermally processed blueberries during storage was significantly influenced by blanching. Long-term storage of thermally processed blueberries had varying degrees of influence on degradation of total anthocyanins, total phenolics and total antioxidant activity. Blanching before thermal processing helped to preserve the phytochemicals during storage of blueberries. Copyright © 2011 Society of Chemical Industry.

  15. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  16. Starch hydrolysis under low water conditions: a conceptual process design

    NARCIS (Netherlands)

    Veen, van der M.E.; Veelaert, S.; Goot, van der A.J.; Boom, R.M.

    2006-01-01

    A process concept is presented for the hydrolysis of starch to glucose in highly concentrated systems. Depending on the moisture content, the process consists of two or three stages. The two-stage process comprises combined thermal and enzymatic liquefaction, followed by enzymatic saccharification.

  17. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  18. Extraction and reliable determination of acrylamide from thermally processed foods using ionic liquid-based ultrasound-assisted selective microextraction combined with spectrophotometry.

    Science.gov (United States)

    Altunay, Nail; Elik, Adil; Gürkan, Ramazan

    2018-02-01

    Acrylamide (AAm) is a carcinogenic chemical that can form in thermally processed foods by the Maillard reaction of glucose with asparagine. AAm can easily be formed especially in frequently consumed chips and cereal-based foods depending on processing conditions. Considering these properties of AAm, a new, simple and green method is proposed for the extraction of AAm from thermally processed food samples. In this study, an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [Bmim][BF 4 ]) as extractant was used in the presence of a cationic phenazine group dye, 3,7-diamino-5-phenylphenazinium chloride (PSH + , phenosafranine) at pH 7.5 for the extraction of AAm as an ion-pair complex from selected samples. Under optimum conditions, the analytical features obtained for the proposed method were as follows; linear working range, the limits of detection (LOD, 3S b /m) and quantification (LOQ, 10S b /m), preconcentration factor, sensitivity enhancement factor, sample volume and recovery% were 2.2-350 µg kg -1 , 0.7 µg kg -1 , 2.3 µg kg -1 , 120, 95, 60 mL and 94.1-102.7%, respectively. The validity of the method was tested by analysis of two certified reference materials (CRMs) and intra-day and inter-day precision studies. Finally, the method was successfully applied to the determination of AAm levels in thermally processed foods using the standard addition method.

  19. Thermodynamic analysis of tar reforming through auto-thermal reforming process

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadi, N., E-mail: nurhadi@tekmira.esdm.go.id; Diniyati, Dahlia; Efendi, M. Ade Andriansyah [R& D Centre for Mineral and Coal Technology, Jln. Jend.Sudirman no. 623, Bandung. Telp. 022-6030483 (Malaysia); Istadi, I. [Department of Chemical Engineering, Diponegoro University, Jln. Jl. Prof. Soedarto, SH, Semarang (Malaysia)

    2015-12-29

    Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the most promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.

  20. Thermal-hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T., LLNL

    1998-04-29

    This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.

  1. Multiple-pass high-pressure homogenization of milk for the development of pasteurization-like processing conditions.

    Science.gov (United States)

    Ruiz-Espinosa, H; Amador-Espejo, G G; Barcenas-Pozos, M E; Angulo-Guerrero, J O; Garcia, H S; Welti-Chanes, J

    2013-02-01

    Multiple-pass ultrahigh pressure homogenization (UHPH) was used for reducing microbial population of both indigenous spoilage microflora in whole raw milk and a baroresistant pathogen (Staphylococcus aureus) inoculated in whole sterile milk to define pasteurization-like processing conditions. Response surface methodology was followed and multiple response optimization of UHPH operating pressure (OP) (100, 175, 250 MPa) and number of passes (N) (1-5) was conducted through overlaid contour plot analysis. Increasing OP and N had a significant effect (P pasteurization. Multiple-pass UHPH optimized conditions might help in producing safe milk without the detrimental effects associated with thermal pasteurization. © 2012 The Society for Applied Microbiology.

  2. Unvented thermal process for treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Nelson, P.A.; Swift, W.M.

    1993-01-01

    An Unvented Thermal Process is being developed that does not release gases during the thermal treatment operation. The main unit in the process is a fluidized-bed processor containing a bed of calcined limestone (CaO), which reacts with gases given off during oxidation of organic materials. Gases that will react with CaO include CO 2 , SO 2 , HCI, HBr, and other acid gases. Water vapor formed during the oxidation process is carried off with the fluidizing gas and is removed in a condenser. Oxygen is added to the remaining gas (mainly nitrogen), which is recirculated to the oxidizer. The most flexible arrangement of equipment involves separating the processor into two units: An oxidizer, which may be any of a variety of types including standard incinerators, and a carbon dioxide sorber

  3. Process optimization of friction stir welding based on thermal models

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup

    2010-01-01

    This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed....... Also an optimization problem based on a microstructure model is solved, allowing the hardness distribution in the plate to be optimized. The use of purely thermal models represents a simplification of the real process; nonetheless, it shows the applicability of the optimization methods considered...

  4. Thermal and radiation process for nano-/micro-fabrication of crosslinked PTFE

    International Nuclear Information System (INIS)

    Kobayashi, Akinobu; Oshima, Akihiro; Okubo, Satoshi; Tsubokura, Hidehiro; Takahashi, Tomohiro; Oyama, Tomoko Gowa; Tagawa, Seiichi; Washio, Masakazu

    2013-01-01

    Nano-/micro-fabrication process of crosslinked poly(tetrafluoroethylene) (RX-PTFE) is proposed as a novel method using combined process which is thermal and radiation process for fabrication of RX-PTFE (TRaf process). Nano- and micro-scale patterns of silicon wafers fabricated by EB lithography were used as the molds for TRaf process. Poly(tetrafluoroethylene) (PTFE) dispersion was dropped on the fabricated molds, and then PTFE was crosslinked with doses from 105 kGy to 1500 kGy in its molten state at 340 °C in nitrogen atmosphere. The obtained nano- and micro-structures by TRaf process were compared with those by the conventional thermal fabrication process. Average surface roughness (R a ) of obtained structures was evaluated with atomic force microscope (AFM) and scanning electron microscope (SEM). R a of obtained structures with the crosslinking dose of 600 kGy showed less than 1.2 nm. The fine nano-/micro-structures of crosslinked PTFE were successfully obtained by TRaf process

  5. The analysis of thermally stimulated processes

    CERN Document Server

    Chen, R; Pamplin, Brian

    1981-01-01

    Thermally stimulated processes include a number of phenomena - either physical or chemical in nature - in which a certain property of a substance is measured during controlled heating from a 'low' temperature. Workers and graduate students in a wide spectrum of fields require an introduction to methods of extracting information from such measurements. This book gives an interdisciplinary approach to various methods which may be applied to analytical chemistry including radiation dosimetry and determination of archaeological and geological ages. In addition, recent advances are included, such

  6. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  7. Operational Markov Condition for Quantum Processes

    Science.gov (United States)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides with the classical one in the relevant limit. Our condition unifies all previously known definitions for quantum Markov processes by accounting for all potentially detectable memory effects. We then derive a family of measures of non-Markovianity with clear operational interpretations, such as the size of the memory required to simulate a process or the experimental falsifiability of a Markovian hypothesis.

  8. Colosed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Ppart Qualification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  9. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  10. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    Science.gov (United States)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  11. Environmental conditions using thermal-hydraulics computer code GOTHIC for beyond design basis external events

    International Nuclear Information System (INIS)

    Pleskunas, R.J.

    2015-01-01

    In response to the Fukushima Dai-ichi beyond design basis accident in March 2011, the Nuclear Regulatory Commission (NRC) issued Order EA-12-049, 'Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies Beyond-Design-Basis-External-Events'. To outline the process to be used by individual licensees to define and implement site-specific diverse and flexible mitigation strategies (FLEX) that reduce the risks associated with beyond design basis conditions, Nuclear Energy Institute document NEI 12-06, 'Diverse and Flexible Coping Strategies (FLEX) Implementation Guide', was issued. A beyond design basis external event (BDBEE) is postulated to cause an Extended Loss of AC Power (ELAP), which will result in a loss of ventilation which has the potential to impact room habitability and equipment operability. During the ELAP, portable FLEX equipment will be used to achieve and maintain safe shutdown, and only a minimal set of instruments and controls will be available. Given these circumstances, analysis is required to determine the environmental conditions in several vital areas of the Nuclear Power Plant. The BDBEE mitigating strategies require certain room environments to be maintained such that they can support the occupancy of personnel and the functionality of equipment located therein, which is required to support the strategies associated with compliance to NRC Order EA-12-049. Three thermal-hydraulic analyses of vital areas during an extended loss of AC power using the GOTHIC computer code will be presented: 1) Safety-related pump and instrument room transient analysis; 2) Control Room transient analysis; and 3) Auxiliary/Control Building transient analysis. GOTHIC (Generation of Thermal-Hydraulic Information for Containment) is a general purpose thermal-hydraulics software package for the analysis of nuclear power plant containments, confinement buildings, and system components. It is a volume/path/heat sink

  12. Method of thermally processing superplastically formed aluminum-lithium alloys to obtain optimum strengthening

    Science.gov (United States)

    Anton, Claire E. (Inventor)

    1993-01-01

    Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.

  13. Processing of oil products using complex radiation-thermal treatment and radiation oxonolysis

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Zaikina, R.F.

    2002-01-01

    Most of industrial radiation facilities afford an opportunity to produce a considerable amount of reactive ozone-containing gaseous mixtures parallel to the basic production that causes no detriment to the output of the main designed product. The synergetic action of the ozone-containing mixtures and ionizing radiation is of a special interest for industrial application since it can be efficiently used in a wide range of technologies, in particular, for stimulation of chemical conversion in hydrocarbons accompanied by intensive oxidizing processes. In this paper the effect of simultaneous radiation-thermal processing and radiation oxonolysis on hydrocarbon chemical conversion, and subsequent alterations in composition and properties of oil products were studied on the example of high-viscous oil (Karazhanbas field, Kazakhstan) subjected to irradiation by 2 MeV electrons combined with radiation ozonization in the bubbling mode. It was stated that application of the bubbling mode for radiation-induced ozonization of high-viscous oil leads to decrease in the yields of engine fuels in average by 8-10 % compared with those obtained in the conditions when radiation-thermal cracking was applied without bubbling. In the latter case mean yields of the wide gas-oil fraction with boiling start temperature of 350 deg. C, that included gasoline, kerosene, and diesel fuel, were about 76-80 %. Decrease in the gasoline yields does not lead to noticeable alterations in hydrocarbon contents of the gasoline fraction (boiling beginning bellow 175 deg. C) compared with gasoline produced be radiation-thermal cracking, in both cases it meets requirements for high quality standards. However, essential difference was observed in properties of heavy residua of oil processing (oil fractions with T boil >350 deg. C), i.e. the fractions that contained high concentrations of asphaltenes and pitches. Application of radiation oxonolysis diminishes concentrations of high-molecular aromatic

  14. Comparison of silicon pin diode detector fabrication processes using ion implantation and thermal doping

    International Nuclear Information System (INIS)

    Zhou, C.Z.; Warburton, W.K.

    1996-01-01

    Two processes for the fabrication of silicon p-i-n diode radiation detectors are described and compared. Both processes are compatible with conventional integrated-circuit fabrication techniques and yield very low leakage currents. Devices made from the process using boron thermal doping have about a factor of 2 lower leakage current than those using boron ion implantation. However, the boron thermal doping process requires additional process steps to remove boron skins. (orig.)

  15. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  16. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  17. Role of thermal analysis in uranium oxide fuel fabrication process

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Yadav, R.B.

    2006-01-01

    The present paper discusses the application of thermal analysis, particularly, differential thermal analysis (Dta) at various stages of fuel fabrication process. The useful role of Dta in knowing the decomposition pattern and calcination temperature of Adu along with de-nitration temperature is explained. The decomposition pattern depends upon the type of drying process adopted for wet ADU cake (ADU C). Also, the paper highlights the utility of DTA in determining the APS and SSA of UO 2+x and U 3 O 8 powders as an alternate technique. Further, the temperature difference (ΔT max ) between the two exothermic peaks obtained in UO 2+x powder oxidation is related to sintered density of UO 2 pellets. (author)

  18. Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging

    Directory of Open Access Journals (Sweden)

    Hoffmann Nico

    2016-09-01

    Full Text Available Intraoperative thermal neuroimaging is a novel intraoperative imaging technique for the characterization of perfusion disorders, neural activity and other pathological changes of the brain. It bases on the correlation of (sub-cortical metabolism and perfusion with the emitted heat of the cortical surface. In order to minimize required computational resources and prevent unwanted artefacts in subsequent data analysis workflows foreground detection is a important preprocessing technique to differentiate pixels representing the cerebral cortex from background objects. We propose an efficient classification framework that integrates characteristic dynamic thermal behaviour into this classification task to include additional discriminative features. The first stage of our framework consists of learning this representation of characteristic thermal time-frequency behaviour. This representation models latent interconnections in the time-frequency domain that cover specific, yet a priori unknown, thermal properties of the cortex. In a second stage these features are then used to classify each pixel’s state with conditional random fields. We quantitatively evaluate several approaches to learning high-level features and their impact to the overall prediction accuracy. The introduction of high-level features leads to a significant accuracy improvement compared to a baseline classifier.

  19. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    Science.gov (United States)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  20. Thermal conditions in selected urban and semi-natural habitats, important for the forensic entomology.

    Science.gov (United States)

    Michalski, Marek; Nadolski, Jerzy

    2018-06-01

    A long-term study on thermal conditions in selected urban and semi-natural habitats, where human corpses are likely to be found, was conducted in the city of Lodz (Central Poland). Thermal data were collected during two years at nine sites and compared with corresponding data from the nearest permanent meteorological station at Lodz Airport (ICAO code: EPLL). The conditions closest to those at the meteorological station prevailed in the deciduous forest, coefficient of determination R 2 for those sets of data was above 0.96. The open field was characterized by high daily amplitudes, especially during spring, while the site in the allotment gardens was characterized by relatively high winter temperatures. The conditions prevailing in all closed space sites were very diverse and only slightly similar to the external ones. The most distinct site was an unheated basement in a tenement house, where temperature was almost always above 0°C and daily amplitudes were negligible. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. 76 FR 81363 - Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically...

    Science.gov (United States)

    2011-12-28

    ... amended FDA's regulations for thermally processed low-acid foods packaged in hermetically sealed... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 113 [Docket No. FDA-2007-N-0265] (formerly 2007N-0026) Temperature-Indicating Devices; Thermally Processed Low-Acid...

  2. Optimization of thermal processing of canned mussels.

    Science.gov (United States)

    Ansorena, M R; Salvadori, V O

    2011-10-01

    The design and optimization of thermal processing of solid-liquid food mixtures, such as canned mussels, requires the knowledge of the thermal history at the slowest heating point. In general, this point does not coincide with the geometrical center of the can, and the results show that it is located along the axial axis at a height that depends on the brine content. In this study, a mathematical model for the prediction of the temperature at this point was developed using the discrete transfer function approach. Transfer function coefficients were experimentally obtained, and prediction equations fitted to consider other can dimensions and sampling interval. This model was coupled with an optimization routine in order to search for different retort temperature profiles to maximize a quality index. Both constant retort temperature (CRT) and variable retort temperature (VRT; discrete step-wise and exponential) were considered. In the CRT process, the optimal retort temperature was always between 134 °C and 137 °C, and high values of thiamine retention were achieved. A significant improvement in surface quality index was obtained for optimal VRT profiles compared to optimal CRT. The optimization procedure shown in this study produces results that justify its utilization in the industry.

  3. Thermal homogeneity of plastication processes in single-screw extruders

    Science.gov (United States)

    Bu, L. X.; Agbessi, Y.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    Single-screw plastication, used in extrusion and in injection moulding, is a major way of processing commodity thermoplastics. During the plastication phase, the polymeric material is melted by the combined effects of shear-induced self-heating (viscous dissipation) and heat conduction coming from the barrel. In injection moulding, a high level of reliability is usually achieved that makes this process ideally suited to mass market production. Nonetheless, process fluctuations still appear that make moulded part quality control an everyday issue. In this work, we used a combined modelling of plastication, throughput calculation and laminar dispersion, to investigate if, and how, thermal fluctuations could propagate along the screw length and affect the melt homogeneity at the end of the metering section. To do this, we used plastication models to relate changes in processing parameters to changes in the plastication length. Moreover, a simple model of throughput calculation is used to relate the screw geometry, the polymer rheology and the processing parameters to get a good estimate of the mass flow rate. Hence, we found that the typical residence time in a single screw is around one tenth of the thermal diffusion time scale. This residence time is too short for the dispersion coefficient to reach a steady state, but too long to be able to neglect radial thermal diffusion and resort to a purely convective solution. Therefore, a full diffusion/convection problem has to be solved with a base flow described by the classic pressure and drag velocity field. Preliminary results already show the major importance of the processing parameters in the breakthrough curve of an arbitrary temperature fluctuation at the end of the metering section of injection moulding screw. When the flow back-pressure is high, the temperature fluctuation is spread more evenly with time, whereas a pressure drop in the flow will results in a breakthrough curve which presents a larger peak of

  4. Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1H qNMR and GC-MS coupled to chemometrics.

    Science.gov (United States)

    Alves Filho, Elenilson G; Silva, Lorena Mara A; de Brito, Edy S; Wurlitzer, Nedio Jair; Fernandes, Fabiano A N; Rabelo, Maria Cristiane; Fonteles, Thatyane V; Rodrigues, Sueli

    2018-11-01

    The effects of thermal (pasteurization and sterilization) and non-thermal (ultrasound and plasma) processing on the composition of prebiotic and non-prebiotic acerola juices were evaluated using NMR and GC-MS coupled to chemometrics. The increase in the amount of Vitamin C was the main feature observed after thermal processing, followed by malic acid, choline, trigonelline, and acetaldehyde. On the other hand, thermal processing increased the amount of 2-furoic acid, a degradation product from ascorbic acid, as well as influenced the decrease in the amount of esters and alcohols. In general, the non-thermal processing did not present relevant effect on juices composition. The addition of prebiotics (inulin and gluco-oligosaccharides) decreased the effect of processing on juices composition, which suggested a protective effect by microencapsulation. Therefore, chemometric evaluation of the 1 H qNMR and GC-MS dataset was suitable to follow changes in acerola juice under different processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. EXAMINATION OF THE SIMULATED THERMAL CONDITIONS IN A POPULAR PLAYGROUND RELATED TO THE HUMAN REACTIONS AND THE JUDGMENT OF THE AREA DESIGN

    OpenAIRE

    L.A. ÉGERHÁZI; A. KOVÁCS; N. KÁNTOR; J. UNGER

    2013-01-01

    In the field of urban bioclimatology an important and timely research direction today is to examine the thermal conditions of public places. In our study, human thermal comfort analysis was performed in a modern and well-attended children playground located in Szeged (Hungary). The aim of the paper is to reveal the changes in the thermal comfort conditions between two seasons and also the resulting subjective thermal reactions of visitors in this relatively small area. Thermal comfort conditi...

  6. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966-2015

    Science.gov (United States)

    Tomczyk, Arkadiusz M.; Szyga-Pluta, Katarzyna

    2018-03-01

    The aim of the study was to identify the thermal and precipitation conditions and their changes in the growing season in Poland in the years 1966-2015. Data on average daily air temperature and daily precipitation totals for 30 stations from the period of 1966-2015 were used. The data were obtained from the collections of the Institute of Meteorology and Water Management—National Research Institute. The growing season was defined as the period of average daily air temperature ≥ 5 °C. The mathematical formulas proposed by Gumiński (1948) were used to determine its start and end dates. In the growing season in Poland in the years 1966-2015, there were more significant changes in the thermal conditions than there were in the precipitation conditions. In terms of long-term trends over the study period, thermal conditions during the growing season are characterised by an increase in mean air temperature, an increase in the sum of air temperatures and an increasing occurrence of seasons classified as above-normal seasons. Precipitation conditions of the growing season show large temporal and spatial variations in precipitation and a predominance of normal conditions. The changes in precipitation were not statistically significant, except for Świnoujście.

  7. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  8. A thermal spike analysis of low energy ion activated surface processes

    International Nuclear Information System (INIS)

    Gilmore, G.M.; Haeri, A.; Sprague, J.A.

    1989-01-01

    This paper reports a thermal spike analysis utilized to predict the time evolution of energy propagation through a solid resulting from energetic particle impact. An analytical solution was developed that can predict the number of surface excitations such as desorption, diffusion or chemical reaction activated by an energetic particle. The analytical solution is limited to substrates at zero Kelvin and to materials with constant thermal diffusivities. These limitations were removed by developing a computer numerical integration of the propagation of the thermal spike through the solid and the subsequent activation of surface processes

  9. Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens T.; Tsang, Yvonne W.

    1998-01-01

    The Single Heater Test (SHT) is one of two in-situ thermal tests included in the site characterization program for the potential underground nuclear waste repository at Yucca Mountain. The heating phase of the SHT started in August 1996, and was completed in May 1997 after 9 months of heating. The coupled processes in the unsaturated fractured rock mass around the heater were monitored by numerous sensors for thermal, hydrological, mechanical and chemical data. In addition to passive monitoring, active testing of the rock mass moisture content was performed using geophysical methods and air injection testing. The extensive data set available from this test gives a unique opportunity to improve the understanding of the thermal-hydrological situation in the natural setting of the repository rocks. The present paper focuses on the 3-D numerical simulation of the thermal-hydrological processes in the SHT using TOUGH2. In the comparative analysis, they are particularly interested in the accuracy of different fracture-matrix-interaction concepts such as the Effective Continuum (ECM), the Dual Continuum (DKM), and the Multiple Interacting Continua (MINC) method

  10. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods

    Science.gov (United States)

    Sohrabi, Salman; Liu, Yaling

    2018-03-01

    Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the

  11. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods.

    Science.gov (United States)

    Sohrabi, Salman; Liu, Yaling

    2018-03-01

    Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the

  12. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  13. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging

    International Nuclear Information System (INIS)

    O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2010-01-01

    We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging. In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than those for quantum ghost images. We provide quantitative predictions for the conditions under which each process provides superior performance. Our conclusion is that each process can provide useful functionality, although under complementary conditions.

  14. Measured versus calculated thermal conductivity of high-grade metamorphic rocks – inferences on the thermal properties of the lower crust at ambient and in-situ conditions

    DEFF Research Database (Denmark)

    Ray, Labani; Förster, Hans-Jürgen; Förster, Andrea

    in the literature are applied. Thus, if appropriate samples (in terms of sample size or physical-chemical-mechanical condition) for laboratory measurement are not available, bulk TC of high-grade metamorphic rocks with low anisotropy and porosity could be satisfactorily good assessed from modal mineralogy, using......The bulk thermal conductivity (TC) of 26 rock samples representing felsic, intermediate and mafic granulites, from the Southern Granulite Province, India, is measured at dry and saturated conditions with the optical-scanning method. Thermal conductivity is also calculated from modal mineralogy...... (determined by XRD and EPMA), applying mixing models commonly used in thermal studies. Most rocks are fine- to medium -grained equigranular in texture. All samples are isotropic to weakly anisotropic and possess low porosities (

  15. Hypothetical accident conditions, free drop and thermal tests: Specification 6M

    International Nuclear Information System (INIS)

    Blankenship, R.W.

    1980-05-01

    The 30 gallon Specification 6M shipping container with rolled-top food pack cans as inner containers is evaluated under conditions required by 10 CFR 71.42. One kilogram of depleted uranium as UO 2 was packaged in each of the inner containers. After completion of a free drop test and a simulated thermal test, the maximum observed leakage of UO 2 for the following week was 3.2 μg. This leakage is well below the allowable leakage per week for most plutonium isotopic mixtures. Using the examples provided, any plutonium isotopic mixture can be easily compared with the allowable leakage per week. Test conditions and results are reported

  16. Consideration of loading conditions initiated by thermal transients in PWR pressure vessels

    International Nuclear Information System (INIS)

    Azodi; Glahn; Kersting; Schulz; Jansky.

    1983-01-01

    This report describes the present state of PWR-plants in the Federal Republic of Germany with respect to - the design of the primary pressure boundary - the analysis of thermal transients and resulting loads - the material conditions and neutron fluence - the requirements for protection against fast fracture. The experimental and analytical research and development programs are delineated together with some foreign R and D programs. It is shown that the parameters investigated (loading condition, crack shape and orientation etc.) cover a broad range. Extensive analytical investigations are emphasized. (orig./RW) [de

  17. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  18. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, van der I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Loey, van A.

    2011-01-01

    The impact of thermal, high pressure (HP) and pulsed electric field (PEF) processing for mild pasteurization of orange juice was compared on a fair basis, using processing conditions leading to an equivalent degree of microbial inactivation. Examining the effect on specific chemical and biochemical

  19. In-Pile thermal fatigue of First Wall mock-ups under ITER relevant conditions

    International Nuclear Information System (INIS)

    Blom, F.; Schmalz, F.; Kamer, S.; Ketema, D.J.

    2006-01-01

    The objective of this study is to perform in-pile thermal fatigue testing of three actively cooled First Wall (FW) mock-ups to check the effect of neutron irradiation on the Be/CuCrZr joints under representative FW operation conditions. Three FW mock-ups with Beryllium armor tiles will be neutron irradiated at 1 dpa (in Be) with parallel thermal fatigue testing for 30,000 cycles. The temperatures, stress distributions and stress amplitudes at the Be/CuCrZr interface of the mock-ups will be as close as possible to the values calculated for ITER FW panels. For this objective the PWM mocks-up subjected to thermal fatigue will be integrated with high density (W) plates on the Be-side to provide heat flux by nuclear heating. The assembly will be placed in the pool-side facility of the HFR and thermal cycling is then arranged by mechanical movement towards and from the core box. As the thermal design of the irradiation rig is very critical a pilot-irradiation will be performed to cross check the models used in the thermal design of the rig. The project is currently in the design phase of both the pilot and actual irradiation rig. The irradiation of the actual rig is planned to start at mid 2007 and last for two years. (author)

  20. Transient stress control of aeroengine disks based on active thermal management

    International Nuclear Information System (INIS)

    Ding, Shuiting; Wang, Ziyao; Li, Guo; Liu, Chuankai; Yang, Liu

    2016-01-01

    Highlights: • The essence of cooling in turbine system is a process of thermal management. • Active thermal management is proposed to control transient stress of disks. • The correlation between thermal load and transient stress of disks is built. • Stress level can be declined by actively adjusting the thermal load distribution. • Artificial temperature gradient can be used to counteract stress from rotating. - Abstract: The physical essence of cooling in the turbine system is a process of thermal management. In order to overcome the limits of passive thermal management based on thermal protection, the concept of active thermal management based on thermal load redistribution has been proposed. On this basis, this paper focuses on a near real aeroengine disk during a transient process and studies the stress control mechanism of active thermal management in transient conditions by a semi-analytical method. Active thermal management is conducted by imposing extra heating energy on the disk hub, which is represented by the coefficient of extra heat flow η. The results show that the transient stress level can be effectively controlled by actively adjusting the thermal load distribution. The decline ratio of the peak equivalent stress of the disk hub can be 9.0% for active thermal management load condition (η = 0.2) compared with passive condition (η = 0), even at a rotation speed of 10,000 r/min. The reason may be that the temperature distribution of the disk turns into an artificial V-shape because of the extra heating energy on the hub, and the resulting thermal stresses induced by the negative temperature gradients counteract parts of the stress from rotating.

  1. Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile.

    Science.gov (United States)

    Tapia, Fabian J; Largier, John L; Castillo, Manuel; Wieters, Evie A; Navarrete, Sergio A

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30-32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4-10 years at 15 sites between 28-35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30-31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30-31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species

  2. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  3. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  4. The study of thermal processes in control systems of heat consumption of buildings

    Science.gov (United States)

    Tsynaeva, E.; A, Tsynaeva

    2017-11-01

    The article discusses the main thermal processes in the automated control systems for heat consumption (ACSHC) of buildings, schematic diagrams of these systems, mathematical models used for description of thermal processes in ACSHC. Conducted verification represented by mathematical models. It was found that the efficiency of the operation of ACSHC depend from the external and internal factors. Numerical study of dynamic modes of operation of ACSHC.

  5. Thermal degradation kinetics and lifetime estimation for polycarbonate/polymethylphenylsilsesquioxane composite

    Institute of Scientific and Technical Information of China (English)

    Jiangbo WANG; Zhong XIN

    2009-01-01

    The thermal degradation behaviors of poly-carbonate/polymethylphenylsilsesquioxane (FRPC) composites were investigated by thermogravimetric analysis (TGA) under isothermal conditions in nitrogen atmosphere. The isothermal kinetics equation was used to describe the thermal degradation process. The results showed that activation energy (E), in the case of isothermal degradation, was a quick increasing function of conversion (a) for polycarbonate (PC) but was a strong and decreasing function of conversion for FRPC. Under the isothermal condition, the addition of polymethylphenylsilsesquioxane (PMPSQ) retardanted the thermal degradation and enhanced the thermal stability of PC during the early and middle stages of thermal degradation. It also indicated a possible existence of a difference in nucleation, nuclei growth, and gas diffusion mechanism in the thermal degradation process between PC and FRPC. Meanwhile, the addition of PMPSQ influenced the lifetime of PC, but the composite still met the demand in manufacturing and application.

  6. Thermo-active building systems and sound absorbers: Thermal comfort under real operation conditions

    DEFF Research Database (Denmark)

    Köhler, Benjamin; Rage, Nils; Chigot, Pierre

    2018-01-01

    Radiant systems are established today and have a high ecological potential in buildings while ensuring thermal comfort. Free-hanging sound absorbers are commonly used for room acoustic control, but can reduce the heat exchange when suspended under an active slab. The aim of this study...... is to evaluate the impact on thermal comfort of horizontal and vertical free-hanging porous sound absorbers placed in rooms of a building cooled by Thermo-Active Building System (TABS), under real operation conditions. A design comparing five different ceiling coverage ratios and two room types has been...... implemented during three measurement periods. A clear correlation between increase of ceiling coverage ratio and reduction of thermal comfort could not be derived systematically for each measurement period and room type, contrarily to what was expected from literature. In the first two monitoring periods...

  7. Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Cristina Cornaro

    2018-01-01

    Full Text Available Dye-sensitized solar cell technology is having an important role in renewable energy research due to its features and low-cost manufacturing processes. Devices based on this technology appear very well suited for integration into glazing systems due to their characteristics of transparency, color tuning and manufacturing directly on glass substrates. Field data of thermal and electrical characteristics of dye-sensitized solar modules (DSM are important since they can be used as input of building simulation models for the evaluation of their energy saving potential when integrated into buildings. However, still few studies in the literature provide this information. The study presented here aims to contribute to fill this lack providing a thermal and electrical characterization of a DSM in real operating conditions using a method developed in house. This method uses experimental data coming from test boxes exposed outdoor and dynamic simulation to provide thermal transmittance (U-value and solar heat gain coefficient (SHGC of a DSM prototype. The device exhibits a U-value of 3.6 W/m2·K, confirmed by an additional measurement carried on in the lab using a heat flux meter, and a SHGC of 0.2, value compliant with literature results. Electrical characterization shows an increase of module power with respect to temperature resulting DSM being suitable for integration in building facades.

  8. Significant thermal energy reduction in lactic acid production process

    International Nuclear Information System (INIS)

    Mujtaba, Iqbal M.; Edreder, Elmahboub A.; Emtir, Mansour

    2012-01-01

    Lactic acid is widely used as a raw material for the production of biodegradable polymers and in food, chemical and pharmaceutical industries. The global market for lactic acid is expected to reach 259 thousand metric tons by the year 2012. For batch production of lactic acid, the traditional process includes the following steps: (i) esterification of impure lactic acid with methanol in a batch reactor to obtain methyl lactate (ester), (ii) separation of the ester in a batch distillation, (iii) hydrolysis of the ester with water in a batch reactor to produce lactic acid and (iv) separation of lactic acid (in high purity) in a batch distillation. Batch reactive distillation combines the benefit of both batch reactor and batch distillation and enhances conversion and productivity (Taylor and Krishna, 2000 ; Mujtaba and Macchietto, 1997 ). Therefore, the first and the last two steps of the lactic acid production process can be combined together in batch reactive distillation () processes. However, distillation (batch or continuous) is an energy intensive process and consumes large amount of thermal energy (via steam). This paper highlights how significant (over 50%) reduction in thermal energy consumption can be achieved for lactic acid production process by carefully controlling the reflux ratio but without compromising the product specification. In this paper, only the simultaneous hydrolysis of methyl lactate ester and the separation of lactic acid using batch reactive distillation is considered.

  9. Thermal performance evaluation of a massive brick wall under real weather conditions via the Conduction Transfer function method

    Directory of Open Access Journals (Sweden)

    Emilio Sassine

    2017-12-01

    Full Text Available The reliable estimation of buildings energy needs for cooling and heating is essential for any eventual thermal improvement of the envelope or the HVAC equipment. This paper presents an interesting method to evaluate the thermal performance of a massive wall by using the frequency-domain regression (FDR method to calculate CTF coefficients by means of the Fourier transform. The method is based on the EN ISO 13786 (2007 procedure by using the Taylor expansion for the elements of the heat matrix. Numerical results were validated through an experimental heating box with stochastic boundary conditions on one side of the wall representing real weather conditions and constant temperature profile on the other side representing the inside ambiance in real cases. Finally, a frequency analysis was performed in order to assess the validity and accuracy of the method used. The results show that development to the second order is sufficient to predict the thermal behavior of the studied massive wall in the range of frequencies encountered in the building applications (one hour time step. This method is useful for thermal transfer analysis in real weather conditions where the outside temperature is stochastic; it also allows the evaluation of the thermal performance of a wall through a frequency analysis.

  10. Thermal analysis on x-ray tube for exhaust process

    Science.gov (United States)

    Kumar, Rakesh; Rao Ratnala, Srinivas; Veeresh Kumar, G. B.; Shivakumar Gouda, P. S.

    2018-02-01

    It is great importance in the use of X-rays for medical purposes that the dose given to both the patient and the operator is carefully controlled. There are many types of the X- ray tubes used for different applications based on their capacity and power supplied. In present thesis maxi ray 165 tube is analysed for thermal exhaust processes with ±5% accuracy. Exhaust process is usually done to remove all the air particles and to degasify the insert under high vacuum at 2e-05Torr. The tube glass is made up of Pyrex material, 95%Tungsten and 5%rhenium is used as target material for which the melting point temperature is 3350°C. Various materials are used for various parts; during the operation of X- ray tube these waste gases are released due to high temperature which in turn disturbs the flow of electrons. Thus, before using the X-ray tube for practical applications it has to undergo exhaust processes. Initially we build MX 165 model to carry out thermal analysis, and then we simulate the bearing temperature profiles with FE model to match with test results with ±5%accuracy. At last implement the critical protocols required for manufacturing processes like MF Heating, E-beam, Seasoning and FT.

  11. Gaussian Process-Mixture Conditional Heteroscedasticity.

    Science.gov (United States)

    Platanios, Emmanouil A; Chatzis, Sotirios P

    2014-05-01

    Generalized autoregressive conditional heteroscedasticity (GARCH) models have long been considered as one of the most successful families of approaches for volatility modeling in financial return series. In this paper, we propose an alternative approach based on methodologies widely used in the field of statistical machine learning. Specifically, we propose a novel nonparametric Bayesian mixture of Gaussian process regression models, each component of which models the noise variance process that contaminates the observed data as a separate latent Gaussian process driven by the observed data. This way, we essentially obtain a Gaussian process-mixture conditional heteroscedasticity (GPMCH) model for volatility modeling in financial return series. We impose a nonparametric prior with power-law nature over the distribution of the model mixture components, namely the Pitman-Yor process prior, to allow for better capturing modeled data distributions with heavy tails and skewness. Finally, we provide a copula-based approach for obtaining a predictive posterior for the covariances over the asset returns modeled by means of a postulated GPMCH model. We evaluate the efficacy of our approach in a number of benchmark scenarios, and compare its performance to state-of-the-art methodologies.

  12. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    Science.gov (United States)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  13. Thermal hydraulic conditions inducing incipient cracking in the 900 MWe unit 93 D reactor coolant pump shafts

    International Nuclear Information System (INIS)

    Bore, C.

    1995-01-01

    From 1987, 900 MWe plant operating feedback revealed cracking in the lower part of the reactor coolant pump shafts, beneath the thermal ring. Metallurgical examinations established that this was due to a thermal fatigue phenomenon known as thermal crazing, occurring after a large number of cycles. Analysis of thermal hydraulic conditions initiating the cracks does not allow exact quantification of the thermal load inducing cracking. Only qualitative analyses are thus possible, the first of which, undertaken by the pump manufacturer, Jeumont Industrie, showed that the cracks could not be due to the major transients (stop-start, injection cut-off), which were too few in number. Another explanation was then put forward: the thermal ring, shrunk onto the shaft it is required to protect against thermal shocks, loosens to allow an alternating downflow of cold water from the shaft seals and an upflow of hot water from the primary system. However, approximate calculations showed that the flow involved would be too slight to initiate the cracking observed. A more stringent analysis undertaken with the 2D flow analysis code MELODIE subsequently refuted the possibility of alternating flows beneath the ring establishing that only a hot water upflow occurred due to a 'viscosity pump' phenomenon. Crack initiation was finally considered to be due to flowrate variations beneath the ring, with the associated temperature fluctuations. This flowrate fluctuation could be due to an unidentified transient phenomenon or to a variation in pump operating conditions. This analysis of the hydraulic conditions initiating the cracks disregards shaft surface residual stresses. These are tensile stresses and show that loads less penalizing than those initially retained could cause incipient cracking. Thermal ring modifications to reduce these risks were proposed and implemented. In addition, final metallurgical treatment of the shafts was altered and implemented. In addition, final metallurgical

  14. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M. [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904-4746 (United States)

    2014-10-13

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3ω technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  15. Thermal annealing of recoil 56Mn in strontium permanganate under (n,γ) process

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Vijaya

    2002-01-01

    Chemical stabilization of recoil 56 Mn in strontium permanganate (hydrous and anhydrous) has been investigated with a special reference to pre-and post-activation thermal annealing treatments. The retention of 56 Mn in neutron irradiated strontium permanganate showed significant variation on thermal annealing in both pre-and post-activation heated target. The recoil re-entry process obeys simple first order kinetics and the activation energy deduced for thermal annealing process is very low as computed by classical Arrhenius plots. The results observed are discussed in the light of existing ideas for understanding the recoil stabilization mechanism of parent reformation and the nature of precursors in permanganates. (author)

  16. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing.

    Science.gov (United States)

    Evelyn; Silva, F V M

    2015-12-02

    Byssochlamys nivea is a mold that can spoil processed fruit products and produce mycotoxins. In this work, high pressure processing (HPP, 600 MPa) and power ultrasound (24 kHz, 0.33 W/mL; TS) in combination with 75°C for the inactivation of four week old B. nivea ascospores in strawberry puree for up to 30 min was investigated and compared with 75°C thermal processing alone. TS and thermal processing can activate the mold ascospores, but HPP-75°C resulted in 2.0 log reductions after a 20 min process. For a 10 min process, HPP-75°C was better than 85°C alone in reducing B. nivea spores (1.4 vs. 0.2 log reduction), demonstrating that a lower temperature in combination with HPP is more effective for spore inactivation than heat alone at a higher temperature. The ascospore inactivation by HPP-thermal, TS and thermal processing was studied at different temperatures and modeled. Faster inactivation was achieved at higher temperatures for all the technologies tested, indicating the significant role of temperature in spore inactivation, alone or combined with other physical processes. The Weibull model described the spore inactivation by 600 MPa HPP-thermal (38, 50, 60, 75°C) and thermal (85, 90°C) processing, whereas the Lorentzian model was more appropriate for TS treatment (65, 70, 75°C). The models obtained provide a useful tool to design and predict pasteurization processes targeting B. nivea ascospores. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Exergy and energy analyses of two different types of PCM based thermal management systems for space air conditioning applications

    International Nuclear Information System (INIS)

    Tyagi, V.V.; Pandey, A.K.; Buddhi, D.; Tyagi, S.K.

    2013-01-01

    Highlights: ► Calcium chloride hexahydrate (CaCl 2 ⋅6H 2 O) as a PCM was used in this study. ► Two different capsulated system (HDPE based panel and balls) were designed. ► The results of CaCl 2 ⋅6H 2 O are very attractive for space air conditioning. ► Energy and exergy analyses for space cooling applications. - Abstract: This communication presents the experimental study of PCM based thermal management systems for space heating and cooling applications using energy and exergy analysis. Two different types of based thermal management system (TMS-I and TMS-II) using calcium chloride hexahydrate as the heat carrier has been designed, fabricated and studied for space heating and cooling applications at a typical climatic zone in India. In the first experimental arrangement the charging of PCM has been carried out with air conditioning system while discharging has been carried out using electric heater for both the thermal management systems. While in the second arrangement the charging of PCM has been carried out by solar energy and the discharging has been carried out by circulating the cooler ambient air during the night time. In the first experiment, TMS-I is found to be more effective than that of TMS-II while it was found to be reverse in the case of second experiment for both the charging and discharging processes not only for energetic but also for the exergetic performances

  18. Integrated assessment of thermal hydraulic processes in W7-X fusion experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, T., E-mail: tadas.kaliatka@lei.lt; Uspuras, E.; Kaliatka, A.

    2017-02-15

    Highlights: • The model of Ingress of Coolant Event experiment facility was developed using the RELAP5 code. • Calculation results were compared with Ingress of Coolant Event experiment data. • Using gained experience, the numerical model of Wendelstein 7-X facility was developed. • Performed analysis approved pressure increase protection system for LOCA event. - Abstract: Energy received from the nuclear fusion reaction is one of the most promising options for generating large amounts of carbon-free energy in the future. However, physical and technical problems existing in this technology are complicated. Several experimental nuclear fusion devices around the world have already been constructed, and several are under construction. However, the processes in the cooling system of the in-vessel components, vacuum vessel and pressure increase protection system of nuclear fusion devices are not widely studied. The largest amount of radioactive materials is concentrated in the vacuum vessel of the fusion device. Vacuum vessel is designed for the vacuum conditions inside the vessel. Rupture of the in-vessel components of the cooling system pipe may lead to a sharp pressure increase and possible damage of the vacuum vessel. To prevent the overpressure, the pressure increase protection system should be designed and implemented. Therefore, systematic and detailed experimental and numerical studies, regarding the thermal-hydraulic processes in cooling system, vacuum vessel and pressure increase protection system, are important and relevant. In this article, the numerical investigation of thermal-hydraulic processes in cooling systems of in-vessel components, vacuum vessels and pressure increase protection system of fusion devices is presented. Using the experience gained from the modelling of “Ingress of Coolant Event” experimental facilities, the numerical model of Wendelstein 7-X (W7-X) experimental fusion device was developed. The integrated analysis of the

  19. Thermal hydraulic feasibility assessment of the spent nuclear fuel project

    International Nuclear Information System (INIS)

    Heard, F.J.

    1996-01-01

    A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The goal was to develop a series of thermal-hydraulic models that could respond to all process and safety related issues that may arise pertaining to the SNFP, as well as provide a basis for validation of the results. Results show that there is a reasonable envelope for process conditions and requirements that are thermally and hydraulically acceptable

  20. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    Science.gov (United States)

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. RESOURCE SAVING TECHNOLOGICAL PROCESS OF LARGE-SIZE DIE THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    L. A. Glazkov

    2009-01-01

    Full Text Available The given paper presents a development of a technological process pertaining to hardening large-size parts made of die steel. The proposed process applies a water-air mixture instead of a conventional hardening medium that is industrial oil.While developing this new technological process it has been necessary to solve the following problems: reduction of thermal treatment duration, reduction of power resource expense (natural gas and mineral oil, elimination of fire danger and increase of process ecological efficiency. 

  2. Fracture appraisal of large scale glass block under various realistic thermal conditions

    International Nuclear Information System (INIS)

    Laude, F.; Vernaz, E.; Saint-Gaudens, M.

    1982-06-01

    Fracturing of nuclear waste glass caused primarily by thermal and residual stresses during cooling increases the potential leaching surface area and the number of small particles. A theoretical study shows that it is possible to calculate the stresses created but it is difficult to evaluate the state of fracture. Theoretical results are completed by an experimental study with inactive industrial scale glass blocks. The critical stages of its thermal history are simulated and the total surface area of the pieces is measured by comparison of leaching rate of the fractured glass with known samples in the same conditions. Quenching due to water impact, air cooling in a storage fit and experimental reassembly of fractured glass by re-heating are examined

  3. Development of RETRAN-03/MOV code for thermal-hydraulic analysis of nuclear reactor under moving conditions

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Park, Goon Cherl

    1996-01-01

    Nuclear ship reactors have several; features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been performed under rolling,heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removed to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions. 7 refs., 11 figs. (author)

  4. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  5. Clarification process: Resolution of decision-problem conditions

    Science.gov (United States)

    Dieterly, D. L.

    1980-01-01

    A model of a general process which occurs in both decisionmaking and problem-solving tasks is presented. It is called the clarification model and is highly dependent on information flow. The model addresses the possible constraints of individual indifferences and experience in achieving success in resolving decision-problem conditions. As indicated, the application of the clarification process model is only necessary for certain classes of the basic decision-problem condition. With less complex decision problem conditions, certain phases of the model may be omitted. The model may be applied across a wide range of decision problem conditions. The model consists of two major components: (1) the five-phase prescriptive sequence (based on previous approaches to both concepts) and (2) the information manipulation function (which draws upon current ideas in the areas of information processing, computer programming, memory, and thinking). The two components are linked together to provide a structure that assists in understanding the process of resolving problems and making decisions.

  6. Degradation tests for C 32/40 concrete used for perimetral wall, reactor base and components of Cernavoda NPP containment, under thermal stress conditions and liner degradation

    International Nuclear Information System (INIS)

    Carlan, P.; Paraschiv, I.; Dinu, A.; Stanciulescu, M.; Olteanu, A. M.; Voica, I.; Stelian, R.; Buc, G.

    2016-01-01

    In order to evaluate the effect of thermal degradation on C 32/40 concrete used in nuclear constructions at Cernavoda NPP, continuous thermal stress tests were performed at 65, 80 and 100°C and cyclic thermal stress tests at 65°C in dry conditions. This paper presents the macroscopic properties of concrete, obtained after these treatments and also the microstructural changes that occur in the cement paste from the concrete composition, which has been tested in the same conditions as the concrete samples. Determinations performed for macroscopic properties of concrete included: compressive strength, loss of density, permeability and modulus of elasticity. Cement paste samples were analysed by XRD (for mineralogical composition) and SEM (for morphology). The obtained results shown an appropriate behaviour of the concrete used in this study; changes are insignificant and follow the normal evolution process of concrete, proving that concrete will preserve its safety functions, as part of the containment structure. (authors)

  7. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  8. Thermal-Conductivity Studies of Macro-porous Polymer-Derived SiOC Ceramics

    Science.gov (United States)

    Qiu, L.; Li, Y. M.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Wu, J. Q.; Xu, C. H.

    2014-01-01

    A three-dimensional reticular macro-porous SiOC ceramics structure, made of spherical agglomerates, has been thermally characterized using a freestanding sensor-based method. The effective thermal conductivity of the macro-porous SiOC ceramics, including the effects of voids, is found to be to at room temperature, comparable with that of alumina aerogel or carbon aerogel. These results suggest that SiOC ceramics hold great promise as a thermal insulation material for use at high temperatures. The measured results further reveal that the effective thermal conductivity is limited by the low solid-phase volume fraction for the SiOC series processed at the same conditions. For SiOC ceramics processed under different pyrolysis temperatures, the contact condition between neighboring particles in the SiOC networks is another key factor influencing the effective thermal conductivity.

  9. Effect of thermal processing practices on the properties of superplastic Al-Li alloys

    Science.gov (United States)

    Hales, Stephen J.; Lippard, Henry E.

    1993-01-01

    The effect of thermal processing on the mechanical properties of superplastically formed structural components fabricated from three aluminum-lithium alloys was evaluated. The starting materials consisted of 8090, 2090, and X2095 (Weldalite(TM) 049), in the form of commercial-grade superplastic sheet. The experimental test matrix was designed to assess the impact on mechanical properties of eliminating solution heat treatment and/or cold water quenching from post-forming thermal processing. The extensive hardness and tensile property data compiled are presented as a function of aging temperature, superplastic strain and temper/quench rate for each alloy. The tensile properties of the materials following superplastic forming in two T5-type tempers are compared with the baseline T6 temper. The implications for simplifying thermal processing without degradation in properties are discussed on the basis of the results.

  10. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  11. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The Effect of Thermal Lamination Processes on Colorimetric Change in Spot Colours

    Directory of Open Access Journals (Sweden)

    Eduard Galić

    2015-03-01

    Full Text Available Understanding the effect of laminating processes on spot colours is of great importance in the offset printing process, especially given the application versatility of spot colours. Laminating process, as a very common process and one of the first in a sequence of finishing processes in graphics production, can affect print’s visual impression to varying degrees. Spot colours, as mixtures of different ratios of inks, are subject to a change due to matt or gloss lamination process. The research examined the impact of thermal lamination processes on printed spot colours on different printing substrates. The degree of change on prints caused by laminating films in the thermal process was determined using spectrophotometric and densitometric methods. Particular emphasis is placed on the spot colour because of its specific characteristics. Research results are shown in charts and they are showing clearly the modality and the extent laminating processes effect the colorimetric difference in laminated and non-laminated prints. This scientific research provides objective conclusions that help in predicting the possible variations within the usage of laminating processes.

  13. Bread making properties of wheat flour supplemented with thermally processed hypoallergenic lupine flour

    Energy Technology Data Exchange (ETDEWEB)

    Guillamon, E.; Cuadrado, C.; Pedrosa, M. M.; Varela, A.; Cabellos, B.

    2010-07-01

    In recent years there has been increased interest in using lupine for human nutrition due to its nutritional properties and health benefits. Moreover, lupine is used as an ingredient in bread making because of its functional and technological properties. However, a higher number of allergic reactions to this legume have recently been reported as a consequence of a more widespread consumption of lupine-based foods. In a previous study, several thermal treatments were applied to lupine seeds and flours resulting in reduced allergenicity. In order to study how this thermal processing (autoclaving and boiling) affects the bread making properties, raw and thermally processed lupine flours were used to replace 10% of wheat flour. The effect of supplementing wheat flour with lupine flour on physical dough properties, bread structure and sensory characteristics were analysed. The results indicated that thermally-treated lupine flours, had similar bread making and sensorial properties as untreated lupine flour. These thermal treatments could increase the potential use of lupine flour as a food ingredient while reducing the risk to provoke allergic reactions. (Author) 36 refs.

  14. Numerical simulation of time-dependent deformations under hygral and thermal transient conditions

    International Nuclear Information System (INIS)

    Roelfstra, P.E.

    1987-01-01

    Some basic concepts of numerical simulation of the formation of the microstructure of HCP are outlined. The aim is to replace arbitrary terms like aging by more realistic terms like bond density in the xerogel and bonds between hydrating particles of HCP. Actual state parameters such as temperature, humidity and degree of hydration can be determined under transient hygral and thermal conditions by solving numerically a series of appropriate coupled differential equations with given boundary conditions. Shrinkage of a composite structure without crack formation, based on calculated moisture distributions, has been determined with numerical concrete codes. The influence of crack formation, tensile strain-hardening and softening on the total deformation of a quasi-homogeneous drying material has been studied by means of model based on FEM. The difference between shrinkage without crack formation and shrinkage with crack formation can be quantified. Drying shrinkage and creep of concrete cannot be separated. The total deformation depends on the superimposed stress fields. Transient hygral deformation can be realistically predicted if the concept of point properties is applied rigorously. Transient thermal deformation has to be dealt with in the same way. (orig./HP)

  15. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-05-05

    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven technologies 33%, but in Gulf Cooperation Council (GCC) countries their shares are 42% and 56% respectively due to severe feed water quality. In RO processes, intake, pretreatment and brine disposal cost 25% of total desalination cost at 30–35% recovery. We proposed a tri-hybrid system to enhance overall recovery up to 81%. The conditioned brine leaving from RO processes supplied to proposed multi-evaporator adsorption cycle driven by low temperature industrial waste heat sources or solar energy. RO membrane simulation has been performed using WinFlow and IMSDesign commercial softwares developed by GE and Nitto. Detailed mathematical model of overall system is developed and simulation has been conducted in FORTRAN. The final brine reject concentration from tri-hybrid cycle can vary from 166,000ppm to 222,000ppm if RO retentate concentration varies from 45,000ppm to 60,000ppm. We also conducted economic analysis and showed that the proposed tri-hybrid cycle can achieve highest recovery, 81%, and lowest energy consumption, 1.76kWhelec/m3, for desalination reported in the literature up till now.

  16. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Sohel, M. Imroz; Ma, Zhenjun; Cooper, Paul; Adams, Jamie; Scott, Robert

    2014-01-01

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  17. Advanced Signal Processing for Thermal Flaw Detection; TOPICAL

    International Nuclear Information System (INIS)

    VALLEY, MICHAEL T.; HANSCHE, BRUCE D.; PAEZ, THOMAS L.; URBINA, ANGEL; ASHBAUGH, DENNIS M.

    2001-01-01

    Dynamic thermography is a promising technology for inspecting metallic and composite structures used in high-consequence industries. However, the reliability and inspection sensitivity of this technology has historically been limited by the need for extensive operator experience and the use of human judgment and visual acuity to detect flaws in the large volume of infrared image data collected. To overcome these limitations new automated data analysis algorithms and software is needed. The primary objectives of this research effort were to develop a data processing methodology that is tied to the underlying physics, which reduces or removes the data interpretation requirements, and which eliminates the need to look at significant numbers of data frames to determine if a flaw is present. Considering the strengths and weakness of previous research efforts, this research elected to couple both the temporal and spatial attributes of the surface temperature. Of the possible algorithms investigated, the best performing was a radiance weighted root mean square Laplacian metric that included a multiplicative surface effect correction factor and a novel spatio-temporal parametric model for data smoothing. This metric demonstrated the potential for detecting flaws smaller than 0.075 inch in inspection areas on the order of one square foot. Included in this report is the development of a thermal imaging model, a weighted least squares thermal data smoothing algorithm, simulation and experimental flaw detection results, and an overview of the ATAC (Automated Thermal Analysis Code) software that was developed to analyze thermal inspection data

  18. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ng, Kim Choon

    2017-01-01

    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven

  19. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  20. Thermal spraying of polyethylene-based polymers: Processing and characterization

    Science.gov (United States)

    Otterson, David Mark

    This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational

  1. CFD analysis of the pulverized coal combustion processes in a 160 MWe tangentially-fired-boiler of a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano V. da; Beskow, Arthur B. [Universidade Regional Integrada do Alto Uruguai e das Misses (LABSIM/GEAPI/URI), Erechim, RS (Brazil). Dept. de Engenharia e Ciencia da Computacao. Grupo de Engenharia Aplicada a Processos Industriais], Emails: cristiano@uricer.edu.br, Arthur@uricer.edu.br; Indrusiak, Maria Luiza S. [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil). Programa de Engenharia Mecanica], E-mail: sperbindrusiak@via-rs.net

    2010-10-15

    The strategic role of energy and the current concern with greenhouse effects, energetic and exegetic efficiency of fossil fuel combustion greatly enhance the importance of the studies of complex physical and chemical processes occurring inside boilers of thermal power plants. The state of the art in computational fluid dynamics and the availability of commercial codes encourage numeric studies of the combustion processes. In the present work the commercial software CFX Ansys Europe Ltd. was used to study the combustion of coal in a 160 MWe commercial thermal power plant with the objective of simulating the operational conditions and identifying factors of inefficiency. The behavior of the flow of air and pulverized coal through the burners was analyzed, and the three-dimensional flue gas flow through the combustion chamber and heat exchangers was reproduced in the numeric simulation. (author)

  2. Some aspects of thermal fatigue in stainless steel

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1987-01-01

    This paper is concerned with the analysis of failures in a moderator circuit branch piping of the ATUCHA-I pressurized heavy water reactor (PHWR), made of austenitic steel to DIN 1.4550 specification (similar to AISI 347). These failures are considered to result from a thermal fatigue processes induced by fluctuations in a zone where stratified temperature layers occurred -the fluctuations being associated with variations in the heavy water flow. The first section evaluates the possibility of cracking due to thermal fatigue phenomena and concludes that under service conditions a crack may be initiated and growth through 7 mm of the wall thickness of the pipe. Laboratory thermal fatigue tests that simulated the thermomechanical conditions for such a component, showed that the number of cycles required to initiate a thermal fatigue crack in a notched modified standard fatigue specimen was about 10 3 . This value may be used to give a conservative prediction of the number of thermal cycles for crack initiation in actual station piping, including those who suffered a cold plug condition which is produced in some emergency shut-down and valve testing situations. It was also demonstrated that beyond a crack depth of 7 mm stress corrosion cracking has the main process in further crack propagation. The relevance of this prediction has been confirmed by microfractographic observations, since the brittle nature of the fracture surfaces under service conditions appears very different from the transgranular ductile striations found in both thermal and mechanical fatigue test specimens as a result of environmental effects. (Author)

  3. Engineering Analysis of Thermal-Load Components in the Process of Heating of Pet Preforms

    Science.gov (United States)

    Sidorov, D. É.; Kolosov, A. E.; Kazak, I. A.; Pogorelyi, A. V.

    2018-05-01

    The influence of thermal-load components (convection, collimated and uncollimated components of infrared radiation) in the process of production of PET packaging on the heating of PET preforms has been assessed. It has been established that the collimated component of infrared radiation ensures most (up to 70%) of the thermal energy in the process of heating of a PET preform.

  4. Crystallization of nuclear glass under a thermal gradient: application to the self-crucible produced in the skull melting process

    International Nuclear Information System (INIS)

    Delattre, O.

    2013-01-01

    In the context of the vitrification of high level nuclear waste, a new industrial process has been launched in 2010 at the La Hague factory: The skull melting process. This setup applies thermal gradients to the melt, which leads to the formation of a solid layer of glass: the 'self-crucible'. The question would be to know whether these thermal gradients have an impact or not on the crystallization behaviour of the considered glasses in the self crucible. In order to answer that question, the crystallization of two glass compositions of nuclear interest has been investigated with an image analysis based method in isothermal and thermal gradient heat treatments conditions. The isothermal experiments allow for the quantification (growth speed, nucleation, crystallized fraction) of the crystallization of apatites (660 C-900 C) and powellites (630 C-900 C). The comparison of the results obtained through these two types of experimentations allows us to conclude that there is no impact of the thermal gradient on the crystallization of the studied glass compositions. In order to complete the image analysis study (based on surfaces), in and ex situ microtomography experiments have been performed at ESRF (Grenoble) on the ID19 beamline. This study allowed us to follow the crystallization of apatites in a simplified glass and to confirm the reliability of the image analysis method based on the analysis of surfaces. (author) [fr

  5. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Jingjing Liu

    2017-02-01

    Full Text Available This study addresses the effects of the SOC (State of Charge and the charging–discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.

  6. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.

    Science.gov (United States)

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-02-25

    This study addresses the effects of the SOC (State of Charge) and the charging-discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.

  7. Average thermal stress in the Al+SiC composite due to its manufacturing process

    International Nuclear Information System (INIS)

    Miranda, Carlos A.J.; Libardi, Rosani M.P.; Marcelino, Sergio; Boari, Zoroastro M.

    2013-01-01

    The numerical analyses framework to obtain the average thermal stress in the Al+SiC Composite due to its manufacturing process is presented along with the obtained results. The mixing of Aluminum and SiC powders is done at elevated temperature and the usage is at room temperature. A thermal stress state arises in the composite due to the different thermal expansion coefficients of the materials. Due to the particles size and randomness in the SiC distribution, some sets of models were analyzed and a statistical procedure used to evaluate the average stress state in the composite. In each model the particles position, form and size are randomly generated considering a volumetric ratio (VR) between 20% and 25%, close to an actual composite. The obtained stress field is represented by a certain number of iso stress curves, each one weighted by the area it represents. Systematically it was investigated the influence of: (a) the material behavior: linear x non-linear; (b) the carbide particles form: circular x quadrilateral; (c) the number of iso stress curves considered in each analysis; and (e) the model size (the number of particles). Each of above analyzed condition produced conclusions to guide the next step. Considering a confidence level of 95%, the average thermal stress value in the studied composite (20% ≤ VR ≤ 25%) is 175 MPa with a standard deviation of 10 MPa. Depending on its usage, this value should be taken into account when evaluating the material strength. (author)

  8. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  9. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  10. Nuclear power plant accident simulations of gasket materials under simultaneous radiation plus thermal plus mechanical stress conditions

    International Nuclear Information System (INIS)

    Gillen, K.T.; Malone, G.M.

    1997-07-01

    In order to probe the response of silicone door gasket materials to a postulated severe accident in an Italian nuclear power plant, compression stress relaxation (CSR) and compression set (CS) measurements were conducted under combined radiation (approximately 6 kGy/h) and temperature (up to 230 degrees C) conditions. By making some reasonable initial assumptions, simplified constant temperature and dose rates were derived that should do a reasonable job of simulating the complex environments for worst-case severe events that combine overall aging plus accidents. Further simplification coupled with thermal-only experiments allowed us to derive thermal-only conditions that can be used to achieve CSR and CS responses similar to those expected from the combined environments that are more difficult to simulate. Although the thermal-only simulations should lead to sealing forces similar to those expected during a severe accident, modulus and density results indicate that significant differences in underlying chemistry are expected for the thermal-only and the combined environment simulations. 15 refs., 31 figs., 15 tabs

  11. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    Science.gov (United States)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  12. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  13. Thermal properties of nuclear matter under the periodic boundary condition

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    1999-01-01

    We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)

  14. Simulation of thermal-hydraulic process in reactor of HTR-PM based on flow and heat transfer network

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2012-01-01

    The development of HTR-PM full scale simulator (FSS) is an important part in the project. The simulation of thermal-hydraulic process in reactor is one of the key technologies in the development of FSS. The simulation of thermal-hydraulic process in reactor was studied. According to the geometry structures and the characteristics of thermal-hydraulic process in reactor, the model was setup in components construction way. Based on the established simulation method of flow and heat transfer network, a Fortran code was developed and the simulation of thermal-hydraulic process was achieved. The simulation results of 50% FP steady state, 100% FP steady state and control rod mistakenly ascension accidents were given. The verification of simulation results was carried out by comparing with the design and analysis code THERMIX. The results show that the method and model based on flow and heat transfer network can meet the requirements of FSS and reflect the features of thermal-hydraulic process in HTR-PM. (authors)

  15. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  16. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    Science.gov (United States)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  17. Thermal dehydration kinetics of phosphogypsum

    OpenAIRE

    López Gómez, Félix Antonio; Tayibi, Hanan; García-Díaz, Irene; Alguacil, Francisco José

    2015-01-01

    Phsophogypsum is a by-product from the processing phosphate rock. Before the use of it in cement industry such as setting regulator is necessary a study of dehydration reaction of phosphogypsum to avoid the false setting during the milling. The aim is to study the thermal behavior of two different phosphogypsum sources (Spain and Tunisia) under non-isothermal conditions in argon atmosphere by using Thermo-Gravimetriy, Differential Thermal Analysis (TG-DTA) and Differential Scanning Calori...

  18. Expression for the thermal H-mode energy confinement time under ELM-free conditions

    International Nuclear Information System (INIS)

    Ryter, F.; Gruber, O.; Kardaun, O.J.W.F.; Menzler, H.P.; Wagner, F.; Schissel, D.P.; DeBoo, J.C.; Kaye, S.M.

    1992-07-01

    The design of future tokamaks, which are supposed to reach ignition with the H-mode, requires a reliable scaling expression for the H-mode energy confinement time. In the present work, an H-mode scaling expression for the thermal plasma energy confinement time has been developed by combining data from four existing divertor tokamaks, ASDEX, DIII-D, JET and PBX-M. The plasma conditions, which were as similar as possible to ensure a coherent set of data, were ELM-free deuterium discharges heated by deuterium neutral beam injection. By combining four tokamaks, the parametric dependence of the thermal energy confinement on the main plasma parameters, including the three main geometrical variables, was determined. (orig./WL)

  19. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    Science.gov (United States)

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  20. Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing.

    Science.gov (United States)

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-04-01

    Worldwide, apple juice is the second most popular juice, after orange juice. It is susceptible to enzymatic browning spoilage by polyphenoloxidase, an endogenous enzyme. In this study, Royal Gala apple juice was treated by thermosonication (TS: 1.3 W/mL, 58 ℃, 10 min), pulsed electric field (PEF: 24.8 kV/cm, 60 pulses, 169 µs treatment time, 53.8 ℃) and heat (75 ℃, 20 min) and stored at 3.0 ℃ and 20.0 ℃ for 30 days. A sensory analysis was carried out after processing. The polyphenoloxidase activity, antioxidant activity and total color difference of the apple juice were determined before and after processing and during storage. The sensory analysis revealed that thermosonication and pulsed electric field juices tasted differently from the thermally treated juice. Apart from the pulsed electric field apple juice stored at room temperature, the processed juice was stable during storage, since the pH and soluble solids remained constant and fermentation was not observed. Polyphenoloxidase did not reactivate during storage. Along storage, the juices' antioxidant activity decreased and total color difference increased (up to 6.8). While the antioxidant activity increased from 86 to 103% with thermosonication and was retained after pulsed electric field, thermal processing reduced it to 67%. The processing increased the total color difference slightly. No differences in the total color difference of the juices processed by the three methods were registered after storage. Thermosonication and pulsed electric field could possibly be a better alternative to thermal preservation of apple juice, but refrigerated storage is recommended for pulsed electric field apple juice.

  1. Hydrogen storage by adsorption on activated carbon: investigation of the thermal effects during the charging process

    International Nuclear Information System (INIS)

    Hermosilla-Lara, G.

    2007-02-01

    This work presents an experimental and numerical investigation of the thermal effects occurring during the charge of adsorbent fixed bed tank. The influence of these thermal effects, which result from the exothermal character of the adsorption process and the pressure forces work, on the storage capacity is specially analysed. An experimental setup allowing the dynamic measurements of the temperature and pressure profiles has been used. Then the numerical protocol with the Fluent software, has been validated by comparison of the simulated pressure, flow rate and temperature fields in the tank with the results obtained from an experimental investigation carried out the dynamic storage. Several predictive simulations have been carried out in order to study the effect of the boundary conditions, as the wall temperature or effective thermal conductivity of the porous bed, on the storage capacity of the reservoir. We searched the optimal geometry of an interbed thermal dissipator for a given industrial tank. To do this we made vary the H/L ratio, which represents the ratio of the height of an elementary stage and the total length of the tank. We could determine an optimal geometry which corresponds to the value 1/3 of the ratio H/L. From this optimum we studied the effect of five additional cooling tubes on the tank storage capacity. The stored mass is 15 % higher than that obtained without these tubes. (author)

  2. Effects of thermal underwear on thermal and subjective responses in winter.

    Science.gov (United States)

    Choi, Jeong-Wha; Lee, Joo-Young; Kim, So-Young

    2003-01-01

    This study was conducted to obtain basic data in improving the health of Koreans, saving energy and protecting environments. This study investigated the effects of wearing thermal underwear for keeping warm in the office in winter where temperature is not as low as affecting work efficiency, on thermoregulatory responses and subjective sensations. In order to create an environment where every subject feels the same thermal sensation, two experimental conditions were selected through preliminary experiments: wearing thermal underwear in 18 degrees C air (18-condition) and not wearing thermal underwear in 23 degrees C air (23-condition). Six healthy male students participated in this study as experiment subjects. Measurement items included rectal temperature (T(re)), skin temperature (T(sk)), clothing microclimate temperature (T(cm)), thermal sensation and thermal comfort. The results are as follows: (1) T(re) of all subjects was maintained constant at 37.1 degrees C under both conditions, indicating no significant differences. (2) (T)(sk) under the 18-condition and the 23-condition were 32.9 degrees C and 33.7 degrees C, respectively, indicating a significant level of difference (pcomfortable under both conditions. It was found (T)(sk) decreased due to a drop in the skin temperature of hands and feet, and the subjects felt cooler wearing only one layer of normal thermal underwear at 18 degrees C. Yet, the thermal comfort level, T(re) and T(cm) of chest part under the 18-condition were the same as those under the 23-condition. These results show that the same level of comfort, T(re) and T(cm) can be maintained as that of an environment about 5 degrees C higher in the office in winter, by wearing one layer of thermal underwear. In this regard, this study suggests that lowering indoor temperature by wearing thermal underwear in winter can contribute to saving energy and improving health.

  3. Human biometeorological analysis of the thermal conditions of the hot Turkish city of Şanliurfa

    Science.gov (United States)

    Toy, Süleyman; Aytaç, Ahmet Serdar; Kántor, Noémi

    2018-01-01

    This paper offers a throughout human biometeorological assessment about the thermal conditions of Şanliurfa in one of the hottest parts of Turkey, in the hottest period of the year (from April to October), and a comparative analysis of three built-up types (urban, suburban and rural). Therefore, the values of physiologically equivalent temperature (PET), one of the most extensively used indices, were calculated from basic climate data with the help of the RayMan model. It was found by regarding the resulted mean PET values and the occurrence frequency of extreme heat stress periods (PET values above 41 °C) that the urban area exhibited the most unfavourable properties, followed by the suburban and rural areas. We also found very severe heat stress conditions in the summer, which may be explained by the torrid and arid climate, calm air conditions and the lack of abundant vegetation. Aiming to optimise human thermal conditions, thereby improving local life quality and facilitating international tourism, increment of vegetated areas and water surfaces would be required and, of course, highlighting the traditional methods taking into account the important aspects of sustainability.

  4. Impact of particle size, thermal processing, fat inclusion, and moisture addition on starch gelatinization of broiler feeds

    Directory of Open Access Journals (Sweden)

    K Muramatsu

    2014-12-01

    Full Text Available The present study evaluated the effect of feed particle size, thermal processing different levels of fat inclusion and of moisture addition on the amount of gelatinized starch in a corn-soybean broiler diet. The different processing factors were combined in a 2 x 4 x 4 x 2 factorial arrangement in a three randomized block design consisting of three production series: two particle sizes (coarse: 1041 microns and medium: 743 microns, four fat inclusion levels at the mixer (15, 25, 35, and 45 g/kg of feed, four moisture addition levels in the conditioner (0, 7, 14, and 21g/kg of feed, and two thermal processing treatments (conditioning-pelleting or conditioning-expanding-pelleting which resulted in 64 different processed feeds. For the determination of the amount of gelatinized starch one feed sample was collected per treatment in each of three production series, totaling three replicates/treatment. Data were transformed using a variation of Box-Cox transformation in order to fit normal distribution (p>0.05. Adding moisture up to 21g/kg of feed in the conditioner linearly increased the amount of gelatinized starch (p<0.05. The conditioner-expander-pelleting treatment of the diets (at 110°C increased (p<0.05 the degree of starch gelatinization from 32.0 to 35.3 % compared with the conditioner-pelleting treatment (at 80-82°C. The gelatinized starch content increased from 30.2 to 37.2% in the feed (p<0.05 as the particle size increased from medium to coarse. Fat inclusion had a quadratic effect (p<0.05 on starch gelatinization. The degree of starch gelatinization was significantly reduced with fat inclusion levels higher than 35 g/kg of diet. The factors evaluated in this study resulted in interactions and significant effects on degree of starch gelatinization.

  5. A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar

    Science.gov (United States)

    Fröhlich, Dominik; Matzarakis, Andreas

    2016-04-01

    Human thermal perception is best described through thermal indices. The most popular thermal indices applied in human bioclimatology are the perceived temperature (PT), the Universal Thermal Climate Index (UTCI), and the physiologically equivalent temperature (PET). They are analysed focusing on their sensitivity to single meteorological input parameters under the hot and windy meteorological conditions observed in Doha, Qatar. It can be noted, that the results for the three indices are distributed quite differently. Furthermore, they respond quite differently to modifications in the input conditions. All of them show particular limitations and shortcomings that have to be considered and discussed. While the results for PT are unevenly distributed, UTCI shows limitations concerning the input data accepted. PET seems to respond insufficiently to changes in vapour pressure. The indices should therefore be improved to be valid for several kinds of climates.

  6. Shelf-life study of an orange juice-milk based beverage after PEF and thermal processing.

    Science.gov (United States)

    Sampedro, F; Geveke, D J; Fan, X; Rodrigo, D; Zhang, Q H

    2009-03-01

    The effect of thermal and pulsed electric field (PEF) processing on the shelf life of an orange juice-milk beverage (OJMB) was studied. The intensities of the treatments were selected to produce similar inactivation of pectin methyl esterase (PME), an enzyme responsible for the jellification and loss of fresh juice cloudiness. Physical properties (pH, degrees Brix, and color), microbial population, PME activity, and volatile compounds of the product were analyzed during a 4-wk storage at 8 to 10 degrees C. The pH was not affected by any treatment but decreased during the storage in the untreated sample. The degrees Brix values were decreased by the 2 treatments. The thermal and PEF treatments initially inactivated PME activity by 90%. During storage, the PME activity remained constant in the 2 treated samples and decreased slightly in the untreated sample. The reductions in bacterial as well as yeast and mold counts were similar after the 2 treatments (4.5 and 4.1 log CFU/mL for thermal against 4.5 and 5 log CFU/mL for PEF). Based on the initial bacterial counts of the control, it was estimated that the shelf lives of the OJMB treated with thermal and PEF processing stored at 8 to 10 degrees C were 2 and 2.5 wk, respectively. Differences were observed in the color parameters of the OJMB between the 2 treatments in comparison with the control, with a higher difference observed in the thermally processed samples. The relative concentration of volatile compounds was higher in OJMB processed by PEF treatment than that in the thermally processed sample. During storage, the loss of volatile compounds was lower in the PEF sample while thermal and control samples had a similar rate of loss. For an OJMB, treatment with PEF achieved the same degree of microbial and enzyme inactivation as the thermal treatment, but better preserved color and volatile compounds.

  7. Thermal cycling fatigue of organic thermal interface materials using a thermal-displacement measurement technique

    Science.gov (United States)

    Steill, Jason Scott

    The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.

  8. Comparison of thermal scattering processing options for S(α,β) cards in MCNP

    International Nuclear Information System (INIS)

    Čerba, Štefan; Damian, Jose Ignacio Marquez; Lüley, Jakub; Vrban, Branislav; Farkas, Gabriel; Nečas, Vladimír; Haščík, Jan

    2013-01-01

    Highlights: ► Determination of MCNP calculation bias for WWER-440. ► Specific scattering law S(α,β). ► Benchmark cases investigated. ► Three methods to process material cards for hydrogen bound in light water. - Abstract: The MCNP distributions include sets of pre-calculated thermal scattering libraries but these libraries are available for several temperature steps only. In order to achieve reliable results it is suitable to process the cross section libraries for the desired temperature. In general, there are three methods to process these thermal scattering libraries for the desired temperatures. This paper deals with the comparison of these three methods on the basis of several benchmarks and on the basis of a thermal transient experiment of a WWER-440 reactor. The choice is up to the MCNP user but unfortunately very few studies concerning the comparison have been published so far. Therefore conclusions and results presented in this paper may help the user to choose the most appropriate method for his calculation

  9. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  10. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    Science.gov (United States)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  11. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  12. Thermal Performance Analysis For Small Ion-Exchange Cesium Removal Process

    International Nuclear Information System (INIS)

    Lee, S.; King, W.

    2009-01-01

    The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF

  13. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  14. Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process

    Science.gov (United States)

    Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce

    2017-06-01

    In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.

  15. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh.

    Science.gov (United States)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  17. Numerical Calculation of Transient Thermal Characteristics in Gas-Insulated Transmission Lines

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-11-01

    Full Text Available For further knowledge of the thermal characteristics in gas-insulated transmission lines (GILs installed above ground, a finite-element model coupling fluid field and thermal field is established, in which the corresponding assumptions and boundary conditions are given.  Transient temperature rise processes of the GIL under the conditions of variable ambient temperature, wind velocity and solar radiation are respectively investigated. Equivalent surface convective heat transfer coefficient and heat flux boundary conditions are updated in the analysis process. Unlike the traditional finite element methods (FEM, the variability of the thermal properties with temperature is considered. The calculation results are validated by the tests results reported in the literature. The conclusion provides method and theory basis for the knowledge of transient temperature rise characteristics of GILs in open environment.

  18. Towards Biochar and Hydrochar Engineering—Influence of Process Conditions on Surface Physical and Chemical Properties, Thermal Stability, Nutrient Availability, Toxicity and Wettability

    Directory of Open Access Journals (Sweden)

    Alba Dieguez-Alonso

    2018-02-01

    Full Text Available The impact of conversion process parameters in pyrolysis (maximum temperature, inert gas flow rate and hydrothermal carbonization (maximum temperature, residence time and post-washing on biochar and hydrochar properties is investigated. Pine wood (PW and corn digestate (CD, with low and high inorganic species content respectively, are used as feedstock. CD biochars show lower H/C ratios, thermal recalcitrance and total specific surface area than PW biochars, but higher mesoporosity. CD and PW biochars present higher naphthalene and phenanthrene contents, respectively, which may indicate different reaction pathways. High temperatures (>500 °C lead to lower PAH (polycyclic aromatic hydrocarbons content (<12 mg/kg and higher specific surface area. With increasing process severity the biochars carbon content is also enhanced, as well as the thermal stability. High inert gas flow rates increase the microporosity and wettability of biochars. In hydrochars the high inorganic content favor decarboxylation over dehydration reactions. Hydrochars show mainly mesoporosity, with a higher pore volume but generally lower specific surface area than biochars. Biochars present negligible availability of NO 3 − and NH 4 + , irrespective of the nitrogen content of the feedstock. For hydrochars, a potential increase in availability of NO 3 − , NH 4 + , PO 4 3 − , and K + with respect to the feedstock is possible. The results from this work can be applied to “engineer” appropriate biochars with respect to soil demands and certification requirements.

  19. A Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection

    Science.gov (United States)

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2014-11-01

    We report an experimental study of the influences of thermal boundary condition in turbulent thermal convection. Two configurations were examined: one was fixed heat flux at the bottom boundary and fixed temperature at the top (HC cells); the other was fixed temperature at both boundaries (CC cells). It is found that the flow strength in the CC cells is on average 9% larger than that in the HC ones, which could be understood as change in plume emission ability under different boundary conditions. It is further found, rather surprisingly, that flow reversals of the large-scale circulation occur more frequently in the CC cell, despite a stronger large-scale flow and more uniform temperature distribution over the boundaries. These findings provide new insights into turbulent thermal convection and should stimulate further studies, especially experimental ones. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK 403712.

  20. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  1. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Directory of Open Access Journals (Sweden)

    Ten-See Wang

    Full Text Available A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process. Keywords: Hydrogen decomposition reactions, Hydrogen recombination reactions, Hydrogen containment process, Nuclear thermal propulsion, Ground testing

  2. Data on blueberry peroxidase kinetic characterization and stability towards thermal and high pressure processing

    Directory of Open Access Journals (Sweden)

    Netsanet Shiferaw Terefe

    2017-08-01

    Full Text Available The data presented in this article are related to a research article entitled ‘Thermal and high pressure inactivation kinetics of blueberry peroxidase’ (Terefe et al., 2017 [1]. In this article, we report original data on the activity of partially purified blueberry peroxidase at different concentrations of hydrogen peroxide and phenlylenediamine as substrates and the effects of thermal and high pressure processing on the activity of the enzyme. Data on the stability of the enzyme during thermal (at temperatures ranging from 40 to 80 °C and combined thermal-high pressure processing (100–690 MPa, 30–90 °C are included in this report. The data are presented in this format in order to facilitate comparison with data from other researchers and allow statistical analyses and modeling by others in the field.

  3. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    Science.gov (United States)

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  5. Evaluation of Haney-Type Surface Thermal Boundary Conditions Using a Coupled Atmosphere and Ocean Model

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    2001-01-01

    ... (Russell et al,, 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference DeltaT by a relaxation coefficient K...

  6. 9 CFR 318.304 - Operations in the thermal processing area.

    Science.gov (United States)

    2010-01-01

    ... area. 318.304 Section 318.304 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... PREPARATION OF PRODUCTS Canning and Canned Products § 318.304 Operations in the thermal processing area. (a...

  7. 9 CFR 381.304 - Operations in the thermal processing area.

    Science.gov (United States)

    2010-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Canning and Canned... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Operations in the thermal processing area. 381.304 Section 381.304 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE...

  8. Evaluation of advanced hot conditioning process for PHWRS

    International Nuclear Information System (INIS)

    Chandramohan, P.; Srinivasan, M.P.; Velmurugan, S.

    2015-01-01

    Hot-conditioning/hot functional test process is carried out to the PHT system of reactor before reactor going to critical/operational. The process is aimed in checking the component functionalities at high temperature and high pressure conditions, the process also checks/removes the suspended corrosion products in heat transport circuit. This process leads to formation of a passive or corrosion oxide film on the heat transport circuit surfaces which protects/mitigates the corrosion of the system circuits during the operation of plant. Major concerned alloy in the Primary Heat Transport (PHT) system of Indian PHWRs during the hot conditioning process and also during operation is the carbon steel due to its high corrosion. Hot-conditioning process mitigates the corrosion of carbon steel by the formation of iron oxide (Fe 3 O 4 ) as major oxide phase layer on the carbon steel surface with a typical thickness of 1.0 μm with particle size of 1μm after 336 h of process at 250 °C. But this passive oxide film thickness increase with time of operation of system with c.a. 10μm for 2.2 EFYP. The protectiveness of passive layer can be further enhanced by reducing the particle sizes in the passive film to nano meter range. The process can impact on the compactness of passive oxide layer with reduced pores in the oxide layer and properties of the nano nature oxide (transport properties) impacting the corrosion mitigation. The corrosion mitigation reduce the source term in the activated corrosion product generation. To achieve this a new process 'Advanced hot conditioning' was developed in water steam chemistry division, BARC for getting a passive oxide film with a lowered particle size in the passive film. The AHC process with 1g/L of PEG-8000 at 250 °C for 336 h showed a particle size <100 nm. The process was tested under the normal operating conditions as function of the time, the corrosion parameter like oxide film thickness, corrosion rate and metal ion

  9. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  10. Normal conditions of transport thermal analysis and testing of a Type B drum package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed

  11. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  12. Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process

    Science.gov (United States)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard

    2014-01-01

    Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may

  13. Estimation of the Thermal Process in the Honeycomb Panel by a Monte Carlo Method

    Science.gov (United States)

    Gusev, S. A.; Nikolaev, V. N.

    2018-01-01

    A new Monte Carlo method for estimating the thermal state of the heat insulation containing honeycomb panels is proposed in the paper. The heat transfer in the honeycomb panel is described by a boundary value problem for a parabolic equation with discontinuous diffusion coefficient and boundary conditions of the third kind. To obtain an approximate solution, it is proposed to use the smoothing of the diffusion coefficient. After that, the obtained problem is solved on the basis of the probability representation. The probability representation is the expectation of the functional of the diffusion process corresponding to the boundary value problem. The process of solving the problem is reduced to numerical statistical modelling of a large number of trajectories of the diffusion process corresponding to the parabolic problem. It was used earlier the Euler method for this object, but that requires a large computational effort. In this paper the method is modified by using combination of the Euler and the random walk on moving spheres methods. The new approach allows us to significantly reduce the computation costs.

  14. Thermal decomposition of uranylnitrate by the Spray-Dryer process

    International Nuclear Information System (INIS)

    Wildhagen, G.R.S.; Silva, G.C. da

    1988-01-01

    The proposal of this work consist in the thermal decomposition of uranyl nitrate solutions by the Spray-Dryer process aiming the production of highly reactive fluidized UO 3 , adequate for the use in posterior of reduction to UO 2 and hydrofluorination to UF 4 , in a fluidized bed for the obtention of UF 6 in the cicle of nuclear fuels. (author) [pt

  15. Constraining the thermal conditions of impact environments through integrated low-temperature thermochronometry and numerical modeling

    Science.gov (United States)

    Kelly, N. M.; Marchi, S.; Mojzsis, S. J.; Flowers, R. M.; Metcalf, J. R.; Bottke, W. F., Jr.

    2017-12-01

    Impacts have a significant physical and chemical influence on the surface conditions of a planet. The cratering record is used to understand a wide array of impact processes, such as the evolution of the impact flux through time. However, the relationship between impactor size and a resulting impact crater remains controversial (e.g., Bottke et al., 2016). Likewise, small variations in the impact velocity are known to significantly affect the thermal-mechanical disturbances in the aftermath of a collision. Development of more robust numerical models for impact cratering has implications for how we evaluate the disruptive capabilities of impact events, including the extent and duration of thermal anomalies, the volume of ejected material, and the resulting landscape of impacted environments. To address uncertainties in crater scaling relationships, we present an approach and methodology that integrates numerical modeling of the thermal evolution of terrestrial impact craters with low-temperature, (U-Th)/He thermochronometry. The approach uses time-temperature (t-T) paths of crust within an impact crater, generated from numerical simulations of an impact. These t-T paths are then used in forward models to predict the resetting behavior of (U-Th)/He ages in the mineral chronometers apatite and zircon. Differences between the predicted and measured (U-Th)/He ages from a modeled terrestrial impact crater can then be used to evaluate parameters in the original numerical simulations, and refine the crater scaling relationships. We expect our methodology to additionally inform our interpretation of impact products, such as lunar impact breccias and meteorites, providing robust constraints on their thermal histories. In addition, the method is ideal for sample return mission planning - robust "prediction" of ages we expect from a given impact environment enhances our ability to target sampling sites on the Moon, Mars or other solar system bodies where impacts have strongly

  16. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    Science.gov (United States)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  17. Conditioning from an information processing perspective.

    Science.gov (United States)

    Gallistel, C R.

    2003-04-28

    The framework provided by Claude Shannon's [Bell Syst. Technol. J. 27 (1948) 623] theory of information leads to a quantitatively oriented reconceptualization of the processes that mediate conditioning. The focus shifts from processes set in motion by individual events to processes sensitive to the information carried by the flow of events. The conception of what properties of the conditioned and unconditioned stimuli are important shifts from the tangible properties to the intangible properties of number, duration, frequency and contingency. In this view, a stimulus becomes a CS if its onset substantially reduces the subject's uncertainty about the time of occurrence of the next US. One way to represent the subject's knowledge of that time of occurrence is by the cumulative probability function, which has two limiting forms: (1) The state of maximal uncertainty (minimal knowledge) is represented by the inverse exponential function for the random rate condition, in which the US is equally likely at any moment. (2) The limit to the subject's attainable certainty is represented by the cumulative normal function, whose momentary expectation is the CS-US latency minus the time elapsed since CS onset. Its standard deviation is the Weber fraction times the CS-US latency.

  18. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model......The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...

  19. A MATHEMATICAL MODEL OF THE ROASTING CHESTNUTS PROCESS BY SUPERHEATED STEAM

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2013-01-01

    Full Text Available The mathematic modeling for chestnuts roasting process by superheated steam is conducted. Diffusion and thermal diffusion coefficients are used for process description. Initial conditions and boundary conditions of the third kind for thermal conductivity and mass transfer equations are set.

  20. Standardization of Thermal Processes for Local Foods with Emphasis on Low-Acid Foods

    Directory of Open Access Journals (Sweden)

    Estrella Alabastro

    1980-01-01

    Full Text Available The minimum process for selected low acid foods was established based on the thermal death time (TDT of P.A. 3679 in the food and the heat penetration characteristics of the food products. The products studied were: (a vegetable products - green papaya, langka, sitao, mushroom, waterchestnut and baby corn; (b meat products - lechon, paksiw, dinuguan, longaniza and caldereta; and (c seafood products - squid adobo. The integrated lethality approach was adopted for process calculations recommended by Stumbo (1973.The minimum thermal process was tested by a pilot scale production followed by microbiological, physico-chemical and sensory evaluation tests to check the soundness of the product.Preliminary research on the effect of the minimum process established on the retention of nutrients, particularly thiamine, was also carried out for lechon paksiw and sitao.

  1. Study of the aluminothermic reduction of niobium pentoxide through thermal analysis experiments and high energy milling processing

    Directory of Open Access Journals (Sweden)

    Claudio Parra De Lazzari

    2007-06-01

    Full Text Available Aluminothermic reduction of niobium pentoxide was studied through thermal analysis techniques such as differential thermal analysis (DTA and thermogravimetry (TG as well as through high energy milling processing. Reactants mixtures were composed by powders of Nb2O5 and Al. In the case of DTA-TG experiments, different molar ratios Nb2O5:Al were heated in a dynamic atmosphere of synthetic air under controlled conditions. The high energy milling runs were carried out via SPEX vibratory mill under argon atmosphere and with milling power equal to 7:1 (ratio of mass of balls to mass of mixture with 10 pct excess of Al over the stoichiometric mass of aluminum necessary. In both kinds of experiments, X ray diffraction was used in order to identify the products of reaction. From DTA-TG experiments, it was possible to determine the experimental value of the enthalpy change (-595.9 kJ.mol-1, which is near to the theoretical one. From the milling experiments, it was possible to verify the possibility of the occurance of aluminothermic reducion of niobium pentoxide via this kind of processing.

  2. Thermal Conditions in the City of Poznań (Poland during Selected Heat Waves

    Directory of Open Access Journals (Sweden)

    Marek Półrolniczak

    2018-01-01

    Full Text Available The aim of the study was to characterise the occurrence of hot days and heat waves in Poznań in the 1966–2015 period, as well as to describe the thermal conditions in the city during selected heat waves between 2008 and 2015. The basis of the study was the daily maximum and minimum air temperature values for Poznań–Ławica station from 1966–2015 and the daily values of air temperature from eight measuring points located in the city in various land types from 2008 to 2015. A hot day was defined as a day with Tmax above the 95th annual percentile (from 1966 to 2015, while a heat wave was assumed to be at least five consecutive hot days. The research study conducted shows the increase of Tmax, number of hot days and frequency of heat waves in Poznań over the last 50 years. Across the area of the city (differentiation of urban area types according to Urban Atlas 2012, there was a great diversity of thermal conditions during the heat waves analysed.

  3. Thermal comfort: research and practice.

    Science.gov (United States)

    van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M

    2010-01-01

    Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.

  4. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  5. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    Science.gov (United States)

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  6. Development of optimum process for electron beam cross-linking of high density polyethylene thermal energy storage pellets, process scale-up and production of application qualities of material

    Science.gov (United States)

    Salyer, I. O.

    1980-01-01

    The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.

  7. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    OpenAIRE

    Yu. A. Rounov; O. G. Shirokov; D. I. Zalizny; D. M. Los

    2004-01-01

    The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  8. Determination of optimum thermal debinding and sintering process parameters using Taguchi Method

    CSIR Research Space (South Africa)

    Seerane, M

    2015-07-01

    Full Text Available powder and a wax-based binder. The binder’s backbone component is a low density polyethylene (LDPE). Careful selection of thermal debinding parameters was guided by thermo- gravimetric analysis (TGA) results. The Taguchi method was used to determine... International Light Metals Technology Conference (LMT 2015), Port Elizabeth, South Africa, July 27-29 Determination of Optimum Process for Thermal Debinding and Sintering using Taguchi Method SEERANE Mandya,*, CHIKWANDA Hildab, MACHAKA Ronaldc CSIR...

  9. Comparative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation.

    Science.gov (United States)

    Schilling, Susanne; Schmid, Sandra; Jäger, Henry; Ludwig, Michael; Dietrich, Helmut; Toepfl, Stefan; Knorr, Dietrich; Neidhart, Sybille; Schieber, Andreas; Carle, Reinhold

    2008-06-25

    As an alternative to thermal pasteurization, pulsed electric fields (PEF) were applied to apple juices on laboratory and pilot plant scale, investigating the effects on juice quality. PEF application still falls under the EU Novel Food Regulation. Consequently, extensive investigation of quality parameters is a prerequisite to prove substantial equivalence of juices resulting from the novel process and conventional production, respectively. Juice composition was not affected by PEF treatment. However, browning of the juices provided evidence of residual enzyme activities. On laboratory scale, complete deactivation of peroxidase (POD) and polyphenoloxidase (PPO) was achieved when PEF treatment and preheating of the juices to 60 degrees C were combined. Under these conditions, a synergistic effect of heat and PEF was observed. On pilot plant scale, maximum PPO deactivation of 48% was achieved when the juices were preheated to 40 degrees C and PEF-treated at 30 kV/cm (100 kJ/kg). Thus, minimally processed juices resulted from PEF processing, when applied without additional conventional thermal preservation. Since this product type was characterized by residual native enzyme activities and nondetectable levels of 5-hydroxymethylfurfural, also when preheating up to 40 degrees C was included, it ranged between fresh and pasteurized juices regarding consumers' expectation of freshness and shelf life. Consistent with comparable iron contents among all juice samples, no electrode corrosion was observed under the PEF conditions applied.

  10. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  11. A dynamic switching strategy for air-conditioning systems operated in light-thermal-load conditions

    International Nuclear Information System (INIS)

    Lin, Jin-Long; Yeh, T.-J.; Hwang, Wei-Yang

    2009-01-01

    Recently, modern air-conditioners have begun to incorporate variable-speed compressors and variable-opening expansion valves, together with feedback control to improve the performance and energy efficiency. However, for the compressor there usually exists a low-speed limit below which its speed can not be continuously modulated unless it is completely turned off. When the air-conditioning system is operated in light-thermal-load conditions, the low-speed limit causes the compressor to run in an on-off manner which can significantly degrade the performance and efficiency. In this paper, a dynamic switching strategy is proposed for such scenarios. The strategy is basically an integration of a cascading control structure, an intuitive switching strategy, and a dynamic compensator. While the control structure provides the nominal performance, the intuitive switching strategy and the dynamic compensator together can account for the compressor's low-speed limitation. Theoretical analysis reveals that when the output matrix of the dynamic compensator is chosen properly, the proposed strategy can effectively reduce the output error caused by the on-off operation of the compressor. Experiments also demonstrate that the proposed strategy can simultaneously provide better regulation for the indoor temperature and improve the energy efficiency at steady state.

  12. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  13. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing: a review study.

    Science.gov (United States)

    Wu, Qinghua; Kuča, Kamil; Humpf, Hans-Ulrich; Klímová, Blanka; Cramer, Benedikt

    2017-02-01

    Deoxynivalenol (DON), the most commonly occurring trichothecene in nature, may affect animal and human health through causing diarrhea, vomiting, gastrointestinal inflammation, and immunomodulation. DON-3-glucoside (DON-3G) as a major plant metabolite of the mycotoxin is another "emerging" food safety issue in recent years. Humans may experience potential health risks by consuming DON-contaminated food products. Thus, it is crucial for human and animal health to study also the degradation of DON and DON-3G during thermal food processing. Baking, boiling, steaming, frying, and extrusion cooking are commonly used during thermal food processing and have promising effects on the reduction of mycotoxins in food. For DON, however, the observed effects of these methods, as reported in numerous studies, are ambiguous and do not present a clear picture with regard to reduction or transformation. This review summarized the influence of thermal processing on the stability of DON and the formation of degradation/conversion products. Besides this, also a release of DON and DON-3G from food matrix as well as the release of DON from DON-3G during processing is discussed. In addition, some conflicting findings as reported from the studies on thermal processing as well as cause-effect relationships of the different thermal procedures are explored. Finally, the potential toxic profiles of DON degradation products are discussed as well when data are available.

  14. The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions

    Science.gov (United States)

    Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.

    2018-03-01

    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.

  15. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    Science.gov (United States)

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  16. Thermal fatigue testing of a diffusion-bonded beryllium divertor mock-up under ITER relevant conditions

    International Nuclear Information System (INIS)

    Youchison, D.L.; Guiniiatouline, R.; Watson, R.D.

    1994-01-01

    Thermal response and thermal fatigue tests of four 5 mm thick beryllium tiles on a Russian divertor mock-up were completed on the Electron Beam Test System at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an OFHC copper saddleblock and a DSCu (MAGT) tube containing a porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m 2 and surface temperatures near 300 degrees C using 1.4 MPa water at 5.0 m/s flow velocity and an inlet temperature of 8-15 degrees C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m 2 and surface temperatures up to 690 degrees C before debonding at 10 MW/m 2 . A third tile debonded after 9200 thermal fatigue cycles at 5 MW/m 2 , while another debonded after 6800 cycles. In all cases, fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. During thermal cycling, a gradual loss of porous coating produced increasing sample temperatures. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER relevant conditions without failure. However, the reliability of the diffusion bonded Joint remains a serious issue

  17. The field fluctuational model of thermally stimulated processes in ferroelectric LiNbO3

    International Nuclear Information System (INIS)

    Tale, I.; Tale, V.; Rosa, J.

    1983-01-01

    The thermally stimulated processes in the x-irradiated LiNbO 3 crystals were studied by the fractional glow technique. The trap ionization with unusually high values of the mean activation energy and the effective frequency factor as well as decreasing the activation energy of the traps when the temperature increased from 150-180 K were observed. It is suggested that all these effects are due to the ion-fluctuation process (the electric field generated by thermal reorientation of dipoles). (author)

  18. Studies in the statistical and thermal properties of hadronic matter under some extreme conditions

    International Nuclear Information System (INIS)

    Chase, K.C.; Mekjian, A.Z.; Bhattacharyya, P.

    1997-01-01

    The thermal and statistical properties of hadronic matter under some extreme conditions are investigated using an exactly solvable canonical ensemble model. A unified model describing both the fragmentation of nuclei and the thermal properties of hadronic matter is developed. Simple expressions are obtained for quantities such as the hadronic equation of state, specific heat, compressibility, entropy, and excitation energy as a function of temperature and density. These expressions encompass the fermionic aspect of nucleons, such as degeneracy pressure and Fermi energy at low temperatures and the ideal gas laws at high temperatures and low density. Expressions are developed which connect these two extremes with behavior that resembles an ideal Bose gas with its associated Bose condensation. In the thermodynamic limit, an infinite cluster exists below a certain critical condition in a manner similar to the sudden appearance of the infinite cluster in percolation theory. The importance of multiplicity fluctuations is discussed and some recent data from the EOS collaboration on critical point behavior of nuclei can be accounted for using simple expressions obtained from the model. copyright 1997 The American Physical Society

  19. Photon-induced Processing of Interstellar Ices in the Laboratory. Focus on Their Non-thermal Desorption.

    Science.gov (United States)

    Martin-Domenech, Rafael; Munoz Caro, Guillermo; Cruz-Diaz, Gustavo A.; Oberg, Karin I.

    2018-06-01

    Some of the processes that take place in the interstellar medium (ISM)can be simulated in laboratories on Earth under astrophysically relevant conditions. For example, the energetic processing of the ice mantles that accrete on top of dust grains in the coldest regions of the ISM, leading to the production of new species and their desorption to the gas phase. In particular, observation of complex organic molecules (COMs) in cold interstellar environments stress the need for not only a solid state formation but also for non-thermal desorption mechanisms that can account for the observed abundances in regions where thermal desorption is inhibited. Laboratory Astrophysics can be used to test different non-thermal desorption processes and extract yields than can be extrapolated to the astrophysical scenario with theoretical models. 0th generation COMs like CH3OH and H2CO can be formed at very low temperatures. In this talk, we present laboratory simulations of the UV photoprocessing of a binary ice mixture composed by water (the main component of astrophysical ices) and methane. Formation of CO, CO2, CH3OH and H2CO was confirmed by IR spectroscopy and subsequent TPD. At the same time, photodesorption of CO and H2CO was detected by means of a Quadrupole Mass Spectrometer, with yields on the order of 10-4 and 10-5 molecules per incident photon, respectively. In general, photodesorption can take place through a direct mechanism, where the absorbing molecule (or its photofragments) are desorbed; or through an indirect mechanism where the absorbed energy is transferred to a surface molecule which is the one finally desorbing. In the case of photoproducts, the evolution of the photodesorption yield gives information on the photodesorption mechanism: a constant photodesorption yield is observed when the photoproducts are desorbed right after their formation; while an increasing yield is measured when the photoproducts are desorbed later after energy transfer from another

  20. Welding thermal cycle-triggered precipitation processes in steel S700MC subjected to the thermo-mechanical control processing

    OpenAIRE

    Górka J.

    2017-01-01

    This study presents tests concerned with welding thermal process-induced precipitation processes taking place in 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP) with accelerated cooling. The thermomechanical processing of steel S700MC leads to its refinement, structural defects and solutioning with hardening constituents. Tests of thin foils performed using a transmission electron microscope revealed that the hardening of steel S700MC was primarily caused by...

  1. Thermalydraulic processes in the reactor coolant system of a BWR under severe accident conditions

    International Nuclear Information System (INIS)

    Hodge, S.A.

    1990-01-01

    Boiling water reactors (BWRs) incorporate many unique structural features that make their expected response under severe accident conditions very different from that predicted in the case of pressurized water reactor accident sequences. Automatic main steam isolation valve (MIV) closure as the vessel water level approaches the top of the core would cause reactor vessel isolation while automatic recirculation pump trip would limit the in-vessel flows to those characteristic of natural circulation (as disturbed by vessel relief valve actuation). This paper provides a discussion of the BWR control blade, channel box, core plate, control rod guide tube, and reactor vessel safety relief valve (SRV) configuration and the effects of these structural components upon thermal hydraulic processes within the reactor vessel under severe accident conditions. The dominant BWR severe accident sequences as determined by probabilistic risk assessment are described and the expected timing of events for the unmitigated short-term station blackout severe accident sequence at the Peach Bottom atomic power station is presented

  2. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    Directory of Open Access Journals (Sweden)

    Yu. A. Rounov

    2004-01-01

    Full Text Available The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  3. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  4. Hypothetical accident conditions free drop and thermal tests USA/5791/BLF (ERDA-AL)

    International Nuclear Information System (INIS)

    Blankenship, R.W.

    1980-05-01

    The USA/5791/BLF (ERDA-AL) shipping container with rolled-top food pack cans as inner containers is evaluated under conditions required by 10 CFR 71.42. One kilogram of depleted uranium as UO 2 was packaged in each of the inner containers. After completion of a free drop test and a simulated thermal test, the maximum observed leakage of UO 2 for the following week was 3.0 μg. This leakage is well below the allowable leakage per week for most plutonium isotopic mixtures. Using the examples provided, any plutonium isotopic mixture can be easily compared with the allowable leakage per week. Test conditions and results are reported

  5. Colour centre recovery in yttria-stabilised zirconia: photo-induced versus thermal processes

    Science.gov (United States)

    Costantini, Jean-Marc; Touati, Nadia; Binet, Laurent; Lelong, Gérald; Guillaumet, Maxime; Beuneu, François

    2018-05-01

    The photo-annealing of colour centres in yttria-stabilised zirconia (YSZ) was studied by electron paramagnetic resonance spectroscopy upon UV-ray or laser light illumination, and compared to thermal annealing. Stable hole centres (HCs) were produced in as-grown YSZ single crystals by UV-ray irradiation at room temperature (RT). The HCs produced by 200-MeV Au ion irradiation, as well as the F+-type centres (? centres involving oxygen vacancies) were left unchanged upon UV illumination. In contrast, a significant photo-annealing of the latter point defects was achieved in 1.4-MeV electron-irradiated YSZ by 553-nm laser light irradiation at RT. Almost complete photo-bleaching was achieved by laser irradiation inside the absorption band of ? centres centred at a wavelength 550 nm. Thermal annealing of these colour centres was also followed by UV-visible absorption spectroscopy showing full bleaching at 523 K. Colour-centre evolutions by photo-induced and thermally activated processes are discussed on the basis of charge exchange processes between point defects.

  6. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  7. Thermal behaviour of high burnup PWR fuel under different fill gas conditions

    International Nuclear Information System (INIS)

    Tverberg, T.

    2001-01-01

    During its more than 40 years of existence, a large number of experiments have been carried out at the Halden Reactor Project focusing on different aspects related to nuclear reactor fuel. During recent years, the fuels testing program has mainly been focusing on aspects related to high burnup, in particular in terms of fuel thermal performance and fission gas release, and often involving reinstrumentation of commercially irradiated fuel. The paper describes such an experiment where a PWR rod, previously irradiated in a commercial reactor to a burnup of ∼50 MWd/kgUO 2 , was reinstrumented with a fuel central oxide thermocouple and a cladding extensometer together with a high pressure gas flow line, allowing for different fill gas compositions and pressures to be applied. The paper focuses on the thermal behaviour of such LWR rods with emphasis on how different fill gas conditions influence the fuel temperatures and gap conductance. Rod growth rate was also monitored during the irradiation in the Halden reactor. (author)

  8. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    Science.gov (United States)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  9. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  10. Metallurgical properties of reduced activation martensitic steel Eurofer'97 in the as-received condition and after thermal ageing

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Serrano, M.; Hernandez-Mayoral, M.

    2002-01-01

    This paper describes the microstructural studies and the mechanical testing (hardness, tensile and charpy tests) performed on the Eurofer'97 steel in the as-received condition and after thermal ageing treatments up to 600 deg. C. In addition, fracture toughness tests on the as-received condition have been carried out in order to determine the Master Curve. During the thermal ageing treatments studied (500 deg. C/5000 h and 600 deg. C/1000 h) the general microstructure of the steel (tempered martensite with M 23 C 6 and MX precipitates) remained stable. Only a slight growth of the particles has been observed. In terms of mechanical properties, the Eurofer'97 steel exhibited similar values of tensile properties (tensile and yield strength) and ductile-brittle transition temperature regardless of the material condition studied.

  11. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion.

    Science.gov (United States)

    Wickman, B; Bastos Fanta, A; Burrows, A; Hellman, A; Wagner, J B; Iandolo, B

    2017-01-16

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance.

  12. Thermal and mechanical cutting of concrete and steel

    International Nuclear Information System (INIS)

    Kloj, G.; Tittel, G.

    1984-01-01

    Various thermal and mechanical processes for dismantling radioactive large components and concrete structures were investigated in order to determine the optimal handling conditions and their respective efficiency. For the thermal processes, the separation of heavy concrete and steel components by means of oxygen lances, powder cutting, ocyacetylene cutting, and plasma cutting processes were tested. In order to gain the necessary data for designing filtering equipment with regard to use in nuclear power stations, the amount of dust deposition and particle size distribution for these thermal processes were measured. The largest particle size proportion occurs for a particle size of ca. 0.3 μm. For the mechanical processes, stationary saws were used. Due to the large dimensions of the components which are to be found in a nuclear installation, it is not possible to use such saws for the initial dismantling. These saws can be used for both low-alloy and austenitic types of steel, and for separating materials not containing iron. In order to compare the efficiency of the saws with that of the thermal processes, to some extent the same test pieces were used that were used for the thermal tests. The advantage of the saw technique in comparison to the thermal separation processes lies in that next to no gas or dust contamination can become released. Also, the amount of shavings produced (secondary waste) is low. Furthermore, some of the saws can be used under remote control

  13. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  14. Investigation of Thermal Comfort Conditions in Higher Education Facilities: A Case Study for Engineering Faculty in Edirne

    Directory of Open Access Journals (Sweden)

    E. Mıhlayanlar

    2017-02-01

    Full Text Available In this study, a higher education institution in Edirne (Trakya University Engineering Faculty is investigated for indoor thermal comfort conditions of the classrooms (indoor temperature, relative humidity, average radiant temperature, “Satisfaction from thermal environment” (PMV and “Dissatisfaction from thermal environment” (PPD. The classrooms in the institution are heated by a central heating system and utilise natural ventilation system. Measurements were taken with the proper devices at the same time of the weekdays during lecture times in winter (heating season in December. The results obtained from measurements are given in graphics and compared with the values given in ASHRAE 55 and ISO 7730 standards.

  15. Modification of Banding in Dual-Phase Steels via Thermal Processing

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Thomas, L. S.; Bos, C.

    2014-01-01

    The potential to utilize controlled thermal processing to minimize banding in a DP780 steel with 2 wt pct Mn was evaluated on samples processed on a Gleeble® 3500 thermomechanical processing simulator. All processing histories were selected to result in final dual-phase steel microstructures...... simulating microstructures achievable during annealing of initially cold rolled sheet. Strip samples were processed to evaluate the effects of heating rate, annealing time, annealing temperature, and cooling rate. The degree of banding in the final microstructures was evaluated with standard light optical...... microscopic techniques. Results are presented to illustrate that the extent of banding depended on control of both heating and cooling rates, and a specific processing history based on a two-stage heating rate can be used to minimize visible banding in selected final heat treated products....

  16. EPR STUDIES OF THERMALLY STERILIZED VASELINUM ALBUM.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used for examination of free radicals in thermally treated vaselinum album (VA). Thermal treatment in hot air as sterilization process was tested. Conditions of thermal sterilization were chosen according to the pharmaceutical norms. Vaselinum album was heated at the following conditions (T--temperature, t--time): T = 160°C and t = 120 min, T = 170°C and t = 60 min and T = 180°C and t = 30 min. The aim of this work was to determine concentration and free radical properties of thermally sterilized VA. EPR analysis for VA was done 15 min after sterilization. EPR measurements were done at room temperature. EPR spectra were recorded in the range of microwave power of 2.2-70 mW. g-Factor, amplitudes (A) and line width (ΔBpp) of the spectra were determined. The shape of the EPR spectra was analyzed. Free radical concentration (N) in the heated samples was determined. EPR spectra were not obtained for the non heated VA. EPR spectra were detected for all thermally sterilized samples. The spectra revealed complex character, their asymmetry depends on microwave power. The lowest free radicals concentration was found for the VA sterilized at 180°C during 30 min. EPR spectroscopy is proposed as the method useful for optimization of sterilization process of drugs.

  17. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2016-01-01

    Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.

  18. THERMAL PROCESSING OF PHOSPHOGYPSUM WITH USING ENERGY OF INCINERATED SOLID HOUSEHOLD WASTE

    Directory of Open Access Journals (Sweden)

    KROT O. P.

    2017-05-01

    Full Text Available Summary. The use of resources that have not been directly used for their intended purpose is one of the important tasks of sustainable urban development. The need for an integrated approach to the problem of waste management is realized all over the world. In recent decades, there has been a trend in Ukraine for a significant increase in waste. European experience in handling solid domestic waste uses various processing methods: recycling on the basis of separate collection, sorting, composting and thermal processing with generation of thermal and electric energy. In Ukraine, the most common method of handling waste remains burial in landfills that do not meet European standards, are not properly equipped, they do not comply with the norms and rules of storage. This leads to contamination of groundwater, as well as to the release into the atmosphere of various compounds. No less problem is the accumulation of phosphogypsum in industrial waste dumps. It is necessary to develop innovative technology of a complex for utilization of phosphogypsum using thermal energy of solid domestic waste. The article compares the technological characteristics of aggregates for incineration of solid waste and the production of semi-aqua gypsum to identify the possibility of their interfacing, and also formulated tasks for eliminating inconsistencies in interfaced technologies. The equipment of thermal units of interfaced technologies is offered.

  19. Limiting conditional distributions for birth-death processes

    NARCIS (Netherlands)

    Kijima, M.; Nair, M.G.; Pollett, P.K.; van Doorn, Erik A.

    1997-01-01

    In a recent paper one of us identified all of the quasi-stationary distributions for a non-explosive, evanescent birth-death process for which absorption is certain, and established conditions for the existence of the corresponding limiting conditional distributions. Our purpose is to extend these

  20. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  1. Deconvolution of Thermal Emissivity Spectra of Mercury to their Endmember Counterparts measured in Simulated Mercury Surface Conditions

    Science.gov (United States)

    Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.

    2017-12-01

    The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA Bepicolombo mission to Mercury will map the thermal emissivity at wavelength range of 7-14 μm and spatial resolution of 500 m/pixel [1]. Mercury was also imaged at the same wavelength range using the Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii with the minimum spatial coverage of 400-600km/spectra which blends all rocks, minerals, and soil types [2]. Therefore, the study [2] used quantitative deconvolution algorithm developed by [3] for spectral unmixing of this composite thermal emissivity spectrum from telescope to their respective areal fractions of endmember spectra; however, the thermal emissivity of endmembers used in [2] is the inverted reflectance measurements (Kirchhoff's law) of various samples measured at room temperature and pressure. Over a decade, the Planetary Spectroscopy Laboratory (PSL) at the Institute of Planetary Research (PF) at the German Aerospace Center (DLR) facilitates the thermal emissivity measurements under controlled and simulated surface conditions of Mercury by taking emissivity measurements at varying temperatures from 100-500°C under vacuum conditions supporting MERTIS payload. The measured thermal emissivity endmember spectral library therefore includes major silicates such as bytownite, anorthoclase, synthetic glass, olivine, enstatite, nepheline basanite, rocks like komatiite, tektite, Johnson Space Center lunar simulant (1A), and synthetic powdered sulfides which includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Using such specialized endmember spectral library created under Mercury's conditions significantly increases the accuracy of the deconvolution model results. In this study, we revisited the available telescope spectra and redeveloped the algorithm by [3] by only choosing the endmember spectral library created at PSL for unbiased model

  2. Triaxial slide-hold-slide shear experiment of sedimentary rock under drain condition

    International Nuclear Information System (INIS)

    Kishida, Kiyoshi; Yano, Takao; Elsworth, Derek; Yasuhara, Hideaki; Nakashima, Shinichiro

    2011-01-01

    When discussing the mechanical and hydro-mechanical properties of rock masses under the long-term holding, the variation of rock structure and the change of shear band condition should be discussed in considering the effect of thermal and chemical influences. In this research, the triaxial shear experiment under drain condition was conducted through sedimentary rock, and in the residual stress state, the slide-hold-slide processes were applied to these triaxial experiments. The experiments were carried out in 3 kinds of confining conditions and 2 kinds of thermal conditions. Consequently, the healing phenomena can be observed and the shear strength recovery is also confirmed in process of the holding time. (author)

  3. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    Science.gov (United States)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  4. Optimum thermal sizing and operating conditions for once through steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Ju, Kyongin; Im, Inyoung; Kim, Eunkee [KEPCO Engineering and Construction Company., Inc., Daejeon (Korea, Republic of)

    2014-10-15

    The steam generator is designed to be optimized so as to remove heat and to produce steam vapor. Because of its importance, theoretical and experimental researches have been performed on forced convection boiling heat transfer. The purpose of this study is to predict the thermal behavior and to perform optimum thermal sizing of once through steam generator. To estimate the tube thermal sizing and operating conditions of the steam generator, the analytical modeling is employed on the basis of the empirical correlation equations and theory. The optimized algorithm model, Non-dominated Sorting Genetic Algorithm (NSGA)-II, uses for this analysis. This research is focused on the design of in-vessel steam generator. An one dimensional analysis code is developed to evaluate previous researches and to optimize steam generator design parameters. The results of one-dimensional analysis need to be verified with experimental data. Goals of multi-objective optimization are to minimize tube length, pressure drop and tube number. Feedwater flow rate up to 115.425kg/s is selected so as to have margin of feedwater temperature 20 ..deg. C. For the design of 200MWth once through steam generator, it is evaluated that the tube length shall be over 12.0m for the number of tubes, 2500ea, and the length of the tube shall be over 8.0m for the number of tubes, 4500ea. The parallel coordinates chart can be provided to determine the optimal combination of number of tube, pressure drop, tube diameter and length.

  5. Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries

    International Nuclear Information System (INIS)

    Chee, Yi Shen; Ting, Tiew Wei; Hung, Yew Mun

    2015-01-01

    The effect of thermal asymmetrical boundaries on entropy generation of viscous dissipative flow of forced convection in thermal non-equilibrium porous media is analytically studied. The two-dimensional temperature, Nusselt number and entropy generation contours are analysed comprehensively to provide insights into the underlying physical significance of the effect on entropy generation. By incorporating the effects of viscous dissipation and thermal non-equilibrium, the first-law and second-law characteristics of porous-medium flow are investigated via various pertinent parameters, i.e. heat flux ratio, effective thermal conductivity ratio, Darcy number, Biot number and averaged fluid velocity. For the case of symmetrical wall heat flux, an optimum condition with a high Nusselt number and a low entropy generation is identified at a Darcy number of 10 −4 , providing an ideal operating condition from the second-law aspect. This type of heat and fluid transport in porous media covers a wide range of engineering applications, involving porous insulation, packed-bed catalytic process in nuclear reactors, filtration transpiration cooling, and modelling of transport phenomena of microchannel heat sinks. - Highlights: • Effects of thermal asymmetries on convection in porous-medium are studied. • Exergetic effectiveness of porous media with thermal asymmetries is investigated. • 2-D temperature, Nusselt number and entropy generation contours are analyzed. • Significance of viscous dissipation in entropy generation is scrutinized. • Significance of thermal non-equilibrium in entropy generation is studied

  6. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    Science.gov (United States)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  7. Aggregation of egg white proteins with pulsed electric fields and thermal processes.

    Science.gov (United States)

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu; Sun, Qianyan

    2016-08-01

    Pulsed electric field (PEF) processing is progressing towards application for liquid egg to ensure microbial safety. However, it usually causes protein aggregation, and the mechanism is still unclear. In this study, egg white protein was applied to investigate the changes in protein structure and mechanism of aggregates formation and a comparison was made with thermal treatment. Soluble protein content decreased with the increase of turbidity after both treatments. Fluorescence intensity and free sulfhydryl content were increased after being treated at 70 °C for 4 min. Less-remarkable changes of hydrophobicity were observed after PEF treatments (30 kV cm(-1) , 800 µs). Soluble and insoluble aggregates were observed by thermal treatment, and disulfide bonds were the main binding forces. The main components of insoluble aggregates formed by thermal treatment were ovotransferrin (30.58%), lysozyme (18.47%) and ovalbumin (14.20%). While only insoluble aggregates were detected during PEF processes, which consists of ovotransferrin (11.86%), lysozyme (21.11%) and ovalbumin (31.07%). Electrostatic interaction played a very important role in the aggregates formation. PEF had a minor impact on the structure of egg white protein. PEF had insignificant influence on heat-sensitive protein, indicating that PEF has potential in processing food with high biological activity and heat sensitive properties. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Adaptive multiparameter control: application to a Rapid Thermal Processing process; Commande Adaptative Multivariable: Application a un Procede de Traitement Thermique Rapide

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mago, S J

    1995-12-20

    In this work the problem of temperature uniformity control in rapid thermal processing is addressed by means of multivariable adaptive control. Rapid Thermal Processing (RTP) is a set of techniques proposed for semiconductor fabrication processes such as annealing, oxidation, chemical vapour deposition and others. The product quality depends on two mains issues: precise trajectory following and spatial temperature uniformity. RTP is a fabrication technique that requires a sophisticated real-time multivariable control system to achieve acceptable results. Modelling of the thermal behaviour of the process leads to very complex mathematical models. These are the reasons why adaptive control techniques are chosen. A multivariable linear discrete time model of the highly non-linear process is identified on-line, using an identification scheme which includes supervisory actions. This identified model, combined with a multivariable predictive control law allows to prevent the controller from systems variations. The control laws are obtained by minimization of a quadratic cost function or by pole placement. In some of these control laws, a partial state reference model was included. This reference model allows to incorporate an appropriate tracking capability into the control law. Experimental results of the application of the involved multivariable adaptive control laws on a RTP system are presented. (author) refs

  9. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    Science.gov (United States)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  10. N,N-Diethyl-1-Tosyl-3-Indoleglyoxylamide as a Dienophile in Diels-Alder Reactions. Hyperbaric vs. Thermal Conditions

    Directory of Open Access Journals (Sweden)

    B. Biolatto

    2000-03-01

    Full Text Available Under high pressure conditions, the Diels-Alder reaction involving N,N-diethyl-1-tosyl-3-indoleglyoxylamide and 1-(N-acetyl-N-propylamino-1,3-butadiene produces a highly functionalized intermediate for the synthesis of Indole Alkaloids, in shorter times and higher yields than under thermal conditions.

  11. Emission of Polychlorinated Naphthalenes during Thermal Related Processes

    Science.gov (United States)

    Liu, Guorui; Zheng, Minghui; Du, Bing; Liu, Wenbin; Zhang, Bing; Xiao, Ke

    2010-05-01

    Due to the structural similarity of polychlorinated naphthalenes (PCNs) to those of dioxins, PCNs exhibit toxicological properties similar to dioxins (Olivero-Verbel et al., 2004). Based on their high toxicity, persistence, bioaccumulation, and long-distance transmission, PCNs were also selected as a candidate POP for the UN-ECE (United Nations Economic Commission for Europe) POP protocol (Lerche et al., 2002). In addition, some studies suggested that PCNs contributed a greater proportion of the dioxin-like activity than polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) contributed in some locations (Kannan et al., 1998). However, the identification and quantitation for PCN sources are very scarce compared with PCDD/Fs. Understanding the emission levels and developing the emission inventory of PCNs is important for regulatory and source reduction purposes. In this study, several potential sources were preliminarily investigated for PCN release. Coking process (CP), iron ore sintering (IOS), and electric arc furnace steel making units (AF) were selected due to their huge activity level of industrial production in China. Municipal solid waste incineration (MSWI) and medical waste incineration (MWI) were also investigated because of the possible high concentration of PCNs in stack gas. Two plants were investigated for each thermal related process, except for MWI with one incinerator was investigated. The stack gas samples were collected by automatic isokinetic sampling system (Isostack Basic, TCR TECORA, Milan Italy). Isotope dilution high resolution gas chromatography coupled with high resolution mass spectrometry (HRGC/HRMS) technique was used for the identification and quantitation of PCN congeners. The concentrations of PCNs from the selected thermal processes were determined in this study. The average concentrations of total PCNs were 26 ng Nm-3 for CP, 65 ng Nm-3 for IOS, 720 ng Nm-3 for AF, 443 ng Nm-3 for MSWI, and

  12. Processes in N-channel MOSFETs during postirradiation thermal annealing

    International Nuclear Information System (INIS)

    Pejovic, M.; Jaksic, A.; Ristic, G.; Baljosevic, B.

    1997-01-01

    The processes during postirradiation thermal annealing of γ-ray irradiated n-channel MOSFETs with both wet and dry gate oxides are investigated. For both analysed technologies, a so-called ''latent'' interface trap buildup is observed, followed at very late annealing times by the decrease in the interface-trap density. A model is proposed that successfully accounts for the experimental results. Implications of observed effects for total dose hardness assurance test methods implementation are discussed. (author)

  13. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment

    International Nuclear Information System (INIS)

    Xochihua S M, M.C.

    1997-01-01

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO 2 if amount of O 2 is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author)

  14. Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics.

    Science.gov (United States)

    Unwin, John; Coldwell, Matthew R; Keen, Chris; McAlinden, John J

    2013-04-01

    Thermoplastics may contain a wide range of additives and free monomers, which themselves may be hazardous substances. Laboratory studies have shown that the thermal decomposition products of common plastics can include a number of carcinogens and respiratory sensitizers, but very little information exists on the airborne contaminants generated during actual industrial processing. The aim of this work was to identify airborne emissions during thermal processing of plastics in real-life, practical applications. Static air sampling was conducted at 10 industrial premises carrying out compounding or a range of processes such as extrusion, blown film manufacture, vacuum thermoforming, injection moulding, blow moulding, and hot wire cutting. Plastics being processed included polyvinyl chloride, polythene, polypropylene, polyethylene terephthalate, and acrylonitrile-butadiene-styrene. At each site, static sampling for a wide range of contaminants was carried out at locations immediately adjacent to the prominent fume-generating processes. The monitoring data indicated the presence of few carcinogens at extremely low concentrations, all less than 1% of their respective WEL (Workplace Exposure Limit). No respiratory sensitizers were detected at any sites. The low levels of process-related fume detected show that the control strategies, which employed mainly forced mechanical general ventilation and good process temperature control, were adequate to control the risks associated with exposure to process-related fume. This substantiates the advice given in the Health and Safety Executive's information sheet No 13, 'Controlling Fume During Plastics Processing', and its broad applicability in plastics processing in general.

  15. Radioactive spent resins conditioning by the hot super-compaction process

    International Nuclear Information System (INIS)

    Roth, Andreas; Centner, Baudouin; Lemmens, Alain

    2007-01-01

    Spent ion exchanger media are considered to be problematic waste that, in many cases, requires special approaches and precautions during its immobilization to meet the acceptance criteria for disposal. The waste acceptance criteria define, among others, the quality of waste forms for disposal, and therefore will sometimes define appropriate treatment options. The selection of treatment options for spent ion exchange materials must consider their physical and chemical characteristics. Basically, the main methods for the treatment of spent organic ion exchange materials, following to pretreatment methods are: - Direct immobilization, producing a stable end product by using Cement, Bitumen, Polymer or High Integrity Containers, - The destruction of the organic compounds by using Thermochemical processes or Oxidation to produce an inorganic intermediate product that may or may not be further conditioned for storage and/or disposal, - The complete removal of the resin inner structural water by a thermal process. After a thorough technical economical analysis, Tractebel Engineering selected the Resin Hot Compaction Process to be installed at Tihange Nuclear Power Plant. The Resin Hot Compaction Process is used to make dense homogenous organic blocks from a wide range of particulate waste. In this process spent resins are first dewatered and dried to remove the inner structural water content. The drying takes place in a drying vessel that holds the contents of two 200 L drums (Figure). In the oil heated drying and mixing unit, the resins are heated to the necessary process temperature for the hot pressing step and then placed into special metal drums, which are automatically lidded and immediately transferred to a high force compactor. After high force compaction the pellets are transferred to a measuring unit, where the dose rate, height and weight are automatically measured and recorded. A volume reduction factor of approximately up to four (depending on the type of

  16. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  17. Assessing Thermal Comfort Due to a Ventilated Double Window

    Science.gov (United States)

    Carlos, Jorge S.; Corvacho, Helena

    2017-10-01

    Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.

  18. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes

    Science.gov (United States)

    Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng

    2018-03-01

    To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.

  19. Mathematical Foundation Based Inter-Connectivity modelling of Thermal Image processing technique for Fire Protection

    Directory of Open Access Journals (Sweden)

    Sayantan Nath

    2015-09-01

    Full Text Available In this paper, integration between multiple functions of image processing and its statistical parameters for intelligent alarming series based fire detection system is presented. The proper inter-connectivity mapping between processing elements of imagery based on classification factor for temperature monitoring and multilevel intelligent alarm sequence is introduced by abstractive canonical approach. The flow of image processing components between core implementation of intelligent alarming system with temperature wise area segmentation as well as boundary detection technique is not yet fully explored in the present era of thermal imaging. In the light of analytical perspective of convolutive functionalism in thermal imaging, the abstract algebra based inter-mapping model between event-calculus supported DAGSVM classification for step-by-step generation of alarm series with gradual monitoring technique and segmentation of regions with its affected boundaries in thermographic image of coal with respect to temperature distinctions is discussed. The connectedness of the multifunctional operations of image processing based compatible fire protection system with proper monitoring sequence is presently investigated here. The mathematical models representing the relation between the temperature affected areas and its boundary in the obtained thermal image defined in partial derivative fashion is the core contribution of this study. The thermal image of coal sample is obtained in real-life scenario by self-assembled thermographic camera in this study. The amalgamation between area segmentation, boundary detection and alarm series are described in abstract algebra. The principal objective of this paper is to understand the dependency pattern and the principles of working of image processing components and structure an inter-connected modelling technique also for those components with the help of mathematical foundation.

  20. Estimating envelope thermal characteristics from single point in time thermal images

    Science.gov (United States)

    Alshatshati, Salahaldin Faraj

    Energy efficiency programs implemented nationally in the U.S. by utilities have rendered savings which have cost on average 0.03/kWh. This cost is still well below generation costs. However, as the lowest cost energy efficiency measures are adopted, this the cost effectiveness of further investment declines. Thus there is a need to more effectively find the most opportunities for savings regionally and nationally, so that the greatest cost effectiveness in implementing energy efficiency can be achieved. Integral to this process. are at scale energy audits. However, on-site building energy audits process are expensive, in the range of US1.29/m2-$5.37/m2 and there are an insufficient number of professionals to perform the audits. Energy audits that can be conducted at-scale and at low cost are needed. Research is presented that addresses at community-wide scales characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer U-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate U-values have been limited to rare steady exterior weather conditions. The approaches posed here are based upon the development two models first is a dynamic model of a building envelope component with unknown U-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model U-value and thermal capacitance are tuned in order to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. This model is developed simply to show that such a model cannot be relied upon to accurately estimate the U-value. The second is a data

  1. An optimal thermal condition for maximal chlorophyll extraction

    Directory of Open Access Journals (Sweden)

    Fu Jia-Jia

    2017-01-01

    Full Text Available This work describes an environmentally friendly process for chlorophyll extraction from bamboo leaves. Shaking water bath and ultrasound cleaner are adopted in this technology, and the influence of temperature of the water bath and ultrasonic cleaner is evaluated. Results indicated that there is an optimal condition for maximal yield of chlorophyll.

  2. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    Science.gov (United States)

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.

  3. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  4. Process-based quality for thermal spray via feedback control

    Science.gov (United States)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  5. Electro-thermal Modeling of Modern Power Devices for Studying Abnormal Operating Conditions

    DEFF Research Database (Denmark)

    Wu, Rui

    in industrial power electronic systems in the range above 10 kW. The failure of IGBTs can be generally classified as catastrophic failures and wear out failures. A wear out failure is mainly induced by accumulated degradation with time, while a catastrophic failure is triggered by a single-event abnormal....... The objective of this project has been to model and predict the electro-thermal behavior of IGBT power modules under abnormal conditions, especially short circuits. A thorough investigation on catastrophic failure modes and mechanisms of modern power semiconductor devices, including IGBTs and power diodes, has...

  6. Feasibility study for the installation of HVAC for a spa by means of energy recovery from thermal water. Pt. 1: Analysis of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, L.M. Lopez [Universidad de La Rioja, Dept. de Ingenieria Mecanica, Logrono (Spain); Tabares, J.L. Miguez; Viar, P. Fernandez [Universidad de Oviedo, E.T.S. Ingegieros de Minas, Oviedo (Spain); Alvarez, M. Gandara [ISOLUX Galicia, Vigo (Spain)

    2001-05-01

    The use of a low temperature geothermal spring together with the heat energy still contained in waste water from the different therapy systems installed in a spa (shower, jets, bathrooms, Jacuzzis, pools, ventilation processes) can significantly reduce the operating and maintenance costs of the installation, covering part of the air conditioning needs of the building and the heating of thermal water to the appropriate temperature for therapeutic use. The object of the present work is to study the possible energy use of two sources of thermal hot water (spring and waste water) by restructuring of the existing spa so that it is more efficient from both a technical and economic point of view. In this first part, hot water needs are calculated and consumption presented according to the operation schedule on different types of day. Comparison is then made with the contribution that the spring is capable of making and the evolution of the thermal water in the tanks is studied. In a second work, energy and economic analyses will be presented. (Author)

  7. Nonstationary thermal field in the parallelepiped in the mode of heat conduction under boundary conditions of first kind

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2016-01-01

    Full Text Available Analytical study of the processes of heat conduction is one of the main topics of modern engineering research in engineering, energy, nuclear industry, process chemical, construction, textile, food, geological and other industries. Suffice to say that almost all processes in one degree or another are related to change in the temperature condition and the transfer of warmth. It should also be noted that engineering studies of the kinetics of a range of physical and chemical processes are similar to the problems of stationary and nonstationary heat transfer. These include the processes of diffusions, sedimentation, viscous flow, slowing down the neutrons, flow of fluids through a porous medium, electric fluctuations, adsorption, drying, burning, etc. There are various methods for solving the classical boundary value problems of nonstationary heat conduction and problems of the generalized type: the method of separation of variables (Fourier method method; the continuation method; the works solutions; the Duhamel's method; the integral transformations method; the operating method; the method of green's functions (stationary and non-stationary thermal conductivity; the reflection method (method source. In this paper, based on the consistent application of the Laplace transform on the dimensionless time θ and finite sine integral transformation in the spatial coordinates X and Y solves the problem of unsteady temperature distribution on the mechanism of heat conduction in a parallelepiped with boundary conditions of first kind. As a result we have the analytical solution of the temperature distribution in the parallelepiped to a conductive mode free convection, when one of the side faces of the parallelepiped is maintained at a constant temperature, and the others with the another same constant temperature.

  8. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nakamiya

    2013-06-01

    Full Text Available We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method” using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”. Our new method detects vehicles based on tires’ thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8% out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  9. Robust vehicle detection under various environmental conditions using an infrared thermal camera and its application to road traffic flow monitoring.

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2013-06-17

    We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as "our previous method") using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as "our new method"). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  10. Ecological and economic interests in design process of thermal power plant

    International Nuclear Information System (INIS)

    Sander, M.

    1996-01-01

    In design process of thermal power plant various ecological and economic contradictory interests are brought in focus. Requests on environmental protection written in laws, standards and international treaties are increasing investment costs and energy production costs. In a design phase there is a task to reconcile these contradictory requests. The paper presents relationship between technology and environmental protection with a focus on air pollution. Air pollution and human health is considered taking in account the role of design phase in thermal power plants project and human health problems. International laws and standards are presented with moral dilemmas concerning low investment costs and high environmental standards. (author)

  11. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  12. Theoretical assessment of evaporation rate of isolated water drop under the conditions of cooling tower of thermal power plant

    Directory of Open Access Journals (Sweden)

    Shevelev Sergey

    2017-01-01

    Full Text Available The purpose of the work is numerical modelling of heat and mass transfer at evaporation of water drops under the conditions which are typical for a modern chimney-type cooling tower of a thermal power plant. The dual task of heat and mass transfer with movable boundary at convective cooling and evaporation for a ‘drop–humid air’ system in a spherical coordinate system has been solved. It has been shown that there is a rapid decline of water evaporation rate at the initial stage of the process according to temperature decrease of its surface. It has been stated that the effect of evaporation rate decrease appears greatly in the area of small radiuses.

  13. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation

    Science.gov (United States)

    Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri

    2017-11-01

    In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.

  14. Identification of characteristic aroma compounds in raw and thermally processed African giant snail (Achatina fulica).

    Science.gov (United States)

    Lasekan, Ola; Muniady, Megala; Lin, Mee; Dabaj, Fatma

    2018-04-24

    Food flavor appreciation is one of the first signals along with food appearance and texture encountered by consumers during eating of food. Also, it is well known that flavor can strongly influence consumer's acceptability judgment. The increase in the consumption of snail meat across the world calls for the need to research into the aroma compounds responsible for the distinctive aroma notes of processed snail meat. The odorants responsible for the unique aroma notes in thermally processed giant African snail meats were evaluated by means of aroma extract dilution analysis (AEDA), gas chromatography-olfactometry (GC-O) and odor activity values (OAVs) respectively. Results revealed significant differences in the aroma profiles of the raw and thermally processed snail meats. Whilst the aroma profile of the raw snail meat was dominated with the floral-like β-ionone and β-iso-methyl ionone, sweaty/cheesy-like butanoic acid, and the mushroom-like 1-octen-3-one, the boiled and fried samples were dominated with the thermally generated odorants like 2-methylpyrazine, 2,5-dimethylpyrazine, 2-acetylthiazole and 2-acetylpyridine. Finally, results have shown that sotolon, 2-acetyl-1-pyrroline, 2-furanmethanethiol, 2-methylbutanal, 1-octen-3-one, octanal, furanone, 2-methoxyphenol, 2-acetylpyridine, 2-acetylthiazole, and 2-methylpyrazine contributed to the overall aroma of the thermally processed snail meat.

  15. Numerical investigations of buoyancy-driven natural ventilation in a simple atrium building and its effect on the thermal comfort conditions

    International Nuclear Information System (INIS)

    Hussain, Shafqat; Oosthuizen, Patrick H.

    2012-01-01

    In the present study use of solar-assisted buoyancy-driven natural ventilation in a simple atrium building is explored numerically with particular emphasis on the thermal comfort conditions in the building. Initially various geometric configurations of the atrium space were considered in order to investigate airflows and temperature distributions in the building using a validated computational fluid dynamics (CFD) model. The Reynolds Averaged Navier–Stokes (RANS) modelling approach with the SST-k–ω turbulence model and the Discrete Transfer Radiation Model (DTRM) was used for the investigations. The steady-state governing equations were solved using a commercial CFD solver FLUENT © . From the numerical results obtained, it was noted that an atrium space integrated with a solar chimney would be a relatively better option to be used in an atrium building. In the geometry selected, the performance of the building in response to various changes in design parameters was investigated. The produced airflows and temperature distributions were then used to evaluate indoor thermal comfort conditions in terms of the thermal comfort indices, i.e. the well-known predicted mean vote (PMV) index, its modifications especially for natural ventilation, predicted percent dissatisfied (PPD) index and Percent dissatisfied (PD) factor due to draft. It was found that the thermal conditions in the occupied areas of the building developed as a result of the use of solar-assisted buoyancy-driven ventilation for the particular values of the design parameters selected are mostly in the comfortable zone. Finally, it is demonstrated that the proposed methodology leads to reliable thermal comfort predictions, while the effect of various design variables on the performance of the building is easily recognized. - Highlights: ► Numerical investigations were carried for the use of buoyancy-driven displacement ventilation in a simple atrium building. ► Effect of various atrium

  16. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate.

    Science.gov (United States)

    Ekpo, U; Ross, A B; Camargo-Valero, M A; Williams, P T

    2016-01-01

    Thermal hydrolysis and hydrothermal processing show promise for converting biomass into higher energy density fuels. Both approaches facilitate the extraction of inorganics into the aqueous product. This study compares the behaviour of microalgae, digestate, swine and chicken manure by thermal hydrolysis and hydrothermal processing at increasing process severity. Thermal hydrolysis was performed at 170°C, hydrothermal carbonisation (HTC) was performed at 250°C, hydrothermal liquefaction (HTL) was performed at 350°C and supercritical water gasification (SCWG) was performed at 500°C. The level of nitrogen, phosphorus and potassium in the product streams was measured for each feedstock. Nitrogen is present in the aqueous phase as organic-N and NH3-N. The proportion of organic-N is higher at lower temperatures. Extraction of phosphorus is linked to the presence of inorganics such as Ca, Mg and Fe in the feedstock. Microalgae and chicken manure release phosphorus more easily than other feedstocks. Copyright © 2015. Published by Elsevier Ltd.

  17. Demonstration of a batch vacuum thermal desorption process on hazardous and mixed waste

    International Nuclear Information System (INIS)

    Palmer, C.R.; McElwee, M.; Meyers, G.

    1995-01-01

    Many different waste streams have been identified at Department of Energy (DOE) facilities as having both hazardous organic and radioactive contaminants. There is presently only one permitted facility in which to manage these materials, and that facility has only limited capacity to process solid wastes. Over the past two years, Rust has been pilot testing a new thermal desorption process that is very well suited to these wastes, and has begun permitting and design of a unit for commercial operation. This paper presents both historic and recent pilot test data on the treatment of hazardous and mixed waste. Also described is the commercial unit. Rust's patented VAC*TRAX technology takes advantage of high vacuum to reduced operating temperature for the thermal desorption of organic contaminants from waste soils, sludges and other contaminated solids. This allows for economical thermal separation on relatively small sites (30 to 5,000 m 3 of waste). VAC*TRAX employs indirect heating; this, combined with a very low carrier gas flow, results in a vent flow rate of approximately 1 m 3 /min which allows for the use of control devices that would not be practical with conventional thermal technology. The unit is therefore ideally suited to processing mixed waste, since zero radioactive emissions can be maintained. An additional benefit of the technology is that the low operating temperature allows highly effective separation to be performed well below the degradation point for the solid components of a trash type waste stream, which constitutes a large fraction of the present mixed waste inventory

  18. Influence of Crucible Thermal Conductivity on Crystal Growth in an Industrial Directional Solidification Process for Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2016-01-01

    Full Text Available We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.

  19. Influences of different thermal processings in milk, bovine meat and frog protein structure.

    Science.gov (United States)

    Coura Oliveira, Tatiana; Lopes Lima, Samuel; Bressan, Josefina

    2013-01-01

    Several studies have associated the digestibility of proteins to its imunogenic potential. Though, it was objectified to evaluate the impact of the thermal processing with high and low temperatures on the proteins structure of three types of foods, by means of the digestibility in vitro and electroforesis en gel de poliacrilamida. The pasteurize was observed in such a way, firing 95 ºC during 15 minutes, how much freeze dried causes qualitative and quantitative modifications of constituent proteins of the food. The most sensible proteins to the increasing thermal processing order were beef, frog meat, and the last, cow milk. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  20. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...... effects are analyzed. The applied consolidation pressure is found to have a marked effect on the volumetric composition. A power-law relationship is found to well describe the found relations between the maximum obtainable fiber volume fraction and the consolidation pressure. The degree of fiber...