WorldWideScience

Sample records for thermal power rating

  1. Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2015-01-01

    Thermal loading of power devices are closely related to the reliability performance of the whole converter system. The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal...

  2. Loss and thermal model for power semiconductors including device rating information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2014-01-01

    The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...

  3. An estimation of reactor thermal power uncertainty using UFM-based feedwater flow rate in nuclear power plants

    International Nuclear Information System (INIS)

    Byung Ryul Jung; Ho Cheol Jang; Byung Jin Lee; Se Jin Baik; Woo Hyun Jang

    2005-01-01

    Most of Pressurized Water Reactors (PWRs) utilize the venturi meters (VMs) to measure the feedwater (FW) flow rate to the steam generator in the calorimetric measurement, which is used in the reactor thermal power (RTP) estimation. However, measurement drifts have been experienced due to some anomalies on the venturi meter (generally called the venturi meter fouling). The VM's fouling tends to increase the measured pressure drop across the meter, which results in indication of increased feedwater flow rate. Finally, the reactor thermal power is overestimated and the actual reactor power is to be reduced to remain within the regulatory limits. To overcome this VM's fouling problem, the Ultrasonic Flow Meter (UFM) has recently been gaining attention in the measurement of the feedwater flow rate. This paper presents the applicability of a UFM based feedwater flow rate in the estimation of reactor thermal power uncertainty. The FW and RTP uncertainties are compared in terms of sensitivities between the VM- and UFM-based feedwater flow rates. Data from typical Optimized Power Reactor 1000 (OPR1000) plants are used to estimate the uncertainty. (authors)

  4. A study of thermal-hydraulic requirements for increasing the power rates for natural-circulation boiling water reactors

    International Nuclear Information System (INIS)

    Yasuo, A.; Inada, F.; Hidaka, M.

    1992-01-01

    In this paper, the feasibility of higher power rates for natural-circulation boiling water reactors (BWRs) is studied with the objective of examining the flexibility of the plant power rate in constructing such plants to cope with the increasing demand for electricity. By applying existing one-dimensional design codes, the riser heights necessary to meet two major thermal-hydraulic requirements, i.e., critical power and core stability, are systematically calculated. Several restrictions on the maximum diameter and height of the pressure vessel are also considered because these restrictions could make construction impossible or drastically increase the construction costs. A very simple map of the dominant parameters for higher power rates is obtained. It is concluded that natural-circulation BWRs of >1000 MW (electric) will be feasible within the restrictions considered here

  5. Theoretical assessment of evaporation rate of isolated water drop under the conditions of cooling tower of thermal power plant

    Directory of Open Access Journals (Sweden)

    Shevelev Sergey

    2017-01-01

    Full Text Available The purpose of the work is numerical modelling of heat and mass transfer at evaporation of water drops under the conditions which are typical for a modern chimney-type cooling tower of a thermal power plant. The dual task of heat and mass transfer with movable boundary at convective cooling and evaporation for a ‘drop–humid air’ system in a spherical coordinate system has been solved. It has been shown that there is a rapid decline of water evaporation rate at the initial stage of the process according to temperature decrease of its surface. It has been stated that the effect of evaporation rate decrease appears greatly in the area of small radiuses.

  6. Power Electronics Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-07

    Thermal modeling was conducted to evaluate and develop thermal management strategies for high-temperature wide-bandgap (WBG)-based power electronics systems. WBG device temperatures of 175 degrees C to 250 degrees C were modeled under various under-hood temperature environments. Modeling result were used to identify the most effective capacitor cooling strategies under high device temperature conditions.

  7. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  8. Improving the Penetration of Wind Power with Dynamic Thermal Rating System, Static VAR Compensator and Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jiashen Teh

    2018-04-01

    Full Text Available The integration of renewable energy sources, especially wind energy, has been on the rise throughout power systems worldwide. Due to this relatively new introduction, the integration of wind energy is often not optimized. Moreover, owing to the technical constraints and transmission congestions of the power network, most of the wind energy has to be curtailed. Due to various factors that influence the connectivity of wind energy, this paper proposes a well-organized posterior multi-objective (MO optimization algorithm for maximizing the connections of wind energy. In this regard, the dynamic thermal rating (DTR system and the static VAR compensator (SVC have been identified as effective tools for improving the loadability of the network. The propose MO algorithm in this paper aims to minimize: (1 wind energy curtailment, (2 operation cost of the network considering all investments and operations, also known as the total social cost, and (3 SVC operation cost. The proposed MO problem was solved using the non-dominated sorting genetic algorithm (NSGA II and it was tested on the modified IEEE reliability test system (IEEE-RTS. The results demonstrate the applicability of the proposed algorithm in aiding power system enhancement planning for integrating wind energy.

  9. Thermal power measurement apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Thermal power measurements are important in nuclear power plants, fossil-fuel plants and other closed loop systems such as heat exchangers and chemical reactors. The main object of this invention is to determine the enthalpy of a fluid using only acoustically determined sound speed and correlating the speed with enthalpy. An enthalpy change is measured between two points in the fluid flow: the apparatus is described in detail. (U.K.)

  10. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  11. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  12. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  13. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  14. Investigation of analytical methods in thermal stratification analysis. Evaluation of flow rates through flow holes for normal and scram conditions of 40% power operation with AQUA code

    International Nuclear Information System (INIS)

    Doi, Yoshihiro; Muramatsu, Toshiharu

    1997-08-01

    Thermal stratification phenomena are observed in an upper plenum of liquid metal fast breeder reactors (LMFBRs) under reactor scram conditions, which give rise to thermal stress on structural components. Therefore it is important to evaluate characteristics of phenomena in the design of the internal structure in an LMFBR plenum. To evaluate flow rates through flow holes of the prototype fast breeder reactor, MONJU, numerical analyses were carried out with AQUA code for normal and scram conditions with 40% power operation. Through comparison of analysis results and measured temperature, thermal stratification phenomena in 300 second period after the scram was evaluated. Flow rate through the upper flow holes, the lower flow holes and annular gap between the inner barrel and the reactor vessel were evaluated with the measured temperature and the analysis results individually. (J.P.N.)

  15. Thermal electric power production

    International Nuclear Information System (INIS)

    Boehmer, S.

    2001-01-01

    The basic principle of a thermal power plant is to heat up water in the pipe system of a boiler to generate steam, which exits the boiler with high pressure and releases its energy to a tandem-arranged turbine. This energy is transmitted to a generator over a common shaft. The generated electricity is fed into the power supply system. The processed steam is condensed to water by means of a condenser and transferred back into the pipe system of the boiler (feed water circuit). In general the following techniques are applied for the combustion of solid, liquid and gaseous fuels: dry bottom boiler, wet bottom boiler, grate firing, fluidized bed combustion, gasification systems - integrated gasification combined cycle (IGCC), oil firing technique, gas firing technique. Residues from power plants are generated by the following processes and emission reduction measures: separation of bottom ash or boiler slag in the boiler; separation of fly ash (particulate matter) by means of filters or electric precipitators; desulphurization through lime additive processes, dry sorption or spray absorption processes and lime scrubbing processes; desulphurization according to Wellmann-Lord and to the Walther process; reduction of NO x emissions by selective catalytic reduction (SCR). In this case spent catalyst results as a waste unless it is recycled. No residues are generated by the following measures to reduce NO x emissions: minimization of nitrogen by selective non-catalytic reduction (SNCR); adaptations of the firing technology to avoid emissions - primary measures (low-NO x burners, CO reduction). However, this may change the quality of fly ash by increasing unburnt carbon. Combustion of fossil fuels (with the exception of gaseous fuels) and biomass generates large quantities of residues - with coal being the greatest contributor - either from the fuel itself in the form of ashes, or from flue gas cleaning measures. In coal-fired power plants huge amounts of inorganic residues

  16. AND THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alduhov Oleg Aleksandrovich

    2012-10-01

    Full Text Available Investigation of the atmospheric dispersion as part of the process of selection of sites to accommodate nuclear and thermal power plants is performed to identify concentration fields of emissions and to assess the anthropogenic impact produced on the landscape components and human beings. Scattering properties of the atmospheric boundary layer are mainly determined by the turbulence intensity and the wind field. In its turn, the turbulence intensity is associated with the thermal stratification of the boundary layer. Therefore, research of the atmospheric dispersion is reduced to the study of temperature and wind patterns of the boundary layer. Statistical processing and analysis of the upper-air data involves the input of the data collected by upper-air stations. Until recently, the upper-air data covering the standard period between 1961 and 1970 were applied for these purposes, although these data cannot assure sufficient reliability of assessments in terms of the properties of the atmospheric dispersion. However, recent scientific and technological developments make it possible to substantially increase the data coverage by adding the upper-air data collected within the period between 1964 and 2010. The article has a brief overview of BL_PROGS, a specialized software package designated for the processing of the above data. The software package analyzes the principal properties of the atmospheric dispersion. The use of the proposed software package requires preliminary development of a database that has the information collected by an upper-air station. The software package is noteworthy for the absence of any substantial limitations imposed onto the amount of the input data that may go up in proportion to the amount of the upper-air data collected by upper-air stations.

  17. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate (ρ28) in Aagesta Power Reactor Fuel

    International Nuclear Information System (INIS)

    Bernander, G.

    1967-09-01

    The epithermal-to-thermal neutron capture rate ratio ρ 28 in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured ρ 28 values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of ρ and ICR as calculated with the BURNUP lattice parameter code are favourable

  18. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate in Aagesta Power Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G

    1967-09-15

    The epithermal-to-thermal neutron capture rate ratio {rho}{sub 28} in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured {rho}{sub 28} values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of {rho} and ICR as calculated with the BURNUP lattice parameter code are favourable.

  19. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  20. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  1. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  2. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  3. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  4. Power Electronics Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics Thermal Management Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the investigates and develops thermal management strategies for power electronics systems that use wide-bandgap

  5. Concentration solar thermal power

    International Nuclear Information System (INIS)

    Livet, F.

    2011-01-01

    As the production of electricity by concentration solar power (CSP) installations is said to be a source of energy for the future, the author discusses past experiments (notably the French Thermis project), and the different techniques which are currently being used. He indicates the regions which appear to be the most appropriate for this technique. He presents the three main techniques: parabolic cylinder, tower, and Stirling cycle installations. He discusses the issue of intermittency. He proposes an assessment of prices and of their evolution, and indicates the investments made in different installations (in Italy, Spain, Germany and Portugal). He comments the case of hybrid installations (sun and gas), evokes the Desertec project proposed by the German industry which comprises a set of hybrid installations. He notices that there is no significant technological evolution for this process

  6. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    1981-01-01

    A thermal power plant reheat cycle system is described in which the discharge from a first expansion stage is reheated prior to expansion in a subsequent expansion stage. The primary coolant has a high sheet transfer rate and can accommodate temperature changes in the reheat vapor. (U.K.)

  7. Continuous hydrino thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L.; Zhao, Guibing; Good, William [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2011-03-15

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric. (author)

  8. Continuous hydrino thermal power system

    International Nuclear Information System (INIS)

    Mills, Randell L.; Zhao, Guibing; Good, William

    2011-01-01

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric.

  9. Solar thermal power meeting - Proceedings

    International Nuclear Information System (INIS)

    2011-07-01

    This document summarizes the presentations and debates of the first edition of the Solar thermal power meeting. Content: 1 - Opening talk (Jean-Louis BAL, SER); 2 - Solar thermal power, European and global road-maps (Cedric Philibert, IEA; Mariangels Perez Latorre, Estela); 3 - first round-table on the international development of solar energy (Philippe Lorec, DGEC France; Said Mouline, Aderee Morocco; Obaid Amrane, Masen Morocco; Kawther Lihidheb, ANME Tunisia; Abdelaziz Boumahra, Rouiba Eclairage, Algeria; Badis Derradji, NEAL Algeria; Yao Azoumah, Lesee, 2IE Foundation Burkina Faso; Mamadou Amadou Kane, MPEM Mauritania; Jean-Charles Mulet, Bertin Technologies); 4 - Second round-table on the French solar thermal offer for export (Georgina Grenon, DGEC; Stephanie Bouzigueseschmann, DG Tresor; Armand Pineda, Alstom; Florent Brunet, Mena-Areva; Roger Pujol, CNIM; Gilles David, Enertime; Michel Wohrer, Saed; Mathieu Vrinat, Sogreah; Marc Benmarraze, Solar Euromed; 5 - Presentation of Amisole - Moroccan association of solar and wind industries (Ahmed Squalli, Amisole); 6 - Third round-table on French research at the solar industry service (Gilles Flamant, Promes Lab. CNRS; Francois Moisan, Ademe; Tahar Melliti, CGI; Andre Joffre, Derbi; Michel Wohrer, Capenergies; 7 - Fourth round table on projects financing (Vincent Girard, Loan Officer BEI; Bertrand Marchais, Miga World Bank; Philippe Meunier, CDC Climat Groupe Caisse des Depots; Christian de Gromard, AFD; Laurent Belouze, Natixis; Piotr Michalowski, Loan Officer BEI); 8 - Closing of the meeting (Roger Pujol, SER)

  10. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  11. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  12. Analysis of thermal power calibration method

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.

    2000-01-01

    The methods for determining fuel element burnup have recently become interesting because of activities related to the shipment of highly enriched fuel elements back to the United States for final disposal before 2009. The most common and practical method for determining fuel element burnup in research reactors is reactor calculation. Experience has shown that burnup calculations become complicated and biased with uncertainties if a long period of reactor operation must be reproduced. Besides this, accuracy of calculated burnup is always limited with accuracy of reactor power calibration, since burnup calculation is based on calculated power density distribution, which is usually expressed in terms of power released per fuel element and normalised to the reactor power It is obvious that reactor thermal power calibration is very important for precise fuel element burnup calculation. Calculated fuel element burnup is linearly dependent on the thermal reactor power. The reactor power level may be determined from measured absolute thermal flux distribution across the core in the horizontal and vertical planes. Flux distributions are measured with activation of cadmium covered and bare foils irradiated by the steady reactor power. But it should be realised that this method is time consuming and not accurate. This method is practical only for zero power reactors and is in practice very seldom performed for other reactors (e.g. for TRIGA reactor in Ljubljana absolute thermal flux distribution was not performed since reactor reconstruction in 1991). In case of power reactors and research reactors in which a temperature rise across the core is produced and measured than a heat balance method is the most common and accurate method of determining the power output of the core. The purpose of this paper is to analyse the accuracy of calorimetric reactor power calibration method and to analyse the influence of control rod position on nuclear detector reading for TRIGA reactors

  13. Cooling towers for thermal power plants

    International Nuclear Information System (INIS)

    Chaboseau, J.

    1987-01-01

    After a brief recall on cooling towers testing and construction, this paper presents four examples of very large French nuclear power plant cooling towers, and one of an Australian thermal power plant [fr

  14. Availability Performance Analysis of Thermal Power Plants

    Science.gov (United States)

    Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.

    2018-03-01

    This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.

  15. Apparatus and method for thermal power generation

    International Nuclear Information System (INIS)

    Cohen, P.; Redding, A.H.

    1978-01-01

    An improved thermal power plant and method of power generation is described which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant

  16. KMRR thermal power measurement error estimation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Sim, B.S.; Lim, I.C.; Oh, S.K.

    1990-01-01

    The thermal power measurement error of the Korea Multi-purpose Research Reactor has been estimated by a statistical Monte Carlo method, and compared with those obtained by the other methods including deterministic and statistical approaches. The results show that the specified thermal power measurement error of 5% cannot be achieved if the commercial RTDs are used to measure the coolant temperatures of the secondary cooling system and the error can be reduced below the requirement if the commercial RTDs are replaced by the precision RTDs. The possible range of the thermal power control operation has been identified to be from 100% to 20% of full power

  17. Experiences of power-up rating in Taiwan

    International Nuclear Information System (INIS)

    Liao, C. C.; Lai, S. Y.; Chen, Y. B.

    2010-10-01

    Taiwan has six nuclear power reactors in operation, and two advanced reactors under construction. Measurement Uncertainty Recapture (MU R) type power up rates have been implemented for all the operating units. MU Rs are less than 2 percent and are achieved by using more advanced feedwater flow measurement devices to more precisely measure feedwater flow, which is used to calculate reactor thermal power. The other two types of power up rates are stretch power up rates (SPU) and extended power up rates (EPU). SPU are typically up to 7 percent and EPU are greater that 7 percent but less than 20%. The Atomic Energy Council (Aec) regulates the maximum thermal power level at which a nuclear power plant may operate. In order to increase the rated thermal power of a plant, utility needs to submit an application to the Aec for approval. Detailed safety analysis is required and will be thoroughly reviewed by Aec special task force to ensure the plant safety after implementing the power up rate. Important findings will be documented in the safety evaluation reports. In 2006, Tai power submitted Kuosheng nuclear power plants MU R application, which was the first power up rate application in Taiwan. Till middle of 2009, Tai power has completed the MU R project for all the existing units. The actual thermal power up rates of the six units are whit in the range of 0.3% to 1.5%, resulting in net 56.3 M We increase. Following the success of MU R, Tai power has lunched another project for SPU. In order to enhance the regulatory review process, Aec has drafted a guideline for SPU and EPU by mainly referencing U.S. experience. This guideline shall be beneficial to both licensee and regulatory body in either document preparation or safety review work for the future power up rate applications. (Author)

  18. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  19. Water pollution and thermal power stations

    International Nuclear Information System (INIS)

    Maini, A.; Harapanahalli, A.B.

    1993-01-01

    There are a number of thermal power stations dotting the countryside in India for the generation of electricity. The pollution of environment is continuously increasing in the country with the addition of new coal based power stations and causing both a menace and a hazard to the biota. The paper reviews the problems arising out of water pollution from the coal based thermal power stations. (author). 2 tabs

  20. Extended Power Up-rates

    International Nuclear Information System (INIS)

    Jon Ball

    2006-01-01

    Full text of publication follows: Nuclear energy is a reliable and cost-competitive global source of power. With rising oil and gas prices, nuclear continues to provide economic and environmental benefits. Extended Power Up-rate (EPU) provides a means for existing nuclear assets to generate increased power and substantially reduce electrical generation costs. GE Energy's Nuclear Business is the global leader in boiling water reactor (BWR) technology. The experience-base of plants that have successfully achieved EPU includes Spain, Switzerland, Sweden, Germany and the United States. The GE experience-base includes fourteen BWRs with over fifty-eight reactor-years of operating experience at EPU conditions. Other than the expected plant modifications needed to accommodate higher steam flows, flow-induced vibration (FIV) has been identified as the major area of concern when up-rating. Two plants have experienced damage to their steam dryers that has lead to an extensive program to improve the understanding of the effects of up-rates. This program includes extensive in-plant data collection, the development of a scale model test facility to study components susceptible to FIV and improvements in analytical techniques for evaluating loading on reactor internals. As global energy demands increase, oil and gas prices escalate, and environmental concerns over greenhouse effects challenge us to find environmentally friendly sources of energy, Nuclear is the most viable and economical source of power in the world. With a focused effort on plant reliability, existing plants can undergo Extended Power Up-rate, and continue to meet the ever-increasing energy demands in the world. (author)

  1. Power Electronics Thermal Management R&D

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert; Bennion, Kevin

    2016-06-08

    This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  2. Thermal Aspects Related to Power Assemblies

    Directory of Open Access Journals (Sweden)

    PLESCA, A.

    2010-02-01

    Full Text Available In many cases when a power assembly based on power semiconductors is used, catastrophic failure is the result of steep temperature gradient in the localized temperature distribution. Hence, an optimal heatsink design for certain industrial applications has become a real necessity. In this paper, the Pro/ENGINEER software with the thermal simulation integrated tool, Pro/MECHANICA, has been used for thermal study of a specific power semiconductor assembly. A series of steady-state and transient thermal simulations have been performed. The experimental tests have confirmed the simulation results. Therefore, the use of specific 3D modeling and simulation software allows to design special power semiconductor assemblies with a better thermal transfer between its heatsink and power electronic components at given operating conditions.

  3. Modelling of Power Fluxes during Thermal Quenches

    International Nuclear Information System (INIS)

    Konz, C.; Coster, D. P.; Lackner, K.; Pautasso, G.

    2005-01-01

    Plasma disruptions, i. e. the sudden loss of magnetic confinement, are unavoidable, at least occasionally, in present day and future tokamaks. The expected energy fluxes to the plasma facing components (PFCs) during disruptions in ITER lie in the range of tens of GW/m''2 for timescales of about a millisecond. Since high energy fluxes can cause severe damage to the PFCs, their design heavily depends on the spatial and temporal distribution of the energy fluxes during disruptions. We investigate the nature of power fluxes during the thermal quench phase of disruptions by means of numerical simulations with the B2 SOLPS fluid code. Based on an ASDEX Upgrade shot, steady-state pre-disruption equilibria are generated which are then subjected to a simulated thermal quench by artificially enhancing the perpendicular transport in the ion and electron channels. The enhanced transport coefficients flows the Rechester and Rosenbluth model (1978) for ergodic transport in a tokamak with destroyed flux surfaces, i. e. χ, D∼const. xT''5/2 where the constants differ by the square root of the mass ratio for ions and electrons. By varying the steady-state neutral puffing rate we can modify the divertor conditions in terms of plasma temperature and density. Our numerical findings indicate that the disruption characteristics depend on the pre disruptive divertor conditions. We study the timescales and the spatial distribution of the divertor power fluxes. The simulated disruptions show rise and decay timescales in the range observed at ASDEX Upgrade. The decay timescale for the central electron temperature of ∼800 μs is typical for non-ITB disruptions. Varying the divertor conditions we find a distinct transition from a regime with symmetric power fluxes to inboard and outboard divertors to a regime where the bulk of the power flux goes to the outboard divertor. This asymmetry in the divertor peak fluxes for the higher puffing case is accompanied by a time delay between the

  4. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  5. Strategies for growth of thermal power

    International Nuclear Information System (INIS)

    Shah, R.K.D.

    1998-01-01

    The power generating industry in India is at the cross roads. Massive investments are required to achieve GDP growth of 7-8% per annum over the next 10 years. For this, appropriate strategies have to be evolved which will give the country best returns. With coal being the major fuel resource in India, thermal power generation will continue to be the mainstay in the next decade. This paper covers various key issues to be addressed covering the plan and perspectives of thermal power, environmental issues, technology strategies for growth, power policy and R and D. (author)

  6. Financing Solar Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, Rainer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Price, Henry W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1999-04-14

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier’s perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  7. Financing Solar Thermal Power Plants

    International Nuclear Information System (INIS)

    Price, Henry W.; Kistner, Rainer

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  8. Financing solar thermal power plants

    International Nuclear Information System (INIS)

    Kistner, R.; Price, H.

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  9. 76 FR 48159 - Integrated System Power Rates

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Integrated System Power Rates AGENCY... American Electric Reliability Corporation and to cover increased investments and replacements in..., prepared a Current Power Repayment Study using existing system rates. The Study indicates that Southwestern...

  10. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  11. Tasks of a power engineer in future thermal power plants

    International Nuclear Information System (INIS)

    Freymeyer, P.; Scherschmidt, F.

    1982-01-01

    Today already the power plants provide plenty of tasks and problems to the electrical engineer in the fields of power and conductive engineering. A completely new orientation of power engineering leads to larger, more complex system and even to systems unknown so far. In conductive engineering entirely new solutions have come in view. There are a lot of interesting topics for the electrical engineer in the rearrangement and advance into virgin territory of thermal power plants. (orig.) [de

  12. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. ... (solar power); wind (wind power) and the rest, thermal power and ... probability of a system performing its function adequately for ...

  13. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  14. Thermal power plants and environment

    International Nuclear Information System (INIS)

    1997-01-01

    Recent versions of the air quality models which are reviewed and approved from the Environmental Protection Agency (EPA) are analysed in favour of their application in simple and complex terrain, different meteorological conditions and modifications in the sources of pollutant emissions. Improvement of the standard methods for analysis of the risks affecting the environment from different energy sources has been carried out. The application of the newly introduced model enabled (lead to performing) risk analysis of the coal power plants compared to other types of energy sources. Detailed investigation of the risk assessment and perception from coal power plants, has been performed and applied to the Macedonian coal power plants. Introducing the concept of 'psychological pollution', a modification of the standard models and programs for risk assessment from various energy sources has been suggested (proposed). The model has been applied to REK Bitola, where statistically relevant differences in relation to the control groups have been obtained. (Original)

  15. Virginia Power thermal-hydraulics methods

    International Nuclear Information System (INIS)

    Anderson, R.C.; Basehore, K.L.; Harrell, J.R.

    1987-01-01

    Virginia Power's nuclear safety analysis group is responsible for the safety analysis of reload cores for the Surry and North Anna power stations, including the area of core thermal-hydraulics. Postulated accidents are evaluated for potential departure from nucleate boiling violations. In support of these tasks, Virginia Power has employed the COBRA code and the W-3 and WRB-1 DNB correlations. A statistical DNBR methodology has also been developed. The code, correlations and statistical methodology are discussed

  16. Availability of thermal power plants

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1981-01-01

    Availability data based on unique uniform, and clearly defined concepts and methods of acquisition have been compiled by the VGB since 1970. The data are published in anual reports. These reports contain availability data of fossil-fuelled units, combined gas/steam units, nuclear power plants, and gas turbine plants in Germany and abroad, listed by unit size fuel type, time of operation, and application. For the purpose of comparison, the data for the years since 1970 are presented as well as data averaged for the whole period under report. The main results for the year 1980 are presented now that the greater part of the plants has been evaluated. The complete evaluation will be published towards the end of 1981. (orig.) [de

  17. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  18. 40 CFR 1033.140 - Rated power.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Rated power. 1033.140 Section 1033.140... EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.140 Rated power. This section describes how to determine the rated power of a locomotive for the purposes of this part. (a) A locomotive...

  19. Evaluation of Instrumentation and Dynamic Thermal Ratings for Overhead Lines

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, A. [New York Power Authority, White Plains, NY (United States)

    2013-01-31

    In 2010, a project was initiated through a partnership between the Department of Energy (DOE) and the New York Power Authority (NYPA) to evaluate EPRI's rating technology and instrumentation that can be used to monitor the thermal states of transmission lines and provide the required real-time data for real-time rating calculations. The project included the installation and maintenance of various instruments at three 230 kV line sites in northern New York. The instruments were monitored, and data collection and rating calculations were performed for about a three year period.

  20. Behaviour at thermal ageing of power cable components through penetrations

    International Nuclear Information System (INIS)

    Puiu, D.; Gyongyosi, T.; Dinu, E.

    2009-01-01

    The materials for electric insulation and exterior jackets of the power cables are formulated organic compounds. The environmental service conditions will induce chemical and/or physical processes at molecular level of the material; these processes are the ageing mechanisms. The power cables passing through penetrations lead to an increase of the rate of thermal ageing mechanisms, resulting in irreversible degradation of mechanical and electric properties of the organic compounds and of the functional properties of the cable. The paper presents the results of the laboratory tests when the real environmental service conditions for penetration are simulated, the comparison with the results of the thermal computation of the power cables heating and the evaluation of the influence of temperature increase of the power cable components on the cable lifetime. For the particular case of a power cable with PVC insulation, we estimated a lifetime decrease about seven years as referred to lifetime of about 30 years for operation in air. (authors)

  1. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    Mangus, J.D.

    1979-01-01

    A method is described for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component

  2. Thermal electron heating rate: a derivation

    International Nuclear Information System (INIS)

    Hoegy, W.R.

    1983-11-01

    The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons, (2) a heating term evaluated on the energy surface m(e)/2 E(T) at the transition between Maxwellian and tail electrons at E(T), and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two

  3. Availability statistics for thermal power plants

    International Nuclear Information System (INIS)

    1989-01-01

    Denmark, Finland and Sweden have adopted almost the same methods of recording and calculation of availability data. For a number of years comparable availability and outage data for thermal power have been summarized and published in one report. The purpose of the report now presented for 1989 containing general statistical data is to produce basic information on existing kinds of thermal power in the countries concerned. With this information as a basis additional and more detailed information can be exchanged in direct contacts between bodies in the above mentioned countries according to forms established for that purpose. The report includes fossil steam power, nuclear power and gas turbines. The information is presented in separate diagrams for each country, but for plants burning fossil fuel also in a joint NORDEL statistics with data grouped according to type of fuel used. The grouping of units into classes of capacity has been made in accordance with the classification adopted by UNIPEDE/WEC. Values based on energy have been adopted as basic availability data. The same applies to the preference made in the definitions outlined by UNIPEDE and UNIPEDE/WEC. Some data based on time have been included to make possible comparisons with certain international values and for further illustration of the performance. For values given in the report, the definitions in the NORDEL document ''Concepts of Availability for Thermal Power, September 1977'', have been applied. (author)

  4. Output power analyses for the thermodynamic cycles of thermal power plants

    International Nuclear Information System (INIS)

    Sun Chen; Cheng Xue-Tao; Liang Xin-Gang

    2014-01-01

    Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed. (general)

  5. Environmental effects of thermal power plants

    International Nuclear Information System (INIS)

    Gerlitzky, M.; Friedrich, R.; Unger, H.

    1986-02-01

    Reviewing critically the present literature, the effects of thermal power plants on the environment are studied. At first, the loads of the different power plant types are compiled. With regard to the effects of emission reduction proceedings the pollutant emissions are quantified. The second chapter shows the effects on the ecological factors, which could be caused by the most important emission components of thermal power plants. Where it is possible, relations between immissions respectively depositions and their effects on climate, man, flora, fauna and materials will be given. This shows that many effects depend strongly on the local landscape, climate and use of natural resources. Therefore, it appears efficient to ascertain different load limits. The last chapter gives a suggestion for an ecological compatibility test (ECT) of thermal power plants. In modular form the ECT deals with the emission fields, waste heat, pollution burden of air and water, noise, loss of area and aesthetical aspects. Limits depending on local conditions and use of area will be discussed. (orig.) [de

  6. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  7. Status of rates and rate equations for thermal leptogenesis

    Science.gov (United States)

    Biondini, S.; Bödeker, D.; Brambilla, N.; Garny, M.; Ghiglieri, J.; Hohenegger, A.; Laine, M.; Mendizabal, S.; Millington, P.; Salvio, A.; Vairo, A.

    2018-02-01

    In many realizations of leptogenesis, heavy right-handed neutrinos play the main role in the generation of an imbalance between matter and antimatter in the early Universe. Hence, it is relevant to address quantitatively their dynamics in a hot and dense environment by taking into account the various thermal aspects of the problem at hand. The strong washout regime offers an interesting framework to carry out calculations systematically and reduce theoretical uncertainties. Indeed, any matter-antimatter asymmetry generated when the temperature of the hot plasma T exceeds the right-handed neutrino mass scale M is efficiently erased, and one can focus on the temperature window T ≪ M. We review recent progress in the thermal field theoretic derivation of the key ingredients for the leptogenesis mechanism: the right-handed neutrino production rate, the CP asymmetry in the heavy-neutrino decays and the washout rates. The derivation of evolution equations for the heavy-neutrino and lepton-asymmetry number densities, their rigorous formulation and applicability are also discussed.

  8. Thermal power stations and environmental protection

    International Nuclear Information System (INIS)

    Gerking, E.

    1975-01-01

    In this book, the advantages of an optimum cooling concept for waters are compared with the disadvantages of an uncontrolled thermal pollution of waters by waste waters from thermal power plants. The book focuses on the problem of the cost of measures for environmental protection which has not yet received a detailed and complete treatment. The author suggests that perfectionist solutions and superfluos measures be abandoned in favour of a far-reaching, efficient environmental protection concept with a low expenditure of fuel and capital. A detailed treatment is given to false conclusions in the present estimations of the effects of thermal pollution of the waters and to the advantages of freshwater cooling and cooling in general. Also discussed are immission problems and attempts at their solution. (ORU/AK) [de

  9. Market: why is thermal solar power down?

    International Nuclear Information System (INIS)

    Le Jannic, N.

    2010-01-01

    After a 10 year period of steady growth the French market of the thermal solar power dropped by 15% in 2009. Only 265.000 m 2 were installed instead of 313.000 m 2 in 2008. The main reason of this decrease is the economic crisis: the European market for thermal solar energy dropped by 10%. The second reason is the unfair competition of the photovoltaic power that benefits from very favourable electricity purchase prices, from higher subsidies and from a better image in the public's eye. Another competitor on the market is the new equipment called 'thermodynamic water heater' that involves a heat pump, this equipment is cheaper but only on a short term basis. (A.C.)

  10. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  11. 2007 Wholesale Power Rate Schedules : 2007 General Rate Schedule Provisions.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    2006-11-01

    This schedule is available for the contract purchase of Firm Power to be used within the Pacific Northwest (PNW). Priority Firm (PF) Power may be purchased by public bodies, cooperatives, and Federal agencies for resale to ultimate consumers, for direct consumption, and for Construction, Test and Start-Up, and Station Service. Rates in this schedule are in effect beginning October 1, 2006, and apply to purchases under requirements Firm Power sales contracts for a three-year period. The Slice Product is only available for public bodies and cooperatives who have signed Slice contracts for the FY 2002-2011 period. Utilities participating in the Residential Exchange Program (REP) under Section 5(c) of the Northwest Power Act may purchase Priority Firm Power pursuant to the Residential Exchange Program. Rates under contracts that contain charges that escalate based on BPA's Priority Firm Power rates shall be based on the three-year rates listed in this rate schedule in addition to applicable transmission charges. This rate schedule supersedes the PF-02 rate schedule, which went into effect October 1, 2001. Sales under the PF-07 rate schedule are subject to BPA's 2007 General Rate Schedule Provisions (2007 GRSPs). Products available under this rate schedule are defined in the 2007 GRSPs. For sales under this rate schedule, bills shall be rendered and payments due pursuant to BPA's 2007 GRSPs and billing process.

  12. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2015-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....

  13. The constant rate injection tracer method - principle and application of a useful system for the investigation of single- and two-phase flows in thermal power plants

    International Nuclear Information System (INIS)

    Ederhof, A.; Lindberg, G.

    1985-01-01

    The ''tracer technique'', developed by Brown, Boveri and Company, permits measurement of water (liquid) mass flows, as part of the requested steam wetness, in steam turbine cycles. The additionally required steam mass flows can be calculated from mass flow balances (e.g. after condensation in a heater and subsequent measuring of the condensate flow) or energy balances. This measuring method is basically a dilution measurement using a radioactive or inactive tracer. If the radionuclide 24 Na is used, the measuring uncertainties will be typically 0.5-1.0%. The tracer technique was developed for largely automated parallel measurements on up to 30 lines of large capacity steam turbines. The example of the Ringhals 3 nuclear power plant illustrates that the tracer measuring method, applied during an acceptance test, yields better information on the functioning of the turbine cycle. (orig./GL) [de

  14. Thermal Power:Focusing on Efficient and Clean Generation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    History review Before the foundation of New China,there was no thermal power equipment manufacturing industry in China at all.China imported the manufacturing technology of 6-MW and12-MW thermal power units from the former

  15. Availability statistics for thermal power plants

    International Nuclear Information System (INIS)

    1990-01-01

    Denmark, Finland and Sweden have adopted almost the same methods of recording and calculation of availability data. For a number of years comparable availability and outage data for thermal power have been summarized and published in one report. The purpose of the report now presented for 1990 containing general statistical data is to produce basic information on existing kinds of thermal power in the countries concerned. With this information as a basis additional and more detailed information can be exchanged in direct contacts between bodies in the above mentioned countries according to forms established for that purpose. The report includes fossil steam power, nuclear power and gas turbines. The information is presented in separate diagrams for each country, but for plants burning fossil fuel also in a joint NORDEL statistics with data grouped according to type of fuel used. The grouping of units into classes of capacity has been made in accordance with the classification adopted by UNIPEDE/WEC. Values based on energy have been adopted as basic availability data. The same applied to the preference made in the definitions outlined by UNIPEDE and UNIPEDE/WEC. Some data based on time have been included to make possible comparisons with certain international values and for futher illustration of the performance. (au)

  16. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  17. Environmental protection in thermal power plants

    International Nuclear Information System (INIS)

    1987-01-01

    This workbook is a compilation of the most important facts and data that are relevant today for environmental protection in thermal power plants. Unlike the other issues the text is not in the form of a random collection of data but in the form of a complete presentation. Possible elaboration projects for pupils can be easily derived from the individual sections. These deal with: the discussion about environmental protection; forest decline; sources of emission; nuisances in the Federal Republic of Germany; environmental protection in fossil-fuel power plants - clean air - cooling water utilization and water protection - noise; environmental protection in nuclear power plants - radioactive material produced in nuclear reactors and the retention of such materials - radioactive waste materials - monitoring of radioactive emissions; accessory materials and hints. (orig./HSCH) [de

  18. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  19. Solar thermal electric power information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  20. Increasing the efficiency of thermal power stations

    International Nuclear Information System (INIS)

    Schwarz, N.F.

    1984-01-01

    High energy prices and an increased investment of costs in power plants as well as the necessity to minimize all kinds of environmental pollution have severe consequences on the construction and operation of thermal power stations. One of the most promising measures to cope with the mentioned problems is to raise the thermal efficiency of power plants. With the example of an Austrian electric utility it can be shown that by application of high efficiency combined cycles primary energy can be converted into electricity in a most efficient manner. Excellent operating experience has proved the high reliability of these relatively complex systems. Raising the temperature of the gas topping process still higher will not raise the efficiency considerably. In this respect a Rankine cycle is superior to a Brayton cycle. In a temperature range of 850 to 900 0 C were conventional materials with known properties can still be used, only the alkali metals cesium and potassium have the necessary physical and thermodynamic properties for application in Rankine topping cycles. Building on experience gained in the Fast Breeder development and from the US space program, a potassium topping cycle linked to a conventional water steam cycle with an intermediate diphenyl vapour cycle has been proposed which should give thermal efficiencies in excess of 50%. In a multi-national program this so called Treble Rankine Cycle is being investigated under the auspices of the International Energy Agency. Work is in progress to investigate the technical and economic feasibility of this energy conversion system. Experimental investigations are already under way in the Austrian Research Center Seibersdorf where high temperature liquid metal test facilities have been operated since 1968. (Author)

  1. Thermal power plants and acid rain

    International Nuclear Information System (INIS)

    Ataman, Eleonora

    1990-01-01

    The slow acidification of the environment and the frequent occurrence of the precipitation with pH lower than 5.6 over areas continuously extending are caused by the pollutant releases, especially SO 2 and NO x from anthropic sources. There is a relationship between the SO 2 release from the high stacks of thermal power plants and the long-range transfrontier pollution. The most efficient method to avoid damage on environment is to reduce the releases from stationary and mobile sources. (author)

  2. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misulovin, A.; Gilai, D.; Levin, P.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    Improvements in the performance of fission power reactors made possible by designing them subcritical driven by D-T neutron sources are investigated. Light-water thermal systems are found to be most promising, neutronically and energetically, for the source driven mode of operation. The range of performance characteristics expected from breeding Light Water Hybrid Reactors (LWHR) is defined. Several promising types of LWHR blankets are identified. Options opened for the nuclear energy strategy by four types of the LWHRs are examined, and the potential contribution of these LWHRs to the nuclear energy economy are discussed. The power systems based on these LWHRs are found to enable a high utilization of the energy content of the uranium resources in all forms available - including depleted uranium and spent fuel from LWRs, while being free from the need for uranium enrichment and plutonium separation capabilities. (author)

  3. Market Power in Hydro-Thermal Supply

    International Nuclear Information System (INIS)

    Edin, Karl-Axel

    2006-12-01

    Despite having had a deregulated electricity market in Sweden for over ten years we still need to increase our understanding as to how deregulated electricity markets actually work and how possible problems are to be solved. One question that is always in focus is if the competition between generators in the Nordic electricity market really works the way it was intended. Many argue that the concentration in ownership of generation plants already has gone too far. Together with joint ownership in nuclear facilities and barriers for entrance, critics say that this has resulted in higher electricity prices than necessary. In this report different methods to (ex ante) study potential possibilities for generating firms to influence the electricity price (market power) and (ex post) discover possible manipulation through analysing the spot price and other observed factors on the electricity market are analysed. The purpose of the longer underlying paper is to give a comprehensive treatment of the electricity market with storage, i.e. hydro power, with an auction market organisation and to test the models on the Nordic market in order to explore the explanatory power of auction market theory and the theory of contestable market. The main theoretical effort in the paper concerns auction theory with inventories. The paper develops an inter-temporal auction model of a thermal-hydro power market. Parallel to the derivation of the basic equations a numerical model is developed in order to illustrate the results of the model. Section 2 of the present paper summarizes the basic equations (derived in the longer paper) for an inter-temporal auction thermal-hydro market. Section 3 contains the illustrations of solutions to equations for some stylized markets. In section 4 the auction model is tested on the Nordic market

  4. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  5. Feasibility study on Bobovdol thermal power plant upgrading project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey has been made in relation with the improvement project intended of energy conservation, and reduction of global warming gas emission at the Bobovdol thermal power plant located in the suburb of Sofia, the capital of the Republic of Bulgaria. The existing Bobovdol power plant having a total capacity of 630 MW with three generators is a coal burning thermal power plant having been used already for 23 to 27 years, hence over-aged. The survey has discussed an improvement project of scrap-and-build type to make the plant a high-efficiency gas combined cycle power plant using gas turbines. The project calls for building 210-MW gas combined power generation facilities having 70-MW gas turbines, one each in three stages in 2007, 2012 and 2017. As a result of the discussions, the fuel consumption reducing rate was found to reach 37.99%, whereas the cumulative energy saving quantity in 41 years will reach 16.37 million tons of fuel oil equivalent. In addition, the reduction rate of global warming gas emission is 57.75%, and the cumulative reduction quantity in 41 years is 105.18 million tons. (NEDO)

  6. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  7. Power Electronics and Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics and Thermal Management Power Electronics and Thermal Management This is the March Gearhart's testimony. Optical Thermal Characterization Enables High-Performance Electronics Applications New vehicle electronics systems are being developed at a rapid pace, and NREL is examining strategies to

  8. High-power electronics thermal management with intermittent multijet sprays

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Correia, André M.; Moreira, António L.N.

    2012-01-01

    Thermal management plays a crucial role in the development of high-power electronics devices, e.g. in electric vehicles. The greatest energy demands occur during power peaks, implying dynamic thermal losses within the vehicle’s driving cycle. Therefore, the need for devising intelligent thermal management systems able to efficiently respond to these power peaks has become a technological challenge. Experiments have been performed with methanol in order to quantify the maximum heat flux removed by a multijet spray to keep the 4 cm 2 surface temperature stabilized and below the threshold of 125 °C. A multijet atomization strategy consists in producing a spray through the multiple and simultaneous impact of N j cylindrical jets. Moreover, the spray intermittency is expressed through the duty cycle (DC), which depends on the frequency and duration of injection. Results evidence that: i) a shorter time between consecutive injection cycles enables a better distribution of the mass flow rate, resulting in larger heat transfer coefficient values, as well as higher cooling efficiencies; ii) compared with continuous sprays, the analysis evidences that an intermittent spray allows benefiting more from phase-change convection. Moreover, the mass flux is mainly affecting heat transfer rather than differences induced in the spray structure by using different multijet configurations. - Highlights: ► Intermittent spray cooling (ISC) is advantageous for intelligent thermal management. ► Distributing the mass flow rate through ISC improves heat transfer. ► Multijet sprays with increasing number of jets have higher heat transfer rates. ► ISC with multijet sprays benefit more from phase-change than continuous sprays.

  9. Emission Control Technologies for Thermal Power Plants

    Science.gov (United States)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  10. Radioactive emission from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1981-07-01

    Radioactive hazards of the emissions and wastes of thermal power plants arising from fuel impurities of uranium and thorium are discussed. The hazard due to radioactive emission is calculated for an average Australian bituminous coal which contains 2 ppm of U and 2.7 ppm of Th. When the dust removal efficiency of a coal-fired power plant is 99%, the radioactive hazard is greater than that of a nuclear reactor of the same electrical output. After 500 years the radioactive toxicity of the coal waste will be higher than that of fission products of a nuclear reactor and after 2,000 years it will exceed the toxicity of all the nuclear wastes including actinides. The results of a recent calculation are shown, according to which the radioactive hazard of a coal-fired power plant to the public is from several hundred to several tens of thousands of times higher than that of a total fuel cycle of plutonium. It is found that in some regions, such as Japan, the hazard due to /sup 210/Po through seafood could be considerable.

  11. A review on lithium-ion power battery thermal management technologies and thermal safety

    Science.gov (United States)

    An, Zhoujian; Jia, Li; Ding, Yong; Dang, Chao; Li, Xuejiao

    2017-10-01

    Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

  12. Thermal power sludge – properties, treatment, utilization

    Directory of Open Access Journals (Sweden)

    Martin Sisol

    2005-11-01

    Full Text Available In this paper a knowledge about properties of thermal power sludge from coal combustion in smelting boilers is presented. The physical and technological properties of slag – granularity, density, specific, volume and pouring weight, hardness and decoupling – together with chemical properties influence its exploitation. The possibility of concentrating the Fe component by the mineral processing technologies (wet low-intenzity magnetic separation is verified. An industrial use of the slag in civil engineering, e.g. road construction, was realised. The slag-fly ashes are directly utilized in the cement production as a substitute of a part of natural raw materials. For the use of slag as the stoneware in the road construction, all the criteria are fulfilled.

  13. Renewable Energy Essentials: Concentrating Solar Thermal Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Concentrated solar thermal power (CSP) is a re-emerging market. The Luz Company built 354 MWe of commercial plants in California, still in operations today, during 1984-1991. Activity re-started with the construction of an 11-MW plant in Spain, and a 64-MW plant in Nevada, by 2006. There are currently hundreds of MW under construction, and thousands of MW under development worldwide. Spain and the United States together represent 90% of the market. Algeria, Egypt and Morocco are building integrated solar combined cycle plants, while Australia, China, India, Iran, Israel, Italy, Jordan, Mexico, South Africa and the United Arab Emirates are finalising or considering projects. While trough technology remains the dominant technology, several important innovations took place over 2007-2009: the first commercial solar towers, the first commercial plants with multi-hour capacities, the first Linear Fresnel Reflector plants went into line.

  14. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Sayyaadi, Hoseyn; Dehghani, Saeed; Hosseinzade, Hadi

    2013-01-01

    Highlights: • Thermodynamic model of a solar-dish Stirling engine was presented. • Thermal efficiency and output power of the engine were simultaneously maximized. • A final optimal solution was selected using several decision-making methods. • An optimal solution with least deviation from the ideal design was obtained. • Optimal solutions showed high sensitivity against variation of system parameters. - Abstract: A solar-powered high temperature differential Stirling engine was considered for optimization using multiple criteria. A thermal model was developed so that the output power and thermal efficiency of the solar Stirling system with finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, finite regeneration process time and imperfect performance of the dish collector could be obtained. The output power and overall thermal efficiency were considered for simultaneous maximization. Multi-objective evolutionary algorithms (MOEAs) based on the NSGA-II algorithm were employed while the solar absorber temperature and the highest and lowest temperatures of the working fluid were considered the decision variables. The Pareto optimal frontier was obtained and a final optimal solution was also selected using various decision-making methods including the fuzzy Bellman–Zadeh, LINMAP and TOPSIS. It was found that multi-objective optimization could yield results with a relatively low deviation from the ideal solution in comparison to the conventional single objective approach. Furthermore, it was shown that, if the weight of thermal efficiency as one of the objective functions is considered to be greater than weight of the power objective, lower absorber temperature and low temperature ratio should be considered in the design of the Stirling engine

  15. A learning curve for solar thermal power

    Science.gov (United States)

    Platzer, Werner J.; Dinter, Frank

    2016-05-01

    Photovoltaics started its success story by predicting the cost degression depending on cumulated installed capacity. This so-called learning curve was published and used for predictions for PV modules first, then predictions of system cost decrease also were developed. This approach is less sensitive to political decisions and changing market situations than predictions on the time axis. Cost degression due to innovation, use of scaling effects, improved project management, standardised procedures including the search for better sites and optimization of project size are learning effects which can only be utilised when projects are developed. Therefore a presentation of CAPEX versus cumulated installed capacity is proposed in order to show the possible future advancement of the technology to politics and market. However from a wide range of publications on cost for CSP it is difficult to derive a learning curve. A logical cost structure for direct and indirect capital expenditure is needed as the basis for further analysis. Using derived reference cost for typical power plant configurations predictions of future cost have been derived. Only on the basis of that cost structure and the learning curve levelised cost of electricity for solar thermal power plants should be calculated for individual projects with different capacity factors in various locations.

  16. Nuclear power's effects on electric rate making

    International Nuclear Information System (INIS)

    Smith, D.S.; Lancaster, A.A.

    1978-01-01

    Government and the electric utility industry are re-evaluating nuclear power's contribution to the total U.S. energy supplies. This article addresses how the recently increased nuclear plant construction and operation costs are translated into the prices that consumers pay for electricity. The electric rates that consumers pay must reflect the costs of producing electricity, as well as the costs of transmission, distribution, metering, and billing. The use of nuclear power for electric production is anticipated to grow rapidly so as to meet a larger portion of our country's electricity needs through the end of the century; so nuclear power costs are expected to be an even larger portion of the total electricity price. There are certain rate-making issues that are actively being discussed in public forums and before state and Federal regulatory bodies. These issues are not unique to nuclear power, but take on added significance when nuclear power is used by utilities to produce electricity because of the technology required and because of the type, timing, and magnitude of the costs involved. These are: (1) inclusion of construction work in progress in the rate base; (2) fuel adjustment clauses and treatment of nuclear fuel cycle costs; (3) treatment of certain taxes under the rate-making method called normalization or deferral accounting (sometimes referred to as ''phantom taxes''); and (4) rate treatment for particular nuclear expense items reflecting costs of delays, plant cancellations, and operational slowdowns

  17. Critical success factors for BOT electric power projects in China: Thermal power versus wind power

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhen-Yu. [School of Business Administration, North China Electric Power University, Beijing 102206 (China); Zuo, Jian; Zillante, George [School of Natural and Built Environments, University of South Australia, Adelaide 5001 (Australia); Wang, Xin-Wei [Shandong Nuclear Power Equipment Manufacturing Co. Ltd, Haiyang, Shandong 265118 (China)

    2010-06-15

    Chinese electric power industry has adopted Build-Operate-Transfer (BOT) approach in a number of projects to alleviate the pressure of sole state-owned investment. The Chinese government has taken enormous efforts to create an environment to facilitate the application of BOT approach in electric power projects. Moreover, the growing attention on the sustainability issues puts the traditional major source of electricity - thermal power project under more strict scrutiny. As a result, various renewable energy projects, particularly the wind power projects have involved private sector funds. Both thermal power and wind power projects via BOT approach have met with a varying degree of success. Therefore, it is imperative to understand the factors contributing towards the success of both types of BOT power projects. Using an extensive literature survey, this paper identifies 31 success factors under 5 categories for Chinese BOT electric power projects. This is followed by a questionnaire survey to exam relative significance of these factors. The results reveal the different levels of significance of success factors for BOT thermal power projects versus wind power projects. Finally, survey results were analyzed to explore the underlying construction and distributions among the identified success factors. This study provides a valuable reference for all involved parties that are interested in developing BOT electric power projects in China. (author)

  18. International technologies market for coal thermal power plants

    International Nuclear Information System (INIS)

    1998-01-01

    This paper reports a general framework of potential market of clean coal combustion technologies in thermal power plants, specially for commercialization and market penetration in developing countries [it

  19. Energy audit: thermal power, combined cycle, and cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Abbi, Yash Pal

    2012-07-01

    The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. The author attempts to refresh the fundamentals of the science and engineering of thermal power plants, establish its link with the real power plant performance data through case studies, and further develop techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.

  20. Wheeling rates evaluation using optimal power flows

    International Nuclear Information System (INIS)

    Muchayi, M.; El-Hawary, M. E.

    1998-01-01

    Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs

  1. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  2. Thermal power blocks with ultra-super-critical steam parameters

    Directory of Open Access Journals (Sweden)

    Aličić Merim M.

    2016-01-01

    Full Text Available New generation of thermal power plants are required to have increased utilization rates, in addition to reduced emissions of pollutants, in order to reach optimal solutions, from both technical and economic point of view. One way to achieve greater utilization efficiency is operation of the plant at super critical (SC or ultra super critical steam parameters (USC. However, achieving high parameters depends on use of new materials, which have better properties at high temperatures and pressures, use of new welding technologies and by solving the problem of corrosion. The paper gives an overview of some of the plants with these parameters.

  3. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  4. Power electronics solution to dust emissions from thermal power plants

    Directory of Open Access Journals (Sweden)

    Vukosavić Slobodan

    2010-01-01

    Full Text Available Thermal power stations emit significant amounts of fly ash and ultra fine particles into the atmosphere. Electrostatic precipitators (ESP or electro filters remove flying ashes and fine particles from the flue gas before passing the gas into the chimney. Maximum allowable value of dust is 50 mg/m3 and it requires that the efficiency of the ESPs better than 99 %, which calls for an increase of active surface of the electrodes, hence increasing the filter volume and the weight of steel used for the filter. In previous decades, electrostatic precipitators in thermal power plants were fed by thyristor controlled, single phase fed devices having a high degree of reliability, but with a relatively low collection efficiency, hence requiring large effective surface of the collection plates and a large weight of steel construction in order to achieve the prescribed emission limits. Collection efficiency and energy efficiency of the electrostatic precipitator can be increased by applying high frequency high voltage power supply (HF HV. Electrical engineering faculty of the University of Belgrade (ETF has developed technology and HF HV equipment for the ESP power supply. This solution was subjected to extensive experimental investigation at TE Morava from 2008 to 2010. High frequency power supply is proven to reduce emission two times in controlled conditions while increasing energy efficiency of the precipitator, compared to the conventional thyristor controlled 50Hz supply. Two high frequency high voltage unit AR70/1000 with parameters 70 kV and 1000 mA are installed at TE Morava and thoroughly testes. It was found that the HF HV power supply of the ESP at TE Morava increases collection efficiency so that emission of fine particles and flying ashes are halved, brought down to only 50 % of the emissions encountered with conventional 50 Hz thyristor driven power supplies. On the basis of this study, conclusion is drawn that the equipment comprising HF HV

  5. Power and Thermal Management of System-on-Chip

    DEFF Research Database (Denmark)

    Liu, Wei

    , are necessary at the chip design level. In this work, we investigate the power and thermal management of System-on- Chips (SoCs). Thermal analysis is performed in a SPICE simulation approach based on the electrical-thermal analogy. We investigate the impact of inter- connects on heat distribution...

  6. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  7. 78 FR 62616 - Integrated System Power Rates

    Science.gov (United States)

    2013-10-22

    .... James K. McDonald, Vice President for Corporate Operations/Chief Operating Office, Southwestern Power...) 595-6690, jim.mcdonald@swpa.gov . SUPPLEMENTARY INFORMATION: Rate Order No. SWPA-66, which has been... final approval by the Federal Energy Regulatory Commission. Available: In the marketing area of...

  8. 75 FR 1363 - Integrated System Power Rates

    Science.gov (United States)

    2010-01-11

    ... increased. Those customers taking transformation service will be affected by an increase in that rate... Regulation Purchased. With factors defined as follows: RPA = The Customer's specific monthly dollar amount of... formulas provided in Customers' contracts indicate an overrun on Hydro Peaking Power, and investigation...

  9. Applications: REP-rate pulse power technology

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Research on the following topics is discussed: (1) REP-rate pulse power technology, (2) RTF-I, 300-J, 100-pps test facility experiments, (3) transformer development, (4) reactor system studies, (5) general conceptual design, (6) economic considerations, (7) specific reactor designs, (8) low-current density diode physics studies, and (9) plasma injected, microsecond, E-beam diodes

  10. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...

  11. Frequency-domain thermal modelling of power semiconductor devices

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Andresen, Markus

    2015-01-01

    to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...

  12. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  13. French studies on the thermal effluents of electric power plants

    International Nuclear Information System (INIS)

    Dezes-Cadiere, H.

    1976-01-01

    This report presents a synthesis of studies made in France in the thermal effluent field: thermal power plant cooling systems, transfer and dispersion of thermal effluents in the receptive media, effects of thermal effluents on water physicochemistry and biochemistry, effects of thermal effluents on aquatic ecosystems, and, possibilities of waste heat recovery with the view of utilization in agriculture, aquaculture and district heating. A catalogue of French organizations working or having data on thermal effluents is presented, as also an alphabetical list of the contacted persons. A bibliography of French documents concerning the previously mentioned studies is finally given (193 refs.) [fr

  14. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  15. Independent power project finance rating criteria

    International Nuclear Information System (INIS)

    Goldsmith, D.; Chew W.; Moulton, C.

    1992-01-01

    Continuing growth of project financing for non-utility generators in the US and abroad has led to growing focus on their credit strength. In general, the financings remain relatively risky and would likely be rated below investment grade, because of various factors: loose power purchase arrangements, poor match between power pricing and fuel costs, aggressive leverage, troubled operating performance. But S and P believes some projects have the credit strength to support investment grade ratings. As traditional financing markets for these projects --- bank lending and private placements with highly specialized institutional investors --- have contracted, project sponsors and developers are considering broader markets. These include institutional investors without specialized focus on power project finance. In these markets, distinctions among projects may lead to greater liquidity and efficiency in developing the pricing and terms under which projects can be financed. This paper reports that ratings are most appropriate for projects seeking permanent financing as they enter commercial operations. They also may be useful for projects which have been operating for some time and for some very strong projects which are raising construction financing. To guide both project developers and investors in project financing, S and P has developed the following approach for rating these types of financings

  16. 78 FR 47695 - Sam Rayburn Dam Power Rate

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Sam Rayburn Dam Power Rate AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of public review and comment. SUMMARY: The current Sam..., Southwestern Power Administration (Southwestern), has prepared Current and Revised 2013 Power Repayment Studies...

  17. Asymmetric power device rating selection for even temperature distribution in NPC inverter

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    the power rating and lifetime of the NPC inverter are limited by the most stressed devices. In this paper, an asymmetric power device rating selection method for the NPC inverter is proposed in order to balance the lifetimes of the power devices. The thermal distribution of the power devices is analyzed......A major drawback of the NPC inverter is an unequal power loss distribution among the power devices which leads to unequal temperature stress among them. Therefore, certain power devices experience higher temperature stress, which is the main cause of power device module failure and thus both...... based on 30 kW NPC inverter as a case study. Analytical power loss and thermal impedance models depending on the chip size are derived. Finally, using these models, the junction temperatures of the power devices depending on the chip size is discussed and a proper chip size for an even temperature...

  18. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into considera- ... does not change the process of releasing hydrogen from titanium hydride ... from titanium hydride in a sequence of steps.

  19. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  20. Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors

    Institute of Scientific and Technical Information of China (English)

    Jin Dong-Yue; Zhang Wan-Rong; Chen Liang; Fu Qiang; Xiao Ying; Wang Ren-Qing; Zhao Xin

    2011-01-01

    The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.

  1. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  2. Effects of thermal cycling on aluminum metallization of power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Pedersen, Kristian Bonderup; Kristensen, Peter Kjær

    2015-01-01

    Reconstruction of aluminum metallization on top of power electronic chips is a well-known wear out phenomenon under power cycling conditions. However, the origins of reconstruction are still under discussion. In the current study, a method for carrying out passive thermal cycling of power diodes...

  3. About Economy of Fuel at Thermal Power Stations due to Optimization of Utilization Diagram of Power-Generating Equipment

    Directory of Open Access Journals (Sweden)

    M. V. Svechko

    2008-01-01

    Full Text Available Problems of rational fuel utilization becomes more and more significant especially for thermal power stations (TPS. Thermal power stations have complicated starting-up diagrams and utilization modes of their technological equipment. Method of diagram optimization of TPS equipment utilization modes has been developed. The method is based on computer analytical model with application of spline-approximation of power equipment characteristics. The method allows to economize fuel consumption at a rate of 15-20 % with accuracy of the predicted calculation not more than 0.25 %.

  4. 77 FR 67813 - Sam Rayburn Dam Project Power Rate

    Science.gov (United States)

    2012-11-14

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Sam Rayburn Dam Project Power Rate AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of Rate Order Approving an Extension of Power Rate on an.... James K. McDonald, Assistant Administrator, Southwestern Power Administration, Department of Energy...

  5. Japanese aquaculture with thermal water from power plants

    International Nuclear Information System (INIS)

    Kuroda, T.

    1977-01-01

    The present level of thermal aquaculture, utilizing thermal water which is waste cooling water from nuclear power plant, in Japan is reported. There are 13 major potential areas for thermal aquaculture in cooperation with conventional type thermal power plants, seven of which are actually operating. Aquaculture facilities of all these are on land, none in the sea. Of these seven centers, those that have already commercialized their nursery methods or are approaching that stage of research and development, are Tohoku Hatsuden Kogyo Ltd., Tsuruga Hama Land Ltd. and Kyushu Rinsan Ltd. Major problems faced specialists in Japanese thermal aquaculture are water temperature, water quality, radioactivity and costs. For keeping the water temperature constant all seasons, cooling or heating by natural sea water may be used. Even negligible amounts of radioactivity that nuclear power plants release into the sea will concentrate in the systems of marine life. A strict precautionary checking routine is used to detect radioactivity in marine life. (Kobatake, H.)

  6. Thermodynamic analysis of thermal efficiency and power of Minto engine

    International Nuclear Information System (INIS)

    He, Wei; Hou, Jingxin; Zhang, Yang; Ji, Jie

    2011-01-01

    Minto engine is a kind of liquid piston heat engine that operates on a small temperature gradient. But there is no power formula for it yet. And its thermal efficiency is low and formula sometimes is misused. In this paper, deriving the power formula and simplifying the thermal efficiency formula of Minto engine based on energy distribution analysis will be discussed. To improve the original Minto engine, a new design of improved Minto engine is proposed and thermal efficiency formula and power formula are also given. A computer program was developed to analyze thermal efficiency and power of original and improved Minto engines operating between low and high-temperature heat sources. The simulation results show that thermal efficiency of improved Minto engine can reach over 7% between 293.15 K and 353.15 K which is much higher than that of original one; the temperature difference between upper and lower containers is lower than half of that between low and high temperature of heat sources when the original Minto engines output the maximum power; on the contrary, it is higher in the improved Minto engines. -- Highlights: ► The thermal efficiency formula of Minto engine is simplified and the power formula is established. ► A high-powered design of improved Minto engine is proposed. ► A computer simulation program based on real operating environment is developed.

  7. Thermal impact assessment of multi power plant operations on estuaries

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Kim, K.H.; Harris, J.L.

    1977-01-01

    The assessment of the thermal impact of multi power plant operations on large estuaries requires careful consideration of the problems associated with: re-entrainment, re-circulation, thermal interaction, delay in the attainment of thermal equilibrium state, and uncertainty in specifying open boundaries and open boundary conditions of the regions, which are critically important in the analysis of the thermal conditions in receiving water bodies with tidal dominated, periodically reversing flow conditions. The results of an extensive study in the Hudson River at Indian Point, 42 miles upstream of the ocean end at the Battery, concluded that the tidal-transient, multi-dimensional discrete-element (UTA) thermal transport models (ESTONE, FLOTWO, TMPTWO computer codes) and the near-field far-field zone-matching methodology can be employed with a high degree of reliability in the assessment of the thermal impact of multi power plant operations on tidal dominated estuaries

  8. Small Spacecraft Integrated Power System with Active Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop an integrated power generation and energy storage system with an active thermal management system. Carbon fiber solar panels will contain...

  9. Fast thermal cycling-enhanced electromigration in power metallization

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    Fast thermal nterconnects used in power ICs are susceptible to short circuit failure due to a combination of fast thermal cycling and electromigration stresses. In this paper, we present a study of electromigration-induced extrusion short-circuit failure in a standard two level metallization

  10. Several aspects of the effect of nuclear power engineering and thermal power engineering on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F

    1979-01-01

    A survey is made of the comparative effect of nuclear power engineering and thermal power engineering on environment and man. The most significant approaches to solution of radio-ecological problems of APS are found.

  11. Nuclear and thermal power plant power ramping capability

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1983-01-01

    The possibilities of step power increase by NPP and TPP units under emergency conditions of power grids operation are considered. The data analysis has shown that power units ramping capability with WWER-440, WWER-1000 and RBMK-1000 reactors is higher than that of 300 MW power units on fossil fuel, at the initial time interval (0-30 s). These NPP power units satisfy as to ramping capability the energy system requirements. Higher NPP power units ramping capability is explained by the fact that relative pressure before turbine valves is decreased less than in straight-through boilers while the steam volumes time constant of steam separator-superheaters is less than that of intermediate superheatings. Higher power unit ramping capability with WWER-440 and RBMK-1000 reactors as compared with the WWER-1000 reactor is pointed out as well as the increase of WWER-1000 power unit capability using high-speed turbines

  12. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  13. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  14. Revitalization of Tuzla Thermal Power Plant's Unit 3 (100 MW)

    International Nuclear Information System (INIS)

    Sakovic, A.; Praso, N.

    1998-01-01

    Power Plant Revitalization is a highly ranged concept essentially aimed at continued operations of the generating unit at, or near, rated capacities for the rest of the economic life of the plant or even for an extended life. In essence, the need to rehabilitate may arise due to reasons such as low availability factor, low efficiency, increasing operating and maintenance costs, loss of reliability, drop in safety of plant and personnel, poor maintainability or environmental requirements. The term revitalization is therefore normally used in the context to cover the range of activities including repairing components, replacing equipment, modifying systems, adding new system and equipment and perhaps restoration to rated capacities. This exercise on already complex power generation process will naturally require the application of various technologies in order to ensure a safe and efficient installation of electricity supply. In normal conditions of producing and consumption of electricity (load demands) in order to answer the question of what kind of revitalization to undertake it is necessary to state at the very beginning: - whether it is necessary, from the point of equipment wear-out, to revitalize all equipment at once (one-phase revitalization), or - whether it is possible to postpone the revitalization of a part of equipment for the next period (phased revitalization). Both concepts have some specific advantages and disadvantages. In essence the decision-making process between these two approaches, three basic conditions should be considered: technical-technological adequacy, energy-economy adequacy and financial adequacy. This paper covers general considerations, approach and methodology implemented during the revitalization the Tuzla Thermal Power Plant's Unit 3 (100MW) which was imposed by urgent demands of the Power System, the war conditions and financial possibilities including: - General data on TPP Tuzla and Unit 3 - Scope of work and economic effects

  15. Energy saving and consumption reducing evaluation of thermal power plant

    Science.gov (United States)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  16. Theoretical study on thermal stability of molten salt for solar thermal power

    International Nuclear Information System (INIS)

    Wei, Xiaolan; Peng, Qiang; Ding, Jing; Yang, Xiaoxi; Yang, Jianping; Long, Bin

    2013-01-01

    Molten salt (HTS) composed of 53% KNO 3 , 40% NaNO 2 and 7 wt.% NaNO 3 has been used as heat transfer media and thermal storage fluid in the solar thermal power, but thermal decomposition will occur at higher temperature because of the oxidation of nitrite to nitrate in the air. In this paper, the reaction mechanism of NO 2 − oxidation is researched by quantum mechanical method. The results show that two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found in the reaction. This reaction is an exothermic reaction and the activation barrier is 94.0 kJ mol −1 . The energy difference of this reaction is very large, so the reaction rate is very slow. -- Highlights: ► The mechanism of the oxidation of nitrite salt in HTS is explained. ► Two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found. ► The activation barrier of the nitrite oxidation is determined

  17. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    Directory of Open Access Journals (Sweden)

    Masaru Ishizuka

    2011-01-01

    Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  18. Simulation and parametric optimisation of thermal power plant cycles

    Directory of Open Access Journals (Sweden)

    P. Ravindra Kumar

    2016-09-01

    Full Text Available The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement with single reheater is considered. The system is optimized in such a way that the percentage exergetic losses are reduced for the increase of the exergetic efficiency and higher fuel utilization. The plant cycles are simulated and optimized by using Cycle Tempo 5.0 simulation software tool. From the simulation study, it is observed that the thermal efficiency of the three different power plant cycles obtained as 41.40, 42.48 and 43.03%, respectively. The specific coal consumption for three different power plant cycles are 0.56, 0.55 and 0.54 Tonnes/MWh. The improvement in feed water temperatures at the inlet of steam generator of respective cycles are 291, 305 and 316 °C.

  19. Power trade: A mean to replace thermal to hydro power

    Energy Technology Data Exchange (ETDEWEB)

    Viladrich, Christian; Brun, Pierre; Pereira, Alice; Moustafa, Fatma

    2010-09-15

    In the framework of the Eastern Nile Power Trade Program Study a comprehensive generation and transmission expansion plan was established for Egypt, Ethiopia, and Sudan. The results show that an interconnection between these countries is profitable and has a positive impact on CO2 savings. A common development of power system and a power market can promote the regional cooperation to use the Nile waters for the benefit of the entire region.

  20. Power Electronics Thermal Management Research: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Reliable WBG devices are capable of operating at elevated temperatures (≥ 175 °Celsius). However, packaging WBG devices within an automotive inverter and operating them at higher junction temperatures will expose other system components (e.g., capacitors and electrical boards) to temperatures that may exceed their safe operating limits. This creates challenges for thermal management and reliability. In this project, system-level thermal analyses are conducted to determine the effect of elevated device temperatures on inverter components. Thermal modeling work is then conducted to evaluate various thermal management strategies that will enable the use of highly efficient WBG devices with automotive power electronic systems.

  1. Power MOSFET Thermal Instability Operation Characterization Support

    Science.gov (United States)

    Shue, John L.; Leidecker, Henning

    2010-01-01

    Metal-oxide semiconductor field-effect transistors (MOSFETs) are used extensively in flight hardware and ground support equipment. In the quest for faster switching times and lower "on resistance," the MOSFETs designed from 1998 to the present have achieved most of their intended goals. In the quest for lower on resistance and higher switching speeds, the designs now being produced allow the charge-carrier dominated region (once small and outside of the area of concern) to become important and inside the safe operating area (SOA). The charge-carrier dominated region allows more current to flow as the temperature increases. The higher temperatures produce more current resulting in the beginning of thermal runaway. Thermal runaway is a problem affecting a wide range of modern MOSFETs from more than one manufacturer. This report contains information on MOSFET failures, their causes and test results and information dissemination.

  2. Power Electronics Thermal Management R&D: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-08

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Device- and system-level thermal analyses are conducted to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  3. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  4. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Japanese aquaculture: use of thermal water from power plant

    International Nuclear Information System (INIS)

    Kuroda, Takeya

    1983-01-01

    There is some merit of thermal water from power plants in the effect to marine life. Since 1963, the research and development on the aquaculture using this warm water have been carried out at some twenty power plants, seven nuclear and thirteen thermal, some of which are now in the commercial stage. These fish farming projects are operated variously from seed to adult fish production. They can also be classified as land and sea facilities, conforming to the characteristics of the respective sea areas. The current situation in this field and the future prospect are described: thermal aquaculture including seed production and adult fish farming; the projects in nuclear and thermal power plants, respectively; future problems in the facilities, breeding environment and marine life for cultivation. (Mori, K.)

  6. Efficiency improvement of thermal coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hourfar, D. [VEBA Kraftwerke Ruhr Ag, Gelsenkirchen (Germany)

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  7. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  8. Thermal stratification in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Byeongnam, E-mail: jo@vis.t.u-tokyo.ac.jp [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Erkan, Nejdet [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Takahashi, Shinji [Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Song, Daehun [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Hyundai and Kia Corporate R& D Division, Hyundai Motors, 772-1, Jangduk-dong, Hwaseong-Si, Gyeonggi-Do 445-706 (Korea, Republic of); Sagawa, Wataru; Okamoto, Koji [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan)

    2016-08-15

    Highlights: • Thermal stratification was reproduced in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants. • Horizontal temperature profiles were uniform in the toroidal suppression pool. • Subcooling-steam flow rate map of thermal stratification was obtained. • Steam bubble-induced flow model in suppression pool was suggested. • Bubble frequency strongly depends on the steam flow rate. - Abstract: Thermal stratification in the suppression pool of the Fukushima Daiichi nuclear power plants was experimentally investigated in sub-atmospheric pressure conditions using a 1/20 scale torus shaped setup. The thermal stratification was reproduced in the scaled-down suppression pool and the effect of the steam flow rate on different thermal stratification behaviors was examined for a wide range of steam flow rates. A sparger-type steam injection pipe that emulated Fukushima Daiichi Unit 3 (F1U3) was used. The steam was injected horizontally through 132 holes. The development (formation and disappearance) of thermal stratification was significantly affected by the steam flow rate. Interestingly, the thermal stratification in the suppression pool vanished when subcooling became lower than approximately 5 °C. This occurred because steam bubbles are not well condensed at low subcooling temperatures; therefore, those bubbles generate significant upward momentum, leading to mixing of the water in the suppression pool.

  9. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  10. Long term energy performance analysis of Egbin thermal power ...

    African Journals Online (AJOL)

    This study is aimed at providing an energy performance analysis of Egbin thermal power plant. The plant operates on Regenerative Rankine cycle with steam as its working fluid .The model equations were formulated based on some performance parameters used in power plant analysis. The considered criteria were plant ...

  11. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  12. Upgrading of electrostatic precipitators in old thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurthy, H V

    1987-02-01

    Indian thermal power stations installed in the 60's and earlier had dust collectors whose efficiency was well below the acceptable level of emission under the Air (Prevention and Control of Pollution) Act 1981. This necessitates the need for higher efficiency dust collectors to be installed in old thermal power stations. Further, the poor quality of the coal being received at power stations presently causes severe environmental pollution in and around the plant. This paper deals with the retrofitting of electrostatic precipitators in existing units and the problems encountered in executing the same.

  13. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  14. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  15. Techno-economic design optimization of solar thermal power plants

    OpenAIRE

    Morin, G.

    2011-01-01

    A holistic view is essential in the engineering of technical systems. This thesis presents an integrative approach for designing solar thermal power plants. The methodology is based on a techno-economic plant model and a powerful optimization algorithm. Typically, contemporary design methods treat technical and economic parameters and sub-systems separately, making it difficult or even impossible to realize the full optimization potential of power plant systems. The approach presented here ov...

  16. Decision on thermal power plant can be taken this spring

    International Nuclear Information System (INIS)

    Haga, I.

    1978-01-01

    Towards the end of the 1960s it appeared that nuclear power would be the natural successor to hydroelectric power, as the latter became less attractive for further exploitation, reinforced by environmentalist opposition to several proposed hydroelectric schemes. Conventional thermal power was also considered, but one proposed stand-by plant was rejected in 1971 largely because of environmental considerations. Preliminary planning and PR information on nuclear power in the early 1970s aroused considerable opposition and a governmental commission was appointed in 1975-6 to evaluate the question of reactor safety and transport and disposal of radioactive waste, to report in 1978. It is therefore not possible to count on nuclear power as a supplement until the end of the 1980s at the earliest. Gas-fired thermal power is environmentally attractive, but at present no gas fields have been found which make this economic. Oil-fired power is quite feasible, but no political decision has yet been taken. Coal fuel, based on the Spitzbergen mines has recently become more interesting, and small power plants for the extreme north of Norway are under consideration. Finally it is pointed out that nuclear power is safer than generally assumed while fluidised bed combustion of coal in a combined steam-gas turbine plant will lead to very high thermal efficiencies. (JIW)

  17. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  18. Thermal hydraulic aspects of uncertainty in power measurement of nuclear reactors

    International Nuclear Information System (INIS)

    Gupta, S.K.; Kumar, Rajesh; Gaikwad, A.J.; Majumdar, P.; Agrawal, R.A.

    2004-01-01

    Power measurement in Nuclear Reactors is carried out through in-core and ex-core neutron monitors which are continuously calibrated against thermal power. In Indian Pressurized Heavy Water Reactors (220 MWe) the temperature difference across steam generator hot and cold legs is taken to be a measure of thermal power as the flow through the primary heat transport system is assumed to be constant through out is operation. Gross flow is not measured directly. However, the flow depends on the characteristics of the primary heat transport pumps, which are centrifugal type and are affected by the grid frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable high grid frequency. This uncertainty is in addition to instrument inaccuracy and should be accounted for in safety analysis. In some reactors thermal power is calculated from stem flow rate and pressure, here the location of steam flow measurement is important to avoid leakage related error in thermal power. Neutron absorption cross section in the power measurement instruments and the power production in the fuel varies with neutron energy levels, these aspects are also discussed in the paper. (author)

  19. Thermal Response to High-Power Holmium Laser Lithotripsy.

    Science.gov (United States)

    Aldoukhi, Ali H; Ghani, Khurshid R; Hall, Timothy L; Roberts, William W

    2017-12-01

    The aim of this study was to investigate "caliceal" fluid temperature changes during holmium laser activation/lithotripsy using settings up to 40 W power output with different irrigation flow rates. The experimental system consisted of a glass test tube (diameter 10 mm/length 75 mm) filled with deionized water, to mimic a calix. Real-time temperature was recorded using a thermocouple (Physitemp, NJ) positioned 5 mm from the bottom of the tube. A 200 μm laser fiber (Flexiva; Boston Scientific, MA) was introduced through the working channel of a disposable ureteroscope (LithoVue; Boston Scientific) and the laser fiber tip was positioned 15 mm above the bottom of the test tube. Deionized water irrigation (room temperature) through the working channel of the ureteroscope was delivered at flow rates of 0, 7-8, 14-15, and 38-40 mL/minute. A 120-W holmium laser (pulse 120; Lumenis, CA) was used. The following settings were explored: 0.5 J × 10 Hz, 1.0 J × 10 Hz, 0.5 J × 20 Hz, 1.0 J × 20 Hz, 0.5 J × 40 Hz, 1.0 J × 40 Hz, and 0.5 J × 80 Hz. During each experiment, the laser was activated continuously for 60 seconds. Temperature increased with increasing laser power output and decreasing irrigation flow rate. The highest temperature, 70.3°C (standard deviation 2.7), occurred with laser setting of 1.0 J × 40 Hz and no irrigation after 60 seconds of continuous laser firing. None of the tested laser settings and irrigation parameters produced temperature exceeding 51°C when activated for only 10 seconds of continuous laser firing. High-power holmium settings fired in long bursts with low irrigation flow rates can generate high fluid temperatures in a laboratory "caliceal" model. Awareness of this risk allows urologist to implement a variety of techniques (higher irrigation flow rates, intermittent laser activation, and potentially cooled irrigation fluid) to control and mitigate thermal

  20. Thermal Design of Power Electronic Circuits

    CERN Document Server

    Künzi, R.

    2015-06-15

    The heart of every switched mode converter consists of several switching semiconductor elements. Due to their non-ideal behaviour there are ON state and switching losses heating up the silicon chip. That heat must effectively be transferred to the environment in order to prevent overheating or even destruction of the element. For a cost-effective design, the semiconductors should be operated close to their thermal limits. Unfortunately the chip temperature cannot be measured directly. Therefore a detailed understanding of how losses arise, including their quantitative estimation, is required. Furthermore, the heat paths to the environment must be understood in detail. This paper describes the main issues of loss generation and its transfer to the environment and how it can be estimated by the help of datasheets and/or experiments.

  1. Accurate and approximate thermal rate constants for polyatomic chemical reactions

    International Nuclear Information System (INIS)

    Nyman, Gunnar

    2007-01-01

    In favourable cases it is possible to calculate thermal rate constants for polyatomic reactions to high accuracy from first principles. Here, we discuss the use of flux correlation functions combined with the multi-configurational time-dependent Hartree (MCTDH) approach to efficiently calculate cumulative reaction probabilities and thermal rate constants for polyatomic chemical reactions. Three isotopic variants of the H 2 + CH 3 → CH 4 + H reaction are used to illustrate the theory. There is good agreement with experimental results although the experimental rates generally are larger than the calculated ones, which are believed to be at least as accurate as the experimental rates. Approximations allowing evaluation of the thermal rate constant above 400 K are treated. It is also noted that for the treated reactions, transition state theory (TST) gives accurate rate constants above 500 K. TST theory also gives accurate results for kinetic isotope effects in cases where the mass of the transfered atom is unchanged. Due to neglect of tunnelling, TST however fails below 400 K if the mass of the transferred atom changes between the isotopic reactions

  2. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    Science.gov (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  3. 76 FR 50726 - Integrated System Power Rates: Correction

    Science.gov (United States)

    2011-08-16

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Integrated System Power Rates: Correction AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of public review and comment; Correction... date listed for the combined Public Information and Comment Forum (Forum) was erroneously listed in the...

  4. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  5. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  6. Power Electronics Thermal Management R&D (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  7. Determination of the in-core power and the average core temperature of low power research reactors using gamma dose rate measurements

    International Nuclear Information System (INIS)

    Osei Poku, L.

    2012-01-01

    Most reactors incorporate out-of-core neutron detectors to monitor the reactor power. An accurate relationship between the powers indicated by these detectors and actual core thermal power is required. This relationship is established by calibrating the thermal power. The most common method used in calibrating the thermal power of low power reactors is neutron activation technique. To enhance the principle of multiplicity and diversity of measuring the thermal neutron flux and/or power and temperature difference and/or average core temperature of low power research reactors, an alternative and complimentary method has been developed, in addition to the current method. Thermal neutron flux/Power and temperature difference/average core temperature were correlated with measured gamma dose rate. The thermal neutron flux and power predicted using gamma dose rate measurement were in good agreement with the calibrated/indicated thermal neutron fluxes and powers. The predicted data was also good agreement with thermal neutron fluxes and powers obtained using the activation technique. At an indicated power of 30 kW, the gamma dose rate measured predicted thermal neutron flux of (1* 10 12 ± 0.00255 * 10 12 ) n/cm 2 s and (0.987* 10 12 ± 0.00243 * 10 12 ) which corresponded to powers of (30.06 ± 0.075) kW and (29.6 ± 0.073) for both normal level of the pool water and 40 cm below normal levels respectively. At an indicated power of 15 kW, the gamma dose rate measured predicted thermal neutron flux of (5.07* 10 11 ± 0.025* 10 11 ) n/cm 2 s and (5.12 * 10 11 ±0.024* 10 11 ) n/cm 2 s which corresponded to power of (15.21 ± 0.075) kW and (15.36 ± 0.073) kW for both normal levels of the pool water and 40 cm below normal levels respectively. The power predicted by this work also compared well with power obtained from a three-dimensional neutronic analysis for GHARR-1 core. The predicted power also compares well with calculated power using a correlation equation obtained from

  8. Advanced concrete structures for thermal power plants

    International Nuclear Information System (INIS)

    Zerna, W.

    1982-01-01

    The author begins with an overview on the various types of power plants depending on the fuel used in them and then in particular deals with the reinforced concrete structures. Especially for reactor buildings and prestressed concrete pressure vessels concrete is the appropriate material. The methods of construction are described as a function of load and operation. Safety requirements brought new load types for such structures as e.g. airplane crash, internal pressure caused by pipe rupture. Dimensioning is done by means of nonlinear dynamical methods of calculation accounting for plasticizing. These methods are explained. Further the constructional principles of high natural-draft cooling towers are mentioned. (orig.) [de

  9. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    The feasibility of fusion devices operating in the semi-catalyzed deuterium (SCD) mode and of high energy proton accelerators to provide the neutron sources for driving subcritical breeding light water power reactors is assessed. The assessment is done by studying the energy balance of the resulting source driven light water reactors (SDLWR) and comparing it with the energy balance of the reference light water hybrid reactors (LWHR) driven by a D-T neutron source (DT-LWHR). The conditions the non-DT neutron sources should satisfy in order to make the SDLWR viable power reactors are identified. It is found that in order for a SCD-LWHR to have the same overall efficiency as a DT-LWHR, the fusion energy gain of the SCD device should be at least one half that the DT device. The efficienct of ADLWRs using uranium targets is comparable with that of DT-LWHRs having a fusion energy gain of unity. Advantages and disadvantages of the DT-LWHR, SCD-LWHR and ADLWR are discussed. (aurthor)

  10. Thermal history regulates methylbutenol basal emission rate in Pinus ponderosa.

    Science.gov (United States)

    Gray, Dennis W; Goldstein, Allen H; Lerdau, Manuel T

    2006-07-01

    Methylbutenol (MBO) is a 5-carbon alcohol that is emitted by many pines in western North America, which may have important impacts on the tropospheric chemistry of this region. In this study, we document seasonal changes in basal MBO emission rates and test several models predicting these changes based on thermal history. These models represent extensions of the ISO G93 model that add a correction factor C(basal), allowing MBO basal emission rates to change as a function of thermal history. These models also allow the calculation of a new emission parameter E(standard30), which represents the inherent capacity of a plant to produce MBO, independent of current or past environmental conditions. Most single-component models exhibited large departures in early and late season, and predicted day-to-day changes in basal emission rate with temporal offsets of up to 3 d relative to measured basal emission rates. Adding a second variable describing thermal history at a longer time scale improved early and late season model performance while retaining the day-to-day performance of the parent single-component model. Out of the models tested, the T(amb),T(max7) model exhibited the best combination of day-to-day and seasonal predictions of basal MBO emission rates.

  11. Thermal Analysis of a Power Conditioning Unit for a Howitzer

    Science.gov (United States)

    2009-08-01

    contact resistance Interface ( mA2 -K / W) AL-PCB 0.000389 AL-AL (thermal grease) 0.000083 AL-power chips 0.003891 AL-power chips (thermal grease...1120 W/ mA2 . Figure 3 shows the view of the box that the source of the solar radiation sees. The inside of the box is cluttered with cables, wiring, and...temperature (130°F) and a conservative convective heat transfer coefficient (5 W/ mA2 ) to all of the outer surfaces. These outer surfaces would

  12. Method of estimating thermal power distribution of core of BWR type reactor

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1982-01-01

    Purpose: To accurately and rapidly predict the thermal power of the core of a BWR they reactor at load follow-up operating time. Method: A parameter value corrected from a correction coefficient deciding unit and a xenon density distribution value predicted and calculated from a xenon density distributor are inputted to a thermal power distribution predicting devise, the status amount such as coolant flow rate or the like predetermined at this and next high power operating times is substituted for physical model to predict and calculate the thermal power distribution. The status amount of a nuclear reactor at the time of operating in previous high power corresponding to the next high power operation to be predicted is read from the status amount of the reactor stored in time series manner is a reactor core status memory, and the physical model used in the prediction and calculation of the thermal power distribution at the time of next high power operation is corrected. (Sikiya, K.)

  13. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  14. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  15. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  16. Ecological safety of thermal power industry and investments

    International Nuclear Information System (INIS)

    Glebov, V.P.

    1995-01-01

    Evaluation of ecological safety of domestic fossil fuel thermal power industry is given in comparison with foreign one. Ways of solving ecological problems are considered. They are based on introduction of new technologies, providing decrease of ecological effect, on development of effective ash-and sulfur-trapping, nitrogen purification equipment, on production of ecologically improved fuel. The necessity of investments to power industry is noted

  17. FGD Franchising Pilot Project of Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants.This paper introduces the development of this pilot project,including the foundation,purpose,objects,demands and procedures.It also discusses some main problems encountered during implementation,involving the understanding,legislation,financing,taxation,pricing and management of franchise.At...

  18. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Madron, F. [Chemplant Technology s.r.o., Hrncirska 4, 400 01 Usti nad Labem (Czech Republic); Papuga, J. [CEZ a.s., JE Dukovany, 675 50 Dukovany (Czech Republic); Pliska, J. [I and C ENERGO a.s., Prazska 684, 674 01 Trebic (Czech Republic)

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation

  19. Estimating the power efficiency of the thermal power plant modernization by using combined-cycle technologies

    International Nuclear Information System (INIS)

    Hovhannisyan, L.S.; Harutyunyan, N.R.

    2013-01-01

    The power efficiency of the thermal power plant (TPP) modernization by using combined-cycle technologies is introduced. It is shown that it is possible to achieve the greatest decrease in the specific fuel consumption at modernizing the TPP at the expense of introducing progressive 'know-how' of the electric power generation: for TPP on gas, it is combined-cycle, gas-turbine superstructures of steam-power plants and gas-turbines with heat utilization

  20. 77 FR 2521 - Integrated System Power Rates

    Science.gov (United States)

    2012-01-18

    .... James K. McDonald, Administrator, Southwestern Power Administration, Department of Energy, Williams Center Tower I, One West Third Street, Tulsa, Oklahoma 74103, (918) 595-6690, jim.mcdonald@swpa.gov... Commission. Available: In the marketing area of Southwestern Power Administration (Southwestern), described...

  1. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    Science.gov (United States)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  2. Thermal effects on metabolic activities of thermophilic microorganisms from the thermal discharge point of Tuticorin thermal power plant area

    International Nuclear Information System (INIS)

    Muthukkannan, N.; Murugesan, A.G.

    2002-01-01

    Metabolic activities of thermophilic microorganisms isolated from the thermal water discharge point at Tuticorin thermal power station were studied by growing the microorganisms in sterile medium and at various temperature regimes of 25, 35, 45, 55 and 65degC. The optimum temperature for the growth of the bacterium isolated from the thermal power plant station was 45 degC and beyond 65 degC the growth was gradually decreased. The bacteria isolated from open sea water were mesophiles with their growth optimum at 35 degC and microbes inhabiting the thermal discharge area were thermopiles as they were tolerant even at 55 degC. The amylase production, carbohydrate metabolism and lactose fermentation activities were optimum at 45 degC. At 25 degC and beyond 65 degC biochemical activities of the organisms were inhibited to a greater extent. (author)

  3. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: gor@tornado.nsk.ru [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  4. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  5. Prospects for solving environmental problems pertinent to thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Tumanovskii; V.R. Kotler [OAO All-Russia Thermal Engineering Institute, Moscow (Russian Federation)

    2007-06-15

    Possible ways to protect the atmosphere and water basin against harmful emissions and effluent waters discharged from thermal power stations are considered. Data on the effectiveness of different methods for removing NOx, SO{sub 2}, and ash particles, as well as heavy metals and CO{sub 2}, from these emissions and discharges are presented.

  6. Experience of Milled Peat Burning at Thermal Electric Power Plant

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2013-01-01

    Full Text Available The paper presents extensive knowledge and practical experience on burning of milled peat in the boilers of thermal electric power plants in Belarus and Russia. The accumulated experience can be used for solution of problems pertaining to substitution of some types of fuel imported to Belarus by milled peat which is extracted at many fuel effective peat enterprises of the Republic.

  7. Growth and development rates have different thermal responses.

    Science.gov (United States)

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  8. Determination of reactor thermal power using a more accurate method

    International Nuclear Information System (INIS)

    Papuga, J.; Madron, F.; Pliska, J.

    2005-01-01

    Reactor thermal power is an important operational parameter in many respects such as nuclear safety, reactor physics or evaluation of turbine thermal performance. Thermal power of a pressurized water reactor is determined on the basis of the steam generator thermal balance. The balance can be made in several variants differing from one another by the selection of different measuring circuits whose data are used in the balancing. In principle, no one such variant gives the true value of the thermal power. Among the variant values, the one nearest to the unknown true value of reactor thermal power is probably the value calculated with the lowest uncertainty. The determination of such uncertainty is not easy and its value can make even several percent, which has significant economic consequences. This paper presents the method of data reconciliation and its application to the data of the third of Dukovany NPP. The data reconciliation method allows to exploit all the information which process data contain. It is based on the statistical adjustment of the redundant data in such a way that the adjusted data obey generally valid laws of nature (e.g. conservation laws). Mass and energy balances based on the data not yet reconciled do not obey those laws because of measurement errors. For data reconciliation in Dukovany, a detailed model of mass and energy flows describing the 3rd unit from steam generators to alternator and condenser was set up. Laws of mass and energy conservation and phase equilibrium in water-steam systems are thus fulfilled. Moreover, the user can model momentum balances in pipelines and create other equations, which are respected during calculation. The data reconciliation is done regularly for hourly averages (Authors)

  9. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  10. Thermal Storage Power Balancing with Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2013-01-01

    The method described in this paper balances power production and consumption with a large number of thermal loads. Linear controllers are used for the loads to track a temperature set point, while Model Predictive Control (MPC) and model estimation of the load behavior are used for coordination....... The total power consumption of all loads is controlled indirectly through a real-time price. The MPC incorporates forecasts of the power production and disturbances that influence the loads, e.g. time-varying weather forecasts, in order to react ahead of time. A simulation scenario demonstrates...

  11. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  12. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    International Nuclear Information System (INIS)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Meng, Dennis Desheng

    2011-01-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA

  13. Thermal power terms in the Einstein-dilaton system

    International Nuclear Information System (INIS)

    Zuo, Fen

    2014-01-01

    We employ the gauge/string duality to study the thermal power terms of various thermodynamic quantities in gauge theories and the renormalized Polyakov loop above the deconfinement phase transition. We restrict ourselves to the five-dimensional Einstein gravity coupled to a single scalar, the dilaton. The asymptotic solutions of the system for a general dilaton potential are employed to study the power contributions of various quantities. If the dilaton is dual to the dimension-4 operator TrF μν 2 , no power corrections would be generated. Then the thermal quantities approach their asymptotic values much more quickly than those observed in lattice simulation. When the dimension of the dual operator is different from 4, various power terms are generated. The lowest power contributions to the thermal quantities are always quadratic in the dilaton, while that of the Polyakov loop is linear. As a result, the quadratic terms in inverse temperature for both the trace anomaly and the Polyakov loop, observed in lattice simulation, cannot be implemented consistently in the system. This is in accordance with the field theory expectation, where no gauge-invariant operator can accommodate such contributions. Two simple models, where the dilaton is dual to operators with different dimensions, are studied in detail to clarify the conclusion.

  14. Super thermal power plants and environment: a critical appraisal

    International Nuclear Information System (INIS)

    Sharma, A.K.

    1995-01-01

    This paper discusses the possible impact on the environment by the particulate matters, oxides of sulphur and nitrogen, trace metals and solid/liquid wastes, which are emitted during the combustion of coal in the super thermal power plants of National Thermal Power Corporation (NTPC). The coal consumed by these plants have sufficient sulphur content and ash. Of all the mineral in coal, pyrite is one of the most deleterious in combustion and a major source of oxide of sulphur pollution of the atmosphere. The impact of these on the terrestrial and aquatic environment in and around power plants and on region have been discussed. To arresting such contaminants, some remedial measures are suggested. (author). 14 refs., 1 fig., 3 tabs

  15. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  16. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  17. The THESEUS project -- 50 MWe solar thermal power for Crete

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, F.; Geyer, M.; Kistner, R.; Aringhoff, R.; Nava, P.; Brakmann, G.

    1998-07-01

    A consortium of European industry, utilities and research institutions from Greece, Germany, Spain and Italy attempts to implement a 52 MWe solar thermal power plant with parabolic trough technology on the Greek island of Crete sponsored by the EU' s THERMIE program. The increased demand for electricity on the island, a consequence of the growing allurement of the island as a tourist resort, makes it necessary to expand the installed capacity on Crete during the next years. According to the capacity expansion plans of Greek' s utility PPC a 160 MWe heavy fuel-fired power plant complex--two 30 MWe diesel units and two 50 MWe steam turbine units--is foreseen to be built by the year 2002. In this paper a description of the technical, economical and environmental aspects of the THESEUS project is provided. Moreover a market entry strategy for solar thermal power generation is discussed.

  18. Quantification of Gains and Risks of Static Thermal Rating Based on Typical Meteorological Year

    Czech Academy of Sciences Publication Activity Database

    Heckenbergerová, Jana; Musílek, P.; Filimonenkov, K.

    2013-01-01

    Roč. 44, č. 1 (2013), s. 227-235 ISSN 0142-0615 R&D Projects: GA MŠk LD12009 Grant - others:GA AV ČR(CZ) M100300904 Institutional support: RVO:67985807 Keywords : Overhead power transmission lines * Conductor ampacity * Probabilistic static thermal rating * Typical meteorological year * Risk tolerance * Energy throughput Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 3.432, year: 2012

  19. Estimation of respiratory rate from thermal videos of preterm infants.

    Science.gov (United States)

    Pereira, Carina Barbosa; Heimann, Konrad; Venema, Boudewijn; Blazek, Vladimir; Czaplik, Michael; Leonhardt, Steffen

    2017-07-01

    Studies have demonstrated that respiratory rate (RR) is a good predictor of the patient condition as well as an early marker of patient deterioration and physiological distress. However, it is also referred as "the neglected vital parameter". This is mainly due to shortcoming of current monitoring techniques. Moreover, in preterm infants, the removal of adhesive electrodes cause epidermal stripping, skin disruption, and with it pain. This paper proposes a new algorithm for estimation of RR in thermal videos of moderate preterm infants. It uses the temperature modulation around the nostrils over the respiratory cycle to extract this vital parameter. To compensate movement artifacts the approach incorporates a tracking algorithm. In addition, a new reliable and accurate algorithm for robust estimation of local (breath-to-breath) intervals was included. To evaluate the performance of this approach, thermal recordings of four moderate preterm infants were acquired. Results were compared with RR derived from body surface electrocardiography. The results showed an excellent agreement between thermal imaging and gold standard. On average, the relative error between both monitoring techniques was 3.42%. In summary, infrared thermography may be a clinically relevant alternative to conventional sensors, due to its high thermal resolution and outstanding characteristics.

  20. Wireless Power Control for Tactical MANET: Power Rate Bounds

    Science.gov (United States)

    2016-09-01

    J; P. Hande; T. Lan; C. W. Tan [2008] Power Control in Cellular Networks, Now Publishers Inc., Hanover, MA. 12. Chaves, Fabiano de Sousa; F. R. P...Asymptotically Fast Convergence, IEEE Selected Areas in Communications, 18(3). 36. Jian, Tao; Nicholas D. Sidiropoulos; Georgios B. Giannakis [2003] Kalman...Power Control and Its Imperfections in CDMA Cellular Systems, IEEE Transactions on Vehicular Technologies, 48, pages 1706–1777. 75. Tan , Chee Wei

  1. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  2. 'Crud' detection and evaluation during the Embalse nuclear power plant's thermal cycle for powers of 100%

    International Nuclear Information System (INIS)

    Fernandez, A.; Rosales, A.H.; Mura, V.R.; Sentupery, C.; Rascon, H.

    1987-01-01

    This paper describes the 'crud' measurements performed during the Embalse nuclear power plant's thermal cycle for a power of 100% (645 MWe) under different purification conditions. The aim of this work is to optimize the four steam generators' tube plate cleaning in function of the sweeping produced by their purification. (Author)

  3. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Science.gov (United States)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  4. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-08-03

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil -- by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines will be presented.

  5. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-06-13

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.

  6. Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques. 1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy. 1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and 1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy. 1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-...

  7. Design study on the efficiency of the thermal scheme of power unit of thermal power plants in hot climates

    Science.gov (United States)

    Sedlov, A.; Dorokhov, Y.; Rybakov, B.; Nenashev, A.

    2017-11-01

    At the stage of pre-proposals unit of the thermal power plants for regions with a hot climate requires a design study on the efficiency of possible options for the structure of the thermal circuit and a set of key parameters. In this paper, the thermal circuit of the condensing unit powerfully 350 MW. The main feature of the external conditions of thermal power plants in hot climates is the elevated temperature of cooling water of the turbine condensers. For example, in the Persian Gulf region as the cooling water is sea water. In the hot season of the year weighted average sea water temperature of 30.9 °C and during the cold season to 22.8 °C. From the turbine part of the steam is supplied to the distillation-desalination plant. In the hot season of the year heat scheme with pressure fresh pair of 23.54 MPa, temperature 570/560 °C and feed pump with electric drive (EDP) is characterized by a efficiency net of 0.25% higher than thermal schem with feed turbine pump (TDP). However, the supplied power unit with PED is less by 11.6 MW. Calculations of thermal schemes in all seasons of the year allowed us to determine the difference in the profit margin of units of the TDP and EDP. During the year the unit with the TDP provides the ability to obtain the profit margin by 1.55 million dollars more than the unit EDP. When using on the market subsidized price of electricity (Iran) marginal profit of a unit with TDP more at 7.25 million dollars.

  8. Efficiency assessment and benchmarking of thermal power plants in India

    International Nuclear Information System (INIS)

    Shrivastava, Naveen; Sharma, Seema; Chauhan, Kavita

    2012-01-01

    Per capita consumption of electricity in India is many folds lesser than Canada, USA, Australia, Japan, Chaina and world average. Even though, total energy shortage and peaking shortage were recorded as 11.2% and 11.85%, respectively, in 2008–09 reflecting non-availability of sufficient supply of electricity. Performance improvement of very small amount can lead to large contribution in financial terms, which can be utilized for capacity addition to reduce demand supply gap. Coal fired thermal power plants are main sources of electricity in India. In this paper, relative technical efficiency of 60 coal fired power plants has been evaluated and compared using CCR and BCC models of data envelopment analysis. Target benchmark of input variables has also been evaluated. Performance comparison includes small versus medium versus large power plants and also state owned versus central owned versus private owned. Result indicates poor performance of few power plants due to over use of input resources. Finding reveals that efficiency of small power plants is lower in comparison to medium and large category and also performance of state owned power plants is comparatively lower than central and privately owned. Study also suggests different measures to improve technical efficiency of the plants. - Highlights: ► This study evaluates relative technical efficiency of 60 coal fired thermal power plants of India. ► Input oriented CCR and BCC models of data envelopment analysis have been used. ► Small, medium and large power plants have been compared. ► Study will help investor while setting up new power projects. ► Power plants of different ownerships have also been compared.

  9. Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2005-12-01

    Full Text Available Power losses calculation and thermal modelling for a three-phase inverter power system is presented in this paper. Aiming a long real time thermal simulation, an accurate average power losses calculation based on PWM reconstruction technique is proposed. For carrying out the thermal simulation, a compact thermal model for a three-phase inverter power module is built. The thermal interference of adjacent heat sources is analysed using 3D thermal simulation. The proposed model can provide accurate power losses with a large simulation time-step and suitable for a long real time thermal simulation for a three phase inverter drive system for hybrid vehicle applications.

  10. Thermal performance test for steam turbine of nuclear power plants

    International Nuclear Information System (INIS)

    Bu Yubing; Xu Zongfu; Wang Shiyong

    2014-01-01

    Through study of steam turbine thermal performance test of CPR1000 nuclear power plant, we solve the enthalpy calculation problems of the steam turbine in wet steam zone using heat balance method which can help to figure out the real overall heat balance diagram for the first time, and we develop a useful software for thermal heat balance calculation. Ling'ao phase II as an example, this paper includes test instrument layout, system isolation, risk control, data acquisition, wetness measurement, heat balance calculation, etc. (authors)

  11. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  12. Nuclear plant power up-rate study: feedwater heater evaluations

    International Nuclear Information System (INIS)

    Svensson, Eric; Catapano, Michael; Coakley, Michael; Thomas, Dan

    2014-01-01

    Given today's nuclear industry business climate, it has become common for Utility companies to consider increasing unit capacities through turbine replacement and power up-rates. An integral part of the studies conducted by many towards this end, involve the generation of a set of turbine cycle heat balances with predicted performance parameters for the up-rated condition. Once these tentative operating values are established, it becomes necessary to evaluate the suitability of the existing components within each system to ensure they are capable of continued safe and reliable operation. The ultimate cost for the up-rate, including the cost for any major required modifications or significant replacements is weighed against increased revenue generated from the up-rate over time. Exelon's Peach Bottom Atomic Power Station (PBAPS) is currently planning for an Extended Power up-rate (EPU) for both units. To ensure the existing Feedwater Heaters (FWH) could maintain the operating and transient response margins at the EPU condition, an engineering study was conducted. Powerfect Inc. in conjunction with SPX Heat Transfer LLC were contracted to provide engineering services to analyze the design, thermal performance, reliability and operating conditions at projected EPU conditions. Specifically, to address the following with regard to the station's Feedwater Heaters (FWHs): 1. Evaluate Drain Cooler (DC) Velocities - including zone inlet velocity, cross and window velocities and outlet velocities. 2. Evaluate Drain Cooler Zone Pressure Drop for effect on drain cooler margins to flashing. 3. Evaluate differential pressure allowable across the pass partition plate. 4. Evaluate Drain Cooler Tube Vibration Potential. 5. Perform detailed steam dome velocity calculations. The goal of the study was to identify the most susceptible areas within the heaters for problems and potential failures when operating at the higher duty of the EPU condition for the remaining life

  13. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  14. A new high power thermal battery cathode material

    International Nuclear Information System (INIS)

    Faul, I.

    1986-01-01

    Smaller and lighter thermal batteries are major aims of the battery research programme at RAE Farnborough. Modern designs of thermal batteries, for use as power supplies in weapon systems, almost invariably use the Li:molten salt:FeS/sub 2/ system because of the significant increase in energy density achieved in comparison with the earlier Ca/CaCrO/sub 4/ couple. The disadvantage of the FeS/sub 2/ system is that the working cell voltage, between 1.5 and 2.0 V, is significantly lower so leading to more cells per battery than the earlier system. Further work at RAE and MSA (Britain) Ltd showed that the poor thermal stability of TiS/sub 2/ limited its use in thermal batteries, whilst the more stable V/sub 6/O/sub 13/ oxidised the electrolyte, giving poor efficiencies. However, the resulting reduced vanadium oxide material, subsequently called lithiated vanadium oxide (LVO), was found to be an excellent high voltage thermal battery cathode, being the subject of both UK and US patents. In this study both V/sub 6/O/sub 13/ made by the direct stoichiometric reaction of V/sub 2/O/sub 5/ and V and also by thermal decomposition of NH/sub 4/VO/sub 3/ under argon, have been used with equal success as the starting material for the preparation of LVO

  15. Thermal effluents from nuclear power plant influences species distribution and thermal tolerance of fishes in reservoirs

    International Nuclear Information System (INIS)

    Pal, A.K.; Das, T.; Dalvi, R.S.; Bagchi, S.; Manush, S.M.; Ayyappan, S.; Chandrachoodan, P.P.; Apte, S.K.; Ravi, P.M.

    2007-01-01

    During electricity generation water bodies like reservoir act as a heat sink for thermal effluent discharges from nuclear power plant. We hypothesized that the fish fauna gets distributed according to their temperature preference in the thermal gradient. In a simulated environment using critical thermal methodology (CTM), we assessed thermal tolerance and metabolic profile of fishes (Puntius filamentosus, Parluciosoma daniconius, Ompok malabaricus, Mastacembelus armatus, Labeo calbasu, Horabragrus brachysoma, Etroplus suratensis, Danio aequipinnatus and Gonoproktopterus curmuca) collected from Kadra reservoir in Karnataka state. Results of CTM tests agrees with the species abundance as per the temperature gradient formed in the reservoir due to thermal effluent discharge. E. suratensis and H. brachysoma) appear to be adapted to high temperature (with high CTMax and CTMin values) and are in abundance at point of thermal discharge. Similarly, P. daniconius, appear to be adapted to cold (low CTM values) is in abundance in lower stretches of Kadra reservoir. Overall results indicate that discharge form nuclear power plant influences the species biodiversity in enclosed water bodies. (author)

  16. 78 FR 39280 - Integrated System Power Rates

    Science.gov (United States)

    2013-07-01

    ... 74103. FOR FURTHER INFORMATION CONTACT: Mr. James K. McDonald, Vice President, Chief Operating Officer... Third Street, Tulsa, Oklahoma 74103, (918) 595-6690, jim.mcdonald@swpa.gov . SUPPLEMENTARY INFORMATION.... RA 6120.2 entitled Power Marketing Administration Financial Reporting. Procedures for public...

  17. Measured thermal and fast neutron fluence rates ATR Cycle 101-B, October 11, 1993--November 27, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1994-01-01

    This report contains the thermal (2200 m/s) and fast (E>lMeV) neutron fluence rate data for ATR Cycle 101-B which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations proper header identification of all monitor positions contained herein

  18. Investigation of power battery thermal management by using mini-channel cold plate

    International Nuclear Information System (INIS)

    Huo, Yutao; Rao, Zhonghao; Liu, Xinjian; Zhao, Jiateng

    2015-01-01

    Highlights: • Micro-channel cold plate was used for battery thermal management. • Maximum temperature of battery decreased with the increase of channel number. • Effect of flow direction on cooling performance is smaller with the increase of flow rate. • Cooling performance increased with the increase of inlet flow rate. • The increasing trend become smaller when the flow rate is high enough. - Abstract: In order to guarantee the safety and extend the cycle life of Li-ion power batteries within electric vehicles, a mini-channel cold plate-based battery thermal management system is designed to cool a rectangular Li-ion battery. A three-dimensional thermal model of the cooling system was established and the effects of number of channels, flow direction, inlet mass flow rate and ambient temperature on temperature rise and distribution of the battery during the discharge process were investigated. The results suggest that the maximum temperature of the battery decreases with increases in the number of channels and inlet mass flow rate. The effect of flow direction on cooling performance was smaller after mass flow rate increased. The cooling performance improved with the increase of inlet mass flow rate but the increasing trend became smaller, and the mass flow rate as 5 × 10 −4 kg s −1 was optimal. The simulation results will be useful for the design of mini-channel cold plate-based battery thermal management system

  19. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  20. Control of thermal therapies with moving power deposition field

    International Nuclear Information System (INIS)

    Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B

    2006-01-01

    A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with

  1. Hydro-thermal power flow scheduling accounting for head variations

    International Nuclear Information System (INIS)

    El-Hawary, M.E.; Ravindranath, K.M.

    1992-01-01

    In this paper the authors treat the problem of optimal economic operation of hydrothermal electric power systems with variable head hydro plants employing the power flow equations to represent the network. Newton's method is used to solve the problem for a number of test systems. A comparison with solutions with fixed head is presented. In general the optimal schedule requires higher slack bus and thermal power generation and cost in the case of variable head hydro plant than that required by the fixed head hydro plant in all demand periods. Correspondingly, the hydro generation is less in the case of variable head hydro plant compared to fixed head hydro plant. A negligible difference in voltage magnitudes in all the time intervals, but it is observed that slightly higher voltages occur in the case of the fixed head hydro plant. Higher power and energy losses occur in the case of variable head hydro plants compared to the fixed head hydro plants

  2. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  3. Transient electro-thermal modeling of bipolar power semiconductor devices

    CERN Document Server

    Gachovska, Tanya Kirilova; Du, Bin

    2013-01-01

    This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusio

  4. State and development of the technology of thermal power plants

    International Nuclear Information System (INIS)

    Peter, F.; Schueller, K.H.

    1981-01-01

    Like in the past thermal power plants shall have to be designed also in the future in a way that a sufficient, low-priced and environment-preserving electricity and heat supply can be granted. The technology applied today in fossil-fuel and nuclear power plants and its further development is outlined under the aspects of a better utilization of primary energy, the substitution of petroleum and, in the long term, also of natural gas and coal, and of the extended protection of the environment against harmful influences. (orig.) [de

  5. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  6. Environmental impact assessment of coal fired thermal power stations

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Sadasivan, S.; Negi, B.S.; Meenakshy, V.

    1992-01-01

    Coal fly ash samples collected from various thermal power plants and one lignite ash sample were analysed for various elements such as As, Ca, Ce, Co, Cr, Cu, Eu, Fe, Hf, K, La, Lu, Mn, Na, Ni, Pb, Rb, Se, Si, Sb, Sc, Sm, Sr, Ti, V, Yb and Zn using energy dispersive X-ray fluorescence and instrumental neutron activation analysis methods. The two-step maximum leachability test was also performed on all fly ash samples. 13 refs, 9 tabs

  7. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  8. Failure at Zainsk thermal power station: lesson for thermal and nuclear power stations

    International Nuclear Information System (INIS)

    Derkach, A.L.; Klyuchnikov, A.A.; Fedorenko, G.M.; Kuz'min, V.V.

    2007-01-01

    An account of system failure at Zainsk Thermal PS on January 1-st, 1979 is given. The cause of failure - sudden unauthorized energizing of block transformer which led to a direct asynchronous start of 200 MW turbine generator from grid. The failure resulted in the explosion and fire in generator, shaft destruction, and the damage of the machine hall's roof. The core roots of the failure have been scrutinised

  9. Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Azucena Durán-Colmenares

    2016-10-01

    Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.

  10. Thermal diagnostics in power plant to improve performance

    International Nuclear Information System (INIS)

    Meister, H.

    1995-01-01

    The improvement of older power plants by changing poor performing components is a cost effective method to increase the capacity of the units. The necessary information for the detection of components that are to be replaced can be obtained from heat rate and component tests with accuracy instrumentation. The discussed methods and tools provided by ABB Were used with success in several power plants in Europe. These tools are in the process of permanent improvement and can be used in almost any type of power plant. Due to the reasons discussed above, there is a high potential for improvement of a lot of power plants in the next decade. (author)

  11. Thermodynamic aspects of power production in thermal, chemical and electrochemical systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanisław; Poświata, Artur

    2012-01-01

    We apply optimization methods to study power generation limits for various energy converters, such as thermal, solar, chemical, and electrochemical engines. Methodological similarity is observed when analysing power limits in thermal machines and fuel cells which are electrochemical flow engines. Operative driving forces and voltage are suitable indicators of imperfect phenomena in energy converters. The results obtained generalize our previous findings for power yield limits in purely thermal systems with finite rates. While temperatures T i of participating media were only necessary variables in purely thermal systems, in the present work both temperatures and chemical potentials μ k are essential. This case is associated with engines propelled by fluxes of both energy and substance. In dynamical systems downgrading or upgrading of resources may occur. Energy flux (power) is created in the generator located between the resource fluid (‘upper’ fluid 1) and the environmental fluid (‘lower’ fluid, 2). Fluid properties, transfer mechanisms and conductance values of dissipative layers or conductors influence the rate of power production. Numerical approaches to the dynamical solutions are based on the dynamic programming or maximum principle. Here we focus especially on the latter method, which involves discrete algorithms of Pontryagin’s type. Downgrading or upgrading of resources may also occur in electrochemical systems of fuel cell type. Yet, in this paper we restrict ourselves to the steady-state fuel cells. We present a simple analysis showing that, in linear systems, only at most ¼ of power dissipated in the natural transfer process can be transformed into the noble form of mechanical power.

  12. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  13. Alternative trends in development of thermal power plants

    International Nuclear Information System (INIS)

    Prisyazhniuk, Vitaly A.

    2008-01-01

    Thermal (or fossil fuel) power plants (TPP) are the major polluters of man's environment, discharging into the atmosphere the basic product of carbon fuel combustion, CO 2 . It is this very gas that accounts for the greenhouse effect causing the global climate warm-up on our planet. A natural solution of the problem of reducing carbon dioxide discharge into the atmosphere lies in power saving, thus reducing the amount of the fuel burnt. This approach can be justified from any standpoint, both economically and ecologically. The ideal way of solving the problem would be to completely give up burning carbon-containing fuel, such as coal, petroleum products, and other power resources of organic nature. This work is intended to outline the ways of reducing consumption of fuel by TPP and, consequently, of reducing their discharging into the atmosphere the gases producing the greenhouse effect. One of the ways lies in changing the thermophysical characteristics of the working medium, which becomes possible if we can modify the conventional working medium, that is water, or can use some working medium with quite different thermophysical properties. The article dwells on various technological ways providing for a practical solution of the problem, such as the Kalina cycle; modification of water properties by way of magneto-hydrodynamic resonance (MHD resonance); and employing, in the thermodynamic cycle of Thermal Power Plants, liquids boiling at temperatures which are lower than that of the environment

  14. Performance analysis of an integrated gas-, steam- and organic fluid-cycle thermal power plant

    International Nuclear Information System (INIS)

    Oko, C.O.C.; Njoku, I.H.

    2017-01-01

    This paper presents the performance analysis of an existing combined cycle power plant augmented with a waste heat fired organic Rankine cycle power plant for extra power generation. This was achieved by performing energy and exergy analysis of the integrated gas-, steam- and organic fluid-cycle thermal power plant (IPP). Heat source for the subcritical organic Rankine cycle (ORC) was the exhaust flue gases from the heat recovery steam generators of a 650 MW natural gas fired combined cycle power plant. The results showed that extra 12.4 MW of electricity was generated from the attached ORC unit using HFE7100 as working fluid. To select ORC working fluid, ten isentropic fluids were screened and HFE7100 produced the highest net power output and cycle efficiency. Exergy and energy efficiencies of the IPP improved by 1.95% and 1.93%, respectively. The rate of exergy destruction in the existing combined cycle plant was highest in the combustion chamber, 59%, whereas in the ORC, the highest rate of exergy destruction occurred in the evaporator, 62%. Simulations showed exergy efficiency of the IPP decreased with increasing ambient temperature. Exit stack flue gas temperature reduced from 126 °C in the combined cycle power plant to 100 °C in the integrated power plant. - Highlights: • Combined cycle plant retrofitted with ORC produced extra 12.4 MW electric power. • ORC is powered with low temperature flue gas from an existing combined cycle plant. • Exergy destruction rate in integrated plant(IPP) is less than in combined plant. • Exit stack temperature of the IPP has less environmental thermal pollution. • Exergy and energy efficiencies of the IPP improved by 1.95% and 1.93%, respectively.

  15. Oral L-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion.

    Science.gov (United States)

    Flood, T R; Waldron, M; Jeffries, O

    2017-07-01

    The study investigated the effect of a non-thermal cooling agent, L-menthol, on exercise at a fixed subjective rating of perceived exertion (RPE) in a hot environment. Eight male participants completed two trials at an exercise intensity between 'hard' and 'very hard', equating to 16 on the RPE scale at ~35 °C. Participants were instructed to continually adjust their power output to maintain an RPE of 16 throughout the exercise trial, stopping once power output had fallen by 30%. In a randomized crossover design, either L-menthol or placebo mouthwash was administered prior to exercise and at 10 min intervals. Power output, [Formula: see text]O 2 , heart rate, core and skin temperature was monitored, alongside thermal sensation and thermal comfort. Isokinetic peak power sprints were conducted prior to and immediately after the fixed RPE trial. Exercise time was greater (23:23 ± 3:36 vs. 21:44 ± 2:32 min; P = 0.049) and average power output increased (173 ± 24 vs. 167 ± 24 W; P = 0.044) in the L-menthol condition. Peak isokinetic sprint power declined from pre-post trial in the L-menthol l (9.0%; P = 0.015) but not in the placebo condition (3.4%; P = 0.275). Thermal sensation was lower in the L-menthol condition (P = 0.036), despite no changes in skin or core temperature (P > 0.05). These results indicate that a non-thermal cooling mouth rinse lowered thermal sensation, resulting in an elevated work rate, which extended exercise time in the heat at a fixed RPE.

  16. Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant

    International Nuclear Information System (INIS)

    Blanco-Marigorta, Ana M.; Victoria Sanchez-Henriquez, M.; Pena-Quintana, Juan A.

    2011-01-01

    Exergetic analysis is without any doubt a powerful tool for developing, evaluating and improving an energy conversion system. In the present paper, two different cooling technologies for the power cycle of a 50 MWe solar thermal power plant are compared from the exergetic viewpoint. The Rankine cycle design is a conventional, single reheat design with five closed and one open extraction feedwater heaters. The software package GateCycle is used for the thermodynamic simulation of the Rankine cycle model. The first design configuration uses a cooling tower while the second configuration uses an air cooled condenser. With this exergy analysis we identify the location, magnitude and the sources or thermodynamic inefficiencies in this thermal system. This information is very useful for improving the overall efficiency of the power system and for comparing the performance of both technologies.

  17. Applications of laser diagnostics to thermal power plants and engines

    International Nuclear Information System (INIS)

    Deguchi, Y.; Kamimoto, T.; Wang, Z.Z.; Yan, J.J.; Liu, J.P.; Watanabe, H.; Kurose, R.

    2014-01-01

    The demands for lowering the burdens on the environment will continue to grow steadily. It is important to monitor controlling factors in order to improve the operation of industrial thermal systems. In engines, exhaust gas temperature and concentration distributions are important factors in nitrogen oxides (NO x ), total hydrocarbon (THC) and particulate matter (PM) emissions. Coal and fly ash contents are parameters which can be used for the control of coal-fired thermal power plants. Monitoring of heavy metals such as Hg is also important for pollution control. In this study, the improved laser measurement techniques using computed tomography-tunable diode laser absorption spectroscopy (CT-TDLAS), low pressure laser-induced breakdown spectroscopy (LIBS), and laser breakdown time-of-flight mass spectrometry (LB-TOFMS) have been developed and applied to measure 2D temperature and species concentrations in engine exhausts, coal and fly ash contents, and trace species measurement. The 2D temperature and NH 3 concentration distributions in engine exhausts were successfully measured using CT-TDLAS. The elemental contents of size-segregated particles were measured and the signal stability increased using LIBS with the temperature correction method. The detection limit of trace species measurement was enhanced using low pressure LIBS and LB-TOFMS. The detection limit of Hg can be enhanced to 3.5 ppb when employing N 2 as the buffer gas using low pressure LIBS. Hg detection limit was about 0.82 ppb using 35 ps LB-TOFMS. Compared to conventional measurement methods laser diagnostics has high sensitivity, high response and non-contact features for actual industrial systems. With these engineering developments, transient phenomena such as start-ups in thermal systems can be evaluated to improve the efficiency of these thermal processes. - Highlights: • Applicability of newly developed laser diagnostics was demonstrated for the improvement of thermal power plants and

  18. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Bowden, N; Misner, A; Palmer, T

    2007-06-27

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to 3.5% within 7 days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  19. Social assessment and location of nuclear and thermal power plants

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu; Nishio, Mitsuo.

    1979-01-01

    Most of the locations of nuclear and thermal power plants in Japan are depopulated villages with remote rural character, but for the development of such districts, the policy is not yet clearly established, and the appropriate measures are not taken. The living regions of residents and the production regions of enterprises are more and more estranged. Social assessment is the scientific method to perceive the future change due to the installation of power stations. The features particular to the assessment of natural environment and social environment related to the location of power stations are considered, and the technical problems involved in the method of assessment of natural environment are solved, and the actual method of assessment of social environment is developed. Then, the possibility of establishing this method and the problems in its application are investigated. The plan of developing the surroundings of power generation facilities is criticized, and the coordination of the location plan of power companies and the regional projects of municipalities is discussed. Finally, the mechanism of consensus formation concerning the location of power stations is considered, dividing into regional consensus formation and administrative consensus formation, and the possibility of instituting social assessment is examined. (Kako, I.)

  20. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  1. Thermal management for high power lithium-ion battery by minichannel aluminum tubes

    International Nuclear Information System (INIS)

    Lan, Chuanjin; Xu, Jian; Qiao, Yu; Ma, Yanbao

    2016-01-01

    Highlights: • A new design of minichannel cooling is developed for battery thermal management system. • Parametric studies of minichannel cooling for a cell are conducted at different discharge rates. • Minichannel cooling can maintain almost uniform temperature (T_d_i_f_f < 1 °C). • Pumping power assumption is only about 5 milliwatt. - Abstract: Lithium-ion batteries are widely used for battery electric (all-electric) vehicles (BEV) and hybrid electric vehicles (HEV) due to their high energy and power density. An battery thermal management system (BTMS) is crucial for the performance, lifetime, and safety of lithium-ion batteries. In this paper, a novel design of BTMS based on aluminum minichannel tubes is developed and applied on a single prismatic Li-ion cell under different discharge rates. Parametric studies are conducted to investigate the performance of the BTMS using different flow rates and configurations. With minichannel cooling, the maximum cell temperature at a discharge rate of 1C is less than 27.8 °C, and the temperature difference across the cell is less than 0.80 °C using flow rate at 0.20 L/min, at the expense of 8.69e-6 W pumping power. At higher discharge rates, e.g., 1.5C and 2C, higher flow rates are required to maintain the same temperature rise and temperature difference. The flow rate needed is 0.8 L/min for 1.5C and 2.0 L/min for 2C, while the required pumping power is 4.23e-4 W and 5.27e-3 W, respectively. The uniform temperature distribution (<1 °C) inside the single cell and efficient pumping power demonstrate that the minichannel cooling system provides a promising solution for the BTMS.

  2. Thermal power plants in the Oslofjord district - Recipient evaluations

    International Nuclear Information System (INIS)

    Boehle, B.; Danielssen, D.; Tveite, S.; Haugen, I.; Nilsen, G.; Audunson, T.; Rye, H.; Thendrup, A.

    1975-11-01

    The results presented in a series of reports from the three institutes concerning the physical characteristics of the waters in the vicinoty of five possible sites for thermal (including nuclear) power plants in the Oslofjord district, and the spreading and effects of thermal effluents on the biological state and resources of these waters, are summarised, and an evaluation of the relative suitability of these sites is made. The sites are ranked as follows:- 1. Naverfjorden or, 2. Langangsfjorden - Saga, with effluent release to the Naverfjord region in both cases; 3. Vardeaasen; 4. Hurum; 5; Brenntangen. The possible intake - outlet arrangements are ranked as follows:-1. Deep intake - surface outlet, 2. Deep intake - deep outlet, or surface intake - surface outlet, 3. Surface intake - deep outlet. (JIW)

  3. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...

  4. Strategies for emission reduction from thermal power plants.

    Science.gov (United States)

    Prisyazhniuk, Vitaly A

    2006-07-01

    Major polluters of man's environment are thermal power stations (TPS) and power plants, which discharge into the atmosphere the basic product of carbon fuel combustion, CO2, which results in a build-up of the greenhouse effect and global warm-up of our planet's climate. This paper is intended to show that the way to attain environmental safety of the TPS and to abide by the decisions of the Kyoto Protocol lies in raising the efficiency of the heat power stations and reducing their fuel consumption by using nonconventional thermal cycles. Certain equations have been derived to define the quantitative interrelationship between the growth of efficiency of the TPS, decrease in fuel consumption and reduction of discharge of dust, fuel combustion gases, and heat into the environment. New ideas and new technological approaches that result in raising the efficiency of the TPS are briefly covered: magneto-hydrodynamic resonance, the Kalina cycle, and utilizing the ambient heat by using, as the working medium, low-boiling substances.

  5. Cooling problems of thermal power plants. Physical model studies

    International Nuclear Information System (INIS)

    Neale, L.C.

    1975-01-01

    The Alden Research Laboratories of Worcester Polytechnic Institute has for many years conducted physical model studies, which are normally classified as river or structural hydraulic studies. Since 1952 one aspect of these studies has involved the heated discharge from steam power plants. The early studies on such problems concentrated on improving the thermal efficiency of the system. This was accomplished by minimizing recirculation and by assuring full use of available cold water supplies. With the growing awareness of the impact of thermal power generation on the environment attention has been redirected to reducing the effect of heated discharges on the biology of the receiving body of water. More specifically the efforts of designers and operators of power plants are aimed at meeting or complying with standards established by various governmental agencies. Thus the studies involve developing means of minimizing surface temperatures at an outfall or establishing a local area of higher temperature with limits specified in terms of areas or distances. The physical models used for these studies have varied widely in scope, size, and operating features. These models have covered large areas with both distorted geometric scales and uniform dimensions. Instrumentations has also varied from simple mercury thermometers to computer control and processing of hundreds of thermocouple indicators

  6. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-10-01

    Full Text Available Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  7. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  8. Prognostics Approach for Power MOSFET Under Thermal-Stress

    Science.gov (United States)

    Galvan, Jose Ramon Celaya; Saxena, Abhinav; Kulkarni, Chetan S.; Saha, Sankalita; Goebel, Kai

    2012-01-01

    The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real

  9. Availability of thermal power plants 1977-1986

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1987-01-01

    To get a picture of power plant availability and its influencing factors, availability data have been acquired and evaluated by VGB according to different design and operation parameters since 1970. The present volume is the 16th annual statistics since 1970. It covers the decade of 1977 to 1986 and contains availability data of 384 power plants in Germany and abroad, with a total of 94.896 MW and 3.768 plant years. Data are presented on fossil-fuelled units, units with a combined gas/steam cycle, nuclear power plants and gas turbine systems, with further sub-categories according to unit size, fuel, type, years of operation, and operating regime. German plants are reviewed separately. All power data are gross data measured at the generator terminals. For a comparative evaluation, the data of 1986 are supplemented by yearly averages since 1977 and averages for the decade from 1977 to 1986. Since 1978, nonavailability data are categorized as 'unscheduled' and 'scheduled' nonavailabilities. For availability data of 1970 to 1976, see the VGB publication 'Availability of thermal power plants, 1970 to 1981'. (orig./UA) [de

  10. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries

    OpenAIRE

    Gelažanskas, Linas; Baranauskas, Audrius; Gamage, Kelum A.A.; Ažubalis, Mindaugas

    2016-01-01

    The increased number of renewable power plants pose threat to power system balance. Their intermittent nature makes it very difficult to predict power output, thus either additional reserve power plants or new storage and control technologies are required. Traditional spinning reserve cannot fully compensate sudden changes in renewable energy power generation. Using new storage technologies such as flow batteries, it is feasible to balance the variations in power and voltage within very short...

  11. Application of the thermal efficiency analysis software 'EgWin' at existing power plants

    International Nuclear Information System (INIS)

    Koda, E.; Takahashi, T.; Nakao, Y.

    2008-01-01

    'EgWin' is the general purpose software to analyze a thermal efficiency of power system developed in CRIEPI. This software has been used to analyze the existing power generation unit of 30 or more, and the effectiveness has been confirmed. In thermal power plants, it was used for the clarification of the thermal efficiency decrease factor and the quantitative estimation of the influence that each factor gave to the thermal efficiency of the plant. Also it was used for the quantitative estimation of the effect by the operating condition change and the facility remodeling in thermal power, atomic energy, and geothermal power plants. (author)

  12. Nuclear power plant thermal-hydraulic performance research program plan

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this program plan is to present a more detailed description of the thermal-hydraulic research program than that provided in the NRC Five-Year Plan so that the research plan and objectives can be better understood and evaluated by the offices concerned. The plan is prepared by the Office of Nuclear Regulatory Research (RES) with input from the Office of Nuclear Reactor Regulation (NRR) and updated periodically. The plan covers the research sponsored by the Reactor and Plant Systems Branch and defines the major issues (related to thermal-hydraulic behavior in nuclear power plants) the NRC is seeking to resolve and provides plans for their resolution; relates the proposed research to these issues; defines the products needed to resolve these issues; provides a context that shows both the historical perspective and the relationship of individual projects to the overall objectives; and defines major interfaces with other disciplines (e.g., structural, risk, human factors, accident management, severe accident) needed for total resolution of some issues. This plan addresses the types of thermal-hydraulic transients that are normally considered in the regulatory process of licensing the current generation of light water reactors. This process is influenced by the regulatory requirements imposed by NRC and the consequent need for technical information that is supplied by RES through its contractors. Thus, most contractor programmatic work is administered by RES. Regulatory requirements involve the normal review of industry analyses of design basis accidents, as well as the understanding of abnormal occurrences in operating reactors. Since such transients often involve complex thermal-hydraulic interactions, a well-planned thermal-hydraulic research plan is needed

  13. New water intake systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Ishchuk, T.B.; Samodel'nikov, B.T.

    1989-01-01

    Problems arising during design of water intake and spillway structures for the auxiliary water supply system of thermal and nuclear power plants connected with the provision of their reliable operation and with the effect on the temperature condition of reservoirs and their ecology are investigated. Design providing for the connection of intake channel and catch drain for a through (transition) channel and supplying a water transition flow by ejecting water outputs is suggested. The variant considered is effective for seas, lakes and reservoirs with adverse conditions for natural cooling and it is suitable for regions with seismicity up to 5-6 balls

  14. Vibration monitoring and fault diagnostics of a thermal power plant

    International Nuclear Information System (INIS)

    Hafeez, T.; Ghani, R.; Chohan, G.Y.; Amir, M.

    2003-01-01

    A thermal power plant was monitored from HP-turbine to the generator end. The vibration data at different plant locations was obtained with the help of a data collector/analyzer. The spectra of-all locations generate the symptoms for different problems of moderate and high vibration levels like bent shaft, misalignment in the exciter rotor and three couplings, mechanical looseness on generator and exciter sides. The possible causes of these faults are discussed on the basis of presented vibration spectra in this paper. The faults were later on rectified on the basis of this diagnostics. (author)

  15. RAM investigation of coal-fired thermal power plants: A case study

    Directory of Open Access Journals (Sweden)

    D. Bose

    2012-04-01

    Full Text Available Continuous generation of electricity of a power plant depends on the higher availability of its components/equipments. Higher availability of the components/equipments is inherently associated with their higher reliability and maintainability. This paper investigates the reliability, availability and maintainability (RAM characteristics of a 210 MW coal-fired thermal power plant (Unit-2 from a thermal power station in eastern region of India. Critical mechanical subsystems with respect to failure frequency, reliability and maintainability are identified for taking necessary measures for enhancing availability of the power plant and the results are compared with Unit-1 of the same Power Station. Reliability-based preventive maintenance intervals (PMIs at various reliability levels of the subsystems are estimated also for performing their preventive maintenance (PM. The present paper highlights that in the Unit-2, Economizer (ECO & Furnace Wall Tube (FWT exhibits lower reliability as compared to the other subsystems and Economizer (ECO & Baffle Wall Tube (BWT demands more improvement in maintainability. Further, it has been observed that FSH followed Decreasing Failure Rate (DFR and Economizer (ECO is the most critical subsystem for both the plants. RAM analysis is very much effective in finding critical subsystems and deciding their preventive maintenance program for improving availability of the power plant as well as the power supply.

  16. Thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  17. Standard Guide for Specifying Thermal Performance of Geothermal Power Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Conceptual design and analysis of a Dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.

    1980-08-01

    A Point Focusing Distributed Receiver (PFDR) solar thermal electric system which employs small Organic Rankine Cycle (ORC) engines is examined with reference to its projected technical/economic performance. With mass-produced power modules (about 100,000 per year), the projected life-cycle energy cost for an optimized no-storage system is estimated at 67 mills/kWh (Levelized Busbar Energy Cost) without the need for advanced development of any of its components. At moderate production rates (about 50 MWe/yr) system energy costs are competitive with conventional power generation systems in special remote-site types of applications.

  19. Notifiable events in systems for fission of nuclear fuels - nuclear power plants and research reactors with maximum output exceeding 50 kW of thermal normal rating - in the Federal Republic of Germany. Quarterly report, 2nd quarter of 1996

    International Nuclear Information System (INIS)

    1996-01-01

    There were 32 notifiable events in nuclear power plants in Germany in the second quarter of 1996. The report lists and characterises all the 32 events notified in the reporting period. The events did not involve any radioactivity release exceeding the maximum permissible limits during this period, so that there were no radiation hazards to the population or the environment. One event was classified at level 1 of the INES event scale (Anomaly). Research reactor operators in Germany reported 5 notifiable events in the reporting period. The report lists and characterises these events. These events did not involve any radioactivity release exceeding the maximum permissible limits during this period, so that there were no radiation hazards to the population or the environment. All events notified were classified into the lowest categories of safety significance of the official event scales (N, or below scale). (orig./DG) [de

  20. Phytomonitoring of air pollution around a thermal power plant

    Science.gov (United States)

    Agrawal, M.; Agrawal, S. B.

    This study was undertaken in order to assess the impact of air pollutants on vegetation around Obra thermal power plant (1550 M W capacity) in the Mirzapur district of Uttar Pradesh. For this purpose, Mangifera indica, Citrus medico and Bouganvillaea spectabilis plants, most common at all sites, were selected as test plants. Five study sites were selected northeast (prevailing wind) of the thermal power plant. A control site was also selected at a distance of 30 km north of Obra. Responses of plants to pollutants in terms of presence of foliar injury symptoms and changes in chlorophyll, ascorbic acid and S content were measured. These changes were correlated with ambient SO 2 and suspended particulate matter (SPM) concentrations and the amount of dust settled on leaf surfaces. The SO 2 and SPM concentrations were quite high in the immediate vicinity of the power plant. There also exists a direct relationship between the concentration of SPM in air and amount of dust deposited on leaf surfaces. Maximum dust deposition was observed on M. indica plants. The levels of foliar injury, chlorophyll and ascorbic acid were found to decrease and that of S increase in plants around the power plant in comparison to those growing at a control site. The magnitude of such changes was maximum in M. indica and minimum in C. medica. A species specific direct relationship between the increase in the amount of S and decrease in chlorophyll content was observed. The study suggests that differential sensitivity of plants to SO 2 may be used in evaluating the air pollution impact around emission sources and M. indica plants can be used as an indicator plant for quantifying biological changes.

  1. Study on corrosion of thermal power plant condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Abdolreza Rashidi; Zhaam, Ali Akbar [Niroo Research Institute, end of Poonak Bakhtari blvd., Shahrak Ghods, Tehran (Iran)

    2004-07-01

    The aim of this investigation is to study kinds of corrosion mechanisms in thermal power plant condenser tubes. Condenser is a shell and tube heat exchanger in which cooling water flows through its tubes. While the steam from low pressure turbine passes within condenser tubes, it is condensed by cooling water. The exhausted steam from low pressure turbine is condensed on external surface of condenser tubes and heat is transferred to cooling water which flow into tubes. Tubes composition is usually copper-based alloys, stainless steel or titanium. Annual damages due to corrosion cause much cost for replacement and repairing metallic equipment and installations in electric power industry. Because of existence of different contaminants in water and steam cycle, condenser tubes surfaces are exposed to corrosion. Contaminants like oxygen, carbon dioxide, chloride ion and ammonia in water and steam cycle originate several damages such as pitting and crevice corrosion, erosion, galvanic attack, SCC, condensed corrosion, de-alloying in thermal power plant condenser. The paper first states how corrosion damage takes place in condensers and then introduces types of usual alloys used in condensers and also their corrosion behavior. In continuation, a brief explanation is presented about kinds of condenser failures due to corrosion. Then, causes and locations of different mechanisms of corrosion events on condenser tubes and effects of different parameters such as composition, temperature, chloride and sulfide ion concentration, pH, water velocity and biological precipitation are examined and finally protection methods are indicated. Also some photos of tubes specimens related to power plants are studied and described in each case of mentioned mechanisms. (authors)

  2. Renewable energy distributed power system with photovoltaic/ thermal and bio gas power generators

    International Nuclear Information System (INIS)

    Haider, M.U.; Rehman, S.U.

    2011-01-01

    The energy shortage and environmental pollution is becoming an important problem in these days. Hence it is very much important to use renewable power technologies to get rid of these problems. The important renewable energy sources are Bio-Energy, Wind Energy, Hydrogen Energy, Tide Energy, Terrestrial Heat Energy, Solar Energy, Thermal Energy and so on. Pakistan is rich in all these aspects particularly in Solar and Thermal Energies. In major areas of Pakistan like in South Punjab, Sind and Baluchistan the weather condition are very friendly for these types of Renewable Energies. In these areas Solar Energy can be utilized by solar panels in conjunction with thermal panels. The Photovoltaic cells are used to convert Solar Energy directly to Electrical Energy and thermal panels can be uses to convert solar energy into heat energy and this heat energy will be used to drive some turbine to get Electrical Energy. The Solar Energy can be absorbed more efficiently by any given area of Solar Panel if these two technologies can be combined in such a way that they can work together. The first part of this paper shows that how these technologies can be combined. Furthermore it is known to all that photovoltaic/thermal panels depend entirely on weather conditions. So in order to maintain constant power a biogas generator is used in conjunction with these. (author)

  3. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  4. The thermal management of high power light emitting diodes

    Science.gov (United States)

    Hsu, Ming-Seng; Huang, Jen-Wei; Shyu, Feng-Lin

    2012-10-01

    Thermal management had an important influence not only in the life time but also in the efficiency of high power light emitting diodes (HPLEDs). 30 watts in a single package have become standard to the industrial fabricating of HPLEDs. In this study, we fabricated both of the AlN porous films, by vacuum sputtering, soldered onto the HPLEDs lamp to enhance both of the heat transfer and heat dissipation. In our model, the ceramic enables transfer the heat from electric device to the aluminum plate quickly and the porous increase the quality of the thermal dissipation between the PCB and aluminum plate, as compared to the industrial processing. The ceramic films were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray diffraction (XRD) diagram analysis reveals those ceramic phases were successfully grown onto the individual substrates. The morphology of ceramic films was investigated by the atomic force microscopy (AFM). The results show those porous films have high thermal conduction to the purpose. At the same time, they had transferred heat and limited work temperature, about 70°, of HPLEDs successfully.

  5. Coal-Fired Power Plant Heat Rate Reductions

    Science.gov (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  6. Discrete rate and variable power adaptation for underlay cognitive networks

    KAUST Repository

    Abdallah, Mohamed M.; Salem, Ahmed H.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2010-01-01

    We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power

  7. Availability of thermal power plants 1976-1985

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1986-01-01

    This assessment is the 15th annual assessment since 1970. It covers the decade 1976 to 1985 and contains the availability figures for 395 power stations in Germany and abroad with an output of about 93,750 MW and 3,642 years of power station operation. The availability figures of fossil fired units, combined units (plant with combined gas/steam circuit), nuclear power stations and gas turbine plants are given, which are classified according to unit size, fuel, type of construction, age and method of use. The German plants are covered separately. All output figures are gross figures (output at the generator terminals). For comparison purposes, apart for the results of 1985, the annual values determined since 1976 and the mean values for the decade 1976-1985 are given. The non-availability is divided into faults and planned outages since 1978. Availability figures for the years 1970 to 1975 can be found in the VGB assessment 'Availability of thermal power plants 1970-1981'. (orig./GL) [de

  8. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  9. Thermal power plant operating regimes in future British power systems with increasing variable renewable penetration

    International Nuclear Information System (INIS)

    Edmunds, Ray; Davies, Lloyd; Deane, Paul; Pourkashanian, Mohamed

    2015-01-01

    Highlights: • This work investigates thermal power operating regimes in future power systems. • Gas plants have low utilisation in the scenarios considered. • Ramping intensity increases for gas plants and pumped storage. • Coal plants frequently operate at minimum stable levels and start-ups increase. • Grid emission intensity and total emission production remains substantial. - Abstract: This work investigates the operational requirements of thermal power plants in a number of potential future British power systems with increasing variable renewable penetration. The PLEXOS Integrated Energy Model has been used to develop the market models, with PLEXOS employing mixed integer programming to solve the unit commitment and economic dispatch problem, subject to a number of constraints. Initially, a model of the British power system was developed and validated. Subsequently, a 2020 test model was developed to analyse a number of future system structures with differing fuel and carbon prices and generation mixes. The study has found that in three of the four scenarios considered, the utilisation of gas power plants will be relatively low, but remains fundamental to the security of supply. Also, gas plants will be subject to more intense ramping. The findings have consequent implications for energy policy as expensive government interventions may be required to prevent early decommissioning of gas capacity, should the prevailing market conditions not guarantee revenue adequacy.

  10. Emerging Changes in the Worldwide Power Sector: The Assets of Thermal Power

    Energy Technology Data Exchange (ETDEWEB)

    Moliere, Michel; Girardot, Amelie; Jones, Robert M.

    2007-07-01

    In forthcoming decades we will see major changes in the landscape of the worldwide power sector as CO2 management and incipient hydrocarbon scarcity exert their increasing influence. The power generation community must be prepared to satisfy a particularly complex and challenging set of requirements. These issues include curbing CO2 emissions, coping with surging primary energy prices, and compliance with regional and local emissions requirements such as SOx and NOx-while maintaining maximum efficiency. In this context, as confirmed by International Energy Agency forecasts, thermal power will maintain a prominent position in overall power generation since it enables the large capacity additions required in emerging countries. Thanks to their reliable assets (such as energy efficiency and environment) gas turbine-based power systems, including Gas Turbine Combined Cycles (GTCC) and Combined Heat & Power (CHP), will continue to be major contributors to worldwide power generation. However, evolving changes in the spectrum of fuels will create an additional challenge for power generation equipment manufacturers-requiring innovative technologies in fuel processing, combustion, and emission controls to address these needs. This paper reviews the factors underlining the changing power generation environment worldwide, including the increasing scarcity of conventional fuels and the growing interest in biofuels and hydrogen. Insights will be offered into various technologies needed to support the growing need for increased fuel flexibility.

  11. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    Science.gov (United States)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  12. An electron beam flue gas treatment plant for a coal fired thermal power station. EBA demonstration plant in Chengdu thermal power station (China EBA Project)

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Nakanishi, Ikuo; Shi, Jingke

    1999-01-01

    Ebara's electron beam flue gas treatment plant was installed and is being demonstrated in Chengdu Thermal Power Station, Sichuan, China. The demonstration is proving that this plant is fully capable of meeting the target removal of sulfur dioxides from flue gas (flow rate : 300-thousand m 3 /h). Recovered by-products, namely ammonium sulfate and ammonium nitrate, from the treatment were actually tested as fertilizers, the result of which was favorable. The sale and distribution of these by-products are already underway. In May 1995, this plant was presented the certificate of authorization by China's State Power Corporation. It is noted that this was the first time a sulfur dioxide removal plant was certified as such in China. (author)

  13. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Diaz, Sergio H; Nelson, J Stuart; Wong, Brian J F

    2003-01-01

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x10 70 s -1 and E a =4.5x10 5 J mole -1 , were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  14. Thermal sensation and comfort with transient metabolic rates

    DEFF Research Database (Denmark)

    Goto, Tomonobu; Toftum, Jørn; Dear, R. d.

    2002-01-01

    This study investigated the effect on thermal perceptions and preferences of controlled metabolic excursions of various intensities (20%, 40%, 60% relative work load) and durations (3-30 min) imposed on subjects that alternated between sedentary activity and exercise on a treadmill. The thermal...... environment was held constant at a temperature corresponding to PMV=0 at sedentary activity. Even low activity changes of short duration (1 min at 20% relative work load) affected thermal perceptions. However, after circa 15 min of constant activity, subjective thermal responses approximated the steady...

  15. Certain aspects of the environmental impact of nuclear power engineering and thermal power engineering

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F [AN Belorusskoj SSR, Minsk. Inst. Yadernoj Ehnergetiki

    1979-01-01

    A review is made of the both environmental impact and hazard to man resulting from nuclear power engineering as compared with those of thermal power engineering. At present, in addition to such criteria, as physical-chemical characteristic of energy sources, their efficiency and accessibility for exploitation, new requirements were substantiated in relation to safety of their utilization for environment. So, one of essential problems of nuclear power engineering development consists in assessment and prediction of radioecological consequence. The analysis and operating experience of more than 1000 reactor/years with no accidents and harm for pupulation show, that in respect to impact on environment and man nuclear power engineering is much more safe in comparison with energy sources using tradidional fossile fuel.

  16. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In modular uninterruptible power supplies (UPSs), several DC/AC modules are required to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC modules share the same DC bus and AC critical bus. Module differences, such as filter inductor, filter capacitor......, control parameters, and so on, will make it possible for the potential zero sequence current to flow among the modules. This undesired type of circulating current will bring extra losses to the power semiconductor devices in the system, which should be paid special attention in high power application...... scenarios. In this paper, plug’n’play modules and cycle control are discussed and validated through experimental results. Moreover, potential zero sequence circulating current impact on power semiconductor devices thermal performance is also analyzed in this paper....

  17. arXiv Status of rates and rate equations for thermal leptogenesis

    CERN Document Server

    Biondini, Simone; Brambilla, Nora; Garny, Mathias; Ghiglieri, Jacopo; Hohenegger, Andreas; Laine, Mikko; Mendizabal, Sebastian; Millington, Peter; Salvio, Alberto; Vairo, Antonio

    2018-02-28

    In many realizations of leptogenesis, heavy right-handed neutrinos play the main role in the generation of an imbalance between matter and antimatter in the early Universe. Hence, it is relevant to address quantitatively their dynamics in a hot and dense environment by taking into account the various thermal aspects of the problem at hand. The strong washout regime offers an interesting framework to carry out calculations systematically and reduce theoretical uncertainties. Indeed, any matter-antimatter asymmetry generated when the temperature of the hot plasma $T$ exceeds the right-handed neutrino mass scale $M$ is efficiently erased, and one can focus on the temperature window $T \\ll M$. We review recent progresses in the thermal field theoretic derivation of the key ingredients for the leptogenesis mechanism: the right-handed neutrino production rate, the CP asymmetry in the heavy-neutrino decays and the washout rates. The derivation of evolution equations for the heavy-neutrino and lepton-asymmetry number...

  18. Accident prevention ordinance 2.0 Thermal Power Plants

    International Nuclear Information System (INIS)

    Egyptien, H.H.; Fischermann, E.

    This accident prevention ordinance is to cover primarily the very section of a power station where fossil or nuclear energy is converted into thermal energy, e.g. by heating or vaporization of a heat source. In paragraph 1, 40 GJ/h are stipulated as the lower limit of capacity corresponding to about 11 MW. Therefore, the accident prevention ordinance does not only marshal the operation of steam generators in electricity supply utilities but also covers smaller industrial power stations which partly do only meet the company's own requirements. Pipes are only covered as far as they are operated in conjunction with a heat generator. The same applies to coal handling and ash removal facilities. This means that for heat release e.g. in the framework of a district heating grid, the transfer station to the distribution grid is regarded as being a border of the power station and thus a border to the area of application of the accident prevention ordinance. (orig./HP) [de

  19. Experimental thermal behavior of a power plant reheater

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M. Manuela Prieto; Garcia, F. Javier Fernandez; Ramon, Ines Suarez [Departamento de Energia, Universidad de Oviedo, Campus de Viesques, 33204 Gijon, Asturias (Spain); Roces, Hilario Sanchez [Central Termica de Soto de Ribera, Soto de Ribera, Asturias (Spain)

    2006-04-15

    The process conditions of power plant components subjected to high pressures and temperatures are essential to determine their remaining life, availability and efficiency. It is, therefore, expedient to pay special attention to critical components, such as superheater and reheater heat exchangers, headers, and main and reheated steam lines. In this paper, on-line and off-line variables of a power plant reheater that has presented problems of thickness losses and repetitive tube fissures are studied. The fissures are associated with the effect of a thermal-mechanical mechanism. Off-line measurements were taken of the following variables: pressure, temperature, velocity and composition of the gases. On-line instrumentation was completed by the installation of specific thermocouples to ascertain the temperatures in the tubes outlet. Various angles for the fuel inlet of the burners and variations in the number and location of the working burners were also assayed. As a consequence of this analysis, it can be deduced that there are important differences in the outlet temperature of the reheater tubes that decrease for lower powers. Finally, it is pointed that a non-uniform distribution of the steam flow in the reheater might be the cause of the problem. (author)

  20. Fuel combustion in thermal power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-11-01

    The position of black coal in the energy balance of Japan is discussed. About 75% of electric energy is produced by thermal power plants. Eighty-five per cent of electricity is produced by power plants fired with liquid fuels and 3% by coal fired plants. Coal production in Japan, the forecast coal import to the country by 1990 (132 Mt/year), proportion of coal imported from various countries, chemical and physical properties of coal from Australia, China and Japan are discussed. Coal classification used in Japan is evaluated. The following topics associated with coal combustion in fossil-fuel power plants in Japan are discussed: coal grindability, types of pulverizing systems, slagging properties of boiler fuel in Japan, systems for slag removal, main types of steam boilers and coal fired furnaces, burner arrangement and design, air pollution control from fly ash, sulfur oxides and nitrogen oxides, utilization of fly ash for cement production, methods for removal of nitrogen oxides from flue gas using ammonia and catalysts or ammonia without catalysts, efficiency of nitrogen oxide control, abatement of nitrogen oxide emission from boilers by flue gas recirculation and reducing combustion temperatures. The results of research into air pollution control carried out by the Nagasaki Technical Institute are reviewed.

  1. Control of nitrogen oxides at thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Hall, R.E.

    1991-01-01

    Reviews reports presented at the International symposium on reduction of NO{sub x} emissions from stationary pollutant sources, held in San Francisco (USA) in March 1989. Topics concentrated on the latest trends in power engineering in the USA and Europe. Reports were dedicated to test results of pilot plant equipment employing the increasingly popular LNB, OFA, Reburn, SNCR, and SCR technologies. The following conclusions are drawn on the basis of the symposium proceedings: The nitric oxide problem may be considered exaggerated in regard to thermal power plants because of errors made during flue gas composition analysis. The combination of new combustion chambers and staged air input with simultaneous redesigning of equipment is most widely employed in the USA (achieving a 50% NO{sub x} reduction with minimum effect on power plant operation and maintenance costs). Economic sense demands that primary methods of NO{sub x} removal be used prior to SCR implementation. The SCR technology reducing NO{sub x} emission by 60-80% with ammonia to less than 5 ppm is the most popular flue gas denitrification method. 15 refs.

  2. Assessment of inhalation risk due to radioactivity released from coal-based thermal power plant

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.; Kushwaha, H.S.

    2006-01-01

    In India, the coal based thermal power plants have been the major source of power generation in the past and would continue for decades to come. As the coal contains naturally occurring primordial radionuclides the burning of pulverized coal to produce energy for generation of electricity in thermal power plants will result in the emission of a variety of natural radioactive elements into the environment in the vicinity of thermal power plants. In this paper we have used two different methods for characterization of uncertainty in inhalation risk to the general public around 10 Kms radius in the neighborhood of a coal-fired thermal power plant. (author)

  3. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    Science.gov (United States)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  4. Up-Rating - An Alternative Approach to Meeting Future Power Demands - Exploitation of Design Margins

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, Barnaby; Schwarz, Thomas [AREVA NP GmbH, Freyeslebenstr. 1, 91058 Erlangen (Germany)

    2008-07-01

    Up-rating is a world-wide implemented approach that takes advantage of increased calculation and analytic abilities developed since commissioning and applies them to old plants. In doing so, what would possibly be considered today as over-engineered design margins are exploited and plant performance is improved, without necessarily involving extensive modifications or replacement of hardware. It is therefore a short-term alternative, compared to new plants, with little change in environmental ramifications for power production capacity gained. Up-rating is also more accepted by the wider community and licensing authorities, thus complimenting the building of new plants. The 10% thermal up-rating of the nuclear power plant at Almaraz, Spain, requires a comprehensive reanalysis of all power components. This paper focuses on those measures required to ensure the performance of the steam generators at increased load as an example of design margin exploitation in such crucial components. (authors)

  5. FABGEN, a transient power-generation and isotope birth rate calculator

    International Nuclear Information System (INIS)

    Roland, H.C.

    1975-04-01

    A description is given of the FABGEN program, a fast-running program for calculating fuel element power-generation rates and selected fission product birth rates in a known neutron flux as functions of time. A first forward difference calculation is used, and the time step is one day. Provisions are made for including various fuel element lengths, variation of thermal flux with time, and use of different fertile isotopes. Five different fission products may be specified for birth-rate calculations. A daily summary may be output, or totals by days may be accumulated for final output. (U.S.)

  6. Load rate dependence of the mechanical properties of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Zotov, Nikolay; Eggeler, Gunther [Institut fuer Werkstoffe, Ruhr Universitaet Bochum, 44780 Bochum (Germany); Bartsch, Marion [Institut fuer Werkstoff-Forschung, DLR Koeln, 51147 Koeln (Germany)

    2009-07-01

    Thermal barrier coatings (TBC), composed of yttrium-stabilized zirconia (YSZ) ceramic top coat (TC) and intermetallic NiCoCrAlY bond coat (BC) are commonly used as protective coatings of Ni-based high temperature gas engine components. Nanoindentation techniques are increasingly applied for determining the TBC mechanical properties on a nanometre scale. However, little is known about the load-rate dependence of the mechanical properties, which is important for better understanding of cyclic thermal fatigue experiments. Nanoindentations with different load rates omega were performed on polished cross-sections of TBC, deposited by EB-PVD on IN625 substrates (S), using a XP Nanoindenter (MTS) equipped with Berkovich diamond tip. The Young's modulus (E) of the TC is independent of omega, while E for the BC and the S decreases with omega. The hardness (H) of the TC and the BC increases, while H for the S decreases with omega. From the dependence of H on omega, creep power-law exponents c = 0.24(11) and c = 0.023(6) for the TC and the BC were determined. For all TBC components, a decrease with omega of the power-law exponents n and m, describing the loading and unloading nanoindentation curves, is observed.

  7. Thermal power - emerging scenario in the 21st Century

    International Nuclear Information System (INIS)

    Saran, Keshav

    2000-01-01

    The developing countries have to ensure that their development in the new millennium is supported by a strong infrastructure to meet the challenges of this century where survival would be of the fittest. In India, globalization of economy will be the main thrust in this century. Today self reliance and determination is needed to develop, adopt and implement new technologies which are more efficient and eco-friendly. The economy of the country calls for a higher rate of growth in the power infrastructure. To ensure the momentum of 7 per cent overall growth in the economy, India need about 12-14 per cent growth in power generation. In power sector, selection of resources, systems, fuel options and appropriate technology would be major determinants that will decide the success for sustained development in the new century

  8. Thermal Energy Corporation Combined Heat and Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Turner, E. Bruce [Thermal Energy Corporation, Houston, TX (United States); Brown, Tim [Thermal Energy Corporation, Houston, TX (United States); Mardiat, Ed [Burns and McDonnell Engineering Company, Inc., Kansas City, MI (United States)

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  9. Determining the Exchange Rate: Purchasing Power Parity – PPP

    Directory of Open Access Journals (Sweden)

    Bangun WIDOYOKO

    2018-05-01

    Full Text Available This study aimed to examine the effect of inflation on the issue of exchange rate determination of the forward exchange rate on the exchange rate of RMB (Renminbi to Rupiah. Inflation has been chosen as an independent variable because of its close relation to PPP (purchasing power parity theory. Analyses in this research have used logistic analysis with time series data. The data that has been used include exchange rate data with the period 2007-2017 with a sample size of 132 data. The results of this study have shown that inflation is effective in determining the exchange rate.

  10. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  11. Recommendations for the market introduction of solar thermal power stations

    International Nuclear Information System (INIS)

    Trieb, F.; Nitsch, J.

    1998-01-01

    Until 2010, solar thermal power stations based on parabolic trough concentrating collectors can become a competitive option on the world's electricity market, if the market extension of this mature technology is supported by a concerted, long-term programme capable of bundling the forces of industry, finance, insurance and politics. Technical improvements based on the experience of over ten years of successful operation, series production and economies of scale will lead to a further cost reduction of 50% and to electricity costs of 0.06 - 0.04 US$/kWh for hybrid steam cycles and hybrid combined cycles, respectively. Until 2010, a capacity of 7 GW will be installed, avoiding 16 million tons of carbon dioxide per year. The programme comprises an investment of 16 billion US$ and requires external funding of 6%. (author)

  12. Benthos of a coastal power station thermal discharge canal

    Energy Technology Data Exchange (ETDEWEB)

    Bamber, R.N.; Spencer, J.F.

    1984-08-01

    Kingsnorth Power Station, on the river Medway Estuary, Kent, discharges cooling water into a canal comprising a 4 km creek system. A comprehensive investigation of the sublittoral benthic fauna of the discharge system was undertaken from January 1979 to September 1981. The macrofauna is significantly suppressed at sites along the discharge canal, representing a community with half the number of species comprising dense populations of a few dominant opportunistic species tolerant of thermal stress (e.g. Tubificoides, Cauleriella) and not those characteristic of organic pollution stress communities. The latter are regular summer immigrants in the creek, but persist only in low numbers if at all in the winter (e.g. Polydora ciliata). This suppression is the result of an approximately 10/sup 0/C temperature front between the heated discharge water and ambient estuarine water, passing over the sea bed with the ebbing and flooding tide four times each day. 39 references, 11 figures, 3 tables.

  13. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  14. Chemistry of the water in thermal power plants

    International Nuclear Information System (INIS)

    Freier, R.K.

    1984-01-01

    This textbook and practical manual gives a comprehensive review of the scientific knowledge of water as operating substance and of the chemistry of water in thermal power plants. The fundamentals of water chemistry and of the conventional and nuclear water/steam circuit are described. The contents of the chapters are: 1. The atom, 2. The chemical bond, 3. The dissolving capacity of water, 4. Operational parameters and their measurement, 5. Corrosion, 6. The water/steam coolant loop of conventional plants (WSC), 7. The pressurized water reactor (PWR), 8. The boiling water reactor (BWR), 9. The total and partial desalination properties of ion exchangers, 10. The cooling water, 11. The failure of Harrisburg in a simple presentation. (HK) [de

  15. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  16. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  17. Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum

    Science.gov (United States)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-03-01

    We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).

  18. Effect of water side deposits on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Bhatt, M. Siddhartha

    2006-01-01

    This paper presents the effects of water side deposits in the 210 MW coal fired thermal power plant components (viz., boiler, turbine, feed water heaters, condensers and lube oil coolers) on the energy efficiency of these components and that of the overall system at 100% maximum continuous rating (MCR). The origin, composition and rate of build up of deposits on the water side are presented. A linear growth rate of deposits is assumed for simplicity. The effects of the reduction in heat transfer, increased pressure drop and increased pumping power/reduced power output in the components are quantified in the form of curve fits as functions of the deposit thickness (μm). The reduction in heat transfer in the boiler components is in the range of 0.2-2.0% under normal scaling. The increased pumping power is of the order of 0.6-7.6% in the boiler components, 29% in the BFP circuit, 26% in the LPH circuit, 21% in the HPH circuit and 18% in the lube oil cooler circuits. The effects on the overall coal fired plant is quantified through functional relations between the efficiencies and the notional deposit thickness. The sensitivity indices to the notional deposit thickness are: boiler efficiency: -0.0021% points/μm, turbine circuit efficiency: -0.0037% points/μm, auxiliary power efficiency: -0.00129% points/μm, gross overall efficiency: -0.0039% points/μm and net overall efficiency: -0.0040% points/μm. The overall effect of scale build up is either increased power input of ∼68 kW/μm (at a constant power output) or decreased power output ∼25 kW/μm (at a constant power input). Successful contaminant control techniques are highlighted. Capacity reduction effects due to water side deposits are negligible

  19. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  20. Valves for condenser-cooling-water circulating piping in thermal power station and nuclear power station

    International Nuclear Information System (INIS)

    Kondo, Sumio

    1977-01-01

    Sea water is mostly used as condenser cooling water in thermal and nuclear power stations in Japan. The quantity of cooling water is 6 to 7 t/sec per 100,000 kW output in nuclear power stations, and 3 to 4 t/sec in thermal power stations. The pipe diameter is 900 to 2,700 mm for the power output of 75,000 to 1,100,000 kW. The valves used are mostly butterfly valves, and the reliability, economy and maintainability must be examined sufficiently because of their important role. The construction, number and arrangement of the valves around a condenser are different according to the types of a turbine and the condenser and reverse flow washing method. Three types are illustrated. The valves for sea water are subjected to the electrochemical corrosion due to sea water, the local corrosion due to stagnant water, the fouling by marine organisms, the cavitation due to valve operation, and the erosion by earth and sand. The fundamental construction, use and features of butterfly valves are described. The cases of the failure and repair of the valves after their delivery are shown, and they are the corrosion of valve bodies and valve seats, and the separation of coating and lining. The newly developed butterfly valve with overall water-tight rubber lining is introduced. (Kako, I.)

  1. Power spectral analysis of heart rate in hyperthyroidism.

    Science.gov (United States)

    Cacciatori, V; Bellavere, F; Pezzarossa, A; Dellera, A; Gemma, M L; Thomaseth, K; Castello, R; Moghetti, P; Muggeo, M

    1996-08-01

    The aim of the present study was to evaluate the impact of hyperthyroidism on the cardiovascular system by separately analyzing the sympathetic and parasympathetic influences on heart rate. Heart rate variability was evaluated by autoregressive power spectral analysis. This method allows a reliable quantification of the low frequency (LF) and high frequency (HF) components of the heart rate power spectral density; these are considered to be under mainly sympathetic and pure parasympathetic control, respectively. In 10 newly diagnosed untreated hyperthyroid patients with Graves' disease, we analyzed power spectral density of heart rate cyclic variations at rest, while lying, and while standing. In addition, heart rate variations during deep breathing, lying and standing, and Valsalva's maneuver were analyzed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. In 8 hyperthyroid patients, the same evaluation was repeated after the induction of stable euthyroidism by methimazole. Heart rate power spectral analysis showed a sharp reduction of HF components in hyperthyroid subjects compared to controls [lying, 13.3 +/- 4.1 vs. 32.0 +/- 5.6 normalized units (NU; P hyperthyroid subjects while both lying (11.3 +/- 4.5 vs. 3.5 +/- 1.1; P hyperthyroid patients than in controls (1.12 +/- 0.03 vs. 1.31 +/- 0.04; P activity and, thus, a relative hypersympathetic tone.

  2. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    Science.gov (United States)

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  4. Simulation modeling and analysis of a complex system of a thermal power plant

    Directory of Open Access Journals (Sweden)

    Sorabh Gupta

    2009-09-01

    Full Text Available The present paper deals with the opportunities for the modeling of flue gas and air system of a thermal power plant by making the performance evaluation using probabilistic approach. The present system of thermal plant under study consists of four subsystems with three possible states: full working, reduced capacity working and failed. Failure and repair rates for all the subsystems are assumed to be constant. Formulation of the problem is carried out using Markov Birth-Death process using probabilistic approach and a transition diagram represents the operational behavior of the system. Interrelationship among the full working and reduced working has been developed. A probabilistic model has been developed, considering some assumptions. Data in feasible range are selected from a survey of thermal plant and the effect of each subsystem on the system availability is tabulated in the form of availability matrices, which provides various performance/availability levels for different combinations of failure and repair rates of all subsystems. Based upon various availability values obtained in availability matrices and graphs of failure/repair rates of different subsystems, performance and optimum values of failure/repair rates for maximum availability, of each subsystem is analyzed and then maintenance priorities are decided for all subsystems.

  5. Thermal abuse performance of high-power 18650 Li-ion cells

    Science.gov (United States)

    Roth, E. P.; Doughty, D. H.

    High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.

  6. Biological impact assessment of thermal discharges in the vicinity of Madras Atomic Power Station, Kalpakkam, India

    International Nuclear Information System (INIS)

    Shahul Hameed, P.; Syed Mohamed, H.E.; Krishnamoorthy, R.

    2007-01-01

    Madras Atomic Power Station (MAPS), Kalpakkam uses seawater as tertiary coolant at the rate of 35m 3 /sec employing a once through type of circuit. The discharged water travels as a canal and mixes with seawater at the mixing zone. The present study investigated the impact of the discharged thermal effluent on the physical chemical and biological quality of the receiving seawater body. The thermal plume is shore attached and extended up to 300 m from the shore and registered a ΔT of 3-4 degC. The shore attached thermal plume adversely affected the density and distribution of macro benthic animals. The benthos are absent in the mixing zone and their density decreased about 500 m on either side of the mixing zone. The natural shift in the mixing zone provides opportunities for the recolonization of macro benthos. The thermal tolerance study revealed that the experimental fish species Mugil cephalus and Alepeus djidapa did not show any mortality or loss of equilibrium at ΔT 5 degC (33 degC) and ΔT 7 degC (35 degC) and the maximum ΔT recorded at the impact area is 6 degC. The gradual increase in temperature as found in the plume favors the fishes to escape the acute thermal exposures. (author)

  7. Taiwan Power Company's power distribution analysis and fuel thermal margin verification methods for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, P.H.

    1995-01-01

    Taiwan Power Company's (TPC's) power distribution analysis and fuel thermal margin verification methods for pressurized water reactors (PWRs) are examined. The TPC and the Institute of Nuclear Energy Research started a joint 5-yr project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, these methods were developed to allow TPC to independently perform verifications of the local power density and departure from nucleate boiling design bases, which are required by the reload safety evaluation for the Maanshan PWR plant. The computer codes utilized were extensively validated for the intended applications. Sample calculations were performed for up to six reload cycles of the Maanshan plant, and the results were found to be quite consistent with the vendor's calculational results

  8. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  9. Feasibility study on modernization of North Bangkok Thermal Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to save energies and reduce global warming gas emission, a feasibility study was performed on the oil burning thermal power plant in the city of North Bangkok in Thailand to reconstruct the plant into a natural gas burning combined cycle power plant. In the project, the old facilities with an output of 237.8 MW using three steam turbines in total will be reconstructed into a plant comprising of two steam turbines for 256,2 MW and two gas turbines for 460.4 MW, or a facility of 716.6 MW in total. The plant construction will have the gas turbines, steam turbines, generators, and a waste heat recovered steam generator fixed on one axis, two of which will be installed. The gas turbines will use natural gas as fuel, and the steam turbines will be operated by steam from the waste heat recovered steam generator. As a result of the discussions, the reduction of the energy consumption for a period of 40 years will correspond to crude oil of 20,560 kt, while the reduction of the global warming gas emission will be 107,200 t-CO2. In addition, the energy saving cost will be 9-ton crude oil equivalent/one million yen, and the cost for reduction of the global warming gas emission will be 47 t-CO2/one million yen. (NEDO)

  10. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    K. Murugesan

    2009-01-01

    Full Text Available The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50MWe unit of lignite fired steam power plant at Thermal Power Station-I, Neyveli Lignite Corporation Limited,Neyveli, Tamil Nadu, India. The exergy losses occurred in the various subsystems of the plant and their components havebeen calculated using the mass, energy and exergy balance equations. The distribution of the exergy losses in several plantcomponents during the real time plant running conditions has been assessed to locate the process irreversibility. The Firstlaw efficiency (energy efficiency and the Second law efficiency (exergy efficiency of the plant have also been calculated.The comparison between the energy losses and the exergy losses of the individual components of the plant shows that themaximum energy losses of 39% occur in the condenser, whereas the maximum exergy losses of 42.73% occur in the combustor.The real losses of energy which has a scope for the improvement are given as maximum exergy losses that occurredin the combustor.

  11. Thermal pollution of rivers and reservoirs by discharges of heated water from thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Makarov, I.

    1974-12-01

    The problems are discussed of the thermal pollution of rivers and water reservoirs by discharges of heated water from thermal and nuclear power plants. The problems concerned are quantitative and qualitative changes in biocenoses, the disturbance or extinction of flora and fauna, physiological changes in organisms and changes in the hydrochemical regime. (Z.M.)

  12. Supplier selection criteria for sustainable supply chain management in thermal power plant

    Science.gov (United States)

    Firoz, Faisal; Narayan Biswal, Jitendra; Satapathy, Suchismita

    2018-02-01

    Supplies are always in great demand when it comes to industrial operations. The quality of raw material their price accompanied by sustainability and environmental effects are a major concern for industrial operators these days. Supply Chain Management is the subject which is focused on how the supply of different products is carried out. The motive is that each operation performed can be optimized and inherently the efficiency of the whole chain is integrated. In this paper we will be dealing with all the criteria that are required to be evaluated before selecting a supplier, in particular, focusing on Thermal Power Plant. The most suppliers of the thermal power plant are the coal suppliers. The quality of coal directly determines the efficiency of the whole plant. And when there are matters concerning coal environmental pollution plays a very crucial role. ANP method has been used here to select suppliers of thermal power sectors in Indian context. After applying ANP to prioritize the sustainable supplier selection criteria, it is found that for thermal power industries best suppliers are Nationalized/State owned suppliers then 2nd ranked suppliers are imported supplier. Private owned suppliers are ranked least. So private owned suppliers must be more concerned about their performance. Among these suppliers it is found that to compete in the global market privatized suppliers have to give more emphasize on most important criteria like sustainability, then fuel cost and quality. Still some sub-criteria like a clean program, environmental issues, quality, reliability, service rate, investment in high technology, green transportation channel, waste management etc needs for continuous improvement as per their priority.

  13. Impact of thermal power generation units on floristic diversity of Kota and its environs

    International Nuclear Information System (INIS)

    Jain, Shuchita; Dadhich, K.

    2001-01-01

    The emissions from thermal power plants have great phytotoxic effects on plants due to changes in their morphology and physiology. A floristic study has been conducted near the Thermal Power Station at Kota in Rajasthan to estimate the impact of emissions from the thermal power plant on biota. It is observed that the whole vegetation, especially the perennial trees and shrubs, growing near the station were severely damaged due to effects of air pollutants emitted from the Thermal Power Station. Analysis of the fly ash reveals its composition as composed of silica, alumina, iron oxide etc. (author)

  14. Markov approach to evaluate the availability simulation model for power generation system in a thermal power plant ,

    Directory of Open Access Journals (Sweden)

    Avdhesh Kr. Sharma

    2012-10-01

    Full Text Available In recent years, the availability of power plants has become increasingly important issue in most developed and developing countries. This paper aims to propose a methodology based on Markov approach to evaluate the availability simulation model for power generation system (Turbine in a thermal power plant under realistic working environment. The effects of occurrence of failure/course of actions and availability of repair facilities on system performance have been investigated. Higher availability of the components/equipments is inherently associated with their higher reliability and maintainability. The power generation system consists of five subsystems with four possible states: full working, reduced capacity, reduced efficiency and failed state. So, its availability should be carefully evaluated in order to foresee the performance of the power plant. The availability simulation model (Av. has been developed with the help of mathematical formulation based on Markov Birth-Death process using probabilistic approach. For this purpose, first differential equations have been generated. These equations are then solved using normalizing condition so as to determine the steady state availability of power generation system. In fact, availability analysis is very much effective in finding critical subsystems and deciding their preventive maintenance program for improving availability of the power plant as well as the power supply. From the graphs illustrated, the optimum values of failure/repair rates for maximum availability, of each subsystem is analyzed and then maintenance priorities are decided for all subsystems.The present paper highlights that in this system, Turbine governing subsystem is most sensitive demands more improvement in maintainability as compared to the other subsystems. While Turbine lubrication subsystem is least sensitive.

  15. The full costs of thermal power production in Eastern Canada

    International Nuclear Information System (INIS)

    Venema, H.D.; Barg, S.

    2003-07-01

    This study examines the public health and global warming costs associated with generating electricity with fossil fuels such as coal, oil or natural gas. A Full Cost Accounting approach was used to determine the costs for Eastern Canada. The electricity sector is chosen because it is a large emitter of air pollutants and greenhouse gases. The sector it will undergo potentially significant structural changes as Canada complies with the Kyoto Protocol. Alternative investments in nonpolluting sources of electricity should include analysis of full costs. Two types of factors are evaluated in this study: the public health costs caused by emissions of sulphur and nitrogen oxides and volatile organic carbon (VOC) in Eastern Canada, and the marginal climate change damages caused by the emissions of greenhouse gasses (GHGs) in Eastern Canada. The major contribution of this study is the application of the impact-pathway approach to power sector emissions. Recent Canadian studies have reported either the pollutant emission rates for different power generation technologies and fuels, or the health costs of ambient air pollution not specifically attributable to the power sector. This study isolates the component of air pollution attributable to the power sector and analyses its geographic distribution. It was concluded that coal-fired generation should be closely monitored because the externalities burden is the same magnitude as the marginal production cost. 77 refs., 20 tabs., 21 figs

  16. An Optimization Scheduling Model for Wind Power and Thermal Power with Energy Storage System considering Carbon Emission Trading

    Directory of Open Access Journals (Sweden)

    Huan-huan Li

    2015-01-01

    Full Text Available Wind power has the characteristics of randomness and intermittence, which influences power system safety and stable operation. To alleviate the effect of wind power grid connection and improve power system’s wind power consumptive capability, this paper took emission trading and energy storage system into consideration and built an optimization model for thermal-wind power system and energy storage systems collaborative scheduling. A simulation based on 10 thermal units and wind farms with 2800 MW installed capacity verified the correctness of the models put forward by this paper. According to the simulation results, the introduction of carbon emission trading can improve wind power consumptive capability and cut down the average coal consumption per unit of power. The introduction of energy storage system can smooth wind power output curve and suppress power fluctuations. The optimization effects achieve the best when both of carbon emission trading and energy storage system work at the same time.

  17. Potential impact of thermal effluents from Chongqing Fuling nuclear power plant to the Three Gorges Reservoir

    International Nuclear Information System (INIS)

    Han Baohua; Li Jianguo; Ma Binghui; Zhang Yue; Sun Qunli; Hu Yuping

    2012-01-01

    This study is based on the hydrological data near Chongqing Fuling Nuclear Power Plant along the Yangtze River, the present situation of the ecological environment of the Three Gorges Reservoir and the predicted results of thermal effluents from Chongqing Fuling Nuclear Power Plant. The standards of cooling water and the thermal tolerances indexes of aquatic organisms were investigated. The effects of thermal effluents on aquatic organisms were analyzed. The potential impact of Chongqing Fuling nuclear power plant to the Three Gorges Reservoir was explained. The results show that in the most adverse working conditions, the surface temperature near the outfall area is not more than 1℃, the temperature of thermal effluents do not exceed the suitable thermal range of fish breeding, growth and other thermal tolerances indexes. Thermal effluents from nuclear power plant have no influence about fish, plankton and benthic organisms in the Three Gorges Reservoir. (authors)

  18. Analysis of Heat Transfer in Power Split Device for Hybrid Electric Vehicle Using Thermal Network Method

    Directory of Open Access Journals (Sweden)

    Jixin Wang

    2014-06-01

    Full Text Available This paper presents a rational prediction of temperature field on the differential hybrid system (DHS based on the thermal network method (TNM. The whole thermal network model is built by considering both the contact thermal resistance between gasket and planet gear and the temperature effect on the physical property parameters of lubricant. The contact thermal resistance is obtained by using the concept of contact branch thermal resistance and G-W elastic model. By building an elaborate thermal network model and computing models for power losses and thermal resistances between components, the whole temperature field of DHS under typical operating condition is predicted. Results show that thermal network method can be effectively used to predict the temperature distribution and the rule of temperature variation, the surface roughness significantly affects contact thermal conduction, and the decrease in the thermal resistance of the natural convection between air and DHS housing can effectively improve the thermal environment of DHS.

  19. Thermal optimization of the helium-cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-03-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulate but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. A method for optimizing superconducting magnet current leads is described by Maehata et al. The approach assumes that the helium boil-off caused by heat conduction along with power lead into the low-temperature helium is used to cool the lead. The optimum solution is found when the heat flow at the cold end is minimized.. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads

  20. Models for thermal and mechanical monitoring of power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Vilaithong, Rummiya

    2011-07-01

    At present, for economic reasons, there is an increasing emphasis on keeping transformers in service for longer than in the past. A condition-based maintenance using an online monitoring and diagnostic system is one option to ensure reliability of the transformer operation. The key parameters for effectively monitoring equipment can be selected by failure statistics and estimated failure consequences. In this work, two key aspects of transformer condition monitoring are addressed in depth: thermal behaviour and behaviour of on-load tap changers. In the first part of the work, transformer thermal behaviour is studied, focussing on top-oil temperatures. Through online comparison of a measured value of the top-oil temperature and its calculated value, some rapidly developing failures in power transformers such as malfunction of the cooling unit may be detected. Predictions of top-oil temperature can be obtained by means of a mathematical model. Long-term investigations on some dynamic top-oil temperature models are presented for three different types of transformer units. The last-state top-oil temperature, load current, ambient temperature and the operating state of pumps and fans are applied as inputs of the top-oil temperature models. In the fundamental physical models presented, some constant parameters are required and can be estimated using a least-squares optimization technique. Multilayer Feed-forward and Recurrent neural network models are also proposed and investigated. The neural network models are trained with three different Backpropagation training algorithms: Levenberg-Marquardt, Scaled Conjugate Gradient and Automated Bayesian Regularization. The effect of varying operating conditions of the cooling units and the non-steady-state behaviour of loading conditions, as well as ambient temperature are noted. Results show sophisticated temperature prediction is possible using the neural network models that is generally more accurate than with the physical

  1. Operation management of thermal power plant. Karyoku plant no unten kanri

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-15

    Nowadays, thermal power plants are getting bigger and bigger in capacity. At the same time, high reliability to the frequent start and stop due to the demand change as well as effective economy. This paper describes the total operation management system. It included the start and stop, normal operation, specified operation, water quality, operation management involving the environmental problems, protection of machinery and equipment in case of emergency, measures against the failure, and the measures against the disaster. The outline of the normal operation is as follows: from the cost economical point of view, the kind of fuel is changed according to the load; i.e., coal for basic operation, LNG for basic to medium operation, and oil for medium to peak operation. The change in demand cannot be followed by the hydroelectric power. The adjustment of the power depending on the load change can be achieved by the thermal power generation. The automatic frequency control, economical load distribution control are also done. In the nighttime, the minimum load operation is required. The voltage change operation below the rated value or the phase-advancing operation is also done depending on the load conditions. 21 figs., 6 tabs.

  2. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  3. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a

  4. Rating PV Power and Energy: Cell, Module, and System Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2016-06-02

    A summary of key points related to research-level measurements of current vs. voltage measurement theory including basic PV operation, equivalent circuit, and concept of spectral error; PV power performance including PV irradiance sensors, simulators and commercial and generic I-V systems; PV measurement artifacts, intercomparisons, and alternative rating methods.

  5. A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation

    DEFF Research Database (Denmark)

    Simone, Angela; Kolarik, Jakub; Iwamatsu, Toshiya

    2011-01-01

    occupants, it is reasonable to consider both the exergy flows in building and those within the human body. Until now, no data have been available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation. The objective of the present work was to relate thermal...... sensation data, from earlier thermal comfort studies, to calculated human-body exergy consumption rates. The results show that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to the slightly cool side of thermal sensation....... Generally, the relationship between air temperature and the exergy consumption rate, as a first approximation, shows an increasing trend. Taking account of both convective and radiative heat exchange between the human body and the surrounding environment by using the calculated operative temperature, exergy...

  6. Artificial Neural Network based control for PV/T panel to track optimum thermal and electrical power

    International Nuclear Information System (INIS)

    Ben Ammar, Majed; Chaabene, Maher; Chtourou, Zied

    2013-01-01

    Highlights: ► We establish a state model of PV/T panel. ► We study the effect of mass flow rate on PV/T efficiency. ► A real time PV/T control algorithm is proposed. ► A model based optimal thermal and electrical power operation point is tracked. - Abstract: As solar energy is intermittent, many algorithms and electronics have been developed to track the maximum power generation from photovoltaic and thermal panels. Following technological advances, these panels are gathered into one unit: PV/T system. PV/T delivers simultaneously two kinds of power: electrical power and thermal power. Nevertheless, no control systems have been developed in order to track maximum power generation from PV/T system. This paper suggests a PV/T control algorithm based on Artificial Neural Network (ANN) to detect the optimal power operating point (OPOP) by considering PV/T model behavior. The OPOP computes the optimum mass flow rate of PV/T for a considered irradiation and ambient temperature. Simulation results demonstrate great concordance between OPOP model based calculation and ANN outputs.

  7. Pressurized thermal shock analysis in German nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Stefan; Braun, Michael [TUEV NORD Nuclear, Hannover (Germany)

    2015-03-15

    For more than 30 years TUeV NORD is a competent consultant in nuclear safety is-sues giving expert third party opinion to our clients. According to the German regulations the safety against brittle fracture has to be proved for the reactor pressure vessel (RPV) and with a new level of knowledge the proof has to be continuously updated with the development in international codes and standards like ASME, BS and RCC-M. The load of the RPV is a very complex transient pressure and temperature situation. Today these loading conditions can be modeled by thermal hydraulic calculations and new experimental results much more detailed than in the construction phase of German Nuclear Power Plants in the 1980s. Therefore, the proof against brittle fracture from the construction phase had to be updated for all German Nuclear Power Plants with the new findings of the loading conditions especially for a postulated small leakage in the main coolant line. The RPV consists of ferritic base material (about 250 mm) and austenitic cladding (about 6 mm) at the inner side. The base material and the cladding have different physical properties which have to be considered temperature dependently in the cal-culations. Radiation-embrittlement effects on the material are to be respected in the fracture mechanics assessment. The regions of the RPV of special interest are the core weld, the inlet and outlet nozzle region and the flange connecting weld zone. The fracture mechanics assessment is performed for normal and abnormal operating conditions and for accidents like LOCA (Loss of Coolant Accident). In this paper the German approach to fracture mechanics assessment to brittle fracture will be discussed from the point of view of a third party organization.

  8. Feasibility study of Pridneprovskaya Thermal Power Plant reconstruction project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With objectives of saving energy and reducing greenhouse gas emission at the Pridneprovskaya power plant in Ukraine, a scrap and build project has been discussed. This project will abolish the unit No.12 among the eight units in the existing coal burning power generation facilities, and install a natural gas burning combined cycle plant comprising of three units each with an output of 100 MW. The new plant facilities will consist of gas turbines, steam turbines, HRSG and auxiliary devices, and an air-cooled synchronous power generator with a capacity of 119 MVA. Use of natural gas as fuel reduces generation of soot, sulfur oxides, nitrogen oxides, and CO. In addition, the hot effluent and waste liquor effluent will decrease from those at the present plant. The required fund will be 30,107 million yen. The energy saving effect of this project is reduction of about 7.5 million tons of crude oil equivalent as a total in 40 years. The greenhouse effect gas will decrease by about 39 million tons as a total in 40 years. The profitability estimation calls for the number of investment recovery year of 16 years, and internal profit rate of 7.32%, wherein the implementation of the project cannot be expected as a project to be carried out by private funds. (NEDO)

  9. Comparison of the effects of nuclear power plants and thermal power plants on the environment

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.; Teverovskij, E.N.

    1976-01-01

    A comparison of ecological effects produced by a thermal power station (TPS) and a nuclear power plant (NPP) of similar electric capacity has been made. The ecological advantages of NPP over TPS are revealed in analysis of aerosol and gas blow-out and its danger for the environment. From the above data it follows that TPS as compared with NPP of similar electric capacity produces a 100 and 1000 fold higher air pollution effect than the latter. The dose of TPS radiation effect is minimum 500 times higher than that of NPP at normal operation. Large-scale construction of NPP is one of the most perfect means of atmosphere protection against harmful industrial discharges

  10. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    OpenAIRE

    Yu. A. Rounov; O. G. Shirokov; D. I. Zalizny; D. M. Los

    2004-01-01

    The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  11. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    Directory of Open Access Journals (Sweden)

    Yu. A. Rounov

    2004-01-01

    Full Text Available The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  12. Sandia Laboratories in-house activities in support of solar thermal large power applications

    Science.gov (United States)

    Mar, R. W.

    1980-01-01

    The development of thermal energy storage subsystems for solar thermal large power applications is described. The emphasis is on characterizing the behavior of molten nitrate salts with regard to thermal decomposition, environmental interactions, and corrosion. Electrochemical techniques to determine the ionic species in the melt and for use in real time studies of corrosion are also briefly discussed.

  13. Evaluation of power block arrangements for 100MW scale concentrated solar thermal power generation using top-down design

    Science.gov (United States)

    Post, Alexander; Beath, Andrew; Sauret, Emilie; Persky, Rodney

    2017-06-01

    Concentrated solar thermal power generation poses a unique situation for power block selection, in which a capital intensive heat source is subject to daily and seasonal fluctuations in intensity. In this study, a method is developed to easily evaluate the favourability of different power blocks for converting the heat supplied by a concentrated solar thermal plant into power at the 100MWe scale based on several key parameters. The method is then applied to a range of commercially available power cycles that operate over different temperatures and efficiencies, and with differing capital costs, each with performance and economic parameters selected to be typical of their technology type, as reported in literature. Using this method, the power cycle is identified among those examined that is most likely to result in a minimum levelised cost of energy of a solar thermal plant.

  14. Port Menier thermal power plant: Pre-project report

    International Nuclear Information System (INIS)

    1992-02-01

    Port Menier, the town on Anticosti Island in the St Lawrence River estuary, is supplied with electricity from a diesel power plant having a firm capacity of 1,080 kW. Since 1987, power demand has increased at an average annual rate of 5.7%, raising the winter peak demand from 670 kW to 987 kW. The power plant is located in the center of town and is obsolete, presenting a number of architectural, environmental, and operational deficiencies. It is proposed to construct a new power plant having an initial firm capacity of 1,490 kW and storage capacity for 75,000 liters of fuel. The plant site will have an area of ca 6,265 m 2 to allow for an eventual expansion to over 3,000 kW capacity, sufficient for satisfying forecast demand over the next 20 years. Estimated cost of the new plant is ca $9.5 million. The old plant will be decommissioned and the new plant will be built at a site outside of town. The natural and human environments characteristic of the Port Menier area are detailed and the two selected sites for the new plant are described and compared. A site in the industrial zone of Port-Menier is favored. The environmental impacts of the new plant are analyzed and mitigation measures during the preconstruction, construction, and operational phases are proposed. Local economic impacts are estimated at around $990,000. 20 refs., 12 figs., 12 tabs

  15. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  16. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  17. Thermal limits validation of gamma thermometer power adaption in CFE Laguna Verde 2 reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, G.; Banfield, J. [GE-Hitachi Nuclear Energy Americas LLC, Global Nuclear Fuel, Americas LLC, 3901 Castle Hayne Road, Wilmingtonm, North Carolina (United States); Avila N, A., E-mail: Gabriel.Cuevas-Vivas@ge.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2016-09-15

    This paper presents the status of GEH work on Gamma Thermometer (GT) validation using the signals of the instruments installed in the Laguna Verde Unit 2 reactor core. The long-standing technical collaboration between Comision Federal de Electricidad (CFE), Global Nuclear Fuel - Americas LLC (GNF) and GE-Hitachi Nuclear Energy Americas LLC (GEH) is moving forward with solid steps to a final implementation of GTs in a nuclear reactor core. Each GT is integrated into a slightly modified Local Power Range Monitor (LPRM) assembly. Six instrumentation strings are equipped with two gamma field detectors for a total of twenty-four bundles whose calculated powers are adapted to the instrumentation readings in addition to their use as calibration instruments for LPRMs. Since November 2007, the six GT instrumentation strings have been operable with almost no degradation by the strong neutron and gamma fluxes in the Laguna Verde Unit 2 reactor core. In this paper, the thermal limits, Critical Power Ratio (CPR) and maximum Linear Heat Generation Rate (LHGR), of bundles directly monitored by either Traverse In-core Probes (TIPs) or GTs are used to establish validation results that confirm the viability of TIP system replacement with automatic fixed in-core probes (AFIPs, GTs, in a Boiling Water Reactor. The new GNF steady-state reactor core simulator AETNA02 is used to obtain power and exposure distribution. Using this code with an updated methodology for GT power adaption, a reduced value of the GT interpolation uncertainty is obtained that is fed into the LHGR calculation. This new method achieves margin recovery for the adapted thermal limits for use in the Economic Simplified Boiling Water Reactor (ESBWR) or any other BWR in the future that employs a GT based AFIP system for local power measurements. (Author)

  18. Thermal limits validation of gamma thermometer power adaption in CFE Laguna Verde 2 reactor core

    International Nuclear Information System (INIS)

    Cuevas V, G.; Banfield, J.; Avila N, A.

    2016-09-01

    This paper presents the status of GEH work on Gamma Thermometer (GT) validation using the signals of the instruments installed in the Laguna Verde Unit 2 reactor core. The long-standing technical collaboration between Comision Federal de Electricidad (CFE), Global Nuclear Fuel - Americas LLC (GNF) and GE-Hitachi Nuclear Energy Americas LLC (GEH) is moving forward with solid steps to a final implementation of GTs in a nuclear reactor core. Each GT is integrated into a slightly modified Local Power Range Monitor (LPRM) assembly. Six instrumentation strings are equipped with two gamma field detectors for a total of twenty-four bundles whose calculated powers are adapted to the instrumentation readings in addition to their use as calibration instruments for LPRMs. Since November 2007, the six GT instrumentation strings have been operable with almost no degradation by the strong neutron and gamma fluxes in the Laguna Verde Unit 2 reactor core. In this paper, the thermal limits, Critical Power Ratio (CPR) and maximum Linear Heat Generation Rate (LHGR), of bundles directly monitored by either Traverse In-core Probes (TIPs) or GTs are used to establish validation results that confirm the viability of TIP system replacement with automatic fixed in-core probes (AFIPs, GTs, in a Boiling Water Reactor. The new GNF steady-state reactor core simulator AETNA02 is used to obtain power and exposure distribution. Using this code with an updated methodology for GT power adaption, a reduced value of the GT interpolation uncertainty is obtained that is fed into the LHGR calculation. This new method achieves margin recovery for the adapted thermal limits for use in the Economic Simplified Boiling Water Reactor (ESBWR) or any other BWR in the future that employs a GT based AFIP system for local power measurements. (Author)

  19. Thermal optimization of the helium-cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-01-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulae but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads. Since the SSC leads will be cooled by supercritical helium, the flow of vapor is regulated by a control valve. These leads include a superconducting portion at the cold end. All of the material properties in the model are functions of temperature, and for the helium are functions of pressure and temperature. No pressure drop calculations were performed as part of this analysis. The diameter that minimizes the Carnot work was determined for four different lengths at a design current of 6600 amps

  20. Heart rate variation and electroencephalograph--the potential physiological factors for thermal comfort study.

    Science.gov (United States)

    Yao, Y; Lian, Z; Liu, W; Jiang, C; Liu, Y; Lu, H

    2009-04-01

    Human thermal comfort researches mainly focus on the relation between the environmental factors (e.g. ambient temperature, air humidity, and air velocity, etc.) and the thermal comfort sensation based on a large amount of subjective field investigations. Although some physiological factors, such as skin temperature and metabolism were used in many thermal comfort models,they are not enough to establish a perfect thermal comfort model. In this paper,another two physiological factors, i.e. heart rate variation (HRV) and electroencephalograph (EEG), are explored for the thermal comfort study. Experiments were performed to investigate how these physiological factors respond to the environmental temperatures, and what is the relationship between HRV and EEG and thermal comfort. The experimental results indicate that HRV and EEG may be related to thermal comfort, and they may be useful to understand the mechanism of thermal comfort.

  1. Thermal Management of Transient Power Spikes in Electronics - Phase Change Energy Storage or Copper Heat Sinks?

    OpenAIRE

    Krishnan, S.; Garimella, S V

    2004-01-01

    A transient thermal analysis is performed to investigate thermal control of power semiconductors using phase change materials, and to compare the performance of this approach to that of copper heat sinks. Both the melting of the phase change material under a transient power spike input, as well as the resolidification process, are considered. Phase change materials of different kinds (paraffin waxes and metallic alloys) are considered, with and without the use of thermal conductivity enhancer...

  2. C.N. Cofrentes power up-rate up to 110 %. A challenge for cycle 14 core design

    International Nuclear Information System (INIS)

    Gomez Bernal, M.I.; Lopez Carbonell, M.T.; Garcia Delgado, L.

    2001-01-01

    C.N.Cofrentes is a GE design BWR reactor with 624 bundles in the core, a rated power of 2894 MWt and it is currently operating Cycle 13 at 104.2 % power. Commercial operation started in 1984 with 12-month cycles at rated power. Both cycle length and thermal power have been increased since then. Power has been up-rated in two steps, first at 102 % in Cycle 4 and later in Cycle 11 at 104.2%. Cycle length has been extended from the original 12-month to the currently 18-month cycles. Next cycle, Cycle 14, will be an 18-month cycle operating at 110 % power. This goal is a challenge for the in-house nuclear design team. Start up for Cycle 14 is planned for the first quarter of 2002. (author)

  3. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    Directory of Open Access Journals (Sweden)

    Ke Ma

    2012-07-01

    Full Text Available Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid connected inverter. It is concluded that the thermal performances of the 3L-NPC wind power converter can be significantly changed by the power device technology as well as their parallel configurations.

  4. Determination and Analysis of Ar-41 Dose Rate Characteristic at Thermal Column of Kartini Reactor

    International Nuclear Information System (INIS)

    Widarto; Sardjono, Y.

    2007-01-01

    Determination and Analysis of Ar-41 activity dose rate at the thermal column after shutdown of Kartini reactor has been done. Based on evaluation and analysis concluded that external dose rate is D = 1.606x10 -6 Sv/second and internal dose rate is 3.429x10 -1 1 Sv/second. It means that if employee work at the column thermal area for 15 minutes a day, 5 days a week, in a year will be 0.376 Sv still under dose rate limit i.e. 0.5 Sv, so that the column thermal facility is safely area. (author)

  5. Measured thermal and fast neutron fluence rates, ATR Cycle 102-A, 11/28/93 thru 1/16/94

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1994-02-01

    This report contains the thermal (2,200 m/s) and fast (E > 1MeV) neutron fluence rate data for ATR Cycle 102-A which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All ''H'' holder monitoring wires for this cycle are 54 inches long. All ''SR'' holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, ''BR'' holders were used in the W-1, 2, 3, and 4 positions. All ''BR'' holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle

  6. Measured thermal and fast neutron fluence rates ATR Cycle 99-A, November 23, 1992--January 23, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1993-03-01

    This report contains the thermal (2200 m/s) and fast (E>me) neutron fluence rate data for ATR Cycle 99-A which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power ReactorPrograms (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All ''H'' holder monitor wires for this cycle are 54 inches long. All ''SR'' holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, ''BR'' holders were used in the W-1, 2, 3, and 4 positions. All ''BR'' holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle

  7. A study on the characteristics of the decay heat removal capacity for a large thermal rated LMR design

    International Nuclear Information System (INIS)

    Uh, J. H.; Kim, E. K.; Kim, S. O.

    2003-01-01

    The design characteristics and the decay heat removal capacity according to the type of DHR (Decay Heat Removal) system in LMR are quantitatively analyzed, and the general relationship between the rated core thermal power and decay heat removal capacity is created in this study. Based on these analyses results, a feasibility of designing a larger thermal rating KALIMER plant is investigated in view of decay heat removal capacity, and DRC (Direct Reactor Cooling) type DHR system which rejects heat from the reactor pool to air is proper to satisfy the decay heat removal capacity for a large thermal rating plant above 1,000 MWth. Some defects, however, including the heat loss under normal plant operation and the lack of reliance associated with system operation should be resolved in order to adopt the total passive concept. Therefore, the new concept of DHR system for a larger thermal rating KALIMER design, named as PDRC (passive decay heat removal circuit), is established in this study. In the newly established concept of PDRC, the Na-Na heat exchanger is located above the sodium cold pool and is prevented from the direct sodium contact during normal operation. This total passive feature has the superiority in the aspect of the minimizing the normal heat loss and the increasing the operation reliance of DHR system by removing either any operator action or any external operation signal associated with system operation. From this study, it is confirmed that the new concept of PDRC is useful to the designing of a large thermal rating power plant of KALIMER-600 in view of decay heat removal capability

  8. Energy and environmental studies associated to the emergency plan of natural gas thermal power plants

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Grynberg, Sueli E.; Aronne, Ivan D.; Jacomino, Vanusa M.F.; Branco, Otavio E.A.; Martinez, Carlos B.; Versiani, Bruno R.

    2002-01-01

    This work presents a first exertion to evaluate the environmental impacts due to the operation of planned gas power plants. This study was carried out with the model EcoSense, that is a computer program developed for the quantification of environmental impacts and their external costs resulting from the operation of thermal power plants or other industrial activities. EcoSense is still in development and the achieved results should still be considered with caution although it becomes clear the potentiality of the use of this tool in the support of the decision making process in energy planning. Based on the method of approach of the damage function established in the ExternE project this program provides models for an integrated evaluation of the impact rate from the air pollutants resulting from burning fossil fuel, which are transported by the air. (author)

  9. REAL TIME PULVERISED COAL FLOW SOFT SENSOR FOR THERMAL POWER PLANTS USING EVOLUTIONARY COMPUTATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    B. Raja Singh

    2015-01-01

    Full Text Available Pulverised coal preparation system (Coal mills is the heart of coal-fired power plants. The complex nature of a milling process, together with the complex interactions between coal quality and mill conditions, would lead to immense difficulties for obtaining an effective mathematical model of the milling process. In this paper, vertical spindle coal mills (bowl mill that are widely used in coal-fired power plants, is considered for the model development and its pulverised fuel flow rate is computed using the model. For the steady state coal mill model development, plant measurements such as air-flow rate, differential pressure across mill etc., are considered as inputs/outputs. The mathematical model is derived from analysis of energy, heat and mass balances. An Evolutionary computation technique is adopted to identify the unknown model parameters using on-line plant data. Validation results indicate that this model is accurate enough to represent the whole process of steady state coal mill dynamics. This coal mill model is being implemented on-line in a 210 MW thermal power plant and the results obtained are compared with plant data. The model is found accurate and robust that will work better in power plants for system monitoring. Therefore, the model can be used for online monitoring, fault detection, and control to improve the efficiency of combustion.

  10. CERI says lower power rates still in the future

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The impact that consumers will encounter with the convergence of Alberta's natural gas and electric utility industry were discussed. It will take a few years of infrastructure improvements before lower rates and improved efficiencies will be realized. Electricity prices in Alberta are expected to increase until the next generating capacity is connected to the provincial power grid. In addition, consumer prices are increasing because of the province's reliance on imports from British Columbia to meet peak demand. In August 2000 the province held a controversial auction of its generating capacity. The auction raised little more than $1 billion to the balancing pool, well short of the $4 billion target. Two major power facilities, the Genesee and Sheerness, failed to attract any bids at all. Despite this, the government accepted the results of the auction and will move forward with its retail restructuring program which calls for the competitive power market to be in place on January 1, 2001. The five major bidders who acquired the right to market about 4,249 megawatts of generating capacity from eight generating units in Alberta are EPCOR Utilities Inc., ENMAX Energy Corp., Enron Canada Power Corp., TransCanada PipeLines Ltd., and Engage Energy. The Alberta government is in the process of finalizing details of how the raised funds will be used to offset the impact of electricity rates

  11. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  12. Binary collision rates of relativistic thermal plasmas. I Theoretical framework

    Science.gov (United States)

    Dermer, C. D.

    1985-01-01

    Binary collision rates for arbitrary scattering cross sections are derived in the case of a beam of particles interacting with a Maxwell-Boltzmann (MB) plasma, or in the case of two MB plasmas interacting at generally different temperatures. The expressions are valid for all beam energies and plasma temperatures, from the nonrelativistic to the extreme relativistic limits. The calculated quantities include the reaction rate, the energy exchange rate, and the average rate of change of the squared transverse momentum component of a monoenergetic particle beam as a result of scatterings with particles of a MB plasma. Results are specialized to elastic scattering processes, two-temperature reaction rates, or the cold plasma limit, reproducing previous work.

  13. Diagnosis of Thermal Efficiency of Nuclear Power Plants Using Optical Torque Sensors

    International Nuclear Information System (INIS)

    Shuichi Umezawa; Jun Adachi

    2006-01-01

    A new optical torque measuring method was applied to diagnosis of thermal efficiency of nuclear power plants. The sensor allows torque deformation of the rotor caused by power transmission to be measured without contact. Semiconductor laser beams and small pieces of stainless reflector that have bar-code patterns are employed. The intensity of the reflected laser beam is measured and then input into a computer through an APD and an A/D converter having high frequency sampling rates. The correlation analysis technique can translate these data into the torque deformation angle. This angle allows us to obtain the turbine output along with the torsional rigidity and the rotating speed of the rotor. The sensor was applied to a nuclear plant of Tokyo Electric Power Company, TEPCO, following its application success to the early combined cycle plants and the advanced combined cycle plants of TEPCO. As the turbine rotor of the nuclear power plant is less exposed than that of the combined cycle plants, the measurement position is confined to a narrow gap. In order to overcome the difficulty in installation, the shape of the sensor is modified to be long and thin. Sensor performance of the nuclear power plant was inspected over a year. The value of the torsional rigidity was analyzed by the finite element method at first. Accuracy was improved by correcting the torsional rigidity so that the value was consistent with the generator output. As a result, it is considered that the sensor performance has reached a practical use level. (authors)

  14. Thermal and optical study of parabolic trough collectors of Shiraz solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2007-07-01

    The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal

  15. Possibilities of using thermal mass in buildings to save energy, cut power consumption peaks and increase the thermal comfort

    OpenAIRE

    Karlsson, Jonathan

    2012-01-01

    The aim of this project was to generate knowledge to enable us to take advantage of heat storage in heavy building structures with regard to as energy savings, better thermal indoor climate, and reduced peak powers. This could include buildings that can function without energy input during cold periods, buildings that give a robust indoor climate without installed cooling, and buildings with good thermal comfort also in case of higher outdoor temperatures resulting from global warming. To rea...

  16. A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants

    OpenAIRE

    Kumar, Ravinder

    2016-01-01

    The growing energy supply, demand has created an interest towards the plant equipment efficiency and the optimization of existing thermal power plants. Also, a thermal power plant dependency on fossil fuel makes it a little bit difficult, because of environmental impacts has been always taken into consideration. At present, most of the power plants are going to be designed by the energetic performance criterion which is based on the first law of thermodynamics. Sometimes, the system energy ba...

  17. The Modernization Program and Power Up-rate at NPP V2 Jaslovske Bohunice, Slovak Republic

    International Nuclear Information System (INIS)

    Reznik, Vladivoj; Krajmer, Imrich

    2010-01-01

    Slovenske Elektrarne, a.s. is a second largest utility company in the Central and Eastern Europe that owns an optimal production portfolio comprised of nuclear, thermal and hydroelectric power plants. There are two nuclear power plants Bohunice and Mochovce both operate with two units and another two units Mochovce 3 and 4 are currently under construction. Electricity at Nuclear power plant Bohunice V2 is generated by two 440 MW units that had gradually been connected to the power network over the period between 1984 and 1985. In the construction of the nuclear power plant V2 the concept of pressurized water reactors was adopted and the Soviet-era design WWER 440 used. The upgrading of Nuclear Power Plant Bohunice V2 is based on three main points: Modernization, Power up-rate, and Ageing monitoring program. The main targets of the modernization project were: Increasing of the Nuclear Safety and of the Nuclear operational reliability, and Seismic improvement. This modernization program is in full compliance with IAEA requirements and with the decisions from the Nuclear Regulatory Agency of the Slovak Republic (UJD) and achievement of the probabilistic safety criteria in accordance with IAEA recommendations. Except that is ensured a safe, reliable, economical and effective electricity and heat generation. Achieved results are based for further prolongation of the operation life time up to 60 years. (authors)

  18. Thermal and stability considerations for a supercritical water-cooled fast reactor during power-raising phase of plant startup

    International Nuclear Information System (INIS)

    Cai, Jiejin; Ishiwatari, Yuki; Oka, Yoshiaki; Ikejiri, Satoshi

    2009-01-01

    This paper describes thermal analyses and linear stability analyses of the Supercritical Water-cooled Fast Reactor with 'two-path' flow scheme during the power-raising phase of plant startup. For thermal consideration, the same criterion of the maximum cladding surface temperature (MCST) as applied to the normal operating condition is used. For thermal-hydraulic stability consideration, the decay ratio of 0.5 is applied, which is taken from BWRs. Firstly, we calculated the flow rate distribution among the parallel flow paths from the reactor vessel inlet nozzles to the mixing plenum below the core using a system analysis code. The parallel flow paths consist of the seed fuel assemblies cooled by downward flow, the blanket fuel assemblies cooled by downward flow and the downcomer. Then, the MCSTs are estimated for various reactor powers and feedwater flow rates with system analyses. The decay ratios are estimated with linear stability analyses. The available range of the reactor power and feedwater flow rate to satisfy the thermal and stability criteria is obtained. (author)

  19. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    Science.gov (United States)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  20. Variable thermal resistor based on self-powered Peltier effect

    OpenAIRE

    Min, Gao; Yatim, N. M.

    2008-01-01

    Heat flow through a thermoelectric material or device can be varied by an electrical resistor connected in parallel to it. This phenomenon is exploited to design a novel thermal component-variable thermal resistor. The theoretical background to this novel application is provided and an experimental result to demonstrate its feasibility is reported.

  1. Variable thermal resistor based on self-powered Peltier effect

    International Nuclear Information System (INIS)

    Min Gao; Yatim, N Md

    2008-01-01

    Heat flow through a thermoelectric material or device can be varied by an electrical resistor connected in parallel to it. This phenomenon is exploited to design a novel thermal component-variable thermal resistor. The theoretical background to this novel application is provided and an experimental result to demonstrate its feasibility is reported. (fast track communication)

  2. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  3. Effect of warming rate on the critical thermal maxima of crabs, shrimp and fish

    OpenAIRE

    Vinagre, Catarina; Leal, Inês; Mendonça, Vanessa; Flores, Augusto Alberto Valero

    2015-01-01

    he threat of global warming has prompted numerous recent studies on the thermal tolerance of marine species. A widely used method to determine the upper thermal limit has been the Critical Thermal Maximum (CTMax), a dynamic method, meaning that temperature is increased gradually until a critical point is reached. This method presents several advantages over static methods, however, there is one main issue that hinders interpretation and comparison of CTMax results: the rate at which the tempe...

  4. Subjective thermal sensation and human body exergy consumption rate: analysis and correlation

    DEFF Research Database (Denmark)

    Simone, Angela; Dovjak, M.; Kolarik, Jakub

    2011-01-01

    , it is reasonable to consider both the exergy flows in building and those within the human body. There is a need to verify the human-body exergy model with the Thermal-Sensation (TS) response of subjects exposed to different combinations of indoor climate parameters (temperature, humidity, etc.). First results...... available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation showed that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to slightly cool side of thermal sensation. By applying...... the exergy concept to the built indoor environment, additional results are going to be explored. By using the data available so far of operative temperature (to), the human body exergy consumption rates increase as to increases above 24°C or decreases below 22°C at relative humidity (RH) lower than 50...

  5. A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Angela; Kolarik, Jakub; Olesen, Bjarne W. [ICIEE/BYG, Technical University of Denmark (Denmark); Iwamatsu, Toshiya [Faculty of Urban Environmental Science, Tokyo Metropolitan University (Japan); Asada, Hideo [Architech Consulting Co., Tokyo (Japan); Dovjak, Mateja [Faculty of Civil and Geodetic Engineering, University of Ljubljana (Slovenia); Schellen, Lisje [Eindhoven University of Technology, Faculty of Architecture Building and Planning (Netherlands); Shukuya, Masanori [Laboratory of Building Environment, Tokyo City University, Yokohama (Japan)

    2011-01-15

    Application of the exergy concept to research on the built environment is a relatively new approach. It helps to optimize climate conditioning systems so that they meet the requirements of sustainable building design. As the building should provide a healthy and comfortable environment for its occupants, it is reasonable to consider both the exergy flows in building and those within the human body. Until now, no data have been available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation. The objective of the present work was to relate thermal sensation data, from earlier thermal comfort studies, to calculated human-body exergy consumption rates. The results show that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to the slightly cool side of thermal sensation. Generally, the relationship between air temperature and the exergy consumption rate, as a first approximation, shows an increasing trend. Taking account of both convective and radiative heat exchange between the human body and the surrounding environment by using the calculated operative temperature, exergy consumption rates increase as the operative temperature increases above 24 C or decreases below 22 C. With the data available so far, a second-order polynomial relationship between thermal sensation and the exergy consumption rate was established. (author)

  6. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    Science.gov (United States)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  7. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... are identified during the acceleration and deceleration periods of the motor. The main causes for these adverse thermal cycles have been presented and, consequently, the influence of the deceleration slope, modulation technique and reactive current on the thermal cycles has been analyzed. Finally, the improved...

  8. Impact of environmental cost on economics of thermal power plant. Paper no. IGEC-1-007

    International Nuclear Information System (INIS)

    Chandra, H.; Kaushik, S.C.; Chandra, A.

    2005-01-01

    Cost analysis per unit of power generation have been performed for coal based thermal power plant situated in Dadri (UP) for Indian and imported coal from Australia and America. In our study it has been found that it is better to use imported coal in Indian thermal power plants with advantages like low environmental, investment and total cost per unit of power generation. The effect of percent excess air and plant load factor on total cost per unit of power generation is also analyzed. (author)

  9. Discrete rate and variable power adaptation for underlay cognitive networks

    KAUST Repository

    Abdallah, Mohamed M.

    2010-01-01

    We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power adaptation under the constraints of maximum average transmit power and maximum average interference power allowed at the primary receiver due to the existence of an interference link between the secondary transmitter and the primary receiver. We first find the optimal discrete rates assuming a predetermined partitioning of the signal-to-noise ratio (SNR) of both the secondary and interference links. We then present an iterative algorithm for finding a suboptimal partitioning of the SNR of the interference link assuming a fixed partitioning of the SNR of secondary link selected for the case where no interference link exists. Our numerical results show that the average spectral efficiency attained by using the iterative algorithm is close to that achieved by the computationally extensive exhaustive search method for the case of Rayleigh fading channels. In addition, our simulations show that selecting the optimal partitioning of the SNR of the secondary link assuming no interference link exists still achieves the maximum average spectral efficiency for the case where the average interference constraint is considered. © 2010 IEEE.

  10. Pen harvester for powering a pulse rate sensor

    International Nuclear Information System (INIS)

    Bedekar, Vishwas; Oliver, Josiah; Priya, Shashank

    2009-01-01

    Rapid developments in the area of micro-sensors for various applications such as structural health monitoring, bio-chemical sensors and pressure sensors have increased the demand for portable, low cost, high efficiency energy harvesting devices. In this paper, we describe the scheme for powering a pulse rate sensor with a vibration energy harvester integrated inside a pen commonly carried by humans in the pocket close to the heart. Electromagnetic energy harvesting was selected in order to achieve high power at lower frequencies. The prototype pen harvester was found to generate 3 mW at 5 Hz and 1 mW at 3.5 Hz operating under displacement amplitude of 16 mm (corresponding to an acceleration of approximately 1.14 g rms at 5 Hz and 0.56 g rms at 3.5 Hz, respectively). A comprehensive mathematical modelling and simulations were performed in order to optimize the performance of the vibration energy harvester. The integrated pen harvester prototype was found to generate continuous power of 0.46-0.66 mW under normal human actions such as jogging and jumping which is enough for a small scale pulse rate sensor.

  11. Thermal analysis of the modified Hallum Nuclear Power Facility cask using experimentally obtained thermal boundary conditions corresponding to an engulfing open pool fire

    International Nuclear Information System (INIS)

    Longenbaugh, R.S.; Sanchez, L.C.; Gregory, J.J.

    1987-08-01

    This report presents the two-dimensional heat transfer analysis of an open pool fire surrounding a modified radioactive materials transport cask. The cask is an older cask that was used by the Hallum Nuclear Power Facility (HNPF). The HNPF cask did not have a neutron shielding region but was modified to include one for testing purposes. Analysis of the thermal effects of an engulfing open pool fire was performed with the use of the heat transfer code Q/TRAN, which had previously been used in thermal benchmarking problems for spent nuclear fuel casks. Boundary condition data for the analysis were derived from experimental open pool fire tests of large-scale calorimeter test articles performed at SNL that produced information about cask surface heat flux versus surface temperature relationships. Data analysis was directed toward a determination of the thermal response of the cask, particularly the extent of lead melt since lead is used within the HNPF cask's gamma-shielding region. Parameters, such as surface emissivity and internal heat generation rate, can affect the results of the thermal analysis which control the amount of lead melt. A parameter sensitivity analysis was performed using a one-dimensional model to describe how surface emissivity and internal heat generation rates affect the temperature distribution within the cask. The information from this analysis was used to determine the range of parameters for the two-dimensional thermal analysis. 13 refs., 57 figs., 8 tabs

  12. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  13. Experimental verification of altitude effect over thermal power in an atmospheric burner

    International Nuclear Information System (INIS)

    Amell Arrieta, Andres; Agudelo, John Ramiro; Cortes, Jaime

    1992-01-01

    Colombian national massive gasification plan is carried out in a variety of geographic altitudes ranging from 0 to 2.600 meter. The biggest market is located in the Andinan Region, which is characterized by great urban centres located at high altitudes. Commercial, domestic and industrial applications are characterized by the utilization of appliances using atmospheric burners. The thermal power of these burners is affected by altitude. This paper shows experimental results of thermal power reduction in atmospheric burners due to altitude changes. It was found that thermal power is reduced by 1,5% each 304 meters of altitude

  14. Adaptive discrete rate and power transmission for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.

    2012-04-01

    In this paper we develop a framework for optimizing the performance of the secondary link in terms of the average spectral efficiency assuming quantized channel state information (CSI) of the secondary and the secondary-to-primary interference channels available at the secondary transmitter. We consider the problem under the constraints of maximum average interference power levels at the primary receiver. We develop a sub-optimal computationally efficient iterative algorithm for finding the optimal CSI quantizers as well as the discrete power and rate employed at the cognitive transmitter for each quantized CSI level so as to maximize the average spectral efficiency. We show via analysis and simulations that the proposed algorithm converges for Rayleigh fading channels. Our numerical results give the number of bits required to sufficiently represent the CSI to achieve almost the maximum average spectral efficiency attained using full knowledge of the CSI. © 2012 IEEE.

  15. Diagnostic examination of thermally abused high-power lithium-ion cells

    Science.gov (United States)

    Abraham, D. P.; Roth, E. P.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D. H.

    The inherent thermal instability of lithium-ion cells is a significant impediment to their widespread commercialization for hybrid-electric vehicle applications. Cells containing conventional organic electrolyte-based chemistries are prone to thermal runaway at temperatures around 180 °C. We conducted accelerating rate calorimetry measurements on high-power 18650-type lithium-ion cells in an effort to decipher the sequence of events leading to thermal runaway. In addition, electrode and separator samples harvested from a cell that was heated to 150 °C then air-quenched to room temperature were examined by microscopy, spectroscopy, and diffraction techniques. Self-heating of the cell began at 84 °C. The gases generated in the cell included CO 2 and CO, and smaller quantities of H 2, C 2H 4, CH 4, and C 2H 6. The main changes on cell heating to 150 °C were observed on the anode surface, which was covered by a thick layer of surface deposits that included LiF and inorganic and organo-phosphate compounds. The sources of gas generation and the mechanisms leading to the formation of compounds observed on the electrode surfaces are discussed.

  16. Search method optimization technique for thermal design of high power RFQ structure

    International Nuclear Information System (INIS)

    Sharma, N.K.; Joshi, S.C.

    2009-01-01

    RRCAT has taken up the development of 3 MeV RFQ structure for the low energy part of 100 MeV H - ion injector linac. RFQ is a precision machined resonating structure designed for high rf duty factor. RFQ structural stability during high rf power operation is an important design issue. The thermal analysis of RFQ has been performed using ANSYS finite element analysis software and optimization of various parameters is attempted using Search Method optimization technique. It is an effective optimization technique for the systems governed by a large number of independent variables. The method involves examining a number of combinations of values of independent variables and drawing conclusions from the magnitude of the objective function at these combinations. In these methods there is a continuous improvement in the objective function throughout the course of the search and hence these methods are very efficient. The method has been employed in optimization of various parameters (called independent variables) of RFQ like cooling water flow rate, cooling water inlet temperatures, cavity thickness etc. involved in RFQ thermal design. The temperature rise within RFQ structure is the objective function during the thermal design. Using ANSYS Programming Development Language (APDL), various multiple iterative programmes are written and the analysis are performed to minimize the objective function. The dependency of the objective function on various independent variables is established and the optimum values of the parameters are evaluated. The results of the analysis are presented in the paper. (author)

  17. Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump

    International Nuclear Information System (INIS)

    Lakew, Amlaku Abie; Bolland, Olav; Ladam, Yves

    2011-01-01

    Highlights: → The work is focused on theoretical aspects of thermal driven pump (TDP) Rankine cycle. → The mechanical pump is replaced by thermal driven pump. → Important parameters of thermal driven pump Rankine cycle are investigated. → TDP Rankine cycle produce more power but it requires additional low grade heat. - Abstract: A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 o C) to pressurize the working fluid.

  18. Thermal-Hydraulic Performance of Cross-Shaped Spiral Fuel in High-Power-Density BWRs

    International Nuclear Information System (INIS)

    Conboy, Thomas; Hejzlar, Pavel

    2006-01-01

    Power up-rating of existing nuclear reactors promises to be an area of great study for years to come. One of the major approaches to efficiently increasing power density is by way of advanced fuel design, and cross-shaped spiral-fuel has shown such potential in previous studies. Our work aims to model the thermal-hydraulic consequences of filling a BWR core with these spiral-shaped pins. The helically-wound pins have a cross-section resembling a 4-petaled flower. They fill an assembly in a tight bundle, their dimensions chosen carefully such that the petals of neighboring pins contact each other at their outer-most extent in a self-supporting lattice, absent of grid spacers. Potential advantages of this design raise much optimism from a thermal-hydraulic perspective. These spiral rods possess about 40% larger surface area than traditional rods, resulting in increased cooling and a proportional reduction in average surface heat flux. The thin petal-like extensions help by lowering thermal resistance between the hot central region of the pin and the bulk coolant flow, decreasing the maximum fuel temperature by 200 deg. C according to Finite Element (COSMOS) models. However, COSMOS models also predict a potential problem area at the 'elbow' region of two adjoining petals, where heat flux peaking is twice that along the extensions. Preliminary VIPRE models, which account only for the surface area increase, predict a 22% increase in critical power. It is also anticipated that the spiral twist would provide the flowing coolant with an additional radial velocity component, and likely promote turbulence and mixing within an assembly. These factors are expected to provide further margin for increased power density, and are currently being incorporated into the VIPRE model. The reduction in pressure drop inherent in any core without grid-spacers is also expected to be significant in aiding core stability, though this has not yet been quantified. Spiral-fuel seems to be a

  19. Nuclear and thermal power plants and the environment

    International Nuclear Information System (INIS)

    Mejstrik, V.

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared. (Z.M.)

  20. Nuclear and thermal power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Mejstrik, V [Ceskoslovenska Akademie Ved, Pruhonice. Ustav Krajinne Ekologie

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower than in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared.

  1. Low Cost Radiator for Fission Power Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Glenn Research Center (GRC) is developing fission power system technology for future space transportation and surface power applications. The early systems are...

  2. Low Cost Radiator for Fission Power Thermal Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GRC is developing fission power system technology for future space transportation and surface power applications. The early systems are envisioned in the 10 to...

  3. Miniaturization, Packaging, and Thermal Analysis of Power Electronics Modules

    OpenAIRE

    Lostetter, Alexander B.

    1998-01-01

    High power circuits, those involving high levels of voltages and currents to produce several kilowatts of power, would possess an optimized efficiency when driven at high frequencies (on the order of MHz). Such an approach would greatly reduce the size of capacitive and magnetic components, and thus ultimately reduce the cost of the power electronic circuits. The problem with this strategy in conventional packaging, however, is that at high frequencies, interconnects between the power devic...

  4. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  5. PowerChoice Residential Customer Response to TOU Rates

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Jane S.; Moezzi, Mithra; Lutzenhiser, Susan; Woods, James; Dethman, Linda; Kunkle, Rick

    2009-10-01

    Research Into Action, Inc. and the Sacramento Municipal Utility District (SMUD) worked together to conduct research on the behaviors and energy use patterns of SMUD residential customers who voluntarily signed on to a Time-of-Use rate pilot launched under the PowerChoice label. The project was designed to consider the how and why of residential customers ability and willingness to engage in demand reduction behaviors, and to link social and behavioral factors to observed changes in demand. The research drew on a combination of load interval data and three successive surveys of participating households. Two experimental treatments were applied to test the effects of increased information on households ability to respond to the Time-of-Use rates. Survey results indicated that participants understood the purpose of the Time-of-Use rate and undertook substantial appropriate actions to shift load and conserve. Statistical tests revealed minor initial price effects and more marked, but still modest, adjustments to seasonal rate changes. Tests of the two information interventions indicated that neither made much difference to consumption patterns. Despite the lackluster statistical evidence for load shifting, the analysis points to key issues for critical analysis and development of residential Time-of-Use rates, especially pertinent as California sets the stage for demand response in more California residences.

  6. Effect of thermal management on the properties of saturable absorber mirrors in high-power mode-locked semiconductor disk lasers

    International Nuclear Information System (INIS)

    Rantamäki, Antti; Lyytikäinen, Jari; Jari Nikkinen; Okhotnikov, Oleg G

    2011-01-01

    The thermal management of saturable absorbers is shown to have a critical impact on a high-power mode-locked disk laser. The absorber with efficient heat removal makes it possible to generate ultrashort pulses with high repetition rates and high power density.

  7. The potential estimation and factor analysis of China′s energy conservation on thermal power industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Yang, Lisha

    2013-01-01

    At present, researches about energy conservation are focused on prediction. But there are few researches focused on the estimation of effective input and energy conservation potential, and there has been even no research on energy conservation of thermal power industry of China. This paper will try to fill in such a blank. Panel data on Chinese thermal power industry over 2005–2010 are established, and we adopt the stochastic frontier analysis approach to estimate the energy saving potential of thermal power industry. The results are as follows: (1) the average efficiency of energy inputs in China′s thermal power industry over 2005–2010 was about 0.85, and cumulative energy saving potential equals to 551.04 (Mtce); (2) by improving the non-efficiency factors, the relatively backward inland cities could achieve higher energy saving in thermal power industry; (3) the energy input efficiency of Eastern China Grid is shown to be the highest; (4) in order to realize the energy-saving goal of thermal power industry, one important policy method the government should adopt is to conduct a market-oriented reform in power industry and break the state-owned monopoly to provide incentives for private and foreign direct investment in thermal power sector. -- Highlights: •We adopt SFA model to estimate the coal input efficiency of power sector in China. •We calculate the cumulative energy saving potential equals to 551.04 Mtce. •East China power grid has the highest energy input efficiency. •Some backward inland cities may be the main force for future energy conservation. •Encourage private and foreign direct investment in power sector might be effective

  8. Application of wire sawing method to decommissioning of nuclear power plant. Cutting test with turbine pedestal of thermal power plant

    International Nuclear Information System (INIS)

    Hasegawa, Hideki; Uchiyama, Noriyuki; Sugiyama, Kazuya; Yamashita, Yoshitaka; Watanabe, Morishige

    1995-01-01

    It is very important to reduce radioactive waste volume, and to reduce radiation dose to workers and to the public during dismantling of the activated concrete in the decommissioning stage of a nuclear power plant. For the above, we studied a dismantling method which can separate activated concrete from non-activated concrete safely and effectively. Considering the state of legal regulation about radioactive waste disposal, and the state of developing of decommissioning technologies, we come to a conclusion that wire sawing method is feasible as a concrete cutting method. This study was carried out to evaluate the availability of the wire sawing method to dismantling of concrete structures of nuclear power plants. This study consists of concrete cutting rate test and concrete block cutting test. The former is to obtain data about cutting rate with various steel ratios while the latter is to obtain data about working time and man hour of the whole work with wire sawing. Thirty-six year old turbine pedestal of a thermal power plant was selected as a test piece to simulate actual decommissioning work of nuclear power plant, taking its massive concrete volume and age. Taking account of the handling in the building, the wire sawing machine with motor driven was used in this study considering that it did not produce exhaust gas. The concrete cutting rate test was performed with parameter of steel ratio in the concrete, wire tension and cutting direction. In the concrete block cutting test, imaging the actual cutting situation, cubic blocks which side was approximately 1 meter were taken out, and a large block to be cut and to be taken out is a section of 1m x 1.5m x 10m. Test results are shown below. The difference of cutting rate was mainly caused by the difference of reinforcement steel ratio. Working time data of installation, removal of machines and cutting were obtained. Data on secondary waste (dust, drainage and sludge) and environmental effect (noise and

  9. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...

  10. Compact electro-thermal modeling of a SiC MOSFET power module under short-circuit conditions

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Reigosa, Paula Diaz; Bahman, Amir Sajjad

    2017-01-01

    A novel physics-based, electro-thermal model which is capable of estimating accurately the short-circuit behavior and thermal instabilities of silicon carbide MOSFET multi-chip power modules is proposed in this paper. The model has been implemented in PSpice and describes the internal structure.......2 kV breakdown voltage and about 300 A rated current. The short-circuit behavior of the module is investigated experimentally through a non-destructive test setup and the model is validated. The estimation of overcurrent and temperature distribution among the chips can provide useful information...

  11. Cost estimation of thermal and nuclear power using annual securities report

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Nagatomi, Yu; Murakami, Tomoko

    2011-01-01

    Cost estimation of generation cost derived from various power sources was widely conducted using model plant or annual securities report of electric utilities. Although annual securities report method was subjected to some limitation in methodology itself, useful information was obtained for cost comparison of thermal and nuclear power. Studies on generation cost evaluation of thermal and nuclear power based on this method during past five years showed that nuclear power cost was almost stable 7 Yen/kWh and thermal power cost was varying 9 - 12 Yen/kWh dependent on violent fluctuations of primary energy cost. Nuclear power was expected cost increase due to enhanced safety requirements or damage compensation of accidents as well as decommissioning and back-end cost, which were difficult to evaluate accurately with annual securities report. Further comprehensive and accurate cost estimation should be encouraged including these items. (T. Tanaka)

  12. Ocean thermal gradient as a generator of electricity. OTEC power plant

    Science.gov (United States)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  13. Technical solutions for mitigating adverse impacts on the environment implemented at Deva Thermal Power Plant

    International Nuclear Information System (INIS)

    Vaida, Victor; Egyed, Francisc; Manea, Laurean

    2004-01-01

    Situated at the south-west of Transylvania, 9 km from Deva town on the Mures River bank, Deva Power Plant has an installed capacity of 1260 MW, in six 210 MW generation units. Each unit operates with two steam boilers of 330 t/h, and steam rated parameters are 13.72 MPa and 550 deg C. The generated electricity is delivered in the national grid at voltage levels of 200 and 400 kV; there exists also the possibility of delivering electricity to the neighbouring countries through the power line Sibiu - Arad - Szeged. The Power Plant also produces thermal energy. The total installed thermal capacity is 400 MWt. Deva Power Plant was commissioned in three stages. During the first stage, between 1969 and 1971, Units No. 1, 2, 3 and 4 were commissioned, followed by Unit No. 5 in 1977 and by Unit No. 6 in 1980. All main equipment was manufactured in Russia. The main fuel utilised here is hard coal extracted from Valea Jiului basins, with calorific value between 14600 and 18800 kJ/kg. Natural gas is used as a flame support fuel. Deva Power Plant has actually produced 9% to 12% of the total electricity produced in the country and 18% to 25% of the electricity produced on coal. Continuous efforts have been made for the rehabilitation and modernisation of this power plant aiming to improve operational safety whilst equal interest has been paid to mitigating the environmental damage caused by the great size combustion systems. In this paper we present some of the preoccupations concerning earliest as well as prospective actions to be taken to protect the environment and to comply with the relevant standards and laws in force. The major role played by Deva Power Plant within the National Power Grid secured through reliable and steady operation also means undertaking exceptional environmental protection actions, to comply with current requirements. By its comprehensive modernisation programme already in progress, Deva Power Plant focus on the continuous upgrading of their plant in

  14. EFFICIENCY AND COST MODELLING OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Péter Bihari

    2010-01-01

    Full Text Available The proper characterization of energy suppliers is one of the most important components in the modelling of the supply/demand relations of the electricity market. Power generation capacity i. e. power plants constitute the supply side of the relation in the electricity market. The supply of power stations develops as the power stations attempt to achieve the greatest profit possible with the given prices and other limitations. The cost of operation and the cost of load increment are thus the most important characteristics of their behaviour on the market. In most electricity market models, however, it is not taken into account that the efficiency of a power station also depends on the level of the load, on the type and age of the power plant, and on environmental considerations. The trade in electricity on the free market cannot rely on models where these essential parameters are omitted. Such an incomplete model could lead to a situation where a particular power station would be run either only at its full capacity or else be entirely deactivated depending on the prices prevailing on the free market. The reality is rather that the marginal cost of power generation might also be described by a function using the efficiency function. The derived marginal cost function gives the supply curve of the power station. The load level dependent efficiency function can be used not only for market modelling, but also for determining the pollutant and CO2 emissions of the power station, as well as shedding light on the conditions for successfully entering the market. Based on the measurement data our paper presents mathematical models that might be used for the determination of the load dependent efficiency functions of coal, oil, or gas fuelled power stations (steam turbine, gas turbine, combined cycle and IC engine based combined heat and power stations. These efficiency functions could also contribute to modelling market conditions and determining the

  15. Energy and exergy evaluation of a 220MW thermal power plant ...

    African Journals Online (AJOL)

    Energy and exergy evaluation of a 220MW thermal power plant. ... Nigerian Journal of Technology ... At the variation of environmental or dead state temperature, ther e were no appreciable changes in the values of exergy efficiency of the ...

  16. Marine ecological habitat: A case study on projected thermal power plant around Dharamtar creek, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Naidu, V.S.; Jagtap, T.G.

    Estuaries and tidal creeks, harboring mangroves particularly, face tremendous anthropogenic pressures. Expansion of mega cities and the thermal power plants are generally proposed in the vicinity of estuaries and creek, due to the feasibility...

  17. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  18. Climate Change Effect on Thermal Power Cooling in the U.S.

    Science.gov (United States)

    Maintaining reasonable surface-water temperatures is paramount for aquatic ecosystem health. Thermal pollution from power plant effluent can result in unnatural river temperature spikes locally, as well as cause damaging breaches to river temperature. The threat of a nonstationar...

  19. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  20. Thermal pollution impacts on rivers and power supply in the Mississippi River watershed

    Science.gov (United States)

    Miara, Ariel; Vörösmarty, Charles J.; Macknick, Jordan E.; Tidwell, Vincent C.; Fekete, Balazs; Corsi, Fabio; Newmark, Robin

    2018-03-01

    Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05°) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable of uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. These dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome

  1. Air-cooling viability to increase the power in the thermal power stations of gas: Colombian case

    International Nuclear Information System (INIS)

    Amell, Andres; Bedoya, H. A

    2000-01-01

    Thermal power decreases as air temperature increases, which reduce both efficiency and projects yielding. Technologically it is possible to eliminate the environment temperature incidence on reduction of power and efficiency, cooling the input air to the turbine, obtaining important power and efficiency improvements. In this work, the technical and economical viability, when applying air cooling technologies (evaporative cooling, steam compression, and production and ice storage (TES) were studied, having in mind meteorological conditions and Colombian electric marketing features, in which, nearly 2800 MW of natural gas thermal power have been installed in the last decade. as a result of applying these cooling technologies the study determined: the mean potential of recoverable power at the second peak of the national demand curve, shows several schemes in which they are technically and economically viable in the Colombian context

  2. Thermal analysis of two-level wind power converter under symmetrical grid fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    In this paper, the case of symmetrical grid fault when using the multi-MW wind turbine of partial-scale and full-scale two-level power converter are designed and investigated. Firstly, the different operation behaviors of the relevant power converters under the voltage dip will be described......) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor...

  3. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    International Nuclear Information System (INIS)

    Novelli, A.

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer. (author)

  4. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  5. Human power output during repeated sprint cycle exercise: the influence of thermal stress

    NARCIS (Netherlands)

    Ball, D.; Burrows, C.; Sargeant, A.J.

    1999-01-01

    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output

  6. Study on key technologies of optimization of big data for thermal power plant performance

    Science.gov (United States)

    Mao, Mingyang; Xiao, Hong

    2018-06-01

    Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.

  7. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    Science.gov (United States)

    2016-06-01

    iii Approved for public release; distribution is unlimited MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY STORAGE WITH RENEWABLE SOLAR AND WIND... control tracks increasing power generation in the morning. The batteries require a large amount of electrical power to charge every morning, as charge ...is 37 lost throughout the night. This causes the solar panels to output their maximum power generation. The MPPT control records when power

  8. Thermally-aware composite run-time CPU power models

    OpenAIRE

    Walker, Matthew J.; Diestelhorst, Stephan; Hansson, Andreas; Balsamo, Domenico; Merrett, Geoff V.; Al-Hashimi, Bashir M.

    2016-01-01

    Accurate and stable CPU power modelling is fundamental in modern system-on-chips (SoCs) for two main reasons: 1) they enable significant online energy savings by providing a run-time manager with reliable power consumption data for controlling CPU energy-saving techniques; 2) they can be used as accurate and trusted reference models for system design and exploration. We begin by showing the limitations in typical performance monitoring counter (PMC) based power modelling approaches and illust...

  9. Technical and economic aspects of operation of thermal and hydro power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Bjoern Harald

    1997-12-31

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs.

  10. Technical and economic aspects of operation of thermal and hydro power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Bjoern Harald

    1998-12-31

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs.

  11. Technical and economic aspects of operation of thermal and hydro power systems

    International Nuclear Information System (INIS)

    Bakken, Bjoern Harald.

    1997-01-01

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs

  12. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    Science.gov (United States)

    2015-02-01

    executed with SolidWorks Flow Simulation , a computational fluid-dynamics code. The graph in Fig. 2 shows the timing and amplitudes of power pulses...defined a convective flow of air perpendicular to the bottom surface of the mounting plate, with a velocity of 10 ft/s. The thermal simulations were...Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210

  13. Turbostar: an ICF reactor using both direct and thermal power conversion. Revision 1

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1986-01-01

    Combining direct and thermal power conversion results in a 52% gross plant efficiency with DT fuel and 68% with advanced DD fuel. We maximize the fraction of fusion-yield energy converted to kinetic energy in a liquid-lithium blanket, and use this energy directly with turbine generators to produce electricity. We use the remainder of the energy to produce electricity in a standard Rankine thermal power conversion cycle

  14. The Feasibility Study on Thermal Loading Control of Wind Power Converters with a Flexible Switching Frequency

    DEFF Research Database (Denmark)

    Qin, Zian; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    Thermal loading of wind power converters is critical to their reliability performance. Especially for IGBT modules applied in a converter, both of the mean value and variation of the junction temperature have significant impact on the lifetime. Besides other strategies to reduce the thermal loadi...... the temperature fluctuations due to wind speed variations. The trade-off between the reduced amplitude of temperature fluctuations and the additional power losses that may be introduced is quantitatively studied....

  15. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    International Nuclear Information System (INIS)

    Lee, Hansang; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation

  16. Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator

    International Nuclear Information System (INIS)

    Wu, Yongjia; Ming, Tingzhen; Li, Xiaohua; Pan, Tao; Peng, Keyuan; Luo, Xiaobing

    2014-01-01

    Highlights: • An appropriate ceramic plate thickness is effective in alleviating the thermal stress. • A smaller distance between thermo-pins can help prolong lifecycle of the TE module. • Either a thicker or a thinner copper conducting strip effectively reduces thermal stress. • A suitable tin soldering thickness will alleviate thermal stress intensity and increase thermal efficiency. - Abstract: Thermoelectric generator is a device taking advantage of the temperature difference in thermoelectric material to generate electric power, where the higher the temperature difference of the hot-cold ends, the higher the efficiency will be. However, higher temperature or higher heat flux upon the hot end will cause strong thermal stress which will negatively influence the lifecycle of the thermoelectric module. This phenomenon is very common in industrial applications but seldom has research work been reported. In this paper, numerical analysis on the thermodynamics and thermal stress performance of the thermoelectric module has been performed, considering the variation on the thickness of materials; the influence of high heat flux on thermal efficiency, power output, and thermal stress has been examined. It is found that under high heat flux imposing upon the hot end, the thermal stress is so strong that it has a decisive effect on the life expectation of the device. To improve the module’s working condition, different geometrical configurations are tested and the optimum sizes are achieved. Besides, the side effects on the efficiency, power output, and open circuit voltage output of the thermoelectric module are taken into consideration

  17. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation.

  18. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  19. Heat losses in power boilers caused by thermal bridges

    Directory of Open Access Journals (Sweden)

    Kocot Monika

    2017-01-01

    Full Text Available In this article the analysis of heat losses caused by thermal bridges that occur in the steam boiler OP-140 is presented. Identification of these bridges were conducted with use of thermographic camera. Heat losses were evaluated based on methodology of VDI 4610 standard, but instead of its simplified equations, criterial equations based on Nusselt number were used. Obtained values of annual heat losses and heat flux density corresponding to the fully insulated boiler surfaces were compared to heat losses generated by thermal bridges located in the same areas. The emphasis is put on the role of industrial insulation in heat losses reduction.

  20. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  1. Effect of the thermal evaporation rate of Al cathodes on organic light emitting diodes

    International Nuclear Information System (INIS)

    Shin, Hee Young; Suh, Min Chul

    2014-01-01

    Graphical abstract: - Highlights: • The TOF-SIMS analysis to investigate cathode diffusion during evaporation process. • Performance change of OLEDs prepared with different evaporation rate of Al cathode. • Change of electron transport behavior during thermal evaporation process. - Abstract: The relationship between the thermal evaporation rate of Al cathodes and the device performance of organic light-emitting diodes (OLEDs) was investigated to clarify the source of leakage current. Time-of-flight secondary ion mass spectrometry was applied to identify the diffusion of Li and Al fragments into the underlying organic layer during the thermal evaporation process. We prepared various OLEDs by varying the evaporation rates of the Al cathode to investigate different device performance. Interestingly, the leakage current level decreased when the evaporation rate reached ∼25 Å/s. In contrast, the best efficiency and operational lifetime was obtained when the evaporation rate was 5 Å/s

  2. Water management and reuse opportunities in a thermal power ...

    African Journals Online (AJOL)

    The Rehab power plant located in the Northern part of Jordan is presented as a case study of industrial water management. This power plant consumes boiler feed water in the amount of 200 m3/d of the fresh ground water available from nearby wells and it produces 193 m3/d of wastewater. Fifty seven water samples were ...

  3. A survey of thorium utilization in thermal power reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    The present status of thorium utilization in thermal reactors HTGR's, HWR's and LWR's has been reviewed. Physics considerations are made to obtain the optimum use of thorium. Existing information on reprocessing and refabrication is given together with the properties of thorium metal and thoria

  4. TPDWR2: thermal power determination for Westinghouse reactors, Version 2. User's guide

    International Nuclear Information System (INIS)

    Kaczynski, G.M.; Woodruff, R.W.

    1985-12-01

    TPDWR2 is a computer program which was developed to determine the amount of thermal power generated by any Westinghouse nuclear power plant. From system conditions, TPDWR2 calculates enthalpies of water and steam and the power transferred to or from various components in the reactor coolant system and to or from the chemical and volume control system. From these results and assuming that the reactor core is operating at constant power and is at thermal equilibrium, TPDWR2 calculates the thermal power generated by the reactor core. TPDWR2 runs on the IBM PC and XT computers when IBM Personal Computer DOS, Version 2.00 or 2.10, and IBM Personal Computer Basic, Version D2.00 or D2.10, are stored on the same diskette with TPDWR2

  5. A critical review on energy, exergy, exergoeconomic and economic (4-E analysis of thermal power plants

    Directory of Open Access Journals (Sweden)

    Ravinder Kumar

    2017-02-01

    Full Text Available The growing energy supply, demand has created an interest towards the plant equipment efficiency and the optimization of existing thermal power plants. Also, a thermal power plant dependency on fossil fuel makes it a little bit difficult, because of environmental impacts has been always taken into consideration. At present, most of the power plants are going to be designed by the energetic performance criterion which is based on the first law of thermodynamics. Sometimes, the system energy balance is not sufficient for the possible finding of the system imperfections. Energy losses taking place in a system can be easily determined by using exergy analysis. Hence, it is a powerful tool for the measurement of energy quality, thereby helps to make complex thermodynamic systems more efficient. Nowadays, economic optimization of plant is also a big problem for researchers because of the complex nature. At a viewpoint of this, a comprehensive literature review over the years of energy, exergy, exergoeconomic and economic (4-E analysis and their applications in thermal power plants stimulated by coal, gas, combined cycle and cogeneration system have been done thoroughly. This paper is addressed to those researchers who are doing their research work on 4-E analysis in various thermal power plants. If anyone extracts an idea for the development of the concept of 4-E analysis using this article, we will achieve our goal. This review also indicates the scope of future research in thermal power plants.

  6. Analysis of the Opportunity for an Increase in the Thermal Power of Power Generating Units of Nuclear Power Plants (Part 1)

    OpenAIRE

    Chernousenko, Olga Yuriivna; Nikulenkova, Tetiana Volodymyrivna; Nikulenkov, Anatolii Hennadiiovych

    2017-01-01

    For Ukraine the realization of available reserves to increase the power of operating power units of nuclear plants is a vital problem the solution of which would allow us to increase electric power output. A special role is also played by economic priorities; in particular an increase in power by 1 kW is ten times cheaper in comparison with the construction of 1 kW of new power facilities. One more factor is the world experience in the field of an increase in the thermal power of operating po...

  7. Automatic generation control application with craziness based particle swarm optimization in a thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Gozde, Haluk; Taplamacioglu, M. Cengiz [Gazi University, Faculty of Engineering, Department of Electrical and Electronics Engineering, 06750 Maltepe, Ankara (Turkey)

    2011-01-15

    In this study, a novel gain scheduling Proportional-plus-Integral (PI) control strategy is suggested for automatic generation control (AGC) of the two area thermal power system with governor dead-band nonlinearity. In this strategy, the control is evaluated as an optimization problem, and two different cost functions with tuned weight coefficients are derived in order to increase the performance of convergence to the global optima. One of the cost functions is derived through the frequency deviations of the control areas and tie-line power changes. On the other hand, the other one includes the rate of changes which can be variable depends on the time in these deviations. These weight coefficients of the cost functions are also optimized as the controller gains have been done. The craziness based particle swarm optimization (CRAZYPSO) algorithm is preferred to optimize the parameters, because of convergence superiority. At the end of the study, the performance of the control system is compared with the performance which is obtained with classical integral of the squared error (ISE) and the integral of time weighted squared error (ITSE) cost functions through transient response analysis method. The results show that the obtained optimal PI-controller improves the dynamic performance of the power system as expected as mentioned in literature. (author)

  8. Modelling and Design of Active Thermal Controls for Power Electronics of Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Blaabjerg, Frede; Ma, Ke

    2017-01-01

    of active thermal control methods for the power devices of a motor drive application. The motor drive system together with the thermal cycling of the power devices have been modelled, and adverse temperature swings could be noticed during the start-up and deceleration periods of the motor. Based...... on the electrical response of the system, the junction temperature of the semiconductor devices is estimated, and consequently three active thermal control methods are proposed and practically designed with respect to the following parameters: switching frequency, deceleration slope and modulation technique....... Finally, experimental results are provided in order to validate the effectiveness of the proposed control methods....

  9. Effect of brine flow rate on the performance of a spiral-jacketed thermal storage tank used for SDHW systems: A computational fluid dynamics study

    International Nuclear Information System (INIS)

    Baek, Seung Man; Nam, Jin Hyun; Hong, Hiki; Kim, Charn-Jung

    2011-01-01

    This study numerically investigates the effect of the brine flow rate on the thermal performance of a spiral-jacketed thermal storage tank (TST) installed in a solar domestic hot water (SDHW) system. The spiral-jacketed TST is a TST with a mantle heat exchanger, consisting of a vertical, cylindrical water tank for energy storage and a spiral brine flow path attached to the tank wall for heat transfer. A computational fluid dynamics (CFD) model was constructed based on the actual geometry of a spiral-jacketed TST. In addition, the boundary conditions were defined by considering solar radiation and ambient temperature data that were measured during experimental operation of the SDHW system. The numerical results demonstrated that an increase in the brine flow rate enhances the thermal efficiency of the TST due to higher heat transfer coefficients in the spiral path, and also leads to reduced thermal stratification in the TST. On the other hand, a lower brine flow rate increased the heat transfer rate at the inlet of the spiral path near the top of the TST, which resulted in enhanced thermal stratification. The optimal range for the rate of brine flow rate is discussed with respect to the thermal efficiency of the TST and the required pumping power for brine circulation in the spiral flow path. - Highlights: → A CFD model was developed for a spiral-jacketed thermal storage tank (TST) installed in a solar domestic hot water (SDHW) system. → Effects of brine flow rate on the overall performance of the spiral-jacketed TST were numerically investigated. → Higher brine flow rates slightly increased the solar energy acquired by the TST, but it also increased the pump power required to circulate the brine. → Lower brine flow rates were found to be a better option for the spiral-jacketed TST, by maximizing the exergy of the SDHW system.

  10. Thermal Death Kinetics of Conogethes Punctiferalis (Lepidoptera: Pyralidae) as Influenced by Heating Rate and Life Stage.

    Science.gov (United States)

    Hou, Lixia; Du, Yanli; Johnson, Judy A; Wang, Shaojin

    2015-10-01

    Thermal death kinetics of Conogethes punctiferalis (Guenée) (Lepidoptera: Pyralidae) at different life stages, heating rate, and temperature is essential for developing postharvest treatments to control pests in chestnuts. Using a heating block system (HBS), the most heat-tolerant life stage of C. punctiferalis and the effects of heating rate (0.1, 0.5, 1, 5, and 10°C/min) on insect mortality were determined. The thermal death kinetic data of fifth-instar C. punctiferalis were obtained at temperatures between 44 and 50°C at a heating rate of 5°C/min. The results showed that the relative heat tolerance of C. punctiferalis was found to be fifth instars>pupae> third instars> eggs. To avoid the enhanced thermal tolerance of C. punctiferalis at low heating rates (0.1 or 0.5°C/min), a high heating rate of 5°C/min was selected to simulate the fast radio frequency heating in chestnuts and further determine the thermal death kinetic data. Thermal death curves of C. punctiferalis followed a 0th-order kinetic reaction model. The minimum exposure time to achieve 100% mortality was 55, 12, 6, and 3 min at 44, 46, 48, and 50°C, respectively. The activation energy for controlling C. punctiferalis was 482.15 kJ/mol with the z value of 4.09°C obtained from the thermal death-time curve. The information provided by thermal death kinetics for C. punctiferalis is useful in developing effective postharvest thermal treatment protocols for disinfesting chestnuts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Impact of Power Ultrasound on Antihypertensive Activity, Functional Properties, and Thermal Stability of Rapeseed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Asif Wali

    2017-01-01

    Full Text Available The effects of power ultrasound pretreatments on the degree of hydrolysis (DH, angiotensin-I-converting enzyme (ACE inhibitory activity, amino acid composition, surface hydrophobicity, protein solubility, and thermal stability of ACE inhibition of rapeseed protein hydrolysates were evaluated. Ultrasonic pretreatments before enzymolysis in terms of power and exposure time increased the DH and ACE inhibitory activities over the control (without sonication. In this study, maximum DH 22.07% and ACE inhibitory activity 72.13% were achieved at 600 W and 12 min pretreatment. Compared to the hydrolysates obtained without sonication, the amino acid profile of ultrasound pretreated hydrolysates showed significant changes particularly in the proline content and hydrophobic amino acids with an increased rate of 2.47% and 6.31%, respectively. Ultrasound pretreatment (600 watts, 12 min improved functional properties of protein hydrolysates over control by enhancing surface hydrophobicity and solubility index with an increased rate of 130.76% and 34.22%. Moreover, the stability test showed that the ACE inhibitory activity remains stable against heat treatments. However, extensive heat, prolonged heating time, and alkaline conditions were not in the favor of stability test, while under mild heat and acidic conditions their ACE inhibitory activities were not significantly different from unheated samples.

  12. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang

    2015-01-01

    © 2015 The Royal Society of Chemistry. Thermal energy was shown to be efficiently converted into electrical power in a thermally regenerative ammonia-based battery (TRAB) using copper-based redox couples [Cu(NH3)4 2+/Cu and Cu(ii)/Cu]. Ammonia addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized to the total electrolyte volume, under maximum power production conditions). Adding a second cell doubled both the voltage and maximum power. Increasing the anolyte ammonia concentration to 3 M further improved the maximum power density to 136 ± 3 W m-2. Volatilization of ammonia from the spent anolyte by heating (simulating distillation), and re-addition of this ammonia to the spent catholyte chamber with subsequent operation of this chamber as the anode (to regenerate copper on the other electrode), produced a maximum power density of 60 ± 3 W m-2, with an average discharge energy efficiency of ∼29% (electrical energy captured versus chemical energy in the starting solutions). Power was restored to 126 ± 5 W m-2 through acid addition to the regenerated catholyte to decrease pH and dissolve Cu(OH)2 precipitates, suggesting that an inexpensive acid or a waste acid could be used to improve performance. These results demonstrated that TRABs using ammonia-based electrolytes and inexpensive copper electrodes can provide a practical method for efficient conversion of low-grade thermal energy into electricity.

  13. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Directory of Open Access Journals (Sweden)

    Jian Kang

    2018-01-01

    Full Text Available Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment.

  14. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Osman, Yassir Idris Abdalla; Feng, Rong; Si, Zetian

    2018-01-01

    Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV) conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment. PMID:29862289

  15. Transitional rates, risk and the Ontario wholesale power market

    International Nuclear Information System (INIS)

    Rothman, M.

    2001-01-01

    Navigant Consulting is a large investor-owned management consulting firm specializing in energy-based and other networked and regulated industries across Canada. The company works with clients to create delivery and protect shareholder value in the face of uncertainty and change. This presentation discussed the issue of price volatility in competitive electricity markets. The points to keep in mind for pricing in competitive power markets is that: (1) electricity should be generated simultaneously with use, (2) rates in administered markets are average over some time period, (3) competitive pool markets do not average costs, (4) in competitive pool markets, prices are set in very short (hourly or less) intervals, (5) prices in competitive markets are more volatile than in administered markets for both economic and market structure reasons, and (6) the degree of volatility and price levels can change quickly. The Ontario power market was also discussed with reference to price volatility in Ontario and what this means for electricity customers. tabs., figs

  16. Evaluation of power history during power burst experiments in TRACY by combination of gamma-ray and thermal neutron detectors

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Ohno, Akio

    2002-01-01

    A combination method using γ-ray and thermal neutron detectors was newly applied to the accurate evaluation of power histories during reactivity-initiated power burst experiments in the Transient Experiment Critical Facility (TRACY). During an initial power burst, the power history was determined using a fast response γ-ray ionization chamber, which was used because of its ability to exactly trace the power history within a short duration of the initial burst. After the initial burst, a micro fission chamber containing highly enriched uranium was used for the determination of the power history because the γ-ray ionization chamber could not be applied due to the contribution of delayed γ-rays from fission products. By the present method, the power histories were evaluated for the experiments in the range of 1.50 to 2.93$ of the reactivity insertion. It was found that the peak power and integrated power as determined by the previous method using only the micro fission chamber were underestimated to be 40% and 30% in maximum, respectively, in comparison with the results from the present evaluation. The numerical simulation performed by using the Monte Carlo method indicated that the underestimation could be comprehended by considering the time delay of thermal neutron detection of the fission chamber, which arose from the flight-time of neutrons from the TRACY core to the fission chamber. (author)

  17. Water management and reuse opportunities in a thermal power ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... 1University of Jordan, Engineering College, Civil Engineering Department, Jordan. 2Al Balqa Applied .... Two reverse osmosis lines each containing a high- pressure ..... tolerance of high salt concentrations within the power.

  18. A Study on infrared tracing and monitoring of thermal discharge from the power plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Sun; Hong, Wuk Hee; Kim, Yung Bae; Park, Jang Rae; Choi, Yung An; Park, Yung San [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-08-01

    Massive discharge of cooling water from the nuclear power plants as well as many thermal power plants would cause serious environmental problems. Hence, the task of predicting cooling water dispersion areas has enormous importance for better environmental management related with the power plant operation. For the last two decades, extensive field survey and dispersion modeling have been mainly applied to predict thermal discharge dispersion areas. In this study, the method of infrared thermal sensing was tested as a possible means of measuring the affected areas of thermal discharge at the thermal power plant sites. Many IR images obtained by using the terrestrial camera, or by using the airborne scanner, or from the Landsat iv satellite were analyzed from the pc with the IDRISI and resource software and further enhanced with other image analysis technologies. The result of study proved this IR imaging technology to be an potentially cost-effective tool for assessment of water-temperature increase caused by the thermal discharge from the power plants, however, further elaboration of procedure was highly requested. (author). 9 refs., 24 figs.

  19. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  20. A study on the ocean circulation and thermal diffusion near a nuclear power plant

    International Nuclear Information System (INIS)

    Shu, Kyung Suk; Han, Moon Hee; Kim, Eun Han; Hwang, Won Tae

    1994-08-01

    The thermal discharge used with cooling water at nuclear power plant is released to a neighbour sea and it is influenced on marine environment. The thermal discharge released from power plant is mainly transported and diffused by ocean circulation of neighbour sea. So the evaluation for characteristics of ocean circulation around neighbour sea is firstly performed. The purpose of this research is primarily analyzed the thermal diffusion in sea around Yongkwang nuclear power plant. For this viewpoint, fundamental oceanographic data sets are collected and analyzed in Yellow sea, west sea of Korea, sea around Yongkwang. The ocean circulation and the effects of temperature increase by thermal discharge are evaluated using these data. The characteristics of tide is interpreted by the analysis of observed tidal elevation and tidal currents. The characteristics of temperature and salinity is investigated by the long-term observation of Korea Fisheries Research and Development Agency and the short-term observation around Yongkwang. (Author)

  1. Electric machinery and drives in thermal power stations

    International Nuclear Information System (INIS)

    1974-01-01

    The following subjects were dealt with during the VDE meeting: 1) Requirements made by the electric network on the generators and their excitation equipment, and the influence thereof on their design; 2) requirements made by the power station process on the electric drives and the influence thereof on type and design; 3) requirements made on protective measures from the point of the electric power station machinery. (TK) [de

  2. Investigation of the Promotion of Wind Power Consumption Using the Thermal-Electric Decoupling Techniques

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-08-01

    Full Text Available In the provinces of north China, combined heat and electric power generations (CHP are widely utilized to provide both heating source and electricity. While, due to the constraint of thermal-electric coupling within CHP, a mass of wind turbines have to offline operate during heating season to maintain the power grid stability. This paper proposes a thermal-electric decoupling (TED approach to release the energy waste. Within the thermal-electric decoupling system, heat storage and electric boiler/heat pump are introduced to provide an auxiliary thermal source during hard peak shaving period, thus relying on the participation of an outside heat source, the artificial electric power output change interval could be widened to adopt more wind power and reduce wind power curtailment. Both mathematic models and methods are proposed to calculate the evaluation indexes to weight the effect of TED, by using the Monte Carlo simulation technique. Numerical simulations have been conducted to demonstrate the effectiveness of the proposed methods, and the results show that the proposed approach could relieve up to approximately 90% of wind power curtailment and the ability of power system to accommodate wind power could be promoted about 32%; moreover, the heating source is extended, about 300 GJ heat could be supplied by TED during the whole heating season, which accounts for about 18% of the total heat need.

  3. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  4. Thermal-wave balancing flow sensor with low-drift power feedback

    NARCIS (Netherlands)

    Dijkstra, Marcel; Lammerink, Theodorus S.J.; Pjetri, O.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2014-01-01

    A control system using a low-drift power-feedback signal was implemented applying thermal waves, giving a sensor output independent of resistance drift and thermo-electric offset voltages on interface wires. Kelvin-contact sensing and power control is used on heater resistors, thereby inhibiting the

  5. Central receiver solar thermal power system, phase 1. Progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The program objective is the preliminary design of a 10 MWe pilot solar power plant supported by major subsystem experiments. Progress is reported on the following task elements: 10 MWe pilot plant; collector subsystem design and analysis; receiver subsystem requirements; receiver subsystem design; thermal storage subsystem; electrical power generation subsystem; and pilot plant architectural engineering and support. (WDM)

  6. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  7. energy and exergy evaluation of a 220mw thermal power plant

    African Journals Online (AJOL)

    HOD

    The outcomes of this work provide the exergy consumption and distribution profiles of the thermal power plant ... power plant with post-combustion CO2 capture. The once-through boiler exhibited the highest exergy destruction of all the plants ...

  8. Meso-meteorological effect of thermal releases from nuclear power plants in the GW range

    International Nuclear Information System (INIS)

    Bahloul, C.; Le Berre, P.

    1975-01-01

    A comparison is made between the energy released by nuclear power plants into the environment and the energy brought into action by meso-meteorological phenomena. Observations on the occasion of important heat release (forest fires) are made and compared with the thermal effluents generated by nuclear power plants [fr

  9. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  10. Thermal Analysis On The Kinetics Of Magnesium-Aluminum Layered Double Hydroxides In Different Heating Rates

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.

  11. Assessment of RELAP5/Mod3 system thermal hydraulic code using power test data of a BWR6 reactor

    International Nuclear Information System (INIS)

    Lee, M.; Chiang, C.S.

    1997-01-01

    The power test data of Kuosheng Nuclear Power Plant were used to assess RELAP5/Mod3 system thermal hydraulic analysis code. The plant employed a General Electric designed Boiling Water Reactor (BWR6) with rated power of 2894 MWth. The purpose of the assessment is to verify the validity of the plant specific RELAP5/Mod3 input deck for transient analysis. The power tests considered in the assessment were 100% power generator load rejection, the closure of main steam isolation valves (MSIVs) at 96% power, and the trip of recirculation pumps at 68% power. The major parameters compared in the assessment were steam dome pressure, steam flow rate, core flow rate, and downcomer water level. The comparisons of the system responses predicted by the code and the power test data were reasonable which demonstrated the capabilities of the code and the validity of the input deck. However, it was also identified that the separator model of the code may cause energy imbalance problem in the transient calculation. In the assessment, the steam separators were modeled using time-dependent junctions. In the approach, a complete separation of steam and water was predicted. The system responses predicted by RELAP5/Mod3 code were also compared with those from the calculations of RETRAN code. When these results were compared with the power test data, the predictions of the RETRAN code were better than those of RELAP5/Mod3. In the simulation of 100% power generator load rejection, it was believed that the difference in the steam separator model of these two codes was one of the reason of the difference in the prediction of power test data. The predictions of RELAP/Mod3 code can also be improved by the incorporation of one-dimensional kinetic model. There was also some margin for the improvement of the input related to the feedwater control system. (author)

  12. Simplified Thermal Modeling for IGBT Modules with Periodic Power Loss Profiles in Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Zhang, Yi; Wang, Huai; Wang, Zhongxu

    2018-01-01

    One of the future challenges in Modular Multilevel Converters (MMCs) is how to size key components with compromised costs and design margins while fulfilling specific reliability targets. It demands better thermal modeling compared to the state-of-the-art in terms of both accuracy and simplicity....... Different from two-level power converters, MMCs have inherent dc-bias in arm currents and the power device conduction time is affected by operational parameters. A time-wise thermal modeling for the power devices in MMCs is, therefore, an iteration process and time-consuming. This paper thus proposes...

  13. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kozak, Joseph P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tomerlin, Jeff J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-09

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  14. Challenges in thermal design of industrial single-phase power inverter

    Directory of Open Access Journals (Sweden)

    Ninković Predrag

    2016-01-01

    Full Text Available This paper presents the influence of thermal aspects in design process of an industrial single-phase inverter, choice of its topology and components. Stringent design inputs like very high overload level, demand for natural cooling and very wide input voltage range have made conventional circuit topology inappropriate therefore asking for alternative solution. Different power losses calculations in semiconductors are performed and compared, outlining the guidelines how to choose the final topology. Some recommendations in power magnetic components design are given. Based on the final project, a 20kVA single-phase inverter for thermal power plant supervisory and control system is designed and commissioned.

  15. Exergy analysis of the FIGUEIRA thermal power plant operation - state of Parana, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Stanescu, George; Lima, Joao E. [Parana Univ., Curitiba, PR (Brazil). Dept. de Engenharia Mecanica]. E-mails: stanescu@demec.ufpr.br; joeduli@demec.ufpr.br; Andrade, Carlos de [FIGUEIRA Thermal Power Plant, Figueira, PR (Brazil)]. E-mail: ccarlosaandrade@zipmail.com.br

    2000-07-01

    Exergy analysis is a powerful tool to evaluate, design and improve the thermal systems. The method of exergy analysis or availability analysis is well suited for furthering the goal of increasing the efficiency of existing power generation systems, and the capability of more effective energy resource use. Exergy analysis of the FIGUEIRA thermal power plant is presented. Exergy losses occurring in various components are considered and the exergy balance is shown in tabular form. Results clearly reveal that the steam generator is the principal site of thermodynamic losses, while the condenser is relatively unimportant. (author)

  16. Soil radioactivity levels and radiation hazard assessment around a Thermal Power Plant

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Kumar, Pankaj; Sharma, Somdutt; Agrawal, Anshu; Kumar, Rajesh; Prajith, Rama; Sahoo, B.K.

    2016-01-01

    Coal based thermal power plants further enhance the level of radioactivity in the environment, as burning of coal produces fly ash that can be released into the environment containing traces of 238 U, 232 Th and their decay products. Therefore, coal fired power plants are one of the major contributor towards the Technologically Enhanced Natural Radiation (TENR). Keeping this in view, a study of natural radioactivity in the soil of twenty five villages within 5 km radius around the Harduaganj Thermal Power Plant, Aligarh, UP, India is going on under a BRNS major project, to know the radiological implications on general population living around this plant

  17. The accident prevention regulation 'Thermal Power Stations' and its effects in practice

    International Nuclear Information System (INIS)

    Albert, O.

    1983-01-01

    The origin of the accident prevention regulation - ''Thermal Power Stations'' is attributable mainly to two tragic accidents. It has made organizational changes and interventions in the operational process necessary in thermal power stations. Emphasis is laid upon the consistent issue of written permits-to-work on plant components carrying a heating medium and operating under pressure and on written operating licences for the operation of boilers. The paper describes additional ways in which regulation influences the daily practices of the power station operator. Brief references is made to the draft of the revised regulation. (orig./HP) [de

  18. Combined Thermal Management and Power Generation Concept for the Spent Fuel Dry Storage Cask

    International Nuclear Information System (INIS)

    Kim, In Guk; Bang, In Cheol

    2017-01-01

    The management of the spent nuclear fuel generated by nuclear power plants is a major issue in Korea due to insufficient capacity of the wet storage pools. Therefore, it is considered that dry storage system is the one possible solution for storing spent fuel. A dual-purpose metal cask (transportation and storage) is currently developing in Korea. This cask has 21 of fuel assemblies and 16.8 kW of maximum decay heat. To evaluate the critical safety in normal/off normal and accident conditions, critical stabilities were conducted by using CSAS 6.0. The experimental investigation of heat removal of a concrete storage cask was also conducted under normal, off normal and accident conditions. The results of the evaluation showed a good safety of the dry storage cask. The results showed the enhanced thermal performance according to modification of flow rate. To verify combined thermal management and power generation concept, a new type of test facility for dry storage cask was designed in 1/10 scale of concrete dry storage cask. The experimental study involved the cooling methods that are an integrated system on the top of the dry cask and air flow path on the canister wall. The results showed the temperature distribution of the wall and inside of the dry cask at the normal condition. The influence of the change of the heat load and cooling system were investigated. The heat removal by the integrated system is approximately 20% of the total heat removal of the dry cask with reduced wall temperature. In these tests, economic analysis is conducted by applying the concept of the cost and efficiency. Under different decay power cases, the energy efficiency of the heat pipe and Stirling engine are determined and compared based on experimental results. The average efficiencies of the Stirling engine were the range of 2.375 to 3.247% under the power range of 35– 65W. These results showed that advanced dry storage concept had a better cooling performance in comparison with

  19. A Hybrid Power Control Concept for PV Inverters with Reduced Thermal Loading

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    on a single-phase PV inverter under yearly operation is presented with analyses of the thermal loading, lifetime, and annual energy yield. It has revealed the trade-off factors to select the power limit and also verified the feasibility and the effectiveness of the proposed control concept.......This letter proposes a hybrid power control concept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum Power Point Tracking (MPPT) control or a Constant Power Generation (CPG) control depending on the instantaneous available power from the PV panels....... The essence of the proposed concept lies in the selection of an appropriate power limit for the CPG control to achieve an improved thermal performance and an increased utilization factor of PV inverters,and thus to cater for a higher penetration level of PV systems with intermittent nature. A case study...

  20. Thermal neutron measurement using the instrumented test bundle and assessment of maximum linear power in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. S.; Seo, C. K.; Lee, B. C.; Kim, H. N.; Kang, B. W. [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    The HANARO fuel, U{sub 3}Si-Al, has been developed by AECL and tested in NRU reactor. Due to the lack of the data performed under the high power, the repetitive conduct of the irradiation test was required under the power greater than 108kW/m, which is the estimated maximum linear power in the design stage. Accordingly, the instrumented test bundle with SPND(Self Powered Neutron Detector) was fabricated and its irradiation test was performed in IR2 of HANARO. The measured thermal neutron flux with SPND is compared with calculation results by HANAFMS(HANARO Fuel Management System). The difference in the measured and calculated thermal flux values are below {+-}11% and the accuracy of the linear power predicted by HANAFMS is consequently accompanied. Therefore, it is believed that the maximum linear power above 120kW/m is achieved during the irradiation test of the test bundle.

  1. JT-60 power tests from mechanical and thermal viewpoints of tokamak machine

    International Nuclear Information System (INIS)

    Takatsu, H.; Yamamoto, M.; Ohkubo, M.

    1986-01-01

    JT-60 power tests were carried out, to demonstrate, in advance of actual plasma operation, satisfactory performance of the tokamak machine, power suppliers and control system in combination. The tests began with low power ones of individual coil systems, progressed to full power ones and concluded successfully. The present paper describes the principal results of JT-60 power tests from mechanical and thermal viewpoints of tokamak machine. All of the coil systems were raised up to full power operation in combination and system performance was verified including thermal and mechanical integrity of tokamak machine. Measured strain and displacement showed good agreements with those predicted in the design, which was an evidence that electromagnetic loads were supported adequately as expected in the design. Vibration of the vacuum vessel was found to be large up to 48 m/s/sup 2/ and caused excessive vibration of the lateral port gate-valves. A few limitations to machine operation were also made clear quantatively

  2. Thermal pollution of the atmosphere, in particular due to power plant parks

    International Nuclear Information System (INIS)

    Fortak, H.

    1977-01-01

    In the paper, a diagram is set up and described which relates the influence of power plant agglomerations to natural atmospheric phenomena, energetically and in some ways also dynamically. As there are no power plant agglomeration in existence at present, there is neither empirical knowledge on the meteorological and climatological effects to be expected from such agglomerations, nor are empirically proved theoretical predictions of the effects possible. In the diagram, the specific vertical energy flow is given for the thermal power emitted and the emission are for natural and anthropogenic thermal sources, and characteristic values are calculated for the thermal lift and the vertical velocity at representative heights above the area. As far as the arrangement of cooling towers is concerned, it is found that it is better to avoid cooling tower agglomerations on small areas and to erect smaller power stations distributed over a large area instead. (orig.) [de

  3. Thermal power calibrations of the IPR-R1 TRIGA reactor by the calorimetric and the heat balance methods

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Souza, Rose Mary Gomes do Prado

    2009-01-01

    Since the first nuclear reactor was built, a number of methodological variations have been evolved for the calibration of the reactor thermal power. Power monitoring of reactors is done by means of neutronic instruments, but its calibration is always done by thermal procedures. The purpose of this paper is to present the results of the thermal power calibration carried out on March 5th, 2009 in the IPR-R1 TRIGA reactor. It was used two procedures: the calorimetric and heat balance methods. The calorimetric procedure was done with the reactor operating at a constant power, with primary cooling system switched off. The rate of temperature rise of the water was recorded. The reactor power is calculate as a function of the temperature-rise rate and the system heat capacity constant. The heat balance procedure consists in the steady-state energy balance of the primary cooling loop of the reactor. For this balance, the inlet and outlet temperatures and the water flow in the primary cooling loop were measured. The heat transferred through the primary loop was added to the heat leakage from the reactor pool. The calorimetric method calibration presented a large uncertainty. The main source of error was the determination of the heat content of the system, due to a large uncertainty in the volume of the water in the system and a lack of homogenization of the water temperature. The heat balance calibration in the primary loop is the standard procedure for calibrating the power of the IPR-R1 TRIGA nuclear reactor. (author))

  4. Measured thermal and fast neutron fluence rates, ATR Cycle 100-BC, April 23, 1993--May 13, 1993

    International Nuclear Information System (INIS)

    Smith, L.D.; Murray, R.K.; Rogers, J.W.

    1993-07-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for ATR Cycle 100-BC which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All open-quotes Hclose quotes holder monitor wires for this cycle are 54 inches long. All open-quotes SRclose quotes holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, open-quotes BRclose quotes holders were used in the W-1, 2, 3, and 4 positions. All open-quotes BRclose quotes holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle. The results from the measurements in the W-1, 2, 3, 4 monitor positions indicate that the safety rod followers were rotated to a different azimuthal orientation relative to the normal orientation. The results indicate that the rotation was counterclockwise from their normal orientation. This is the same condition observed starting with Cycle 99-B

  5. Thermal analysis of the fuel of a power reactor

    International Nuclear Information System (INIS)

    Casadei, Alberto Luiz

    1970-01-01

    This dissertation presents the main values of maximum temperature of the central fuel rod of a power reactor, numerically calculated considering one-dimensional and two-dimensional conduction. The maximum temperature obtained with two-dimensional conduction is slightly lesser than the obtained when considering one-dimensional regime. Also, there exist complementary information on the process convergence and the precision to be adopted when reaching a satisfactory solution. The dissertation also presents brief considerations on the economical effects when adopting small parameter variations of nuclear power plant. (author)

  6. Demands on thermal power plants in the liberalised energy market

    International Nuclear Information System (INIS)

    Hein, D.; Kwanka, K.; Fischer, T.

    2005-01-01

    In the liberalised energy market, a diversified set (''mix'') of power plants will be needed. By investigating present and anticipated future criteria in detail, available technologies and outlines of further development are identified and discussed. Among them, concepts for efficiency-optimised base load plants as well as units with an improved cycling operation capability are both attributed to a specific valued benefit. Following the demand for a significant reduction of the overall greenhouse gas emissions, centralised power plants fed by fossil fuels and modified for retention of CO 2 are needed to guarantee a supply of energy at moderate costs in the 21st century. (author)

  7. Extremely high-power-density atmospheric-pressure thermal plasma jet generated by the nitrogen-boosted effect

    Science.gov (United States)

    Hanafusa, Hiroaki; Nakashima, Ryosuke; Nakano, Wataru; Higashi, Seiichiro

    2018-06-01

    In this study, the effect of N2 addition to an atmospheric-pressure Ar thermal plasma jet (TPJ) on ultrarapid heating was investigated. With increasing N2 flow rate, a boost of arc voltage to ∼36 V was observed, which significantly improved heating characteristics. As a result, a drastic power density increase from 10 to 125 kW/cm2 was achieved with the addition of 2.0 L/min N2 to 3.0 L/min Ar. The results of optical emission analysis and heating characteristics evaluation implied that dissociation and recombination of N2 molecules and the high thermal transport property of nitrogen gas play important roles in the increase in TPJ power density. Furthermore, we obtained TPJ extension with N2 addition that reached 300 mm, and it showed spatial enhancement of heat transport characteristics.

  8. Availability of thermal power plants 1985-1994. 24. ed.

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1995-01-01

    The survey in hand is the 24th statistical report in the series commenced in 1970. It covers the ten-year period from 1985 through 1994 and presents availability data of 349 power plants in Germany and abroad, representing approx. 99.000 MW and a total of 3.500 years of operating experience. Data are presented on fossil-fuel units, units with a combined gas/steam cycle, nuclear power plants, and gas turbines. The fossil-fuel units are broken down by unit size, years of operation, fuel, type of combustion (dry, melt), and design type (monoblock and duoblock, subcritical and supercritical systems). Nuclear power plants are arranged by type of reactor (PWR, BWR), unit size, and years of operation. Combined-cycle power plants are listed separately due to their various technical design concepts. The gas turbine data are arranged by years of operation. Apart from availability and utilisation data of gas turbines, there are data on event reliability and the number of successful or unsuccessful starts. In general, data for all plants and systems included are given first whenever appropriate, the data for the German plants following in second place. Performance data are gross values measured at generator terminals and, just as the number of plants, are end-of-the-year figures. (orig./GL) [de

  9. Availability of thermal power plants 1980-1989

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1990-01-01

    The evaluation submitted here is the 19th annual evaluation since 1970. It covers the period from 1980 to 1989 and contains availability data of 324 power stations (domestic and international) with roundabout 94000 MW and 3800 plant years. Data relate to fossil-fuelled cogeneration plants, combined cycle plants (gas-steam combined process), nuclear power stations and gas turbines. The fossil-fuelled blocks are broken down by size, time of operation, fuel, type of combustion (dry, melt) and type mono-, duoblocks, subcritical and supercritical systems, nuclear power stations are organised by type of reactor heavy-water/pressurized water reactor and type of operation. Combined cycle power plants are listed separately due to their different technical concept. Gas turbines are sub-divided by type of operation (time). Apart from availability and utilisation values of gas turbines there are data on reliability and the number of successful and unsuccessful starts. In general the values are first given for all plants of one particular type and then for the German plants in particular. Performance values are gross values measured at generator and like the number of plants they are end-of-the-year figures. In order to increase the usefulness of the VGB-availability studies various items in the recording and evaluation were improved and extended as of 1987. (orig./HS) [de

  10. Availability of thermal power plants 1981-1990

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1991-01-01

    The present volume covers the period of 1981 to 1990 and contains availability data of power plants in Germany and abroad. Data are presented on fossil-fuelled units, units with a combined gas/steam cycle, nuclear power plants and gas turbines. The fossil-fuelled units are broken down by unit size, years of operation, fuel, type of combustion (dry, melt) and type (mono, duo units, subcritical and supercritical systems). Nuclear power stations are arranged by type of reactor (PWR, BWR), unit size and years of operation. Combined cycle power plants are listed separately due to their different technical concepts. Apart from availability and utilisation values of gas turbines there are data on reliability and the number of successful and unsuccessful starts. In general the data are first given for all plants and then for the German plants in particular. Performance values are gross values measured at generator terminals and, as the number of plants, they are end-of-the-year figures [de

  11. Center of thermal-physical data for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, V P; Blokhin, A I; Ivashkevich, A A; Katan, I B; Peskov, O L; Pan' kov, V M; Savanin, N K; Sal' nikova, O V; Khrushcheva, E N; Kirova, T S

    1982-09-01

    The specific features of a specialized Center of thermal-physical data (CTD) are considered. The center has been created for data acquisition, storage and analysis and working out recommendations on the following NPP thermal physics sections: hydrodynamics of channel flows (monophase laminar and turbulent, and two-phase flows, hydrodynamic vibrations) heat exchange in NPP elements, thermohydraulic calculations of nuclear reactor cores, heat exchangers, steam generators and NPP cooling system elements, coolant properties (water and steam, liquid metals and gases). On the CTD data base an automated system ASKhOD, oriented to EC computer, is created. The ASKhoD software ensures data allocation on magnetic tapes or other carriers, automated renewal and data relocation, data search in compliance with a specified set of signs, data processing for the purpose of their estimation or obtaining optimized model constants. Different publications in home and foreign magazines, conference, seminar materials, organization preprints serve as the data sources used for the formation of the ASKhOD data base.

  12. A powerful methodology for reactor vessel pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Boucau, J.; Mager, T.

    1994-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). More specifically, the review of the old WWER-type of reactors (WWER 440/230) has indicated a sensitive behaviour to neutron embrittlement. This led already to some remedial actions including safety injection water preheating or vessel annealing. Such measures are usually taken based on the analysis of a selected number of conservative PTS events. Consideration of all postulated cooldown events would draw attention to the impact of operator action and control system effects on reactor vessel PTS. Westinghouse has developed a methodology which couples event sequence analysis with probabilistic fracture mechanics analyses, to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. Once the event sequences of concern are identified, detailed deterministic thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. The results of these analyses can then be used to better define further modifications in vessel and plant system design and to operating procedures. The purpose of the present paper will be to describe this methodology and to show its benefits for decision making. (author). 1 ref., 3 figs

  13. Center of thermal-physical data for nuclear power plants

    International Nuclear Information System (INIS)

    Bobkov, V.P.; Blokhin, A.I.; Ivashkevich, A.A.; Katan, I.B.; Peskov, O.L.; Pan'kov, V.M.; Savanin, N.K.; Sal'nikova, O.V.; Khrushcheva, E.N.; Kirova, T.S.

    1982-01-01

    The specific features of a specialized Center of thermal-physical data (CTD) are considered. The center has been created for data acquisition, storage and analysis and working out recommendations on the following NPP thermal physics sections: hydrodynamics of channel flows (monophase laminar and turbulent, and two-phase flows, hydrodynamic vibrations) heat exchange in NPP elements, thermohydraulic calculations of nuclear reactor cores, heat exchangers, steam generators and NPP cooling system elements, coolant properties (water and steam, liquid metals and gases). On the CTD data base an automated system ASKhOD, oriented to EC computer, is created. The ASKhoD software ensures data allocation on magnetic tapes or other carriers, automated renewal and data relocation, data search in compliance with a specified set of signs, data processing for the purpose of their estimation or obtaining optimized model constants. Different publications in home and foreign magazines, conference, seminar materials, organization preprints serve as the data sources used for the formation of the ASKhOD data base

  14. Thermal performance of gas turbine power plant based on exergy analysis

    International Nuclear Information System (INIS)

    Ibrahim, Thamir K.; Basrawi, Firdaus; Awad, Omar I.; Abdullah, Ahmed N.; Najafi, G.; Mamat, Rizlman; Hagos, F.Y.

    2017-01-01

    Highlights: • Modelling theoretical framework for the energy and exergy analysis of the Gas turbine. • Investigated the effects of ambient temperature on the energy and exergy performance. • The maximum exergy loss occurs in the gas turbine components. - Abstract: This study is about energy and exergy analysis of gas turbine power plant. Energy analysis is more quantitatively while exergy analysis is about the same but with the addition of qualitatively. The lack quality of the thermodynamic process in the system leads to waste of potential energy, also known as exergy destruction which affects the efficiency of the power plant. By using the first and second law of thermodynamics, the model for the gas turbine power plant is built. Each component in the thermal system which is an air compressor, combustion chamber and gas turbine play roles in affecting the efficiency of the gas turbine power plant. The exergy flow rate for the compressor (AC), the combustion chamber (CC) and the gas turbine (GT) inlet and outlet are calculated based on the physical exergy and chemical exergy. The exergy destruction calculation based on the difference between the exergy flow in and exergy flow out of the component. The combustion chamber has the highest exergy destruction. The air compressor has 94.9% and 92% of exergy and energy efficiency respectively. The combustion chamber has 67.5% and 61.8% of exergy and energy efficiency respectively while gas turbine has 92% and 82% of exergy and energy efficiency respectively. For the overall efficiency, the plant has 32.4% and 34.3% exergy and energy efficiency respectively. To enhance the efficiency, the intake air temperature should be reduced, modify the combustion chamber to have the better air-fuel ratio and increase the capability of the gas turbine to receive high inlet temperature.

  15. Study of the thermal and hydraulic phenomena occurring during power excursion on a heated test section

    International Nuclear Information System (INIS)

    Nyer, M.

    1969-01-01

    The thermal and hydrodynamic phenomena occurring during a power excursion were studied in an out-of-pile loop with a water cooled channel at low pressure (1 to 4 atm. abs. ). Circular and rectangular test sections with electrically heated walls of two different thermal diffusivity materials(aluminium and stainless steel) were used. The rectangular test sections were 600 mm long, 35 mm wide and had a 2, 9 mm gap; they simulate two half plates of the M.T.R. fuel element. Natural or forced convection are possible in the test section; the water height above it can be varied from 2.8 to 8 meters and the maximum allowed pressure at its outlet is 4 atm. abs.The heating source is a series of lead batteries which is able to generate, for short periods of time, 85 volts and 25000 amperes; linear, square or exponential power rise versus time can be realized. A 14 channels tape recorder (0-10 000 Hz bandwidth; is used for the measurements of temperature (8/100 mm diameter thermocouple), pressure ('Statham' pressure transducers) and void fraction (X rays). More than 500 tests have been carried out. The influence of the initial water temperature, flow rate, pressure, water height on the water ejections, pressure variations and void fraction in the test section were studied. Tests with energies up to 3000 W/cm in 50 milliseconds were attempted. The energy above which the instabilities appear was determined. An interpretation of the observed phenomena and a simplified theoretical model are presented [fr

  16. Cost-effective and reliable design of a solar thermal power plant

    International Nuclear Information System (INIS)

    Aliabadi, A.A.; Wallace, J.S.

    2009-01-01

    A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer. (author)

  17. Optimal power allocation of a sensor node under different rate constraints

    KAUST Repository

    Ayala Solares, Jose Roberto; Rezki, Zouheir; Alouini, Mohamed-Slim

    2012-01-01

    The optimal transmit power of a sensor node while satisfying different rate constraints is derived. First, an optimization problem with an instantaneous transmission rate constraint is addressed. Next, the optimal power is analyzed, but now

  18. Achievable rate of spectrum sharing cognitive radio systems over fading channels at low-power regime

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2014-01-01

    the previously achieved rate at the low-power regime. Interestingly, we show that the low-power regime analysis provides a specific insight into the maximum achievable rate behavior of CR that has not been reported by previous studies.

  19. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  20. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  1. Looking back on safety management in construction of advanced thermal nuclear power plant 'Fugen'

    International Nuclear Information System (INIS)

    Emori, Kengo

    1979-01-01

    The safety management of the advanced thermal nuclear power plant ''Fugen'' during the period from the preparation of plant construction in October, 1970, to the full power operation in March, 1979, is looked back and explained. Any large human and material accidents did not occur during the long construction time. The total numbers of persons and hours were 1.397 x 10 6 workers and 11.55 x 10 6 hours, respectively. The number of labor accidents was twenty with no dead person, the number of loss days was 645 days, the number of accident rate was 1.73, the intensity rate was 0.06, and the mean rate of labor accidents per year per 1000 workers was 6.4. The radiation exposure dose was 65.27 man-rem for the managed 1804 workers in total, during the testing and operating periods. These data show that the safety management for ''Fugen'' is very excellent, considering the following special features: 1) there were many works which were carried out for the first time, 2) the construction of the plant was conducted by five contractors taking partial charge, there were many kinds of construction works, the construction and testing periods were long, and the workers had to go to the site from Tsuruga city by car and bus. The organization of preventing disasters, the concrete implementation items for safety management, including the planning of activities, various meetings, patrol, education and training, the honoring system, the prevention of traffic accident and so on, and the results of actual safety management are explained with the reflection. (Nakai, Y.)

  2. Mixed Convection in Technological Reservoir of Thermal Power Station

    Directory of Open Access Journals (Sweden)

    Kuznetsov Geniy V.

    2014-01-01

    Full Text Available The problem of mixed convection of a viscous incompressible fluid in an open rectangular reservoir with inlet and outlet of mass with considering nonuniform heat sink at the external borders of the solution domain is solved. The region of the solution was limited by two vertical and by one horizontal walls of finite thickness and one free surface. The flat nonstationary mixed convection within the framework of Navier-Stokes model is examined for liquid and thermal conductivity for solid walls. Distributions of hydrodynamic parameters and temperatures with different intensity of heat sink on the outer contour of the cavity show a change in the intensity of heat sink on the region boundaries of the solution leads to scale changes in the structure of flow and temperature fields of the liquids.

  3. Thermal power generation during heat cycle near room temperature

    Science.gov (United States)

    Shibata, Takayuki; Fukuzumi, Yuya; Kobayashi, Wataru; Moritomo, Yutaka

    2018-01-01

    We demonstrate that a sodium-ion secondary battery (SIB)-type thermocell consisting of two types of Prussian blue analogue (PBA) with different electrochemical thermoelectric coefficients (S EC ≡ ∂V/∂T V and T are the redox potential and temperature, respectively) produces electrical energy during heat cycles. The device produces an electrical energy of 2.3 meV/PBA per heat cycle between 295 K (= T L) and 323 K (= T H). The ideal thermal efficiency (η = 1.0%), which is evaluated using the heat capacity (C = 4.16 meV/K) of ideal Na2Co[Fe(CN)6], reaches 11% of the Carnot efficiency (ηth = 8.7%). Our SIB-type thermocell is a promising thermoelectric device that harvests waste heat near room temperature.

  4. Fifth parabolic dish solar thermal power program annual review: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  5. Power-law thermal model for blackbody sources

    International Nuclear Information System (INIS)

    Del Grande, N.K.

    1979-01-01

    The spectral radiant emittance W/sub E/ from a blackbody at a temperature kT for photons at energies E above the spectral peak (2.82144 kT) varies as (kT)/sup E/kT/. This power-law temperature dependence, an approximation of Planck's radiation law, may have applications for measuring the emissivity of sources emitting in the soft x-ray region

  6. Advanced methods in evaluation of thermal power systems effectiveness

    International Nuclear Information System (INIS)

    Barnak, N.; Jakubcek, P.; Zadrazil, J.

    1993-01-01

    The universal method for thermodynamic systems process irreversibility evaluation based on exergetic approach is elaborated in this article. The method uses the basic property of exergy as extensive state parameter -additivity. Division of the system onto some hierarchic levels is considered and relation between exergetic system characteristics and its parts is defined. There are system structure coefficients in common form expressed article they are analysed. The criteria for technical and economical optimization of the system using expressed structure coefficients are defined. In the article, there are common approaches defined for the method application in the area of nuclear power plant secondary circuits and the method is used for nuclear power plant WWER-1000 secondary circuit analysis. For this, individual exergetic characteristics of secondary circuit and its parts are expressed and some of secondary circuit parameters are optimized. Proposals for practical realisation of the results are stated in the conclusions of the article, mainly in the area of computerized evaluation of technical and economical parameters of nuclear power plant and effectiveness of its operation

  7. Effect of increased renewables generation on operation of thermal power plants

    International Nuclear Information System (INIS)

    Eser, Patrick; Singh, Antriksh; Chokani, Ndaona; Abhari, Reza S.

    2016-01-01

    Highlights: • Impacts of increased renewables in central European transmission system are assessed. • Individual transmission lines and power plants of transmission system are modelled. • Starts and ramps of thermal power plants significantly increase with increased renewables. • Impact of renewables on thermal power plants is highly dependent on location. - Abstract: High spatial and temporal resolution optimal power flow simulations of the 2013 and 2020 interconnected grid in Central Western and Eastern Europe regions are undertaken to assess the impact of an increased penetration of renewables on thermal power plants. In contrast to prior studies, the present work models each individual transmission line and power plant within the two regions. Furthermore, for conventional plants, electricity costs are determined with respect to fuel type, nameplate capacity, operating condition and geographic location; cycling costs are modeled as function of the recent operational history. For renewable power plants, costs and available power are determined using mesoscale weather simulations and hydrology models. Countrywide validation of the simulations shows that all renewable and most conventional power production is predicted with less than 10% error. It is shown that the increased penetration of renewables in 2020 will induce a 4–23% increase in the number of starts of conventional plants. The number of load ramps significantly increases by 63–181%, which underlines the necessity for equipment manufacturers and utilities to adapt to scenarios of high penetration of renewables. The increased cycling operation of coal plants is shown to depend strongly on the power plant’s location and is mainly observed in Germany and the Czech Republic. Austrian coal plants are cycled less because they supply more base load power to southern Germany, where several nuclear power plants will be phased out by 2020. Thus there is a need for more transmission capacity along

  8. Development of general-purpose software to analyze the static thermal characteristic of nuclear power plant

    International Nuclear Information System (INIS)

    Nakao, Yoshinobu; Koda, Eiichi; Takahashi, Toru

    2009-01-01

    We have developed the general-purpose software by which static thermal characteristic of the power generation system is analyzed easily. This software has the notable features as follows. It has the new algorithm to solve non-linear simultaneous equations to analyze the static thermal characteristics such as heat and mass balance, efficiencies, etc. of various power generation systems. It has the flexibility for setting calculation conditions. It is able to be executed on the personal computer easily and quickly. We ensured that it is able to construct heat and mass balance diagrams of main steam system of nuclear power plant and calculate the power output and efficiencies of the system. Furthermore, we evaluated various heat recovery measures of steam generator blowdown water and found that this software could be a useful operation aid for planning effective changes in support of power stretch. (author)

  9. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  10. Air quality assessment in the vicinity of nuclear and thermal power stations

    International Nuclear Information System (INIS)

    Sivaramasundaram, K.; Vijay Bhaskar, B.; Muthusubramanian, P.; Rajan, M.P.; Hegde, A.G.

    2007-01-01

    The status and ranking of any country, in the context of globalisation, is decided by its economic progress, which is directly linked into power generation. The power is generated by many routes and the nuclear and thermal routes are noteworthy among them. As the power production and its associated activities may cause qualitative deterioration, it is essential to study the impact of power production on atmospheric environment. In this connection, a comparative study has been carried out to assess the air quality with special reference to criteria pollutants in the vicinity of nuclear and thermal power stations. In the present investigation, the air samples are collected on weekly basis and the pollutants such as sulphur dioxide (SO 2 ), nitrogen oxides (NOx), carbon monoxide (CO), suspended particulate matter (SPM) and respirable particulate matter (RPM) are estimated by adopting standard procedures set by United States-Environmental Protection Agency (US-EPA) and Central Pollution Control Board (CPCB). As the micro meteorological parameters influence on the status of air quality, simultaneous measurements of these parameters are also carried, out during sampling. It is studied that estimated concentrations of all criteria pollutants in the vicinity of these power stations are within the permissible limits set by CPCB. On the basis of the generated database pertaining to the concentrations of criteria air pollutants in the vicinity of nuclear and thermal power stations, it is concluded that nuclear power production may be considered as a viable option in terms of environmental protection in our country. (author)

  11. Validation of the thermal balance of Laguna Verde turbine under conditions of extended power increase

    International Nuclear Information System (INIS)

    Castaneda G, M. A.; Cruz B, H. J.; Mercado V, J. J.; Cardenas J, J. B.; Garcia de la C, F. M.

    2012-10-01

    The present work is a continuation of the task: Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt) in which the modeling of the vapor cycle of the nuclear power plant of Laguna Verde was realized with PEPSE code (Performance Evaluation of Power System Efficiencies). Once reached the conditions of nominal operation of extended power increase, operating both units to 2371 MWt; after the tests phase of starting-up and operation is necessary to carry out a verification of the proposed design of the vapor cycle for the new operation conditions. All this, having in consideration that the vapor cycle designer only knows the detail of the prospective performance of the main turbine, for all the other components (for example pumps, heat inter changers, valves, reactor, humidity separators and re-heaters, condensers, etc.) makes generic suppositions based on engineering judgment. This way carries out the calculations of thermal balance to determine the guaranteed gross power. The purpose of the present work is to comment the detail of the validation carried out of the specific thermal balance (thermal kit) of the nuclear power plant, making use of the design characteristics of the different components that conform the vapor cycle. (Author)

  12. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  13. Load following generation in nuclear power plants by latent thermal energy storage

    International Nuclear Information System (INIS)

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  14. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  15. Status of thermal power generation in India-Perspectives on capacity, generation and carbon dioxide emissions

    International Nuclear Information System (INIS)

    Ghosh, Subhodip

    2010-01-01

    India's reliance on fossil-fuel based electricity generation has aggravated the problem of high carbon dioxide (CO 2 ) emissions from combustion of fossil fuels, primarily coal, in the country's energy sector. The objective of this paper is to analyze thermal power generation in India for a four-year period and determine the net generation from thermal power stations and the total and specific CO 2 emissions. The installed generating capacity, net generation and CO 2 emissions figures for the plants have been compared and large generators, large emitters, fuel types and also plant vintage have been identified. Specific emissions and dates of commissioning of plants have been taken into account for assessing whether specific plants need to be modernized. The focus is to find out areas and stations which are contributing more to the total emissions from all thermal power generating stations in the country and identify the overall trends that are emerging.

  16. Engineering aspects of a thermal control subsystem for the 25 kW power module

    Science.gov (United States)

    Schroeder, P. E.

    1979-01-01

    The paper presents the key trade study results, analysis results, and the recommended thermal control approach for the 25 kW power module defined by NASA. Power conversion inefficiencies and component heat dissipation results in a minimum heat rejection requirement of 9 kW to maintain the power module equipment at desired temperature levels. Additionally, some cooling capacity should be provided for user payloads in the sortie and free-flying modes. The baseline thermal control subsystem includes a dual-loop-pumped Freon-21 coolant with the heat rejected from deployable existing orbiter radiators. Thermal analysis included an assessment of spacecraft orientations, radiator shapes and locations, and comparison of hybrid heat pipe and all liquid panels.

  17. Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity

    International Nuclear Information System (INIS)

    Suplicz, A.; Szabo, F.; Kovacs, J.G.

    2013-01-01

    Highlights: • BN, talc and TiO 2 in 30 vol% were compounded with polypropylene matrix. • According to the DSC measurements, the fillers are good nucleating agents. • The thermal conductivity of the fillers influences the cooling rate of the melt. • The higher the cooling rate is, the lower the crystallinity in the polymer matrix. - Abstract: Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and titanium-dioxide (TiO 2 )) in 30 vol% have been compounded with a polypropylene (PP) matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly in the matrix and larger aggregates cannot be discovered. The cooling gradients and the cooling rate in the injection-molded samples were estimated with numerical simulations and finite element analysis software. It was proved with differential scanning calorimetry (DSC) measurements that the cooling rate has significant influence on the crystallinity of the compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the crystallinity of the compound is lower than that of unfilled PP because of its higher thermal conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the material, which influences the crystallization kinetics significantly

  18. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H 2 O or O 2 . The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges

  19. Determine variation of poisson ratios and thermal creep stresses and strain rates in an isotropic disc

    Directory of Open Access Journals (Sweden)

    Gupta Nishi

    2016-01-01

    Full Text Available Seth's transition theory is applied to the problem of thermal creep transition stresses and strain rates in a thin rotating disc with shaft having variable density by finite deformation. Neither the yield criterion nor the associated flow rule is assumed here. The results obtained here are applicable to compressible materials. If the additional condition of incompressibility is imposed, then the expression for stresses corresponds to those arising from Tresca yield condition. Thermal effect decreased value of radial stress at the internal surface of the rotating isotropic disc made of compressible material as well as incompressible material and this value of radial stress further much increases with the increase in angular speed. With the introduction of thermal effects, the maximum value of strain rates further increases at the internal surface for compressible materials as compare to incompressible material.

  20. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.