WorldWideScience

Sample records for thermal position sensor

  1. Thermal Stability of Magnetic Compass Sensor for High Accuracy Positioning Applications

    OpenAIRE

    Van-Tang PHAM; Dinh-Chinh NGUYEN; Quang-Huy TRAN; Duc-Trinh CHU; Duc-Tan TRAN

    2015-01-01

    Using magnetic compass sensors in angle measurements have a wide area of application such as positioning, robot, landslide, etc. However, one of the most phenomenal that affects to the accuracy of the magnetic compass sensor is the temperature. This paper presents two thermal stability schemes for improving performance of a magnetic compass sensor. The first scheme uses the feedforward structure to adjust the angle output of the compass sensor adapt to the variation of the temperature. The se...

  2. Thermal Stability of Magnetic Compass Sensor for High Accuracy Positioning Applications

    Directory of Open Access Journals (Sweden)

    Van-Tang PHAM

    2015-12-01

    Full Text Available Using magnetic compass sensors in angle measurements have a wide area of application such as positioning, robot, landslide, etc. However, one of the most phenomenal that affects to the accuracy of the magnetic compass sensor is the temperature. This paper presents two thermal stability schemes for improving performance of a magnetic compass sensor. The first scheme uses the feedforward structure to adjust the angle output of the compass sensor adapt to the variation of the temperature. The second scheme increases both the temperature working range and steady error performance of the sensor. In this scheme, we try to keep the temperature of the sensor is stable at the certain value (e.g. 25 oC by using a PID (proportional-integral-derivative controller and a heating/cooling generator. Many experiment scenarios have implemented to confirm the effectivity of these solutions.

  3. Development of a micro-thermal flow sensor with thin-film thermocouples

    Science.gov (United States)

    Kim, Tae Hoon; Kim, Sung Jin

    2006-11-01

    A micro-thermal flow sensor is developed using thin-film thermocouples as temperature sensors. A micro-thermal flow sensor consists of a heater and thin-film thermocouples which are deposited on a quartz wafer using stainless steel masks. Thin-film thermocouples are made of standard K-type thermocouple materials. The mass flow rate is measured by detecting the temperature difference of the thin-film thermocouples located in the upstream and downstream sections relative to a heater. The performance of the micro-thermal flow sensor is experimentally evaluated. In addition, a numerical model is presented and verified by experimental results. The effects of mass flow rate, input power, and position of temperature sensors on the performance of the micro-thermal flow sensor are experimentally investigated. At low values, the mass flow rate varies linearly with the temperature difference. The linearity of the micro-thermal flow sensor is shown to be independent of the input power. Finally, the position of the temperature sensors is shown to affect both the sensitivity and the linearity of the micro-thermal flow sensor.

  4. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow

  5. Thermal Flow Sensors for Harsh Environments.

    Science.gov (United States)

    Balakrishnan, Vivekananthan; Phan, Hoang-Phuong; Dinh, Toan; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-09-08

    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.

  6. Thermal Flow Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Vivekananthan Balakrishnan

    2017-09-01

    Full Text Available Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI, and complementary metal-oxide semiconductor (CMOS have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.

  7. Sensors, Volume 4, Thermal Sensors

    Science.gov (United States)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  8. A thermal-driven silicon micro xy-stage integrated with piezoresistive sensors for nano-positioning

    International Nuclear Information System (INIS)

    Choi, Young-Soo; Zhang, Yan; Lee, Dong-Weon

    2012-01-01

    This paper describes a novel micro xy-stage, driven by double-hot arm horizontal thermal micro-actuators integrated with a piezoresistive sensor (PS) for low-voltage operation and precise control. This micro xy-stage structure is linked with chevron beams and optimized to amplify the displacement generated by the micro-actuators that provide a pull force to the movable platform. The PS employed for in situ displacement detection and feedback control is fabricated at the base of a cold arm, which minimizes the influence of temperature change induced by electro-thermal heating. The micro xy-stage structure is defined through the use of a simple micromachining process, released by backside wet etching with a special tool. For an input power of approximately 44 mW, each chevron actuator provides about 16 µm and the total displacement of the platform is close to 32 µm. The sensitivity of the PS is better than 1 mV µm −1 , obtained from the amplified voltage output of the Wheatstone bridge circuit. The potential applications of the proposed micro xy-stage lie in micro- or nano-manipulation, as well as the positioning of ultra-small objects in nanotechnology. (paper)

  9. Calibration of non-ideal thermal conductivity sensors

    Directory of Open Access Journals (Sweden)

    N. I. Kömle

    2013-04-01

    Full Text Available A popular method for measuring the thermal conductivity of solid materials is the transient hot needle method. It allows the thermal conductivity of a solid or granular material to be evaluated simply by combining a temperature measurement with a well-defined electrical current flowing through a resistance wire enclosed in a long and thin needle. Standard laboratory sensors that are typically used in laboratory work consist of very thin steel needles with a large length-to-diameter ratio. This type of needle is convenient since it is mathematically easy to derive the thermal conductivity of a soft granular material from a simple temperature measurement. However, such a geometry often results in a mechanically weak sensor, which can bend or fail when inserted into a material that is harder than expected. For deploying such a sensor on a planetary surface, with often unknown soil properties, it is necessary to construct more rugged sensors. These requirements can lead to a design which differs substantially from the ideal geometry, and additional care must be taken in the calibration and data analysis. In this paper we present the performance of a prototype thermal conductivity sensor designed for planetary missions. The thermal conductivity of a suite of solid and granular materials was measured both by a standard needle sensor and by several customized sensors with non-ideal geometry. We thus obtained a calibration curve for the non-ideal sensors. The theory describing the temperature response of a sensor with such unfavorable length-to-diameter ratio is complicated and highly nonlinear. However, our measurements reveal that over a wide range of thermal conductivities there is an almost linear relationship between the result obtained by the standard sensor and the result derived from the customized, non-ideal sensors. This allows for the measurement of thermal conductivity values for harder soils, which are not easily accessible when using

  10. Soft Thermal Sensor with Mechanical Adaptability.

    Science.gov (United States)

    Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong

    2016-11-01

    A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  12. Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol.

    Science.gov (United States)

    Li, Yong; Liu, Yanjun; Luo, Dan

    2017-10-16

    We demonstrate an optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol. The thermal response mechanism is mainly based on the thermal expansion effect induce by toluene, where the ethanol is used for refractive index adjustment to determine the initial refection band position of cholesteric film. The ethanol-toluene mixture was used to adjust the color tunability with the temperature in relation with the habits of people (blue as cold, green as safe and red as hot). A broad temperature range of 86 °C and highly sensitivity of 1.79 nm/ °C are achieved in proposed thermal sensor, where the reflective color red-shifts from blue to red when environmental temperature increases from -6 °C to 80 °C. This battery-free thermal sensor possesses features including simple fabrication, low-cost, and broad temperature sensing range, showing potential application in scientific research and industry.

  13. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    Peter Busche

    2012-10-01

    Full Text Available A sensor concept for detection of boundary layer separation (flow separation, stall and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor’s position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle. Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow and even negative flow values (back flow for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  14. Monolithic micro-electro-thermal actuator integrated with a lateral displacement sensor

    International Nuclear Information System (INIS)

    Zhang, Yan; Choi, Young-Soo; Lee, Dong-Weon

    2010-01-01

    This paper presents monolithically fabricated horizontal thermal actuators integrated with piezoresistive sensors for in situ displacement sensing. The great advantage of a hybrid system is the use of closed feedback control for improving the transient response of a thermal actuator and positioning accuracy. It consists of two 'hot arms' made of doped silicon for Joule heating-induced thermal expansion when a current flow passes through them. The piezoresistor is embedded in the base of the 'cold arm' flexure for monitoring the tip deflection and for performance characterization. This 'cold arm' is not a part of the electrical circuit, which further improves the heat power efficiency and the measurement accuracy. Optimization is achieved mainly through modification of the geometry as well as the fabrication process. The fabricated micro-electro-thermal actuator with an integrated sensor is intended for use as a scanning cantilever in atomic force microscope or as a sample holder to drive the moving object through arrays configuration.

  15. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  16. Inductive Non-Contact Position Sensor

    Science.gov (United States)

    Youngquist, Robert; Garcia, Alyssa; Simmons, Stephen

    2010-01-01

    Optical hardware has been developed to measure the depth of defects in the Space Shuttle Orbiter's windows. In this hardware, a mirror is translated such that its position corresponds to the defect's depth, so the depth measurement problem is transferred to a mirror-position measurement problem. This is preferable because the mirror is internal to the optical system and thus accessible. Based on requirements supplied by the window inspectors, the depth of the defects needs to be measured over a range of 200 microns with a resolution of about 100 nm and an accuracy of about 400 nm. These same requirements then apply to measuring the position of the mirror, and in addition, since this is a scanning system, a response time of about 10 ms is needed. A market search was conducted and no sensor that met these requirements that also fit into the available housing volume (less than one cubic inch) was found, so a novel sensor configuration was constructed to meet the requirements. This new sensor generates a nearly linearly varying magnetic field over a small region of space, which can easily be sampled, resulting in a voltage proportional to position. Experiments were done with a range of inductor values, drive voltages, drive frequencies, and inductor shapes. A rough mathematical model was developed for the device that, in most aspects, describes how it operates and what electrical parameters should be chosen for best performance. The final configuration met all the requirements, yielding a small rugged sensor that was easy to use and had nanometer resolution over more than the 200-micron range required. The inductive position sensor is a compact device (potentially as small as 2 cubic centimeters), which offers nanometer-position resolution over a demonstrated range of nearly 1 mm. One of its advantages is the simplicity of its electrical design. Also, the sensor resolution is nearly uniform across its operational range, which is in contrast to eddy current and

  17. Position-sensitive transition-edge sensors

    International Nuclear Information System (INIS)

    Iyomoto, N.; Bandler, S.R.; Brekosky, R.P.; Chervenak, J.A.; Figueroa-Feliciano, E.; Finkbeiner, F.M.; Kelley, R.L.; Kilbourne, C.A.; Lindeman, M.A.; Murphy, K.; Porter, F.S.; Saab, T.; Sadleir, J.E.; Talley, D.J.

    2006-01-01

    We report the latest results from our development of Position-Sensitive Transition-edge sensors (PoSTs), which are one-dimensional imaging spectrometers. In PoSTs with segmented Au absorbers, we obtained 8eV energy resolution on K Kα lines, which is consistent to the baseline energy resolution and the design values, on all of the nine pixels, by choosing the best combination of the thermal conductance in absorbers and in links that connects the absorbers. The pulse decay time of 193μs is fast enough for our purpose. In a PoST with a continuous Bi/Cu absorber, by dividing the events into 63 effective pixels, we obtained energy resolutions of 16eV at the center 'pixel', which is comparable to the baseline energy resolution, and 33eV at the outer 'pixel'. The degradation of the energy resolution in the outer 'pixel' is due to position dependence, which we can cancel out by dividing the events into smaller 'pixels' when we have sufficient X-ray events

  18. Positioning of sensors for control of ventilation systems in broiler houses: a case study

    Directory of Open Access Journals (Sweden)

    Thayla Morandi Ridolfi de Carvalho Curi

    Full Text Available ABSTRACT Ventilation systems are incorporated at intensive poultry farms to control environment conditions and thermal comfort of broilers. The ventilation system operates based on environmental data, particularly measured by sensors of temperature and relative humidity. Sensors are placed at different positions of the facility. Quality, number and positioning of the sensors are critical factors to achieve an efficient performance of the system. For this reason, a strategic positioning of the sensors associated to controllers could support the maintenance and management of the microclimate inside the facility. This research aims to identify the three most representative points for the positioning of sensors in order to support the ventilation system during the critical period from 12h00 to 15h00 on summer days. Temperature, relative humidity and wind speed were measured in four different tunnel ventilated barns at the final stage of the production cycle. The descriptive analysis was performed on these data. The Temperature and Humidity Index (THI was also calculated. Then, the geostatistical analysis of THI was performed by GS+ and the position of sensors was determined by ordinary kriging. The methodology was able to detect the most representative points for the positioning of sensors in a case study (southeastern Brazil. The results suggested that this strategic positioning would help controllers to obtain a better inference of the microclimate during the studied period (the hottest microclimate, considered critical in Brazil. In addition, these results allow developing a future road map for a decision support system based on 24 h monitoring of the ventilation systems in broiler houses.

  19. Angular Positioning Sensor for Space Mechanisms

    Science.gov (United States)

    Steiner, Nicolas; Chapuis, Dominique

    2013-09-01

    Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.

  20. Thermal microphotonic sensor and sensor array

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  1. RGB-D, Laser and Thermal Sensor Fusion for People following in a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Loreto Susperregi

    2013-06-01

    Full Text Available Detecting and tracking people is a key capability for robots that operate in populated environments. In this paper, we used a multiple sensor fusion approach that combines three kinds of sensors in order to detect people using RGB-D vision, lasers and a thermal sensor mounted on a mobile platform. The Kinect sensor offers a rich data set at a significantly low cost, however, there are some limitations to its use in a mobile platform, mainly that the Kinect algorithms for people detection rely on images captured by a static camera. To cope with these limitations, this work is based on the combination of the Kinect and a Hokuyo laser and a thermopile array sensor. A real-time particle filter system merges the information provided by the sensors and calculates the position of the target, using probabilistic leg and thermal patterns, image features and optical flow to this end. Experimental results carried out with a mobile platform in a Science museum have shown that the combination of different sensory cues increases the reliability of the people following system.

  2. A thermal plasmonic sensor platform: resistive heating of nanohole arrays.

    Science.gov (United States)

    Virk, Mudassar; Xiong, Kunli; Svedendahl, Mikael; Käll, Mikael; Dahlin, Andreas B

    2014-06-11

    We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift.

  3. Miniaturized thermal flow sensor with planar-integrated sensor structures on semicircular surface channels

    NARCIS (Netherlands)

    Dijkstra, Marcel; de Boer, Meint J.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2008-01-01

    A calorimetric miniaturized flow sensor was realized with a linear sensor response measured for water flow up to flow rates in the order of 300 nl min-1. A versatile technological concept is used to realize a sensor with a thermally isolated freely suspended silicon-rich silicon-nitride microchannel

  4. Self-calibrating solar position sensor

    Science.gov (United States)

    Maxey, Lonnie Curt

    2018-01-30

    A sun positioning sensor and method of accurately tracking the sun are disclosed. The sensor includes a position sensing diode and a disk having a body defining an aperture for accepting solar light. An extension tube having a body that defines a duct spaces the position sensing diode from the disk such that the solar light enters the aperture in the disk, travels through the duct in the extension tube and strikes the position sensing diode. The extension tube has a known length that is fixed. Voltage signals indicative of the location and intensity of the sun are generated by the position sensing diode. If it is determined that the intensity values are unreliable, then historical position values are used from a table. If the intensity values are deemed reliable, then actual position values are used from the position sensing diode.

  5. Reliability evaluation of fiber optic sensors exposed to cyclic thermal load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Kim, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of); Kim, Dae Hyun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    Fiber Bragg grating (FBG) sensors are currently the most prevalent sensors because of their unique advantages such as ease of multiplexing and capability of performing absolute measurements. They are applied to various structures for structural health monitoring (SHM). The signal characteristics of FBG sensors under thermal loading should be investigated to enhance the reliability of these sensors, because they are exposed to certain cyclic thermal loads due to temperature changes resulting from change of seasons, when they are applied to structures for SHM. In this study, tests on specimens are conducted in a thermal chamber with temperature changes from - to for 300 cycles. For the specimens, two types of base materials and adhesives that are normally used in the manufacture of packaged FBG sensors are selected. From the test results, it is confirmed that the FBG sensors undergo some degree of compressive strain under cyclic thermal load; this can lead to measurement errors. Hence, a pre-calibration is necessary before applying these sensors to structures for long-term SHM.

  6. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  7. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    Science.gov (United States)

    Maqsood, Asghari; Anis-ur-Rehman, M.

    2013-12-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.

  8. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    International Nuclear Information System (INIS)

    Maqsood, Asghari; Anis-ur-Rehman, M

    2013-01-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes 1 . The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported 2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids 3 and high-T C superconductors 4 . The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations 2,5 . The tps-sensor has been used to measure thermal conductivities from 0.001 Wm −1 K −1 to 600 Wm −1 K −1 and temperature ranges covered from 77K– 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials

  9. Distributed thermal micro sensors for fluid flow

    NARCIS (Netherlands)

    van Baar, J.J.J.

    2002-01-01

    In this thesis thermal sensor-actuator structures are proposed for measuring the parameters pressure p, dynamic viscosity μ, thermal conductivity , specific heat c, density and the fluid velocity v. In this chapter examples will be given of the added value of many identical simple elements and the

  10. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  11. A positioning sensor for tonometric applications

    NARCIS (Netherlands)

    den Besten, C.; den Besten, C.; Bergveld, Piet

    1992-01-01

    In this paper we present a sensor, which is designed for application in a tonometer, an instrument for the measurement of intraocular pressure. The sensor measures diameter and position of a part of the eye globe that is flattened by the tonometer. The sensor principle is based on a change in

  12. Distributed estimation of sensors position in underwater wireless sensor network

    Science.gov (United States)

    Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi

    2016-05-01

    In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.

  13. Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors

    International Nuclear Information System (INIS)

    Rettig, Frank; Moos, Ralf

    2009-01-01

    Direct thermoelectric gas sensors are a promising alternative to conductometric gas sensors. For accurate results, a temperature modulation technique in combination with a regression analysis is advantageous. However, the thermal time constant of screen-printed sensors is quite large. As a result, up to now the temperature modulation frequency (20 mHz) has been too low and the corresponding principle-related response time (50 s) has been too high for many applications. With a special design, respecting the physical properties of thermal waves and the use of signal processing similar to a lock-in-amplifier, it is possible to achieve response times of about 1 s. As a result, direct thermoelectric gas sensors with SnO 2 as a gas-sensitive material respond fast and are reproducible to the propane concentration in the ambient atmosphere. Due to the path-independent behavior of the thermovoltage and the temperature, the measured thermopower of two sensors is almost identical

  14. Thermal micropressure sensor for pressure monitoring in a minute package

    International Nuclear Information System (INIS)

    Wang, S. N.; Mizuno, K.; Fujiyoshi, M.; Funabashi, H.; Sakata, J.

    2001-01-01

    A thermal micropressure sensor suitable for pressure measurements in the range from 7x10 -3 to 1x10 5 Pa has been fabricated by forming a titanium (Ti) thin-film resistor on a floating nondoped silica glass membrane, with the sensing area being as small as 60 μmx60 μm. The sensor performance is raised by: (1) increasing the ratio of gaseous thermal conduction in the total thermal conduction by sensor structure design; (2) compensating the effect of ambient-temperature drift by using a reference resistor located close to the sensing element but directly on the silicon substrate; and (3) utilizing an optimized novel constant-bias Wheatstone bridge circuit. By choosing a proper bias voltage, which can be found by simple calculation, the circuit extracts information on gaseous thermal conduction from the directly measurable total heat loss of the heated sensing element. The sensor was enclosed in a metal package with a capacity of about 0.5 ml by projection welding and was successfully applied to monitoring the pressure in the minute space

  15. Equivalent thermal history reconstruction from a partially crystallized glass-ceramic sensor array

    Science.gov (United States)

    Heeg, Bauke

    2015-11-01

    The basic concept of a thermal history sensor is that it records the accumulated exposure to some unknown, typically varying temperature profile for a certain amount of time. Such a sensor is considered to be capable of measuring the duration of several (N) temperature intervals. For this purpose, the sensor deploys multiple (M) sensing elements, each with different temperature sensitivity. At the end of some thermal exposure for a known period of time, the sensor array is read-out and an estimate is made of the set of N durations of the different temperature ranges. A potential implementation of such a sensor was pioneered by Fair et al. [Sens. Actuators, A 141, 245 (2008)], based on glass-ceramic materials with different temperature-dependent crystallization dynamics. In their work, it was demonstrated that an array of sensor elements can be made sensitive to slight differences in temperature history. Further, a forward crystallization model was used to simulate the variations in sensor array response to differences in the temperature history. The current paper focusses on the inverse aspect of temperature history reconstruction from a hypothetical sensor array output. The goal of such a reconstruction is to find an equivalent thermal history that is the closest representation of the true thermal history, i.e., the durations of a set of temperature intervals that result in a set of fractional crystallization values which is closest to the one resulting from the true thermal history. One particular useful simplification in both the sensor model as well as in its practical implementation is the omission of nucleation effects. In that case, least squares models can be used to approximate the sensor response and make reconstruction estimates. Even with this simplification, sensor noise can have a destabilizing effect on possible reconstruction solutions, which is evaluated using simulations. Both regularization and non-negativity constrained least squares

  16. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    Science.gov (United States)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground

  17. A Micro-Thermal Sensor for Focal Therapy Applications

    Science.gov (United States)

    Natesan, Harishankar; Hodges, Wyatt; Choi, Jeunghwan; Lubner, Sean; Dames, Chris; Bischof, John

    2016-02-01

    There is an urgent need for sensors deployed during focal therapies to inform treatment planning and in vivo monitoring in thin tissues. Specifically, the measurement of thermal properties, cooling surface contact, tissue thickness, blood flow and phase change with mm to sub mm accuracy are needed. As a proof of principle, we demonstrate that a micro-thermal sensor based on the supported “3ω” technique can achieve this in vitro under idealized conditions in 0.5 to 2 mm thick tissues relevant to cryoablation of the pulmonary vein (PV). To begin with “3ω” sensors were microfabricated onto flat glass as an idealization of a focal probe surface. The sensor was then used to make new measurements of ‘k’ (W/m.K) of porcine PV, esophagus, and phrenic nerve, all needed for PV cryoabalation treatment planning. Further, by modifying the sensor use from traditional to dynamic mode new measurements related to tissue vs. fluid (i.e. water) contact, fluid flow conditions, tissue thickness, and phase change were made. In summary, the in vitro idealized system data presented is promising and warrants future work to integrate and test supported “3ω” sensors on in vivo deployed focal therapy probe surfaces (i.e. balloons or catheters).

  18. Inductance position sensor for pneumatic cylinder

    Science.gov (United States)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  19. Focused-laser interferometric position sensor

    International Nuclear Information System (INIS)

    Friedman, Stephen J.; Barwick, Brett; Batelaan, Herman

    2005-01-01

    We describe a simple method to measure the position shifts of an object with a range of tens of micrometers using a focused-laser (FL) interferometric position sensor. In this article we examine the effects of mechanical vibration on FL and Michelson interferometers. We tested both interferometers using vibration amplitudes ranging from 0 to 20 μm. Our FL interferometer has a resolution much better than the diffraction grating periodicities of 10 and 14 μm used in our experiments. A FL interferometer provides improved mechanical stability at the expense of spatial resolution. Our experimental results show that Michelson interferometers cannot be used when the vibration amplitude is more than an optical wavelength. The main purpose of this article is to demonstrate that a focused-laser interferometric position sensor can be used to measure the position shifts of an object on a less sensitive, micrometer scale when the vibration amplitude is too large to use a Michelson interferometer

  20. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    Science.gov (United States)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  1. Inductance position sensor for pneumatic cylinder

    Directory of Open Access Journals (Sweden)

    Pavel Ripka

    2018-04-01

    Full Text Available The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  2. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    Zhou Lin; Qin Ming; Chen Shengqi; Chen Bei

    2014-01-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  3. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  4. Drift Correction of Lightweight Microbolometer Thermal Sensors On-Board Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Mesas-Carrascosa

    2018-04-01

    Full Text Available The development of lightweight sensors compatible with mini unmanned aerial vehicles (UAVs has expanded the agronomical applications of remote sensing. Of particular interest in this paper are thermal sensors based on lightweight microbolometer technology. These are mainly used to assess crop water stress with thermal images where an accuracy greater than 1 °C is necessary. However, these sensors lack precise temperature control, resulting in thermal drift during image acquisition that requires correction. Currently, there are several strategies to manage thermal drift effect. However, these strategies reduce useful flight time over crops due to the additional in-flight calibration operations. This study presents a drift correction methodology for microbolometer sensors based on redundant information from multiple overlapping images. An empirical study was performed in an orchard of high-density hedgerow olive trees with flights at different times of the day. Six mathematical drift correction models were developed and assessed to explain and correct drift effect on thermal images. Using the proposed methodology, the resulting thermally corrected orthomosaics yielded a rate of error lower than 1° C compared to those where no drift correction was applied.

  5. Thermal physics of transition edge sensor arrays

    International Nuclear Information System (INIS)

    Hoevers, H.F.C.

    2006-01-01

    Thermal transport in transition edge sensor (TES)-based microcalorimeter arrays is reviewed. The fundamentals of thermal conductance in Si 3 N 4 membranes are discussed and the magnitude of the electron-phonon coupling and Kapitza coupling in practical devices is summarized. Next, the thermal transport in high-stopping power and low-heat capacity absorbers, required for arrays of TES microcalorimeters, is discussed in combination with a performance analysis of detectors with mushroom-absorbers. Finally, the phenomenology of unexplained excess noise, observed in both Mo- and Ti-based TESs, is briefly summarized and related with the coupling of the TES to the heat bath

  6. On-Line Temperature Estimation for Noisy Thermal Sensors Using a Smoothing Filter-Based Kalman Predictor

    Directory of Open Access Journals (Sweden)

    Xin Li

    2018-02-01

    Full Text Available Dynamic thermal management (DTM mechanisms utilize embedded thermal sensors to collect fine-grained temperature information for monitoring the real-time thermal behavior of multi-core processors. However, embedded thermal sensors are very susceptible to a variety of sources of noise, including environmental uncertainty and process variation. This causes the discrepancies between actual temperatures and those observed by on-chip thermal sensors, which seriously affect the efficiency of DTM. In this paper, a smoothing filter-based Kalman prediction technique is proposed to accurately estimate the temperatures from noisy sensor readings. For the multi-sensor estimation scenario, the spatial correlations among different sensor locations are exploited. On this basis, a multi-sensor synergistic calibration algorithm (known as MSSCA is proposed to improve the simultaneous prediction accuracy of multiple sensors. Moreover, an infrared imaging-based temperature measurement technique is also proposed to capture the thermal traces of an advanced micro devices (AMD quad-core processor in real time. The acquired real temperature data are used to evaluate our prediction performance. Simulation shows that the proposed synergistic calibration scheme can reduce the root-mean-square error (RMSE by 1.2 ∘ C and increase the signal-to-noise ratio (SNR by 15.8 dB (with a very small average runtime overhead compared with assuming the thermal sensor readings to be ideal. Additionally, the average false alarm rate (FAR of the corrected sensor temperature readings can be reduced by 28.6%. These results clearly demonstrate that if our approach is used to perform temperature estimation, the response mechanisms of DTM can be triggered to adjust the voltages, frequencies, and cooling fan speeds at more appropriate times.

  7. On-Line Temperature Estimation for Noisy Thermal Sensors Using a Smoothing Filter-Based Kalman Predictor.

    Science.gov (United States)

    Li, Xin; Ou, Xingtao; Li, Zhi; Wei, Henglu; Zhou, Wei; Duan, Zhemin

    2018-02-02

    Dynamic thermal management (DTM) mechanisms utilize embedded thermal sensors to collect fine-grained temperature information for monitoring the real-time thermal behavior of multi-core processors. However, embedded thermal sensors are very susceptible to a variety of sources of noise, including environmental uncertainty and process variation. This causes the discrepancies between actual temperatures and those observed by on-chip thermal sensors, which seriously affect the efficiency of DTM. In this paper, a smoothing filter-based Kalman prediction technique is proposed to accurately estimate the temperatures from noisy sensor readings. For the multi-sensor estimation scenario, the spatial correlations among different sensor locations are exploited. On this basis, a multi-sensor synergistic calibration algorithm (known as MSSCA) is proposed to improve the simultaneous prediction accuracy of multiple sensors. Moreover, an infrared imaging-based temperature measurement technique is also proposed to capture the thermal traces of an advanced micro devices (AMD) quad-core processor in real time. The acquired real temperature data are used to evaluate our prediction performance. Simulation shows that the proposed synergistic calibration scheme can reduce the root-mean-square error (RMSE) by 1.2 ∘ C and increase the signal-to-noise ratio (SNR) by 15.8 dB (with a very small average runtime overhead) compared with assuming the thermal sensor readings to be ideal. Additionally, the average false alarm rate (FAR) of the corrected sensor temperature readings can be reduced by 28.6%. These results clearly demonstrate that if our approach is used to perform temperature estimation, the response mechanisms of DTM can be triggered to adjust the voltages, frequencies, and cooling fan speeds at more appropriate times.

  8. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  9. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    Science.gov (United States)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  10. Switching algorithm for maglev train double-modular redundant positioning sensors.

    Science.gov (United States)

    He, Ning; Long, Zhiqiang; Xue, Song

    2012-01-01

    High-resolution positioning for maglev trains is implemented by detecting the tooth-slot structure of the long stator installed along the rail, but there are large joint gaps between long stator sections. When a positioning sensor is below a large joint gap, its positioning signal is invalidated, thus double-modular redundant positioning sensors are introduced into the system. This paper studies switching algorithms for these redundant positioning sensors. At first, adaptive prediction is applied to the sensor signals. The prediction errors are used to trigger sensor switching. In order to enhance the reliability of the switching algorithm, wavelet analysis is introduced to suppress measuring disturbances without weakening the signal characteristics reflecting the stator joint gap based on the correlation between the wavelet coefficients of adjacent scales. The time delay characteristics of the method are analyzed to guide the algorithm simplification. Finally, the effectiveness of the simplified switching algorithm is verified through experiments.

  11. Switching Algorithm for Maglev Train Double-Modular Redundant Positioning Sensors

    Directory of Open Access Journals (Sweden)

    Song Xue

    2012-08-01

    Full Text Available High-resolution positioning for maglev trains is implemented by detecting the tooth-slot structure of the long stator installed along the rail, but there are large joint gaps between long stator sections. When a positioning sensor is below a large joint gap, its positioning signal is invalidated, thus double-modular redundant positioning sensors are introduced into the system. This paper studies switching algorithms for these redundant positioning sensors. At first, adaptive prediction is applied to the sensor signals. The prediction errors are used to trigger sensor switching. In order to enhance the reliability of the switching algorithm, wavelet analysis is introduced to suppress measuring disturbances without weakening the signal characteristics reflecting the stator joint gap based on the correlation between the wavelet coefficients of adjacent scales. The time delay characteristics of the method are analyzed to guide the algorithm simplification. Finally, the effectiveness of the simplified switching algorithm is verified through experiments.

  12. Speed and position sensors for electric motors

    Energy Technology Data Exchange (ETDEWEB)

    Lyyjynen, M. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    This paper gives an overview of speed and position measuring instruments for electric motors. The emphasis is on sensors that are designed to operate at industrial environment. In addition to that, some other, mostly magnetic sensors which are used, e.g., in automotive applications, are presented. Some of them are already applied in induction motors and some might be worth a try remembering the limitations. Automotive sensors are very cost-effective due to high production volumes. (orig.) 22 refs.

  13. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    International Nuclear Information System (INIS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-01-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human–robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as α f + ξ f and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, α f + ξ f has a non-linear dependence on temperature and varies from 6.0 × 10 −6  °C −1 (20 °C) to 10.6 × 10 −6  °C −1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C. (paper)

  14. Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future

    Science.gov (United States)

    Sampath, Sanjay

    2010-09-01

    Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.

  15. A thermal sensor for water using self-heated NTC thick-film segmented thermistors

    OpenAIRE

    Nikolić, Maria Vesna; Radojčić, B. M.; Aleksić, Obrad; Luković, Miloljub D.; Nikolić, Pantelija

    2011-01-01

    A simple thermal (heat loss) sensor system was designed in a small plastic tube housing using a negative thermal coefficient (NTC) thick-film thermistor as a self-heating sensor. The voltage power supply [range constant voltage (RCV)-range constant voltage] uses the measured input water temperature to select the applied voltage in steps (up and down) in order to enable operation of the sensor at optimal sensitivity for different water temperatures. The input water temperature was measured usi...

  16. Using Collar worn Sensors to Forecast Thermal Strain in Military Working Dogs

    Science.gov (United States)

    2016-04-22

    Using Collar-worn Sensors to Forecast Thermal Strain in Military Working Dogs James R. Williamson, Austin R. Hess, Christopher J. Smalt, Delsey M...these estimates for forecasting and monitoring thermal strain is assessed based on performance in out of sample prediction of core temperature (Tc...time step (100 Hz) from the magnitude of the three- dimensional acceleration vector, ai , which is independent of sensor orientation. Next, the

  17. Effects of Cyclic Thermal Load on the Signal Characteristics of FBG Sensors Packaged with Epoxy Adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heonyoung; Kang, Donghoon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2017-04-15

    Fiber optics sensors that have been mainly applied to aerospace areas are now finding applicability in other areas, such as transportation, including railways. Among the sensors, the fiber Bragg grating (FBG) sensors have led to a steep increase due to their properties of absolute measurement and multiplexing capability. Generally, the FBG sensors adhere to structures and sensing modules using adhesives such as an epoxy. However, the measurement errors that occurred when the FBG sensors were used in a long-term application, where they were exposed to environmental thermal load, required calibration. For this reason, the thermal curing of adhesives needs to be investigated to enhance the reliability of the FBG sensor system. This can be done at room temperature through cyclic thermal load tests using four types of specimens. From the test results, it is confirmed that residual compressive strain occurs to the FBG sensors due to an initial cyclic thermal load. In conclusion, signals of the FBG sensors need to be stabilized for applying them to a long-term SHM.

  18. A new CMOS Hall angular position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, R.S.; Drljaca, P. [Swiss Federal Inst. of Tech., Lausanne (Switzerland); Schott, C.; Racz, R. [SENTRON AG, Zug (Switzerland)

    2001-06-01

    The new angular position sensor consists of a combination of a permanent magnet attached to a shaft and of a two-axis magnetic sensor. The permanent magnet produces a magnetic field parallel with the magnetic sensor plane. As the shaft rotates, the magnetic field also rotates. The magnetic sensor is an integrated combination of a CMOS Hall integrated circuit and a thin ferromagnetic disk. The CMOS part of the system contains two or more conventional Hall devices positioned under the periphery of the disk. The ferromagnetic disk converts locally a magnetic field parallel with the chip surface into a field perpendicular to the chip surface. Therefore, a conventional Hall element can detect an external magnetic field parallel with the chip surface. As the direction of the external magnetic field rotates in the chip plane, the output voltage of the Hall element varies as the cosine of the rotation angle. By placing the Hall elements at the appropriate places under the disk periphery, we may obtain the cosine signals shifted by 90 , 120 , or by any other angle. (orig.)

  19. Side-emitting fiber optic position sensor

    Science.gov (United States)

    Weiss, Jonathan D [Albuquerque, NM

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  20. Analytical tools for thermal infrared engineerig: a thermal sensor simulation package

    Science.gov (United States)

    Jaggi, Sandeep

    1992-09-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration. To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering'--ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as SNR, NER, NETD etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters. In addition, ATTIRE can be used as a tutorial for understanding the distribution of thermal flux or solar irradiance over selected bandwidths of the spectrum. This spectrally distributed incident flux can then be analyzed as it propagates through the subsystems that constitute the entire sensor. ATTIRE provides a variety of functions ranging from plotting black-body curves for varying bandwidths and computing the integral flux, to performing transfer function analysis of the sensor system. The package runs from a menu- driven interface in a PC-DOS environment. Each sub-system of the sensor is represented by windows and icons. A user-friendly mouse-controlled point-and-click interface allows the user to simulate various aspects of a sensor. The package can simulate a theoretical sensor system. Trade-off studies can be easily done by changing the appropriate parameters and monitoring the effect of the system performance. The package can provide plots of system performance versus any system parameter. A parameter (such as the entrance aperture of the optics) could be varied and its effect on another parameter (e.g., NETD) can be plotted. A third parameter (e.g., the

  1. Fluorescent optical position sensor

    Science.gov (United States)

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  2. Low-Power Silicon-based Thermal Sensors and Actuators for Chemical Applications

    NARCIS (Netherlands)

    Vereshchagina, E.

    2011-01-01

    In the Hot Silicon project low and ultra-low-power Si-based hot surface devices have been developed, i.e. thermal sensors and actuators, for application in catalytic gas micro sensors, micro- and nano- calorimeters. This work include several scientific and technological aspects: • Design and

  3. A thermal comparator sensor for measuring autogenous deformation in hardening Portland cement paste

    DEFF Research Database (Denmark)

    Østergaard, Thomas; Jensen, Ole Mejlhede

    2003-01-01

    This paper describes a simple and accurate experimental device specially developed to measure autogenous deformation in hardening cement-based materials. The measuring system consists of a so-called thermal comparator sensor and a modular thermostatically controlled system. The operating principle...... of the thermal comparator is based on thermal expansion of aluminium. A particular characteristic of the measuring system is the fixation of the thermal comparator sensor to the deforming specimen. The modular system ensures effective thermostatic control of the hydrating cement paste samples. The technique...... allows continuous measurement with high accuracy of the linear deformation as well as determination of the activation energy of autogenous deformation....

  4. Dual-MWCNT Probe Thermal Sensor Assembly and Evaluation Based on Nanorobotic Manipulation inside a Field-Emission-Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2015-03-01

    Full Text Available We report a thermal sensor composed of two multiwalled carbon nano-tubes (MWCNTs inside a field-emission-scanning electron microscope. The sensor was assembled using a nanorobotic manipulation system, which was used to construct a probe tip in order to detect the local environment of a single cell. An atomic force microscopy (AFM cantilever was used as a substrate; the cantilever was composed of Si3N4 and both sides were covered with a gold layer. MWCNTs were individually assembled on both sides of the AFM cantilever by employing nanorobotic manipulation. Another AFM cantilever was subsequently used as an end effector to manipulate the MWCNTs to touch each other. Electron-beam-induced deposition (EBID was then used to bond the two MWCNTs. The MWCNT probe thermal sensor was evaluated inside a thermostated container in the temperature range from 25°C to 60°C. The experimental results show the positive characteristics of the temperature coefficient of resistance (TCR.

  5. Thermal infrared panoramic imaging sensor

    Science.gov (United States)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the

  6. A Solar Position Sensor Based on Image Vision.

    Science.gov (United States)

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José

    2017-07-29

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.

  7. A Positional Deviation Sensor for Training of Robots

    Directory of Open Access Journals (Sweden)

    Fredrik Dessen

    1988-04-01

    Full Text Available A device for physically guiding a robot manipulator through its task is described. It consists of inductive, contact-free positional deviation sensors. The sensor will be used in high performance sensory control systems. The paper describes problems concerning multi-dimensional, non-linear measurement functions and the design of the servo control system.

  8. Modeling and Experimental Study on Characterization of Micromachined Thermal Gas Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Yan Su

    2010-09-01

    Full Text Available Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.

  9. Spatially distributed damage detection in CMC thermal protection materials using thin-film piezoelectric sensors

    Science.gov (United States)

    Kuhr, Samuel J.; Blackshire, James L.; Na, Jeong K.

    2009-03-01

    Thermal protection systems (TPS) of aerospace vehicles are subjected to impacts during in-flight use and vehicle refurbishment. The damage resulting from such impacts can produce localized regions that are unable to resist extreme temperatures. Therefore it is essential to have a reliable method to detect, locate, and quantify the damage occurring from such impacts. The objective of this research is to demonstrate a capability that could lead to detecting, locating and quantifying impact events for ceramic matrix composite (CMC) wrapped tile TPS via sensors embedded in the TPS material. Previous research had shown a correlation between impact energies, material damage state, and polyvinylidene fluoride (PVDF) sensor response for impact energies between 0.07 - 1.00 Joules, where impact events were located directly over the sensor positions1. In this effort, the effectiveness of a sensor array is evaluated for detecting and locating low energy impacts on a CMC wrapped TPS. The sensor array, which is adhered to the internal surface of the TPS tile, is used to detect low energy impact events that occur at different locations. The analysis includes an evaluation of signal amplitude levels, time-of-flight measurements, and signal frequency content. Multiple impacts are performed at each location to study the repeatability of each measurement.

  10. Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test

    Science.gov (United States)

    Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.

    2017-11-01

    Fibre Bragg Grating (FBG) sensor systems based on optical fibres are gaining interest in space applications. Studies on Structural Health Monitoring (SHM) of the reusable launchers using FBG sensors have been carried out in the Future European Space Transportation Investigations Programme (FESTIP). Increasing investment in the development on FBG sensor applications is foreseen for the Future Launchers Preparatory Programme (FLPP). TNO has performed different SHM measurements with FBGs including on the VEGA interstage [1, 2] in 2006. Within the current project, a multi-parameter FBG sensor array demonstrator system for temperature and strain measurements is designed, fabricated and tested under ambient as well as Thermal Vacuum (TV) conditions in a TV chamber of the European Space Agency (ESA), ESTEC site. The aim is the development of a multi-parameters measuring system based on FBG technology for space applications. During the TV tests of a Space Craft (S/C) or its subsystems, thermal measurements, as well as strain measurements are needed by the engineers in order to verify their prediction and to validate their models. Because of the dimensions of the test specimen and the accuracy requested to the measurement, a large number of observation/measuring points are needed. Conventional sensor systems require a complex routing of the cables connecting the sensors to their acquisition unit. This will add extra weight to the construction under test. FBG sensors are potentially light-weight and can easily be multiplexed in an array configuration. The different tasks comply of a demonstrator system design; its component selection, procurement, manufacturing and finally its assembly. The temperature FBG sensor is calibrated in a dedicated laboratory setup down to liquid nitrogen (LN2) temperature at TNO. A temperature-wavelength calibration curve is generated. After a test programme definition a setup in thermal vacuum is realised at ESA premises including a mechanical

  11. Note: Development of a microfabricated sensor to measure thermal conductivity of picoliter scale liquid samples.

    Science.gov (United States)

    Park, Byoung Kyoo; Yi, Namwoo; Park, Jaesung; Kim, Dongsik

    2012-10-01

    This paper presents a thermal analysis device, which can measure thermal conductivity of picoliter scale liquid sample. We employ the three omega method with a microfabricated AC thermal sensor with nanometer width heater. The liquid sample is confined by a micro-well structure fabricated on the sensor surface. The performance of the instrument was verified by measuring the thermal conductivity of 27-picoliter samples of de-ionized (DI) water, ethanol, methanol, and DI water-ethanol mixtures with accuracies better than 3%. Furthermore, another analytical scheme allows real-time thermal conductivity measurement with 5% accuracy. To the best of our knowledge, this technique requires the smallest volume of sample to measure thermal property ever.

  12. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  13. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2016-07-01

    Full Text Available During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C, sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings, and frequency response (hundreds of kHz, are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  14. Position sensor without any mechanical contact

    International Nuclear Information System (INIS)

    Ambier, Jean.

    1976-01-01

    The invention concerns a system for detecting, without any mechanical contact, the position of a mobile element according to a pre-determined path. The sensor includes a primary winding fed by an AC source and a secondary winding inductively coupled with the primary winding and subdivided into elementary coils, spaced out along this path and electrically inter-connected in couples. The mobile element has a magnetic part capable of modifying the inductive coupling between the windings, a secondary coil couple delivering a differential signal of zero values for all positions of the mobile element generating the same inductive coupling of each coil of the couple to the said primary winding. The main patent describes a system making it possible to detect the position of the rods in a nuclear reactor. The need was felt to improved the measuring accuracy of the sensor and to have a rigid front signal for easy electronic processing. The purpose of this invention is to improve the standard sensor to this end and it is characterised by the fact that the primary winding is subdivided into the same number of elementary coils as the secondary winding and that a primary coil is associated to each secondary coil, the two associated coils being coiled one on the other. The saving in space enables the coils to be brought closer together and affords an increase in measurement accuracy. A magnetic screen isolates each pair of coils and channels the leakage flux, the screen sharing in the localisation of the magnetic field under each pair of coils to achieve a sudden variation and a rigid front of the signal during the displacement of the mobile element [fr

  15. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Science.gov (United States)

    Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.

    2017-10-01

    Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal

  16. Thermal effects of an ICL-based mid-infrared CH4 sensor within a wide atmospheric temperature range

    Science.gov (United States)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; Girija, Aswathy V.; He, Qixin; Zheng, Huadan; Griffin, Robert J.; Tittel, Frank K.

    2018-03-01

    The thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ∼25 °C was measured for 5 h and its Allan deviation was ∼2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to minimize these effects. An environmental test chamber was employed to investigate the thermal effects that occur in the sensor system with variation of the test chamber temperature between 10 and 30 °C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH4 standard gas sample. Indoor/outdoor CH4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.

  17. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    Science.gov (United States)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  18. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  19. Evaluation of the AN/SAY-1 Thermal Imaging Sensor System

    National Research Council Canada - National Science Library

    Smith, John G; Middlebrook, Christopher T

    2002-01-01

    The AN/SAY-1 Thermal Imaging Sensor System "TISS" was developed to provide surface ships with a day/night imaging capability to detect low radar reflective, small cross-sectional area targets such as floating mines...

  20. Comparative Performance of PLZT and PVDF Pyroelectric Sensors Used to the Thermal Characterization of Liquid Samples

    Directory of Open Access Journals (Sweden)

    Gemima Lara Hernandez

    2013-01-01

    Full Text Available Among the photothermal methods, the photopyroelectric (PPE technique is a suitable method to determine thermal properties of different kinds of samples ranging from solids to liquids and gases. Polyvinylidene difluoride (PVDF is one of the most frequently used pyroelectric sensors in PPE technique but has the disadvantage that it can be easily deformed by the sample weight. This deformation could add a piezoelectric effect to the thermal parameters assessment; also PVDF has a narrow temperature operation range when compared with ceramic pyroelectric sensors. In order to minimize possible piezoelectric effects due to sensor deformation, a ceramic of lanthanum modified lead zirconate (PLZT was used as pyroelectric sensor in the PPE technique. Then, thermal diffusivity of some liquid samples was measured, by using the PPE configuration that denominated the thermal wave resonator cavity (TWRC, with a PLZT ceramic as pyroelectric detector. The performance obtained with the proposed ceramic in the TWRC configuration was compared with that obtained with PVDF by using the same configuration.

  1. Diagnosis of Thermal Efficiency of Nuclear Power Plants Using Optical Torque Sensors

    International Nuclear Information System (INIS)

    Shuichi Umezawa; Jun Adachi

    2006-01-01

    A new optical torque measuring method was applied to diagnosis of thermal efficiency of nuclear power plants. The sensor allows torque deformation of the rotor caused by power transmission to be measured without contact. Semiconductor laser beams and small pieces of stainless reflector that have bar-code patterns are employed. The intensity of the reflected laser beam is measured and then input into a computer through an APD and an A/D converter having high frequency sampling rates. The correlation analysis technique can translate these data into the torque deformation angle. This angle allows us to obtain the turbine output along with the torsional rigidity and the rotating speed of the rotor. The sensor was applied to a nuclear plant of Tokyo Electric Power Company, TEPCO, following its application success to the early combined cycle plants and the advanced combined cycle plants of TEPCO. As the turbine rotor of the nuclear power plant is less exposed than that of the combined cycle plants, the measurement position is confined to a narrow gap. In order to overcome the difficulty in installation, the shape of the sensor is modified to be long and thin. Sensor performance of the nuclear power plant was inspected over a year. The value of the torsional rigidity was analyzed by the finite element method at first. Accuracy was improved by correcting the torsional rigidity so that the value was consistent with the generator output. As a result, it is considered that the sensor performance has reached a practical use level. (authors)

  2. Thermal infrared sensors for postharvest deficit irrigation of peach

    Science.gov (United States)

    California has been in a historic drought and the lack of water has been a major problem for agriculture especially for crops that depend on irrigation. A multi-year field study was carried out to demonstrate the feasibility of applying thermal infrared sensors for managing deficit irrigation in an ...

  3. Hybrid integrated sensor for position measurement

    International Nuclear Information System (INIS)

    Schmidt, B.; Schott, H.; Just, H.-J.

    1986-01-01

    The design, fabrication and performance of an integrated two-dimensional position sensitive photodetector are presented. The optoelectronic device used as sensitive element in the circuit is a full area position sensitive photodiode (PPD) with high linearity over the full sensitive area. The PPD is integrated with the analog electronics in a hybrid circuit using thick film technology. The analog electronics includes the signal amplification and the signal conditioning to form the output signals proportional to the light beam center position at the sensor surface and an output signal proportional to the light beam intensity. Using hybrid integration a new position sensitive transducer is developed giving output signals, transmiting in large distances without problems and driving directly actuators in any control system

  4. Experimental design for the evaluation of high-T(sub c) superconductive thermal bridges in a sensor satellite

    Science.gov (United States)

    Scott, Elaine P.; Lee, Kasey M.

    1994-01-01

    Infrared sensor satellites, which consist of cryogenic infrared sensor detectors, electrical instrumentation, and data acquisition systems, are used to monitor the conditions of the earth's upper atmosphere in order to evaluate its present and future changes. Currently, the electrical connections (instrumentation), which act as thermal bridges between the cryogenic infrared sensor and the significantly warmer data acquisition unit of the sensor satellite system, constitute a significant portion of the heat load on the cryogen. As a part of extending the mission life of the sensor satellite system, the researchers at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) are evaluating the effectiveness of replacing the currently used manganin wires with high-temperature superconductive (HTS) materials as the electrical connections (thermal bridges). In conjunction with the study being conducted at NASA-LaRC, the proposed research is to design a space experiment to determine the thermal savings on a cryogenic subsystem when manganin leads are replaced by HTS leads printed onto a substrate with a low thermal conductivity, and to determine the thermal conductivities of HTS materials. The experiment is designed to compare manganin wires with two different types of superconductors on substrates by determining the heat loss by the thermal bridges and providing temperature measurements for the estimation of thermal conductivity. A conductive mathematical model has been developed and used as a key tool in the design process and subsequent analysis.

  5. Design, building and test of one prototype and four final position sensor assemblies: Hall effect position sensors

    Science.gov (United States)

    1976-01-01

    This report covers the development of a three channel Hall effect position sensing system for the commutation of a three phase dc torquer motor. The effort consisted of the evaluation, modification and re-packaging of a commercial position sensor and the design of a target configuration unique to this application. The resulting design meets the contract requirements and, furthermore, the test results indicate not only the practicality and versatility of the design, but also that there may be higher limits of resolution and accuracy achievable.

  6. A photon position sensor consisting of single-electron circuits

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Amemiya, Yoshihito; Tabe, Michiharu

    2009-01-01

    This paper proposes a solid-state sensor that can detect the position of incident photons with a high spatial resolution. The sensor consists of a two-dimensional array of single-electron oscillators, each coupled to its neighbors through coupling capacitors. An incident photon triggers an excitatory circular wave of electron tunneling in the oscillator array. The wave propagates in all directions to reach the periphery of the array. By measuring the arrival time of the wave at the periphery, we can know the position of the incident photon. The tunneling wave's generation, propagation, arrival at the array periphery, and the determination of incident photon positions are demonstrated with the results of Monte Carlo based computer simulations.

  7. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Directory of Open Access Journals (Sweden)

    D. M. Miles

    2017-10-01

    Full Text Available Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc. which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C−1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK engineering plastic (virgin, 30 % glass filled and 30 % carbon filled, and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C−1 had a thermal gain dependence within 5 ppm°C−1 of a traditional sensor constructed from MACOR ceramic (8.1

  8. TopWorx/GO switch new generation nuclear qualified proximity position sensors

    International Nuclear Information System (INIS)

    Merrifield, G.

    2011-01-01

    An overview of the benefits of installing TopWorx/GO Nuclear Qualified Proximity Position Sensors instead of traditional mechanical switches. Mechanical switches have been the standard for the nuclear industry for years, but that is only because of lack of competition. Because of multiple moving parts, three-piece design, and new low current control systems, mechanical switches are susceptible to a host of environmental factors that cause them to break and/or fail. TopWorx/GO Switch is a smaller, rugged, dependable, one-piece Stainless Steel proximity position sensor that that exceeds CANDU and Global Qualification Levels, easily replacing mechanical switches. It is the only position sensor to meet or exceed Westinghouse AP 1000 specifications as well. Nuclear facilities save money in maintenance reductions, extended PM's and reduction in 'Man REM' hours. This is achieved by not having to service and replace GO Switch position sensors as often as mechanical switches, since their qualified life is 100 years +1 Post Accident submerged. Plant safety is increased due to less switch failure, higher qualification testing levels, repeatability and longer qualified life. (author)

  9. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors

    International Nuclear Information System (INIS)

    Park, Ick-Joon; Jeong, Chan-Yong; Song, Sang-Hun; Kwon, Hyuck-In; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik; Kwon, Sang Jik; Kim, Bosul; Cheong, Woo-Seok

    2012-01-01

    In this work, we present the results concerning the use of amorphous indium–gallium–zinc–oxide (a-IGZO) thin-film transistor (TFT) as a driving transistor of the flexible thermal and pressure sensors which are applicable to artificial skin systems. Although the a-IGZO TFT has been attracting much attention as a driving transistor of the next-generation flat panel displays, no study has been performed about the application of this new device to the driving transistor of the flexible sensors yet. The proposed thermal sensor pixel is composed of the series-connected a-IGZO TFT and ZnO-based thermistor fabricated on a polished metal foil, and the ZnO-based thermistor is replaced by the pressure sensitive rubber in the pressure sensor pixel. In both sensor pixels, the a-IGZO TFT acts as the driving transistor and the temperature/pressure-dependent resistance of the ZnO-based thermistor/pressure-sensitive rubber mainly determines the magnitude of the output currents. The fabricated a-IGZO TFT-driven flexible thermal sensor shows around a seven times increase in the output current as the temperature increases from 20 °C to 100 °C, and the a-IGZO TFT-driven flexible pressure sensors also exhibit high sensitivity under various pressure environments. (paper)

  10. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    Science.gov (United States)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  11. STUDY OF THE IMPACT OF THERMAL DRIFT ON RELIABILITY OF PRESSURE SENSORS

    Directory of Open Access Journals (Sweden)

    ABDELAZIZ BEDDIAF

    2017-10-01

    Full Text Available Piezoresistive pressure sensors, using a Wheatstone bridge with the piezoresistors, are typically supplied with a voltage ranging from 3 to 10 V involve thermal drift caused by Joule heating. In this paper, an accurate numerical model for optimization and predicting the thermal drift in piezoresistive pressure sensors due to the electric heater in its piezoresistors is adopted. In this case, by using the solution of 2D heat transfer equation considering Joule heating in Cartesian coordinates for the transient regime, we determine how the temperature affects the sensor when the supply voltage is applied. For this, the elevation of temperature due to the Joule heating has been calculated for various values of supply voltage and for several operating times of the sensor; by varying different geometrical parameters. Otherwise, the variation of the coefficient 44 in p-Si and pressure sensitivity as a function of the applied potential, as well as, for various times, for different dimensions of the device, have been also established. It is observed that the electrical heating leads to an important temperature rise in the piezoresistor. Consequently, it causes drift in the pressure sensitivity of the sensor upon application of a voltage. Finally, this work allows us to evaluate the reliability of sensors. Also, it permits to predict their behaviour against temperature due to the application of a voltage of a bridge and to minimize this effect by optimizing the geometrical parameters of the sensor and by reducing the supply voltage.

  12. Thermal-wave balancing flow sensor with low-drift power feedback

    NARCIS (Netherlands)

    Dijkstra, Marcel; Lammerink, Theodorus S.J.; Pjetri, O.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2014-01-01

    A control system using a low-drift power-feedback signal was implemented applying thermal waves, giving a sensor output independent of resistance drift and thermo-electric offset voltages on interface wires. Kelvin-contact sensing and power control is used on heater resistors, thereby inhibiting the

  13. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  14. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  15. Effect of heater geometry and cavity volume on the sensitivity of a thermal convection-based tilt sensor

    Science.gov (United States)

    Han, Maeum; Keon Kim, Jae; Kong, Seong Ho; Kang, Shin-Won; Jung, Daewoong

    2018-06-01

    This paper reports a micro-electro-mechanical-system (MEMS)-based tilt sensor using air medium. Since the working mechanism of the sensor is the thermal convection in a sealed chamber, structural parameters that can affect thermal convection must be considered to optimize the performance of the sensor. This paper presents the experimental results that were conducted by optimizing several parameters such as the heater geometry, input power and cavity volume. We observed that an increase in the heating power and cavity volume can improve the sensitivity, and heater geometry plays important role in performance of the sensor.

  16. Position Reconstruction and Charge Distribution in LHCb VELO Silicon Sensors

    CERN Document Server

    Versloot, TW; Akiba, K; Artuso, M; Van Beuzekom, M; Borel, J; Bowcock, TJV; Buytaert, J; Collins, P; Dumps, R; Dwyer, L; Eckstein, D; Eklund, L; Ferro-Luzzi, M; Frei, R; Gersabek M; Haefeli, G; Hennessy, K; Huse, T; Jans, E; John, M; Ketel, TJ; Keune, A; Lastoviicka, T; Mountain, R; Neufeld, N; Parkes, C; Stone, S; Szumlak, T; Tobin, M; Van Lysebetten, A; Viret, S; De Vries, H; Wang, J

    2007-01-01

    In 2006, a partially equipped LHCb VELO detector half was characterised in a test beam experiment (Alignment Challenge and Detector Commissioning, ACDC3). The position reconstruction and resolution for 2-strip R-sensor clusters was studied as a function of strip pitch and track inclination on the sensor surface. The Charge Density Distribution (CDD) is derived from the weighted charge distribution. It becomes asymmetric for tracks non-perpendicular to the strip surface. It is shown that the asymmetric broadening of the CDD around the track intercept position results in a linear eta-function at higher angles (>6 degrees). The sensor spatial resolution is determined both using a linear weighted mean of strip charges, as well as a third-order polynomial approximation via a eta-correction. The experimental results are in agreement with previous simulations. Future studies are underway to determine the angle and pitch dependent parameters which will be implemented in the LHCb VELO cluster position software tools.

  17. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    Science.gov (United States)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  18. A Faraday effect position sensor for interventional magnetic resonance imaging.

    Science.gov (United States)

    Bock, M; Umathum, R; Sikora, J; Brenner, S; Aguor, E N; Semmler, W

    2006-02-21

    An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m(-1) gradient field, a localization uncertainty of 1.5 cm could be achieved.

  19. On-field mounting position estimation of a lidar sensor

    Science.gov (United States)

    Khan, Owes; Bergelt, René; Hardt, Wolfram

    2017-10-01

    In order to retrieve a highly accurate view of their environment, autonomous cars are often equipped with LiDAR sensors. These sensors deliver a three dimensional point cloud in their own co-ordinate frame, where the origin is the sensor itself. However, the common co-ordinate system required by HAD (Highly Autonomous Driving) software systems has its origin at the center of the vehicle's rear axle. Thus, a transformation of the acquired point clouds to car co-ordinates is necessary, and thereby the determination of the exact mounting position of the LiDAR system in car coordinates is required. Unfortunately, directly measuring this position is a time-consuming and error-prone task. Therefore, different approaches have been suggested for its estimation which mostly require an exhaustive test-setup and are again time-consuming to prepare. When preparing a high number of LiDAR mounted test vehicles for data acquisition, most approaches fall short due to time or money constraints. In this paper we propose an approach for mounting position estimation which features an easy execution and setup, thus making it feasible for on-field calibration.

  20. Rancang Bangun Alat Ukur Kelajuan Udara Tipe Thermal Terintegrasi Termometer Udara Berbasis Sensor LM35 dan PT100

    Directory of Open Access Journals (Sweden)

    Laila Katriani

    2017-11-01

    INTEGRATED WITH AIR THERMOMETER USING  LM35 SENSOR AND PT100 SENSOR This research aimed to design a thermal type anemometer integrated with air thermometer using Lm35 sensor and PT100 sensor. The study began in Mei until Oktober 2016. The study was conducted at the Laboratory of Electronics and Instrumentation, Department of Physics Education, State University of Yogyakarta. The design of the thermal type anemometer consists of two stages, namely, the design of the hardware and software design. Hardware design consists of a sensor system design (LM35 and PT100,  LM317 design, system design for data processing and display. Software design using C language. Based on the results of tests that had been done, shows that the sensor output LM35, whic is voltage is proportional to temperature changes, which had a sensitivity of 0.009 volts / ºC and initial output voltage of the sensor when the temperature reach 0 °C is 0,041 volts. PT100 sensor output, which is resistance is proportional to temperature changes, which had sensitivity of 0.391 Ω/oC and initial output resistance of the sensor when temperature reach 28 °C is 100,8 Ω. Error percent of thermal-type air speed measuring instrument testing is 4%.

  1. Fiber-Optic Thermal Sensor for TiN Film Crack Monitoring

    Directory of Open Access Journals (Sweden)

    Hsiang-Chang Hsu

    2017-11-01

    Full Text Available The study focuses on the thermal and temperature sensitivity behavior of an optical fiber sensor device. In this article, a titanium nitride (TiN-coated fiber Bragg grating (FBG sensor fabricated using an ion beam sputtering system was investigated. The reflection spectra of the FBG sensor were tested using R-soft optical software to simulate the refractive index sensitivity. In these experiments, the temperature sensitivity of the TiN FBG was measured at temperatures ranging from 100 to 500 °C using an optical spectrum analyzer (OSA. The results showed that the temperature sensitivity of the proposed TiN FBG sensor reached 12.8 pm/°C for the temperature range of 100 to 300 °C and 20.8 pm/°C for the temperature range of 300 to 500 °C. Additionally, we found that the produced oxidation at temperatures of 400-500 °C caused a crack, with the crack becoming more and more obvious at higher and higher temperatures.

  2. Landsat 8 Operational Land Imager (OLI)_Thermal Infared Sensor (TIRS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract:The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are instruments onboard the Landsat 8 satellite, which was launched in February of...

  3. Robotic tool positioning process using a multi-line off-axis laser triangulation sensor

    Science.gov (United States)

    Pinto, T. C.; Matos, G.

    2018-03-01

    Proper positioning of a friction stir welding head for pin insertion, driven by a closed chain robot, is important to ensure quality repair of cracks. A multi-line off-axis laser triangulation sensor was designed to be integrated to the robot, allowing relative measurements of the surface to be repaired. This work describes the sensor characteristics, its evaluation and the measurement process for tool positioning to a surface point of interest. The developed process uses a point of interest image and a measured point cloud to define the translation and rotation for tool positioning. Sensor evaluation and tests are described. Keywords: laser triangulation, 3D measurement, tool positioning, robotics.

  4. Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry

    Science.gov (United States)

    Inman, Kristopher; Wang, Xia; Sangeorzan, Brian

    Internal temperatures in a proton exchange membrane (PEM) fuel cell govern the ionic conductivities of the polymer electrolyte, influence the reaction rate at the electrodes, and control the water vapor pressure inside the cell. It is vital to fully understand thermal behavior in a PEM fuel cell if performance and durability are to be optimized. The objective of this research was to design, construct, and implement thermal sensors based on the principles of the lifetime-decay method of phosphor thermometry to measure temperatures inside a PEM fuel cell. Five sensors were designed and calibrated with a maximum uncertainty of ±0.6 °C. Using these sensors, surface temperatures were measured on the cathode gas diffusion layer of a 25 cm 2 PEM fuel cell. The test results demonstrate the utility of the optical temperature sensor design and provide insight into the thermal behavior found in a PEM fuel cell.

  5. Data analysis of inertial sensor for train positioning detection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jin; Park, Sung Soo; Lee, Jae Ho; Kang, Dong Hoon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-02-15

    Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.

  6. Detection of thermal aging degradation and plastic strain damage for duplex stainless steel using SQUID sensor

    International Nuclear Information System (INIS)

    Otaka, M.; Evanson, S.; Hesegawa, K.; Takaku, K.

    1991-01-01

    An apparatus using a SQUID sensor is developed for nondestructive inspection. The measurements are obtained with the SQUID sensor located approximately 150 mm from the specimen. The degradation of thermal aging and plastic strain for duplex stainless steel is successfully detected independently from the magnetic characterization measurements. The magnetic flux density under high polarizing field is found to be independent of thermal aging. Coercive force increases with thermal aging time. On the other hand, the magnetic flux density under high field increases with the plastic strain. Coercive force is found to be independent of the plastic strain. (author)

  7. Direct training of robots using a positional deviation sensor

    OpenAIRE

    Dessen, Fredrik

    1988-01-01

    A device and system for physically guiding a manipulator through its task is described. The device consists of inductive, contact-free positional deviation sensors, enabling the rcbot to track a motion marker. Factors limiting the tracking performance are the kinematics of the sensor device and the bartdwidth of the servo system. Means for improving it includes the use of optimal motion coordination and force and velocity feedback. This enables real-time manual training o...

  8. A highly sensitive and durable electrical sensor for liquid ethanol using thermally-oxidized mesoporous silicon

    Science.gov (United States)

    Harraz, Farid A.; Ismail, Adel A.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S.

    2016-12-01

    A capacitive detection of liquid ethanol using reactive, thermally oxidized films constructed from electrochemically synthesized porous silicon (PSi) is demonstrated. The sensor elements are fabricated as meso-PSi (pore sizes hydrophobic PSi surface exhibited almost a half sensitivity of the thermal oxide sensor. The response to water is achieved only at the oxidized surface and found to be ∼one quarter of the ethanol sensitivity, dependent on parameters such as vapor pressure and surface tension. The capacitance response retains ∼92% of its initial value after continuous nine cyclic runs and the sensors presumably keep long-term stability after three weeks storage, demonstrating excellent durability and storage stability. The observed behavior in current system is likely explained by the interface interaction due to dipole moment effect. The results suggest that the current sensor structure and design can be easily made to produce notably higher sensitivities for reversible detection of various analytes.

  9. Pyrometer model based on sensor physical structure and thermal operation

    International Nuclear Information System (INIS)

    Sebastian, Eduardo; Armiens, Carlos; Gomez-Elvira, Javier

    2010-01-01

    This paper proposes a new simplified thermal model for pyrometers, which takes into account both their internal and external physical structure and operation. The model is experimentally tested on the REMS GTS, an instrument for measuring ground temperature, which is part of the payload of the NASA MSL mission to Mars. The proposed model is based on an energy balance equation that represents the heat fluxes exchanged between sensor elements through radiation, conduction and convection. Despite being mathematically more complex than the more commonly used model, the proposed model makes it possible to design a methodology to compensate the effects of sensor spatial thermal gradients. The paper includes a practical methodology for identifying model constants, which is part of the GTS instrument calibration plan and uses a differential approach to avoid setup errors. Experimental results of the model identification methodology and a target temperature measurement performance after identification has been made are reported. Results demonstrate the good behaviour of the model, with errors below 0.15 deg. C in target temperature estimates.

  10. Integrated fiber optical and thermal sensor for noninvasive monitoring of blood and human tissue

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schiffner, Gerhard

    2007-05-01

    A novel concept of noninvasive monitoring of human tissue and blood based on optical diffuse reflective spectroscopy combined with metabolic heat measurements has been under development. A compact integrated fiber optical and thermal sensor has been developed. The idea of the method was to evaluate by optical spectroscopy haemoglobin and derivative concentrations and supplement with data associated with the oxidative metabolism of glucose. Body heat generated by glucose oxidation is based on the balance of capillary glucose and oxygen supply to the cells. The variation in glucose concentration is followed also by a difference from a distance (or depth) of scattered through the body radiation. So, blood glucose can be estimated by measuring the body heat and the oxygen supply. The sensor pickup contains of halogen lamp and LEDs combined with fiber optical bundle to deliver optical radiation inside and through the patient body, optical and thermal detectors. Fiber optical probe allows diffuse scattering measurement down to a depth of 2.5 mm in the skin including vascular system, which contributes to the control of the body temperature. The sensor pickup measures thermal generation, heat balance, blood flow rate, haemoglobin and derivative concentrations, environmental conditions. Multivariate statistical analysis was applied to convert various signals from the sensor pickup into physicochemical variables. By comparing the values from the noninvasive measurement with the venous plasma result, analytical functions for patient were obtained. Cluster analysis of patient groups was used to simplify a calibration procedure. Clinical testing of developed sensor is being performed.

  11. Spin wave differential circuit for realization of thermally stable magnonic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Taichi, E-mail: goto@ee.tut.ac.jp; Kanazawa, Naoki; Buyandalai, Altansargai; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Okajima, Shingo; Hasegawa, Takashi [Murata Manufacturing Co., Ltd., Kyoto 617-8555 (Japan); Granovsky, Alexander B. [Faculty of Physics, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Sekiguchi, Koji [Department of Physics, Keio University, Yokohama 223-8522 (Japan); JST-PRESTO, Kawaguchi, Saitama 332-0012 (Japan); Ross, Caroline A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2015-03-30

    A magnetic-field sensor with a high sensitivity of 38 pT/Hz was demonstrated. By utilizing a spin-wave differential circuit (SWDC) using two yttrium iron garnet (YIG) films, the temperature sensitivity was suppressed, and the thermal stability of the phase of the spin waves was −0.0095° K{sup −1}, which is three orders of magnitude better than a simple YIG-based sensor, ∼20° K{sup −1}. The SWDC architecture opens the way to design YIG-based magnonic devices.

  12. Spin wave differential circuit for realization of thermally stable magnonic sensors

    International Nuclear Information System (INIS)

    Goto, Taichi; Kanazawa, Naoki; Buyandalai, Altansargai; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru; Okajima, Shingo; Hasegawa, Takashi; Granovsky, Alexander B.; Sekiguchi, Koji; Ross, Caroline A.

    2015-01-01

    A magnetic-field sensor with a high sensitivity of 38 pT/Hz was demonstrated. By utilizing a spin-wave differential circuit (SWDC) using two yttrium iron garnet (YIG) films, the temperature sensitivity was suppressed, and the thermal stability of the phase of the spin waves was −0.0095° K −1 , which is three orders of magnitude better than a simple YIG-based sensor, ∼20° K −1 . The SWDC architecture opens the way to design YIG-based magnonic devices

  13. MnNi-based spin valve sensors combining high thermal stability, small footprint and pTesla detectivities

    Science.gov (United States)

    Silva, Marília; Leitao, Diana C.; Cardoso, Susana; Freitas, Paulo

    2018-05-01

    Magnetoresistive sensors with high thermal robustness, low noise and high spatial resolution are the answer to a number of challenging applications. Spin valve sensors including MnNi as antiferromagnet layer provide higher exchange bias field and improved thermal stability. In this work, the influence of the buffer layer type (Ta, NiFeCr) and thickness on key sensor parameters (e.g. offset field, Hf) is investigated. A Ta buffer layer promotes a strong (111) texture which leads to a higher value of MR. In contrast, Hf is lower for NiFeCr buffer. Micrometric sensors display thermal noise levels of 1 nT/Hz1/2 and 571 pT/Hz1/2 for a sensor height (h) of 2 and 4 μm, respectively. The temperature dependence of MR and sensitivity is also addressed and compared with MnIr based spin valves. In this case, MR abruptly decreases after heating at 160°C (without magnetic field), contrary to MnNi-based spin valves, where only a 10% MR decrease (relative to the initial value) is seen at 275°C. Finally, to further decrease the noise levels and improve detectivity, MnNi spin-valves are deposited vertically, and connected in parallel and series (in-plane) to create a device with low resistance and high sensitivity. A field detection at thermal level of 346 pT/Hz1/2 is achieved for a device with a total of 300 SVs (4 vertical, 15 in series, 5 in parallel).

  14. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  15. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    Science.gov (United States)

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  16. SQUID position sensor development

    Science.gov (United States)

    Torii, Rodney

    1996-11-01

    I describe the development of an inductance position sensor for the STEP (satellite test of the equivalence principle) accelerometer. I have measured the inductance (with an experimental error of 0.5%) of a single-turn thin-film niobium pick-up coil as a function of the distance from a thin-film niobium disc (both at 4.2 K and superconducting). The circular pick-up coil had a diameter of 4 cm with a track width of 0264-9381/13/11A/022/img1. The disc (mock test mass) had a diameter of 4 cm. The distance range between the coil and disc was set by the range of a low-temperature differential capacitance sensor: 0 - 2 mm with a resolution of 0264-9381/13/11A/022/img2. The full range of the low-temperature translation stage was 0 - 4 mm. The inductance was measured using an LCR meter in a four-wire configuration. The measured inductance was compared to the inductance of a circular loop above a superconducting plane. Due to the fact that the thin-film disc is of finite size, the calculation differed from experiment by as much as 12%. I have also calculated the inductance by segmenting the thin-film niobium disc into 500 concentric rings (each with a width of 0264-9381/13/11A/022/img3). A discrepancy between calculation and experiment of approximately 3% was found.

  17. Thermally assisted sensor for conformity assessment of biodiesel production

    International Nuclear Information System (INIS)

    Kawano, M S; Kamikawachi, R C; Fabris, J L; Muller, M

    2015-01-01

    Although biodiesel can be intentionally tampered with, impairing its quality, ineffective production processes may also result in a nonconforming final fuel. For an incomplete transesterification reaction, traces of alcohol (ethanol or methanol) or remaining raw material (vegetable oil or animal fats) may be harmful to consumers, the environment or to engines. Traditional methods for biodiesel assessment are complex, time consuming and expensive, leading to the need for the development of new and more versatile processes for quality control. This work describes a refractometric fibre optic based sensor that is thermally assisted, developed to quantify the remaining methanol or vegetable oil in biodiesel blends. The sensing relies on a long period grating to configure an in-fibre interferometer. A complete analytical routine is demonstrated for the sensor allowing the evaluation of the biodiesel blends without segregation of the components. The results show the sensor can determine the presence of oil or methanol in biodiesel with a concentration ranging from 0% to 10% v/v. The sensor presented a resolution and standard combined uncertainty of 0.013% v/v and 0.62% v/v for biodiesel–oil samples, and 0.007% v/v and 0.22% v/v for biodiesel–methanol samples, respectively. (paper)

  18. Thermally assisted sensor for conformity assessment of biodiesel production

    Science.gov (United States)

    Kawano, M. S.; Kamikawachi, R. C.; Fabris, J. L.; Muller, M.

    2015-02-01

    Although biodiesel can be intentionally tampered with, impairing its quality, ineffective production processes may also result in a nonconforming final fuel. For an incomplete transesterification reaction, traces of alcohol (ethanol or methanol) or remaining raw material (vegetable oil or animal fats) may be harmful to consumers, the environment or to engines. Traditional methods for biodiesel assessment are complex, time consuming and expensive, leading to the need for the development of new and more versatile processes for quality control. This work describes a refractometric fibre optic based sensor that is thermally assisted, developed to quantify the remaining methanol or vegetable oil in biodiesel blends. The sensing relies on a long period grating to configure an in-fibre interferometer. A complete analytical routine is demonstrated for the sensor allowing the evaluation of the biodiesel blends without segregation of the components. The results show the sensor can determine the presence of oil or methanol in biodiesel with a concentration ranging from 0% to 10% v/v. The sensor presented a resolution and standard combined uncertainty of 0.013% v/v and 0.62% v/v for biodiesel-oil samples, and 0.007% v/v and 0.22% v/v for biodiesel-methanol samples, respectively.

  19. Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-05-01

    Full Text Available The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

  20. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    Science.gov (United States)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  1. Development of Magneto-Resistive Angular Position Sensors for Space Applications

    Science.gov (United States)

    Hahn, Robert; Langendorf, Sven; Seifart, Klaus; Slatter, Rolf; Olberts, Bastian; Romera, Fernando

    2015-09-01

    Magnetic microsystems in the form of magneto- resistive (MR) sensors are firmly established in automobiles and industrial applications. They measure path, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In a recent assessment study performed by HTS GmbH and Sensitec GmbH under ESA Contract a market survey has confirmed that space industry has a very high interest in novel, contactless position sensors based on MR technology. Now, a detailed development stage is pursued, to advance the sensor design up to Engineering Qualification Model (EQM) level and to perform qualification testing for a representative pilot space application.The paper briefly reviews the basics of magneto- resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The results of the assessment study are presented and potential applications and uses of contactless magneto-resistive angular sensors for spacecraft are identified. The baseline mechanical and electrical sensor design will be discussed. An outlook on the EQM development and qualification tests is provided.

  2. Operation of transition-edge sensors with excess thermal noise

    International Nuclear Information System (INIS)

    Maasilta, I J; Kinnunen, K M; Nuottajaervi, A K; Leppaeniemi, J; Luukanen, A

    2006-01-01

    The superconducting transition-edge sensor (TES) is currently one of the most attractive choices for ultra-high resolution calorimetry in the keV x-ray band, and is being considered for future ESA and NASA missions. We have performed a study on the noise characteristics of Au/Ti bilayer TESs, at operating temperatures around ∼100 mK, with the SQUID readout at 1.5 K. Experimental results indicate that without modifications the back-action noise from the SQUID chip degrades the noise characteristics significantly. We present a simple and effective solution to the problem: by installing an extra shunt resistor which absorbs the excess radiation from the SQUID input, we have reduced the excess thermal (photon) noise power down by approximately a factor of five, allowing high resolution operation of the sensors

  3. Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years

    Science.gov (United States)

    Georgianne W. Moore; Barbara J. Bond; Julia A. Jones; Frederick C. Meinzer

    2010-01-01

    Sap flow techniques, such as thermal dissipation, involve an empirically derived relationship between sap flux and the temperature differential between a heated thermocouple and a nearby reference thermocouple inserted into the sapwood. This relationship has been widely tested but mostly with newly installed sensors. Increasingly, sensors are used for extended periods...

  4. Investigation of the sensitivity of MIS-sensor to thermal decomposition products of cables insulation

    Science.gov (United States)

    Filipchuk, D. V.; Litvinov, A. V.; Etrekova, M. O.; Nozdrya, D. A.

    2017-12-01

    Sensitivity of the MIS-sensor to products of thermal decomposition of insulation and jacket of the most common types of cables is investigated. It is shown that hydrogen is evolved under heating the insulation to temperatures not exceeding 250 °C. Registration of the evolved hydrogen by the MIS-sensor can be used for detection of fires at an early stage.

  5. Energy Efficient Position-Based Three Dimensional Routing for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jeongdae Kim

    2008-04-01

    Full Text Available In this paper, we focus on an energy efficient position-based three dimensional (3D routing algorithm using distance information, which affects transmission power consumption between nodes as a metric. In wireless sensor networks, energy efficiency is one of the primary objectives of research. In addition, recent interest in sensor networks is extended to the need to understand how to design networks in a 3D space. Generally, most wireless sensor networks are based on two dimensional (2D designs. However, in reality, such networks operate in a 3D space. Since 2D designs are simpler and easier to implement than 3D designs for routing algorithms in wireless sensor networks, the 2D assumption is somewhat justified and usually does not lead to major inaccuracies. However, in some applications such as an airborne to terrestrial sensor networks or sensor networks, which are deployed in mountains, taking 3D designs into consideration is reasonable. In this paper, we propose the Minimum Sum of Square distance (MSoS algorithm as an energy efficient position-based three dimensional routing algorithm. In addition, we evaluate and compare the performance of the proposed routing algorithm with other algorithms through simulation. Finally, the results of the simulation show that the proposed routing algorithm is more energy efficient than other algorithms in a 3D space.

  6. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-10-01

    Full Text Available Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  7. Second-Generation Thermal Neutron Activation Sensor for Confirmatory Land-Mine Detection

    International Nuclear Information System (INIS)

    Edward Clifford; Harry Ing; John McFee; H. Robert Andrews; Tom Cousins

    2000-01-01

    This paper describes the development of the Improved Land-Mine Detector System (ILDS), a vehicle-mounted nonmetallic land-mine detector. The ILDS consists of a custom teleoperated vehicle carrying an infrared imager, an electromagnetic induction detector, and a ground probing radar-which scan the ground in front of the vehicle. Custom navigation and data fusion software combine information from scanning sensors and navigation systems to detect and automatically track suspect targets until the confirmation detector at the rear of the system is positioned to within 30 cm of the target location. The confirmation detector, using thermal neutron activation (TNA) to detect bulk nitrogen in explosives, then dwells over the target for 10 to 120 s. In U.S. government tests (summer 1998), the ILDS advanced development model (ADM) placed first or second out of five competitors on every test. The construction of the second-generation TNA detector and preliminary testing should be complete by March 2000. Testing on real mines is expected to start in summer 2000

  8. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-02-01

    Full Text Available This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.

  9. Design, Development and Testing of a Semicircular Type Capacitive Angular Position Sensor

    Directory of Open Access Journals (Sweden)

    Nikhil GAURAV

    2011-06-01

    Full Text Available A low cost semicircular type capacitive angular position sensor has been designed, developed and tested. It is made of two semicircular parallel plates where one plate is fixed and another plate is connected with the rotor whose angular position is to be measured. When the angular position of the rotor changes with respect to the fixed plate, the overlapping area between the two plates of the capacitor is varied causing a change in capacitance value. Capacitance variation obtained due to the change in angular position is in the nano farad range. For signal conditioning, series R-L-C resonating circuit instead of conventional bridge circuit has been used to convert the sensor capacitance variation in to voltage. Experimental result shows that the capacitance for change in angular position 0º-180º increases linearly and for 180º-360º it decreases linearly. To get a linearly increasing response of same slope for the full scale of 0º-360º, a suitable linearising circuit has been designed, developed and tested. Sensor output along with the signal conditioning shows good linearity and repeatability.

  10. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing.

    Science.gov (United States)

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-04-06

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method.

  11. Thermal detection mechanism of SiC based hydrogen resistive gas sensors

    Science.gov (United States)

    Fawcett, Timothy J.; Wolan, John T.; Lloyd Spetz, Anita; Reyes, Meralys; Saddow, Stephen E.

    2006-10-01

    Silicon carbide (SiC) resistive hydrogen gas sensors have been fabricated and tested. Planar NiCr contacts were deposited on a thin 3C-SiC epitaxial film grown on thin Si wafers bonded to polycrystalline SiC substrates. At 673K, up to a 51.75±0.04% change in sensor output current and a change in the device temperature of up to 163.1±0.4K were demonstrated in response to 100% H2 in N2. Changes in device temperature are shown to be driven by the transfer of heat from the device to the gas, giving rise to a thermal detection mechanism.

  12. ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package

    Science.gov (United States)

    Jaggi, S.

    1993-01-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.

  13. High sensitivity thermal sensors on insulating diamond

    Energy Technology Data Exchange (ETDEWEB)

    Job, R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Denisenko, A.V. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Zaitsev, A.M. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Melnikov, A.A. [Belarussian State Univ., Minsk (Belarus). HEII and FD; Werner, M. [VDI/VDE-IT, Teltow (Germany); Fahrner, W.R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices

    1996-12-15

    Diamond is a promising material to develop sensors for applications in harsh environments. To increase the sensitivity of diamond temperature sensors the effect of thermionic hole emission (TE) over an energetic barrier formed in the interface between highly boron-doped p-type and intrinsic insulating diamond areas has been suggested. To study the TE of holes a p-i-p diode has been fabricated and analyzed by electrical measurements in the temperature range between 300 K and 700 K. The experimental results have been compared with numerical simulations of its electrical characteristics. Based on a model of the thermionic emission of carriers into an insulator it has been suggested that the temperature sensitivity of the p-i-p diode on diamond is strongly affected by the re-emission of holes from a group of donor-like traps located at a level of 0.7-1.0 eV above the valence band. The mechanism of thermal activation of the current includes a spatial redistribution of the potential, which results in the TE regime from a decrease of the immobilized charge of the ionized traps within the i-zone of the diode and the correspondent lowering of the forward biased barrier. The characteristics of the p-i-p diode were studied with regard to temperature sensor applications. The temperature coefficient of resistance (TCR=-0.05 K{sup -1}) for temperatures above 600 K is about four times larger than the maximal attainable TCR for conventional boron-doped diamond resistors. (orig.)

  14. A high precision position sensor design and its signal processing algorithm for a maglev train.

    Science.gov (United States)

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  15. A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train

    Directory of Open Access Journals (Sweden)

    Wensen Chang

    2012-04-01

    Full Text Available High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  16. Untrimmed Low-Power Thermal Sensor for SoC in 22 nm Digital Fabrication Technology

    Directory of Open Access Journals (Sweden)

    Ro'ee Eitan

    2014-12-01

    Full Text Available Thermal sensors (TS are essential for achieving optimized performance and reliability in the era of nanoscale microprocessor and system on chip (SoC. Compiling with the low-power and small die area of the mobile computing, the presented TS supports a wide range of sampling frequencies with an optimized power envelope. The TS supports up to 45 K samples/s, low average power consumption, as low as 20 μW, and small core Si area of 0.013 mm2. Advanced circuit techniques are used in order to overcome process variability, ensuring inaccuracy lower than ±2 °C without any calibration. All this makes the presented thermal sensor a cost-effective, low-power solution for 22 nm nanoscale digital process technology.

  17. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    Science.gov (United States)

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  18. Evaluation of risk and benefit in thermal effusivity sensor for monitoring lubrication process in pharmaceutical product manufacturing.

    Science.gov (United States)

    Uchiyama, Jumpei; Kato, Yoshiteru; Uemoto, Yoshifumi

    2014-08-01

    In the process design of tablet manufacturing, understanding and control of the lubrication process is important from various viewpoints. A detailed analysis of thermal effusivity data in the lubrication process was conducted in this study. In addition, we evaluated the risk and benefit in the lubrication process by a detailed investigation. It was found that monitoring of thermal effusivity detected mainly the physical change of bulk density, which was changed by dispersal of the lubricant and the coating powder particle by the lubricant. The monitoring of thermal effusivity was almost the monitoring of bulk density, thermal effusivity could have a high correlation with tablet hardness. Moreover, as thermal effusivity sensor could detect not only the change of the conventional bulk density but also the fractional change of thermal conductivity and thermal capacity, two-phase progress of lubrication process could be revealed. However, each contribution of density, thermal conductivity, or heat capacity to thermal effusivity has the risk of fluctuation by formulation. After carefully considering the change factor with the risk to be changed by formulation, thermal effusivity sensor can be a useful tool for monitoring as process analytical technology, estimating tablet hardness and investigating the detailed mechanism of the lubrication process.

  19. A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Liu, Hui

    2016-01-01

    Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estim...

  20. Impact of Soil Water Content on Landmine Detection Using Radar and Thermal Infrared Sensors

    National Research Council Canada - National Science Library

    Hong, Sung-ho

    2001-01-01

    .... The most important of these is water content since it directly influences the three other properties in this study, the ground penetrating radar and thermal infrared sensors were used to identify non...

  1. Manufacturing of thermal neutron sensor using pMOS

    International Nuclear Information System (INIS)

    Lee, Nam Ho; Kim, Seung Ho

    2005-05-01

    A pMOSFET sensor having a Gadolinium converter has been invented successfully as a slow neutron sensor that is sensitive to neutron energy down to 0.025 eV. The Gd layer converts low energy neutrons to ionizing radiation of which the amount is proportional to neutron dose. Ionising radiation from neutron reactions changes the charge state of the gate oxide of the pMOSFET. The Gd-pMOSFETs were tested at a neutron beam port of HANARO research reactor and a 60 CO irradiation facility to investigate slow neutron response and gamma response, respectively. The voltage change was proportional to the accumulated slow neutron dose. The results from Gd coupled MOSFET neutron dosemeters shows an excellent sensitivity (15 - 16mV/cGy) and linearity to thermal neutrons with negligible background contamination. The results demonstrate the outstanding performance of the Gd coupled MOSFET neutron dosemeters clearly. The Gd-pMOSFET can also be used in a mixed radiation field by subtracting the voltage change of a pMOSFET without Gd from that of the Gd-pMOSFET

  2. SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared

    Science.gov (United States)

    Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.

    2012-07-01

    During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.

  3. Thermally Optimized Paradigm of Thermal Management (TOP-M)

    Science.gov (United States)

    2017-07-18

    19b. TELEPHONE NUMBER (Include area code) 18-07-2017 Final Technical Jul 2015 - Jul 2017 NICOP - Thermally Optimized Paradigm of Thermal Management ...The main goal of this research was to present a New Thermal Management Approach, which combines thermally aware Very/Ultra Large Scale Integration...SPAD) image sensors were used to demonstrate the new thermal management approach. Thermal management , integrated temperature sensors, Vt extractor

  4. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning

    Directory of Open Access Journals (Sweden)

    Xu Li

    2016-05-01

    Full Text Available In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF and an auxiliary H∞ filter (AHF. Finally, a generalized regression neural network (GRNN module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.

  5. Low Thermal Conductance Transition Edge Sensor (TES) for SPICA

    International Nuclear Information System (INIS)

    Khosropanah, P.; Dirks, B.; Kuur, J. van der; Ridder, M.; Bruijn, M.; Popescu, M.; Hoevers, H.; Gao, J. R.; Morozov, D.; Mauskopf, P.

    2009-01-01

    We fabricated and characterized low thermal conductance transition edge sensors (TES) for SAFARI instrument on SPICA. The device is based on a superconducting Ti/Au bilayer deposited on suspended SiN membrane. The critical temperature of the device is 113 mK. The low thermal conductance is realized by using long and narrow SiN supporting legs. All measurements were performed having the device in a light-tight box, which to a great extent eliminates the loading of the background radiation. We measured the current-voltage (IV) characteristics of the device in different bath temperatures and determine the thermal conductance (G) to be equal to 320 fW/K. This value corresponds to a noise equivalent power (NEP) of 3x10 -19 W/√(Hz). The current noise and complex impedance is also measured at different bias points at 55 mK bath temperature. The measured electrical (dark) NEP is 1x10 -18 W/√(Hz), which is about a factor of 3 higher than what we expect from the thermal conductance that comes out of the IV curves. Despite using a light-tight box, the photon noise might still be the source of this excess noise. We also measured the complex impedance of the same device at several bias points. Fitting a simple first order thermal-electrical model to the measured data, we find an effective time constant of about 2.7 ms and a thermal capacity of 13 fJ/K in the middle of the transition.

  6. Surface Embedded Metal Oxide Sensors (SEMOS)

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Talat Ali, Syed; Pleth Nielsen, Lars

    SEMOS is a joint project between Aalborg University, Danish Technological Institute and Danish Technical University in which micro temperature sensors and metal oxide-based gas sensors are developed and tested in a simulated fuel cell environment as well as in actual working fuel cells. Initially......, sensors for measuring the temperatures in an operating HT-PEM (High Temperature-Proton Exchange Membrane) fuel cell are developed for detecting in-plane temperature variations. 5 different tracks for embedded thermal sensors are investigated. The fuel cell MEA (Membrane Electrode Assembly) is quite...... complex and sensors are not easily implemented in the construction. Hence sensor interface and sensor position must therefore be chosen carefully in order to make the sensors as non-intrusive as possible. Metal Oxide Sensors (MOX) for measuring H2, O2 and CO concentration in a fuel cell environment...

  7. A Compact Inductive Position Sensor Made by Inkjet Printing Technology on a Flexible Substrate

    Directory of Open Access Journals (Sweden)

    Nataša Samardžić

    2012-01-01

    Full Text Available This paper describes the design, simulation and fabrication of an inductive angular position sensor on a flexible substrate. The sensor is composed of meandering silver coils printed on a flexible substrate (Kapton film using inkjet technology. The flexibility enables that after printing in the plane, the coils could be rolled and put inside each other. By changing the angular position of the internal coil (rotor related to the external one (stator, the mutual inductance is changed and consequently the impedance. It is possible to determine the angular position from the measured real and imaginary part of the impedance, in our case in the frequency range from 1 MHz to 10 MHz. Experimental results were compared with simulation results obtained by in-house developed software tool, and very good agreement has been achieved. Thanks to the simple design and fabrication, smaller package space requirements and weight, the presented sensor represents a cost-effective alternative to the other sensors currently used in series production applications.

  8. Robust Adaptive Beamforming with Sensor Position Errors Using Weighted Subspace Fitting-Based Covariance Matrix Reconstruction.

    Science.gov (United States)

    Chen, Peng; Yang, Yixin; Wang, Yong; Ma, Yuanliang

    2018-05-08

    When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.

  9. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis.

    Science.gov (United States)

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  10. Optimal Design of the Absolute Positioning Sensor for a High-Speed Maglev Train and Research on Its Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Junge Zhang

    2012-08-01

    Full Text Available This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  11. Multidimensional inverse heat conduction problem: optimization of sensor locations and utilization of thermal-strain measurements

    International Nuclear Information System (INIS)

    Blanc, Gilles

    1996-01-01

    This work is devoted to the solution of the inverse multidimensional heat conduction problem. The first part is the determination of a methodology for determining the minimum number of sensors and the best sensor locations. The method is applied to a 20 problem but the extension to 30 problems is quite obvious. This methodology is based on the study of the rate of representation. This new concept allows to determine the quantity and the quality of the information obtain from the various sensors. The rate of representation is a useful tool for experimental design. lt can be determined very quickly by the transposed matrix method. This approach was validated with an experimental set-up. The second part is the development of a method that uses thermal strain measurement instead of temperature measurements to estimate the unknown thermal boundary conditions. We showed that this new sensor has two advantages in comparison with the classical temperature measurements: higher frequency can be estimated and smaller number of sensors can be used for 20 problems. The main weakness is, presently, the fact that the method can only be applied to beams. The results obtained from the numerical simulations were validated by the analysis of experimental data obtained on an experimental set-up especially designed and built for this study. (author) [fr

  12. SAR and thermal response effects of a two-arm Archimedean spiral coil in a magnetic induction sensor on a human head.

    Science.gov (United States)

    Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Ding, Liang

    2015-01-01

    This study investigates the radiation safety of a newly designed magnetic induction sensor. This novel magnetic induction sensor uses a two-arm Archimedean spiral coil (TAASC) as the exciter. A human head model with a real anatomical structure was used to calculate the specific absorption rate (SAR) and temperature change. Computer Simulation Technology (CST) was used to determine the values of the peak 10-g SAR under different operating parameters (current, frequency, horizontal distance between the excitation coil and the receiver coil, vertical distance between the top of the head model and the XOY plane, position of excitation coil, and volume of hemorrhage). Then, the highest response for the SAR and temperature rise was determined. The results showed that this new magnetic induction sensor is safe in the initial state; for safety reasons, the TAASC current should not exceed 4 A. The scalp tissue absorbed most of the electromagnetic energy. The TAASC's SAR/thermal performance was close to that of the circular coil.

  13. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    Science.gov (United States)

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-03-27

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  14. Development of thermal actuators with multi-locking positions

    Science.gov (United States)

    Luo, J. K.; Zhu, Y.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Miao, J. M.; Milne, W. I.

    2006-04-01

    To reduce power consumption and operation temperature for micro-thermal actuators, metal-based micro-mechanical locks with multi-locking positions were analyzed and fabricated. The micro-locks consist of two or three U-shaped thermal actuators. The devices were made by a single mask process using electroplated Ni as the active material. Tests showed that the metal based thermal actuators deliver a maximum displacement of ~20µm at a much lower temperature than that of Si-based actuators. However Ni-actuators showed a severe back bending, which increases with increasing applied power. The temperature to initiate the back bending is as low as ~240°C. Back bending increases the distance between the two actuators, and leads to locking function failure. For practical application, Ni-based thermal actuators must be operated below 200°C.

  15. Airborne Sensor Thermal Management Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  16. POSITIONING BASED ON INTEGRATION OF MUTI-SENSOR SYSTEMS USING KALMAN FILTER AND LEAST SQUARE ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    M. Omidalizarandi

    2013-09-01

    Full Text Available Sensor fusion is to combine different sensor data from different sources in order to make a more accurate model. In this research, different sensors (Optical Speed Sensor, Bosch Sensor, Odometer, XSENS, Silicon and GPS receiver have been utilized to obtain different kinds of datasets to implement the multi-sensor system and comparing the accuracy of the each sensor with other sensors. The scope of this research is to estimate the current position and orientation of the Van. The Van's position can also be estimated by integrating its velocity and direction over time. To make these components work, it needs an interface that can bridge each other in a data acquisition module. The interface of this research has been developed based on using Labview software environment. Data have been transferred to PC via A/D convertor (LabJack and make a connection to PC. In order to synchronize all the sensors, calibration parameters of each sensor is determined in preparatory step. Each sensor delivers result in a sensor specific coordinate system that contains different location on the object, different definition of coordinate axes and different dimensions and units. Different test scenarios (Straight line approach and Circle approach with different algorithms (Kalman Filter, Least square Adjustment have been examined and the results of the different approaches are compared together.

  17. The linear variable differential transformer (LVDT) position sensor for gravitational wave interferometer low-frequency controls

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, Hareem E-mail: htariq@ligo.caltech.edu; Takamori, Akiteru; Vetrano, Flavio; Wang Chenyang; Bertolini, Alessandro; Calamai, Giovanni; DeSalvo, Riccardo; Gennai, Alberto; Holloway, Lee; Losurdo, Giovanni; Marka, Szabolcs; Mazzoni, Massimo; Paoletti, Federico; Passuello, Diego; Sannibale, Virginio; Stanga, Ruggero

    2002-08-21

    Low-power, ultra-high-vacuum compatible, non-contacting position sensors with nanometer resolution and centimeter dynamic range have been developed, built and tested. They have been designed at Virgo as the sensors for low-frequency modal damping of Seismic Attenuation System chains in Gravitational Wave interferometers and sub-micron absolute mirror positioning. One type of these linear variable differential transformers (LVDTs) has been designed to be also insensitive to transversal displacement thus allowing 3D movement of the sensor head while still precisely reading its position along the sensitivity axis. A second LVDT geometry has been designed to measure the displacement of the vertical seismic attenuation filters from their nominal position. Unlike the commercial LVDTs, mostly based on magnetic cores, the LVDTs described here exert no force on the measured structure.

  18. Position sensor for linear synchronous motors employing halbach arrays

    Science.gov (United States)

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  19. Thermal properties of calorimeters with Ti/Au transition-edge sensors on silicon nitride membranes

    International Nuclear Information System (INIS)

    Ukibe, M.; Tanaka, K.; Koyanagi, M.; Morooka, T.; Pressler, H.; Ohkubo, M.; Kobayashi, N.

    2000-01-01

    We are developing X-ray microcalorimeters employing superconducting-transition-edge sensors (TESs) for relatively high operation-temperatures of an 3 He cryostat. The TESs are proximity bilayers of Ti and Au. An important thermal parameters, the thermal conductance G, of the microcalorimeters on SiN x membranes was evaluated by a simple method using R-T curves at different bias currents. It has been shown that the G value can be controlled by altering the membrane thickness and size

  20. n+ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhang

    2017-06-01

    Full Text Available To achieve radio frequency (RF power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively.

  1. Study of thermal - hydraulic sensors signal fluctuations in PWR

    International Nuclear Information System (INIS)

    Hennion, F.

    1987-10-01

    This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions [fr

  2. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    Science.gov (United States)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  3. Determination of lateral diffusivity in single pixel X-ray absorbers with implications for position dependent excess broadening

    International Nuclear Information System (INIS)

    Saab, T.; Figueroa-Feliciano, E.; Iyomoto, N.; Herbert, B.D.; Bandler, S.R.; Chervenak, J.; Finkbeiner, F.; Kelley, R.L.; Kilbourne, C.A.; Porter, F.S.; Sadleir, J.

    2006-01-01

    An ideal microcalorimeter is characterized by a constant energy resolution across the sensor's dynamic range. Any dependence of pulse shape on the position within the absorber where an event occurs leads to a degradation in resolution that is linear with event's energy (excess broadening). In this paper we present a numerical simulation that was developed to model the variation in pulse shape with position based on the thermal conductivity within the absorber and between the absorber, sensor, and heat bath, for arbitrarily shaped absorbers and sensors. All the parameters required for the simulation can be measured from actual devices. We describe how the thermal conductivity of the absorber material is determined by comparing the results of this model with data taken from a position sensitive detector in which any position dependent effect is purposely emphasized by constructing a long, narrow absorber that is readout by sensors on both ends. Finally, we present the implications for excess broadening given the measured parameters of our X-ray microcalorimeters

  4. Performance Evaluation of an Indoor Positioning Scheme Using Infrared Motion Sensors

    Directory of Open Access Journals (Sweden)

    Changqiang Jing

    2014-10-01

    Full Text Available Internet of Things (IoT for Smart Environments (SE is a new scenario that collects useful information and provides convenient services to humans via sensing and wireless communications. Infra-Red (IR motion sensors have recently been widely used for indoor lighting because they allow the system to detect whether a human is inside or outside the sensors’ range. In this paper, the performance of a position estimation scheme based on IR motion sensor is evaluated in an indoor SE. The experimental results show that we can track the dynamic position of a pedestrian in straight moving model as well as two dimensional models. Experimental results also show that higher performance in accuracy and dynamic tracking in real indoor environment can be achieved without other devices.

  5. Thermal behavior of the Medicina 32-meter radio telescope

    Science.gov (United States)

    Pisanu, Tonino; Buffa, Franco; Morsiani, Marco; Pernechele, Claudio; Poppi, Sergio

    2010-07-01

    We studied the thermal effects on the 32 m diameter radio-telescope managed by the Institute of Radio Astronomy (IRA), Medicina, Bologna, Italy. The preliminary results show that thermal gradients deteriorate the pointing performance of the antenna. Data has been collected by using: a) two inclinometers mounted near the elevation bearing and on the central part of the alidade structure; b) a non contact laser alignment optical system capable of measuring the secondary mirror position; c) twenty thermal sensors mounted on the alidade trusses. Two series of measurements were made, the first series was performed by placing the antenna in stow position, the second series was performed while tracking a circumpolar astronomical source. When the antenna was in stow position we observed a strong correlation between the inclinometer measurements and the differential temperature. The latter was measured with the sensors located on the South and North sides of the alidade, thus indicating that the inclinometers track well the thermal deformation of the alidade. When the antenna pointed at the source we measured: pointing errors, the inclination of the alidade, the temperature of the alidade components and the subreflector position. The pointing errors measured on-source were 15-20 arcsec greater than those measured with the inclinometer.

  6. Sap flow is Underestimated by Thermal Dissipation Sensors due to Alterations of Wood Anatomy

    Science.gov (United States)

    Marañón-Jiménez, S.; Wiedemann, A.; van den Bulcke, J.; Cuntz, M.; Rebmann, C.; Steppe, K.

    2014-12-01

    The thermal dissipation technique (TD) is one of the most commonly adopted methods for sap flow measurements. However, underestimations of up to 60% of the tree transpiration have been reported with this technique, although the causes are not certainly known. The insertion of TD sensors within the stems causes damage of the wood tissue and subsequent healing reactions, changing wood anatomy and likely the sap flow path. However, the anatomical changes in response to the insertion of sap flow sensors and the effects on the measured flow have not been assessed yet. In this study, we investigate the alteration of vessel anatomy on wounds formed around TD sensors. Our main objectives were to elucidate the anatomical causes of sap flow underestimation for ring-porous and diffuse-porous species, and relate these changes to sap flow underestimations. Successive sets of TD probes were installed in early, mid and end of the growing season in Fagus sylvatica (diffuse-porous) and Quercus petraea (ring-porous) trees. They were logged after the growing season and additional sets of sensors were installed in the logged stems with presumably no healing reaction. The wood tissue surrounding each sensor was then excised and analysed by X-ray computed microtomography (X-ray micro CT). This technique allowed the quantification of vessel anatomical characteristics and the reconstruction of the 3-D internal microstructure of the xylem vessels so that extension and shape of the altered area could be determined. Gels and tyloses clogged the conductive vessels around the sensors in both beech and oak. The extension of the affected area was larger for beech although these anatomical changes led to similar sap flow underestimations in both species. The higher vessel size in oak may explain this result and, therefore, larger sap flow underestimation per area of affected conductive tissue. The wound healing reaction likely occurred within the first weeks after sensor installation, which

  7. Distributed transition-edge sensors for linearized position response in a phonon-mediated X-ray imaging spectrometer

    Science.gov (United States)

    Cabrera, Blas; Brink, Paul L.; Leman, Steven W.; Castle, Joseph P.; Tomada, Astrid; Young, Betty A.; Martínez-Galarce, Dennis S.; Stern, Robert A.; Deiker, Steve; Irwin, Kent D.

    2004-03-01

    For future solar X-ray satellite missions, we are developing a phonon-mediated macro-pixel composed of a Ge crystal absorber with four superconducting transition-edge sensors (TES) distributed on the backside. The X-rays are absorbed on the opposite side and the energy is converted into phonons, which are absorbed into the four TES sensors. By connecting together parallel elements into four channels, fractional total energy absorbed between two of the sensors provides x-position information and the other two provide y-position information. We determine the optimal distribution for the TES sub-elements to obtain linear position information while minimizing the degradation of energy resolution.

  8. Position control of ECRH launcher mirrors by laser speckle sensor

    International Nuclear Information System (INIS)

    Michelsen, Poul K.; Bindslev, Henrik; Hansen, Rene Skov; Hanson, Steen G.

    2003-01-01

    The planned ECRH system for JET included several fixed and steerable mirrors some of which should have been fixed to the building structure and some to the JET vessel structure. A similar system may be anticipated for ITER and for other fusion devices in the future. In order to have high reproducibility of the ECRH beam direction, it is necessary to know the exact positions of the mirrors. This is not a trivial problem because of thermal expansion of the vessel structures and of the launcher itself and of its support structure, the mechanical load on mirrors and support structures, and the accessibility to the various mirrors. We suggest to use a combination of infrared diagnostic of beam spot positions and a new technique published recently, which is based on a non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement. The method is based on Fourier transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the target is linearly mapped onto an array image sensor placed in the Fourier plane. Measuring the displacement of this so-called speckle pattern facilitates the determination of the mirror orientation. Transverse target movement can be measured by observing the speckle movement in the image plane of the object. No special surface treatment is required for surfaces having irregularities of the order of or larger than the wavelength of the incident light. For the JET ECRH launcher it is mainly for the last mirror pointing towards the plasma where the technique may be useful. This mirror has to be steerable in order to reflect the microwave beam in the correct direction towards the plasma. Maximum performance of the microwave heating requires that the beam hits this mirror at its centre and that the mirror is turned in the correct angle. Inaccuracies in the positioning of the pull rods for controlling the mirror turning and thermal effects makes it

  9. Two transparent optical sensors for the positioning of detectors using a reference laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, J.Ch.; Blumenfeld, H.; Bourdinaud, M.; Cloue, O.; Guyot, C.; Molinie, F.; Ponsot, P.; Saudemont, J.C.; Schuller, J.P.; Schune, Ph.; Sube, S. [CEA Saclay, 91 - Gif sur Yvette (France). Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee

    1999-07-01

    We have developed two different optical systems in order to position detectors with respect to a reference laser beam. The first system, a telescope, permits the absolute positioning of an element with respect to a reference laser beam. The resolution is of the order of 10 {mu}m in translation and 50 {mu}rad in rotation. It is highly transparent (-90%) permitting several elements to be aligned. A calibration procedure has also been studied and is currently being tested in order to obtain an absolute alignment information. The second system is a highly transparent (95%) two dimensional position sensor which allows the accurate positioning (below 20 {mu}m) of several (up to ten) elements to which each sensor is attached, transversally to a laser beam used as a reference straight line. The present useful area of the first sensor is 20 x 20 mm{sup 2} and is 15 x 15 mm{sup 2} for the second. In both case it can be further increased to meet the experiment's requirement. (authors)

  10. Two transparent optical sensors for the positioning of detectors using a reference laser beam

    International Nuclear Information System (INIS)

    Barriere, J.Ch.; Blumenfeld, H.; Bourdinaud, M.; Cloue, O.; Guyot, C.; Molinie, F.; Ponsot, P.; Saudemont, J.C.; Schuller, J.P.; Schune, Ph.; Sube, S.

    1999-01-01

    We have developed two different optical systems in order to position detectors with respect to a reference laser beam. The first system, a telescope, permits the absolute positioning of an element with respect to a reference laser beam. The resolution is of the order of 10 μm in translation and 50 μrad in rotation. It is highly transparent (-90%) permitting several elements to be aligned. A calibration procedure has also been studied and is currently being tested in order to obtain an absolute alignment information. The second system is a highly transparent (95%) two dimensional position sensor which allows the accurate positioning (below 20 μm) of several (up to ten) elements to which each sensor is attached, transversally to a laser beam used as a reference straight line. The present useful area of the first sensor is 20 x 20 mm 2 and is 15 x 15 mm 2 for the second. In both case it can be further increased to meet the experiment's requirement. (authors)

  11. Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles

    Directory of Open Access Journals (Sweden)

    Fabian de Ponte Müller

    2017-01-01

    Full Text Available Future driver assistance systems will rely on accurate, reliable and continuous knowledge on the position of other road participants, including pedestrians, bicycles and other vehicles. The usual approach to tackle this requirement is to use on-board ranging sensors inside the vehicle. Radar, laser scanners or vision-based systems are able to detect objects in their line-of-sight. In contrast to these non-cooperative ranging sensors, cooperative approaches follow a strategy in which other road participants actively support the estimation of the relative position. The limitations of on-board ranging sensors regarding their detection range and angle of view and the facility of blockage can be approached by using a cooperative approach based on vehicle-to-vehicle communication. The fusion of both, cooperative and non-cooperative strategies, seems to offer the largest benefits regarding accuracy, availability and robustness. This survey offers the reader a comprehensive review on different techniques for vehicle relative positioning. The reader will learn the important performance indicators when it comes to relative positioning of vehicles, the different technologies that are both commercially available and currently under research, their expected performance and their intrinsic limitations. Moreover, the latest research in the area of vision-based systems for vehicle detection, as well as the latest work on GNSS-based vehicle localization and vehicular communication for relative positioning of vehicles, are reviewed. The survey also includes the research work on the fusion of cooperative and non-cooperative approaches to increase the reliability and the availability.

  12. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  13. n⁺ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC.

    Science.gov (United States)

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-06-17

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.

  14. Advanced Wireless Sensor Nodes - MSFC

    Science.gov (United States)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  15. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    Science.gov (United States)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  16. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2016-05-01

    Full Text Available A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range.

  17. An innovative method to calibrate a spinner anemometer without the use of yaw position sensor

    Directory of Open Access Journals (Sweden)

    G. Demurtas

    2016-09-01

    Full Text Available A spinner anemometer can be used to measure the yaw misalignment and flow inclination experienced by a wind turbine. Previous calibration methods used to calibrate a spinner anemometer for flow angle measurements were based on measurements of a spinner anemometer with default settings (arbitrary values, generally k1,d  =  1 and k2,d  =  1 and a reference yaw misalignment signal measured with a yaw position sensor. The yaw position sensor is normally present in wind turbines for control purposes; however, such a signal is not always available for a spinner anemometer calibration. Therefore, an additional yaw position sensor was installed prior to the spinner anemometer calibration. An innovative method to calibrate the spinner anemometer without a yaw positions sensor was then developed. It was noted that a non-calibrated spinner anemometer that overestimates (underestimates the inflow angle will also overestimate (underestimate the wind speed when there is a yaw misalignment. The new method leverages the non-linearity of the spinner anemometer algorithm to find the calibration factor Fα by an optimization process that minimizes the dependency of the wind speed on the yaw misalignment. The new calibration method was found to be rather robust, with Fα values within ±2.7 % of the mean value for four successive tests at the same rotor position.

  18. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment

    CERN Document Server

    Danisi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 μm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic im...

  19. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    Science.gov (United States)

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  20. Optimum Position of Acoustic Emission Sensors for Ship Hull Structural Health Monitoring Based on Deep Machine Learning

    DEFF Research Database (Denmark)

    Kappatos, Vassilios; Karvelis, Petros; Georgoulas, George

    2018-01-01

    In this paper a method for the estimation of the optimum sensor positions for acoustic emission localization on ship hull structures is presented. The optimum sensor positions are treated as a classification (localization) problem based on a deep learning paradigm. In order to avoid complex...

  1. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  2. Study of eddy current power loss from outer-winding coils of a magnetic position sensor

    International Nuclear Information System (INIS)

    Liu, C.-P.; Lin, T.-K.; Chang, Y.-H.; Yu, C.-S.; Wu, K.-T.; Wang, S.-J.; Ying, T.-F.; Huang, D.-R.

    2000-01-01

    The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model

  3. Study of eddy current power loss from outer-winding coils of a magnetic position sensor

    CERN Document Server

    Liu, C P; Chang, Y H; Yu, C S; Wu, K T; Wang, S J; Ying, T F; Huang, D R

    2000-01-01

    The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model.

  4. Multi-Functional Sensor System for Heart Rate, Body Position and Movement Intensity Analysis

    Directory of Open Access Journals (Sweden)

    Michael MAO

    2008-12-01

    Full Text Available A novel multi-functional wearable sensor has been developed with multi-axis accelerometer, disposable hydro-gel electrodes, and analog filtering components. This novel sensor implementation can be used for detecting common body positions, movement intensity, and measures bio-potential signals for ECG and heart rate analysis. Based on the novel sensor principle, a prototype combines position detection, heart rate detection, and motion intensity level detection together in a handheld device that records the physiological information and wirelessly transmits the signals through Bluetooth to a mobile phone. Static body positions such as standing/sitting, lying supine, prone, and on the sides have been detected with high accuracy (97.7 % during the subject tests. Further, an algorithm that detects body movement intensity that can potentially be applied in real-time monitoring physical activity level is proposed based on average variance values. Motion intensity results show variance values increase and exercise intensity increases for almost all of the cases. A clear relation between movement intensity level shown by an increase in frequency and/or speed of exercise increases the variance values detected in all three spatial axes.

  5. Comparison of Conductor-Temperature Calculations Based on Different Radial-Position-Temperature Detections for High-Voltage Power Cable

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2018-01-01

    Full Text Available In this paper, the calculation of the conductor temperature is related to the temperature sensor position in high-voltage power cables and four thermal circuits—based on the temperatures of insulation shield, the center of waterproof compound, the aluminum sheath, and the jacket surface are established to calculate the conductor temperature. To examine the effectiveness of conductor temperature calculations, simulation models based on flow characteristics of the air gap between the waterproof compound and the aluminum are built up, and thermocouples are placed at the four radial positions in a 110 kV cross-linked polyethylene (XLPE insulated power cable to measure the temperatures of four positions. In measurements, six cases of current heating test under three laying environments, such as duct, water, and backfilled soil were carried out. Both errors of the conductor temperature calculation and the simulation based on the temperature of insulation shield were significantly smaller than others under all laying environments. It is the uncertainty of the thermal resistivity, together with the difference of the initial temperature of each radial position by the solar radiation, which led to the above results. The thermal capacitance of the air has little impact on errors. The thermal resistance of the air gap is the largest error source. Compromising the temperature-estimation accuracy and the insulation-damage risk, the waterproof compound is the recommended sensor position to improve the accuracy of conductor-temperature calculation. When the thermal resistances were calculated correctly, the aluminum sheath is also the recommended sensor position besides the waterproof compound.

  6. Cam Mover Alignment System positioning with the Wire Positioning with the Wire Position Sensor Feedback for CLIC

    CERN Document Server

    AUTHOR|(CDS)2077936; Mainaud Durand, Helene; Kostka, Z.S.

    2016-01-01

    Compact Linear Collider (CLIC) is a study of an electron-positron collider with nominal energy of 3 TeV and luminosity of 2 ∙ 1034 cm-2s-1. The luminosity goal leads to stringent alignment requirements for single quadrupole magnets. Vertical and lateral offset deviations with regards to a given orbit reference in both ends of a quadrupole shall be below 1 μm and quadrupole roll deviation shall be below 100 μrad. Translation in the direction of particle beam is not controlled but mechanically locked. A parallel kinematic platform based on cam movers was chosen as system for detailed studies. Earlier studies have shown that cam movers can reach the CLIC requirements through an iterative process. The paper presents new modular off-the-shelf control electronics and software including three optional positioning algorithms based on iterations as well as a more advanced algorithm which can reach target position in one movement. The advanced algorithm reads wire position sensors (WPS), calculates quadrupole orien...

  7. Ceramic/Metal Composites with Positive Temperature Dependence of Thermal Conductivity

    International Nuclear Information System (INIS)

    Li Jianhui; Yu Qi; Sun Wei; Zhang Rui; Wang Ke; Li Jingfeng; Ichigozaki, Daisuke

    2013-01-01

    Most materials show decreasing thermal conductivity with increasing temperature, but an opposite temperature dependence of thermal conductivity is required for some industrial applications. The present work was conducted with a motivation to develop composite materials with a positive temperature dependence of thermal conductivity. ZrO 2 / stainless steel powders (304L) composite, with 3% stearic acid, was prepared by normal sintering under the protecting of Ar after mixing by mechanical ball milling technique. With the 304L content increasing from 10% to 20%, the thermal conductivity values increased. For all samples, the thermal conductivity in the temperature range of room temperature to 700 °C decreased with temperature below 300 °C, and then began to increase. The increasing thermal conductivity of the composites (within the high temperature range was attributed to the difference of the thermal conductivity and thermal expansion coefficient between ZrO 2 ceramic and 304L stainless steel powders. Two simple models were also used to estimate the thermal conductivity of the composites, which were in good agreement with the experiment results.

  8. Simulating Physiological Response with a Passive Sensor Manikin and an Adaptive Thermal Manikin to Predict Thermal Sensation and Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chaney, Larry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hepokoski, Mark [ThermoAnalytics Inc.; Curran, Allen [ThermoAnalytics Inc.; Burke, Richard [Measurement Technology NW; Maranville, Clay [Ford Motor Company

    2015-04-14

    Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios. These manikins can act as human surrogates from which local skin and core temperatures can be obtained, which are necessary for accurately predicting local and whole body thermal sensation and comfort using a physiology-based comfort model (e.g., the Berkeley Comfort Model). This paper evaluates two different types of manikins, i) an adaptive sweating thermal manikin, which is coupled with a human thermoregulation model, running in real-time, to obtain realistic skin temperatures; and, ii) a passive sensor manikin, which is used to measure boundary conditions as they would act on a human, from which skin and core temperatures can be predicted using a thermophysiological model. The simulated physiological responses and comfort obtained from both of these manikin-model coupling schemes are compared to those of a human subject within a vehicle cabin compartment transient heat-up scenario.

  9. A scalable global positioning system-free localization scheme for underwater wireless sensor networks

    KAUST Repository

    Mohammed, A.M.

    2013-05-07

    Seaweb is an acoustic communication technology that enables communication between sensor nodes. Seaweb technology utilizes the commercially available telesonar modems that has developed link and network layer firmware to provide a robust undersea communication capability. Seaweb interconnects the underwater nodes through digital signal processing-based modem by using acoustic links between the neighboring sensors. In this paper, we design and investigate a global positioning system-free passive localization protocol by integrating the innovations of levelling and localization with the Seaweb technology. This protocol uses the range data and planar trigonometry principles to estimate the positions of the underwater sensor nodes. Moreover, for precise localization, we consider more realistic conditions namely, (a) small displacement of sensor nodes due to watch circles and (b) deployment of sensor nodes over non-uniform water surface. Once the nodes are localized, we divide the whole network field into circular levels and sectors to minimize the traffic complexity and thereby increases the lifetime of the sensor nodes in the network field. We then form the mesh network inside each of the sectors that increases the reliability. The algorithm is designed in such a way that it overcomes the ambiguous nodes errata and reflected paths and therefore makes the algorithm more robust. The synthetic network geometries are so designed which can evaluate the algorithm in the presence of perfect or imperfect ranges or in case of incomplete data. A comparative study is made with the existing algorithms which proves the efficiency of our newly proposed algorithm. 2013 Mohammed et al.

  10. Retroreflector field tracker. [noncontact optical position sensor for space application

    Science.gov (United States)

    Wargocki, F. E.; Ray, A. J.; Hall, G. E.

    1984-01-01

    An electrooptical position-measuring instrument, the Retroreflector Field Tracker or RFT, is described. It is part of the Dynamic Augmentation Experiment - a part of the payload of Space Shuttle flight 41-D in Summer 1984. The tracker measures and outputs the position of 23 reflective targets placed on a 32-m solar array to provide data for determination of the dynamics of the lightweight structure. The sensor uses a 256 x 256 pixel CID detector; the processor electronics include three Z-80 microprocessors. A pulsed laser diode illuminator is used.

  11. Numerical Prediction of a Bi-Directional Micro Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    M. Al-Amayrah

    2011-09-01

    Full Text Available Thermal flow sensors such as hot-wire anemometer (HWA can be used to measure the flow velocity with certain accuracy. However, HWA can measure the flow velocity without determining the flow direction. Pulsed-Wire Anemometer (PWA with 3 wires can be used to measure flow velocity and flow directions. The present study aims to develop a numerical analysis of unsteady flow around a pulsed hot-wire anemometer using three parallel wires. The pulsed wire which is called the heated wire is located in the middle and the two sensor wires are installed upstream and downstream of the pulsed wire. 2-D numerical models were built and simulated using different wires arrangements. The ratio of the separation distance between the heated wire and sensor wire (x to the diameter of the heated wire (D ratios (x/D was varied between 3.33 and 183.33. The output results are plotted as a function of Peclet number (convection time / diffusion time. It was found that as the ratio of x/D increases, the sensitivity of PWA device to the time of flight decreases. But at the same the reading of the time of flight becomes more accurate, because the effects of the diffusion and wake after the heated wire decrease. Also, a very good agreement has been obtained between the present numerical simulation and the previous experimental data.

  12. Development and Test of a Contactless Position and Angular Sensor Device for the Application in Synchronous Micro Motors

    Directory of Open Access Journals (Sweden)

    Andreas WALDSCHIK

    2009-09-01

    Full Text Available In this work, we present a contactless micro position and angular sensor system which consists of fixed commercial magnetic sensor elements, such as hall sensors and a movable part with integrated micro structured polymer magnets. This system serves particularly for linear and rotatory synchronous micro motors which we have developed and successfully tested. In order to achieve high precision and control of these motors an integration of the special micro position and angular sensors is pursued to increase the resolution and accuracy of the devices.

  13. ''Nonisolated-sensor'' solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A ''nonisolated-sensor'' solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  14. Nonisolated-sensor solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A nonisolated-sensor solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  15. Development of a superconducting position sensor for the Satellite Test of the Equivalence Principle

    Science.gov (United States)

    Clavier, Odile Helene

    The Satellite Test of the Equivalence Principle (STEP) is a joint NASA/ESA mission that proposes to measure the differential acceleration of two cylindrical test masses orbiting the earth in a drag-free satellite to a precision of 10-18 g. Such an experiment would conceptually reproduce Galileo's tower of Pisa experiment with a much longer time of fall and greatly reduced disturbances. The superconducting test masses are constrained in all degrees of freedom except their axial direction (the sensitive axis) using superconducting bearings. The STEP accelerometer measures the differential position of the masses in their sensitive direction using superconducting inductive pickup coils coupled to an extremely sensitive magnetometer called a DC-SQUID (Superconducting Quantum Interference Device). Position sensor development involves the design, manufacture and calibration of pickup coils that will meet the acceleration sensitivity requirement. Acceleration sensitivity depends on both the displacement sensitivity and stiffness of the position sensor. The stiffness must kept small while maintaining stability of the accelerometer. Using a model for the inductance of the pickup coils versus displacement of the test masses, a computer simulation calculates the sensitivity and stiffness of the accelerometer in its axial direction. This simulation produced a design of pickup coils for the four STEP accelerometers. Manufacture of the pickup coils involves standard photolithography techniques modified for superconducting thin-films. A single-turn pickup coil was manufactured and produced a successful superconducting coil using thin-film Niobium. A low-temperature apparatus was developed with a precision position sensor to measure the displacement of a superconducting plate (acting as a mock test mass) facing the coil. The position sensor was designed to detect five degrees of freedom so that coupling could be taken into account when measuring the translation of the plate

  16. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, C. A. F.; Saez-Rodriguez, D.

    2017-01-01

    An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors......, with the possible cause being the molecular relaxation of the polymer when fiber is raised above the β-transition temperature. A simple, cost-effective, but well controlled method for fiber annealing is also presented in this work. In addition, the effects of chemical etching on the strain, stress, and force...... sensitivities have been investigated. Results show that fiber etching too can increase the force sensitivity, and it can also affect the strain and stress sensitivities of the Bragg grating sensors....

  17. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity

    Science.gov (United States)

    Pospori, A.; Marques, C. A. F.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2017-07-01

    An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors, with the possible cause being the molecular relaxation of the polymer when fiber is raised above the β -transition temperature. A simple, cost-effective, but well controlled method for fiber annealing is also presented in this work. In addition, the effects of chemical etching on the strain, stress, and force sensitivities have been investigated. Results show that fiber etching too can increase the force sensitivity, and it can also affect the strain and stress sensitivities of the Bragg grating sensors.

  18. Automatic Traffic Data Collection under Varying Lighting and Temperature Conditions in Multimodal Environments: Thermal versus Visible Spectrum Video-Based Systems

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2017-01-01

    Full Text Available Vision-based monitoring systems using visible spectrum (regular video cameras can complement or substitute conventional sensors and provide rich positional and classification data. Although new camera technologies, including thermal video sensors, may improve the performance of digital video-based sensors, their performance under various conditions has rarely been evaluated at multimodal facilities. The purpose of this research is to integrate existing computer vision methods for automated data collection and evaluate the detection, classification, and speed measurement performance of thermal video sensors under varying lighting and temperature conditions. Thermal and regular video data was collected simultaneously under different conditions across multiple sites. Although the regular video sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians and cyclists. Retraining the algorithm on thermal data yielded an improvement in the global accuracy of 48%. Thermal speed measurements were consistently more accurate than for the regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and pavement temperature, solves issues associated with visible light cameras for traffic data collection, and offers other benefits such as privacy, insensitivity to glare, storage space, and lower processing requirements.

  19. The design of a position-sensitive thermal-neutron detector

    International Nuclear Information System (INIS)

    Zhang Yi; Chen Ziyu; Shen Ji

    2007-01-01

    We design a type of position-sensitive thermal-neutron detector. The design is based on the nuclear reaction 10 B(n, α) 7 Li, and solid boron-10 is used as the target material while the alpha and lithium-7 particles from the reaction are caught as the source of position information of the original neutrons. With the help of MCNP software, we simulate the distribution of alpha particles in the boron target, which leads to the optimal thickness of target, physical efficiency and position resolution. (authors)

  20. First results from Position-Sensitive quantum calorimeters using Mo/Au Transition-Edge Sensors

    International Nuclear Information System (INIS)

    Figueroa-Feliciano, Enectali; Chervenak, Jay; Finkbeiner, Fred M.; Li, Mary; Lindeman, Mark A.; Stahle, Caroline K.; Stahle, Carl M.

    2002-01-01

    We report the first results from a high-energy-resolution imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (PoST). A PoST is a quantum calorimeter consisting of two Transition Edge Sensors (TESs) on the ends of a long absorber to do one dimensional imaging spectroscopy. Comparing rise time and energy information, the position of the event in the PoST is determined. Energy is inferred from the sum of the two pulses. We have fabricated 7- and 15-pixel PoSTs using Mo-Au TESs and Au absorbers. We have achieved 32 eV FWHM energy resolution at 1.5 keV with a 7-pixel PoST calorimeter

  1. Development of a modular and scalable sensor system for the gathering of position and orientation of moved objects

    International Nuclear Information System (INIS)

    Klingbeil, L.

    2006-02-01

    A modular and scalable sensor system for the estimation of position and orientation of moving objects has been developed and characterized. A sensor unit, which is mounted to the moving object, consists of acceleration -, angular rate - and magnetic field sensors for every spatial axis. Customized Kalman filter algorithms provide a robust and low latency reconstruction of the sensor's orientation. Additionally an ultrasound transducer network is used to measure the distance of a sensor unit with respect to several reference points in the room. This allows reconstruction of the absolute position using trilateration methods. The system is scalable with respect to the number of sensor units and the covered tracking volume. It is suitable for various applications for example the analysis of body movements or head tracking in augmented or virtual reality environments. (orig.)

  2. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors.

    Science.gov (United States)

    Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin

    2014-12-05

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  3. A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors

    Directory of Open Access Journals (Sweden)

    Xiang Song

    2014-12-01

    Full Text Available Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF algorithm is designed to replace the conventional extended Kalman filter (EKF to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  4. Discrimination techniques employing both reflective and thermal multispectral signals. [for remote sensor technology

    Science.gov (United States)

    Malila, W. A.; Crane, R. B.; Richardson, W.

    1973-01-01

    Recent improvements in remote sensor technology carry implications for data processing. Multispectral line scanners now exist that can collect data simultaneously and in registration in multiple channels at both reflective and thermal (emissive) wavelengths. Progress in dealing with two resultant recognition processing problems is discussed: (1) More channels mean higher processing costs; to combat these costs, a new and faster procedure for selecting subsets of channels has been developed. (2) Differences between thermal and reflective characteristics influence recognition processing; to illustrate the magnitude of these differences, some explanatory calculations are presented. Also introduced, is a different way to process multispectral scanner data, namely, radiation balance mapping and related procedures. Techniques and potentials are discussed and examples presented.

  5. Detection of impact damage on thermal protection systems using thin-film piezoelectric sensors for integrated structural health monitoring

    Science.gov (United States)

    Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.

    2008-03-01

    Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.

  6. Computed tomography with thermal neutrons and gaseous position sensitive detector

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched 3 He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched 3 He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF 3 detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  7. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    Science.gov (United States)

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  8. Evaluation of a Sensor System for Detecting Humans Trapped under Rubble: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2018-03-01

    Full Text Available Rapid localization of injured survivors by rescue teams to prevent death is a major issue. In this paper, a sensor system for human rescue including three different types of sensors, a CO2 sensor, a thermal camera, and a microphone, is proposed. The performance of this system in detecting living victims under the rubble has been tested in a high-fidelity simulated disaster area. Results show that the CO2 sensor is useful to effectively reduce the possible concerned area, while the thermal camera can confirm the correct position of the victim. Moreover, it is believed that the use of microphones in connection with other sensors would be of great benefit for the detection of casualties. In this work, an algorithm to recognize voices or suspected human noise under rubble has also been developed and tested.

  9. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    Science.gov (United States)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  10. Ironless Inductive Position Sensor for Harsh Magnetic Environments

    CERN Document Server

    Danisi, Alessandro; Masi, Alessandro

    Linear Variable Differential Transformers (LVDTs) are widely used for high-precision and high-accuracy linear position sensing in harsh environments, such as the LHC collimators at CERN. These sensors guarantee theoretically infinite resolution and long lifetimes thanks to contactless sensing. Furthermore, they offer very good robustness and ruggedness, as well as micrometer uncertainty over a range of centimeters when proper conditioning techniques are used (such as the three-parameter Sine-Fit algorithm). They can also be suitable for radioactive environments. Nevertheless, an external DC/slowly-varying magnetic field can seriously affect the LVDT reading, leading to position drifts of hundreds of micrometers, often unacceptable in high-accuracy applications. The effect is due to the presence of non-linear ferromagnetic materials in the sensor’s structure. A detailed Finite Element model of an LVDT is first proposed in order to study and characterize the phenomenon. The model itself becomes a powerful de...

  11. A novel method for estimating the initial rotor position of PM motors without the position sensor

    International Nuclear Information System (INIS)

    Rostami, Alireza; Asaei, Behzad

    2009-01-01

    Permanent magnet (PM) motors have been used widely in the industrial applications. However, a need of the position sensor is a drawback of their control system. The sensorless methods using the back-EMF (electromotive force) cannot detect the rotor position at a standstill; recently, a few methods proposed to detect the initial rotor position, but they have high estimation error which reduces starting torque of the motor. Therefore, in this paper, a novel method to detect the initial rotor position of the PM motors is proposed, first, by using a space vector model, response of the stator current space vector to the saturation of the stator core is analyzed; then a novel method based on the saturation effect is presented that estimates the initial rotor position and the maximum estimation error is less than 3.8 deg. Simulation results confirm this method is effective and precise, and variation of the motor parameters does not affect its precision.

  12. A novel method for estimating the initial rotor position of PM motors without the position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Alireza; Asaei, Behzad [School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran)

    2009-08-15

    Permanent magnet (PM) motors have been used widely in the industrial applications. However, a need of the position sensor is a drawback of their control system. The sensorless methods using the back-EMF (electromotive force) cannot detect the rotor position at a standstill; recently, a few methods proposed to detect the initial rotor position, but they have high estimation error which reduces starting torque of the motor. Therefore, in this paper, a novel method to detect the initial rotor position of the PM motors is proposed, first, by using a space vector model, response of the stator current space vector to the saturation of the stator core is analyzed; then a novel method based on the saturation effect is presented that estimates the initial rotor position and the maximum estimation error is less than 3.8. Simulation results confirm this method is effective and precise, and variation of the motor parameters does not affect its precision. (author)

  13. A fast high-precision six-degree-of-freedom relative position sensor

    Science.gov (United States)

    Hughes, Gary B.; Macasaet, Van P.; Griswold, Janelle; Sison, Claudia A.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; Brashears, Travis; Zhang, Qicheng; Madajian, Jonathan

    2016-03-01

    Lasers are commonly used in high-precision measurement and profiling systems. Some laser measurement systems are based on interferometry principles, and others are based on active triangulation, depending on requirements of the application. This paper describes an active triangulation laser measurement system for a specific application wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high precision in six degrees of freedom (DOF). Potential applications include optical systems with feedback to control for mechanical vibration, such as target acquisition devices with multiple focal planes. The method uses an array of several laser emitters mounted on one component. The lasers are directed at a reflective surface on the second component. The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a curved reflective surface such as a hyperbolic paraboloid. The reflected spots are sensed at 2-dimensional photodiode arrays on the emitter component. Changes in the relative position of the emitter component and reflective surface will shift the location of the reflected spots within photodiode arrays. Relative motion in any degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position determination between the two component positions. Response time of the sensor is limited by the read-out rate of the photodiode arrays. Algorithms are given for position determination with limits on uncertainty and sensitivity, based on laser and spot-sensor characteristics, and assuming regular surfaces. Additional uncertainty analysis is achievable for surface irregularities based on calibration data.

  14. Position dependence of charge collection in prototype sensors for the CMS pixel detector

    CERN Document Server

    Rohe, Tilman; Chiochia, Vincenzo; Cremaldi, Lucien M; Cucciarelli, Susanna; Dorokhov, Andrei; Konecki, Marcin; Prokofiev, Kirill; Regenfus, Christian; Sanders, David A; Son Seung Hee; Speer, Thomas; Swartz, Morris

    2004-01-01

    This paper reports on the sensor R&D activity for the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence1 of 1 multiplied by 10**1**5 n //e//q/cm**2 at the CERN PS. Afterward, they were bump bonded to unirradiated readout chips and tested using high energy pions in the H2 beam line of the CERN SPS. The readout chip allows a nonzero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The position dependence of signal is presented and the differences between the two sensor options are discussed. 20 Refs.

  15. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.

    Science.gov (United States)

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.

  16. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.; Spolaore, M. [Consorzio RFX, Padova 35127 (Italy); Sartori, E. [Consorzio RFX, Padova 35127 (Italy); Università degli Studi di Padova, Padova 35122 (Italy); Veltri, P. [Consorzio RFX, Padova 35127 (Italy); INFN-LNL, Legnaro (PD) 35020 (Italy)

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  17. POIS, a Low Cost Tilt and Position Sensor: Design and First Tests

    Directory of Open Access Journals (Sweden)

    Giuseppe Artese

    2015-05-01

    Full Text Available An integrated sensor for the measurement and monitoring of position and inclination, characterized by low cost, small size and low weight, has been designed, realized and calibrated at the Geomatics Lab of the University of Calabria. The design of the prototype, devoted to the monitoring of landslides and structures, was aiming at realizing a fully automated monitoring instrument, able to send the data acquired periodically or upon request by a control center through a bidirectional transmission protocol. The sensor can be released with different accuracy and range of measurement, by choosing bubble vials with different characteristics. The instrument is provided with a computer, which can be programmed so as to independently perform the processing of the data collected by a single sensor or a by a sensor network, and to transmit, consequently, alert signals if the thresholds determined by the monitoring center are exceeded. The bidirectional transmission also allows the users to vary the set of the monitoring parameters (time of acquisition, duration of satellite acquisitions, thresholds for the observed data. In the paper, hardware and software of the sensor are described, along with the calibration, the results of laboratory tests and of the first in field acquisitions.

  18. Applications of passive remote surface acoustic wave sensors in high-voltage systems; Einsatz von passiven funkabfragbaren Oberflaechenwellensensoren in der elektrischen Energietechnik

    Energy Technology Data Exchange (ETDEWEB)

    Teminova, R

    2007-06-29

    been optimized with regard to low-frequency dielectric, high-frequency transmission and thermal characteristics. Different types of disconnectors were studied in the laboratory: a 420-kV pantograph disconnector and 245-kV centre break disconnector. At first the positions of the disconnector sensors at these two disconnectors were determined. Different aspects were considered to choose the position. For one, the sensors should not be damaged by electric arc. For another, a secure read of the sensors and a detection of defects should be possible. Afterwards, the thermal properties of the SAW sensor at the chosen position and the possibility to detect defects were studied. In the end two field tests were started. (orig.)

  19. The spectral positioning algorithm of new spectrum vehicle based on convex programming in wireless sensor network

    Science.gov (United States)

    Zhang, Yongjun; Lu, Zhixin

    2017-10-01

    Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.

  20. Flush mounting of thin film sensors

    Science.gov (United States)

    Moore, Thomas C., Sr. (Inventor)

    1992-01-01

    Flush mounting of a sensor on a surface is provided by first forming a recessed area on the surface. Next, an adhesive bonding mixture is introduced into the recessed area. The adhesive bonding mixture is chosen to provide thermal expansion matching with the surface surrounding the recessed area. A strip of high performance polymeric tape is provided, with the sensor attached to the underside thereof, and the tape is positioned over the recessed area so that it acts as a carrier of the sensor. A shim having flexibility so that it will conform to the surface surrounding the recessed area is placed over the tape, and a vacuum pad is placed over the shim. The area above the surface is then evacuated while holding the sensor flush with the surface during curing of the adhesive bonding mixture. After such curing, the pad, shim, and tape are removed from the sensor, electrical connections for the sensor are provided, after which the remaining space in the recessed area is filled with a polymeric foam.

  1. Sensing sheet: the response of full-bridge strain sensors to thermal variations for detecting and characterizing cracks

    Science.gov (United States)

    Tung, S.-T.; Glisic, B.

    2016-12-01

    Sensing sheets based on large-area electronics consist of a dense array of unit strain sensors. This new technology has potential for becoming an effective and affordable monitoring tool that can identify, localize and quantify surface damage in structures. This research contributes to their development by investigating the response of full-bridge unit strain sensors to thermal variations. Overall, this investigation quantifies the effects of temperature on thin-film full-bridge strain sensors monitoring uncracked and cracked concrete. Additionally, an empirical formula is developed to estimate crack width given an observed strain change and a measured temperature change. This research led to the understanding of the behavior of full-bridge strain sensors installed on cracked concrete and exposed to temperature variations. It proves the concept of the sensing sheet and its suitability for application in environments with variable temperature.

  2. [Knee and shoulder arthroscopy. Positioning and thermal injuries].

    Science.gov (United States)

    Meyer, S; Lobenhoffer, P

    2008-11-01

    Intraoperative positioning injuries during shoulder- and knee arthroscopy are rare complications and affect mainly nerves and soft tissue. Although the majority of these complications are reversible, in some cases serious negative consequences for the patient persist. This article describes the frequency of several positioning injuries including their prevention and the appropriate treatment. The legal responsibilities are illustrated as well as the importance of an intense preoperative investigation of preexisting diseases and possible risk factors. Furthermore, a review of possible thermal injuries of the patient during arthroscopy caused by e.g. electrosurgical instruments or the cold light source, is given as well as prevention strategies.

  3. Study of the mechanical support and positioning of the sensors for the new tracker of the ALICE experiment at CERN

    CERN Document Server

    AUTHOR|(CDS)2126653; Coli, Silvia

    The Inner Tracking System Detector of the ALICE Experiment at CERN laboratory will be replaced in 2020 with a new detector entirely based on pixel sensor chips. The most critical aspects in the construction of this detector are the precise positioning and the stability of the sensors over time. The work of this thesis starts with the development of a procedure for the positioning of the sensors and has been performed at INFN of Turin. The procedure is split in several steps each of them based on semi-automatic programme to control a Coordinate-Measuring Machine that position the sensors. At the end of the assembly procedure the position of the sensors is verified and recorded such to provide a detailed map. This procedure will be used in five laboratories, four in Europe and one in the United States, where the detector will be assembled. The second part of the work is focused on the mechanical design and analysis of the global support structure of the Inner Tracking System, and has been performed at CERN in c...

  4. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  5. A micro dew point sensor with a thermal detection principle

    Science.gov (United States)

    Kunze, M.; Merz, J.; Hummel, W.-J.; Glosch, H.; Messner, S.; Zengerle, R.

    2012-01-01

    We present a dew point temperature sensor with the thermal detection of condensed water on a thin membrane, fabricated by silicon micromachining. The membrane (600 × 600 × ~1 µm3) is part of a silicon chip and contains a heating element as well as a thermopile for temperature measurement. By dynamically heating the membrane and simultaneously analyzing the transient increase of its temperature it is detected whether condensed water is on the membrane or not. To cool the membrane down, a peltier cooler is used and electronically controlled in a way that the temperature of the membrane is constantly held at a value where condensation of water begins. This temperature is measured and output as dew point temperature. The sensor system works in a wide range of dew point temperatures between 1 K and down to 44 K below air temperature. In experimental investigations it could be proven that the deviation of the measured dew point temperatures compared to reference values is below ±0.2 K in an air temperature range of 22 to 70 °C. At low dew point temperatures of -20 °C (air temperature = 22 °C) the deviation increases to nearly -1 K.

  6. A micro dew point sensor with a thermal detection principle

    International Nuclear Information System (INIS)

    Kunze, M; Merz, J; Glosch, H; Messner, S; Zengerle, R; Hummel, W-J

    2012-01-01

    We present a dew point temperature sensor with the thermal detection of condensed water on a thin membrane, fabricated by silicon micromachining. The membrane (600 × 600 × ∼1 µm 3 ) is part of a silicon chip and contains a heating element as well as a thermopile for temperature measurement. By dynamically heating the membrane and simultaneously analyzing the transient increase of its temperature it is detected whether condensed water is on the membrane or not. To cool the membrane down, a peltier cooler is used and electronically controlled in a way that the temperature of the membrane is constantly held at a value where condensation of water begins. This temperature is measured and output as dew point temperature. The sensor system works in a wide range of dew point temperatures between 1 K and down to 44 K below air temperature. In experimental investigations it could be proven that the deviation of the measured dew point temperatures compared to reference values is below ±0.2 K in an air temperature range of 22 to 70 °C. At low dew point temperatures of −20 °C (air temperature = 22 °C) the deviation increases to nearly −1 K

  7. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  8. A novel starting method for BLDC motors without the position sensors

    International Nuclear Information System (INIS)

    Asaei, Behzad; Rostami, Alireza

    2009-01-01

    This paper presents a novel method to estimate the rotor position of a brushless dc (BLDC) motor at standstill. Moreover, a method for startup and acceleration of the motor up to a certain speed is introduced. The principle of the estimation method is based on the variation of the BLDC motor current in the magnetic axis due to the magnetic saturation of the stator core. An advantage of this method is that the maximum estimated error of the initial rotor position is 6 deg. Therefore, the motor starting torque is increased significantly. However, to implement this method, a current sensor at the dc link of the inverter is needed

  9. A novel starting method for BLDC motors without the position sensors

    Energy Technology Data Exchange (ETDEWEB)

    Asaei, Behzad; Rostami, Alireza [School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran); University of Yazd, Yazd (Iran)

    2009-02-15

    This paper presents a novel method to estimate the rotor position of a brushless dc (BLDC) motor at standstill. Moreover, a method for startup and acceleration of the motor up to a certain speed is introduced. The principle of the estimation method is based on the variation of the BLDC motor current in the magnetic axis due to the magnetic saturation of the stator core. An advantage of this method is that the maximum estimated error of the initial rotor position is 6 deg. Therefore, the motor starting torque is increased significantly. However, to implement this method, a current sensor at the dc link of the inverter is needed. (author)

  10. Improving wellbore position accuracy of horizontal wells by using a continuous inclination measurement from a near bit inclination MWD sensor

    Energy Technology Data Exchange (ETDEWEB)

    Berger, P. E.; Sele, R. [Baker Hughes INTEQ (United States)

    1998-12-31

    Wellbore position calculations are typically performed by measuring azimuth and inclination at 10 to 30 meter intervals and using interpolation techniques to determine the borehole position between survey stations. The input parameters are measured depth (MD), azimuth and inclination, where the two parameters are measured with an MWD tool. Output parameters are the geometric coordinates; true value depth (TVD), north and east. By improving the accuracy of the inclination measurement reduces the uncertainty of the calculated TVD value, resulting in increased confidence in wellbore position. Significant improvements in quality control can be achieved by using multiple sensors. This paper describes a set of quality control parameters that can be used to verify individual sensor performance and a method for calculating TVD uncertainty in horizontal wells, using a single sensor or a combination of sensors. 6 refs., 5 figs.

  11. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  12. Biomimetic micromechanical adaptive flow-sensor arrays

    Science.gov (United States)

    Krijnen, Gijs; Floris, Arjan; Dijkstra, Marcel; Lammerink, Theo; Wiegerink, Remco

    2007-05-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate that allow for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Like for the crickets, the MEMS hair-sensors are positioned on elongated structures, resembling the cercus of crickets. In this work we present optical measurements on acoustically and electrostatically excited hair-sensors. We present adaptive control of flow-sensitivity and resonance frequency by electrostatic spring stiffness softening. Experimental data and simple analytical models derived from transduction theory are shown to exhibit good correspondence, both confirming theory and the applicability of the presented approach towards adaptation.

  13. Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation

    KAUST Repository

    Bouchaala, Adam M.; Nayfeh, Ali H.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam

  14. Thermal sensor based zinc oxide diode for low temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Ocaya, R.O. [Department of Physics, University of the Free State (South Africa); Al-Ghamdi, Ahmed [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); El-Tantawy, F. [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Farooq, W.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig, 23169 (Turkey)

    2016-07-25

    The device parameters of Al/p-Si/Zn{sub 1-x}Al{sub x}O-NiO/Al Schottky diode for x = 0.005 were investigated over the 50 K–400 K temperature range using direct current–voltage (I–V) and impedance spectroscopy. The films were prepared using the sol–gel method followed by spin-coating on p-Si substrate. The ideality factor, barrier height, resistance and capacitance of the diode were found to depend on temperature. The calculated barrier height has a mean. Capacitance–voltage (C–V) measurements show that the capacitance decreases with increasing frequency, suggesting a continuous distribution of interface states over the surveyed 100 kHz to 1 MHz frequency range. The interface state densities, N{sub ss}, of the diode were calculated and found to peak as functions of bias and temperature in two temperature regions of 50 K–300 K and 300 K–400 K. A peak value of approximately 10{sup 12}/eV cm{sup 2} was observed around 0.7 V bias for 350 K and at 3 × 10{sup 12}/eVcm{sup 2} around 2.2 V bias for 300 K. The relaxation time was found to average 4.7 μs over all the temperatures, but showing its lowest value of 1.58 μs at 300 K. It is seen that the interface states of the diode is controlled by the temperature. This suggests that Al/p-Si/Zn1-xAlxO-NiO/Al diode can be used as a thermal sensors for low temperature applications. - Highlights: • Al/pSi/Zn1-xAlxO-NiO/Al Schottky diode was fabricated by sol gel method. • The interface state density of the diode is controlled by the temperature. • Zinc oxide based diode can be used as a thermal sensor for low temperature applications.

  15. Thermal effect of lubricating oil in positive-displacement air compressors

    International Nuclear Information System (INIS)

    Valenti, Gianluca; Colombo, Luigi; Murgia, Stefano; Lucchini, Andrea; Sampietro, Andrea; Capoferri, Andrea; Araneo, Lucio

    2013-01-01

    The isentropic efficiency of positive-displacement compressors may be improved in order to follow an increasing demand for energy savings. This work analyzes the thermal effect of the lubricating oil presence in the air during compression with the scope of exploiting it as a thermal ballast to mitigate both the gas temperature rise and its compression work. The bibliographic review shows that other authors suggested that oil can have positive effects if properly injected. Here an energy balance analysis is executed with the scope of deriving relations for the gas–liquid compression in analogy with those typical for the gas-only compression and of confirming that ideally the liquid presence may have beneficial effects, making the gas–liquid compression even better than 1- and 2-time intercooled gas compressions. Given these positive results, a heat transfer analysis is conducted to model the thermal interaction between gas and oil droplets within a mid-size rotary vane air compressor. A droplet diameter of the order of 100 μm leads to large reductions of both temperature increase and compression work: air can exit the discharge port at a temperature as low as 60 °C and compression work can be lowered by 23–28% with respect to conventional compressors. Finally, a test rig is constructed and operated to investigate a large-flow and large-angle oil nozzle taken from the market showing that, at the operating conditions of a compressor, oil breaks up into small droplets and undefined structures with large exchange surfaces. -- Highlights: ► Exploitation of thermal effect of oil in gas compressors is assessed numerically. ► Oil in 100 μm-diameter droplets mitigates effectively the gas temperature rise. ► Discharge temperature and compression work result to be much smaller than typical. ► An experimental setup is used to investigate oil atomization via commercial nozzles. ► A tested nozzle creates fine oil droplets and structures at conditions of

  16. Development of a modular and scalable sensor system for the gathering of position and orientation of moved objects; Entwicklung eines modularen und skalierbaren Sensorsystems zur Erfassung von Position und Orientierung bewegter Objekte

    Energy Technology Data Exchange (ETDEWEB)

    Klingbeil, L.

    2006-02-15

    A modular and scalable sensor system for the estimation of position and orientation of moving objects has been developed and characterized. A sensor unit, which is mounted to the moving object, consists of acceleration -, angular rate - and magnetic field sensors for every spatial axis. Customized Kalman filter algorithms provide a robust and low latency reconstruction of the sensor's orientation. Additionally an ultrasound transducer network is used to measure the distance of a sensor unit with respect to several reference points in the room. This allows reconstruction of the absolute position using trilateration methods. The system is scalable with respect to the number of sensor units and the covered tracking volume. It is suitable for various applications for example the analysis of body movements or head tracking in augmented or virtual reality environments. (orig.)

  17. Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity

    Directory of Open Access Journals (Sweden)

    F. Dubuffet

    2002-01-01

    Full Text Available The thermal conductivity of mantle materials has two components, the lattice component klat from phonons and the radiative component krad due to photons. These two contributions of variable thermal conductivity have a nonlinear dependence in the temperature, thus endowing the temperature equation in mantle convection with a strongly nonlinear character. The temperature derivatives of these two mechanisms have different signs, with ∂klat /∂T negative and dkrad /dT positive. This offers the possibility for the radiative conductivity to control the chaotic boundary layer instabilities developed in the deep mantle. We have parameterized the weight factor between krad and klat with a dimensionless parameter f , where f = 1 corresponds to the reference conductivity model. We have carried out two-dimensional, time-dependent calculations for variable thermal conductivity but constant viscosity in an aspect-ratio 6 box for surface Rayleigh numbers between 106 and 5 × 106. The averaged Péclet numbers of these flows lie between 200 and 2000. Along the boundary in f separating the chaotic and steady-state solutions, the number decreases and the Nusselt number increases with internal heating, illustrating the feedback between internal heating and radiative thermal conductivity. For purely basal heating situation, the time-dependent chaotic flows become stabilized for values of f of between 1.5 and 2. The bottom thermal boundary layer thickens and the surface heat flow increases with larger amounts of radiative conductivity. For magnitudes of internal heating characteristic of a chondritic mantle, much larger values of f , exceeding 10, are required to quench the bottom boundary layer instabilities. By isolating the individual conductive mechanisms, we have ascertained that the lattice conductivity is partly responsible for inducing boundary layer instabilities, while the radiative conductivity and purely depth-dependent conductivity exert a stabilizing

  18. Position error compensation via a variable reluctance sensor applied to a Hybrid Vehicle Electric machine.

    Science.gov (United States)

    Bucak, Ihsan Ömür

    2010-01-01

    In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  19. Position Error Compensation via a Variable Reluctance Sensor Applied to a Hybrid Vehicle Electric Machine

    Directory of Open Access Journals (Sweden)

    İhsan Ömür Bucak

    2010-03-01

    Full Text Available In the automotive industry, electromagnetic variable reluctance (VR sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  20. Analysis of knocking combustion with the aid of pressure sensors; Einsatz von Drucksensoren zur Beurteilung klopfender Verbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, J.; Walter, T. [Kistler AG, Winterthur (Switzerland); Bertola, A.; Wolfer, P.; Hoewing, J. [Kistler Instrumente GmbH, Ostfildern (Germany); Gossweiler, C. [Fachhochschule Nordwestschweiz (Switzerland). ITFE; Rothe, M.; Spicher, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Kolbenmaschinen

    2006-07-01

    Depending on its frequency and intensity, knocking combustion can cause engine damage due to excessive thermal or mechanical stress on components. During knocking combustion, the cylinder pressure signal is overlaid with high-frequency pressure oscillations. Reliable detection of the knock timing and quantification of the knock intensity based on local measurement of the cylinder pressure demand for particular care, especially when it comes to selecting and adapting the sensor technology and also during the evaluation process using customary knock analysis methods. This publication examines various types of cylinder pressure sensors, how they are installed in the combustion chamber, the effect of sensor positioning and assesses them with regard to accuracy. Finally, on the basis of the test results, recommendations are given for selecting sensors and adapting them within the combustion chamber. A crucial factor for pressure measurement during knocking combustion is the sensor position within the combustion chamber. The sensor type is of secondary importance; at most, cavities between the combustion chamber and the sensor may influence the measuring signal. To assess the sensitivity of the knock evaluation algorithms to various mounting positions and sensor types, it is advisable to carry out comparative measurements between different sensor positions and the measuring spark plug. (orig.)

  1. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    Science.gov (United States)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the

  2. Infrared sensors and sensor fusion; Proceedings of the Meeting, Orlando, FL, May 19-21, 1987

    International Nuclear Information System (INIS)

    Buser, R.G.; Warren, F.B.

    1987-01-01

    The present conference discusses topics in the fields of IR sensor multifunctional design; image modeling, simulation, and detection; IR sensor configurations and components; thermal sensor arrays; silicide-based IR sensors; and IR focal plane array utilization. Attention is given to the fusion of lidar and FLIR for target segmentation and enhancement, the synergetic integration of thermal and visual images for computer vision, the 'Falcon Eye' FLIR system, multifunctional electrooptics and multiaperture sensors for precision-guided munitions, and AI approaches to data integration. Also discussed are the comparative performance of Ir silicide and Pt silicide photodiodes, high fill-factor silicide monolithic arrays, and the characterization of noise in staring IR focal plane arrays

  3. Fiber Bragg Grating Temperature Sensors in a 6.5-MW Generator Exciter Bridge and the Development and Simulation of Its Thermal Model

    Directory of Open Access Journals (Sweden)

    Kleiton de Morais Sousa

    2014-09-01

    Full Text Available This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors.

  4. Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model.

    Science.gov (United States)

    de Morais Sousa, Kleiton; Probst, Werner; Bortolotti, Fernando; Martelli, Cicero; da Silva, Jean Carlos Cardozo

    2014-09-05

    This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG) sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors.

  5. Accurate positioning of pedestrains in mixed indoor/outdoor settings : A particle filter approach to sensor and map fusion

    DEFF Research Database (Denmark)

    Toftkjær, Thomas

    , through an extensive GNSS measurement campaign. The results of this campaign provides researchers a foundation for choosing and designing complementary technologies and systems. The contributions in this thesis are novel sensor fusion methods based on particle lters for improved positioning, hence......Pedestrian positioning with full coverage in urban environments is a long sought after research goal. This thesis proposes new techniques for handling the challenging task of truly pervasive pedestrian positioning. It shows that through sensor fusion one can both improve accuracy and extend...... the following four aspects all advance this research direction. Firstly, this thesis proposes ProPosition, a system that utilizes GNSS-complementary technologies such as WiFi and Dead Reckoning by Inertial Measurements Units. We show, that through ProPosition's use of the probabilistic Bayes lter technique...

  6. Speed and position sensors for mine hoists and elevators

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchik, P.G.; Duda, F.T. [Bureau of Mines, Pittsburgh, PA (United States). Pittsburgh Research Center

    1995-12-31

    Mine hoist and elevator safety devices are tested periodically. However, periodic testing cannot ensure that a recently tested safety device will function properly when called upon. Ideally, the condition of critical safety devices should be continuously monitored but this is either impractical or impossible. The US Bureau of Mines is conducting research on the more practical approach of continuously monitoring the speed and position of the shaft conveyance. By monitoring the depth and speed of a conveyance and comparing the result with the appropriate speed curve, an operator can be warned before the curve is exceeded and may then take appropriate action. This information will also detect other hoisting malfunctions such as motor or brake problems. Monitoring the actual cage position during operation and comparing this with the position indicated by the winding drum will indirectly enable the detection of rope slip for friction hoists and slack rope in drum hoists. Hoist systems presently in use are typically not equipped with appropriate devices for directly monitoring actual cage speed and position. Conventional overspeed protection for a mine elevator is currently done by a centrifugal governor. However, a mechanical governor is not capable of determining if the speed curve is changing with respect to the cage position in the hoisting cycle. Therefore, another means of sensing cage speed is needed. This paper discusses several types of speed and position sensors, and advantages and disadvantages of each. The research suggests methods to monitor actual speed and position of the cage, which can be very significant in preventing overspeed accidents resulting from safety device failures in mine hoists and elevators.

  7. Optical temperature sensor and thermal expansion measurement using a femtosecond micromachined grating in 6H-SiC.

    Science.gov (United States)

    DesAutels, G Logan; Powers, Peter; Brewer, Chris; Walker, Mark; Burky, Mark; Anderson, Gregg

    2008-07-20

    An optical temperature sensor was created using a femtosecond micromachined diffraction grating inside transparent bulk 6H-SiC, and to the best of our knowledge, this is a novel technique of measuring temperature. Other methods of measuring temperature using fiber Bragg gratings have been devised by other groups such as Zhang and Kahrizi [in MEMS, NANO, and Smart Systems (IEEE, 2005)]. This temperature sensor was, to the best of our knowledge, also used for a novel method of measuring the linear and nonlinear coefficients of the thermal expansion of transparent and nontransparent materials by means of the grating first-order diffracted beam. Furthermore the coefficient of thermal expansion of 6H-SiC was measured using this new technique. A He-Ne laser beam was used with the SiC grating to produce a first-order diffracted beam where the change in deflection height was measured as a function of temperature. The grating was micromachined with a 20 microm spacing and has dimensions of approximately 500 microm x 500 microm (l x w) and is roughly 0.5 microm deep into the 6H-SiC bulk. A minimum temperature of 26.7 degrees C and a maximum temperature of 399 degrees C were measured, which gives a DeltaT of 372.3 degrees C. The sensitivity of the technique is DeltaT=5 degrees C. A maximum deflection angle of 1.81 degrees was measured in the first-order diffracted beam. The trend of the deflection with increasing temperature is a nonlinear polynomial of the second-order. This optical SiC thermal sensor has many high-temperature electronic applications such as aircraft turbine and gas tank monitoring for commercial and military applications.

  8. Thermal Annealing Effect on Structural, Morphological, and Sensor Performance of PANI-Ag-Fe Based Electrochemical E. coli Sensor for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Norshafadzila Mohammad Naim

    2015-01-01

    Full Text Available PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300°C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS. The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm–424 nm and 426 nm–464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.

  9. A novel measurement method for the thermal properties of liquids by utilizing a bridge-based micromachined sensor

    International Nuclear Information System (INIS)

    Beigelbeck, Roman; Nachtnebel, Herbert; Kohl, Franz; Jakoby, Bernhard

    2011-01-01

    In recent decades, the demands for online monitoring of liquids in various applications have increased significantly. In this context, the sensing of the thermal transport parameters of liquids (i.e. thermal conductivity and diffusivity) may be an interesting alternative to well-established monitoring parameters like permittivity, mass density or shear viscosity. We developed a micromachined thermal property sensor, applicable to non-flowing liquids, featuring three in parallel microbridges, which carry either a heater or one of in total two thermistors. Its active sensing region was designed to achieve almost negligible spurious thermal shunts between heater and thermistors. This enables the adoption of a simple two-dimensional model to describe the heat transfer from the heater to the thermistors, which is mainly governed by the thermal properties of the sample liquid. Founded on this theoretical model, a novel measurement method for the thermal parameters was devised that relies solely on the frequency response of the measured peak temperature and allows simultaneous extraction of the thermal conductivity and diffusivity of liquids. In this contribution, we describe the device prototype, the model, the deduced measurement method and the experimental verification by means of test measurements carried out on five sample liquids

  10. A novel particle filter approach for indoor positioning by fusing WiFi and inertial sensors

    Directory of Open Access Journals (Sweden)

    Zhu Nan

    2015-12-01

    Full Text Available WiFi fingerprinting is the method of recording WiFi signal strength from access points (AP along with the positions at which they were recorded, and later matching those to new measurements for indoor positioning. Inertial positioning utilizes the accelerometer and gyroscopes for pedestrian positioning. However, both methods have their limitations, such as the WiFi fluctuations and the accumulative error of inertial sensors. Usually, the filtering method is used for integrating the two approaches to achieve better location accuracy. In the real environments, especially in the indoor field, the APs could be sparse and short range. To overcome the limitations, a novel particle filter approach based on Rao Blackwellized particle filter (RBPF is presented in this paper. The indoor environment is divided into several local maps, which are assumed to be independent of each other. The local areas are estimated by the local particle filter, whereas the global areas are combined by the global particle filter. The algorithm has been investigated by real field trials using a WiFi tablet on hand with an inertial sensor on foot. It could be concluded that the proposed method reduces the complexity of the positioning algorithm obviously, as well as offers a significant improvement in position accuracy compared to other conventional algorithms, allowing indoor positioning error below 1.2 m.

  11. Sensitivity Range Analysis of Infrared (IR) Transmitter and Receiver Sensor to Detect Sample Position in Automatic Sample Changer

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Nolida Yussup; Nur Aira Abdul Rahman; Maslina Ibrahim

    2016-01-01

    Sensitivity range of IR Transmitter and Receiver Sensor influences the effectiveness of the sensor to detect position of a sample. Then the purpose of this analysis is to determine the suitable design and specification the electronic driver of the sensor to gain appropriate sensitivity range for required operation. The related activities to this analysis cover electronic design concept and specification, calibration of design specification and evaluation on design specification for required application. (author)

  12. Optically powered and interrogated rotary position sensor for aircraft engine control applications

    Science.gov (United States)

    Spillman, W. B.; Crowne, D. H.; Woodward, D. W.

    A throttle level angle (TLA) sensing system is described that utilizes a capacitance based rotary position transducer that is powered and interrogated via light from a single multimode optical fiber. The system incorporates a unique GaAs device that serves as both a power converter and optical data transmitter. Design considerations are discussed, and the fabrication and performance of the sensor system are detailed.

  13. D Surface Generation from Aerial Thermal Imagery

    Science.gov (United States)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  14. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.

    Science.gov (United States)

    Yurtman, Aras; Barshan, Billur

    2017-08-09

    Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.

  15. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    Science.gov (United States)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  16. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    International Nuclear Information System (INIS)

    Schmidt, H; Kirschner, O; Riedelbauch, S; Necker, J; Kopf, E; Rieg, M; Arantes, G; Wessiak, M; Mayrhuber, J

    2014-01-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation

  17. Pressure sensor based on distributed temperature sensing

    NARCIS (Netherlands)

    van Baar, J.J.J.; Wiegerink, Remco J.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2002-01-01

    A differential pressure sensor has been realized with thermal readout. The thermal readout allows simultaneous measurement of the membrane deflection due to a pressure difference and measurement of the absolute pressure by operating the structure as a Pirani pressure sensor. The measuring of the

  18. Visible light communication based vehicle positioning using LED street light and rolling shutter CMOS sensors

    Science.gov (United States)

    Do, Trong Hop; Yoo, Myungsik

    2018-01-01

    This paper proposes a vehicle positioning system using LED street lights and two rolling shutter CMOS sensor cameras. In this system, identification codes for the LED street lights are transmitted to camera-equipped vehicles through a visible light communication (VLC) channel. Given that the camera parameters are known, the positions of the vehicles are determined based on the geometric relationship between the coordinates of the LEDs in the images and their real world coordinates, which are obtained through the LED identification codes. The main contributions of the paper are twofold. First, the collinear arrangement of the LED street lights makes traditional camera-based positioning algorithms fail to determine the position of the vehicles. In this paper, an algorithm is proposed to fuse data received from the two cameras attached to the vehicles in order to solve the collinearity problem of the LEDs. Second, the rolling shutter mechanism of the CMOS sensors combined with the movement of the vehicles creates image artifacts that may severely degrade the positioning accuracy. This paper also proposes a method to compensate for the rolling shutter artifact, and a high positioning accuracy can be achieved even when the vehicle is moving at high speeds. The performance of the proposed positioning system corresponding to different system parameters is examined by conducting Matlab simulations. Small-scale experiments are also conducted to study the performance of the proposed algorithm in real applications.

  19. A single-layer flat-coil-oscillator (SFCO)-based super-broadband position sensor for nano-scale-resolution seismometry

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, Samvel [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)], E-mail: gevs_sam@web.am; Gevorgyan, Vardan [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia); International Scientific-Educational Center, National Academy of Sciences, 24-D Marshal Baghramyan av., Yerevan 0019 (Armenia); Karapetyan, Gagik [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)

    2008-05-15

    A new class super-broadband, nano-scale-resolution position sensor is tested. It is used as an additional sensor in seismograph. It enables to extend the band and enhance the sensitivity of the available technique by at least an order of magnitude. It allows transferring of mechanical vibrations of constructions and buildings, with amplitudes over 1 nm, into detectable signal in a frequency range starting practically from quasi-static movements. It is based on detection of position changes of a vibrating normal-metallic plate placed near the flat coil-being used as a pick-up in a stable tunnel diode oscillator. Frequency of the oscillator is used as a detecting parameter, and the measuring effect is determined by a distortion of the MHz-range testing field configuration near a coil by a vibrating plate, leading to magnetic inductance changes of the coil, with a resolution {approx}10 pH. This results in changes of oscillator frequency. We discuss test data of such a position sensor, installed in a Russian SM-3 seismometer, as an additional pick-up component, showing its advantages compared to traditional techniques. We also discuss the future of such a novel sensor involving substitution of a metallic coil by a superconductive one and replacement of a tunnel diode by an S/I/S hetero-structure-as much less-powered active element in the oscillator, compared to tunnel diode. These may strongly improve the stability of oscillators, and therefore enhance the resolution of seismic techniques.

  20. On Designing Thermal-Aware Localized QoS Routing Protocol for in-vivo Sensor Nodes in Wireless Body Area Networks

    OpenAIRE

    Monowar, Muhammad Mostafa; Bajaber, Fuad

    2015-01-01

    In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level....

  1. Vacuum behavior and control of a MEMS stage with integrated thermal displacement sensor

    NARCIS (Netherlands)

    Krijnen, B.; Brouwer, Dannis Michel; Abelmann, Leon; Herder, Justus Laurens

    2015-01-01

    We investigate the applicability of a MEMS stage in a vacuum environment. The stage is suspended by a flexure mechanism and is actuated by electrostatic comb-drives. The position of the stage is measured by an integrated sensor based on the conductance of heat through air. The vacuum behavior of the

  2. Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Ingvorsen, Charlotte Bonde; Nielsen, Line Hagner

    2018-01-01

    of resonant reflection during absorption, by monitoring the release of water using ellipsometry, and by rigorous coupled-wave analysis (RCWA). The approach presented here enables monitoring of water uptake and thermal fluctuations, for drift-free, high-performance operation of a polymeric PCS sensor....... with additional challenges, besides those relating to temperature-variations, which must be considered in any refractive index based method: The polymeric waveguide core was found to swell by ?0.3% as water absorbed into the waveguide core over ?1.5 h. This was investigated by monitoring the wavelength...

  3. Contact stress sensor

    Science.gov (United States)

    Kotovsky, Jack [Oakland, CA

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  4. Integrated algorithms for RFID-based multi-sensor indoor/outdoor positioning solutions

    Science.gov (United States)

    Zhu, Mi.; Retscher, G.; Zhang, K.

    2011-12-01

    Position information is very important as people need it almost everywhere all the time. However, it is a challenging task to provide precise positions indoor/outdoor seamlessly. Outdoor positioning has been widely studied and accurate positions can usually be achieved by well developed GPS techniques but these techniques are difficult to be used indoors since GPS signal reception is limited. The alternative techniques that can be used for indoor positioning include, to name a few, Wireless Local Area Network (WLAN), bluetooth and Ultra Wideband (UWB) etc.. However, all of these have limitations. The main objectives of this paper are to investigate and develop algorithms for a low-cost and portable indoor personal positioning system using Radio Frequency Identification (RFID) and its integration with other positioning systems. An RFID system consists of three components, namely a control unit, an interrogator and a transponder that transmits data and communicates with the reader. An RFID tag can be incorporated into a product, animal or person for the purpose of identification and tracking using radio waves. In general, for RFID positioning in urban and indoor environments three different methods can be used, including cellular positioning, trilateration and location fingerprinting. In addition, the integration of RFID with other technologies is also discussed in this paper. A typical combination is to integrate RFID with relative positioning technologies such as MEMS INS to bridge the gaps between RFID tags for continuous positioning applications. Experiments are shown to demonstrate the improvements of integrating multiple sensors with RFID which can be employed successfully for personal positioning.

  5. In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations. (paper)

  6. Human location estimation using thermopile array sensor

    Science.gov (United States)

    Parnin, S.; Rahman, M. M.

    2017-11-01

    Utilization of Thermopile sensor at an early stage of human detection is challenging as there are many things that produce thermal heat other than human such as electrical appliances and animals. Therefrom, an algorithm for early presence detection has been developed through the study of human body temperature behaviour with respect to the room temperature. The change in non-contact detected temperature of human varied according to body parts. In an indoor room, upper parts of human body change up to 3°C whereas lower part ranging from 0.58°C to 1.71°C. The average changes in temperature of human is used as a conditional set-point value in the program algorithm to detect human presence. The current position of human and its respective angle is gained when human is presence at certain pixels of Thermopile’s sensor array. Human position is estimated successfully as the developed sensory system is tested to the actuator of a stand fan.

  7. Simulation of Transient Response of Ir-TES for Position-Sensitive TES with Waveform Domain Multiplexing

    Science.gov (United States)

    Minamikawa, Y.; Sato, H.; Mori, F.; Damayanthi, R. M. T.; Takahashi, H.; Ohno, M.

    2008-04-01

    We are developing a new x-ray microcalorimeter based on a superconducting transition edge sensor (TES) as an imaging sensor. Our measurement shows unique waveforms which we consider as an expression of thermal nonuniformity of TES films. This arises from the different thermal responses, so that response signal shapes would vary according to the position of the incident x-ray. This position dependency deteriorate the measured energy resolution, but with appropriate waveform analysis, this would be useful for imaging device. For more inspection, we have developed a simulation code which enables a dynamic simulation to obtain a transient response of the TES by finite differential method. Temperature and electric current distributions are calculated. As a result, we successfully obtained waveform signals. The calculated signal waveforms have similar characteristics to the measured signals. This simulation visualized the transition state of the device and will help to design better detector.

  8. Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives

    Science.gov (United States)

    Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.

    2009-12-01

    Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.

  9. Assessment of laser ablation techniques in a-si technologies for position-sensor development

    Science.gov (United States)

    Molpeceres, C.; Lauzurica, S.; Ocana, J. L.; Gandia, J. J.; Urbina, L.; Carabe, J.

    2005-07-01

    Laser micromachining of semiconductor and Transparent Conductive Oxides (TCO) materials is very important for the practical applications in photovoltaic industry. In particular, a problem of controlled ablation of those materials with minimum of debris and small heat affected zone is one of the most vital for the successful implementation of laser micromachining. In particular, selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using Transparent Conductive Oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, Indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. The profiles of ablated grooves have been studied in order to determine the best processing conditions, i.e. laser pulse energy and wavelength, and to asses this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well defined ablation grooves having thicknesses in the order of 10 μm both in ITO and a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.

  10. Mathematical Model and Calibration Procedure of a PSD Sensor Used in Local Positioning Systems.

    Science.gov (United States)

    Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Domingo-Perez, Francisco; Tsirigotis, Georgios

    2016-09-15

    Here, we propose a mathematical model and a calibration procedure for a PSD (position sensitive device) sensor equipped with an optical system, to enable accurate measurement of the angle of arrival of one or more beams of light emitted by infrared (IR) transmitters located at distances of between 4 and 6 m. To achieve this objective, it was necessary to characterize the intrinsic parameters that model the system and obtain their values. This first approach was based on a pin-hole model, to which system nonlinearities were added, and this was used to model the points obtained with the nA currents provided by the PSD. In addition, we analyzed the main sources of error, including PSD sensor signal noise, gain factor imbalances and PSD sensor distortion. The results indicated that the proposed model and method provided satisfactory calibration and yielded precise parameter values, enabling accurate measurement of the angle of arrival with a low degree of error, as evidenced by the experimental results.

  11. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Cai, Weizhao; Katrusiak, Andrzej

    2014-07-04

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices.

  12. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  13. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  14. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  15. A IR-Femtosecond Laser Hybrid Sensor to Measure the Thermal Expansion and Thermo-Optical Coefficient of Silica-Based FBG at High Temperatures.

    Science.gov (United States)

    Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie

    2018-01-26

    In this paper, a hybrid sensor was fabricated using a IR-femtosecond laser to measure the thermal expansion and thermo-optical coefficient of silica-based fiber Bragg gratings (FBGs). The hybrid sensor was composed of an inline fiber Fabry-Perot interferometer (FFPI) cavity and a type-II FBG. Experiment results showed that the type-II FBG had three high reflectivity resonances in the wavelength ranging from 1100 to 1600 nm, showing the peaks in 1.1, 1.3 and 1.5 μm, respectively. The thermal expansion and thermo-optical coefficient (1.3 μm, 1.5 μm) of silica-based FBG, under temperatures ranging from 30 to 1100 °C, had been simultaneously calculated by measuring the wavelength of the type-II FBG and FFPI cavity length.

  16. Reproducibility of wrist home blood pressure measurement with position sensor and automatic data storage

    Directory of Open Access Journals (Sweden)

    Nickenig Georg

    2009-05-01

    Full Text Available Abstract Background Wrist blood pressure (BP devices have physiological limits with regards to accuracy, therefore they were not preferred for home BP monitoring. However some wrist devices have been successfully validated using etablished validation protocols. Therefore this study assessed the reproducibility of wrist home BP measurement with position sensor and automatic data storage. Methods To compare the reproducibility of three different(BP measurement methods: 1 office BP, 2 home BP (Omron wrist device HEM- 637 IT with position sensor, 3 24-hour ambulatory BP(24-h ABPM (ABPM-04, Meditech, Hunconventional sphygmomanometric office BP was measured on study days 1 and 7, 24-h ABPM on study days 7 and 14 and home BP between study days 1 and 7 and between study days 8 and 14 in 69 hypertensive and 28 normotensive subjects. The correlation coeffcient of each BP measurement method with echocardiographic left ventricular mass index was analyzed. The schedule of home readings was performed according to recently published European Society of Hypertension (ESH- guidelines. Results The reproducibility of home BP measurement analyzed by the standard deviation as well as the squared differeces of mean individual differences between the respective BP measurements was significantly higher than the reproducibility of office BP (p Conclusion The short-term reproducibility of home BP measurement with the Omron HEM-637 IT wrist device was superior to the reproducibility of office BP and 24- h ABPM measurement. Furthermore, home BP with the wrist device showed similar correlations to targed organ damage as recently reported for upper arm devices. Although wrist devices have to be used cautious and with defined limitations, the use of validated devices with position sensor according to recently recommended measurement schedules might have the potential to be used for therapy monitoring.

  17. Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Raimundo García-Olcina

    2011-07-01

    Full Text Available The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE is presented. The system, by means of two specials valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.

  18. Novel wireless sensor system for dynamic characterization of borehole heat exchangers.

    Science.gov (United States)

    Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo

    2011-01-01

    The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two special valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.

  19. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  20. Rapid response sensor to monitor the temperature and flow of liquid metals

    International Nuclear Information System (INIS)

    McCann, J.D.

    1980-01-01

    Two forms of a sensor capable of simultaneously monitoring the temperature and flow of liquid metal coolants within a reactor are described. They operate by measuring the coupling impedances between the sensor and the surrounding electrically conductive coolant. Since the system utilises electrical rather than thermal properties, the response to perturbations is rapid, typically displaying the changed conditions within a few milliseconds. The first form of the sensor was designed to operate whilst protected by a thick walled service tube positioned in the reactor coolant. Providing bends in the tube had a radius greater than 70 cm, the sensor could be removed for inspection and maintenance if necessary. The second sensor was fitted inside a streamlined NaK proof capsule. This was inserted directly into the coolant outlet stream of a fuel pin assembly in the Dounreay Fast Reactor. In this form the sensor successfully monitored flow, entrained gas and temperature excursions during the final operating cycle of D.F.R. (author)

  1. A new position-sensitive detector for thermal and epithermal neutrons

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Ford, N.L.; Lindberg, B.; Sachot, R.

    1977-01-01

    A new two-dimensional position-sensitive neutron detector is described. It is based on (n,γ) neutron resonance capture in a foil with subsequent detection of internal conversion electrons with a high-density proportional chamber. Large-area detectors with a 1 mm spatial resolution are feasible. A detection efficiency of 50% is possible for thermal neutrons using gadolinium-157 foil and for epithermal neutrons using hafnium-177. (Auth.)

  2. Mining robotics sensors

    CSIR Research Space (South Africa)

    Green, JJ

    2012-04-01

    Full Text Available of threedimensional cameras (SR 4000 and XBOX Kinect) and a thermal imaging sensor (FLIR A300) in order to create 3d thermal models of narrow mining stopes. This information can be used in determining the risk of rockfall in an underground mine, which is a major...

  3. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.

    Science.gov (United States)

    Marañón-Jiménez, S; Van den Bulcke, J; Piayda, A; Van Acker, J; Cuntz, M; Rebmann, C; Steppe, K

    2018-02-01

    Insertion of thermal dissipation (TD) sap flow sensors in living tree stems causes damage of the wood tissue, as is the case with other invasive methods. The subsequent wound formation is one of the main causes of underestimation of tree water-use measured by TD sensors. However, the specific alterations in wood anatomy in response to inserted sensors have not yet been characterized, and the linked dysfunctions in xylem conductance and sensor accuracy are still unknown. In this study, we investigate the anatomical mechanisms prompting sap flow underestimation and the dynamic process of wound formation. Successive sets of TD sensors were installed in the early, mid and end stage of the growing season in diffuse- and ring-porous trees, Fagus sylvatica (Linnaeus) and Quercus petraea ((Mattuschka) Lieblein), respectively. The trees were cut in autumn and additional sensors were installed in the cut stem segments as controls without wound formation. The wounded area and volume surrounding each sensor was then visually determined by X-ray computed microtomography (X-ray microCT). This technique allowed the characterization of vessel anatomical transformations such as tyloses formation, their spatial distribution and quantification of reduction in conductive area. MicroCT scans showed considerable formation of tyloses that reduced the conductive area of vessels surrounding the inserted TD probes, thus causing an underestimation in sap flux density (SFD) in both beech and oak. Discolored wood tissue was ellipsoidal, larger in the radial plane, more extensive in beech than in oak, and also for sensors installed for longer times. However, the severity of anatomical transformations did not always follow this pattern. Increased wound size with time, for example, did not result in larger SFD underestimation. This information helps us to better understand the mechanisms involved in wound effects with TD sensors and allows the provision of practical recommendations to reduce

  4. Sensor Fusion of Position- and Micro-Sensors (MEMS) integrated in a Wireless Sensor Network for movement detection in landslide areas

    Science.gov (United States)

    Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig

    2010-05-01

    Monitoring systems in landslide areas are important elements of effective Early Warning structures. Data acquisition and retrieval allows the detection of movement processes and thus is essential to generate warnings in time. Apart from the precise measurement, the reliability of data is fundamental, because outliers can trigger false alarms and leads to the loss of acceptance of such systems. For the monitoring of mass movements and their risk it is important to know, if there is movement, how fast it is and how trustworthy is the information. The joint project "Sensorbased landslide early warning system" (SLEWS) deals with these questions, and tries to improve data quality and to reduce false alarm rates, due to the combination of sensor date (sensor fusion). The project concentrates on the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides by using various low-cost sensors, integrated in a wireless sensor network (WSN). The network consists of numerous connection points (nodes) that transfer data directly or over other nodes (Multi-Hop) in real-time to a data collection point (gateway). From there all the data packages are transmitted to a spatial data infrastructure (SDI) for further processing, analyzing and visualizing with respect to end-user specifications. The ad-hoc characteristic of the network allows the autonomous crosslinking of the nodes according to existing connections and communication strength. Due to the independent finding of new or more stable connections (self healing) a breakdown of the whole system is avoided. The bidirectional data stream enables the receiving of data from the network but also allows the transfer of commands and pointed requests into the WSN. For the detection of surface deformations in landslide areas small low-cost Micro-Electro-Mechanical-Systems (MEMS) and positionsensors from the automobile industries, different industrial applications and from other measurement

  5. Real-time measurement of relative sensor position changes using ultrasonic signal evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yastrebova, O.; Bulavinov, A.; Kroening, M. [Fraunhofer Institute Nondestructive Testing IZFP, Saarbruecken (Germany)

    2008-07-01

    Ultrasonic testing is considered to be one of the most commonly applied nondestructive testing techniques for flaw detection and material characterization. Traditional Nondestructive Testing (NDT) provides detection of material discontinuities that may cause failure within the designed lifetime of a part or component. In addition, Quantitative Nondestructive Testing (QNDT) provides means to obtain required information about type, size and location of deficiencies to the integrity of the inspected structure and further use under specific, given load conditions. The ''Acoustic Mouse'' technique has been developed as a tool for manual ultrasonic inspection to provide test results that can be evaluated quantitatively. The ultrasonic data are processed by real-time variation methods to extract position information from backscattered acoustic noise and geometric scatter signals in the inspection volume. The position and positional changes of the ''Acoustic Mouse'' sensor (transducer) are determined by the sequential analysis of ultrasonic data (highresolution sector-scans), which are acquired and reconstructed using the Sampling Phased Array technique. The results of first experiments conducted with linear scanning and intentional lift-offs demonstrate sufficient accuracy in position measurements. (orig.)

  6. A screen-printed flexible flow sensor

    International Nuclear Information System (INIS)

    Moschos, A; Kaltsas, G; Syrovy, T; Syrova, L

    2017-01-01

    A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range. (paper)

  7. A review of micromachined thermal accelerometers

    Science.gov (United States)

    Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar

    2017-12-01

    A thermal convection based micro-electromechanical accelerometer is a relatively new kind of acceleration sensor that does not require a solid proof mass, yielding unique benefits like high shock survival rating, low production cost, and integrability with CMOS integrated circuit technology. This article provides a comprehensive survey of the research, development, and current trends in the field of thermal acceleration sensors, with detailed enumeration on the theory, operation, modeling, and numerical simulation of such devices. Different reported varieties and structures of thermal accelerometers have been reviewed highlighting key design, implementation, and performance aspects. Materials and technologies used for fabrication of such sensors have also been discussed. Further, the advantages and challenges for thermal accelerometers vis-à-vis other prominent accelerometer types have been presented, followed by an overview of associated signal conditioning circuitry and potential applications.

  8. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  9. Design and Parametric Study of the Magnetic Sensor for Position Detection in Linear Motor Based on Nonlinear Parametric model order reduction.

    Science.gov (United States)

    Paul, Sarbajit; Chang, Junghwan

    2017-07-01

    This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension.

  10. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  11. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-01-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  12. Cricket inspired flow-sensor arrays

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Casas, J.

    2007-01-01

    We report current developments in biomimetic flow-sensors based on mechanoreceptive sensory hairs of crickets. These filiform hairs are highly perceptive to lowfrequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of

  13. A Container Horizontal Positioning Method with Image Sensors for Cranes in Automated Container Terminals

    Directory of Open Access Journals (Sweden)

    FU Yonghua

    2014-03-01

    Full Text Available Automation is a trend for large container terminals nowadays, and container positioning techniques are key factor in the automating process. Vision based positioning techniques are inexpensive and rather accurate in nature, while the effect with insufficient illumination is left in question. This paper proposed a vision-based procedure with image sensors to determine the position of one container in the horizontal plane. The points found by the edge detection operator are clustered, and only the peak points in the parameter space of the Hough transformation is selected, in order that the effect of noises could be much decreased. The effectiveness of our procedure is verified in experiments, in which the efficiency of the procedure is also investigated.

  14. A fully integrated GaAs-based three-axis Hall magnetic sensor exploiting self-positioned strain released structures

    International Nuclear Information System (INIS)

    Todaro, Maria T; Sileo, Leonardo; Epifani, Gianmichele; Tasco, Vittorianna; Cingolani, Roberto; De Vittorio, Massimo; Passaseo, Adriana

    2010-01-01

    In this work, we demonstrate a fully integrated three-axis Hall magnetic sensor by exploiting microfabrication technologies applied to a GaAs-based heterostructure. This allows us to obtain, by the same process, three mutually orthogonal sensors: an in-plane Hall sensor and two out-of-plane Hall sensors. The micromachined devices consist of a two-dimensional electron gas AlGaAs/InGaAs/GaAs multilayer which represents the sensing structure, grown on the top of an InGaAs/GaAs strained bilayer. After the release from the substrate, the strained bilayer acts as a hinge for the multilayered structure allowing the out-of-plane self-positioning of devices. Both the in-plane and out-of-plane Hall sensors show a linear response versus the magnetic field with a sensitivity for current-biased devices higher than 1000 V A −1 T −1 , corresponding to an absolute sensitivity more than 0.05 V T −1 at 50 µA. Moreover, Hall voltage measurements, as a function of the mechanical angle for both in-plane and out-of-plane sensors, demonstrate the potential of such a device for measurements of the three vector components of a magnetic field

  15. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  16. Flush Mounting Of Thin-Film Sensors

    Science.gov (United States)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  17. An Adaptive Connectivity-based Centroid Algorithm for Node Positioning in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Aries Pratiarso

    2015-06-01

    Full Text Available In wireless sensor network applications, the position of nodes is randomly distributed following the contour of the observation area. A simple solution without any measurement tools is provided by range-free method. However, this method yields the coarse estimating position of the nodes. In this paper, we propose Adaptive Connectivity-based (ACC algorithm. This algorithm is a combination of Centroid as range-free based algorithm, and hop-based connectivity algorithm. Nodes have a possibility to estimate their own position based on the connectivity level between them and their reference nodes. Each node divides its communication range into several regions where each of them has a certain weight depends on the received signal strength. The weighted value is used to obtain the estimated position of nodes. Simulation result shows that the proposed algorithm has up to 3 meter error of estimated position on 100x100 square meter observation area, and up to 3 hop counts for 80 meters' communication range. The proposed algorithm performs an average error positioning up to 10 meters better than Weighted Centroid algorithm. Keywords: adaptive, connectivity, centroid, range-free.

  18. Experiments of Laser Pointing Stability in Air and in Vacuum to Validate Micrometric Positioning Sensor

    CERN Document Server

    Stern, G; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2014-01-01

    Aligning accelerator components over 200m with 10 μm accuracy is a challenging task within the Compact Linear Collider (CLIC) study. A solution based on laser beam in vacuum as straight line reference is proposed. The positions of the accelerator’s components are measured with respect to the laser beam by sensors made of camera/shutter assemblies. To validate these sensors, laser pointing stability has to be studied over 200m. We perform experiments in air and in vacuum in order to know how laser pointing stability varies with the distance of propagation and with the environment. The experiments show that the standard deviations of the laser spot coordinates increase with the distance of propagation. They also show that the standard deviations are much smaller in vacuum (8 μm at 35m) than in air (2000 μm at 200m). Our experiment validates the concept of laser beam in vacuum with camera/shutter assembly for micrometric positioning over 35m. It also gives an estimation of the achievable precision.

  19. Manipulation and controlled amplification of Brownian motion of microcantilever sensors

    International Nuclear Information System (INIS)

    Mehta, Adosh; Cherian, Suman; Hedden, David; Thundat, Thomas

    2001-01-01

    Microcantilevers, such as those used in atomic force microscopy, undergo Brownian motion due to mechanical thermal noise. The root mean square amplitude of the Brownian motion of a cantilever typically ranges from 0.01--0.1 nm, which limits its use in practical applications. Here we describe a technique by which the Brownian amplitude and the Q factor in air and water can be amplified by three and two orders of magnitude, respectively. This technique is similar to a positive feedback oscillator, wherein the Brownian motion of the vibrating cantilever controls the frequency output of the oscillator. This technique can be exploited to improve sensitivity of microcantilever-based chemical and biological sensors, especially for sensors in liquid environments

  20. Thermal heat-balance mode flow-to-frequency converter

    Science.gov (United States)

    Pawlowski, Eligiusz

    2016-11-01

    This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.

  1. Clinical measuring system for the form and position errors of circular workpieces using optical fiber sensors

    Science.gov (United States)

    Tan, Jiubin; Qiang, Xifu; Ding, Xuemei

    1991-08-01

    Optical sensors have two notable advantages in modern precision measurement. One is that they can be used in nondestructive measurement because the sensors need not touch the surfaces of workpieces in measuring. The other one is that they can strongly resist electromagnetic interferences, vibrations, and noises, so they are suitable to be used in machining sites. But the drift of light intensity and the changing of the reflection coefficient at different measuring positions of a workpiece may have great influence on measured results. To solve the problem, a spectroscopic differential characteristic compensating method is put forward. The method can be used effectively not only in compensating the measuring errors resulted from the drift of light intensity but also in eliminating the influence to measured results caused by the changing of the reflection coefficient. Also, the article analyzes the possibility of and the means of separating data errors of a clinical measuring system for form and position errors of circular workpieces.

  2. New version of toroidal SQUID sensor

    International Nuclear Information System (INIS)

    Zarembinski, S.; Kachniarz, J.

    1983-01-01

    A report is given on the design and fabrication of a mechanically stable and thermal shock resistant SQUID sensor. The sensor is vacuum sealed while the access to the adjustment of its point contact is left open

  3. Mass and Position Determination in MEMS Resonant Mass Sensors: Theoretical and Experimental Investigation

    KAUST Repository

    Bouchaala, Adam M.

    2016-12-05

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  4. Mass and Position Determination in MEMS Resonant Mass Sensors: Theoretical and Experimental Investigation

    KAUST Repository

    Bouchaala, Adam M.; Nayfeh, Ali H.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  5. Proposal for the award of a contract, without competitive tendering, for the supply and upgrade of positioning sensors for the LHC

    CERN Document Server

    2004-01-01

    This document concerns the award of a contract, without competitive tendering, for the supply of 60 new Hydrostatic Leveling Systems (HLS sensors) and 25 new Wire Positioning Systems (WPS sensors) and for the upgrade of 63 existing sensors. For the reasons explained in this document, the Finance Committee is invited to agree to the negotiation of a contract with FOGALE NANOTECH (FR), for the supply and upgrade of HLS and WPS sensors for a total amount of 412 913 euros (631 757 Swiss francs), not subject to revision. The amount in Swiss francs has been calculated using the present rate of exchange.

  6. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  7. Sensor Pods: Multi-Resolution Surveys from a Light Aircraft

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2017-02-01

    Full Text Available Airborne remote sensing, whether performed from conventional aerial survey platforms such as light aircraft or the more recent Remotely Piloted Airborne Systems (RPAS has the ability to compliment mapping generated using earth-orbiting satellites, particularly for areas that may experience prolonged cloud cover. Traditional aerial platforms are costly but capture spectral resolution imagery over large areas. RPAS are relatively low-cost, and provide very-high resolution imagery but this is limited to small areas. We believe that we are the first group to retrofit these new, low-cost, lightweight sensors in a traditional aircraft. Unlike RPAS surveys which have a limited payload, this is the first time that a method has been designed to operate four distinct RPAS sensors simultaneously—hyperspectral, thermal, hyper, RGB, video. This means that imagery covering a broad range of the spectrum captured during a single survey, through different imaging capture techniques (frame, pushbroom, video can be applied to investigate different multiple aspects of the surrounding environment such as, soil moisture, vegetation vitality, topography or drainage, etc. In this paper, we present the initial results validating our innovative hybrid system adapting dedicated RPAS sensors for a light aircraft sensor pod, thereby providing the benefits of both methodologies. Simultaneous image capture with a Nikon D800E SLR and a series of dedicated RPAS sensors, including a FLIR thermal imager, a four-band multispectral camera and a 100-band hyperspectral imager was enabled by integration in a single sensor pod operating from a Cessna c172. However, to enable accurate sensor fusion for image analysis, each sensor must first be combined in a common vehicle coordinate system and a method for triggering, time-stamping and calculating the position/pose of each sensor at the time of image capture devised. Initial tests were carried out over agricultural regions with

  8. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    Science.gov (United States)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  9. Geometrical modeling of a two-dimensional sensor array for determining spatial position of a passive object

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2004-01-01

    This paper presents a model of an active sensor array which can determine the spatial position of a passive object by illuminating the object via a small set of emitters and measure the intensity of the reflection by means of a small set of receivers. All emitters and receivers are located...

  10. Theoretical description of the photopyroelectric technique in the slanted detector configuration for thermal diffusivity measurements in fluids

    International Nuclear Information System (INIS)

    Rojas-Trigos, J.B.; Marín, E.; Mansanares, A.M.; Cedeño, E.; Juárez-Gracia, G.; Calderón, A.

    2014-01-01

    Highlights: • A model for photopyroelectric thermal characterization of fluids is presented. • A slanted detector configuration is considered with a finite measurement cell. • The mean temperature distribution in the photopyroelectric detector, as function of the beam spot position, is calculated. • The influence of the excitation beam spot size, the thermal diffusion length and size of the sample is discussed. • The high lateral resolution of the method observed in experiments is explain. - Abstract: This work presents an extended description about the theoretical aspects related to the generation of the photopyroelectric signal in a recently proposed wedge-like heat transmission detection configuration, which recreates the well-known Angstrom method (widely used for solid samples) for accurate thermal diffusivity measurement in gases and liquids. The presented model allows for the calculation of the temperature profile detected by the pyroelectric sensor as a function of the excitation beam position, and the study of the influence on it of several parameters, such as spot size, thermal properties of the absorber layer, and geometrical parameters of the measurement cell. Through computer simulations, it has been demonstrated that a narrow temperature distribution is created at the sensor surface, independently of the lateral diffusion of heat taking place at the sample's surface

  11. Eliminating thermal violin spikes from LIGO noise

    Energy Technology Data Exchange (ETDEWEB)

    Santamore, D. H.; Levin, Yuri

    2001-08-15

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than {approx}2 x 10{sup -13} cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors.

  12. Eliminating thermal violin spikes from LIGO noise

    International Nuclear Information System (INIS)

    Santamore, D. H.; Levin, Yuri

    2001-01-01

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than ∼2 x 10 -13 cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors

  13. Mobile Networked Sensors for Environmental Observatories

    Science.gov (United States)

    Kaiser, W. J.

    2005-12-01

    carried by NIMS include sensors for visible wavelength imaging, thermal infrared temperature mapping, microclimate, solar radiation, and for water quality and physical characterization of aquatic systems. NIMS devices include compact embedded computing, wireless network connectivity to surrounding static sensors, and remote Internet access. Exploiting this onboard computing allows NIMS devices to follow precise scanning protocols and self-calibration procedures. This presentation will describe permanent facility NIMS systems deployed at the James San Jacinto Mountains Reserve. Rapidly deployable NIMS permitting short term, highly mobile experiments will also be discussed. This includes the Thermal Mapper system that simultaneously samples plant physical structure (using laser position sensing and imaging) along with plant surface temperature (using high spatial resolution thermal infrared sensing). This compact system has been applied to the investigation of thermal characteristics of alpine plants in varying soil surfaces at the White Mountains Research Station. Other NIMS applications and results to be described include novel spatial mapping of nitrate concentration and other variables in flowing streams. Finally, this presentation will also address the many future applications of observatories linking investigators with remote mobile and static sensor networks. This research is supported by the NSF0331481 ITR program. Research has been performed in collaboration with R. Ambrose, K. Bible, D. Estrin, E. Graham, M. Hamilton, M. Hanson, T. Harmon, G. Pottie, P. Rundel, M. Srivastava, and G. Sukhatme

  14. Experimental verification of agreement between thermal and real time visual melt-solid interface positions in vertical Bridgman grown germanium

    Science.gov (United States)

    Barber, P. G.; Fripp, A. L.; Debnam, W. J.; Woodell, G.; Berry, R. F.; Simchick, R. T.

    1996-03-01

    Measurements of the liquid-solid interface position during crystal growth were made by observing the discontinuity of the temperature gradient with movable thermocouples in a centerline, quartz capillary placed inside a sealed quartz ampoule of germanium in a vertical Bridgman furnace. Simultaneously, in situ, real time visual observations, using X-ray imaging technology, determined the position of the melt-solid interface. The radiographically detected interface position was several millimeters from the thermal interface position and the direction of displacement depended upon the direction of thermocouple insertion. Minimization of this spurious heat flow was achieved by using an unclad thermocouple that had each of its two wire leads entering the capillary from different ends of the furnace. Using this configuration the visual interface coincided with the thermal interface. Such observations show the utility of using in situ, real time visualization to record the melt-solid interface shape and position during crystal growth; and they suggest improvements in furnace and ampoule designs for use in high thermal gradients.

  15. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  16. Staff Technical Position on geological repository operations area underground facility design: Thermal loads

    International Nuclear Information System (INIS)

    Nataraja, M.S.

    1992-12-01

    The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff's position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design

  17. Apparatus for determining the thermal history of equipment using solid state track recorders

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Lippincott, E.P.; Fero, A.H.; Schreiber, R.B.; Seidel, J.G.

    1991-01-01

    This patent describes a nuclear power plant having equipment subject to thermal aging, the rate of the thermal aging being capable of characterization by at least one equipment Arrhenius function of temperature, the equipment being subjected to a temperature environment having a predetermined range of temperatures, apparatus for determining the thermal aging which has occurred in the equipment. It comprises passive sensors, each of the sensors being formed from a selected material and subject to a thermal aging process within the range of temperatures, the extent of the thermal aging in each respective sensor being quantifiable, the rate at which the thermal aging process progresses in each of the sensors being characterized by a respective Arrhenius function of temperature; and the selected material not being the same for each of the sensors, whereby the range of activation energy values characterizing the respective Arrhenius functions encompasses the activation energy value characterizing the equipment Arrhenius function

  18. Multi-objective ant algorithm for wireless sensor network positioning

    International Nuclear Information System (INIS)

    Fidanova, S.; Shindarov, M.; Marinov, P.

    2013-01-01

    It is impossible to imagine our modern life without telecommunications. Wireless networks are a part of telecommunications. Wireless sensor networks (WSN) consist of spatially distributed sensors, which communicate in wireless way. This network monitors physical or environmental conditions. The objective is the full coverage of the monitoring region and less energy consumption of the network. The most appropriate approach to solve the problem is metaheuristics. In this paper the full coverage of the area is treated as a constrain. The objectives which are optimized are a minimal number of sensors and energy (lifetime) of the network. We apply multi-objective Ant Colony Optimization to solve this important telecommunication problem. We chose MAX-MIN Ant System approach, because it is proven to converge to the global optima

  19. New Design for the Inductive Position Sensor of the CAREM Reactor Control Bars

    International Nuclear Information System (INIS)

    Esparza, Daniel; D'Ovidio, Claudio; Taglialavore, Eduardo

    2000-01-01

    We describe the new design of the sensor used for determining the position of the control bars in the CAREM reactor.It presently operates under real 'cold' conditions, being under progress the final selection of materials for operation under the 'hot' condition of the reactor.The actual design is a modification of the previous one and is based on the same principle.A solenoid is placed on the outer side of the mechanism that moves the control bar, which has some part made of a magnetic material, and the variation of an electrical property of the bobbin with the movement of this magnetic piece is studied.This new design was proposed both to increase the output voltage and simplify the electronics and construction of the sensor.The output voltage is lineal with the bar position, with a correlation coefficient R = 0.9997, a sensibility of 43 % and a resolution better than 1 in 1000.The output sensibility was improved in almost three orders of magnitude, from 1.204 μV/mm to 0.924 mV/mm. Considering that the typical electric noise was ±1 mV RMS, we are able to measure the mm in the total bar excursion of 1400 mm. It is to be noticed that we obtained a resolution 10 times higher than the required: half step of the mechanism, that is ±10 mm. Both the employed electronics and the bobbin construction were markedly simplified

  20. Reproducibility of wrist home blood pressure measurement with position sensor and automatic data storage

    Science.gov (United States)

    Uen, Sakir; Fimmers, Rolf; Brieger, Miriam; Nickenig, Georg; Mengden, Thomas

    2009-01-01

    Background Wrist blood pressure (BP) devices have physiological limits with regards to accuracy, therefore they were not preferred for home BP monitoring. However some wrist devices have been successfully validated using etablished validation protocols. Therefore this study assessed the reproducibility of wrist home BP measurement with position sensor and automatic data storage. Methods To compare the reproducibility of three different(BP) measurement methods: 1) office BP, 2) home BP (Omron wrist device HEM- 637 IT with position sensor), 3) 24-hour ambulatory BP(24-h ABPM) (ABPM-04, Meditech, Hun)conventional sphygmomanometric office BP was measured on study days 1 and 7, 24-h ABPM on study days 7 and 14 and home BP between study days 1 and 7 and between study days 8 and 14 in 69 hypertensive and 28 normotensive subjects. The correlation coeffcient of each BP measurement method with echocardiographic left ventricular mass index was analyzed. The schedule of home readings was performed according to recently published European Society of Hypertension (ESH)- guidelines. Results The reproducibility of home BP measurement analyzed by the standard deviation as well as the squared differeces of mean individual differences between the respective BP measurements was significantly higher than the reproducibility of office BP (p ABPM (p ABPM was not significantly different (p = 0.80 systolic BP, p = 0.1 diastolic BP). The correlation coefficient of 24-h ABMP (r = 0.52) with left ventricular mass index was significantly higher than with office BP (r = 0.31). The difference between 24-h ABPM and home BP (r = 0.46) was not significant. Conclusion The short-term reproducibility of home BP measurement with the Omron HEM-637 IT wrist device was superior to the reproducibility of office BP and 24- h ABPM measurement. Furthermore, home BP with the wrist device showed similar correlations to targed organ damage as recently reported for upper arm devices. Although wrist devices have

  1. Tracking and Classification of In-Air Hand Gesture Based on Thermal Guided Joint Filter.

    Science.gov (United States)

    Kim, Seongwan; Ban, Yuseok; Lee, Sangyoun

    2017-01-17

    The research on hand gestures has attracted many image processing-related studies, as it intuitively conveys the intention of a human as it pertains to motional meaning. Various sensors have been used to exploit the advantages of different modalities for the extraction of important information conveyed by the hand gesture of a user. Although many works have focused on learning the benefits of thermal information from thermal cameras, most have focused on face recognition or human body detection, rather than hand gesture recognition. Additionally, the majority of the works that take advantage of multiple modalities (e.g., the combination of a thermal sensor and a visual sensor), usually adopting simple fusion approaches between the two modalities. As both thermal sensors and visual sensors have their own shortcomings and strengths, we propose a novel joint filter-based hand gesture recognition method to simultaneously exploit the strengths and compensate the shortcomings of each. Our study is motivated by the investigation of the mutual supplementation between thermal and visual information in low feature level for the consistent representation of a hand in the presence of varying lighting conditions. Accordingly, our proposed method leverages the thermal sensor's stability against luminance and the visual sensors textural detail, while complementing the low resolution and halo effect of thermal sensors and the weakness against illumination of visual sensors. A conventional region tracking method and a deep convolutional neural network have been leveraged to track the trajectory of a hand gesture and to recognize the hand gesture, respectively. Our experimental results show stability in recognizing a hand gesture against varying lighting conditions based on the contribution of the joint kernels of spatial adjacency and thermal range similarity.

  2. Silent Localization of Underwater Sensors Using Magnetometers

    Directory of Open Access Journals (Sweden)

    Jonas Callmer

    2010-01-01

    Full Text Available Sensor localization is a central problem for sensor networks. If the sensor positions are uncertain, the target tracking ability of the sensor network is reduced. Sensor localization in underwater environments is traditionally addressed using acoustic range measurements involving known anchor or surface nodes. We explore the usage of triaxial magnetometers and a friendly vessel with known magnetic dipole to silently localize the sensors. The ferromagnetic field created by the dipole is measured by the magnetometers and is used to localize the sensors. The trajectory of the vessel and the sensor positions are estimated simultaneously using an Extended Kalman Filter (EKF. Simulations show that the sensors can be accurately positioned using magnetometers.

  3. Polymer temperature sensor for textronic applications

    International Nuclear Information System (INIS)

    Bielska, Sylwia; Sibinski, Maciej; Lukasik, Andrzej

    2009-01-01

    The aim of this paper is to present research work of designing prototype textile sensors dedicated to human body temperature measurements. The sensor construction was especially elaborated to be integrated into protective clothing as a practical realization of intelligent e-textile concept. These types of sensors should be easily incorporable in clothing structures without disturbance of fabric flexibility (Carpi and De Rossi). The construction of the new type functional sensor testing is presented and illustrated by its parameters and thermal characteristics.

  4. Micro-Mechanical Temperature Sensors

    DEFF Research Database (Denmark)

    Larsen, Tom

    Temperature is the most frequently measured physical quantity in the world. The field of thermometry is therefore constantly evolving towards better temperature sensors and better temperature measurements. The aim of this Ph.D. project was to improve an existing type of micro-mechanical temperature...... sensor or to develop a new one. Two types of micro-mechanical temperature sensors have been studied: Bilayer cantilevers and string-like beam resonators. Both sensor types utilize thermally generated stress. Bilayer cantilevers are frequently used as temperature sensors at the micro-scale, and the goal....... The reduced sensitivity was due to initial bending of the cantilevers and poor adhesion between the two cantilever materials. No further attempts were made to improve the sensitivity of bilayer cantilevers. The concept of using string-like resonators as temperature sensors has, for the first time, been...

  5. Landsat-8 Sensor Characterization and Calibration

    Directory of Open Access Journals (Sweden)

    Brian Markham

    2015-02-01

    Full Text Available Landsat-8 was launched on 11 February 2013 with two new Earth Imaging sensors to provide a continued data record with the previous Landsats. For Landsat-8, pushbroom technology was adopted, and the reflective bands and thermal bands were split into two instruments. The Operational Land Imager (OLI is the reflective band sensor and the Thermal Infrared Sensor (TIRS, the thermal. In addition to these fundamental changes, bands were added, spectral bandpasses were refined, dynamic range and data quantization were improved, and numerous other enhancements were implemented. As in previous Landsat missions, the National Aeronautics and Space Administration (NASA and United States Geological Survey (USGS cooperated in the development, launch and operation of the Landsat-8 mission. One key aspect of this cooperation was in the characterization and calibration of the instruments and their data. This Special Issue documents the efforts of the joint USGS and NASA calibration team and affiliates to characterize the new sensors and their data for the benefit of the scientific and application users of the Landsat archive. A key scientific use of Landsat data is to assess changes in the land-use and land cover of the Earth’s surface over the now 43-year record. [...

  6. High Resolution Viscosity Measurement by Thermal Noise Detection

    Directory of Open Access Journals (Sweden)

    Felipe Aguilar Sandoval

    2015-11-01

    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  7. Naturalistic driving study of rear seat child occupants: Quantification of head position using a Kinect™ sensor.

    Science.gov (United States)

    Arbogast, Kristy B; Kim, Jinyong; Loeb, Helen; Kuo, Jonny; Koppel, Sjaan; Bohman, Katarina; Charlton, Judith L

    2016-09-01

    Restraint performance is evaluated using anthropomorphic test devices (ATDs) positioned in prescribed, optimal seating positions. Anecdotally, humans-children in particular-assume a variety of positions that may affect restraint performance. Naturalistic driving studies (NDSs), where cameras and other data acquisition systems are placed in a vehicle used by participants during their regular transportation, offer means to collect these data. To date, these studies have used conventional video and analysis methods and, thus, analyses have largely been qualitative. This article describes a recently completed NDS of child occupants in which their position was monitored using a Kinect sensor to quantify their head position throughout normal, everyday driving trips. A study vehicle was instrumented with a data acquisition system to measure vehicle dynamics, a set of video cameras, and a Kinect sensor providing 3D motion capture at 1 Hz of the rear seat occupants. Participant families used the vehicle for all driving trips over 2 weeks. The child occupants' head position was manually identified via custom software from each Kinect color image. The 3D head position was then extracted and its distribution summarized by seat position (left, rear, center) and restraint type (forward-facing child restraint system [FFCRS], booster seat, seat belt). Data from 18 families (37 child occupants) resulted in 582 trips (with children) for analysis. The average age of the child occupants was 45.6 months and 51% were male. Twenty-five child occupants were restrained in FFCRS, 9 in booster seats, and 3 in seat belts. As restraint type moved from more to less restraint (FFCRS to booster seat to seat belt), the range of fore-aft head position increased: 218, 244, and 340 mm on average, respectively. This observation was also true for left-right movement for every seat position. In general, those in the center seat position demonstrated a smaller range of head positions. For the first

  8. A Prototype Wire Position Monitoring System

    International Nuclear Information System (INIS)

    Wang, Wei

    2010-01-01

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1(micro)m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1(micro)m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  9. Fiber Optic Temperature Sensors in TPS: Arc Jet Model Design & Testing

    Science.gov (United States)

    Black, Richard; Feldman, Jay; Ellerby, Donald; Monk, Joshua; Moslehi, Behzad; Oblea, Levy; Switzer, Matthew

    2017-01-01

    Techniques for using fiber optics with Fiber Bragg Gratings (FBGs) have been developed by IFOS Corp. for use in thermal protection systems (TPS) on spacecraft heat shield materials through NASA Phase 1 and 2 SBIR efforts and have been further improved in a recent collaboration between IFOS and NASA that will be described here. Fiber optic temperature sensors offer several potential advantages over traditional thermocouple sensors including a) multiplexing many sensors in a single fiber to increase sensor density in a given array or to provide spatial resolution, b) improved thermal property match between sensor and TPS to reduce heat flow disruption, c) lack of electrical conductivity.

  10. Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation

    KAUST Repository

    Bouchaala, Adam M.

    2016-08-31

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  11. Large Size High Performance Transparent Amorphous Silicon Sensors for Laser Beam Position Detection and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Martinez Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto; Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrete, J.; Oller, J. C.; Kohler, C.; Lutz, B.; Schubert, M. B.

    2006-09-04

    We present the measured performance of a new generation of semitransparente amorphous silicon position detectors. They have a large sensitive area (30 x 30 mm2) and show good properties such as a high response (about 20 mA/W), an intinsic position resolution better than 3 m, a spatial point reconstruction precision better than 10 m, deflection angles smaller than 10 rad and a transmission power in the visible and NIR higher than 70%. In addition, multipoint alignment monitoring, using up to five sensors lined along a light path of about 5 meters, can be achieved with a resolution better than 20m. (Author)

  12. Large Size High Performance Transparent Amorphous Silicon Sensors for Laser Beam Position Detection and Monitoring

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto; Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrete, J.; Oller, J. C.; Kohler, C.; Lutz, B.; Schubert, M. B.

    2006-01-01

    We present the measured performance of a new generation of semitransparente amorphous silicon position detectors. They have a large sensitive area (30 x 30 mm2) and show good properties such as a high response (about 20 mA/W), an intinsic position resolution better than 3 m, a spatial point reconstruction precision better than 10 m, deflection angles smaller than 10 rad and a transmission power in the visible and NIR higher than 70%. In addition, multipoint alignment monitoring, using up to five sensors lined along a light path of about 5 meters, can be achieved with a resolution better than 20m. (Author)

  13. Robotics in hostile environment I. S. I. S. robot - automatic positioning and docking with proximity and force feed back sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gery, D

    1987-01-01

    Recent improvements in control command systems and the development of tactile proximity and force feed back sensors make it possible to robotize complex inspection and maintenance operations in hostile environment, which could have not been possible by classical remotely operated manipulators. We describe the I.S.I.S. robot characteristics, the control command system software principles and the tactile and force-torque sensors which have been developed for the different sequences of an hostile environment inspection and repair: access trajectories generation with obstacles shunning, final positioning and docking using parametric algorithms taking into account measurement of the end of arm proximity and force-torque sensors.

  14. Project of Economically Profitable Technological Process of Production of Rotor and Stator Plates of Inductive Position Sensor by Blanking and Roll Bending

    Directory of Open Access Journals (Sweden)

    Radek ČADA

    2013-12-01

    Full Text Available Paper concerns innovation of production of rotor and stator plates of inductive position sensors which are used at automatization of production processes. Authors analyse possibility of efficiency improvement of production of these devices in joint-stock company TES VSETÍN and suggest concrete solving of new production technology. Composition of production line for blanking and roll bending of rotor and stator plates of inductive position sensor from individual technological devices was suggested: decoiler, straightening device, actuating belt feeder, pneumatic shears with inclined tools, belt conveyer and four cylinders bending rolls. Construction of production line was projected in order to its operation can be secured by one production workman, which controls and chooses operation of CNC programme, takes separate roll bended rotor and stator plates of inductive position sensor from bending rolls and according to required technological procedure he composes them to rotor and stator complexes. Construction of production line was projected so that it is possible to move it by crane without necessity to dismantle and subsequently to put together and adjust the line.

  15. Electromagnetic field analysis and modeling of a relative position detection sensor for high speed maglev trains.

    Science.gov (United States)

    Xue, Song; He, Ning; Long, Zhiqiang

    2012-01-01

    The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

  16. Electromagnetic Field Analysis and Modeling of a Relative Position Detection Sensor for High Speed Maglev Trains

    Directory of Open Access Journals (Sweden)

    Song Xue

    2012-05-01

    Full Text Available The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT and the New Equivalent Source (NES method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA. The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

  17. Sensor for ionizable elements

    International Nuclear Information System (INIS)

    Berkey, E.; Reed, W.A. III; Hickam, W.M.

    1977-01-01

    Sensor to detect thermally ionizable elements or molucules in air, water vapour or oxygen or to be used as alkali leak detector in vacuum systems, e.g. in the pipe system of a liquid-metal cooled FBR. The sensor consists of an filament made of thorium-containing iridium as cathode with a temperature upto 1000 0 C and an anode sheet of molybdenum, nickel or stainless steal. (ORU) [de

  18. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-07-01

    Full Text Available We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1 were used as a model system. Thin-film platinum (Pt sensors for respiration (amperometric oxygen electrode, acidification (potentiometric pH electrodes and cell adhesion (interdigitated-electrodes structures, IDES allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4. Thin Si3N4 layers (20 nm or 60 nm were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated. Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  19. An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones.

    Science.gov (United States)

    Li, Huaiyu; Chen, Xiuwan; Jing, Guifei; Wang, Yuan; Cao, Yanfeng; Li, Fei; Zhang, Xinlong; Xiao, Han

    2015-12-11

    Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF) algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel "quasi-dynamic" Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the "process-level" fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR) positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move.

  20. Experimental study on thermal characteristics of positive leader discharges using Mach-Zehnder interferometry

    International Nuclear Information System (INIS)

    Zhou, X.; Zeng, R.; Zhuang, C.; Chen, S.

    2015-01-01

    Leader discharge is one of the main phases in long air gap breakdown, which is characterized by high temperature and high conductivity. It is of great importance to determine thermal characteristics of leader discharges. In this paper, a long-optical-path Mach-Zehnder interferometer was set up to measure the thermal parameters (thermal diameter, gas density, and gas temperature) of positive leader discharges in atmospheric air. IEC standard positive switching impulse voltages were applied to a near-one-meter point-plane air gap. Filamentary channels with high gas temperature and low density corresponding to leader discharges were observed as significant distortions in the interference fringe images. Typical diameters of the entire heated channel range from 1.5 mm to 3.5 mm with an average expansion velocity of 6.7 m/s. In contrast, typical diameters of the intensely heated region with a sharp gas density reduction range from 0.4 mm to 1.1 mm, about one third of the entire heated channel. The radial distribution of the gas density is calculated from the fringe displacements by performing an Abel inverse transform. The typical calculated gas density reduction in the center of a propagating leader channel is 80% to 90%, corresponding to a gas temperature of 1500 K to 3000 K based on the ideal gas law. Leaders tend to terminate if the central temperature is below 1500 K

  1. Experimental study on thermal characteristics of positive leader discharges using Mach-Zehnder interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X., E-mail: zhouxuan12@mails.thu.edu.cn; Zeng, R.; Zhuang, C.; Chen, S. [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-15

    Leader discharge is one of the main phases in long air gap breakdown, which is characterized by high temperature and high conductivity. It is of great importance to determine thermal characteristics of leader discharges. In this paper, a long-optical-path Mach-Zehnder interferometer was set up to measure the thermal parameters (thermal diameter, gas density, and gas temperature) of positive leader discharges in atmospheric air. IEC standard positive switching impulse voltages were applied to a near-one-meter point-plane air gap. Filamentary channels with high gas temperature and low density corresponding to leader discharges were observed as significant distortions in the interference fringe images. Typical diameters of the entire heated channel range from 1.5 mm to 3.5 mm with an average expansion velocity of 6.7 m/s. In contrast, typical diameters of the intensely heated region with a sharp gas density reduction range from 0.4 mm to 1.1 mm, about one third of the entire heated channel. The radial distribution of the gas density is calculated from the fringe displacements by performing an Abel inverse transform. The typical calculated gas density reduction in the center of a propagating leader channel is 80% to 90%, corresponding to a gas temperature of 1500 K to 3000 K based on the ideal gas law. Leaders tend to terminate if the central temperature is below 1500 K.

  2. Development of a Thermal Equilibrium Prediction Algorithm

    International Nuclear Information System (INIS)

    Aviles-Ramos, Cuauhtemoc

    2002-01-01

    A thermal equilibrium prediction algorithm is developed and tested using a heat conduction model and data sets from calorimetric measurements. The physical model used in this study is the exact solution of a system of two partial differential equations that govern the heat conduction in the calorimeter. A multi-parameter estimation technique is developed and implemented to estimate the effective volumetric heat generation and thermal diffusivity in the calorimeter measurement chamber, and the effective thermal diffusivity of the heat flux sensor. These effective properties and the exact solution are used to predict the heat flux sensor voltage readings at thermal equilibrium. Thermal equilibrium predictions are carried out considering only 20% of the total measurement time required for thermal equilibrium. A comparison of the predicted and experimental thermal equilibrium voltages shows that the average percentage error from 330 data sets is only 0.1%. The data sets used in this study come from calorimeters of different sizes that use different kinds of heat flux sensors. Furthermore, different nuclear material matrices were assayed in the process of generating these data sets. This study shows that the integration of this algorithm into the calorimeter data acquisition software will result in an 80% reduction of measurement time. This reduction results in a significant cutback in operational costs for the calorimetric assay of nuclear materials. (authors)

  3. Design and Optimization of Multi-Pixel Transition-Edge Sensors for X-Ray Astronomy Applications

    Science.gov (United States)

    Smith, Stephen J.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron Michael; Eckart, Megan E.; Ewin, Audrey J.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    Multi-pixel transition-edge sensors (TESs), commonly referred to as 'hydras', are a type of position sensitive micro-calorimeter that enables very large format arrays to be designed without commensurate increase in the number of readout channels and associated wiring. In the hydra design, a single TES is coupled to discrete absorbers via varied thermal links. The links act as low pass thermal filters that are tuned to give a different characteristic pulse shape for x-ray photons absorbed in each of the hydra sub pixels. In this contribution we report on the experimental results from hydras consisting of up to 20 pixels per TES. We discuss the design trade-offs between energy resolution, position discrimination and number of pixels and investigate future design optimizations specifically targeted at meeting the readout technology considered for Lynx.

  4. Position and orientation determination system and method

    Science.gov (United States)

    Harpring, Lawrence J.; Farfan, Eduardo B.; Gordon, John R.; Jannik, Gerald T.; Foley, Trevor Q.

    2017-06-14

    A position determination system and method is provided that may be used for obtaining position and orientation information of a detector in a contaminated room. The system includes a detector, a sensor operably coupled to the detector, and a motor coupled to the sensor to move the sensor around the detector. A CPU controls the operation of the motor to move the sensor around the detector and determines distance and angle data from the sensor to an object. The method includes moving a sensor around the detector and measuring distance and angle data from the sensor to an object at incremental positions around the detector.

  5. Micro string resonators as temperature sensors

    DEFF Research Database (Denmark)

    Larsen, T.; Schmid, S.; Boisen, A.

    2013-01-01

    The resonance frequency of strings is highly sensitive to temperature. In this work we have investigated the applicability of micro string resonators as temperature sensors. The resonance frequency of strings is a function of the tensile stress which is coupled to temperature by the thermal...... to the low thermal mass of the strings. A temperature resolution of 2.5×10-4 °C has been achieved with silicon nitride strings. The theoretical limit for the temperature resolution of 8×10-8 °C has not been reached yet and requires further improvement of the sensor....

  6. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    Science.gov (United States)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  7. Contribution to the study of position sensitive detectors with high spatial resolution for thermal neutron detection

    International Nuclear Information System (INIS)

    Idrissi Fakhr-Eddine, Abdellah.

    1978-01-01

    With a view to improving the spatial resolution of the localization of thermal neutrons, the work covers four position sensitive detectors: - 800 cell multi-detectors (1 dimension), - linear 'Jeu de Jacquet' detectors (1 dimension) - Multi-detector XYP 128x128 (2 dimensions), - 'Jeu de Jacquet' detector with 2 dimensions. Mention is made of the various position finding methods known so far, as well as the reasons for selecting BF 3 as detector gas. A study is then made of the parameters of the multiwire chamber whose principle will form the basis of most of the position detecting appliances subsequently dealt with. Finally, a description is given of the detection tests of the thermal neutrons in the multiwire chamber depending on the pressure, a parameter that greatly affects the accuracy of the position finding. The single dimension position tests on two kinds of appliance, the 800 cell multi-detector for the wide angle diffraction studies, and the linear 'Jeu de Jacquet' detector designed for small angle diffraction are mentioned. A description is then given of two position appliances with two dimensions; the multi-detector XYP 128x128 and the two dimensional 'Jeu de Jacquet' detector. In the case of this latter detector, only the hoped for characteristics are indicated [fr

  8. Micro-digital sun sensor: an imaging sensor for space applications

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.; Büttgen, B.; Hakkesteegt, H.C.; Jasen, H.; Leijtens, J.A.P.

    2010-01-01

    Micro-Digital Sun Sensor is an attitude sensor which senses relative position of micro-satellites to the sun in space. It is composed of a solar cell power supply, a RF communication block and an imaging chip which is called APS+. The APS+ integrates a CMOS Active Pixel Sensor (APS) of 512×512

  9. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues

    Science.gov (United States)

    Lubner, Sean D.; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C.; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method—widely used for rigid, inorganic solids—as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  10. Surgical neuro navigator guided by preoperative magnetic resonance images, based on a magnetic position sensor

    International Nuclear Information System (INIS)

    Perini, Ana Paula; Siqueira, Rogerio Bulha; Carneiro, Antonio Adilton Oliveira; Oliveira, Lucas Ferrari de; Machado, Helio Rubens

    2009-01-01

    Image guided neurosurgery enables the neurosurgeon to navigate inside the patient's brain using pre-operative images as a guide and a tracking system, during a surgery. Following a calibration procedure, three-dimensional position and orientation of surgical instruments may be transmitted to computer. The spatial information is used to access a region of interest, in the pre-operative images, displaying them to the neurosurgeon during the surgical procedure. However, when a craniotomy is involved and the lesion is removed, movements of brain tissue can be a significant source of error in these conventional navigation systems. The architecture implemented in this work intends the development of a system to surgical planning and orientation guided by ultrasound image. For surgical orientation, the software developed allows the extraction of slices from the volume of the magnetic resonance images (MRI) with orientation supplied by a magnetic position sensor (Polhemus R ). The slices extracted with this software are important because they show the cerebral area that the neurosurgeon is observing during the surgery, and besides they can be correlated with the intra-operative ultrasound images to detect and to correct the deformation of brain tissue during the surgery. Also, a tool for per-operative navigation was developed, providing three orthogonal planes through the image volume. In the methodology used for the software implementation, the Python tm programming language and the Visualization Toolkit (VTK) graphics library were used. The program to extract slices of the MRI volume allowed the application of transformations in the volume, using coordinates supplied by the position sensor. (author)

  11. Performance of a Protected Wireless Sensor Network in a Fire. Analysis of Fire Spread and Data Transmission

    Science.gov (United States)

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563

  12. Sensor 17 Thermal Isolation Mounting Structure (TIMS) Design Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Enstrom, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-04

    The SENSOR 17 thermographic camera weighs approximately 0.5lbs, has a fundamental mode of 167 Hz, and experiences 0.75W of heat leakage in through the TIMS. The configuration, shown in Figure 1, is comprised of four 300 Series SST washers paired in tandem with P.E.I (Ultem 100) washers. The SENSOR 17 sensor is mounted to a 300 series stainless plate with A-shaped arms. The Plate can be assumed to be at ambient temperatures (≈293K) and the I.R. Mount needs to be cooled to 45K. It is attached to the tip of a cryocooler by a ‘cold strap’ and is assumed to be at the temperature of the cold-strap (≈45K). During flights SENSOR 17 experiences excitations at frequencies centered around 10-30Hz, 60Hz, and 120Hz from the aircraft flight environment. The temporal progression described below depicts the 1st Modal shape at the systems resonant frequency. This simulation indicates Modal articulation will cause a pitch rate of the camera with respect to the body axis of the airplane. This articulation shows up as flutter in the camera.

  13. Investigation of MIS-sensor sensitivity to vapor of unsymmetrical dimethylgydrazine in air

    Science.gov (United States)

    Filipchuk, D. V.; Litvinov, A. V.; Etrekova, M. O.; Nozdrya, D. A.

    2018-01-01

    The sensitivity of MIS-sensor to the products of thermal decomposition of unsymmetrical dimethylhydrazine was investigated. It is shown that MIS sensor is able to detect the concentrations of the test substance by the means of the certain products of its thermal decomposition (ammonia and nitric dioxide).

  14. A new principle for low-cost hydrogen sensors for fuel cell technology safety

    Energy Technology Data Exchange (ETDEWEB)

    Liess, Martin [Rhein Main University of Applied Sciences, Rüsselsheim, Wiesbaden (Germany)

    2014-03-24

    Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

  15. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  16. Design and evaluation of a flow-to-frequency converter circuit with thermal feedback

    International Nuclear Information System (INIS)

    Pawlowski, Eligiusz

    2017-01-01

    A novel thermal flow sensor with a frequency output is presented. The sensor provides a pulse-train output whose frequency is related to the fluid flow rate around a self-heating thermistor. The integrating properties of the temperature sensor have been used, which allowed for realization of the pulse frequency modulator with a thermal feedback loop, stabilizing the temperature of the sensor placed in the flowing medium. The system assures a balance of the amount of heat supplied in the impulses to the sensor and the heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output pulse-train is proportional to the medium flow velocity around the sensor. The special feature of the presented solution is the total integration of the thermal sensor with the measurement signal conditioning system. i.e. the sensor and conditioning system are not separate elements of the measurement circuit, but constitute a whole in the form of a thermal heat-balance mode flow-to-frequency converter. The frequency signal from the converter may be directly connected to the microprocessor digital input, which with use of the standard built-in counters may convert the frequency into a numerical value of high precision. The sensor has been experimentally characterized as a function of the average flow velocity of air at room temperature. (paper)

  17. Tracking and Classification of In-Air Hand Gesture Based on Thermal Guided Joint Filter

    Directory of Open Access Journals (Sweden)

    Seongwan Kim

    2017-01-01

    Full Text Available The research on hand gestures has attracted many image processing-related studies, as it intuitively conveys the intention of a human as it pertains to motional meaning. Various sensors have been used to exploit the advantages of different modalities for the extraction of important information conveyed by the hand gesture of a user. Although many works have focused on learning the benefits of thermal information from thermal cameras, most have focused on face recognition or human body detection, rather than hand gesture recognition. Additionally, the majority of the works that take advantage of multiple modalities (e.g., the combination of a thermal sensor and a visual sensor, usually adopting simple fusion approaches between the two modalities. As both thermal sensors and visual sensors have their own shortcomings and strengths, we propose a novel joint filter-based hand gesture recognition method to simultaneously exploit the strengths and compensate the shortcomings of each. Our study is motivated by the investigation of the mutual supplementation between thermal and visual information in low feature level for the consistent representation of a hand in the presence of varying lighting conditions. Accordingly, our proposed method leverages the thermal sensor’s stability against luminance and the visual sensors textural detail, while complementing the low resolution and halo effect of thermal sensors and the weakness against illumination of visual sensors. A conventional region tracking method and a deep convolutional neural network have been leveraged to track the trajectory of a hand gesture and to recognize the hand gesture, respectively. Our experimental results show stability in recognizing a hand gesture against varying lighting conditions based on the contribution of the joint kernels of spatial adjacency and thermal range similarity.

  18. LDMOS Channel Thermometer Based on a Thermal Resistance Sensor for Balancing Temperature in Monolithic Power ICs

    Directory of Open Access Journals (Sweden)

    Tingyou Lin

    2017-06-01

    Full Text Available This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs. An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm2. The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%.

  19. Control of the positional relationship between a sample collection instrument and a surface to be analyzed during a sampling procedure using a laser sensor

    Science.gov (United States)

    Van Berkel, Gary J [Clinton, TN; Kertesz, Vilmos [Knoxville, TN

    2012-02-21

    A system and method utilizes distance-measuring equipment including a laser sensor for controlling the collection instrument-to-surface distance during a sample collection process for use, for example, with mass spectrometric detection. The laser sensor is arranged in a fixed positional relationship with the collection instrument, and a signal is generated by way of the laser sensor which corresponds to the actual distance between the laser sensor and the surface. The actual distance between the laser sensor and the surface is compared to a target distance between the laser sensor and the surface when the collection instrument is arranged at a desired distance from the surface for sample collecting purposes, and adjustments are made, if necessary, so that the actual distance approaches the target distance.

  20. Out-of-plane buckled cantilever microstructures with adjustable angular positions using thermal bimorph actuation for transducer applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-10-27

    The integration of thermal bimorph actuators and buckled cantilever structures to form an out-of-plane plate with adjustable angular positions is reported. This structure could be used as a platform to build other transducers such as optical micromirrors, scanning antennas, switches or low-frequency oscillators. The electromechanical characterisation has shown that these structures can adjust their angular position by 6° when they are operated using a DC source. The thermal characterisation performed by an infrared camera showed that the heat-affected zone reaches a maximum temperature of 125°C while the rest of the structure remains unaffected by the generated heat.

  1. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  2. The analysis and rationale behind the upgrading of existing standard definition thermal imagers to high definition

    Science.gov (United States)

    Goss, Tristan M.

    2016-05-01

    With 640x512 pixel format IR detector arrays having been on the market for the past decade, Standard Definition (SD) thermal imaging sensors have been developed and deployed across the world. Now with 1280x1024 pixel format IR detector arrays becoming readily available designers of thermal imager systems face new challenges as pixel sizes reduce and the demand and applications for High Definition (HD) thermal imaging sensors increases. In many instances the upgrading of existing under-sampled SD thermal imaging sensors into more optimally sampled or oversampled HD thermal imaging sensors provides a more cost effective and reduced time to market option than to design and develop a completely new sensor. This paper presents the analysis and rationale behind the selection of the best suited HD pixel format MWIR detector for the upgrade of an existing SD thermal imaging sensor to a higher performing HD thermal imaging sensor. Several commercially available and "soon to be" commercially available HD small pixel IR detector options are included as part of the analysis and are considered for this upgrade. The impact the proposed detectors have on the sensor's overall sensitivity, noise and resolution is analyzed, and the improved range performance is predicted. Furthermore with reduced dark currents due to the smaller pixel sizes, the candidate HD MWIR detectors are operated at higher temperatures when compared to their SD predecessors. Therefore, as an additional constraint and as a design goal, the feasibility of achieving upgraded performance without any increase in the size, weight and power consumption of the thermal imager is discussed herein.

  3. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  4. A Non-linear Model for Predicting Tip Position of a Pliable Robot Arm Segment Using Bending Sensor Data

    Directory of Open Access Journals (Sweden)

    Elizabeth I. SKLAR

    2016-04-01

    Full Text Available Using pliable materials for the construction of robot bodies presents new and interesting challenges for the robotics community. Within the EU project entitled STIFFness controllable Flexible & Learnable manipulator for surgical Operations (STIFF-FLOP, a bendable, segmented robot arm has been developed. The exterior of the arm is composed of a soft material (silicone, encasing an internal structure that contains air-chamber actuators and a variety of sensors for monitoring applied force, position and shape of the arm as it bends. Due to the physical characteristics of the arm, a proper model of robot kinematics and dynamics is difficult to infer from the sensor data. Here we propose a non-linear approach to predicting the robot arm posture, by training a feed-forward neural network with a structured series of pressures values applied to the arm's actuators. The model is developed across a set of seven different experiments. Because the STIFF-FLOP arm is intended for use in surgical procedures, traditional methods for position estimation (based on visual information or electromagnetic tracking will not be possible to implement. Thus the ability to estimate pose based on data from a custom fiber-optic bending sensor and accompanying model is a valuable contribution. Results are presented which demonstrate the utility of our non-linear modelling approach across a range of data collection procedures.

  5. An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones

    Directory of Open Access Journals (Sweden)

    Huaiyu Li

    2015-12-01

    Full Text Available Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel “quasi-dynamic” Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the “process-level” fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move.

  6. Application Of FA Sensor 2

    International Nuclear Information System (INIS)

    Park, Seon Ho

    1993-03-01

    This book introduces FA sensor from basic to making system, which includes light sensor like photo diode and photo transistor, photo electricity sensor, CCD type image sensor, MOS type image sensor, color sensor, cds cell, and optical fiber scope. It also deals with direct election position sensor such as proximity switch, differential motion, linear scale of photo electricity type, and magnet scale, rotary sensor with summary of rotary encoder, rotary encoder types and applications, flow sensor, and sensing technology.

  7. Integrated Temperature Sensors based on Heat Diffusion

    NARCIS (Netherlands)

    Van Vroonhoven, C.P.L.

    2015-01-01

    This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and

  8. Optical temperature sensor based on the Nd{sup 3+} infrared thermalized emissions in a fluorotellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Lalla, E.A. [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); León-Luis, S.F., E-mail: sleonlui@ull.es [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Malta Consolider Team, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Monteseguro, V. [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Malta Consolider Team, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Pérez-Rodríguez, C. [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Cáceres, J.M. [Departamento de Ingeniería Industrial, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); and others

    2015-10-15

    The temperature dependence of the infrared luminescence of a fluorotellurite glass doped with 0.01 and 2.5 mol% of Nd{sup 3+} ions was studied in order to use it as a high temperature sensing probe. For this purpose, the emission intensities of the ({sup 4}S{sub 3/2}, {sup 4}F{sub 7/2}), ({sup 2}H{sub 9/2}, {sup 4}F{sub 5/2}),{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} transitions were measured in a wide range of temperatures from 300 upto 650 K. The changes in the emission profiles were calibrated by means of the fluorescence intensity ratio technique. The calibrations showed a strong dependence on the Nd{sup 3+} ions concentration, having the low-doped concentrated sample the best response to changes of temperature. The maximum value obtained for the thermal sensibility is 17×10{sup −4} K{sup −1} at 640 K, being one of the highest values found in the literature for Nd{sup 3+} optical temperature sensors. Finally, the experimental calibrations were compared with the theoretical temperature luminescence response calculated from the Judd–Ofelt theory. - Highlights: • Nd{sup 3+}-doped fluorotellurite glasses were prepared. • The intensities of the ({sup 4}S{sub 3/2},{sup 4}F{sub 7/2}),({sup 2}H{sub 9/2},{sup 4}F{sub 5/2}), {sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} transitions. • The highest thermal sensitivity has been obtained for the glass with the lowest concentration of Nd{sup 3+} ions. • The Nd{sup 3+}-doped fluorotellurite glass fits the requirement for a good temperature sensor.

  9. Electric current sensors: a review

    International Nuclear Information System (INIS)

    Ripka, Pavel

    2010-01-01

    The review makes a brief overview of traditional methods of measurement of electric current and shows in more detail relatively new types of current sensors. These include Hall sensors with field concentrators, AMR current sensors, magneto-optical and superconducting current sensors. The influence of the magnetic core properties on the error of the current transformer shows why nanocrystalline materials are so advantageous for this application. Built-in CMOS current sensors are important tools for monitoring the health of integrated circuits. Of special industrial value are current clamps which can be installed without breaking the measured conductor. Parameters of current sensors are also discussed, including geometrical selectivity. This parameter specific for current sensors means the ability to suppress the influence of currents external to the sensor (including the position of the return conductor) and also suppress the influence on the position of the measured conductor with respect to the current. (topical review)

  10. Research on photoconductor radiological sensors

    International Nuclear Information System (INIS)

    Beaumont, Francois

    1989-01-01

    Because of the evolution of medical imaging techniques to digital systems, it is necessary to replace radiological film which has many drawbacks, by a detector quite as efficient and quickly giving a digitable signal. The purpose of this thesis is to find new X-ray digital imaging processes using photoconductor materials such as amorphous selenium. After reviewing the principle of direct radiology and functions to be served by the X-ray sensor (i e. detection, memory, assignment, visualization), we explain specification. We especially show the constraints due to the object to be radio-graphed (condition of minimal exposure), and to the reading signal (electronic noise detection associated with a reading frequency). As a result of this study, a first photoconductor sensor could be designed. Its principle is based on photo carrier trapping at dielectric-photoconductor structure interface. The reading system needs the scanning of a laser beam upon the sensor surface. The dielectric-photoconductor structure enabled us to estimate the possibilities offered by the sensor and to build a complete x-ray imaging system. The originality of thermos-dielectric sensor, that was next studied, is to allow a thermal assignment reading. The chosen system consists in varying the ferroelectric polymer capacity whose dielectric permittivity is weak at room temperature. The thermo-dielectric material was studied by thermal or Joule effect stimulation. During our experiments, trapping was found in a sensor made of amorphous selenium between two electrodes. This new effect was performed and enabled us to expose a first interpretation. Eventually, the comparison of these new sensor concepts with radiological film shows the advantage of the proposed solution. (author) [fr

  11. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong; Kosel, Jü rgen

    2015-01-01

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  12. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong

    2015-04-30

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  13. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  14. Modelling Machine Tools using Structure Integrated Sensors for Fast Calibration

    Directory of Open Access Journals (Sweden)

    Benjamin Montavon

    2018-02-01

    Full Text Available Monitoring of the relative deviation between commanded and actual tool tip position, which limits the volumetric performance of the machine tool, enables the use of contemporary methods of compensation to reduce tolerance mismatch and the uncertainties of on-machine measurements. The development of a primarily optical sensor setup capable of being integrated into the machine structure without limiting its operating range is presented. The use of a frequency-modulating interferometer and photosensitive arrays in combination with a Gaussian laser beam allows for fast and automated online measurements of the axes’ motion errors and thermal conditions with comparable accuracy, lower cost, and smaller dimensions as compared to state-of-the-art optical measuring instruments for offline machine tool calibration. The development is tested through simulation of the sensor setup based on raytracing and Monte-Carlo techniques.

  15. Influence of Thermal Cycling on Cryogenic Thermometers

    CERN Document Server

    Balle, C; Rieubland, Jean Michel; Suraci, A; Togny, F; Vauthier, N

    1999-01-01

    The stringent requirements on temperature control of the superconducting magnets for the Large Hadron Collider (LHC), impose that the cryogenic temperature sensors meet compelling demands such as long-term stability, radiation hardness, readout accuracy better than 5 mK at 1.8 K and compatibility with industrial control equipment. This paper presents the results concerning long-term stability of resistance temperature sensors submitted to cryogenic thermal cycles. For this task a simple test facility has been designed, constructed and put into operation for cycling simultaneously 115 cryogenic thermometers between 300 K and 4.2 K. A thermal cycle is set to last 71/4 hours: 3 hours for either cooling down or warming up the sensors and 1 respectively 1/4 hour at steady temperature conditions at each end of the temperature cycle. A Programmable Logic Controller (PLC) drives automatically this operation by reading 2 thermometers and actuating on 3 valves and 1 heater. The first thermal cycle was accomplished in a...

  16. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco; Marinaro, Giovanni; Kosel, Jü rgen

    2017-01-01

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap

  17. Damage Detection/Locating System Providing Thermal Protection

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Jones, Thomas W. (Inventor); Taylor, Bryant D. (Inventor); Qamar, A. Shams (Inventor)

    2010-01-01

    A damage locating system also provides thermal protection. An array of sensors substantially tiles an area of interest. Each sensor is a reflective-surface conductor having operatively coupled inductance and capacitance. A magnetic field response recorder is provided to interrogate each sensor before and after a damage condition. Changes in response are indicative of damage and a corresponding location thereof.

  18. System on chip thermal vacuum sensor based on standard CMOS process

    International Nuclear Information System (INIS)

    Li Jinfeng; Tang Zhenan; Wang Jiaqi

    2009-01-01

    An on-chip microelectromechanical system was fabricated in a 0.5 μm standard CMOS process for gas pressure detection. The sensor was based on a micro-hotplate (MHP) and had been integrated with a rail to rail operational amplifier and an 8-bit successive approximation register (SAR) A/D converter. A tungsten resistor was manufactured on the MHP as the sensing element, and the sacrificial layer of the sensor was made from polysilicon and etched by surface-micromachining technology. The operational amplifier was configured to make the sensor operate in constant current mode. A digital bit stream was provided as the system output. The measurement results demonstrate that the gas pressure sensitive range of the vacuum sensor extends from 1 to 10 5 Pa. In the gas pressure range from 1 to 100 Pa, the sensitivity of the sensor is 0.23 mV/ Pa, the linearity is 4.95%, and the hysteresis is 8.69%. The operational amplifier can drive 200 ω resistors distortionlessly, and the SAR A/D converter achieves a resolution of 7.4 bit with 100 kHz sample rate. The performance of the operational amplifier and the SAR A/D converter meets the requirements of the sensor system.

  19. Intelligent pressure measurement in multiple sensor arrays

    International Nuclear Information System (INIS)

    Matthews, C.A.

    1995-01-01

    Pressure data acquisition has typically consisted of a group of sensors scanned by an electronic or mechanical multiplexer. The data accuracy was dependent upon the temperature stability of the sensors. This paper describes a new method of pressure measurement that combines individual temperature compensated pressure sensors, a microprocessor, and an A/D converter in one module. Each sensor has its own temperature characteristics stored in a look-up table to minimize sensor thermal errors. The result is an intelligent pressure module that can output temperature compensated engineering units over an Ethernet interface. Calibration intervals can be dramatically extended depending upon system accuracy requirements and calibration techniques used

  20. Differential multi-MOSFET nuclear radiation sensor

    Science.gov (United States)

    Deoliveira, W. A.

    1977-01-01

    Circuit allows minimization of thermal-drift errors, low power consumption, operation over wide dynamic range, improved sensitivity and stability with metaloxide-semiconductor field-effect transistor sensors.

  1. Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor.

    Science.gov (United States)

    Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo

    2012-08-01

    Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The Measurement of Thermal Diffusivity in Conductor and Insulator by Photodeflection Technique

    Science.gov (United States)

    Achathongsuk, U.; Rittidach, T.; Tipmonta, P.; Kijamnajsuk, P.; Chotikaprakhan, S.

    2017-09-01

    The purpose of this study is to estimate thermal diffusivities of high thermal diffusivity bulk material as well as low thermal diffusivity bulk material by using many types of fluid such as Ethyl alcohol and water. This method is studied by measuring amplitude and phase of photodeflection signal in various frequency modulations. The experimental setup consists of two laser lines: 1) a pump laser beams through a modulator, varied frequency, controlled by lock-in amplifier and focused on sample surface by lens. 2) a probe laser which parallels with the sample surface and is perpendicular to the pump laser beam. The probe laser deflection signal is obtained by a position sensor which controlled by lock-in amplifier. Thermal diffusivity is calculated by measuring the amplitude and phase of the photodeflection signal and compared with the thermal diffusivity of a standard value. The thermal diffusivity of SGG agrees well with the literature but the thermal diffusivity of Cu is less than the literature value by a factor of ten. The experiment requires further improvement to measure the thermal diffusivity of Cu. However, we succeed in using ethyl alcohol as the coupling medium instead of CCl4 which is highly toxic.

  3. Feasibility Study on S-Band Microwave Radiation and 3D-Thermal Infrared Imaging Sensor-Aided Recognition of Polymer Materials from End-of-Life Vehicles

    Directory of Open Access Journals (Sweden)

    Jiu Huang

    2018-04-01

    Full Text Available With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs, of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85–95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed

  4. Magnetic Tactile Sensor for Braille Reading

    KAUST Repository

    Alfadhel, Ahmed

    2016-04-27

    We report a biomimetic magnetic tactile sensor for Braille characters reading. The sensor consists of magnetic nanocomposite artificial cilia implemented on magnetic micro sensors. The nanocomposite is produced from the highly elastic polydimethylsiloxane and iron nanowires that exhibit a permanent magnetic behavior. This design enables remote operation and does not require an additional magnetic field to magnetize the nanowires. The highly elastic nanocomposite is easy to pattern, corrosion resistant and thermally stable. The tactile sensors can detect vertical and shear forces, which allows recognizing small changes in surface texture, as in the case of Braille dots. The 6 dots of a braille cell are read from top to bottom with a tactile sensor array consisting of 4 elements and 1 mm long nanocomposite cilia.

  5. Magnetic Tactile Sensor for Braille Reading

    KAUST Repository

    Alfadhel, Ahmed; Khan, Mohammed; Cardoso, Susana; Kosel, Jü rgen

    2016-01-01

    We report a biomimetic magnetic tactile sensor for Braille characters reading. The sensor consists of magnetic nanocomposite artificial cilia implemented on magnetic micro sensors. The nanocomposite is produced from the highly elastic polydimethylsiloxane and iron nanowires that exhibit a permanent magnetic behavior. This design enables remote operation and does not require an additional magnetic field to magnetize the nanowires. The highly elastic nanocomposite is easy to pattern, corrosion resistant and thermally stable. The tactile sensors can detect vertical and shear forces, which allows recognizing small changes in surface texture, as in the case of Braille dots. The 6 dots of a braille cell are read from top to bottom with a tactile sensor array consisting of 4 elements and 1 mm long nanocomposite cilia.

  6. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2016-11-08

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of the multiplicity of sensors, so that the thermal runaway event is rapidly quenched.

  7. A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environments

    Science.gov (United States)

    Azhari, Amir; Liang, Richard; Toyserkani, Ehsan

    2014-07-01

    The aim of this article is to introduce a novel packaging of conventional Corning SMF-28™ single-mode fibre Bragg grating sensors for ultra-high temperature sensing. The package is in a cylindrical shape made of yttria-stabilized zirconia tubes. The fibre optic sensor is epoxied to one end inside the tube to be protected from high external temperatures and also harsh environments. Highly-oriented pyrolytic graphite tube with an exceptional anisotropic thermal conductivity with higher conductivity in transverse than radial direction is positioned around the fibre to protect it from high temperatures. Air cooling system is also provided from the other end to dissipate the transferred heat from inside the tube. The shift in the Bragg wavelength is influenced by the thermal expansion of the package and internal temperature variations, which translates into thermal expansion of the fibre. The modelling and experimental results revealed that the Bragg wavelength shift increases to 1.4 pm °C-1 at higher temperatures with linear behaviour at temperatures above 600 °C. The finite element modelling and the experimental results are also in good proximity indicating the similar trend for the shift in the Bragg wavelength.

  8. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    Science.gov (United States)

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  9. Self-correcting electronically scanned pressure sensor

    Science.gov (United States)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  10. First applications of the EXTASE thermal probe

    Science.gov (United States)

    Schröer, K.; Seiferlin, K.; Marczewski, W.; Gadomski, S.; Spohn, T.

    2003-04-01

    EXTASE is a spin-off project from the MUPUS (Rosetta Lander) thermal probe, both funded by DLR. The thermal probe will be tested in various environments and fields, e.g. in snow research, agriculture, permafrost, monitoring waste deposits and the heat released by decomposition, ground truth for remote sensing etc. The probe is a glass-fibre tube of 1cm diameter, about 32 cm long and carries of 16 sensors for measuring temperature profiles. Each of the sensors can also be heated for in situ measurements of the thermal diffusivity of the penetrated layers, from which we can derive the thermal conductivity. All necessary connections and the sensors itself are printed on a foil which is rolled and glued to the inner wall of the tube. This design results in the significant advantage that the measurements can be done in-situ. No excavation of material is required to measure the thermal conductivity, for instance. Presently we are concentrating on soil science and snow research.We made several measurements in different conditions with prototypes of the probe so far. Among other things, we measured soil temperatures together with meteorological boundary conditions in cooperation with the local Institute of Agrophysics in Lublin (Poland). The first measurements in snow under natural conditions were made on Svalbard (Spitzbergen) together with the Alfred-Wegener-Institute in Bremerhaven (Germany). First results of the measuring campaigns are shown.

  11. Piezoresistive Composite Silicon Dioxide Nanocantilever Surface Stress Sensor: Design and Optimization.

    Science.gov (United States)

    Mathew, Ribu; Sankar, A Ravi

    2018-05-01

    In this paper, we present the design and optimization of a rectangular piezoresistive composite silicon dioxide nanocantilever sensor. Unlike the conventional design approach, we perform the sensor optimization by not only considering its electro-mechanical response but also incorporating the impact of self-heating induced thermal drift in its terminal characteristics. Through extensive simulations first we comprehend and quantify the inaccuracies due to self-heating effect induced by the geometrical and intrinsic parameters of the piezoresistor. Then, by optimizing the ratio of electrical sensitivity to thermal sensitivity defined as the sensitivity ratio (υ) we improve the sensor performance and measurement reliability. Results show that to ensure υ ≥ 1, shorter and wider piezoresistors are better. In addition, it is observed that unlike the general belief that high doping concentration of piezoresistor reduces thermal sensitivity in piezoresistive sensors, to ensure υ ≥ 1 doping concentration (p) should be in the range: 1E18 cm-3 ≤ p ≤ 1E19 cm-3. Finally, we provide a set of design guidelines that will help NEMS engineers to optimize the performance of such sensors for chemical and biological sensing applications.

  12. Approach to sensor node calibration for efficient localisation in wireless sensor networks in realistic scenarios

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-06-01

    Full Text Available Localisation or position determination is one of the most important applications for the wireless sensor networks. Numerous current techniques for localisation of sensor nodes use the Received Signal Strength Indicator (RSSI) from sensor nodes...

  13. An efficient multi-carrier position-based packet forwarding protocol for wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2012-01-01

    Beaconless position-based forwarding protocols have recently evolved as a promising solution for packet forwarding in wireless sensor networks. However, as the node density grows, the overhead incurred in the process of relay selection grows significantly. As such, end-to-end performance in terms of energy and latency is adversely impacted. With the motivation of developing a packet forwarding mechanism that is tolerant to variation in node density, an alternative position-based protocol is proposed in this paper. In contrast to existing beaconless protocols, the proposed protocol is designed such that it eliminates the need for potential relays to undergo a relay selection process. Rather, any eligible relay may decide to forward the packet ahead, thus significantly reducing the underlying overhead. The operation of the proposed protocol is empowered by exploiting favorable features of orthogonal frequency division multiplexing (OFDM) at the physical layer. The end-to-end performance of the proposed protocol is evaluated against existing beaconless position-based protocols analytically and as well by means of simulations. The proposed protocol is demonstrated in this paper to be more efficient. In particular, it is shown that for the same amount of energy the proposed protocol transports one bit from source to destination much quicker. © 2012 IEEE.

  14. Strongly coupled Coulomb systems with positive dust grains: thermal and UV-induced plasmas

    International Nuclear Information System (INIS)

    Samarian, A.A.

    2000-01-01

    Full text: A plasma containing macroscopic dust particles or grains (often referred to as a dusty or colloidal or complex plasma) has the feature that grains may be charged by electron or ion flux or by photo- or thermoelectron emission. Electron emission from a grain surface produces a positive charge; capture of electrons produces the reverse effect making the dust grains negatively charged. Most dusty plasma research is concerned with the ordered dust structures (so-called 'plasma crystal') in glow discharges. The dust grains in these experiments were found to carry a negative charge due to the higher mobility of electrons as compared to ions in the discharge plasma. In recent years, in parallel with the study of the properties of plasma crystals under discharge conditions, attempts to obtain a structure from positively charged dust grains have been made, and structure formation processes for various charging mechanisms, particularly thermoelectron emission and photoemission, have been investigated. In this paper we review the essential features of strongly coupled plasmas with positive dust grains. An ordered structure of CeO 2 grains has been experimentally observed in a combustion products jet. The grains were charged positively and suspended in the plasma flow. Their charge is about 10 3 a and the calculated value of a Coulomb coupling parameter Γ is >10, corresponding to a plasma liquid. The ordered structures of Al 2 O 3 dust grains in propellant combustion products plasma have been observed for the first time. These structures were found in the sheath boundary of condensation region. The obtained data let us estimate the value of parameter Γ =3-40, corresponding to the plasma liquid state. The possibility is studied of the formation of ordered dust grain structures in thermal plasma. The range of the required values of the coupling parameter Γ is calculated using the results of diagnostic measurements carried out in thermal plasma with grains of

  15. Sensor Development for Active Flow Control

    Science.gov (United States)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.

    2001-01-01

    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  16. A high Tc superconducting liquid nitrogen level sensor

    International Nuclear Information System (INIS)

    Jin, J. X.; Liu, H. K.; Dou, S. X.; Grantham, C.; Beer, J.

    1996-01-01

    Full text: The dramatic resistance change in the superconducting-normal transition temperature range enables a high T c superconductor to be considered for designing a liquid nitrogen level sensor. A (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire is selected and tested as a continuous liquid nitrogen level sensor to investigate the possibility for this application. The (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire has approximately 110 K critical temperature, with more flexible and stable properties compared with bulk shape ceramic high T c superconductors. The voltage drops across the sensor are tested with different immersion lengths in liquid nitrogen. The accuracy of the HTS sensor is analysed with its dR/dT in the superconducting-normal transition range. The voltage signal is sensitive to liquid nitrogen level change, and this signal can be optimized by controlling the transport current. The problems of the Ag clad superconductor are that the Ag sheath thermal conductivity is very high, and the sensor normal resistance is low. These are the main disadvantages for using such a wire as a continuous level sensor. However, a satisfactory accuracy can be achieved by control of the transport current. A different configuration of the wire sensor is also designed to avoid this thermal influence

  17. FEASIBILITY STUDY OF INEXPENSIVE THERMAL SENSORS AND SMALL UAS DEPLOYMENT FOR LIVING HUMAN DETECTION IN RESCUE MISSIONS APPLICATION SCENARIOS

    Directory of Open Access Journals (Sweden)

    E. Levin

    2016-06-01

    Full Text Available Significant efforts are invested by rescue agencies worldwide to save human lives during natural and man-made emergency situations including those that happen in wilderness locations. These emergency situations include but not limited to: accidents with alpinists, mountainous skiers, people hiking and lost in remote areas. Sometimes in a rescue operation hundreds of first responders are involved to save a single human life. There are two critical issues where geospatial imaging can be a very useful asset in rescue operations support: 1 human detection and 2 confirming a fact that detected a human being is alive. International group of researchers from the Unites States and Poland collaborated on a pilot research project devoted to identify a feasibility of use for the human detection and alive-human state confirmation small unmanned aerial vehicles (SUAVs and inexpensive forward looking infrared (FLIR sensors. Equipment price for both research teams was below $8,000 including 3DR quadrotor UAV and Lepton longwave infrared (LWIR imager which costs around $250 (for the US team; DJI Inspire 1 UAS with commercial Tamarisc-320 thermal camera (for the Polish team. Specifically both collaborating groups performed independent experiments in the USA and Poland and shared imaging data of on the ground and airborne electro-optical and FLIR sensor imaging collected. In these experiments dead bodies were emulated by use of medical training dummies. Real humans were placed nearby as live human subjects. Electro-optical imagery was used for the research in optimal human detection algorithms. Furthermore, given the fact that a dead human body after several hours has a temperature of the surrounding environment our experiments were challenged by the SUAS data optimization, i.e., distance from SUAV to object so that the FLIR sensor is still capable to distinguish temperature differences between a dummy and a real human. Our experiments indicated feasibility of

  18. Optimization of Cognitive Radio Secondary Information Gathering Station Positioning and Operating Channel Selection for IoT Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jinyi Wen

    2018-01-01

    Full Text Available The Internet of Things (IoT is the interconnection of different objects through the internet using different communication technologies. The objects are equipped with sensors and communications modules. The cognitive radio network is a key technique for the IoT and can effectively address spectrum-related issues for IoT applications. In our paper, a novel method for IoT sensor networks is proposed to obtain the optimal positions of secondary information gathering stations (SIGSs and to select the optimal operating channel. Our objective is to maximize secondary system capacity while protecting the primary system. In addition, we propose an appearance probability matrix for secondary IoT devices (SIDs to maximize the supportable number of SIDs that can be installed in a car, in wearable devices, or for other monitoring devices, based on optimal deployment and probability. We derive fitness functions based on the above objectives and also consider signal to interference-plus-noise ratio (SINR and position constraints. The particle swarm optimization (PSO technique is used to find the best position and operating channel for the SIGSs. In a simulation study, the performance of the proposed method is evaluated and compared with a random resources allocation algorithm (parts of this paper were presented at the ICTC2017 conference (Wen et al., 2017.

  19. Real-time wavefront correction system using a zonal deformable mirror and a Hartmann sensor

    International Nuclear Information System (INIS)

    Salmon, J.T.; Bliss, E.S.; Long, T.W.; Orham, E.L.; Presta, R.W.; Swift, C.D.; Ward, R.S.

    1991-07-01

    We have developed an adaptive optics system that corrects up to five waves of 2nd-order and 3rd-order aberrations in a high-power laser beam to less than 1/10th wave RMS. The wavefront sensor is a Hartmann sensor with discrete lenses and position-sensitive photodiodes; the deformable mirror uses piezoelectric actuators with feedback from strain gauges bonded to the stacks. The controller hardware uses a VME bus. The system removes thermally induced aberrations generated in the master-oscillator-power-amplifier chains of a dye laser, as well as aberrations generated in beam combiners and vacuum isolation windows for average output powers exceeding 1 kW. The system bandwidth is 1 Hz, but higher bandwidths are easily attainable

  20. Stability of the Hall sensors performance under neutron irradiation

    International Nuclear Information System (INIS)

    Duran, I.; Hron, M.; Stockel, J.; Viererbl, L.; Vsolak, R.; Cerva, V.; Bolshakova, I.; Holyaka, R.; Vayakis, G.

    2004-01-01

    A principally new diagnostic method must be developed for magnetic measurements in steady state regime of operation of fusion reactor. One of the options is the use of transducers based on Hall effect. The use of Hall sensors in ITER is presently limited by their questionable radiation and thermal stability. Issues of reliable operation in ITER like radiation and thermal environment are addressed in the paper. The results of irradiation tests of candidate Hall sensors in LVR-15 and IBR-2 experimental fission reactors are presented. Stable operation (deterioration of sensitivity below one percent) of the specially prepared sensors was demonstrated during irradiation by the total fluence of 3.10 16 n/cm 2 in IBR-2 reactor. Increasing the total neutron fluence up to 3.10 17 n/cm 2 resulted in deterioration of the best sensor's output still below 10% as demonstrated during irradiation in LVR-15 fission reactor. This level of neutron is already higher than the expected ITER life time neutron fluence for a sensor location just outside the ITER vessel. (authors)

  1. The method to evaluate the position error in graphic positioning technology

    Institute of Scientific and Technical Information of China (English)

    Huiqing Lu(卢慧卿); Baoguang Wang(王宝光); Lishuang Liu(刘力双); Yabiao Li(李亚标)

    2004-01-01

    In the measurement of automobile body-in-white, it has been widely studied to position the two dimensional(2D)visual sensors with high precision. In this paper a graphic positioning method is proposed,a hollow tetrahedron is used for a positioning target to replace all the edges of a standard automobile body.A 2D visual sensor can be positioned through adjusting two triangles to be superposed on a screen of the computer, so it is very important to evaluate the superposition precision of the two triangles. Several methods are discussed and the least square method is adopted at last, it makes the adjustment more easy and intuitive with high precision.

  2. Fiber Optic Thermal Health Monitoring of Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  3. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  4. Development of a real-time closed-loop micro-/nano-positioning system embedded with a capacitive sensor

    International Nuclear Information System (INIS)

    Shiou, Fang-Jung; Chiang, Chia-Jui; Liou, Ke-Jhen; Liao, Shu-Chung; Chen, Chao-Jung; Liou, Huay-Chung

    2010-01-01

    The hysteresis and nonlinearity of the PZT is an actual problem in the piezo-driven micro-/nano-positioning stage, especially for the open-loop positioning stage. The study presents the development of an NI cRIO9074-based real-time closed-loop micro-/nano-positioning system, to overcome the problem of the hysteresis and nonlinearity of a PZT and to increase the positioning speed of the positioning stage. The developed system mainly consists of a piezoelectric actuator, a bridge-type hinge mechanism for displacement magnification, a micro-/nano-positioning stage body, a capacitive sensor system, an NI cRIO9074 real-time control unit with FPGA chip and a PC. After executing the optimization analysis of the displacement, stress and the frequency, using the ANSYS software, the dimensions of the stage body have been designed and determined. A set of software written with the LabView programming language was developed to construct the real-time PID closed-loop control of the developed positioning system. Based on the test results, the designed closed-loop micro-/nano-positioning system was capable of precision positioning within the travel of 119.08 µm with maximum stage tilting angle at 25 µrad. The steady-state positioning deviation of the stage is about ±2 nm in the step-positioning test. In the transient slope-tracing test at a tracing speed of 5 µm s −1 , an error of about ±100 nm is observed

  5. A Real-Time Thermal Self-Elimination Method for Static Mode Operated Freestanding Piezoresistive Microcantilever-Based Biosensors.

    Science.gov (United States)

    Ku, Yu-Fu; Huang, Long-Sun; Yen, Yi-Kuang

    2018-02-28

    Here, we provide a method and apparatus for real-time compensation of the thermal effect of single free-standing piezoresistive microcantilever-based biosensors. The sensor chip contained an on-chip fixed piezoresistor that served as a temperature sensor, and a multilayer microcantilever with an embedded piezoresistor served as a biomolecular sensor. This method employed the calibrated relationship between the resistance and the temperature of piezoresistors to eliminate the thermal effect on the sensor, including the temperature coefficient of resistance (TCR) and bimorph effect. From experimental results, the method was verified to reduce the signal of thermal effect from 25.6 μV/°C to 0.3 μV/°C, which was approximately two orders of magnitude less than that before the processing of the thermal elimination method. Furthermore, the proposed approach and system successfully demonstrated its effective real-time thermal self-elimination on biomolecular detection without any thermostat device to control the environmental temperature. This method realizes the miniaturization of an overall measurement system of the sensor, which can be used to develop portable medical devices and microarray analysis platforms.

  6. Development of a position sensor based on a four quadrant structured optic fiber bundle

    International Nuclear Information System (INIS)

    Boukellal, Younes; Ducourtieux, Sebastien

    2015-01-01

    This article reports on the development of a new kind of 2D displacement sensor based on an optic fiber bundle whose fiber arrangement has been customized to provide an input sensitive surface with four quadrants. The fibers of each quadrant are regrouped to form four output arms. The aim is to reach behavior similar to that of a quad cell photodiode when illuminated by a laser spot. In this paper, we present the motivations for developing such a sensor and its design. Prior to the fabrication of a first prototype, the optic fiber bundle has been modelled and compared to a quad cell photodiode. It has an active surface which is 10 mm in diameter and which comprises 40 000 fibers of 50 µm core diameter. For this experimental test, a specific electronic conditioning circuit has been developed to process the signals. From both modelled and experimental results, fiber optic bundle and quad cell photodiode behavior has proved to be very similar, provided that the number of fibers is sufficient to achieve a statistical effect on the detected displacement, i.e. the laser spot diameter is rightly chosen as a function of the fiber diameter. For the use of the bundle as position sensor, a laser spot size of 5 mm has been fixed to achieve a good compromise between sensitivity and displacement range. With this spot size, sensitivity and displacement range have been experimentally evaluated to 2 mV µm −1 and 3.8 mm respectively with a corresponding displacement resolution of 5 nm in the best case. (paper)

  7. Cryogenic MEMS Pressure Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  8. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  9. INNOVATIV AIRBORNE SENSORS FOR DISASTER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    M. O. Altan

    2016-06-01

    Full Text Available Modern Disaster Management Systems are based on 3 columns, crisis preparedness, early warning and the final crisis management. In all parts, special data are needed in order to analyze existing structures, assist in the early warning system and in the updating after a disaster happens to assist the crises management organizations. How can new and innovative sensors assist in these tasks? Aerial images have been frequently used in the past for generating spatial data, however in urban structures not all information can be extracted easily. Modern Oblique camera systems already assist in the evaluation of building structures to define rescue paths, analyze building structures and give also information of the stability of the urban fabric. For this application there is no need of a high geometric accurate sensor, also SLC Camera based Oblique Camera system as the OI X5, which uses Nikon Cameras, do a proper job. Such a camera also delivers worth full information after a Disaster happens to validate the degree of deformation in order to estimate stability and usability for the population. Thermal data in combination with RGB give further information of the building structure, damages and potential water intrusion. Under development is an oblique thermal sensor with 9 heads which enables nadir and oblique thermal data acquisition. Beside the application for searching people, thermal anomalies can be created out of humidity in constructions (transpiration effects, damaged power lines, burning gas tubes and many other dangerous facts. A big task is in the data analysis which should be made automatically and fast. This requires a good initial orientation and a proper relative adjustment of the single sensors. Like that, many modern software tools enable a rapid data extraction. Automated analysis of the data before and after a disaster can highlight areas of significant changes. Detecting anomalies are the way to get the focus on the prior area. Also

  10. Innovativ Airborne Sensors for Disaster Management

    Science.gov (United States)

    Altan, M. O.; Kemper, G.

    2016-06-01

    Modern Disaster Management Systems are based on 3 columns, crisis preparedness, early warning and the final crisis management. In all parts, special data are needed in order to analyze existing structures, assist in the early warning system and in the updating after a disaster happens to assist the crises management organizations. How can new and innovative sensors assist in these tasks? Aerial images have been frequently used in the past for generating spatial data, however in urban structures not all information can be extracted easily. Modern Oblique camera systems already assist in the evaluation of building structures to define rescue paths, analyze building structures and give also information of the stability of the urban fabric. For this application there is no need of a high geometric accurate sensor, also SLC Camera based Oblique Camera system as the OI X5, which uses Nikon Cameras, do a proper job. Such a camera also delivers worth full information after a Disaster happens to validate the degree of deformation in order to estimate stability and usability for the population. Thermal data in combination with RGB give further information of the building structure, damages and potential water intrusion. Under development is an oblique thermal sensor with 9 heads which enables nadir and oblique thermal data acquisition. Beside the application for searching people, thermal anomalies can be created out of humidity in constructions (transpiration effects), damaged power lines, burning gas tubes and many other dangerous facts. A big task is in the data analysis which should be made automatically and fast. This requires a good initial orientation and a proper relative adjustment of the single sensors. Like that, many modern software tools enable a rapid data extraction. Automated analysis of the data before and after a disaster can highlight areas of significant changes. Detecting anomalies are the way to get the focus on the prior area. Also Lidar supports

  11. Smart Building: Decision Making Architecture for Thermal Energy Management.

    Science.gov (United States)

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  12. Smart Building: Decision Making Architecture for Thermal Energy Management

    Directory of Open Access Journals (Sweden)

    Oscar Hernández Uribe

    2015-10-01

    Full Text Available Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  13. Application of military uncooled infrared sensors to homeland defense

    Science.gov (United States)

    Hornberger, Chris

    2002-08-01

    During the early 1990's, uncooled microbolometer thermal imaging technology began a journey from Government and corporate laboratories to practical application in addressing military, Government, and commercial customer needs. Today, that transition could arguably be considered complete, punctuated by BAE SYSTEMS' delivery of the 10,000th microbolometer camera on 12 February 2002. While microbolometer developmental research continues to advance the state-of-the-art at an ever increasing pace, uncooled infrared cameras are widely deployed serving society in meaningful ways; from preventative maintenance and process inspection to law enforcement and rescue operations. Following last years terrorist attacks in New York and Virginia, President Bush appointed Governor Ridge to lead federal coordination efforts for defense of the homeland. While uncooled microbolometer sensors served in Homeland Security long before September 2001, it is certain that new applications will be identified for surveillance, security, law enforcement and protection needs. In this paper we will describe advances in military uncooled infrared sensor technology and how these sensors can serve in the role of Homeland Defense. Developments in uncooled sensors that will be described include the rugged performance validation of a thermal weapon sight and head-mounted imager. We will look at those areas of Homeland Defense that are most likely to benefit from the application of uncooled microbolometer thermal imaging sensor technology. These include: a) search & rescue camera systems, b) handheld surveillance systems and c) hands-free camera systems.

  14. CVD-Graphene-Based Flexible, Thermoelectrochromic Sensor

    Directory of Open Access Journals (Sweden)

    Adam Januszko

    2017-01-01

    Full Text Available The main idea behind this work was demonstrated in a form of a new thermoelectrochromic sensor on a flexible substrate using graphene as an electrically reconfigurable thermal medium (TEChrom™. Our approach relies on electromodulation of thermal properties of graphene on poly(ethylene terephthalate (PET via mechanical destruction of a graphene layer. Graphene applied in this work was obtained by chemical vapor deposition (CVD technique on copper substrate and characterized by Raman and scanning tunneling spectroscopy. Electrical parameters of graphene were evaluated by the van der Pauw method on the transferred graphene layers onto SiO2 substrates by electrochemical delamination method. Two configurations of architecture of sensors, without and with the thermochromic layer, were investigated, taking into account the increase of voltage from 0 to 50 V and were observed by thermographic camera to define heat energy. Current-voltage characteristics obtained for the sensor with damaged graphene layer are linear, and the resistivity is independent from the current applied. The device investigated under 1000 W/m2 exhibited rise of resistivity along with increased temperature. Flexible thermoelectrochromic device with graphene presented here can be widely used as a sensor for both the military and civil monitoring.

  15. Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy

    Directory of Open Access Journals (Sweden)

    Victor Hugo C. de Albuquerque

    2015-05-01

    Full Text Available Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 \\(^\\circ\\C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms and accurate (accuracy of 88.75% and harmonic mean of 89.52 for the application proposed.

  16. Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy.

    Science.gov (United States)

    de Albuquerque, Victor Hugo C; Barbosa, Cleisson V; Silva, Cleiton C; Moura, Elineudo P; Filho, Pedro P Rebouças; Papa, João P; Tavares, João Manuel R S

    2015-05-27

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.

  17. Positioning system of a torch used in thermal spray coatings applications

    Directory of Open Access Journals (Sweden)

    Edgar Absalón Torres-Barahona

    2016-07-01

    Full Text Available This paper presents the design, construction and performance evaluation of a positioning system used for the deposition of coatings with molten particles, by using a torch CastoDyn Ds 8000 thermal spray with oxyacetylene combustion. The design has been done with parameters obtained in the laboratory of materials of the Universidad Pedagógica y Tecnológica de Colombia, and the information determined from the evaluation of the device, allows to control the main process variables as the projection distance, flow powder, torch speed and rotation speed of the sample holder; this has been seen in coatings made in application tests zirconia / nickel on a carbon steel substrate and analyzed with Scanning Electron Microscopy - SEM.

  18. Applications of FBG sensors on telecom satellites

    Science.gov (United States)

    Abad, S.; Araújo, F. M.; Ferreira, L. A.; Pedersen, F.; Esteban, M. A.; McKenzie, I.; Karafolas, N.

    2017-11-01

    Monitoring needs of spacecraft are rapidly increasing due to new and more challenging missions, along with demands to reduce launching costs by minimizing the manufacture, assembly, integration and test time and employing new low weight materials balanced by the need for maximizing system lifetime while maintaining good reliability. Conventional electronic sensors are characterized by their low multiplexing capability and their EMI/RF susceptibility and it is in this scenario that Fiber Optic Sensors (FOS) in general, and more specifically Fiber Bragg Grating (FBG) technology offers important benefits, improving in various ways the already deployed sensing subsystems (e.g. reducing the weight associated with sensor cabling, increasing the number of sensing points) and enabling new monitoring applications that were not possible by using conventional sensing technologies. This work presents the activities performed and the lessons learnt in the frame of ESA's ARTES-5 project "Fiber Optic Sensing Subsystem for Spacecraft Health Monitoring in Telecommunication Satellites". This project finished in July 2009, with the implementation and testing of two different demonstrators employing FBG sensor technology: FBG sensors for temperature monitoring in high voltage environments, and in particular in several parts of electric propulsion subsystems [1], and FBG sensors for thermal monitoring of array-antennas during RF testing [2]. In addition, the contacts performed with different actors within the space community allowed the identification of a special area of interest for the substitution of regular thermocouple instrumentation by FBG technology for thermal vacuum ground testing of satellites.

  19. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module

    Directory of Open Access Journals (Sweden)

    Yuan-Chieh Lo

    2018-02-01

    Full Text Available Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe. Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t| °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR technique and implemented into the real-time embedded system.

  20. Fibre Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors

    CERN Document Server

    Benussi, Luigi

    2015-01-01

    Fibre Bragg Grating (FBG) sensors have been so far mainly used in high energy physics as high precision positioning and re-positioning sensor and as low cost, easy to mount and low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS upgrade consists of 144 GEM chambers of about 0.5 $m^{2}$ active area each and based on the triple GEMs technology, to be installed in the very forward region of the CMS endcap. The large active are of each GE1/1 chamber consists of a single GEM foil (the GE1/1 chambers represent the largest GEM foils assembled and operated so far) to be mechanically stretched in order to secure its flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. A network of FBG sensors have been used to determine the optimal m...

  1. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  2. Use of novel sensors combining local positioning and acceleration to measure feeding behavior differences associated with lameness in dairy cattle.

    Science.gov (United States)

    Barker, Z E; Vázquez Diosdado, J A; Codling, E A; Bell, N J; Hodges, H R; Croft, D P; Amory, J R

    2018-04-25

    Time constraints for dairy farmers are an important factor contributing to the under-detection of lameness, resulting in delayed or missed treatment of lame cows within many commercial dairy herds. Hence, a need exists for flexible and affordable cow-based sensor systems capable of monitoring behaviors such as time spent feeding, which may be affected by the onset of lameness. In this study a novel neck-mounted mobile sensor system that combines local positioning and activity (acceleration) was tested and validated on a commercial UK dairy farm. Position and activity data were collected over 5 consecutive days for 19 high-yield dairy cows (10 lame, 9 nonlame) that formed a subset of a larger (120 cow) management group housed in a freestall barn. A decision tree algorithm that included sensor-recorded position and accelerometer data was developed to classify a cow as doing 1 of 3 categories of behavior: (1) feeding, (2) not feeding, and (3) out of pen for milking. For each classified behavior the mean number of bouts, the mean bout duration, and the mean total duration across all bouts was determined on a daily basis, and also separately for the time periods in between milking (morning = 0630-1300 h; afternoon = 1430-2100 h; night = 2230-0500 h). A comparative analysis of the classified cow behaviors was undertaken using a Welch t-test with Benjamini-Hochberg post-hoc correction under the null hypothesis of no differences in the number or duration of behavioral bouts between the 2 test groups of lame and nonlame cows. Analysis showed that mean total daily feeding duration was significantly lower for lame cows compared with non-lame cows. Behavior was also affected by time of day with significantly lower mean total duration of feeding and higher total duration of nonfeeding in the afternoons for lame cows compared with nonlame cows. The results demonstrate how sensors that measure both position and acceleration are capable of detecting differences in feeding behavior

  3. Sensor and Communication Network Technology for Harsh Environments in the Nuclear Power Plant

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Choi, Young Soo; Lee, Jae Chul; Choi, Yu Rak; Jung, Gwang Il; Jung, Jong Eun; Park, Hee Yoon; Hong, Seok Bong; Koo, In Soo

    2008-02-01

    One of the challenges in harsh environments qualification and verification for emerging new I and C system of the nuclear power plant is to define the operational environment of these new emerging I and C sensor and communication network such that they are tested to the limits of a mission without requiring expensive over design. To aid this, this report defines, discusses and recommends environmental guideline and verification requirements for using state-of-the-art RPS sensors, fiber optic communication system, wireless communication and wireless smart sensors in nuclear harsh environments. This report focuses on advances in sensors (e.g., temperature, pressure, neutron and thermal power sensors) and their potential impact. Discussed are: radiation, thermal, electromagnetic, and electrical environment specifications. Presented are the typical performance data (survivability guidelines and experimental data), evaluation procedure and standard test method of communication devices, state-of-the-art RPS sensors, and communication systems

  4. Sensor and Communication Network Technology for Harsh Environments in the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Lee, Jae Chul; Choi, Yu Rak; Jung, Gwang Il; Jung, Jong Eun; Park, Hee Yoon; Hong, Seok Bong; Koo, In Soo

    2008-02-15

    One of the challenges in harsh environments qualification and verification for emerging new I and C system of the nuclear power plant is to define the operational environment of these new emerging I and C sensor and communication network such that they are tested to the limits of a mission without requiring expensive over design. To aid this, this report defines, discusses and recommends environmental guideline and verification requirements for using state-of-the-art RPS sensors, fiber optic communication system, wireless communication and wireless smart sensors in nuclear harsh environments. This report focuses on advances in sensors (e.g., temperature, pressure, neutron and thermal power sensors) and their potential impact. Discussed are: radiation, thermal, electromagnetic, and electrical environment specifications. Presented are the typical performance data (survivability guidelines and experimental data), evaluation procedure and standard test method of communication devices, state-of-the-art RPS sensors, and communication systems.

  5. Calorimetric sensors for energy deposition measurements

    International Nuclear Information System (INIS)

    Langenbrunner, J.; Cooper, R.; Morgan, G.

    1998-01-01

    A calorimetric sensor with several novel design features has been developed. These sensors will provide an accurate sampling of thermal power density and energy deposition from proton beams incident on target components of accelerator-based systems, such as the Accelerator Production of Tritium Project (APT) and the Spallation Neutron Source (SNS). A small, solid slug (volume = 0.347 cc) of target material is suspended by kevlar fibers and surrounded by an adiabatic enclosure in an insulating vacuum canister of stainless steel construction. The slug is in thermal contact with a low-mass, calibrated, 100-kΩ thermistor. Power deposition caused by the passage of radiation through the slug is calculated from the rate of temperature rise of the slug. The authors have chosen slugs composed of Pb, Al, and LiAl

  6. Selectivity enhancement of indium-doped SnO2 gas sensors

    International Nuclear Information System (INIS)

    Salehi, A.

    2002-01-01

    Indium doping was used to enhance the selectivity of SnO 2 gas sensor. Both indium-doped and undoped SnO 2 gas sensors fabricated with different deposition techniques were investigated. The changes in the sensitivity of the sensors caused by selective gases (hydrogen and wood smoke) ranging from 500 to 3000 ppm were measured at different temperatures from 50 to 300 deg. C. The sensitivity peaks of the samples exhibit different values for selective gases with a response time of approximately 0.5 s. Thermally evaporated indium-doped SnO 2 gas sensor shows a considerable increase in the sensitivity peak of 27% in response to wood smoke, whereas it shows a sensitivity peak of 7% to hydrogen. This is in contrast to the sputter deposited indium-doped SnO 2 gas sensor, which exhibits a much lower sensitivity peak of approximately 2% to hydrogen and wood smoke compared to undoped SnO 2 gas sensors fabricated by chemical vapor deposition and spray pyrolysis. Scanning electron microscopy shows that different deposition techniques result in different porosity of the films. It is observed that the thermally evaporated indium-doped SnO 2 gas sensor shows high porosity, while the sputtered sample exhibits almost no porosity

  7. High voltage disconnect switch position monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Crampton, S W

    1983-08-01

    Unreliable position indication on high-voltage (HV) disconnect switches can result in equipment damage worth many times the cost of a disconnect switch. The benefits and limitations of a number of possible methods of reliably monitoring HV disconnect switches are assessed. Several methods of powering active devices at HV are noted. It is concluded that the most reliable way of monitoring switch position at reasonable cost would use a passive hermetically-sealed blade-position sensor located at HV, with a fibre-optic link between HV and ground. Separate sensors would be used for open and closed position indication. For maximum reliability the fibre-optic link would continue into the relay building. A passive magnetically actuated fibre-optic sensor has been built which demonstrates the feasibility of the concept. The sensor monitors blade position relative to the jaws in three dimensions with high resolution. A design for an improved passive magneto-optic sensor has significantly lower optical losses, allowing a single fibre-optic loop and 3 sensors to monitor closure of all phases of a disconnect switch. A similar loop would monitor switch opening. The improved sensor has a solid copper housing to provide greater immunity to fault currents, and to protect it from the environment and from physical damage. Two methods of providing a protected path for fibre-optics passing from HV to ground are proposed, one using a hollow porcelain switch-support insulator and the other using an additional small-diameter polymer insulator with optical fibres imbedded in its fibreglass core. A number of improvements are recommended which can be made to existing switches to increase their reliability. 16 refs., 13 figs., 1 tab.

  8. An electro-thermally activated rotary micro-positioner for slider-level dual-stage positioning in hard disk drives

    International Nuclear Information System (INIS)

    Lau, Gih Keong; Chong, Nyok Boon; Yang, Jiaping; Tan, Cheng Peng

    2016-01-01

    Slider-level micro-positioners are useful to assist a voice coil motor to perform fine head positioning over a Tb/in 2 magnetic disk. Recently, a new kind of slider-level micro-positioner was developed using the thermal unimorph of the Si/SU8 composite. It has the advantages of a very small footprint and high mechanical resonant frequency, but its stroke generation is inadequate, with a 50 nm dynamic stroke at 1 kHz. There is a need for a larger thermally induced stroke. This paper presents a rotary design of an electrothermal micro-positioner to address the stroke requirements without consuming more power or decreasing the mechanical resonant frequency. Experimental studies show the present rotary design can produce a six-fold larger displacement, as compared to the previous lateral design, while possessing a 35 kHz resonant frequency. In addition, simple analytical models were developed to estimate: (i) the rotational stiffness and system’s natural frequency, (ii) thermal unimorph bending and stage rotation, and (iii) the system’s thermal time constant for this rotary electro-thermal micro-positioner. This study found that this rotary electro-thermal micro-positioner can meet the basic stroke requirement and high mechanical resonant frequency for a moving slider, but its thermal cut-off frequency needs to be increased further. (paper)

  9. A Real-Time Thermal Self-Elimination Method for Static Mode Operated Freestanding Piezoresistive Microcantilever-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Yu-Fu Ku

    2018-02-01

    Full Text Available Here, we provide a method and apparatus for real-time compensation of the thermal effect of single free-standing piezoresistive microcantilever-based biosensors. The sensor chip contained an on-chip fixed piezoresistor that served as a temperature sensor, and a multilayer microcantilever with an embedded piezoresistor served as a biomolecular sensor. This method employed the calibrated relationship between the resistance and the temperature of piezoresistors to eliminate the thermal effect on the sensor, including the temperature coefficient of resistance (TCR and bimorph effect. From experimental results, the method was verified to reduce the signal of thermal effect from 25.6 μV/°C to 0.3 μV/°C, which was approximately two orders of magnitude less than that before the processing of the thermal elimination method. Furthermore, the proposed approach and system successfully demonstrated its effective real-time thermal self-elimination on biomolecular detection without any thermostat device to control the environmental temperature. This method realizes the miniaturization of an overall measurement system of the sensor, which can be used to develop portable medical devices and microarray analysis platforms.

  10. Review of design technology of control rod position indicators

    International Nuclear Information System (INIS)

    Yu, Je Yong; Huh, Hyung; Kim, Ji Ho; Kim, Jong In; Chang, Moon Hee

    1999-10-01

    An integral reactor SMART is under development at KAERI. The design characteristics of SMART are radically different from those employer in currently operating loop type water reactors in Korea. The objective of this report is to review the design technology of position indicator, and to study the various sensors which can be used in rod position indicator. Design criteria that rod position indicator should satisfy are also examined. Following position indicators are reviewed in this report. 1. Digital positioning indicator (DRPI), 2. Reed switch type position indicator (RSPT), 3. Choke sensor type position indicator, 4. Ultrasonic sensor type position indicator, 5. Comparison of each position indicator. (author)

  11. Positioning system in wireless sensor networks using NS-2

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-10-01

    Full Text Available The practical difficulties of setting up a wireless sensor network (WSN) and analysing its performance have made simulation essential for the study of WSNs. The ns-2 network simulator is one of the most widely used tools by researchers...

  12. Fiber-optic combined FPI/FBG sensors for monitoring of radiofrequency thermal ablation of liver tumors: ex vivo experiments.

    Science.gov (United States)

    Tosi, Daniele; Macchi, Edoardo Gino; Braschi, Giovanni; Cigada, Alfredo; Gallati, Mario; Rossi, Sandro; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2014-04-01

    We present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry-Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy. The sensing system has been applied to monitor online the radiofrequency thermal ablation of tumors in liver tissue. Preliminary experiments have been performed in a reference chamber with uniform heating; further experiments have been carried out on ex vivo porcine liver, which allowed the measurement of a steep temperature gradient and monitoring of the local pressure increase during the ablation procedure.

  13. Study of photoconductor-based radiological image sensors

    International Nuclear Information System (INIS)

    Beaumont, Francois

    1989-01-01

    Because of the evolution of medical imaging techniques to digital Systems, it is necessary to replace radiological film which has many drawbacks, by a detector quite as efficient and quickly giving a digitizable signal. The purpose of this thesis is to find new X-ray digital imaging processes using photoconductor materials such as amorphous selenium. After reviewing the principle of direct radiology and functions to be served by the X-ray sensor (i.e. detection, memory, assignment, visualization), we explain specification. We especially show the constraints due to the object to be radiographed (condition of minimal exposure), and to the reading signal (electronic noise detection associated with a reading frequency). As a result of this study, a first photoconductor sensor could be designed. Its principle is based on photo-carrier trapping at dielectric-photoconductor structure interface. The reading System needs the scanning of a laser beam upon the sensor surface. The dielectric-photoconductor structure enabled us to estimate the possibilities offered by the sensor and to build a complete x-ray imaging System. The originality of thermo-dielectric sensor, that was next studied, is to allow a thermal assignment reading. The chosen System consists in varying the ferroelectric polymer capacity whose dielectric permittivity is weak at room temperature. The thermo-dielectric material was studied by thermal or Joule effect stimulation. During our experiments, trapping was found in a sensor made of amorphous selenium between two electrodes. This new effect was performed and enabled us to expose a first interpretation. Eventually, the comparison of these new sensor concepts with radiological film shows the advantage of the proposed solution. (author) [fr

  14. Thermal diagnostics for LTP

    International Nuclear Information System (INIS)

    Lobo, Alberto; Nofrarias, M; Sanjuan, J

    2005-01-01

    This is a short note reporting on the current state of development of the temperature sensors which are part of the LTP Diagnostics Subsystem on board the LISA Pathfinder mission (LPF). A thermal insulator has been designed which ensures sufficient stability of a set of eight NTC sensors (negative temperature coefficient of resistance or thermistors), and the front-end electronics has also been designed and manufactured. Tests have been performed which nearly approach the goal of a global stability of 10 -5 K Hz -1/2

  15. Investigation of the impact of mechanical stress on the properties of silicon strip sensors

    CERN Document Server

    Affolder, Tony; The ATLAS collaboration

    2017-01-01

    The new ATLAS tracker for phase II will be composed of silicon pixel and strip sensor modules. The strip sensor module consists of silicon sensors, boards and readout chips. Adhesives are used to connect the modular components thermally and mechanically. It was shown that the silicon sensor is exposed to mechanical stress, due to temperature difference between construction and operation. Mechanical stress can damage the sensor and can change the electrical properties. The thermal induced tensile stress near to the surface of a silicon sensor in a module was simulated and the results are compared to a cooled module. A four point bending setup was used to measure the maximum tensile stress of silicon detectors and to verify the piezoresistive effects on two recent development sensor types used in ATLAS (ATLAS07 and ATLAS12). Changes in the interstrip, bulk and bias resistance and capacitance as well as the coupling capacitance and the implant resistance were measured. The Leakage current was observed to decreas...

  16. STUDY ON SHADOW EFFECTS OF VARIOUS FEATURES ON CLOSE RANGE THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    C. L. Liao

    2012-07-01

    Full Text Available Thermal infrared data become more popular in remote sensing investigation, for it could be acquired both in day and night. The change of temperature has special characteristic in natural environment, so the thermal infrared images could be used in monitoring volcanic landform, the urban development, and disaster prevention. Heat shadow is formed by reflecting radiating capacity which followed the objects. Because of poor spatial resolution of thermal infrared images in satellite sensor, shadow effects were usually ignored. This research focus on discussing the shadow effects of various features, which include metals and nonmetallic materials. An area-based thermal sensor, FLIR-T360 was selected to acquire thermal images. Various features with different emissivity were chosen as reflective surface to obtain thermal shadow in normal atmospheric temperature. Experiments found that the shadow effects depend on the distance between sensors and features, depression angle, object temperature and emissivity of reflective surface. The causes of shadow effects have been altered in the experiment for analyzing the variance in thermal infrared images. The result shows that there were quite different impacts by shadow effects between metals and nonmetallic materials. The further research would be produced a math model to describe the shadow effects of different features in the future work.

  17. Optical sensors for earth observation. Chikyu kansokuyo kogaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ono, A [National Research Laboratory of Metrology, Tsukuba (Japan)

    1991-10-10

    Developments are made on an optical imager (ASTER) used to collect mainly images of land areas and an infrared sounder (IMG) to measure vertical air temperature distribution and vertical concentration distribution of specific gases, as satellite mounted sensors for earth observation. All the sensor characteristics of the ASTER comprising a visible near infrared radiometer, short wave infrared radiometer and thermal infrared radiometer are required to be capable of providing measurement, evaluation and assurance at the required accuracies during the entire life time. A problem to be solved is how to combine the on-ground calibration prior to launching, on-satellite calibration, and calibration between the test site and the sensors. The IMG is a Fourier transform spectroscopic infrared sounder, which is demanded of a high wave resolution over extended periods of time as well as a high radiation measuring capability. Also required are the level elevation of analysis algorithms to solve inverse problems from the observed radiation spectra, and the data base with high accuracy. 19 refs., 4 figs., 4 tabs.

  18. In situ measurement of the junction temperature of light emitting diodes using a flexible micro temperature sensor.

    Science.gov (United States)

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2009-01-01

    This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED). The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS) technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness). A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE(®) EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.

  19. In Situ Measurement of the Junction Temperature of Light Emitting Diodes Using a Flexible Micro Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Wei-Jung Hsieh

    2009-06-01

    Full Text Available This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED. The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness. A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE® EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.

  20. Development of techniques for fabrication of film probe sensor assembly

    International Nuclear Information System (INIS)

    Moorhead, A.J.

    1982-10-01

    Pulsed laser welding and brazing techniques were developed for fabrication of sensors designed to measure liquid film properties in out-of-reactor safety tests that simulate a loss-of-coolant accident in a pressurized-water nuclear reactor. These sensors were made possible by a unique ceramic-to-metal seal system based on a cermet insulator and a brazing filler metal, both developed at ORNL. This seal system was shown to resist steam to an exposure of at least 100 h at 700 0 C (1292 0 F) and to resist repetitive thermal transients of 300 0 C/s (540 0 F). Procedures were also developed for induction brazing the instrumentation cables to a stainless steel end cap and for laser welding this component to the brazed sensor body itself. Cable end seals and sensor bodies fabricated with these designs and techniques maintained excellent helium leaktightness ( -6 cm 3 /s) after 20 severe thermal shock tests from 500 0 C air into water at 80 0 C

  1. Recession-Tolerant Sensors for Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will develop a suite of diagnostic sensors using Direct Write technology to measure temperature, surface recession depth, and heat flux of an...

  2. The Influence of Sub-Block Position on Performing Integrated Sensor Orientation Using In Situ Camera Calibration and Lidar Control Points

    Directory of Open Access Journals (Sweden)

    Felipe A. L. Costa

    2018-02-01

    Full Text Available The accuracy of photogrammetric and Lidar dataset integration is dependent on the quality of a group of parameters that models accurately the conditions of the system at the moment of the survey. In this sense, this paper aims to study the effect of the sub-block position in the entire image block to estimate the interior orientation parameters (IOP in flight conditions to be used in integrated sensor orientation (ISO. For this purpose, five sub-blocks were extracted in different regions of the entire block. Then, in situ camera calibrations were performed using sub-blocks and sets of Lidar control points (LCPs, computed by a three planes’ intersection extracted from the Lidar point cloud on building roofs. The ISO experiments were performed using IOPs from in situ calibrations, the entire image block, and the exterior orientation parameters (EOP from the direct sensor orientation (DSO. Analysis of the results obtained from the ISO experiments performed show that the IOP from the sub-block positioned at the center of the entire image block can be recommended.

  3. Fiber Optic Thermal Detection of Composite Delaminations

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  4. Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare

    Science.gov (United States)

    Haque, Shah Ahsanul; Rahman, Mustafizur; Aziz, Syed Mahfuzul

    2015-01-01

    Wireless Sensor Networks (WSN) are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare service afforded by WSN. In this paper, a novel approach is proposed to detect sensor anomaly by analyzing collected physiological data from medical sensors. The objective of this method is to effectively distinguish false alarms from true alarms. It predicts a sensor value from historic values and compares it with the actual sensed value for a particular instance. The difference is compared against a threshold value, which is dynamically adjusted, to ascertain whether the sensor value is anomalous. The proposed approach has been applied to real healthcare datasets and compared with existing approaches. Experimental results demonstrate the effectiveness of the proposed system, providing high Detection Rate (DR) and low False Positive Rate (FPR). PMID:25884786

  5. Interrogating Key Positions of Size-Reduced TALE Repeats Reveals a Programmable Sensor of 5-Carboxylcytosine.

    Science.gov (United States)

    Maurer, Sara; Giess, Mario; Koch, Oliver; Summerer, Daniel

    2016-12-16

    Transcription-activator-like effector (TALE) proteins consist of concatenated repeats that recognize consecutive canonical nucleobases of DNA via the major groove in a programmable fashion. Since this groove displays unique chemical information for the four human epigenetic cytosine nucleobases, TALE repeats with epigenetic selectivity can be engineered, with potential to establish receptors for the programmable decoding of all human nucleobases. TALE repeats recognize nucleobases via key amino acids in a structurally conserved loop whose backbone is positioned very close to the cytosine 5-carbon. This complicates the engineering of selectivities for large 5-substituents. To interrogate a more promising structural space, we engineered size-reduced repeat loops, performed saturation mutagenesis of key positions, and screened a total of 200 repeat-nucleobase interactions for new selectivities. This provided insight into the structural requirements of TALE repeats for affinity and selectivity, revealed repeats with improved or relaxed selectivity, and resulted in the first selective sensor of 5-carboxylcytosine.

  6. On the Fracture Toughness and Crack Growth Resistance of Bio-Inspired Thermal Spray Hybrid Composites

    Science.gov (United States)

    Resnick, Michael Murray

    Surface exploration of the Moon and Asteroids can provide important information to scientists regarding the origins of the solar-system and life . Small robots and sensor modules can enable low-cost surface exploration. In the near future, they are the main machines providing these answers. Advanced in electronics, sensors and actuators enable ever smaller platforms, with compromising functionality. However similar advances haven't taken place for power supplies and thermal control system. The lunar south pole has temperatures in the range of -100 to -150 °C. Similarly, asteroid surfaces can encounter temperatures of -150 °C. Most electronics and batteries do not work below -40 °C. An effective thermal control system is critical towards making small robots and sensors module for extreme environments feasible. In this work, the feasibility of using thermochemical storage materials as a possible thermal control solution is analyzed for small robots and sensor modules for lunar and asteroid surface environments. The presented technology will focus on using resources that is readily generated as waste product aboard a spacecraft or is available off-world through In-Situ Resource Utilization (ISRU). In this work, a sensor module for extreme environment has been designed and prototyped. Our intention is to have a network of tens or hundreds of sensor modules that can communicate and interact with each other while also gathering science data. The design contains environmental sensors like temperature sensors and IMU (containing accelerometer, gyro and magnetometer) to gather data. The sensor module would nominally contain an electrical heater and insulation. The thermal heating effect provided by this active heater is compared with the proposed technology that utilizes thermochemical storage chemicals. Our results show that a thermochemical storage-based thermal control system is feasible for use in extreme temperatures. A performance increase of 80% is predicted for

  7. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  8. Distributed temperature sensor testing in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

    2017-02-01

    Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400°C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 lm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  9. On Designing Thermal-Aware Localized QoS Routing Protocol for in-vivo Sensor Nodes in Wireless Body Area Networks.

    Science.gov (United States)

    Monowar, Muhammad Mostafa; Bajaber, Fuad

    2015-06-15

    In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches.

  10. Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip.

    Science.gov (United States)

    Jeong, Sangdo; Lim, Juhun; Kim, Mi-Young; Yeom, JiHye; Cho, Hyunmin; Lee, Hyunjung; Shin, Yong-Beom; Lee, Jong-Hyun

    2018-01-29

    Polymerase chain reaction (PCR) has been widely used for major definite diagnostic tool, but very limited its place used only indoor such as hospital or diagnosis lab. For the rapid on-site detection of pathogen in an outdoor environment, a low-power cordless polymerase chain reaction (PCR) thermal cycler is crucial module. At this point of view, we proposed a low-power PCR thermal cycler that could be operated in an outdoor anywhere. The disposable PCR chip was made of a polymeric (PI/PET) film to reduce the thermal mass. A dual arrangement of the Pt heaters, which were positioned on the top and bottom of the PCR chip, improved the temperature uniformity. The temperature sensor, which was made of the same material as the heater, utilized the temperature dependence of the Pt resistor to ensure simple fabrication of the temperature sensor. Cooling the PCR chip using dual blower fans enabled thermal cycling to operate with a lower power than that of a Peltier element with a high power consumption. The PCR components were electrically connected to a control module that could be operated with a Li-ion battery (12 V), and the PCR conditions (temperature, time, cycle, etc.) were inputted on a touch screen. For 30 PCR cycles, the accumulated power consumption of heating and cooling was 7.3 Wh, which is easily available from a compact battery. Escherichia coli genomic DNA (510 bp) was amplified using the proposed PCR thermal cycler and the disposable PCR chip. A similar DNA amplification capability was confirmed using the proposed portable and low-power thermal cycler compared with a conventional thermal cycler.

  11. Combined shearing interferometer and hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Hutchin, R. A.

    1985-01-01

    A sensitive wavefront sensor combining attributes of both a Hartmann type of wavefront sensor and an AC shearing interferometer type of wavefront sensor. An incident wavefront, the slope of which is to be detected, is focussed to first and second focal points at which first and second diffraction gratings are positioned to shear and modulate the wavefront, which then diverges therefrom. The diffraction patterns of the first and second gratings are positioned substantially orthogonal to each other to shear the wavefront in two directions to produce two dimensional wavefront slope data for the AC shearing interferometer portion of the wavefront sensor. First and second dividing optical systems are positioned in the two diverging wavefronts to divide the sheared wavefront into an array of subapertures and also to focus the wavefront in each subaperture to a focal point. A quadrant detector is provided for each subaperture to detect the position of the focal point therein, which provides a first indication, in the manner of a Hartmann wavefront sensor, of the local wavefront slope in each subaperture. The total radiation in each subaperture, as modulated by the diffraction grating, is also detected by the quadrant detector which produces a modulated output signal representative thereof, the phase of which relative to modulation by the diffraction grating provides a second indication of the local wavefront slope in each subaperture, in the manner of an AC shearing interferometer wavefront sensor. The data from both types of sensors is then combined by long term averaging thereof to provide an extremely sensitive wavefront sensor

  12. Design and Performance Analysis of Laser Displacement Sensor Based on Position Sensitive Detector (PSD)

    International Nuclear Information System (INIS)

    Song, H X; Wang, X D; Ma, L Q; Cai, M Z; Cao, T Z

    2006-01-01

    By using PSD as sensitive element, and laser diode as emitting element, laser displacement sensor based on triangulation method has been widely used. From the point of view of design, sensor and its performance were studied. Two different sensor configurations were described. Determination of the dimension, sensing resolution and comparison of the two different configurations were presented. The factors affecting the performance of the laser displacement sensor were discussed and two methods, which can eliminate the affection of dark current and environment light, are proposed

  13. Study of an experimental methodology for thermal properties diagnostic of building envelop

    Science.gov (United States)

    Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe

    2017-04-01

    The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The

  14. Application of a microflown as a low-cost level-sensor

    NARCIS (Netherlands)

    van Honschoten, J.W.; van Baar, J.J.J.; de Bree, H.E.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    1999-01-01

    In this abstract we present a novel "spirit level"-sensor derived from a well-known thermal flow-sensor. The operation principle is based on the temperature difference of two identical heaters, caused by buoyancy of air. Heating as well as temperature sensing of the structures is carried out using

  15. Application of a microflown as a low-cost level sensor

    NARCIS (Netherlands)

    van Honschoten, J.W.; van Baar, J.J.J.; de Bree, H.E.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    In this paper we present a novel 'spirit level' sensor derived from a well known thermal flow sensor. The operation principle is based on the temperature difference of two identical heaters, caused by buoyancy of air. Heating as well as temperature sensing of the structures is carried out

  16. Sensor and Methodology for Dielectric Analysis of Vegetal Oils Submitted to Thermal Stress

    Directory of Open Access Journals (Sweden)

    Sergio Luiz Stevan

    2015-10-01

    Full Text Available Vegetable oils used in frying food represent a social problem as its destination. The residual oil can be recycled and returned to the production line, as biodiesel, as soap, or as putty. The state of the residual oil is determined according to their physicochemical characteristics whose values define its economically viable destination. However, the physicochemical analysis requires high costs, time and general cost of transporting. This study presents the use of a capacitive sensor and a quick and inexpensive method to correlate the physicochemical variables to the dielectric constant of the material undergoing oil samples to thermal cycling. The proposed method allows reducing costs in the characterization of residual oil and the reduction in analysis time. In addition, the method allows an assessment of the quality of the vegetable oil during use. The experimental results show the increasing of the dielectric constant with the temperature, which facilitates measurement and classification of the dielectric constant at considerably higher temperatures. The results also confirm a definitive degradation in used oil and a correlation between the dielectric constant of the sample with the results of the physicochemical analysis (iodine value, acid value, viscosity and refractive index.

  17. Sensor and methodology for dielectric analysis of vegetal oils submitted to thermal stress.

    Science.gov (United States)

    Stevan, Sergio Luiz; Paiter, Leandro; Galvão, José Ricardo; Roque, Daniely Vieira; Chaves, Eduardo Sidinei

    2015-10-16

    Vegetable oils used in frying food represent a social problem as its destination. The residual oil can be recycled and returned to the production line, as biodiesel, as soap, or as putty. The state of the residual oil is determined according to their physicochemical characteristics whose values define its economically viable destination. However, the physicochemical analysis requires high costs, time and general cost of transporting. This study presents the use of a capacitive sensor and a quick and inexpensive method to correlate the physicochemical variables to the dielectric constant of the material undergoing oil samples to thermal cycling. The proposed method allows reducing costs in the characterization of residual oil and the reduction in analysis time. In addition, the method allows an assessment of the quality of the vegetable oil during use. The experimental results show the increasing of the dielectric constant with the temperature, which facilitates measurement and classification of the dielectric constant at considerably higher temperatures. The results also confirm a definitive degradation in used oil and a correlation between the dielectric constant of the sample with the results of the physicochemical analysis (iodine value, acid value, viscosity and refractive index).

  18. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm.

    Science.gov (United States)

    Wang, Wenhui; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2010-04-26

    This paper presents an all-silica miniature optical fiber pressure/acoustic sensor based on the Fabry-Perot (FP) interferometric principle. The endface of the etched optical fiber tip and silica thin diaphragm on it form the FP structure. The uniform and thin silica diaphragm was fabricated by etching away the silicon substrate from a commercial silicon wafer that has a thermal oxide layer. The thin film was directly thermally bonded to the endface of the optical fiber thus creating the Fabry-Perot cavity. Thin films with a thickness from 1microm to 3microm have been bonded successfully. The sensor shows good linearity and hysteresis during measurement. A sensor with 0.75 microm-thick diaphragm thinned by post silica etching was demonstrated to have a sensitivity of 11 nm/kPa. The new sensor has great potential to be used as a non-intrusive pressure sensor in a variety of sensing applications.

  19. ALC Rooftop Sensor System

    Science.gov (United States)

    2017-10-31

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the new sensor box ...................................................... 3 Fig. 4 Interior of original sensor box...7 Fig. 10 Interior of fiber patch panel .................................................................. 7 Fig. 11

  20. High-resolution metallic magnetic calorimeters for β-spectroscopy on 187rhenium and position resolved X-ray spectroscopy

    International Nuclear Information System (INIS)

    Porst, Jan-Patrick

    2011-01-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for β-endpoint spectroscopy on 187 rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 μs could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than ΔE FWHM <5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  1. Patient Posture Monitoring System Based on Flexible Sensors

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2017-03-01

    Full Text Available Monitoring patients using vision cameras can cause privacy intrusion problems. In this paper, we propose a patient position monitoring system based on a patient cloth with unobtrusive sensors. We use flexible sensors based on polyvinylidene fluoride, which is a flexible piezoelectric material. Theflexiblesensorsareinsertedintopartsclosetothekneeandhipoftheloosepatientcloth. We measure electrical signals from the sensors caused by the piezoelectric effect when the knee and hip in the cloth are bent. The measured sensor outputs are transferred to a computer via Bluetooth. We use a custom-made program to detect the position of the patient through a rule-based algorithm and the sensor outputs. The detectable postures are based on six human motions in and around a bed. The proposed system can detect the patient positions with a success rate over 88 percent for three patients.

  2. Effects of electrostatic discharge on three cryogenic temperature sensor models

    Energy Technology Data Exchange (ETDEWEB)

    Courts, S. Scott; Mott, Thomas B. [Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, OH 43082 (United States)

    2014-01-29

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  3. Effects of electrostatic discharge on three cryogenic temperature sensor models

    International Nuclear Information System (INIS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure

  4. Simulation and fabrication of carbon nanotubes field emission pressure sensors

    International Nuclear Information System (INIS)

    Qian Kaiyou; Chen Ting; Yan Bingyong; Lin Yangkui; Xu Dong; Sun Zhuo; Cai Bingchu

    2006-01-01

    A novel field emission pressure sensor has been achieved utilizing carbon nanotubes (CNTs) as the electron source. The sensor consists of the anode sensing film fabricated by wet etching process and multi-wall carbon nanotubes (MWNTs) cathode in the micro-vacuum chamber. MWNTs on the silicon substrate were grown by thermal CVD. The prototype pressure sensor has a measured sensitivity of about 0.17-0.77 nA/Pa (101-550 KPa). The work shows the potential use of CNTs-based field-emitter in microsensors, such as accelerometers and tactile sensors

  5. Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters

    Science.gov (United States)

    Bonds, Kevin; Polzin, Kurt A.

    2010-01-01

    Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so

  6. Molecular detection by active Fano-sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yifei; Guo, Zhongyi [School of Computer and Information, Hefei University of Technology, Hefei, 230009 (China)

    2017-04-15

    The optical properties and sensing performances of the molecular sensors based on plasmonic Fano-resonance (PFR) nanostructures have been numerically investigated in detail. The on-resonance sensor, in which the Fano-resonance position is overlapping with the absorption-band of the detected molecules perfectly, reveals a powerful ability to detect the molecules with a low concentration or thin thickness. By the bias-modulation of a single-layer graphene, the Fano-resonance position of the nanostructures can be tuned effectively. On being modulated properly, the PFR sensor shows an ultrahigh performance because of the unprecedentedly high overlap of the Fano-resonance position with the absorption-band of molecules, which is enabling superior signal strength in the molecular detections based on their vibrational fingerprints. Our proposed strategy may enable the development of dynamic sensors and open exciting prospects for bio-sensing. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fiber-Optic Temperature and Pressure Sensors Applied to Radiofrequency Thermal Ablation in Liver Phantom: Methodology and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2015-01-01

    Full Text Available Radiofrequency thermal ablation (RFA is a procedure aimed at interventional cancer care and is applied to the treatment of small- and midsize tumors in lung, kidney, liver, and other tissues. RFA generates a selective high-temperature field in the tissue; temperature values and their persistency are directly related to the mortality rate of tumor cells. Temperature measurement in up to 3–5 points, using electrical thermocouples, belongs to the present clinical practice of RFA and is the foundation of a physical model of the ablation process. Fiber-optic sensors allow extending the detection of biophysical parameters to a vast plurality of sensing points, using miniature and noninvasive technologies that do not alter the RFA pattern. This work addresses the methodology for optical measurement of temperature distribution and pressure using four different fiber-optic technologies: fiber Bragg gratings (FBGs, linearly chirped FBGs (LCFBGs, Rayleigh scattering-based distributed temperature system (DTS, and extrinsic Fabry-Perot interferometry (EFPI. For each instrument, methodology for ex vivo sensing, as well as experimental results, is reported, leading to the application of fiber-optic technologies in vivo. The possibility of using a fiber-optic sensor network, in conjunction with a suitable ablation device, can enable smart ablation procedure whereas ablation parameters are dynamically changed.

  8. Testing of a Wireless Sensor System for Instrumented Thermal Protection Systems

    Science.gov (United States)

    Kummer, Allen T.; Weir, Erik D.; Morris, Trey J.; Friedenberger, Corey W.; Singh, Aseem; Capuro, Robert M.; Bilen, Sven G.; Fu, Johnny; Swanson, Gregory T.; Hash, David B.

    2011-01-01

    Funded by NASA's Constellation Universities Institutes Project (CUIP), we have been developing and testing a system to wirelessly power and collect data from sensors on space platforms in general and, in particular, the harsh environment of spacecraft re-entry. The elimination of wires and associated failures such as chafing, sparking, ageing, and connector issues can increase reliability and design flexibility while reducing costs. These factors present an appealing case for the pursuit of wireless solutions for harsh environments, particularly for their use in space and on spacecraft. We have designed and built a prototype wireless sensor system. The system, with capabilities similar to that of a wired sensor system, was tested in NASA Ames Research Center s Aerodynamic Heating Facility and Interaction Heating Facility. This paper discusses the overall development effort, testing results, as well as future directions.

  9. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  10. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    R. Brian Jenkins

    2017-01-01

    Full Text Available Fiber Bragg grating (FBG temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  11. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  12. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing

    Directory of Open Access Journals (Sweden)

    Benedikt Fasel

    2017-11-01

    Full Text Available For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error was below 110 mm and precision (error standard deviation was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface. In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow. Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training

  13. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing.

    Science.gov (United States)

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies

  14. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission

    Directory of Open Access Journals (Sweden)

    Zhigang Pan

    2017-02-01

    Full Text Available The existing temperature sensors using carbon nanotubes (CNTs are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  15. Potentiometric Membrane Sensors for Levamisole Determination

    Directory of Open Access Journals (Sweden)

    Natalia Zubenya

    2016-11-01

    Full Text Available The ion pair (IP of levamisole with BiI4-(SbI4- for the levamisole-selective sensor with a PVC membrane containing - ions were developed. Thermal behavior of obtained IP was investigated by differential thermal analysis that would show the thermal stability and the character of the decomposition of the complex. The thermolysis of Lev+BiI4- IP undergoes three stages that fit a theoretical interpretation. the linearity ranges of levamisole sensors function are 7.9 ×10-6 – 1×10-1 (7.9 ×10-5 – 1×10-1 M. The Nernstian slope of                   50.6 – 53.4 mV pC−1 and detection limit of 5.0 × 10−5 – 1.5 × 10−4 M. The working range of pH is 2.8 – 6.0.     The efficiency of the use of electrodes for levamisole content control in pharmaceutical preparations was shown by direct potentiometry and potentiometric titration methods.

  16. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    Science.gov (United States)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  17. MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument

    Science.gov (United States)

    McFadden, J. P.; Kortmann, O.; Curtis, D.; Dalton, G.; Johnson, G.; Abiad, R.; Sterling, R.; Hatch, K.; Berg, P.; Tiu, C.; Gordon, D.; Heavner, S.; Robinson, M.; Marckwordt, M.; Lin, R.; Jakosky, B.

    2015-12-01

    The MAVEN SupraThermal And Thermal Ion Compostion (STATIC) instrument is designed to measure the ion composition and distribution function of the cold Martian ionosphere, the heated suprathermal tail of this plasma in the upper ionosphere, and the pickup ions accelerated by solar wind electric fields. STATIC operates over an energy range of 0.1 eV up to 30 keV, with a base time resolution of 4 seconds. The instrument consists of a toroidal "top hat" electrostatic analyzer with a 360° × 90° field-of-view, combined with a time-of-flight (TOF) velocity analyzer with 22.5° resolution in the detection plane. The TOF combines a -15 kV acceleration voltage with ultra-thin carbon foils to resolve H+, He^{++}, He+, O+, O2+, and CO2+ ions. Secondary electrons from carbon foils are detected by microchannel plate detectors and binned into a variety of data products with varying energy, mass, angle, and time resolution. To prevent detector saturation when measuring cold ram ions at periapsis (˜10^{1 1} eV/cm2 s sr eV), while maintaining adequate sensitivity to resolve tenuous pickup ions at apoapsis (˜103 eV/cm2 s sr eV), the sensor includes both mechanical and electrostatic attenuators that increase the dynamic range by a factor of 103. This paper describes the instrument hardware, including several innovative improvements over previous TOF sensors, the ground calibrations of the sensor, the data products generated by the experiment, and some early measurements during cruise phase to Mars.

  18. Digital data filtering in a Hall effect based angular position sensor

    OpenAIRE

    Solana Muñoz, Jorge

    2009-01-01

    Este proyecto empieza con el análisis de un sensor de efecto Hall como los estudiados en la asignatura Instrumentación Electrónica. Durante su estudio se pondrán en práctica algunos de los conocimientos adquiridos en ella. Posteriormente se entra en una fase de diseño de un sistema electrónico digital que procesará la señal procedente del sensor. En esta parte entran en juego conceptos de Sistemas Electrónicos Digitales necesarios para la elección de los bloques y las funciones lógicas oportu...

  19. Position automatic determination technology

    International Nuclear Information System (INIS)

    1985-10-01

    This book tells of method of position determination and characteristic, control method of position determination and point of design, point of sensor choice for position detector, position determination of digital control system, application of clutch break in high frequency position determination, automation technique of position determination, position determination by electromagnetic clutch and break, air cylinder, cam and solenoid, stop position control of automatic guide vehicle, stacker crane and automatic transfer control.

  20. Strain and temperature measurement in pultrusion processes by fiber Bragg grating sensors

    Science.gov (United States)

    Tucci, Fausto; Rubino, Felice; Carlone, Pierpaolo

    2018-05-01

    Injection Pultrusion (IP) is one of the most effective processes, in terms of productivity and costs, to manufacture fiber reinforced polymers. In IP roving of fiber are driven through an injection chamber in which they are impregnated by the resin and then formed in a shaped die. The die is heated in order to cure the resin. Pultruded products are in most cases characterized by constant cross-section profile, whereas unidirectional long fibers are mainly used as reinforcing material. Two relevant phenomena occur within the injection chamber and the heated die, namely the impregnation of the fibers and the polymerization of the resin. Furthermore, thermal expansion, resin chemical shrinkage and the interaction between the die and the impregnated fibers strongly influence the process [1]. Clearly, thermal and mechanical fields significantly impact on these strictly chained behaviours. The use of thermocouples to evaluate temperature within pultrusion die is already widespread, but they are not capable to acquire any information concerning stress-strain levels. In the present work Fibers Bragg Gratings (FBG) sensors were used to measure thermal and strain profiles in selected material location within the injection chamber and the curing die. Being the differences among the spectres transmitted and received are related to the variations in both temperature and strain, commercial FBG sensors were opportunely modified and calibrated. The optical fibers were hooked to the fibers entering into the injection pultrusion die. Taking the pulling speed into account, each waveform acquired was correlated to a position within the die. Obtained data highlight the effect of the heat generation due to resin reaction as well as longitudinal strains related to the pulling force, the thermal expansion and the chemical shrinkage of the resin system.

  1. High-resolution metallic magnetic calorimeters for {beta}-spectroscopy on {sup 187}rhenium and position resolved X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Porst, Jan-Patrick

    2011-02-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for {beta}-endpoint spectroscopy on {sup 187}rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 {mu}s could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than {delta}E{sub FWHM}<5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  2. Accurate photopyroelectric measurements of thermal diffusivity of (semi)liquids

    NARCIS (Netherlands)

    Dadarlat, D.; Neamtu, C.; Surducan, E.; Sahraoui, A.H.; Longuemart, S.; Bicanic, D.

    2002-01-01

    The back photopyroelectric (PPE) configuration, with opaque sample and thermally thick sample and sensor, was applied in order to obtain room temperature values of the thermal diffusivity of some (semi)liquid materials. The methodology is based on a sample's thickness scan, and not on a frequency

  3. Distributed temperature sensor testing in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig, E-mail: cgerardi@anl.gov; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

    2017-02-15

    Highlights: • Distributed temperature sensors measured high-resolution liquid-sodium temperatures. • DTSs worked well up to 400 °C. • A single DTS simultaneously detected sodium level and temperature. - Abstract: Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400 °C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 μm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  4. Multimodal surveillance sensors, algorithms, and systems

    CERN Document Server

    Zhu, Zhigang

    2007-01-01

    From front-end sensors to systems and environmental issues, this practical resource guides you through the many facets of multimodal surveillance. The book examines thermal, vibration, video, and audio sensors in a broad context of civilian and military applications. This cutting-edge volume provides an in-depth treatment of data fusion algorithms that takes you to the core of multimodal surveillance, biometrics, and sentient computing. The book discusses such people and activity topics as tracking people and vehicles and identifying individuals by their speech.Systems designers benefit from d

  5. Test and implementation of position sensors on load and unload [18O]H2O control valve of the target used in 18F - production by proton irradiation

    International Nuclear Information System (INIS)

    Costa, Osvaldo L. da; Sciani, Valdir

    2009-01-01

    The radionuclide 18 F used to produce the radiopharmaceutical [ 18 F]FDG has 109.7 min of half-life, becoming your productive chain so peculiar, because since the beginning of [ 18 O]H 2 O irradiation until the PET-CT exam there is a period about six hours, and any procedure fail in the productive chain will result in a delay to the PET CT exam. The absence of the position signs from [ 18 O]H 2 O load and unload valve of the target may result in 18 F production loss and even area contamination around the target. In this paper, three types of position sensors, into cyclotron radionuclides production environment in Cyclotron Accelerator Center from IPEN-CNEN/SP were tested. The tests were an indicative to discover the fitter sensor to the [ 18 O]H 2 O load and unload valve from target used in [ 18 F]fluoride production. After finding the fitter sensor, it was implemented in 18 F- target, supplying the correct position from [ 18 O]H 2 O load and unload valve to programmable logic controller, that had the software modified, respecting in this way the valve position. By this way, it was possible to reduce the incidence of fails, increasing the reliability in [ 18 F]FDG productive chain. (author)

  6. Level gauge using neutron radiation

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1985-01-01

    Apparatus for determining the level of a solid or liquid material in a container comprises: a vertical guide within or alongside the container; a sensor positioned within the guide; means for moving the sensor along the guide; and means for monitoring the position of the sensor. The sensor comprises a source of fast neutrons, a detector for thermal neutrons, and a body of a neutron moderating material in close proximity to the detector. Thermal neutrons produced by fast neutron irradiation of the solid or liquid material, or thermal neutrons produced by irradiation of the neutron-moderating material by fast or epithermal neutrons reflected by the solid or liquid material, are detected when the sensor is positioned at or below the level of the material in the container

  7. Network compensation for missing sensors

    Science.gov (United States)

    Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.

    1991-01-01

    A network learning translation invariance algorithm to compute interpolation functions is presented. This algorithm with one fixed receptive field can construct a linear transformation compensating for gain changes, sensor position jitter, and sensor loss when there are enough remaining sensors to adequately sample the input images. However, when the images are undersampled and complete compensation is not possible, the algorithm need to be modified. For moderate sensor losses, the algorithm works if the transformation weight adjustment is restricted to the weights to output units affected by the loss.

  8. Exposing Position Uncertainty in Middleware

    DEFF Research Database (Denmark)

    Langdal, Jakob; Kjærgaard, Mikkel Baun; Toftkjær, Thomas

    2010-01-01

    Traditionally, the goal for positioning middleware is to provide developers with seamless position transparency, i.e., providing a connection between the application domain and the positioning sensors while hiding the complexity of the positioning technologies in use. A key part of the hidden com...

  9. Wireless passive radiation sensor

    Science.gov (United States)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  10. Use of the Long Duration Exposure Facility's thermal measurement system for the verification of thermal models

    Science.gov (United States)

    Berrios, William M.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) postflight thermal model predicted temperatures were matched to flight temperature data recorded by the Thermal Measurement System (THERM), LDEF experiment P0003. Flight temperatures, recorded at intervals of approximately 112 minutes for the first 390 days of LDEF's 2105 day mission were compared with predictions using the thermal mathematical model (TMM). This model was unverified prior to flight. The postflight analysis has reduced the thermal model uncertainty at the temperature sensor locations from +/- 40 F to +/- 18 F. The improved temperature predictions will be used by the LDEF's principal investigators to calculate improved flight temperatures experienced by 57 experiments located on 86 trays of the facility.

  11. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    Science.gov (United States)

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  12. Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools

    Science.gov (United States)

    Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu

    2018-03-01

    Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.

  13. Integrated fiber optic sensors for hot spot detection and temperature field reconstruction in satellites

    International Nuclear Information System (INIS)

    Rapp, S; Baier, H

    2010-01-01

    Large satellites are often equipped with more than 1000 temperature sensors during the test campaign. Hundreds of them are still used for monitoring during launch and operation in space. This means an additional mass and especially high effort in assembly, integration and verification on a system level. So the use of fiber Bragg grating temperature sensors is investigated as they offer several advantages. They are lightweight, small in size and electromagnetically immune, which fits well in space applications. Their multiplexing capability offers the possibility to build extensive sensor networks including dozens of sensors of different types, such as strain sensors, accelerometers and temperature sensors. The latter allow the detection of hot spots and the reconstruction of temperature fields via proper algorithms, which is shown in this paper. A temperature sensor transducer was developed, which can be integrated into satellite sandwich panels with negligible mechanical influence. Mechanical and thermal vacuum tests were performed to verify the space compatibility of the developed sensor system. Proper reconstruction algorithms were developed to estimate the temperature field and detect thermal hot spots on the panel surface. A representative hardware demonstrator has been built and tested, which shows the capability of using an integrated fiber Bragg grating temperature sensor network for temperature field reconstruction and hot spot detection in satellite structures

  14. On Designing Thermal-Aware Localized QoS Routing Protocol for in-vivo Sensor Nodes in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Mostafa Monowar

    2015-06-01

    Full Text Available In this paper, we address the thermal rise and Quality-of-Service (QoS provisioning issue for an intra-body Wireless Body Area Network (WBAN having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s, and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches.

  15. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2013-01-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  16. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong

    2013-11-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  17. Analysis of clinical data to determine the minimum number of sensors required for adequate skin temperature monitoring of superficial hyperthermia treatments.

    Science.gov (United States)

    Bakker, Akke; Holman, Rebecca; Rodrigues, Dario B; Dobšíček Trefná, Hana; Stauffer, Paul R; van Tienhoven, Geertjan; Rasch, Coen R N; Crezee, Hans

    2018-04-27

    Tumor response and treatment toxicity are related to minimum and maximum tissue temperatures during hyperthermia, respectively. Using a large set of clinical data, we analyzed the number of sensors required to adequately monitor skin temperature during superficial hyperthermia treatment of breast cancer patients. Hyperthermia treatments monitored with >60 stationary temperature sensors were selected from a database of patients with recurrent breast cancer treated with re-irradiation (23 × 2 Gy) and hyperthermia using single 434 MHz applicators (effective field size 351-396 cm 2 ). Reduced temperature monitoring schemes involved randomly selected subsets of stationary skin sensors, and another subset simulating continuous thermal mapping of the skin. Temperature differences (ΔT) between subsets and complete sets of sensors were evaluated in terms of overall minimum (T min ) and maximum (T max ) temperature, as well as T90 and T10. Eighty patients were included yielding a total of 400 hyperthermia sessions. Median ΔT was 50 sensors were used. Subsets of sensors result in underestimation of T max up to -2.1 °C (ΔT 95%CI), which decreased to -0.5 °C when >50 sensors were used. Thermal profiles (8-21 probes) yielded a median ΔT 50 stationary sensors or thermal profiles. Adequate coverage of the skin temperature distribution during superficial hyperthermia treatment requires the use of >50 stationary sensors per 400 cm 2 applicator. Thermal mapping is a valid alternative.

  18. Thermosensitive gas flow sensor

    International Nuclear Information System (INIS)

    Berlicki, T.; Osadnik, S.; Prociow, E.

    1997-01-01

    Results of investigations on thermal gas flow sensor have been presented. The sensor consists of three thin film resistors Si+Ta. The circuit was designed in the form of two bridges; one of them serves for measurement of the heater temperature, the second one for the measurement of temperature difference of peripheral resistors. The measurement of output voltage versus the rate of nitrogen flow at various power levels dissipated at the heater and various temperatures have been made. The measurements were carried out in three versions; (a) at constant temperature of the heater, (b) at constant power dissipated in the heater, controlled by the power of the heater, (c) at constant temperature of the heater controlled by the power dissipated in the peripheral resistors of the sensor. Due to measurement range it is advantageous to stabilize the temperature of the heater, especially by means of the power supplied to the peripheral resistors. In this case the wider measurement range can be obtained. (author)

  19. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.

    Science.gov (United States)

    Qi, Jun; Liu, Guo-Ping

    2017-11-06

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μ s. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.

  20. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jun Qi

    2017-11-01

    Full Text Available This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS. The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM. The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS signal.