WorldWideScience

Sample records for thermal plume analysis

  1. Remote sensing analysis of thermal plumes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Doak, E.L.

    1985-01-01

    The nuclear reactors of the Savannah River Plant (SRP) in Aiken, South Carolina, use cold water diverted from the Savannah River to dissipate unused thermal energy. This water is heated by heat exchangers of the reactors during the materials production process, and then returned to the natural drainage system. Thermal effluents were monitored by an airborne thermal infrared scanner during predawn overlights. Images were generated to show the surface temperature distribution of the thermal outfall plumes into the Savannah River. The thermal analysis provides information related to compliance with permit requirements of the regulatory agencies

  2. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  3. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... above a point heat source cannot be used. This is caused either by the way of generating the plume including a long intermediate region or by the environmental conditions where vertical temperature gradients are present. The flow has a larger angle of spread and the entrainment factor is greather than...... turbulent plumes from different heated bodies are investigated. The measurements have taken place in a full-scale test room where the vertical temperature gradient have been changed. The velocity and the temperature distribution in the plume are measured. Large scale plume axis wandering is taken...

  4. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter

    Axisymmeric circular buoyant jets are treated both theoretically and experimentally. From a literature study the author concludes that the state of experimental knowledge is less satisfactory. Further three different measuring methods have been established to investigate the thermal plumes from...

  5. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  6. A New GPU-Enabled MODTRAN Thermal Model for the PLUME TRACKER Volcanic Emission Analysis Toolkit

    Science.gov (United States)

    Acharya, P. K.; Berk, A.; Guiang, C.; Kennett, R.; Perkins, T.; Realmuto, V. J.

    2013-12-01

    Real-time quantification of volcanic gaseous and particulate releases is important for (1) recognizing rapid increases in SO2 gaseous emissions which may signal an impending eruption; (2) characterizing ash clouds to enable safe and efficient commercial aviation; and (3) quantifying the impact of volcanic aerosols on climate forcing. The Jet Propulsion Laboratory (JPL) has developed state-of-the-art algorithms, embedded in their analyst-driven Plume Tracker toolkit, for performing SO2, NH3, and CH4 retrievals from remotely sensed multi-spectral Thermal InfraRed spectral imagery. While Plume Tracker provides accurate results, it typically requires extensive analyst time. A major bottleneck in this processing is the relatively slow but accurate FORTRAN-based MODTRAN atmospheric and plume radiance model, developed by Spectral Sciences, Inc. (SSI). To overcome this bottleneck, SSI in collaboration with JPL, is porting these slow thermal radiance algorithms onto massively parallel, relatively inexpensive and commercially-available GPUs. This paper discusses SSI's efforts to accelerate the MODTRAN thermal emission algorithms used by Plume Tracker. Specifically, we are developing a GPU implementation of the Curtis-Godson averaging and the Voigt in-band transmittances from near line center molecular absorption, which comprise the major computational bottleneck. The transmittance calculations were decomposed into separate functions, individually implemented as GPU kernels, and tested for accuracy and performance relative to the original CPU code. Speedup factors of 14 to 30× were realized for individual processing components on an NVIDIA GeForce GTX 295 graphics card with no loss of accuracy. Due to the separate host (CPU) and device (GPU) memory spaces, a redesign of the MODTRAN architecture was required to ensure efficient data transfer between host and device, and to facilitate high parallel throughput. Currently, we are incorporating the separate GPU kernels into a

  7. Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon

    Science.gov (United States)

    Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.

    1989-01-01

    The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.

  8. Thermal turbulent convection: thermal plumes and fluctuations

    International Nuclear Information System (INIS)

    Gibert, M.

    2007-10-01

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  9. Turbulent structure of thermal plume. Velocity field

    International Nuclear Information System (INIS)

    Guillou, B.; Brahimi, M.; Doan-kim-son

    1986-01-01

    An experimental investigation and a numerical study of the dynamics of a turbulent plume rising from a strongly heated source are described. This type of flow is met in thermal effluents (air, vapor) from, e.g., cooling towers of thermal power plants. The mean and fluctuating values of the vertical component of the velocity were determined using a Laser-Doppler anemometer. The measurements allow us to distinguish three regions in the plume-a developing region near the source, an intermediate region, and a self-preserving region. The characteristics of each zone have been determined. In the self-preserving zone, especially, the turbulence level on the axis and the entrainment coefficient are almost twice of the values observed in jets. The numerical model proposed takes into account an important phenomenon, the intermittency, observed in the plume. This model, established with the self-preserving hypothesis, brings out analytical laws. These laws and the predicted velocity profile are in agreement with the experimental evolutions [fr

  10. Modelling thermal plume impacts - Kalpakkam approach

    International Nuclear Information System (INIS)

    Rao, T.S.; Anup Kumar, B.; Narasimhan, S.V.

    2002-01-01

    A good understanding of temperature patterns in the receiving waters is essential to know the heat dissipation from thermal plumes originating from coastal power plants. The seasonal temperature profiles of the Kalpakkam coast near Madras Atomic Power Station (MAPS) thermal out fall site are determined and analysed. It is observed that the seasonal current reversal in the near shore zone is one of the major mechanisms for the transport of effluents away from the point of mixing. To further refine our understanding of the mixing and dilution processes, it is necessary to numerically simulate the coastal ocean processes by parameterising the key factors concerned. In this paper, we outline the experimental approach to achieve this objective. (author)

  11. New method for calculation of integral characteristics of thermal plumes

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2008-01-01

    A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...... of the directional velocity (upward component of the mean velocity). The method is applied for determination of the characteristics of an asymmetric thermal plume generated by a sitting person. The method was validated in full-scale experiments in a climatic chamber with a thermal manikin as a simulator of a sitting...

  12. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  13. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  14. Remote sensing of thermal plumes at the Savannah River Plant in Aiken, South Carolina

    International Nuclear Information System (INIS)

    Jensen, J.R.; Christensen, E.J.

    1983-01-01

    The report describes a study undertaken to evaluate the utility of a remote sensing technique for measurement of thermal plumes in bodies of water such as the Savannah River. This relatively new technique, which involves aerial infrared sensing and computer analysis of the resulting data, has the potential for delineating thermal plume boundaries and determining compliance with regulatory limits for thermal discharges. Two sets of aerial infrared data were used in the evaluation. One set was taken from an elevation of 1220 meters at 5:44 a.m. on March 28, 1981; the other set of data was taken from an altitude of 3500 meters on April 3, 1981. The study shows that computer analysis of data taken at the lower altitude can yield useful information on thermal plumes in bodies of water. Data taken at the higher altitude did not have sufficient resolution for accurate analysis. This study shows clearly that thermal plumes in the Savannah River from SRP operations can be measured by remote sensing

  15. Thermal radiation from large bolides and impact plumes

    Science.gov (United States)

    Svetsov, V.; Shuvalov, V.

    2017-09-01

    Numerical simulations of the impacts of asteroids and comets from 20 m to 3 km in diameter have been carried out and thermal radiation fluxes on the ground and luminous efficiencies of the impacts have been calculated. It was assumed that the cosmic objects have no strength, deform, fragment, and vaporize in the atmosphere. After the impact on the ground, formation of craters and plumes was simulated taking into account internal friction of destroyed rocks and a wake formed in the atmosphere. The equations of radiative transfer, added to the equations of gas dynamics, were used in the approximation of radiative heat diffusion or, if the Rosseland optical depth of a radiating volume of gas and vapor was less than unity, in the approximation of volume emission. Radiation fluxes on the Earth's surface were calculated by integrating the equation of radiative transfer along rays passing through a luminous area. Direct thermal radiation from fireballs and impact plumes produced by asteroids and comets larger than 50 m in diameter is dangerous for people, animals, plants, economic objects. Forest fires can be ignited on the ground within a radius of roughly 1000 times the body's diameter (for diameters of the order or smaller than 1 km), 50-m-diameter bodies can ignite forest fires within a radius of up to 40 km and 3-km asteroids - within 1700 km.

  16. Thermal plume residence and temperature exposure of salmonid fishes

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Romberg, G.P.; Thommes, M.M.; Prepejchal, W.

    1976-01-01

    A nondestructive echo-location technique was used to estimate the density-distribution patterns of fish and to determine the influence of discharge design and location on fish attraction. Studies were conducted between 1972 and 1975 at the Point Beach and Zion nulcear power plants and Waukegan fossil-fuel power plant on Lake Michigan. Preliminary inspection of results indicates seasonal attraction of abundant species, such as alewife, trout, and salmon. In general, fish densities in the plume area tend to be elevated relative to unheated areas during spring and early summer. Power plant location and discharge type apparently affect the magnitude and timing of attraction to discharges. Fish in plume areas generally are observed at elevated temperatures or near temperature interfaces. Data analyses include conventional approaches to detect differences in mean densities over time and space and recent developments in time-series analysis. Predictability of fish responses will depend on the identification of temporal and spatial distribution patterns

  17. Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Azucena Durán-Colmenares

    2016-10-01

    Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.

  18. Nuclear thermal rocket plume interactions with spacecraft. Final report

    International Nuclear Information System (INIS)

    Mauk, B.H.; Gatsonis, N.A.; Buzby, J.; Yin, X.

    1997-01-01

    This is the first study that has treated the Nuclear Thermal Rocket (NTR) effluent problem in its entirety, beginning with the reactor core, through the nozzle flow, to the plume backflow. The summary of major accomplishments is given below: (1) Determined the NTR effluents that include neutral, ionized and radioactive species, under typical NTR chamber conditions. Applied an NTR chamber chemistry model that includes conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (2) Performed NTR nozzle flow simulations using a Navier-Stokes solver. We assumed frozen chemistry at the chamber conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (3) Performed plume simulations using a Direct Simulation Monte Carlo (DSMC) code with chemistry. In order to account for radioactive trace species that may be important for contamination purposes we developed a multi-weighted DSMC methodology. The domain in our simulations included large regions downstream and upstream of the exit. Inputs were taken from the Navier-Stokes solutions

  19. Thermally-Driven Mantle Plumes Reconcile Hot-spot Observations

    Science.gov (United States)

    Davies, D.; Davies, J.

    2008-12-01

    Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes (e.g. Morgan, 1972). They are widely regarded as the surface expression of upwelling mantle plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity (e.g. Ito and van Keken, 2007). This suggests that a wide-range of upwelling structures coexist within Earth's mantle, a view supported by geochemical and seismic evidence, but, thus far, not reproduced by numerical models. Here, results from a new, global, 3-D spherical, mantle convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the mantle must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven mantle plumes can explain the principal features of hot-spot volcanism on Earth.

  20. Organic contaminants in thermal plume resident brown trout

    International Nuclear Information System (INIS)

    Romberg, G.P.; Bourne, S.

    1978-01-01

    A pilot study was conducted to identify possible contaminants accumulated by thermal plume-resident fish in Lake Michigan. Brown trout were maintained in tanks receiving intake and discharge (less than or equal to 21 0 C) water from a power plant and were fed a diet of frozen alewife. Fish were sampled over a period of 127 days in order to estimate uptake rates and equilibrium levels for toxic organic and inorganic materials occurring in Lake Michigan fish and water. Experimental fish and natural samples were analyzed to determine the distribution of contaminants in various tissues and the corresponding pollutant levels in similar size brown trout from Lake Michigan. The quantitative analyses for the major organic contaminants are summarized. Without exception, the pyloric caecum of brown trout contained the highest concentration of lipids, PCB's, and chlorinated pesticides. Gill and kidney samples contained lower concentrations of contaminants than the caecum, while liver and muscle values were lowest

  1. Field studies of submerged-diffuser thermal plumes with comparisons to predictive model results

    International Nuclear Information System (INIS)

    Frigo, A.A.; Paddock, R.A.; Ditmars, J.D.

    1976-01-01

    Thermal plumes from submerged discharges of cooling water from two power plants on Lake Michigan were studied. The system for the acquisition of water temperatures and ambient conditions permitted the three-dimensional structure of the plumes to be determined. The Zion Nuclear Power Station has two submerged discharge structures separated by only 94 m. Under conditions of flow from both structures, interaction between the two plumes resulted in larger thermal fields than would be predicted by the superposition of single non-interacting plumes. Maximum temperatures in the near-field region of the plume compared favorably with mathematical model predictions. A comparison of physical-model predictions for the plume at the D. C. Cook Nuclear Plant with prototype measurements indicated good agreement in the near-field region, but differences in the far-field occurred as similitude was not preserved there

  2. The Thermal Plume above a Standing Human Body Exposed to Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter V.; Li, Yuguo

    2009-01-01

    This study compares the impact of air distribution on the thermal plume above a human body in indoor environment. Three sets of measurements are conducted in a full-scale test room with different ventilation conditions. One breathing thermal manikin standing in the room is used to simulate...... the human body. Long-time average air velocity profiles at locations closely above the manikin are taken to identify the wandering thermal plume....

  3. On the transport, segregation, and dispersion of heavy and light particles interacting with rising thermal plumes

    Science.gov (United States)

    Lappa, Marcello

    2018-03-01

    A systematic numerical analysis is carried out on the multiplicity of patterns produced by inertial particles dispersed in a fluid and localized gravitational convection developing in the form of a rising thermal plume. In particular, specific numerical examples are presented to provide inputs for an increased understanding of the underlying flow-particle interaction mechanisms and cause-and-effect relationships. A rich spectrum of convective dynamics is obtained at the relatively high value of the considered Rayleigh number (Ra = 108), which naturally allows the investigation of several intriguing effects (including, but not limited to, particle interaction with plume jet, associated vortices, shear instabilities, and symmetry breaking phenomena). An important degree of freedom is introduced in the problem by changing the particle viscous drag through proper tuning of the related Stokes number (St). Similarly, inertia and weight of solid matter are varied parametrically by performing numerical simulations for both light and heavy particles at different values of the Froude number. This framework lets us identify the average behavior of particles by revealing the mean evolution. We connect such statistics to the behavior of the temporally evolving thermal plume, giving deeper insights into the particle transport mechanisms and associated dissipative dynamics.

  4. Thermal turbulent convection: thermal plumes and fluctuations; Convection thermique turbulente: panaches et fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, M

    2007-10-15

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  5. Modelling of coastal current and thermal plume dispersion - A case study off Nagapattinam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Vethamony, P.; Suryanarayana, A.; Gouveia, A.D.

    representing the monsoons and the transition periods are selected to study the seasonal variability of simulated currents and thermal plumes. The plume showed northward spreading during March and July and southward during December. During October the spreading...

  6. Thermal plume above a simulated sitting person with different complexity of body geometry

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.

    2007-01-01

    Occupants are one of the main heat sources in rooms. They generate thermal plumes with characteristics, which depend on geometry, surface temperature and area of the human body in contact with the surrounding air as well as temperature, velocity and turbulence intensity distribution in the room....... The characteristics of the thermal plume generated by a sitting person were studied using four human body simulators with different complexity of geometry but equal surface area: a vertical cylinder, a rectangular box, a dummy, and a thermal manikin. The results show that the dummy and the thermal manikin generate...

  7. Periodic large-amplitude thermal oscillations occurring in a buoyant plume

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1983-01-01

    Reactor events such as N-1 loop operation in conjunction with a leaky check valve in the down loop can cause flow to be convected back into the reactor outlet nozzle/piping region and to be back-flushed into the reactor outlet plenum. The preceding results in a temperature difference between pipe inflow and plenum. This temperature difference causes buoyancy forces which if large enough can cause: a pipe backflow and recirculation loop; and a thermal plume in the plenum. Both phenomena are being studied because they can produce undesirable pipe, nozzle and plenum wall thermal distributions, and hence undesirable thermal stresses. This paper discusses some features of the plume

  8. Fractal analysis: A new tool in transient volcanic ash plume characterization.

    Science.gov (United States)

    Tournigand, Pierre-Yves; Peña Fernandez, Juan Jose; Taddeucci, Jacopo; Perugini, Diego; Sesterhenn, Jörn

    2017-04-01

    Transient volcanic plumes are time-dependent features generated by unstable eruptive sources. They represent a threat to human health and infrastructures, and a challenge to characterize due to their intrinsic instability. Plumes have been investigated through physical (e.g. visible, thermal, UV, radar imagery), experimental and numerical studies in order to provide new insights about their dynamics and better anticipate their behavior. It has been shown experimentally that plume dynamics is strongly dependent to source conditions and that plume shape evolution holds key to retrieve these conditions. In this study, a shape evolution analysis is performed on thermal high-speed videos of volcanic plumes from three different volcanoes Sakurajima (Japan), Stromboli (Italy) and Fuego (Guatemala), recorded with a FLIR SC655 thermal camera during several field campaigns between 2012 and 2016. To complete this dataset, three numerical gas-jet simulations at different Reynolds number (2000, 5000 and 10000) have been used in order to set reference values to the natural cases. Turbulent flow shapes are well known to feature scale-invariant structures and a high degree of complexity. For this reason we characterized the bi-dimensional shape of natural and synthetic plumes by using a fractal descriptor. Such method has been applied in other studies on experimental turbulent jets as well as on atmospheric clouds and have shown promising results. At each time-step plume contour has been manually outlined and measured using the box-counting method. This method consists in covering the image with squares of variable sizes and counting the number of squares containing the plume outline. The negative slope of the number of squares in function of their size in a log-log plot gives the fractal dimension of the plume at a given time. Preliminary results show an increase over time of the fractal dimension for natural volcanic plume as well as for the numerically simulated ones, but at

  9. Impact of boundary conditions on the development of the thermal plume above a sitting human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor

    2010-01-01

    a sitting occupant. CFD predictions were performed to explain the reason for a skewness in the thermal plume above a sitting thermal manikin with realistic body shape, size, and surface temperature distribution, measured in a climate chamber with mean radiant temperature equal to the room air temperature...

  10. Impact of personal factors and furniture arrangement on the thermal plume above a human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor

    2007-01-01

    . The results reveal that the convective heat loss from the body changes inverse proportionally to the clothing thermal insulation and affects the enthalpy excess in the plume. Chair design changes the ratio between convection and radiation heat losses from the body and has significant impact on the thermal...

  11. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  12. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations

    Directory of Open Access Journals (Sweden)

    F. Darrouzet

    2006-07-01

    Full Text Available Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles have been derived from the electron plasma frequency identified by the WHISPER sounder supplemented, in-between soundings, by relative variations of the spacecraft potential measured by the electric field instrument EFW; ion velocity is also measured onboard these satellites. The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 min; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations of three plume events and compare CLUSTER in-situ data with global images of the plasmasphere obtained by IMAGE. In particular, we study the geometry and the orientation of plasmaspheric plumes by using four-point analysis methods. We compare several aspects of plume motion as determined by different methods: (i inner and outer plume boundary velocity calculated from time delays of this boundary as observed by the wave experiment WHISPER on the four spacecraft, (ii drift velocity measured by the electron drift instrument EDI onboard CLUSTER and (iii global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  13. N Reactor thermal plume characterization during Pu-only mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Thompson, F.L.; Whelan, G.

    1983-04-01

    Pacific Northwest Laboratories (PNL) performed field and modeling studies -from March 1982 through June 1983 to characterize the thermal plume from the N Reactor heated water outfall while the N Reactor operated in the Pu-only mode. Part 1 of this report deals with the field studies conducted to characterize the N Reactor thermal plume while in the Pu-only mode of operation. It includes a description of the study area, a description of field tasks and procedures, and data collection results and discussion. Part 2 describes the computer simulation of the thermal plume under different flow conditions and the calibration of the model used. It includes a description of the computer model and the assumptions on which it is based, a presentation of the input data used in this application, and a discussion of modeling results. Because the field studies were restricted by the NPOES permit variance to the spring months when high Columbia River flows prevail the mathematical modeling of the N Reactor thermal plume while the reactor operates in the Pu-only mode is instrumental in characterizing the plume during low Columbia River flows.

  14. ALMA Thermal Observations of a Proposed Plume Source Region on Europa

    Energy Technology Data Exchange (ETDEWEB)

    Trumbo, Samantha K.; Brown, Michael E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Butler, Bryan J. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2017-10-01

    We present a daytime thermal image of Europa taken with the Atacama Large Millimeter Array. The imaged region includes the area northwest of Pwyll Crater, which is associated with a nighttime thermal excess seen by the Galileo Photopolarimeter Radiometer and with two potential plume detections. We develop a global thermal model of Europa and simulate both the daytime and nighttime thermal emission to determine if the nighttime thermal anomaly is caused by excess endogenic heat flow, as might be expected from a plume source region. We find that the nighttime and daytime brightness temperatures near Pwyll Crater cannot be matched by including excess heat flow at that location. Rather, we can successfully model both measurements by increasing the local thermal inertia of the surface.

  15. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data

    Science.gov (United States)

    Zoran, M. A.; Nicolae, D. N.; Talianu, C. L.; Ciobanu, M.; Ciuciu, J. G.

    2005-10-01

    The synergistic use of multi-temporal and multi-spectral remote sensing data offers the possibility of monitoring of environment quality in the vicinity of nuclear power plants (NPP). Advanced digital processing techniques applied to several LANDSAT, MODIS and ASTER data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air for NPP Cernavoda , Romania . Cernavoda Unit 1 power plant, using CANDU technology, having 706.5 MW power, is successfully in operation since 1996. Cernavoda Unit 2 which is currently under construction will be operational in 2007. Thermal discharge from nuclear reactor cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube river. Water temperature distributions captured in thermal IR imagery are correlated with meteorological parameters. Additional information regarding flooding events and earthquake risks is considered . During the winter, the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall, there is a larger thermal plume extending 5-6 km far along Danube Black Sea Canal, and the temperature change is about 1.0 oC. Variation of surface water temperature in the thermal plume is analyzed. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and to stratification in summer. Hydrodynamic simulation leads to better understanding of the mechanisms by which waste heat from NPP Cernavoda is dissipated in the environment.

  16. Distribution of zooplankton populations within and adjacent to a thermal plume

    International Nuclear Information System (INIS)

    Evans, M.S.

    1981-01-01

    Zooplankton distributions in the 1-m stratum differed between ambient waters and the thermal plume of the Donald C. Cook Nuclear Power Plant. Zooplankton were most abundant in the warmest waters of the plume with the region of high densities extending over an approximate area of 0.2 to 0.3 km 2 . Water temperature was not a reliable indicator of alterations in zooplankton populations. Alterations were primarily due to upward vertical displacment of deep-living zooplankton. Large horizontal variability in zooplankton densities and use of conventional sampling procedures (vertically hauled nets, widely spaced stations) prevent traditionally designed monitoring programs from detecting such alterations. Zooplankton may experience indirect mortality losses in the plume if transfer of deep-living zooplankton to the surface layers makes them more visible to visual-feeding fish predators, and turbulences in the plume reduce zooplankters' ability to detect and avoid such predators. (auth)

  17. Flaw evaluation of Nd:YAG laser welding based plume shape by infrared thermal camera

    International Nuclear Information System (INIS)

    Kim, Jae Yeol; Yoo, Young Tae; Yang, Dong Jo; Song, Kyung Seol; Ro, Kyoung Bo

    2003-01-01

    In Nd:YAG laser welding evaluation methods of welding flaw are various. But, the method due to plume shape is difficult to classification od welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of plume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, plume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipment. Here, two results are composed of measurement results of plume quantities due to plume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  18. PIV and LIF study of flow and thermal fields of twine plumes in water

    Science.gov (United States)

    Broučková, Zuzana; Trávníček, Zdeněk

    Flow and thermal fields of a pair of plane plumes in water are investigated by means of PIV and LIF experiments. The plumes are generated from thermal line sources, which are made out of electrically heated cylinders with a diameter of D = 1.21 mm. A cylinder-to-cylinder distance was 17.9 D. Either continuous or pulsating heating were used with the same heating input power. Because the cylinder-to-cylinder distance is moderately small, deflections of plumes from a vertical direction occur and the plumes are inclined together. This behavior is caused by a confined entrainment from a space between the both plumes. For a continuous heating, low frequency oscillations were identified and the natural frequency was evaluated as 0.5 Hz. Based on this finding, pulsating heating was used at the subharmonic frequency of 0.25 Hz. The maximum time-mean velocity magnitude at the continuous and pulsating heating were commensurable, approximately 0.007 m/s. On the other hand, pulsating heating achieves by 36 % higher velocity peaks. A very strong velocity oscillations were generated by pulsating heating at the distance approximately 8.3 D above the cylinders, where the velocity maxima oscillate along the time-mean value of 0.0057 m/s from -30% to +70 %. Temperature fields reasonably agree with this findings, despite a relatively fast equalization of the temperature field was concluded. The results demonstrate enhancement effects of pulsations in flow/thermal fields.

  19. Thermal particle image velocity estimation of fire plume flow

    Science.gov (United States)

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise

    2003-01-01

    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  20. Prediction of the volume flux of the thermal plume above a sitting person

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor

    2009-01-01

    The paper presents a verification of a relatively simple method of volume flux calculation applied to the asymmetrical thermal plume generated by a sitting person in a condition of an upward piston flow. The method is based on a model of a thermal plume above a point heat source in an unbounded...... space. The plume volume flux, V, can be calculated based on the following equation: V = kv*Qexp(1/3)*(zt-zv)exp(5/3). In the equation zt is the distance from the measuring plane to the top of the heat source and Qc is the convective part of the heat loss. A value of the entrainment coefficient, kv...

  1. A modified Gaussian model for the thermal plume from a ground-based heat source in a cross-wind

    International Nuclear Information System (INIS)

    Selander, W.N.; Barry, P.J.; Robertson, E.

    1990-06-01

    An array of propane burners operating at ground level in a cross-wind was used as a heat source to establish a blown-over thermal plume. A three-dimensional array of thermocouples was used to continuously measure the plume temperature downwind from the source. The resulting data were used to correlate the parameters of a modified Gaussian model for plume rise and dispersion with source strength, wind speed, and atmospheric dispersion parameters

  2. PIV and LIF study of flow and thermal fields of twine plumes in water

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2017-01-01

    Full Text Available Flow and thermal fields of a pair of plane plumes in water are investigated by means of PIV and LIF experiments. The plumes are generated from thermal line sources, which are made out of electrically heated cylinders with a diameter of D = 1.21 mm. A cylinder-to-cylinder distance was 17.9 D. Either continuous or pulsating heating were used with the same heating input power. Because the cylinder-to-cylinder distance is moderately small, deflections of plumes from a vertical direction occur and the plumes are inclined together. This behavior is caused by a confined entrainment from a space between the both plumes. For a continuous heating, low frequency oscillations were identified and the natural frequency was evaluated as 0.5 Hz. Based on this finding, pulsating heating was used at the subharmonic frequency of 0.25 Hz. The maximum time-mean velocity magnitude at the continuous and pulsating heating were commensurable, approximately 0.007 m/s. On the other hand, pulsating heating achieves by 36 % higher velocity peaks. A very strong velocity oscillations were generated by pulsating heating at the distance approximately 8.3 D above the cylinders, where the velocity maxima oscillate along the time-mean value of 0.0057 m/s from −30% to +70 %. Temperature fields reasonably agree with this findings, despite a relatively fast equalization of the temperature field was concluded. The results demonstrate enhancement effects of pulsations in flow/thermal fields.

  3. Mathematical modelling of thermal-plume interaction at Waterford Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsai, S.Y.H.

    1981-01-01

    The Waldrop plume model was used to analyze the mixing and interaction of thermal effluents in the Mississippi River resulting from heated-water discharges from the Waterford Nuclear Power Station Unit 3 and from two nearby fossil-fueled power stations. The computer program of the model was modified and expanded to accommodate the multiple intake and discharge boundary conditions at the Waterford site. Numerical results of thermal-plume temperatures for individual and combined operation of the three power stations were obtained for typical low river flow (200,000 cfs) and maximum station operating conditions. The predicted temperature distributions indicated that the surface jet discharge from Waterford Unit 3 would interact with the thermal plumes produced by the two fossil-fueled stations. The results also showed that heat recirculation between the discharge of an upstream fossil-fueled plant and the intake of Waterford Unit 3 is to be expected. However, the resulting combined temperature distributions were found to be well within the thermal standards established by the state of Louisiana

  4. Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2018-02-01

    We present 2D simulations using the Lattice Boltzmann Method (LBM) of a fluid in a rectangular box being heated from below, and cooled from above. We observe plumes, hot narrow upwellings from the base, and down-going cold chutes from the top. We have varied both the Rayleigh numbers and the Prandtl numbers respectively from Ra = 1000 to Ra =1010 , and Pr = 1 through Pr = 5 ×104 , leading to Rayleigh-Bénard convection cells at low Rayleigh numbers through to vigorous convection and unstable plumes with pronounced vortices and eddies at high Rayleigh numbers. We conduct simulations with high Prandtl numbers up to Pr = 50, 000 to simulate in the inertial regime. We find for cases when Pr ⩾ 100 that we obtain a series of narrow plumes of upwelling fluid with mushroom heads and chutes of downwelling fluid. We also present simulations at a Prandtl number of 0.7 for Rayleigh numbers varying from Ra =104 through Ra =107.5 . We demonstrate that the Nusselt number follows power law scaling of form Nu ∼Raγ where γ = 0.279 ± 0.002 , which is consistent with published results of γ = 0.281 in the literature. These results show that the LBM is capable of reproducing results obtained with classical macroscopic methods such as spectral methods, and demonstrate the great potential of the LBM for studying thermal convection and plume dynamics relevant to geodynamics.

  5. Impact of breathing on the thermal plume above a human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2011-01-01

    The characteristics of the thermal plume above a human body should be well-defined in order to properly design the indoor environment and allow correct simulation of the indoor conditions by CFD or experimentally. The objective of the presented study was to investigate the influence of breathing....... A thermal manikin with female body shape equipped with an artificial lung was used to simulate the dry heat loss and breathing process of a sitting occupant. Three cases were examined: non-breathing, exhalation through nose, and exhalation through mouth. Measurements of the air temperature and speed...

  6. Simultaneous fingering, double-diffusive convection, and thermal plumes derived from autocatalytic exothermic reaction fronts

    Science.gov (United States)

    Eskew, Matthew W.; Harrison, Jason; Simoyi, Reuben H.

    2016-11-01

    Oxidation reactions of thiourea by chlorite in a Hele-Shaw cell are excitable, autocatalytic, exothermic, and generate a lateral instability upon being triggered by the autocatalyst. Reagent concentrations used to develop convective instabilities delivered a temperature jump at the wave front of 2.1 K. The reaction zone was 2 mm and due to normal cooling after the wave front, this generated a spike rather than the standard well-studied front propagation. The reaction front has solutal and thermal contributions to density changes that act in opposite directions due to the existence of a positive isothermal density change in the reaction. The competition between these effects generates thermal plumes. The fascinating feature of this system is the coexistence of plumes and fingering in the same solution which alternate in frequency as the front propagates, generating hot and cold spots within the Hele-Shaw cell, and subsequently spatiotemporal inhomogeneities. The small ΔT at the wave front generated thermocapillary convection which competed effectively with thermogravitational forces at low Eötvös Numbers. A simplified reaction-diffusion-convection model was derived for the system. Plume formation is heavily dependent on boundary effects from the cell dimensions. This work was supported by Grant No. CHE-1056366 from the NSF and a Research Professor Grant from the University of KwaZulu-Natal.

  7. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  8. Thermal Properties and Thermal Analysis:

    Science.gov (United States)

    Kasap, Safa; Tonchev, Dan

    The chapter provides a summary of the fundamental concepts that are needed to understand the heat capacity C P, thermal conductivity κ, and thermal expansion coefficient α L of materials. The C P, κ, and α of various classes of materials, namely, semiconductors, polymers, and glasses, are reviewed, and various typical characteristics are summarized. A key concept in crystalline solids is the Debye theory of the heat capacity, which has been widely used for many decades for calculating the C P of crystals. The thermal properties are interrelated through Grüneisen's theorem. Various useful empirical rules for calculating C P and κ have been used, some of which are summarized. Conventional differential scanning calorimetry (DSC) is a powerful and convenient thermal analysis technique that allows various important physical and chemical transformations, such as the glass transition, crystallization, oxidation, melting etc. to be studied. DSC can also be used to obtain information on the kinetics of the transformations, and some of these thermal analysis techniques are summarized. Temperature-modulated DSC, TMDSC, is a relatively recent innovation in which the sample temperature is ramped slowly and, at the same time, sinusoidally modulated. TMDSC has a number of distinct advantages compared with the conventional DSC since it measures the complex heat capacity. For example, the glass-transition temperature T g measured by TMDSC has almost no dependence on the thermal history, and corresponds to an almost step life change in C P. The new Tzero DSC has an additional thermocouple to calibrate better for thermal lags inherent in the DSC measurement, and allows more accurate thermal analysis.

  9. Background Radiance Estimation for Gas Plume Quantification for Airborne Hyperspectral Thermal Imaging

    Directory of Open Access Journals (Sweden)

    Ramzi Idoughi

    2016-01-01

    Full Text Available Hyperspectral imaging in the long-wave infrared (LWIR is a mean that is proving its worth in the characterization of gaseous effluent. Indeed the spectral and spatial resolution of acquisition instruments is steadily decreasing, making the gases characterization increasingly easy in the LWIR domain. The majority of literature algorithms exploit the plume contribution to the radiance corresponding to the difference of radiance between the plume-present and plume-absent pixels. Nevertheless, the off-plume radiance is unobservable using a single image. In this paper, we propose a new method to retrieve trace gas concentration from airborne infrared hyperspectral data. More particularly the outlined method improves the existing background radiance estimation approach to deal with heterogeneous scenes corresponding to industrial scenes. It consists in performing a classification of the scene and then applying a principal components analysis based method to estimate the background radiance on each cluster stemming from the classification. In order to determine the contribution of the classification to the background radiance estimation, we compared the two approaches on synthetic data and Telops Fourier Transform Spectrometer (FTS Imaging Hyper-Cam LW airborne acquisition above ethylene release. We finally show ethylene retrieved concentration map and estimate flow rate of the ethylene release.

  10. 3D simulation of the thermal and chemical plumes using open source software

    International Nuclear Information System (INIS)

    Saenz Temino, J. L.; Lerones Martin, J.; Gonzalez Delgado, J.

    2013-01-01

    The interaction of thermal and chemical plumes in the region of the Irish Sea near the site has been simulated using a finite element model representative of the local hydrodynamic regime, concluding how the method of selected cooling, open cycle, is physically and environmentally feasible. Furthermore, tunnel lengths required for each scenario under discussion have been preliminarily defined, varying in a range from 1800 to 2300 meters for a unit (1 tunnel), 4400-6300 meters of two units (2 tunnels) and 8000 meters to three units (2 tunnels), depending on the chosen technology.

  11. Determination of the integral characteristics of an asymmetrical thermal plume from air speed/velocity and temperature measurements

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2010-01-01

    , generated by a thermal manikin resembling the complex body shape and heat generated by a sitting person, were measured. Using the measured data, the integral characteristics of the generated asymmetrical thermal plume were calculated by the ADI-method, and the uncertainty in determination...

  12. Impact of facially applied air movement on the development of the thermal plume above a sitting occupant

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.

    2011-01-01

    implemented in practice. In this study the impact of locally applied airflow on the thermal plume generated by a sitting human body was investigated. The experiment was performed in a climate chamber with upward piston flow. A thermal manikin was sitting on a computer chair behind a table. The air speed...

  13. Heat transfer along the route to chaos of a swaying thermal plume

    International Nuclear Information System (INIS)

    Angeli, D; Corticelli, M A; Fichera, A; Pagano, A

    2015-01-01

    Detailed analyses have been recently reported on the low order dynamics of a thermal plume arising from a horizontal cylindrical heat source concentric to an air-filled isothermally cooled square enclosure, together with those of the related flow structures, in the limit of the 2D approximation. In particular, within the range of 0 < Ra < 3Ra cr , with Ra cr corresponding to the loss of stability of the stationary buoyant plume, the entire evolution from a periodic limit cycle (P 1 ) to the birth of chaos through a period-doubling cascade has been fully explored. With this respect, special attention has been given to the window of quasiperiodic dynamics onto a T 2 -torus that is observed to separate the monoperiodic dynamics from the biperiodic dynamics onto a P 1 and a P 2 -limit cycle, respectively. The results of these analyses hint at the bimodal nature of the overall dynamics, in general, and of the subharmonic cascade, in particular, which are still under investigation. Although relevant on a dynamical perspective, a with a main reflection on the laminar-turbulent transition, the observed oscillations appear to be characterised by comparable amplitudes and to be determined by similar evolutions of the flow pattern evolutions, so that their role on the overall heat transfer rate is expected to be marginal. Within this frame, the present study aims at reporting the influence played by the observed dynamics of the thermal plume and of the flow structures on the global heat transfer rate. In particular, the aim is the assessment of the correlation between the Rayleigh number and the average Nusselt number on the cylinder surface, as well as the effect on the latter of the observed series of bifurcations. (paper)

  14. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring

    Science.gov (United States)

    Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose

    2018-02-01

    Methane (CH4) is the main constituent of natural gas. Fugitive CH4 emissions partially stem from geological reservoirs (seepages) and leaks in pipelines and petroleum production plants. Airborne hyperspectral sensors with enough spectral and spatial resolution and high signal-to-noise ratio can potentially detect these emissions. Here, a field experiment performed with controlled release CH4 sources was conducted in the Rocky Mountain Oilfield Testing Center (RMOTC), Casper, WY (USA). These sources were configured to deliver diverse emission types (surface and subsurface) and rates (20-1450 scf/hr), simulating natural (seepages) and anthropogenic (pipeline) CH4 leaks. The Aerospace Corporation's SEBASS (Spatially-Enhanced Broadband Array Spectrograph System) sensor acquired hyperspectral thermal infrared data over the experimental site with 128 bands spanning the 7.6 μm-13.5 μm range. The data was acquired with a spatial resolution of 0.5 m at 1500 ft and 0.84 m at 2500 ft above ground level. Radiance images were pre-processed with an adaptation of the In-Scene Atmospheric Compensation algorithm and converted to emissivity through the Emissivity Normalization algorithm. The data was processed with a Matched Filter. Results allowed the separation between endmembers related to the spectral signature of CH4 from the background. Pixels containing CH4 signatures (absorption bands at 7.69 μm and 7.88 μm) were highlighted and the gas plumes mapped with high definition in the imagery. The dispersion of the mapped plumes is consistent with the wind direction measured independently during the experiment. Variations in the dimension of mapped gas plumes were proportional to the emission rate of each CH4 source. Spectral analysis of the signatures within the plumes shows that CH4 spectral absorption features are sharper and deeper in pixels located near the emitting source, revealing regions with higher gas density and assisting in locating CH4 sources in the field

  15. Experimental Study Abour How the Thermal Plume Affects the Air Quality a Person Breathes

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Ruiz de Adana, Manuel

    2011-01-01

    of this research is to increase the knowledge of how the thermal plume generated by a person affects the PME and therefore the concentration of contaminants in the inhalation area. An experimental study in a displacement ventilation room was carried out. Experiments were developed in a full scale test chamber 4.......10 m (length), 3.2 m (width), 2.7 m (height). The incoming air is distributed through a wall-mounted displacement diffuser. A breathing thermal manikin exhaling through the mouth and inhaling through the nose was used. A tracer gas, N2O, was used to simulate the gaseous substances, which might...... be considered as biological contaminants, exhaled by the manikin. The manikin was operated in three different heat fluxes with a value of: 0W, 94 W and 120 W. During the experiments six concentration probes were situated in the room. Three concentration tubes were fixed on the surface of the manikin at three...

  16. Numerical study of the structure of thermal plume in a vertical channel: Effect of the height of canal

    Directory of Open Access Journals (Sweden)

    Jouini Belgacem

    2016-01-01

    Full Text Available In this paper we propose to study numerically, by means of a software Named Calculation FDS, a thermal plume evolve from a source at the entrance to of a vertical channel. In the literature, there are researchers who interested in the interaction of plume with his the confinement medium. These studies are based on the determination of the global structure of plume confined. They found that this plume consists of three distinct zones. A first zone near source (instability zone followed by a second zone, such as the development of plume, and a third zone which is the zone of turbulence, Comparing the overall structure of the plume confined to that of the free plume, we can identify the presence of a third zone (zone of instability. The aim is firstly to determine the height of the instability zone located above of source, and secondly, to make a spectral study frequencies exhaust. Thus, effects of the geometrical parameters on frequencies of these escapements and the height an instability zone. The final aim is to establish correlations between the dimensionless numbers of Strouhal and Grashof.

  17. The thermal interaction of a buoyant plume from a calandria tube with an oblique jet

    Energy Technology Data Exchange (ETDEWEB)

    Rossouw, D.J.; Atkins, M.D.; Beharie, K. [Nuclear Science Division, School of Mechanical & Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Kim, T., E-mail: tong.kim@wits.ac.za [Nuclear Science Division, School of Mechanical & Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Rhee, B.W.; Kim, H.T. [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejun (Korea, Republic of)

    2016-12-15

    Highlights: • A crucial role of relative orientation between mixed convection modes is observed. • The extent of thermal interaction strongly depends on the relative orientation. • Coolant flow is substantially diffused by a buoyant plume if counter-acting. • Slightly oblique coolant flow to the gravitational axis provides the best cooling. - Abstract: Severe reactor core damage may occur from fuel channel failure as a consequence of excessive heat emitted from calandria tubes (CTs) in a pressurised heavy water (D{sub 2}O) reactor (CANDU). The heating of the CTs is caused by creep deformation of the pressure tubes (PTs), which may be ballooning or sagging depending on the internal pressure of the PTs. The deformation of the pressure tube is due to overheating as a result of a loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) failure. To prevent the exacerbation of the LOCA, circulating D{sub 2}O in the moderator tank may be utilized by forming a secondary jet that externally cools the individual CTs. The buoyant plume develops around the CTs and interacts with the secondary jet at a certain oblique angle with respect to the gravitational axis, depending on the spatial location of the hot calandria tubes (or the hot reactor core region). This study reports on how the local and overall heat transfer characteristics on a calandria tube where the buoyant plume develops, are altered by the obliqueness of the external secondary jet (from a co-current jet to a counter-current jet) in a simplified configuration at the jet Reynolds number of Re{sub j} = 1500 for the Archimedes number of Ar{sub D} = 0.11 and Rayleigh number of Ra{sub D} = 1.6 × 10{sup 6} (modified Rayleigh number of 3.0 × 10{sup 7}).

  18. Observation of thermal plumes from submerged discharges in the Great Lakes and their implications for modeling and monitoring

    International Nuclear Information System (INIS)

    Ditmars, J.D.; Paddock, R.A.; Frigo, A.A.

    1977-01-01

    Measurements of thermal plumes from submerged discharges of power plant cooling waters into the Great Lakes provide the opportunity to view the mixing processes at prototype scales and to observe the effects of the ambient environment on those processes. Examples of thermal plume behavior in Great Lakes' ambient environments are presented to demonstrate the importance of measurements of the detailed structure of the ambient environment, as well as of the plumes, for interpretation of prototype data for modeling and monitoring purposes. The examples are drawn from studies by Argonne National Laboratory (ANL) at the Zion Nuclear PowerStation and the D. C. Cook Nuclear Plant on Lake Michigan and at the J. A. FitzPatrick Nuclear Power Plant on Lake Ontario. These studies included measurements of water temperatures from a moving boat which provide a quasi-synoptic view of the three-dimensional temperature structure of the thermal plume and ambient water environment. Additional measurements of water velocities, which are made with continuously recording, moored, and profiling current meters, and of wind provide data on the detailed structure of the ambient environment. The detailed structure of the ambient environment, in terms of current, current shear, variable winds, and temperature stratification, often influence greatly thermal plume behavior. Although predictive model techniques and monitoring objectives often ignore the detailed aspects of the ambient environment, useful interpretation of prototype data for model evaluation or calibration and monitoring purposes requires detailed measurement of the ambient environment. Examination of prototype thermal plume data indicates that, in several instances, attention to only the gross characteristics of the ambient environment can be misleading and could result in significant errors in model calibration and extrapolation of data bases gathered in monitoring observations

  19. On Fluid and Thermal Dynamics in a Heterogeneous CO2 Plume Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Tianfu Xu

    2017-01-01

    Full Text Available CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve both the energy exploitation and CO2 geological sequestration. The migration pathway and the process of fluid flow within the reservoirs affect significantly a CO2 plume geothermal (CPG system. In this study, we built three-dimensional wellbore-reservoir coupled models using geological and geothermal conditions of Qingshankou Formation in Songliao Basin, China. The performance of the CPG system is evaluated in terms of the temperature, CO2 plume distribution, flow rate of production fluid, heat extraction rate, and storage of CO2. For obtaining a deeper understanding of CO2-geothermal system under realistic conditions, heterogeneity of reservoir’s hydrological properties (in terms of permeability and porosity is taken into account. Due to the fortissimo mobility of CO2, as long as a highly permeable zone exists between the two wells, it is more likely to flow through the highly permeable zone to reach the production well, even though the flow path is longer. The preferential flow shortens circulation time and reduces heat-exchange area, probably leading to early thermal breakthrough, which makes the production fluid temperature decrease rapidly. The analyses of flow dynamics of CO2-water fluid and heat may be useful for future design of a CO2-based geothermal development system.

  20. Sensitivity analysis of alkaline plume modelling: influence of mineralogy

    International Nuclear Information System (INIS)

    Gaboreau, S.; Claret, F.; Marty, N.; Burnol, A.; Tournassat, C.; Gaucher, E.C.; Munier, I.; Michau, N.; Cochepin, B.

    2010-01-01

    Document available in extended abstract form only. In the context of a disposal facility for radioactive waste in clayey geological formation, an important modelling effort has been carried out in order to predict the time evolution of interacting cement based (concrete or cement) and clay (argillites and bentonite) materials. The high number of modelling input parameters associated with non negligible uncertainties makes often difficult the interpretation of modelling results. As a consequence, it is necessary to carry out sensitivity analysis on main modelling parameters. In a recent study, Marty et al. (2009) could demonstrate that numerical mesh refinement and consideration of dissolution/precipitation kinetics have a marked effect on (i) the time necessary to numerically clog the initial porosity and (ii) on the final mineral assemblage at the interface. On the contrary, these input parameters have little effect on the extension of the alkaline pH plume. In the present study, we propose to investigate the effects of the considered initial mineralogy on the principal simulation outputs: (1) the extension of the high pH plume, (2) the time to clog the porosity and (3) the alteration front in the clay barrier (extension and nature of mineralogy changes). This was done through sensitivity analysis on both concrete composition and clay mineralogical assemblies since in most published studies, authors considered either only one composition per materials or simplified mineralogy in order to facilitate or to reduce their calculation times. 1D Cartesian reactive transport models were run in order to point out the importance of (1) the crystallinity of concrete phases, (2) the type of clayey materials and (3) the choice of secondary phases that are allowed to precipitate during calculations. Two concrete materials with either nanocrystalline or crystalline phases were simulated in contact with two clayey materials (smectite MX80 or Callovo- Oxfordian argillites). Both

  1. Analysis of plume rise data from five TVA steam plants

    International Nuclear Information System (INIS)

    Anfossi, D.

    1985-01-01

    A large data set containing the measurements of the rise of plumes emitted by five TVA steam plants was examined. Particular attention was paid to the problem of the merging of the plumes emitted by adjacent stacks and to the role played by the wind angle in this respect. It was demonstrated that there is a noticeable rise enhancement of merged plumes with respect to single emissions, both in neutral and in stable conditions, as far as transversal and parallel plumes are concerned. For plumes advected normal to the row of the stacks the enhancement is noticeable only in the final stage of rise. The existence of a critical angle for merging suggested enhancement is noticeable only in the final stage of rise. The existence of a critical angle for merging suggested by Briggs was examined. Finally, a formula to describe plume rise in the transitional and in the final phase, both in neutral and stable conditions, is proposed; it was obtained by interpolation of two familiar Brigg's equations

  2. The effects of 1 kW class arcjet thruster plumes on spacecraft charging and spacecraft thermal control materials

    Science.gov (United States)

    Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.

    1992-01-01

    Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.

  3. Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils

    Science.gov (United States)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2012-02-01

    SummaryWater repellency has a significant impact on water flow patterns in the soil profile. Transient 2D flow in wettable and natural water-repellent soils was monitored in a transparent flow chamber. The substantial differences in plume shape and spatial water content distribution during the wetting and subsequent redistribution stages were related to the variation of contact angle while in contact with water. The observed plumes shape, internal water content distribution in general and the saturation overshoot behind the wetting front in particular in the repellent soils were associated with unstable flow. Moment analysis was applied to characterize the measured plumes during the wetting and subsequent redistribution. The center of mass and spatial variances determined for the measured evolving plumes were fitted by a model that accounts for capillary and gravitational driving forces in a medium of temporally varying wettability. Ellipses defined around the stable and unstable plumes' centers of mass and whose semi-axes represented a particular number of spatial variances were used to characterize plume shape and internal moisture distribution. A single probability curve was able to characterize the corresponding fractions of the total added water in the different ellipses for all measured plumes, which testify the competence and advantage of the moment analysis method.

  4. Field studies of the thermal plume from the D. C. Cook submerged discharge with comparisons to hydraulic-model results

    International Nuclear Information System (INIS)

    Frigo, A.A.; Paddock, R.A.; McCown, D.L.

    1975-06-01

    The Donald C. Cook Nuclear Plant at Bridgman, Michigan, uses submerged-diffuser discharges as a means of disposing waste heat into Lake Michigan. Preliminary results of temperature surveys of the thermal plume at the D. C. Cook Plant are presented. Indications are that the spatial extent of the plume at the surface is much smaller than previous results for surface shoreline discharges, particularly in the near and intermediate portions of the plume. Comparisons of limited prototype data with hydraulic (tank)-model predictions indicate that the model predictions for centerline temperature decay at the surface are too high for the initial 200 m from the discharge, but are generally correct beyond this point to the limits of the model. In addition, the hydraulic-model results underestimate the areal extent of the near and intermediate portions of the plume at the surface. Because this is the first report of a new field program, several inadequacies in the field-measurement techniques are noted and discussed. New techniques that have been developed to remedy these deficiencies, and which will be implemented for future field work, are also described. (auth)

  5. Impact of Thermal Plumes Generated by Occupant Simulators with Different Complexity of Body Geometry on Airflow Pattern in Rooms

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2008-01-01

    The impact of thermal plumes generated by human body simulators with different geometry on the airflow pattern in a full scale room with displacement ventilation (supply air temperature 21.6°C, total flow rate 80 L/s) was studied when two seated occupants were simulated first by two thermal...... manikins resembling accurately human body shape and then by two heated cylinders. The manikins and the cylinders had the same surface area of 1.63 m2 and the same heat generation of 73 W. CO2 supplied from the top of the heat sources was used for simulating bio-effluents. CO2 concentration was measured...

  6. Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation

    International Nuclear Information System (INIS)

    Clyne, John; Mininni, Pablo; Norton, Alan; Rast, Mark

    2007-01-01

    The ever increasing processing capabilities of the supercomputers available to computational scientists today, combined with the need for higher and higher resolution computational grids, has resulted in deluges of simulation data. Yet the computational resources and tools required to make sense of these vast numerical outputs through subsequent analysis are often far from adequate, making such analysis of the data a painstaking, if not a hopeless, task. In this paper, we describe a new tool for the scientific investigation of massive computational datasets. This tool (VAPOR) employs data reduction, advanced visualization, and quantitative analysis operations to permit the interactive exploration of vast datasets using only a desktop PC equipped with a commodity graphics card. We describe VAPORs use in the study of two problems. The first, motivated by stellar envelope convection, investigates the hydrodynamic stability of compressible thermal starting plumes as they descend through a stratified layer of increasing density with depth. The second looks at current sheet formation in an incompressible helical magnetohydrodynamic flow to understand the early spontaneous development of quasi two-dimensional (2D) structures embedded within the 3D solution. Both of the problems were studied at sufficiently high spatial resolution, a grid of 504 2 by 2048 points for the first and 1536 3 points for the second, to overwhelm the interactive capabilities of typically available analysis resources

  7. Three-Dimensional Numerical Analysis of LOX/Kerosene Engine Exhaust Plume Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Hong-hua Cai

    2017-01-01

    Full Text Available Aiming at calculating and studying the flow field characteristics of engine exhaust plume and comparative analyzing the effects of different chemical reaction mechanisms on the engine exhaust plume flow field characteristics, a method considering fully the combustion state influence is put forward, which is applied to exhaust plume flow field calculation of multinozzle engine. On this basis, a three-dimensional numerical analysis of the effects of different chemical reaction mechanisms on LOX/kerosene engine exhaust plume flow field characteristics was carried out. It is found that multistep chemical reaction can accurately describe the combustion process in the LOX/kerosene engine, the average chamber pressure from the calculation is 4.63% greater than that of the test, and the average chamber temperature from the calculation is 3.34% greater than that from the thermodynamic calculation. The exhaust plumes of single nozzle and double nozzle calculated using the global chemical reaction are longer than those using the multistep chemical reaction; the highest temperature and the highest velocity on the plume axis calculated using the former are greater than that using the latter. The important influence of chemical reaction mechanism must be considered in the study of the fixing structure of double nozzle engine on the rocket body.

  8. Thermal History of CBb Chondrules and Cooling Rate Distributions of Ejecta Plumes

    Science.gov (United States)

    Hewins, R. H.; Condie, C.; Morris, M.; Richardson, M. L. A.; Ouellette, N.; Metcalf, M.

    2018-03-01

    It has been proposed that some meteorites, CB and CH chondrites, contain material formed as a result of a protoplanetary collision during accretion. Their melt droplets (chondrules) and FeNi metal are proposed to have formed by evaporation and condensation in the resulting impact plume. We observe that the skeletal olivine (SO) chondrules in CBb chondrites have a blebby texture and an enrichment in refractory elements not found in normal chondrules. Because the texture requires complete melting, their maximum liquidus temperature of 1928 K represents a minimum temperature for the putative plume. Dynamic crystallization experiments show that the SO texture can be created only by brief reheating episodes during crystallization, giving a partial dissolution of olivine. The ejecta plume formed in a smoothed particle hydrodynamics simulation served as the basis for 3D modeling with the adaptive mesh refinement code FLASH4.3. Tracer particles that move with the fluid cells are used to measure the in situ cooling rates. Their cooling rates are ∼10,000 K hr‑1 briefly at peak temperature and, in the densest regions of the plume, ∼100 K hr‑1 for 1400–1600 K. A small fraction of cells is seen to be heating at any one time, with heating spikes explained by the compression of parcels of gas in a heterogeneous patchy plume. These temperature fluctuations are comparable to those required in crystallization experiments. For the first time, we find an agreement between experiments and models that supports the plume model specifically for the formation of CBb chondrules.

  9. Plume dispersion from the MVP field experiment. Analysis of surface concentration and its fluctuations

    Science.gov (United States)

    Ma, Yimin; Boybeyi, Zafer; Hanna, Steven; Chayantrakom, Kittisak

    Surface concentration and its fluctuations from plume dispersion under unstable conditions in a coastal environment are investigated using the model validation program field experimental data. The goal of this study is to better understand plume dispersion under such conditions. Procedures are described to derive the plume surface concentration from moving vehicle measurements. Convective boundary layer scalings are applied and cumulative density functions (CDF) are studied. The results indicate that the relative concentration fluctuation intensity ( σc/C(y)) decreases with the normalized downwind distance ( X) and that it is relatively small at the plume central line and largely increased at the plume edges, consistent with other field and laboratory results. The relation between σc/C(y) at the plume centerline ( σc/C) and X for elevated sources can be described by σc/C=a+b/X. The crosswind plume spread ( σy) is found to satisfy Deardorff and Willis's (J. Appl. Meteorol., 14 (1975) 1451) form of σy/h=a1X/(1+a2X) scaled with convective layer depth h. For elevated sources, the normalized crosswind integrated concentration ( Cy) is found to satisfy a relation of Cy=16X, with Yaglom's (Izr. Atmos. Oceanic Phys., 8 (1972) 333) scaling rule on the free convective layer being applied. Empirical CDFs based on the gamma and the clipped probability density functions show agreements with the experimental CDFs, with the former being better than the latter when (c-C)/σc>0.5. A new clipped-gamma CDF form is proposed based on the analysis of the present data, showing a better agreement. We suggest that a parameter u0*(12-0.5h/L), with combined efforts of surface friction velocity ( u0*), Monin-Obukhov stability length ( L) and unstable boundary layer height ( h), replace the convective velocity scale ( w*) under weak convective conditions in a coastal environment.

  10. Thermal plume behaviour and dispersion in the vicinity of Madras Atomic Power Station (east coast of India)

    International Nuclear Information System (INIS)

    Anup Kumar, B.; Rao, T.S.; Narasimhan, S.V.

    2002-01-01

    Thermal ecology studies were carried out in the vicinity of Madras Atomic Power Station (MAPS). During the course of the investigations (monthly cruises) both vertical and spatial distribution of temperature in the vicinity of the power plant out fall and mixing zone were measured using temperature probes (Accuracy ± 0.05 deg C.) The boat cruises covered an sea of 2.5 km 2 and in this region the sea surface temperature ranged from 28 to 34 deg C. At a depth of 2 m and below the temperature reaches ambient sea temperature levels (27-28 deg C). During the majority of cruises carried out, the sea current was towards north; hence most the sampling points were fixed towards north of the MAPS. The area occupied by the thermal plume was 1.3 sq. km. The sea surface temperature was found to be dependent on the seasonal current variations. (author)

  11. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

    Science.gov (United States)

    Stolee, Jessica A; Vertes, Akos

    2013-04-02

    Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.

  12. Comparison of pulsed Nd : YAG laser welding qualitative features with plasma plume thermal characteristics

    International Nuclear Information System (INIS)

    Sabbaghzadeh, J; Dadras, S; Torkamany, M J

    2007-01-01

    A spectroscopic approach was used to study the effects of different operating parameters on st14 sheet metal welding with a 400 W maximum average power pulsed Nd : YAG laser. The parameters included pulse duration and peak power and type and flow rate of the assist gas and welding speed. Weld quality, including penetration depth and melt width, has been compared with the FeI electron temperature obtained from spectroscopic observations of a plasma plume. A correlation between the standard deviation of the electron temperature and the quality of welding has also been found

  13. Autocorrelation analysis of plasma plume light emissions in deep penetration laser welding of steel

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2017-01-01

    Roč. 29, č. 1 (2017), s. 1-10, č. článku 012009. ISSN 1042-346X R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : laser welding * plasma plume * light emissions * autocorrelation analysis * weld depth Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.492, year: 2016

  14. Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, Patrick G.; Posse, Christian; Hylden, Jeff L.; Anderson, Kevin K.

    2007-06-13

    This paper presents a nonlinear Bayesian regression algorithm for the purpose of detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remotesensing spectra, and the terrestrial (or atmospheric) parameters that we desire to estimate, is typically littered with many unknown "nuisance" parameters (parameters that we are not interested in estimating, but also appear in the model). Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on realistic simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. This shows that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty.

  15. Propagation of uncertainty and sensitivity analysis in an integral oil-gas plume model

    KAUST Repository

    Wang, Shitao

    2016-05-27

    Polynomial Chaos expansions are used to analyze uncertainties in an integral oil-gas plume model simulating the Deepwater Horizon oil spill. The study focuses on six uncertain input parameters—two entrainment parameters, the gas to oil ratio, two parameters associated with the droplet-size distribution, and the flow rate—that impact the model\\'s estimates of the plume\\'s trap and peel heights, and of its various gas fluxes. The ranges of the uncertain inputs were determined by experimental data. Ensemble calculations were performed to construct polynomial chaos-based surrogates that describe the variations in the outputs due to variations in the uncertain inputs. The surrogates were then used to estimate reliably the statistics of the model outputs, and to perform an analysis of variance. Two experiments were performed to study the impacts of high and low flow rate uncertainties. The analysis shows that in the former case the flow rate is the largest contributor to output uncertainties, whereas in the latter case, with the uncertainty range constrained by aposteriori analyses, the flow rate\\'s contribution becomes negligible. The trap and peel heights uncertainties are then mainly due to uncertainties in the 95% percentile of the droplet size and in the entrainment parameters.

  16. Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini

    Science.gov (United States)

    Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.

  17. Impact of personal factors and furniture arrangement on the thermal plume above a sitting occupant

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2012-01-01

    heat loss increases with thermal insulation of a chair, and may be important in detailed CFD predictions. A wig on the manikin head appears to be important because a bald head decreases volume flux by 15%. Positioning the table tightly in front of the body affects air temperature and velocity...

  18. Analysis of plume backflow around a nozzle lip in a nuclear rocket

    International Nuclear Information System (INIS)

    Chung, C.H.; Kim, S.C.; Stubbs, R.M.; De Witt, K.J.

    1993-06-01

    The structure of the flow around a nuclear thermal rocket nozzle lip has been investigated using the direct simulation Monte Carlo method. Special attention has been paid to the behavior of a small amount of harmful particles that may be present in the rocket exhaust gas. The harmful fission product particles are modeled by four inert gases whose molecular weights are in a range of 4 131. Atomic hydrogen, which exists in the flow due to the extremely high nuclear fuel temperature in the reactor, is also included. It is shown that the plume backflow is primarily determined by the thin subsonic fluid layer adjacent to the surface of the nozzle lip, and that the inflow boundary in the plume region has negligible effect on the backflow. It is also shown that a relatively large amount of the lighter species is scattered into the backflow region while the amount of the heavier species becomes negligible in this region due to extreme separation between the species. Results indicate that the backscattered molecules are very energetic and are fast-moving along the surface in the backflow region near the nozzle lip. 22 refs

  19. Hydrogeologic analysis of remedial alternatives for the solar ponds plume, RFETS

    International Nuclear Information System (INIS)

    McLane, C.F. III; Whidden, J.A.; Hopkins, J.K.

    1998-01-01

    The focus of this paper is to develop a conceptual model and a hydrogeologic analysis plan for remedial alternatives being considered for the remediation of a ground water contaminant plume consisting of chiefly nitrate and uranium. The initial step in this process was to determine the adequacy of the existing data from the vast database of site information. Upon concluding that the existing database was sufficient to allow for the development of a conceptual model and then constructing the conceptual model, a hydrogeologic analysis plan was developed to evaluate several alternatives for plume remediation. The plan will be implemented using a combination of analytical and simple numerical ground water flow and contaminant transport models. This allows each portion of the study to be addressed using the appropriate tool, without having to develop a large three-dimensional numerical ground water flow and transport model, thereby reducing project costs. The analysis plan will consist of a preliminary phase of screening analyses for each of the remedial alternative scenarios, and a second phase of more comprehensive and in-depth analyses on a selected subset of remedial alternative scenarios. One of the alternatives which will be analyzed is phytoremediation (remediation of soil and ground water via uptake of chemicals by plants) because of the potential for relatively low capital and operation and maintenance costs, passive nature, and potential to provide long-term protection of the surface water. The results of these hydrogeological analyses will be factored into the selection of the preferred remedial alternative, or combination of alternatives, for the contaminant plume

  20. Complete analysis of steady and transient missile aerodynamic/propulsive/plume flowfield interactions

    Science.gov (United States)

    York, B. J.; Sinha, N.; Dash, S. M.; Hosangadi, A.; Kenzakowski, D. C.; Lee, R. A.

    1992-07-01

    The analysis of steady and transient aerodynamic/propulsive/plume flowfield interactions utilizing several state-of-the-art computer codes (PARCH, CRAFT, and SCHAFT) is discussed. These codes have been extended to include advanced turbulence models, generalized thermochemistry, and multiphase nonequilibrium capabilities. Several specialized versions of these codes have been developed for specific applications. This paper presents a brief overview of these codes followed by selected cases demonstrating steady and transient analyses of conventional as well as advanced missile systems. Areas requiring upgrades include turbulence modeling in a highly compressible environment and the treatment of particulates in general. Recent progress in these areas are highlighted.

  1. Thermal analysis with expendable cartridge

    International Nuclear Information System (INIS)

    Susaki, K.; Landgraf, F.J.G.

    1981-01-01

    The pratical method of thermal analysis with expendable cartridge and some aspects of its use are presented. The results of the method applied to the system Nb-Mn are presented together with data from microprobe. (Author) [pt

  2. Water Resources Research Program. Surface thermal plumes: evaluation of mathematical models for the near and complete field

    International Nuclear Information System (INIS)

    Dunn, W.E.; Policastro, A.J.; Paddock, R.A.

    1975-05-01

    This report evaluates mathematical models that may be used to predict the flow and temperature distributions resulting from heated surface discharges from power-plant outfalls. Part One discusses the basic physics of surface-plume dispersion and provides a critical review of 11 of the most popular and promising plume models developed to predict the near- and complete-field plume. The principal conclusion of the report is that the available models, in their present stage of development, may be used to give only general estimates of plume characteristics; precise predictions are not currently possible. The Shirazi-Davis and Pritchard (No. 1) models appear superior to the others tested and are capable of correctly predicting general plume characteristics. (The predictions show roughly factor-of-two accuracy in centerline distance to a given isotherm, factor-of-two accuracy in plume width, and factor-of-five accuracy in isotherm areas.) The state of the art can best be improved by pursuing basic laboratory studies of plume dispersion along with further development of numerical-modeling techniques

  3. Water Resources Research Program. Surface thermal plumes: evaluation of mathematical models for the near and complete field

    International Nuclear Information System (INIS)

    Dunn, W.E.; Policastro, A.J.; Paddock, R.A.

    1975-08-01

    This report evaluates mathematical models that may be used to predict the flow and temperature distributions resulting from heated surface discharges from power-plant outfalls. Part One discusses the basic physics of surface-plume dispersion and provides a critical review of 11 of the most popular and promising plume models developed to predict the near- and complete-field plume. Part Two compares predictions from the models to prototype data, laboratory data, or both. Part Two also provides a generic discussion of the issues surrounding near- and complete-field modeling. The principal conclusion of the report is that the available models, in their present stage of development, may be used to give only general estimates of plume characteristics; precise predictions are not currently possible. The Shirazi-Davis and Pritchard (No. 1) models appear superior to the others tested and are capable of correctly predicting general plume characteristics. (The predictions show roughly factor-of-two accuracy in centerline distance to a given isotherm, factor-of-two accuracy in plume width, and factor-of-five accuracy in isotherm areas.) The state of the art can best be improved by pursuing basic laboratory studies of plume dispersion along with further development of numerical-modeling techniques

  4. Propagation of uncertainty and sensitivity analysis in an integral oil-gas plume model

    KAUST Repository

    Wang, Shitao; Iskandarani, Mohamed; Srinivasan, Ashwanth; Thacker, W. Carlisle; Winokur, Justin; Knio, Omar

    2016-01-01

    Polynomial Chaos expansions are used to analyze uncertainties in an integral oil-gas plume model simulating the Deepwater Horizon oil spill. The study focuses on six uncertain input parameters—two entrainment parameters, the gas to oil ratio, two parameters associated with the droplet-size distribution, and the flow rate—that impact the model's estimates of the plume's trap and peel heights, and of its various gas fluxes. The ranges of the uncertain inputs were determined by experimental data. Ensemble calculations were performed to construct polynomial chaos-based surrogates that describe the variations in the outputs due to variations in the uncertain inputs. The surrogates were then used to estimate reliably the statistics of the model outputs, and to perform an analysis of variance. Two experiments were performed to study the impacts of high and low flow rate uncertainties. The analysis shows that in the former case the flow rate is the largest contributor to output uncertainties, whereas in the latter case, with the uncertainty range constrained by aposteriori analyses, the flow rate's contribution becomes negligible. The trap and peel heights uncertainties are then mainly due to uncertainties in the 95% percentile of the droplet size and in the entrainment parameters.

  5. Thermal Analysis of Solar Panels

    Science.gov (United States)

    Barth, Nicolas; de Correia, João Pedro Magalhães; Ahzi, Saïd; Khaleel, Mohammad Ahmed

    In this work, we propose to analyze the thermal behavior of PV panels using finite element simulations (FEM). We applied this analysis to compute the temperature distribution in a PV panel BP 350 subjected to different atmospheric conditions. This analysis takes into account existing formulations in the literature and, based on NOCT conditions, meteorological data was used to validate our approach for different wind speed and solar irradiance. The electrical performance of the PV panel was also studied. The proposed 2D FEM analysis is applied to different region's climates and was also used to consider the role of thermal inertia on the optimization of the PV device efficiency.

  6. Assessment of Turbulence-Chemistry Interactions in Missile Exhaust Plume Signature Analysis

    National Research Council Canada - National Science Library

    Calhoon, W

    2002-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulence chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  7. Flowfield and Radiation Analysis of Missile Exhaust Plumes Using a Turbulent-Chemistry Interaction Model

    National Research Council Canada - National Science Library

    Calhoon, W. H; Kenzakowski, D. C

    2000-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulent-chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  8. Thermal plumes and micro-contaminants release from power plants in water bodies. Development of innovative software tools to support plant management and real case applications

    International Nuclear Information System (INIS)

    Guandalini, R.

    2007-01-01

    Environmental issues are a fundamental aspect of energy generation by thermal power plants. Numerical modeling can be used to develop innovative software tools to support plant management and to analyze critical scenarios also considering meteorology forecasts. Compliance with regulatory obligations of thermal/contaminant plumes and prediction of water body physical properties at the intake/discharge location can be performed by real time systems, in order to optimize plant operations and to evaluate the amount of energy that will be generated. A procedure coupling hydrodynamic and water quality modeling for the prediction of possible areas of accumulation of micro-contaminants in a short, medium and long period is also presented. Finally, applications of thermal/pollutant prediction systems and numerical modeling of particular environmental aspects of energy production and transport are shown (e.g. chlorine diffusion from a HVDC marine anode, impact on aquatic ecosystems in coastal regions). (author)

  9. Analysis of nonequilibrium chemical processes in the plume of subsonic and supersonic aircraft with hydrogen and hydrocarbon combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Starik, A.M.; Lebedev, A.B.; Titova, N.S. [Central Inst. of Aviation Motors, Moscow (Russian Federation)

    1997-12-31

    On the basic of quasi one dimensional mixing model the numerical analysis of nonequilibrium chemical processes in the plume of subsonic and hypersonic aircraft is presented. It was found that species HNO, HNO{sub 3}, HNO{sub 4}, N{sub 2}O{sub 5}, ClO{sub 2}, CH{sub 3}NO{sub 2} could be formed as a result of nonequilibrium processes in the plume and their concentrations can essentially exceed both background values in free stream of atmosphere and their values at the nozzle exit plane. (author) 10 refs.

  10. Analysis of nonequilibrium chemical processes in the plume of subsonic and supersonic aircraft with hydrogen and hydrocarbon combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Starik, A M; Lebedev, A B; Titova, N S [Central Inst. of Aviation Motors, Moscow (Russian Federation)

    1998-12-31

    On the basic of quasi one dimensional mixing model the numerical analysis of nonequilibrium chemical processes in the plume of subsonic and hypersonic aircraft is presented. It was found that species HNO, HNO{sub 3}, HNO{sub 4}, N{sub 2}O{sub 5}, ClO{sub 2}, CH{sub 3}NO{sub 2} could be formed as a result of nonequilibrium processes in the plume and their concentrations can essentially exceed both background values in free stream of atmosphere and their values at the nozzle exit plane. (author) 10 refs.

  11. Analysis of the most important river plumes on the Atlantic and Mediterranean Iberian coast by means of satellite imagery

    Directory of Open Access Journals (Sweden)

    Diego Fernandez Novoa

    2014-06-01

    Full Text Available Rivers discharges cause the formation of buoyant plumes in the adjacent coastal area at their mouths, which are characterized by low-salinity water and controlled by outflow inertia, rotation (Coriolis effects, buoyancy, wind, and tide forcing. The turbid plumes influence the adjacent coastal area, since they control the patterns of nutrients, sediments and/or pollutants of fluvial origin on the coastal ocean and can promote strong physical and chemical changes on seawater. These changes affect the biological characteristics of the area, such as primary production, species composition, abundance and distribution of existing microorganism, which demonstrates its high ecological importance. The characterization of the most important river plumes along the Atlantic Iberian coast and the influence of the main forcing drivers (river discharge, wind and tide on them, was carried out through the analysis of plume mean-state images calculated using water leaving radiance data (nLw555 obtained from the MODIS (Moderate Resolution Imaging Spectroradiometer sensor onboard the Aqua satellite during 2003-2013. Satellite data are downloaded from Ocean Color web site (http://oceancolor.gsfc.nasa.gov. Daily high-resolution L1 files from MODIS-Aqua were processed through SeaDAS software. Composite images, interpolated to a regular pixel grid with an approximate resolution of 500m, were built for different synoptic conditions of river discharge, wind regimes and tide, in order to obtain a representative average plume image of each situation and river for the posterior analysis. Results showed that the river discharge is the main forcing factor in the river plume extension. Wind effect is noticeable under high river discharge and tide is important for the estuarine outflow regimes although with some remarkable similarities and differences between the Atlantic rivers due to their intrinsic characteristics.

  12. 3D simulation of the thermal and chemical plumes using open source software; Simulacion 3D de las plumas termica y quimica mediante software de codigo libre

    Energy Technology Data Exchange (ETDEWEB)

    Saenz Temino, J. L.; Lerones Martin, J.; Gonzalez Delgado, J.

    2013-07-01

    The interaction of thermal and chemical plumes in the region of the Irish Sea near the site has been simulated using a finite element model representative of the local hydrodynamic regime, concluding how the method of selected cooling, open cycle, is physically and environmentally feasible. Furthermore, tunnel lengths required for each scenario under discussion have been preliminarily defined, varying in a range from 1800 to 2300 meters for a unit (1 tunnel), 4400-6300 meters of two units (2 tunnels) and 8000 meters to three units (2 tunnels), depending on the chosen technology.

  13. Radioactive Plumes Monitoring Simulator

    International Nuclear Information System (INIS)

    Kapelushnik, I.; Sheinfeld, M.; Avida, R.; Kadmon, Y.; Ellenbogen, M.; Tirosh, D.

    1999-01-01

    The Airborne Radiation Monitoring System (ARMS) monitors air or ground radioactive contamination. The contamination source can be a radioactive plume or an area contaminated with radionuclides. The system is based on two major parts, an airborne unit carried by a helicopter and a ground station carried by a truck. The system enables real time measurement and analysis of radioactive plumes as well as post flight processing. The Radioactive Plumes Monitoring Simulator purpose is to create a virtual space where the trained operators experience full radiation field conditions, without real radiation hazard. The ARMS is based on a flying platform and hence the simulator allows a significant reduction of flight time costs

  14. Novel plume deflection concept testing

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will explore the feasibility and effectiveness of utilizing an electrically driven thermal shield for use as part of rocket plume deflectors. To...

  15. Seismic Imaging of Mantle Plumes

    Science.gov (United States)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  16. Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    Combined diagnostic measurements of deposition rates and ion time-of-flight signals have been employed to study the expansion of a laser ablation plume into a background gas. With increasing gas pressure the angular distribution of the collected ablated atoms becomes broader, while the total...

  17. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    International Nuclear Information System (INIS)

    Happel, A.M.; Rice, D.; Beckenbach, E.; Savalin, L.; Temko, H.; Rempel, R.; Dooher, B.

    1996-11-01

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites

  18. Total peroxy nitrates and ozone production : analysis of forest fire plumes during BORTAS campaign

    Science.gov (United States)

    Busilacchio, Marcella; Di Carlo, Piero; Aruffo, Eleonora; Biancofiore, Fabio; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Lewis, Ally; Parrington, Mark; Palmer, Paul; Dari Salisburgo, Cesare

    2014-05-01

    The goal of this work is to investigate the connection between PNS and ozone within plumes emitted from boreal forest fires and the possible perturbation to oxidant chemistry in the troposphere. During the Aircraft campaign in Canada called BORTAS (summer 2011 ) were carried out several profiles from ground up to 10 km with the BAe-146 aircraft to observe the atmospheric composition inside and outside fire plumes. The BORTAS flights have been selected based on the preliminary studies of 'Plume identification', selecting those effected by Boreal forest fire emissions (CO > 200 ppbv). The FLAMBE fire counts were used concertedly with back trajectory calculations generated by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to locate the sources of Boreal biomass burning.Profiles measured on board the BAe-146 aircraft are used to calculate the productions of PNs and O3 within the biomass burning plume. By selecting the flights that intercept the biomass burning plume, we evaluate the ratio between the ozone production and the PNs production within the plume. Analyzing this ratio it is possible to determine whether O3 production or PNs production is the dominant process in the biomass burning boreal plume detected during BORTAS campaign.

  19. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.

    2016-01-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were...... documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE...... is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more...

  20. Extraction of amino acids from aerogel for analysis by capillary electrophoresis. Implications for a mission concept to Enceladus' Plume.

    Science.gov (United States)

    Mora, Maria F; Jones, Steve M; Creamer, Jessica; Willis, Peter A

    2018-02-01

    Ocean worlds like Europa and Enceladus in the outer solar system are prime targets in the search for life beyond Earth. Enceladus is particularly interesting due to the presence of a water plume ejecting from the south polar region. The recent discovery of H 2 in the plume, in addition to the presence of previously observed organic compounds, highlights the possibility of life in this moon. The plume provides materials from the underlying ocean that could be collected simply by flying through it. The presence of the plume means that material from the ocean is available for collection during a flyby, without the need for landing or complex sample handling operations such as scooping or drilling. An attractive approach to preserve the organics in particles collected during flyby encounters would be to utilize silica aerogel, the material used to collect particles at hypervelocity during the Stardust mission. Here we demonstrate amino acids can be extracted from aerogel simply by adding water. This simple liquid extraction method could be implemented during a mission prior to analysis with a liquid-based technique like capillary electrophoresis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermal Analysis of the Fastrac Chamber/Nozzle

    Science.gov (United States)

    Davis, Darrell

    2001-01-01

    This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the Fastrac 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.

  2. Thermal Analysis of the MC-1 Chamber/Nozzle

    Science.gov (United States)

    Davis, Darrell W.; Phelps, Lisa H. (Technical Monitor)

    2001-01-01

    This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the MC-1 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.

  3. A feasibility study and mission analysis for the Hybrid Plume Plasma Rocket

    Science.gov (United States)

    Sullivan, Daniel J.; Micci, Michael M.

    1990-01-01

    The Hybrid Plume Plasma Rocket (HPPR) is a high power electric propulsion concept which is being developed at the MIT Plasma Fusion Center. This paper presents a theoretical overview of the concept as well as the results and conclusions of an independent study which has been conducted to identify and categorize those technologies which require significant development before the HPPR can be considered a viable electric propulsion device. It has been determined that the technologies which require the most development are high power radio-frequency and microwave generation for space applications and the associated power processing units, low mass superconducting magnets, a reliable, long duration, multi-megawatt space nuclear power source, and long term storage of liquid hydrogen propellant. In addition to this, a mission analysis of a one-way transfer from low earth orbit (LEO) to Mars indicates that a constant acceleration thrust profile, which can be obtained using the HPPR, results in faster trip times and greater payload capacities than those afforded by more conventional constant thrust profiles.

  4. Equipment for dekryptonation thermal analysis

    International Nuclear Information System (INIS)

    Lukac, P.; Pruzinec, J.

    Emanation thermal analysis is used for studying changes in the dynamic temperature conditions during kinetics studies of some reactions in solids. A kryptonated sample is placed in a furnace with a programmable temperature controller. 85 Kr released from the sample is entrapped by the carrier gas in a through-flow Geiger-Mueller detector. The detector signal is processed into an integral form and recorded. Examples are given of the study of modification transformations in NH 4 NO 3 , pearlite and PVC. (M.D.)

  5. THERMAL CONDUCTIVITY ANALYSIS OF GASES

    Science.gov (United States)

    Clark, W.J.

    1949-06-01

    This patent describes apparatus for the quantitative analysis of a gaseous mixture at subatmospheric pressure by measurement of its thermal conductivity. A heated wire forms one leg of a bridge circuit, while the gas under test is passed about the wire at a constant rate. The bridge unbalance will be a measure of the change in composition of the gas, if compensation is made for the effect due to gas pressure change. The apparatus provides a voltage varying with fluctuations of pressure in series with the indicating device placed across the bridge, to counterbalance the voltage change caused by fluctuations in the pressure of the gaseous mixture.

  6. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.

    2016-01-01

    -Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation...... reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined...

  7. Lagrangian analysis of low altitude anthropogenic plume processing across the North Atlantic

    Directory of Open Access Journals (Sweden)

    E. Real

    2008-12-01

    Full Text Available The photochemical evolution of an anthropogenic plume from the New-York/Boston region during its transport at low altitudes over the North Atlantic to the European west coast has been studied using a Lagrangian framework. This plume, originally strongly polluted, was sampled by research aircraft just off the North American east coast on 3 successive days, and then 3 days downwind off the west coast of Ireland where another aircraft re-sampled a weakly polluted plume. Changes in trace gas concentrations during transport are reproduced using a photochemical trajectory model including deposition and mixing effects. Chemical and wet deposition processing dominated the evolution of all pollutants in the plume. The mean net photochemical O3 production is estimated to be −5 ppbv/day leading to low O3 by the time the plume reached Europe. Model runs with no wet deposition of HNO3 predicted much lower average net destruction of −1 ppbv/day O3, arising from increased levels of NOx via photolysis of HNO3. This indicates that wet deposition of HNO3 is indirectly responsible for 80% of the net destruction of ozone during plume transport. If the plume had not encountered precipitation, it would have reached Europe with O3 concentrations of up to 80 to 90 ppbv and CO between 120 and 140 ppbv. Photochemical destruction also played a more important role than mixing in the evolution of plume CO due to high levels of O3 and water vapour showing that CO cannot always be used as a tracer for polluted air masses, especially in plumes transported at low altitudes. The results also show that, in this case, an increase in O3/CO slopes can be attributed to photochemical destruction of CO and not to photochemical O3 production as is often assumed.

  8. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  9. Is the 'Fast Halo' around Hawaii as imaged in the PLUME experiment direct evidence for buoyant plume-fed asthenosphere?

    Science.gov (United States)

    Morgan, J. P.; Shi, C.; Hasenclever, J.

    2010-12-01

    An intriguing spatial pattern of variations in shear-wave arrival times has been mapped in the PLUME ocean bottom experiment (Wolfe et al., 2009) around Hawaii. The pattern consists of a halo of fast travel times surrounding a disk of slow arrivals from waves traveling up though the plume. We think it is directly sensing the pattern of dynamic uplift of the base of a buoyant asthenosphere - the buoyancy of the plume conduit lifting a 'rim' of the cooler, denser mantle that the plume rises through. The PLUME analysis inverted for lateral shear velocity variations beneath the lithosphere, after removing the assumed 1-D model velocity structure IASP91. They found that a slow plume-conduit extends to at least 1200 km below the Hawaiian hotspot. In this inversion the slow plume conduit is — quite surprisingly - surrounded by a fast wavespeed halo. A fast halo is impossible to explain as a thermal halo around the plume; this should lead to a slow wavespeed halo, not a fast one. Plume-related shearwave anisotropy also cannot simply explain this pattern — simple vertical strain around the plume conduit would result in an anisotropic slow shear-wavespeed halo, not a fast one. (Note the PLUME experiment’s uniform ‘fast-halo’ structure from 50-400km is likely to have strong vertical streaking in the seismic image; Pacific Plate-driven shear across a low-viscosity asthenosphere would be expected to disrupt and distort any cold sheet of vertical downwelling structure between 50-400km depths so that it would no longer be vertical as it is in the 2009 PLUME image with its extremely poor vertical depth control.) If the asthenosphere is plume-fed, hence more buoyant than underlying mantle, then there can be a simple explanation for this pattern. The anomaly would be due to faster traveltimes resulting from dynamic relief at the asthenosphere-mesosphere interface; uplift of the denser mesosphere by the buoyancy of the rising plume increases the distance a wave travels

  10. HRB-22 preirradiation thermal analysis

    International Nuclear Information System (INIS)

    Acharya, R.; Sawa, K.

    1995-05-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for irradiation in the removable beryllium (RB) position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). CACA-2 a heavy isotope and fission product concentration calculational code for experimental irradiation capsules was used to determine time dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries (HEATING) computer code, version 7.2, was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body that contains the compacts and the primary pressure vessel were selected such that the requirements of running the compacts at an average temperature of < 1,250 C and not exceeding a maximum fuel temperature of 1,350 C was met throughout the four cycles of irradiation

  11. HANARO thermal hydraulic accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  12. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the late 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.

  13. Transient thermal analysis of Vega launcher structures

    Energy Technology Data Exchange (ETDEWEB)

    Gori, F. [University of Rome ' Tor Vergata' , Rome (Italy); De Stefanis, M. [Thales Alenia Space Italia, Rome (Italy); Worek, W.M. [University of Illinois at Chicago, Chicago (United States)], E-mail: wworek@uic.edu; Minkowycz, W.J. [University of Illinois at Chicago, Chicago (United States)

    2008-12-15

    A transient thermal analysis is carried out to verify the base cover thermal protection system of Vega 2nd stage Solid Rocket Motor (SRM) and the flange coupling of the inter-stage 2/3. The analysis is performed with a finite element code. The work has developed suitable numerical Fortran subroutines to assign radiation and convection boundary conditions. The thermal behaviour of the structures is presented.

  14. Thermal analysis studies of ammonium uranyl carbonate

    International Nuclear Information System (INIS)

    Cao Xinsheng; Ma Xuezhong; Wang Fapin; Liu Naixin; Ji Changhong

    1988-01-01

    The simultaneous thermogravimetry and differential thermal analysis of the ammonium uranyl carbonate powder were performed with heat balance in the following atmosphers: Air, Ar and Ar-8%H 2 . The thermogravimetry and differential thermal analysis curves of the ammonium uranyl carbonate powder obtained from different source were reported and discussed

  15. Temperature Modulated Nanomechanical Thermal Analysis

    DEFF Research Database (Denmark)

    Alves, Gustavo Marcati A.; Bose-Goswami, Sanjukta; Mansano, Ronaldo D.

    2018-01-01

    The response of microcantilever deflection to complex heating profiles was used to study thermal events like glass transition and enthalpy relaxation on nanograms of the biopolymer Poly(lactic-co-glycolic acid) (PLGA). The use of two heating rates enables the separation of effects on the deflection...... response that depends on previous thermal history (non-reversing signal) and effects that depends only on the heating rate variation (reversing signal). As these effects may appear superposed in the total response, temperature modulation can increase the measurement sensitivity to some thermal events when...

  16. Model analysis of the chemical conversion of exhaust species in the expanding plumes of subsonic aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Moellhoff, M.; Hendricks, J.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie; Sausen, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    A box model and two different one-dimensional models are used to investigate the chemical conversion of exhaust species in the dispersing plume of a subsonic aircraft flying at cruise altitude. The effect of varying daytime of release as well as the impact of changing dispersion time is studied with special respect to the aircraft induced O{sub 3} production. Effective emission amounts for consideration in mesoscale and global models are calculated. Simulations with modified photolysis rates are performed to show the sensitivity of the photochemistry to the occurrence of cirrus clouds. (author) 8 refs.

  17. Model analysis of the chemical conversion of exhaust species in the expanding plumes of subsonic aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Moellhoff, M; Hendricks, J; Lippert, E; Petry, H [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie; Sausen, R [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    A box model and two different one-dimensional models are used to investigate the chemical conversion of exhaust species in the dispersing plume of a subsonic aircraft flying at cruise altitude. The effect of varying daytime of release as well as the impact of changing dispersion time is studied with special respect to the aircraft induced O{sub 3} production. Effective emission amounts for consideration in mesoscale and global models are calculated. Simulations with modified photolysis rates are performed to show the sensitivity of the photochemistry to the occurrence of cirrus clouds. (author) 8 refs.

  18. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  19. Analysis of uncertainties in CRAC2 calculations: wet deposition and plume rise

    International Nuclear Information System (INIS)

    Ward, R.C.; Kocher, D.C.; Hicks, B.B.; Hosker, R.P. Jr.; Ku, J.Y.; Rao, K.S.

    1984-01-01

    We have studied the sensitivity of results from the CRAC2 computer code, which predicts health impacts from a reactor-accident scenario, to uncertainties in selected meteorological models and parameters. The sources of uncertainty examined include the models for plume rise and wet deposition and the meteorological bin-sampling procedure. An alternative plume-rise model usually had little effect on predicted health impacts. In an alternative wet-deposition model, the scavenging rate depends only on storm type, rather than on rainfall rate and atmospheric stability class as in the CRAC2 model. Use of the alternative wet-deposition model in meteorological bin-sampling runs decreased predicted mean early injuries by as much as a factor of 2 to 3 and, for large release heights and sensible heat rates, decreased mean early fatalities by nearly an order of magnitude. The bin-sampling procedure in CRAC2 was expanded by dividing each rain bin into four bins that depend on rainfall rate. Use of the modified bin structure in conjunction with the CRAC2 wet-deposition model changed all predicted health impacts by less than a factor of 2. 9 references

  20. Thermal analysis of iron hydroxide microspheres

    International Nuclear Information System (INIS)

    Turcanu, C.N.; Cornescu, M.

    1979-03-01

    The thermal treatment is an important step in the preparative technology of the iron oxids microspheres with well established mechanical, physical and chemical characteristics. The first indications on the heating procedure have been obtained from the thermal analysis on iron hydroxide microspheres prepared by the support precipitation and internal gelification methods. (author)

  1. Integrated characterization of natural attenuation of a PCE plume after thermal remediation of the source zone - incl. dual isotope and microbial techniques

    DEFF Research Database (Denmark)

    Broholm, Mette Martina

    dechlorination 1-1.5 km downstream the source area, where the plume descends into more reduced groundwater. The objective of the new (2014) study is to evaluate how the source remediation has impacted the plume and in particular the natural attenuation within the plume. A large monitoring campaign including...... down-gradient which co-inside with the reduction in redox conditions. The findings document a significant increase in cDCE degradation without accumulation of VC. This reduces the risk posed by the contaminant plume to the drinking water resource. This project is unique in the integrated...... area, resulted in the release of dissolved organic matter and some geochemical changes. This has had an effect on redox conditions and biodegradation by reductive dechlorination particularly in the near source area. However, also in the further downstream area of the plume redox and contaminant levels...

  2. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  3. Numerical simulation and PIV experimental analysis of electrohydrodynamic plumes induced by a blade electrode

    International Nuclear Information System (INIS)

    Traore, Ph; Daaboul, M; Louste, Ch

    2010-01-01

    In this paper a comparative study between numerical and experimental results from particle image velocimetry (PIV) measurements is presented in the case of two-dimensional electrohydrodynamic plumes that arise when a sharp metallic blade, submerged in non-conducting liquids, supports a high electric potential. Experiments and numerical simulations have been conducted in order to compare both the approaches. Very good agreement has been found through velocity profiles and velocity fields which proves the relevance of our numerical model. For high potentials the jet flow issued forth from the blade becomes unsteady and starts to flap on the vertical wall. Some snapshots of the temporal evolution of the isocontours of charge density which is not accessible from experiment are presented thanks to the numerical simulation.

  4. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

    DEFF Research Database (Denmark)

    Hunkeler, D.; Abe, Y.; Broholm, Mette Martina

    2011-01-01

    The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (q...... reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of 13C in the daughter products followed by an enrichment of 13C as degradation proceeded. At 1000 m downgradient......DCE. The significant enrichment of 13C in VC indicates that VC was transformed further, although the mechanismcould not be determined. The transformation of cDCEwas the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon–chlorine isotope analysis and qPCR combinedwith...

  5. Analysis of the thermal monitoring data collected at the Peach Bottom Atomic Power Station

    International Nuclear Information System (INIS)

    Witten, A.J.; Gray, D.D.

    1977-01-01

    A comprehensive study of the data collected as part of the environmental technical specifications program for Units 2 and 3 of the Peach Bottom Atomic Power Station was conducted for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The study included an analysis of both the hydrothermal and ecological data collected from 1967 through 1976. This paper presents the details of the hydrothermal analysis performed under this program. The two primary methods used for temperature monitoring, during both the preoperational and operational periods of the program, are a fixed thermograph network and boat survey measurements. Analysis of the boat survey data provides a fine resolution demonstrating variations in ambient temperature in Conowingo Pond, as well as providing a qualitative picture of the thermal plume produced by the Peach Bottom thermal discharge. The data from 18 thermograph stations was used for a quantitative probability analysis

  6. Global sensitivity analysis using emulators, with an example analysis of large fire plumes based on FDS simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Adrian [Health and Safety Laboratory, Harpur Hill, Buxton (United Kingdom)

    2015-12-15

    Uncertainty in model predictions of the behaviour of fires is an important issue in fire safety analysis in nuclear power plants. A global sensitivity analysis can help identify the input parameters or sub-models that have the most significant effect on model predictions. However, to perform a global sensitivity analysis using Monte Carlo sampling might require thousands of simulations to be performed and therefore would not be practical for an analysis based on a complex fire code using computational fluid dynamics (CFD). An alternative approach is to perform a global sensitivity analysis using an emulator. Gaussian process emulators can be built using a limited number of simulations and once built a global sensitivity analysis can be performed on an emulator, rather than using simulations directly. Typically reliable emulators can be built using ten simulations for each parameter under consideration, therefore allowing a global sensitivity analysis to be performed, even for a complex computer code. In this paper we use an example of a large scale pool fire to demonstrate an emulator based approach to global sensitivity analysis. In that work an emulator based global sensitivity analysis was used to identify the key uncertain model inputs affecting the entrainment rates and flame heights in large Liquefied Natural Gas (LNG) fire plumes. The pool fire simulations were performed using the Fire Dynamics Simulator (FDS) software. Five model inputs were varied: the fire diameter, burn rate, radiative fraction, computational grid cell size and choice of turbulence model. The ranges used for these parameters in the analysis were determined from experiment and literature. The Gaussian process emulators used in the analysis were created using 127 FDS simulations. The emulators were checked for reliability, and then used to perform a global sensitivity analysis and uncertainty analysis. Large-scale ignited releases of LNG on water were performed by Sandia National

  7. Molecular thermal transistor: Dimension analysis and mechanism

    Science.gov (United States)

    Behnia, S.; Panahinia, R.

    2018-04-01

    Recently, large challenge has been spent to realize high efficient thermal transistors. Outstanding properties of DNA make it as an excellent nano material in future technologies. In this paper, we introduced a high efficient DNA based thermal transistor. The thermal transistor operates when the system shows an increase in the thermal flux despite of decreasing temperature gradient. This is what called as negative differential thermal resistance (NDTR). Based on multifractal analysis, we could distinguish regions with NDTR state from non-NDTR state. Moreover, Based on dimension spectrum of the system, it is detected that NDTR state is accompanied by ballistic transport regime. The generalized correlation sum (analogous to specific heat) shows that an irregular decrease in the specific heat induces an increase in the mean free path (mfp) of phonons. This leads to the occurrence of NDTR.

  8. Thermal Analysis of TRIO-CINEMA Mission

    Directory of Open Access Journals (Sweden)

    Jaegun Yoo

    2012-03-01

    Full Text Available Thermal analysis and control design are prerequisite essential to design the satellite. In the space environment, it makes satellite survive from extreme hot and cold conditions. In recent years CubeSat mission is developed for many kinds of purpose. Triplet Ionospheric Observatory (TRIO–CubeSat for Ion, Neutral, Electron, MAgnetic fields (CINEMA is required to weigh less than 3 kg and operate on minimal 3 W power. In this paper we describe the thermal analysis and control design for TRIO-CINEMA mission. For this thermal analysis, we made a thermal model of the CubeSat with finite element method and NX6.0 TMG software is used to simulate this analysis model. Based on this result, passive thermal control method has been applied to thermal design of CINEMA. In order to get the better conduction between solar panel and chassis, we choose aluminum 6061-T6 for the material property of standoff. We can increase the average temperature of top and bottom solar panels from -70°C to -40°C and decrease the average temperature of the magnetometer from +93°C to -4°C using black paint on the surface of the chassis, inside of top & bottom solar panels, and magnetometer.

  9. Are splash plumes the origin of minor hotspots?

    Science.gov (United States)

    Davies, J. H.; Bunge, H.-P.

    2006-05-01

    It has been claimed that focused hot cylindrical upwelling plumes cause many of the surface volcanic hotspots on Earth. It has also been argued that they must originate from thermal boundary layers. In this paper, we present spherical simulations of mantle circulation at close to Earth-like vigor with significant internal heating. These show, in addition to thermal boundary layer plumes, a new class of plumes that are not rooted in thermal boundary layers. These plumes develop as instabilities from the edge of bowls of hot mantle, which are produced by cold downwelling material deforming hot sheets of mantle. The resulting bowl and plume structure can look a bit like the “splash” of a water droplet. These splash plumes might provide an explanation for some hotspots that are not underlain by thermal boundary layer sourced plumes and not initiated by large igneous provinces. We suggest that in Earth's mantle, lithospheric instabilities or small pieces of subducting slab could play the role of the model downwelling material in initiating splash plumes. Splash plumes would have implications for interpreting ocean-island basalt geochemistry, plume fixity, excess plume temperature, and estimating core heat flux. Improved seismic imaging will ultimately test this hypothesis.

  10. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    Mantle plumes are traditionally proposed to play an important role in lithosphere erosion. Seismic images beneath Hawaii and Cape Verde show a lithosphere-asthenosphere-boundary (LAB) up to 50 km shallower than the surroundings. However, numerical models show that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We use 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to study the role of partial melting on the plume-lithosphere interaction. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the melt in excess is then extracted. The rheology of the partially molten peridotite is determined using viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. Above a threshold of 1%, melt is instantaneously extracted. The density varies as a function of partial melting degree and extraction. Besides, we analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal

  11. Thermodynamical analysis of human thermal comfort

    International Nuclear Information System (INIS)

    Prek, Matjaz

    2006-01-01

    Traditional methods of human thermal comfort analysis are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, the second law of thermodynamics introduces the useful concept of exergy. It enables the determination of the exergy consumption within the human body dependent on human and environmental factors. Human body exergy consumption varies with the combination of environmental (room) conditions. This process is related to human thermal comfort in connection with temperature, heat, and mass transfer. In this paper a thermodynamic analysis of human heat and mass transfer based on the 2nd law of thermodynamics in presented. It is shown that the human body's exergy consumption in relation to selected human parameters exhibits a minimal value at certain combinations of environmental parameters. The expected thermal sensation also shows that there is a correlation between exergy consumption and thermal sensation. Thus, our analysis represents an improvement in human thermal modelling and gives more information about the environmental impact on expected human thermal sensation

  12. Root cause analysis of thermal sleeve separation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, J. C.; Jhung, M. J.; Yu, S. O.; Kim, H. J.; Yune, Y. K.; Park, J. Y

    2006-01-15

    Thermal sleeves in the shape of thin wall cylinder seated inside the nozzle part of each Safety Injection (SI) line at Pressurized Water Reactors (PWRs) have such functions as prevention and relief of potential excessive transient thermal stress in the wall of SI line nozzle part which is initially heated up with hot water flowing in the primary coolant piping system when cold water is injected into the system through the SI nozzles during the SI operation mode. Recently, mechanical failures that the sleeves were separated from the SI branch pipe and fell into the connected cold leg main pipe occurred in sequence at some typical PWR plants in Korea. To find out the root cause of thermal sleeve breakaway failures, the flow situation in the junction of primary coolant main pipe and SI branch pipe, and the vibration modal characteristics of the thermal sleeve are investigated in detail by using both Computational Fluid Dynamic (CFD) code and structure analysis finite element code. As the results, the transient response in fluid force exerting on the local part of thermal sleeve wall surface to the primary coolant flow through the pipe junction area during the normal reactor operation mode shows oscillatory characteristics with frequencies ranging from 17 to 18, which coincide with one of the lower mode natural frequencies of thermal sleeve having a pinned support condition on the circumferential prominence on the outer surface of thermal sleeve which is put into the circumferential groove on the inner surface of SI nozzle at the mid-height of the thermal sleeve. In addition, the variation of force on the thermal sleeve surface yields alternating torques in the directions of two rectangular axes which are perpendicular to the longitudinal axis of cylindrical thermal sleeve, which cause rolling, pitching and rotating motions of the thermal sleeve. Consequently, it is seen that this flow situation surrounding the thermal sleeve during the normal reactor operation can

  13. Plutonium storage thermal analysis (U)

    International Nuclear Information System (INIS)

    Hensel, S.J.; Lee, S.Y.; Schaade, J.B.

    1997-01-01

    Thermal modeling of plutonium metal ingots stored in food pack cans provides information useful for performing stored material safety evaluations. Four storage can geometries were modeled, and several conclusions can be made from the 14 cases analyzed. The ingot temperature increased from 7 degrees F to 12 degrees F (depending on can configuration) per additional watt of power. Including internal convection lowers computed ingot temperatures by 70 degrees F. Accounting for the heat flow through the bottom of the cans to the storage rack lowered computed ingot temperatures by an additional 70 degrees F to 80 degrees F. In the rimmed can systems storing ingots with a power of 10.35 watts, the ingot temperature varies from 190 degrees F to 213 degrees F. Including a plastic bag between the inner and outer can increases the ingot temperature by 15 degrees F. Adding a label to the outer can side reduces the outer can side temperature by 13 degrees F. Changes in ambient temperature affect the outer can temperatures more than the ingot temperature by a factor of 3. Similarly, a 5 degrees F drop in outer can temperature due to increased convection lowered the ingot temperature by only 2 degrees F

  14. Sediment Plumes Resulting from the Port of Miami Dredging: Analysis and Interpretation Using Satellite Data and Long Term Monitoring Programs

    Science.gov (United States)

    Barnes, B. B.; Hu, C.; Kovach, C.; Silverstein, R. N.

    2016-02-01

    From November 2013 through mid-2015, large turbidity plumes were observed offshore the Port of Miami (Florida, USA), likely associated with a project to deepen and widen the Miami Harbor channels. Using data from local monitoring programs, however, it is difficult to estimate the size, duration, extent, and severity (relative to natural turbidity events) of these plumes. In contrast, satellite observing systems offer a platform from which these plumes can be monitored and placed in historical context. As such, turbidity plumes captured by MODIS (Aqua) and Landsat 8 reflectance data were manually outlined. For MODIS, these delineations were refined using reflectance anomaly thresholds, determined from pre-dredging data. Long term records of local environmental conditions were used to account for conditions (e.g., wind speed, tidal stage) for which elevated reflectance data might be expected in the absence of dredging. The spatial extent of turbidity plumes observed in the Port of Miami region during the dredging period ranged from 127 and 228 km2, at least 5 times that immediately prior to dredging. The frequency of observed plumes in satellite imagery increased from 23% to 84% after dredging began, while temporal differences in plume location, severity, and size were also observed. Turbidity plumes may have large adverse effects on coral communities, and this region is home to many species of coral (including some considered threatened by the US Endangered Species Act). Indeed, over 11 km2 of coral area was affected by these plumes, with some locations within plume delineations on nearly 40% of images. The approaches developed in this work, in particular the focus on historical norms after considering all perturbation factors, may be included in monitoring and assessment of this and future dredging activities, especially where fragile marine ecosystems may potentially be impacted.

  15. Thermal Analysis of Filler Reinforced Polymeric Composites

    Science.gov (United States)

    Ghadge, Mahesh Devidas

    compared with that predicted by mean field theories. At low volume fractions the FEM and mean field theory results are matching. However, at high volume fractions, the results obtained by the two methods are not in agreement. This is due to the fact that mean field theory do not consider the particle interactions happening at higher volume fractions. The present analysis can be used to tailor the thermal properties of ESBR for required thermal conductivity for a wide range of applications such as racing tires, electronic gadgets or aeronautical components. In addition, the proposed FEM models can be used to design and optimize the properties of new composite materials providing more insight into the thermal conductivity of composite polymers and aid in understanding heat transfer mechanism of reinforced polymers.

  16. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  17. Analysis of uncertainties of thermal hydraulic calculations

    International Nuclear Information System (INIS)

    Macek, J.; Vavrin, J.

    2002-12-01

    In 1993-1997 it was proposed, within OECD projects, that a common program should be set up for uncertainty analysis by a probabilistic method based on a non-parametric statistical approach for system computer codes such as RELAP, ATHLET and CATHARE and that a method should be developed for statistical analysis of experimental databases for the preparation of the input deck and statistical analysis of the output calculation results. Software for such statistical analyses would then have to be processed as individual tools independent of the computer codes used for the thermal hydraulic analysis and programs for uncertainty analysis. In this context, a method for estimation of a thermal hydraulic calculation is outlined and selected methods of statistical analysis of uncertainties are described, including methods for prediction accuracy assessment based on the discrete Fourier transformation principle. (author)

  18. Thermal analysis of kieselguhr sludge

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2013-01-01

    Full Text Available It’s currently necessary to clarify the mechanisms of thermodynamic and mass transfer processes in capillary porous media. In this paper we obtain the thermogravimetric curves of evaporation drying kieselguhr sludge. It is also an analysis of the curves, allowing to choose the optimum conditions of drying.

  19. Thermal analysis of spices decontaminated by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Varsanyi, I; Farkas, J [Koezponti Elelmiszeripari Kutato Intezet, Budapest (Hungary); Liptay, G; Petrik-Brandt, E [Budapesti Mueszaki Egyetem (Hungary)

    1979-01-01

    The cell-count-reducing effect of ionizing radiations is well known. To reduce microbiological contamination in the most frequently used spices, ground paprika, black pepper and a mixture of seven spices, a radiation dose of 1.5 Mrad (15 kGy) was applied. The aim of the investigation was to find out whether this dose caused significant changes in the spices which could be detected by thermal analysis. The results unambiguously show that the applied dose does not cause significant changes detectable by thermal analysis. This finding supports earlier experiences according to which no structural changes, disadvantageously influencing utilization of radiation treated spices, are caused by similar or smaller doses.

  20. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    Ventilation systems with vertical displacement flow have been used in industrial areas with extensive heat loads for many years. Hot and contaminant air is carried directly from the occupied zone towards the ceiling by hot processes and other activities which create a natural convection flow....

  1. Analysis of Indium Tin Oxide Film Using Argon Fluroide (ArF) Laser-Excited Atomic Fluorescence of Ablated Plumes.

    Science.gov (United States)

    Ho, Sut Kam; Garcia, Dario Machado

    2017-04-01

    A two-pulse laser-excited atomic fluorescence (LEAF) technique at 193 nm wavelength was applied to the analysis of indium tin oxide (ITO) layer on polyethylene terephthalate (PET) film. Fluorescence emissions from analytes were induced from plumes generated by first laser pulse. Using this approach, non-selective LEAF can be accomplished for simultaneous multi-element analysis and it overcomes the handicap of strict requirement for laser excitation wavelength. In this study, experimental conditions including laser fluences, times for gating and time delay between pulses were optimized to reveal high sensitivity with minimal sample destruction and penetration. With weak laser fluences of 100 and 125 mJ/cm 2 for 355 and 193 nm pulses, detection limits were estimated to be 0.10% and 0.43% for Sn and In, respectively. In addition, the relation between fluorescence emissions and number of laser shots was investigated; reproducible results were obtained for Sn and In. It shows the feasibility of depth profiling by this technique. Morphologies of samples were characterized at various laser fluences and number of shots to examine the accurate penetration. Images of craters were also investigated using scanning electron microscopy (SEM). The results demonstrate the imperceptible destructiveness of film after laser shot. With such weak laser fluences and minimal destructiveness, this LEAF technique is suitable for thin-film analysis.

  2. Micro-thermal analysis of polyester coatings

    NARCIS (Netherlands)

    Fischer, H.R.

    2010-01-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure

  3. Use of labelled atoms in thermal analysis

    International Nuclear Information System (INIS)

    Balek, V.; Beckman, I.N.

    1985-01-01

    The article informs of the preparation of labelled samples for which the most frequently used radionuclides are 14 C, 3 H or 2 H, 32 P, 35 S and others as well as radioactive gases such as 85 Kr, 133 Xe or 220 Rn and 222 Rn. The equipment is described for the application of labelled atoms in thermal analysis consisting of a detector for measuring radioactivity and a system for measuring thermal analysis parameters. Examples are given of the use of labelled atoms in the study of chemical reactions of solids, in autoradiography or in Moessbauer spectroscopy. The greatest attention is devoted to the use of labelled atoms in emanation thermal analysis. By this technique it is possible to study chemical reactions and phase transformations, to continuously monitor changes in the surface and morphology of dispersion substances, to characterize the mobility of defects in the structure of solids and the active state of the structure of solids and to ascertain mechanical, radiation and chemical effects on solids. Attention is also devoted to the technological applications of emanation thermal analysis (the solidification of cement paste, calcination and the firing of the mixture of oxides for the manufacture of ferrites). (E.S.)

  4. Thermal effects in concrete containment analysis

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.

    1988-01-01

    Analyses of the thermo-mechanical response of the 1:6-scale reinforced concrete containment are presented. Three temperature- pressure scenarios are analyzed to complete loss of the pressure integrity. These results are compared to the analysis of pressure alone, to assess the importance of thermal effects. 19 refs., 9 figs., 8 tabs

  5. Thermal analysis of the SSC beam scraper

    International Nuclear Information System (INIS)

    Tran, N.; Dao, B.

    1993-04-01

    When a particle beam impacts a beam scraper, heat is generated resulting in a rise in the temperature of the material. The maximum temperature rise should be kept to a minimum in order to maintain scraper efficiency and performance. In this paper the results of a thermal analysis of a scraper are presented

  6. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.; Tonkin, M.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; where the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells

  7. Thermal analysis of a gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, D.A.; Bastos, J.L.F.; Maiorino, J.R.

    1996-01-01

    The centrifuge separation efficiency is the result of the composition of the centrifuge field to the secondary flow in the axial direction near to the rotor wall. For a given machine, the centrifuge field can not be altered and the effort to augment the separation efficiency should be concentrated on the secondary flow. The secondary flow has a mechanical and a thermal component. The mechanical component is due to the deceleration of the gas at the scoop region. The thermal component is due to the temperature differences at the rotor. This paper presents a thermal model of a centrifuge in order to understand the main heat transfer mechanisms and to establish the boundary conditions for a fluid flow computer code. The heat transfer analysis takes into account conduction at the structure parts of the rotor and shell, radiation with multi-reflections between the rotor and the shell, and convection to the ambient. (author)

  8. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  9. Urban thermal landscape characterization and analysis

    International Nuclear Information System (INIS)

    Xue, Y; Fung, T; Tsou, J

    2014-01-01

    Urban warming is sensitive to the nature (thermal properties, including albedo, water content, heat capacity and thermal conductivity) and the placement (surface geometry or urban topography) of urban surface. In this research, the pattern and variation of urban surface temperature is regarded as one kind of landscape, urban thermal landscape, which is assumed as the presentation of local surface heating process upon urban landscape. The goal of this research is to develop a research framework incorporating geospatial statistics, thermal infrared remote sensing and landscape ecology to study the urban effect on local surface thermal landscape regarding both the pattern and process. This research chose Hong Kong as the case study. Within the study area, urban and rural area coexists upon a hilly topography. In order to probe the possibility of local surface warming mechanism discrepancy between urban and rural area, the sample points are grouped into urban and rural categories in according with the land use map taken into a linear regression model separately to examine the possible difference in local warming mechanism. Global regression analysis confirmed the relationship between environmental factors and surface temperature and the urban-rural distinctive mechanism of dominating diurnal surface warming is uncovered

  10. Bimodal Nuclear Thermal Rocket Analysis Developments

    Science.gov (United States)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  11. Numerical analysis and modeling of plume meandering in passive scalar dispersion downstream of a wall-mounted cube

    International Nuclear Information System (INIS)

    Rossi, R.; Iaccarino, G.

    2013-01-01

    Highlights: • Scalar dispersion downstream of a wall-mounted cube is examined by DNS and RANS models. • Vortex-shedding and plume meandering are established in the wake of the cube. • Low-frequency modulation is observed in the vortex-shedding and plume meandering. • Counter-gradient transport takes place in the streamwise component of the scalar flux. • Concentration decay and plume spread improved by the unsteady RANS model. -- Abstract: A DNS database is employed to examine the onset of plume meandering downstream of a wall-mounted cube and to address the impact of large-scale unsteadiness in modeling dispersion using the RANS equations. The cube is immersed in a uniform stream where the thin boundary-layer developing over the flat plate is responsible for the onset of vortex-shedding in the wake of the bluff-body. Spectra of velocity and concentration fluctuations exhibit a prominent peak in the energy content at the same frequency, showing that the plume meandering is established by the action of the vortex-shedding. The vortex-shedding and plume meandering display a low-frequency modulation where coherent fluctuations are suppressed at times with a quasi-regular period. The onset of the low-frequency modulation is indicated by a secondary peak in the energy spectrum and confirmed by the autocorrelation of velocity and scalar fluctuations. Unsteady RANS simulations performed with the v 2 − f model are able to detect the onset of the plume meandering and show remarkable improvement of the predicted decay rate and rate of spread of the scalar plume when compared to steady RANS solutions. By computing explicitly the periodic component of velocity and scalar fluctuations, the unsteady v 2 − f model is able to provide a representation of scalar flux components consistent with DNS statistics, where the counter-gradient transport mechanism that takes place in the streamwise component is also captured by URANS results. Nonetheless, the agreement with DNS

  12. In situ analysis of microbial reduction of a nitrate plume in Opalinus clay

    International Nuclear Information System (INIS)

    Bleyen, N.; Smets, S.; Valcke, E.; Albrecht, A.; De Canniere, P.; Schwyn, B.; Wittebroodt, C.

    2012-01-01

    Document available in extended abstract form only. In several countries, such as Belgium, France and Switzerland, clay formations are foreseen as the host rock for geological disposal of bituminized low-level and intermediate-level long-lived radioactive waste. Suitable clay formations exhibit favorable hydro-mechanical and geochemical characteristics, which are expected to retard the migration of leached radionuclides. Along with radionuclides, certain classes of bituminized radioactive waste may also contain high concentrations of NaNO 3 , dispersed into the hydrophobic bitumen matrix used to stabilize the waste. During and after saturation of the disposal gallery, this bituminized waste will start to take up water due to osmosis, resulting in the leaching of significant amounts of NaNO 3 and soluble organic bitumen degradation products (BDP) into the clay pore water. This nitrate plume could cause several geochemical and biochemical processes in the clay surrounding the waste disposal gallery, potentially affecting the barrier function of the host rock. To study these processes, an in situ experiment in the Opalinus Clay, named the Bitumen-Nitrate-Clay interaction (BN) experiment, is being performed at the Mont Terri Rock Laboratory (CH). The experiment consists of a vertical borehole rigged with a downhole equipment containing three packed-off intervals, each lined with a cylindrical sintered stainless steel filter screen to allow contact with the surrounding clay. Prior to the start of the tests, the intervals were injected with an artificial Opalinus Clay pore water, containing all major ions at pore water concentrations at Mont Terri, but no organic matter, and were equilibrated with the surrounding clay for ∼8 months. To ensure a continuous water flow during the tests, each interval is connected to a stainless steel water circulation unit, equipped with water sampling containers, circulation pumps and flow meters. In addition, to continuously monitor the

  13. Thermal analysis of spices decontaminated by irradiation

    International Nuclear Information System (INIS)

    Varsanyi, I.; Farkas, J.; Liptay, G.; Petrik-Brandt, E.

    1979-01-01

    The cell-count-reducing effect of ionizing radiations is well known. To reduce microbiological contamination in the most frequently used spices, ground paprika, black pepper and a mixture of seven spices, a radiation dose of 1.5 Mrad (15 kGy) was applied. The aim of the investigation was to find out whether this dose caused significant changes in the spices which could be detected by thermal analysis. The results unambiguously show that the applied dose does not cause significant changes detectable by thermal analysis. This finding supports earlier experiences according to which no structural changes, disadvantageously influencing utilization of radiation treated spices, are caused by similar or smaller doses. (author)

  14. Thermal analysis applied to irradiated propolis

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Andrea Harumi; Machado, Luci Brocardo; Mastro, N.L. del E-mail: nelida@usp.br

    2002-03-01

    Propolis is a resinous hive product, collected by bees. Raw propolis requires a decontamination procedure and irradiation appears as a promising technique for this purpose. The valuable properties of propolis for food and pharmaceutical industries have led to increasing interest in its technological behavior. Thermal analysis is a chemical analysis that gives information about changes on heating of great importance for technological applications. Ground propolis samples were {sup 60}Co gamma irradiated with 0 and 10 kGy. Thermogravimetry curves shown a similar multi-stage decomposition pattern for both irradiated and unirradiated samples up to 600 deg. C. Similarly, through differential scanning calorimetry , a coincidence of melting point of irradiated and unirradiated samples was found. The results suggest that the irradiation process do not interfere on the thermal properties of propolis when irradiated up to 10 kGy.

  15. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  16. Quantifying mantle structure and dynamics using plume tracing in seismic tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.

    2017-12-01

    Directly linking deep mantle processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of mantle signatures, but the depth and source of the mantle plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the mantle. By analyzing the behavior of mantle plumes we can constrain the vigor of mantle convection, the net rotation of the mantle and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale mantle flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower mantle and in the upper mantle (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net mantle rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the mantle and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different mantle adiabat

  17. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    Directory of Open Access Journals (Sweden)

    Masaru Ishizuka

    2011-01-01

    Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  18. Parameter Uncertainty for Repository Thermal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Greenberg, Harris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dupont, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).

  19. Development of disruption thermal analysis code DREAM

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Seiichiro; Kobayahsi, Takeshi [Kawasaki Heavy Industries Ltd., Kobe (Japan); Seki, Masahiro

    1989-07-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing componenets such as first wall and divertor/limiter are subjected to a intensse heat load in a short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs. It causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes and radiation heat loss in required in the design of these components. This paper describes the computer code DREAM, developed to perform the disruption thermal analysis, taking phase changes and radiation into account. (author).

  20. Development of disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayahsi, Takeshi; Seki, Masahiro.

    1989-01-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing componenets such as first wall and divertor/limiter are subjected to a intensse heat load in a short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs. It causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes and radiation heat loss in required in the design of these components. This paper describes the computer code DREAM, developed to perform the disruption thermal analysis, taking phase changes and radiation into account. (author)

  1. Analysis of Particulates in the Exhaust Plume of a TF30 Engine at Military Power.

    Science.gov (United States)

    1984-05-01

    DIADAH-LCA (2) flHDAR LCAI1’ 2, D)AfI-L(:E (21 DRtDAR-LCE-C. Cieistry Branch (1 DRtDAB-LCE-D (2) D1IDAR-LCNI (2) DRDAR-LCM-SA. R. Westerdahl (1) DRDAR...DRDAR-LCM-SA, R. Westerdahl (1) DBRDAR-LCN-C, Concepts and Analysis Branch (4) DRDAR-LCU (2) DFIDAB-LCU-E (1) 4 Army Ballistic Research Laboratory

  2. Availability Performance Analysis of Thermal Power Plants

    Science.gov (United States)

    Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.

    2018-03-01

    This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.

  3. Current lead thermal analysis code 'CURRENT'

    International Nuclear Information System (INIS)

    Yamaguchi, Masahito; Tada, Eisuke; Shimamoto, Susumu; Hata, Kenichiro.

    1985-08-01

    Large gas-cooled current lead with the capacity more than 30 kA and 22 kV is required for superconducting toroidal and poloidal coils for fusion application. The current lead is used to carry electrical current from the power supply system at room temperature to the superconducting coil at 4 K. Accordingly, the thermal performance of the current lead is significantly important to determine the heat load requirements of the coil system at 4 K. Japan Atomic Energy Research Institute (JAERI) has being developed the large gas-cooled current leads with the optimum condition in which the heat load is around 1 W per 1 kA at 4 K. In order to design the current lead with the optimum thermal performances, JAERI developed thermal analysis code named as ''CURRENT'' which can theoretically calculate the optimum geometric shape and cooling conditions of the current lead. The basic equations and the instruction manual of the analysis code are described in this report. (author)

  4. Thermal transient analysis applied to horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Duong, A.N. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)

    2008-10-15

    Steam assisted gravity drainage (SAGD) is a thermal recovery process used to recover bitumen and heavy oil. This paper presented a newly developed model to estimate cooling time and formation thermal diffusivity by using a thermal transient analysis along the horizontal wellbore under a steam heating process. This radial conduction heating model provides information on the heat influx distribution along a horizontal wellbore or elongated steam chamber, and is therefore important for determining the effectiveness of the heating process in the start-up phase in SAGD. Net heat flux estimation in the target formation during start-up can be difficult to measure because of uncertainties regarding heat loss in the vertical section; steam quality along the horizontal segment; distribution of steam along the wellbore; operational conditions; and additional effects of convection heating. The newly presented model can be considered analogous to pressure transient analysis of a buildup after a constant pressure drawdown. The model is based on an assumption of an infinite-acting system. This paper also proposed a new concept of a heating ring to measure the heat storage in the heated bitumen at the time of testing. Field observations were used to demonstrate how the model can be used to save heat energy, conserve steam and enhance bitumen recovery. 18 refs., 14 figs., 2 appendices.

  5. The micro thermal analysis of polymers

    International Nuclear Information System (INIS)

    Grandy, David Brian

    2002-01-01

    This study is concerned with the development of micro-thermal analysis as a technique for characterising heterogeneous polymers. It is divided into two main parts. In the first part, the use of miniature Wollaston wire near-field thermal probes mounted in an atomic force microscope (AFM) to carry out highly localised thermal analysis (L-TA) of amorphous and semi-crystalline polymers is investigated. Here, the temperature of the probe sensor or tip is scanned over a pre-selected temperature range while in contact with the surface of a sample. It is thereby used to heat a volume of material of the order of several cubic micrometres. The effect of the glass transition, cold crystallisation, melting and degree of crystallinity on L-TA measurements is investigated. The materials used are poly(ethylene terephthalate), polystyrene and fluorocarbon-coated poly(butylene terephthalate). The primary measurements are the micro- or localised analogues of thermomechanical analysis (L-TMA) and differential thermal analysis (L-DTA). The effect of applying a sinusoidal modulation to the temperature of the probe is also investigated. In the second part, conventional ultra-sharp inert AFM probes are used, in conjunction with a variable-temperature microscope stage, to conduct variable-temperature mechanical property-based imaging of phase-separated polymer blends and copolymers. Here, the temperature of the whole sample is varied and the temperature of the probe tip remains essentially the same as that of the sample. The primary AFM imaging mode is pulsed force mode (PFM-AFM). This is an intermittent contact (IC) method in which a mechanical modulation is applied to the probe cantilever. The methodology is demonstrated on a model 50:50 blend of polystyrene and poly(methyl methacrylate) (PS-PMMA) and three segmented polyurethane (SPU) elastomers containing different chain extenders. In doing so, it is shown that PFM-AFM imaging can be carried out successfully over a temperature range

  6. Constraints on the coupled thermal evolution of the Earth's core and mantle, the age of the inner core, and the origin of the 186Os/188Os “core signal” in plume-derived lavas

    Science.gov (United States)

    Lassiter, J. C.

    2006-10-01

    The possibility that some mantle plumes may carry a geochemical signature of core/mantle interaction has rightly generated considerable interest and attention in recent years. Correlated 186Os- 187Os enrichments in some plume-derived lavas (Hawaii, Gorgona, Kostomuksha) have been interpreted as deriving from an outer core with elevated Pt/Os and Re/Os ratios due to the solidification of the Earth's inner core (c.f., [A.D. Brandon, R.J. Walker, The debate over core-mantle interaction, Earth Planet. Sci. Lett. 232 (2005) 211-225.] and references therein). Conclusive identification of a "core signal" in plume-derived lavas would profoundly influence our understanding of mantle convection and evolution. This paper reevaluates the Os-isotope evidence for core/mantle interaction by examining other geochemical constraints on core/mantle interaction, geophysical constraints on the thermal evolution of the outer core, and geochemical and cosmochemical constraints on the abundance of heat-producing elements in the core. Additional study of metal/silicate and sulfide/silicate partitioning of K, Pb, and other trace elements is needed to more tightly constrain the likely starting composition of the Earth's core. However, available data suggest that the observed 186Os enrichments in Hawaiian and other plume-derived lavas are unlikely to derive from core/mantle interaction. 1) Core/mantle interaction sufficient to produce the observed 186Os enrichments would likely have significant effects on other tracers such as Pb- and W-isotopes that are not observed. 2) Significant partitioning of K or other heat-producing elements into the core would produce a "core depletion" pattern in the Silicate Earth very different from that observed. 3) In the absence of heat-producing elements in the core, core/mantle heat flow of ˜ 6-15 TW estimated from several independent geophysical constraints suggests an inner core age (< ˜ 2.5 Ga) too young for the outer core to have developed a significant

  7. Follow the plume: the habitability of Enceladus.

    Science.gov (United States)

    McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter

    2014-04-01

    The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.

  8. Remote Thermal Analysis Through the Internet

    Science.gov (United States)

    Malroy, Eric T.

    2002-07-01

    The Heater of the Hypersonic Tunnel Facility (HTF) was modeled using SINDA/FLUINT thermal software. A description of the model is given. The project presented the opportunity of interfacing the thermal model with the Internet and was a demonstration that complex analysis is possible through the Internet. Some of the issues that need to be addressed related to interfacing software with the Internet are the following: justification for using the Internet, selection of the web server, choice of the CGI language, security of the system, communication among the parties, maintenance of state between web pages, and simultaneous users on the Internet system. The opportunities available for using the Internet for analysis are many and can present a significant jump in technology. This paper presents a vision how interfacing with the Internet could develop in the future. Using a separate Optical Internet (OI) for analysis, coupled with virtual reality analysis rooms (VRAR), could provide a synergistic environment to couple together engineering analysis within industry, academia, and government. The process of analysis could be broken down into sub-components so that specialization could occur resulting in superior quality, minimized cost and reduced time for engineering analysis and manufacturing. Some possible subcomponents of the system are solver routines, databases, Graphical User Interfaces, engineering design software, VRARs, computer processing, CAD systems, manufacturing, and a plethora of other options only limited by ones imagination. On a larger scope, the specialization of companies on the optical network would allow companies to rapidly construct and reconstruct their infrastructure based on changing economic conditions. This could transform business.

  9. Io's Active Eruption Plumes: Insights from HST

    Science.gov (United States)

    Jessup, K. L.; Spencer, J. R.

    2011-10-01

    Taking advantage of the available data, we recently [10] completed a detailed analysis of the spectral signature of Io's Pele-type Tvashtar plume as imaged by the HST Wide Field and Planetary Camera 2 (HST/WFPC2) via absorption during Jupiter transit and via reflected sunlight in 2007, as well as HST/WFPC2 observations of the 1997 eruption of Io's Prometheus-type Pillan plume (Fig. 1). These observations were obtained in the 0.24-0.42 μm range, where the plumes gas absorption and aerosol scattering properties are most conspicuous. By completing a detailed analysis of these observations, several key aspects of the reflectance and the absorption properties of the two plumes have been revealed. Additionally, by considering the analysis of the HST imaging data in light of previously published spectral analysis of Io's Prometheus and Pele-type plumes several trends in the plume properties have been determined, allowing us to define the relative significance of each plume on the rate of re-surfacing occurring on Io and providing the measurements needed to better assess the role the volcanoes play in the stability of Io's tenuous atmosphere.

  10. Constraints on The Coupled Thermal Evolution of the Earth's Core and Mantle, The Age of The Inner Core, And The Origin of the 186Os/188Os Core(?) Signal in Plume-Derived Lavas

    Science.gov (United States)

    Lassiter, J. C.

    2005-12-01

    Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5

  11. Foundation heat transfer analysis for buildings with thermal piles

    International Nuclear Information System (INIS)

    Almanza Huerta, Luis Enrique; Krarti, Moncef

    2015-01-01

    Highlights: • A numerical transient thermal model for thermo-active foundations is developed. • Thermal interactions between thermal piles and building foundations are evaluated. • A simplified analysis method of thermal interactions between thermal piles and building foundations is developed. - Abstract: Thermal piles or thermo-active foundations utilize heat exchangers embedded within foundation footings to heat and/or cool buildings. In this paper, the impact of thermal piles on building foundation heat transfer is investigated. In particular, a simplified analysis method is developed to estimate the annual ground-coupled foundation heat transfer when buildings are equipped with thermal piles. First, a numerical analysis of the thermal performance of thermo-active building foundations is developed and used to assess the interactions between thermal piles and slab-on-grade building foundations. The impact of various design parameters and operating conditions is evaluated including foundation pile depth, building slab width, foundation insulation configuration, and soil thermal properties. Based on the results of a series of parametric analyses, a simplified analysis method is presented to assess the impact of the thermal piles on the annual heat fluxes toward or from the building foundations. A comparative evaluation of the predictions of the simplified analysis method and those obtained from the detailed numerical analysis indicated good agreement with prediction accuracy lower than 5%. Moreover, it is found that thermal piles can affect annual building foundation heat loss/gain by up to 30% depending on foundation size and insulation level

  12. SBWR core thermal hydraulic analysis during startup

    International Nuclear Information System (INIS)

    Lin, J.H.; Huang, R.L.; Sawyer, C.D.

    1993-01-01

    This paper reports on a thermal hydraulic analysis of the SIMPLIFIED BOILING WATER REACTOR (SBWR) during startup. The potential instability during a SBWR startup has drawn the attention of designers, researchers, and engineers. It has not been a concern for a Boiling Water Reactor (BWR) with forced recirculation; however, for SBWR with natural circulation the concern exists. The concern is about the possibility of a geysering mode oscillation during SBWR startup from a cold temperature and a low system pressure with a low natural circulation flow rate. A thermal hydraulic analysis of the SBWR is performed in simulation of the startup using the TRACG computer code. The temperature, pressure, and reactor power profiles of SBWR during the startup are presented. The results are compared with the data of a natural circulation boiling water reactor, the DODEWAARD plant, in which no instabilities have been observed during many startups. It is shown that a SBWR startup which follows proper procedures, geysering and other modes of oscillations can be avoided

  13. Entrainment by turbulent plumes

    Science.gov (United States)

    Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul

    2017-11-01

    Plumes are of relevance to nature and real consequence to industry. While the Morton, Taylor & Turner (1956) plume model is able to estimate the mean physical flux parameters, the process of entrainment is only parametrised in a time-averaged sense and a deeper understanding is key to understanding how they evolve. Various flow configurations, resulting in different entrainment values, are considered; we perform simultaneous PIV and plume-edge detection on saline plumes in water resulting from a point source, a line source and a line source where a vertical wall is placed immediately adjacent. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume the significance of this large scale engulfment is quantified. It is found that significant mass is transported outside the plumes, in particular in regions where large scale structures are absent creating regions of relatively high-momentum ambient fluid. This suggests that the large scale processes, whereby ambient fluid is engulfed into the plume, contribute significantly to the entrainment.

  14. Thermal-Signature-Based Sleep Analysis Sensor

    Directory of Open Access Journals (Sweden)

    Ali Seba

    2017-10-01

    Full Text Available This paper addresses the development of a new technique in the sleep analysis domain. Sleep is defined as a periodic physiological state during which vigilance is suspended and reactivity to external stimulations diminished. We sleep on average between six and nine hours per night and our sleep is composed of four to six cycles of about 90 min each. Each of these cycles is composed of a succession of several stages of sleep that vary in depth. Analysis of sleep is usually done via polysomnography. This examination consists of recording, among other things, electrical cerebral activity by electroencephalography (EEG, ocular movements by electrooculography (EOG, and chin muscle tone by electromyography (EMG. Recordings are made mostly in a hospital, more specifically in a service for monitoring the pathologies related to sleep. The readings are then interpreted manually by an expert to generate a hypnogram, a curve showing the succession of sleep stages during the night in 30s epochs. The proposed method is based on the follow-up of the thermal signature that makes it possible to classify the activity into three classes: “awakening,” “calm sleep,” and “restless sleep”. The contribution of this non-invasive method is part of the screening of sleep disorders, to be validated by a more complete analysis of the sleep. The measure provided by this new system, based on temperature monitoring (patient and ambient, aims to be integrated into the tele-medicine platform developed within the framework of the Smart-EEG project by the SYEL–SYstèmes ELectroniques team. Analysis of the data collected during the first surveys carried out with this method showed a correlation between thermal signature and activity during sleep. The advantage of this method lies in its simplicity and the possibility of carrying out measurements of activity during sleep and without direct contact with the patient at home or hospitals.

  15. Tridimensional statistic analysis of cooling tower plumes. Methods and results relating to power effect and disposal conditions

    International Nuclear Information System (INIS)

    Sabaton, M.; Viollet, P.L.; Darles, A.; Gland, H.

    1980-07-01

    The PANACH three dimensional calculation code developed from tests on a small scale model and validated from full scale measurement campaigns, was used to estimate a three dimensional statistic of plumes. As it is not possible with the calculation times to make a calculation for each radio sondage, a classification method was adopted. This method developed by the French National Meteorological Office is based on a double classification comprising basic classes in which the plumes are assumed to be dynamically similar and a sub-classification to take better account of the true moisture profiles. This statistical method was then applied to the case of 2 or 4 1300 MWe units fitted with natural draught cooling towers of the wet, dry or wet-dry types [fr

  16. Analysis of thermal process of pozzolan production

    Directory of Open Access Journals (Sweden)

    Mejía De Gutiérrez, R.

    2004-06-01

    Full Text Available The objective of this study was evaluated the effect of heat treatment parameters on the pozzolanic activity of natural kaolin clays. The experimental design included three factors: kaolin type, temperature and time. Five types of Colombian kaolin clays were thermally treated from 400 to 1000 °C by 1, 2, and 3 hours. The raw materials and the products obtained were characterized by X-Ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR and Differential Thermal / Thermo gravimetric Analysis (DTAJ TGA. The pozzolanic activity of thermally treated samples according to chemical and mechanical tests was investigated.

    El objetivo de este estudio fue caracterizar las variables de producción de un metacaolín de alta reactividad puzolánica. El diseño experimental utilizó un modelo factorial que consideró tres factores: tipo de caolín (C, temperatura y tiempo. A partir del conocimiento de las fuentes de caolín y el contacto con proveedores y distribuidores del producto a nivel nacional, se seleccionaron cinco muestras representativas de arcillas caoliníticas, las cuales se sometieron a un tratamiento térmico entre 400 y 1.000 ºC (seis niveles de temperatura y tres tiempos de exposición, 1, 2 y 3 horas. Los caolines de origen y los productos obtenidos de cada proceso térmico fueron evaluados mediante técnicas de tipo físico y químico, difracción de rayos X, infrarrojo FTIR, y análisis térmico diferencial (OTA, TGA. Complementariamente se evalúa la actividad puzolánica, tanto química como mecánica, del producto obtenido a diferentes temperaturas de estudio.

  17. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  18. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  19. Thermal analysis of transportation packaging for nuclear spent fuel

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki

    1989-01-01

    Safety analysis of transportation packaging for nuclear spent fuel comprises structural, thermal, containment, shielding and criticality factors, and the safety of a packaging is verified by these analyses. In thermal analysis, the temperature of each part of the packaging is calculated under normal and accident test conditions. As an example of thermal analysis, the temperature distribution of a packaging being subjected to a normal test was calculated by the TRUMP code and compared with measured data. (author)

  20. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  1. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A G; Stordal, F; Knudsen, S [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  2. Plume Tracker: Interactive mapping of volcanic sulfur dioxide emissions with high-performance radiative transfer modeling

    Science.gov (United States)

    Realmuto, Vincent J.; Berk, Alexander

    2016-11-01

    We describe the development of Plume Tracker, an interactive toolkit for the analysis of multispectral thermal infrared observations of volcanic plumes and clouds. Plume Tracker is the successor to MAP_SO2, and together these flexible and comprehensive tools have enabled investigators to map sulfur dioxide (SO2) emissions from a number of volcanoes with TIR data from a variety of airborne and satellite instruments. Our objective for the development of Plume Tracker was to improve the computational performance of the retrieval procedures while retaining the accuracy of the retrievals. We have achieved a 300 × improvement in the benchmark performance of the retrieval procedures through the introduction of innovative data binning and signal reconstruction strategies, and improved the accuracy of the retrievals with a new method for evaluating the misfit between model and observed radiance spectra. We evaluated the accuracy of Plume Tracker retrievals with case studies based on MODIS and AIRS data acquired over Sarychev Peak Volcano, and ASTER data acquired over Kilauea and Turrialba Volcanoes. In the Sarychev Peak study, the AIRS-based estimate of total SO2 mass was 40% lower than the MODIS-based estimate. This result was consistent with a 45% reduction in the AIRS-based estimate of plume area relative to the corresponding MODIS-based estimate. In addition, we found that our AIRS-based estimate agreed with an independent estimate, based on a competing retrieval technique, within a margin of ± 20%. In the Kilauea study, the ASTER-based concentration estimates from 21 May 2012 were within ± 50% of concurrent ground-level concentration measurements. In the Turrialba study, the ASTER-based concentration estimates on 21 January 2012 were in exact agreement with SO2 concentrations measured at plume altitude on 1 February 2012.

  3. Ninth Thermal and Fluids Analysis Workshop Proceedings

    Science.gov (United States)

    Sakowski, Barbara (Compiler)

    1999-01-01

    The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.

  4. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    Science.gov (United States)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  5. Spectrum Diagnosis for Fuchsia Plume of Hall Effect Thruster with Xenon as Propellant

    International Nuclear Information System (INIS)

    Yu Daren; Ding Jiapeng; Dai Jingmin

    2006-01-01

    The colour of the Hall effect thruster's plume is often light-green, and sometimes a fuchsia plume appears during experiments. Based on a spectrum and colour analysis, and a comparison with normal plumes, a conclusion is made that the density of the Xe ions and the temperature of electrons are low when the plume appears fuchsia. In this condition, most of the components of the plume are Xe atoms, and the ionization rate of the propellant is low

  6. Analysis of thermal power calibration method

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.

    2000-01-01

    The methods for determining fuel element burnup have recently become interesting because of activities related to the shipment of highly enriched fuel elements back to the United States for final disposal before 2009. The most common and practical method for determining fuel element burnup in research reactors is reactor calculation. Experience has shown that burnup calculations become complicated and biased with uncertainties if a long period of reactor operation must be reproduced. Besides this, accuracy of calculated burnup is always limited with accuracy of reactor power calibration, since burnup calculation is based on calculated power density distribution, which is usually expressed in terms of power released per fuel element and normalised to the reactor power It is obvious that reactor thermal power calibration is very important for precise fuel element burnup calculation. Calculated fuel element burnup is linearly dependent on the thermal reactor power. The reactor power level may be determined from measured absolute thermal flux distribution across the core in the horizontal and vertical planes. Flux distributions are measured with activation of cadmium covered and bare foils irradiated by the steady reactor power. But it should be realised that this method is time consuming and not accurate. This method is practical only for zero power reactors and is in practice very seldom performed for other reactors (e.g. for TRIGA reactor in Ljubljana absolute thermal flux distribution was not performed since reactor reconstruction in 1991). In case of power reactors and research reactors in which a temperature rise across the core is produced and measured than a heat balance method is the most common and accurate method of determining the power output of the core. The purpose of this paper is to analyse the accuracy of calorimetric reactor power calibration method and to analyse the influence of control rod position on nuclear detector reading for TRIGA reactors

  7. Differential-thermal analysis of irradiated lignite

    International Nuclear Information System (INIS)

    Chichek, F.; Eyubova, N.

    2006-01-01

    Full text: In this theme our purpose is to explain thermo-differential analysis of lignites irradiated. During experiment Caraman Ermenek (washed), Caraman Ermenek (crude), Nevshehir (crude), Slopi (crude), Trakya Harman (washed) lignite coals were used. Five of five kinds of coal samples with 3mm and 1gr of each sample were obtained. Then they were filled into the Tubes after having dried total 25 samples with 1 gr at 1000 degrees temperature for one hour. Air in the tubes was pumped out and closed. Coal samples in vacuum medium were irradiated by gamma rays of Co60 at 5.5 kGy, 19.2 kGy, 65.7 kGy, 169.6 kGy, 411.2 kGy doses to the normal conditions. Then differential thermal analysis was carried out both in original and the samples irradiated. Argon gas was used to make inert medium in the camera. T=200-8500 degrees temperature was selected. At the experiment done from 1000-1300 degrees temperatures too great endothermic reaction pick was begun to form by being observed thermal changings. At 3000-4200 degrees temperature exothermic reaction picks and at 7000 degrees parallel exothermic reaction picks were observed. Initial endothermic and exothermic reaction picks in five lignite samples were observed like a sharp curve. At the end coal irradiated samples were compared with original coal samples. At the result of experiment it was revealed that in comparison with original coal samples coal samples irradiated form exothermic and endothermic curves at very reaction pick and temperature intervals of these pick were large. Besides loss of weight was observed to begin at low temperatures in samples irradiated and especially momentary weight loss at some heats in the rang of known temperatures was observed in the coal Slopi contain in bitumen. Because of heat the weigh loss in the non irradiated samples forms parabolic curve and because of heat the weight loss in the samples irradiated forms stepped curves. It has shown that the coal irradiated can be easily departed by

  8. Analysis of Non-contact Acousto Thermal Signature Data (Postprint)

    Science.gov (United States)

    2016-02-01

    AFRL-RX-WP-JA-2016-0321 ANALYSIS OF NON-CONTACT ACOUSTO-THERMAL SIGNATURE DATA (POSTPRINT) Amanda K. Criner AFRL/RX...October 2014 – 16 September 2015 4. TITLE AND SUBTITLE ANALYSIS OF NON-CONTACT ACOUSTO-THERMAL SIGNATURE DATA (POSTPRINT) 5a. CONTRACT NUMBER...words) The non-contact acousto-thermal signature (NCATS) is a nondestructive evaluation technique with potential to detect fatigue in materials such as

  9. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  10. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  11. Micro-thermal analysis of polyester coatings

    Science.gov (United States)

    Fischer, Hartmut R.

    2010-04-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure like chain scission and cross-linking are manifested by a shift of the LTA detectable Tg and by a change of the slope of the part of the LTA graph responsible for the penetration of the hot sensor into the material after passing the glass transition temperature. As such LTA is a valuable tool to have a quick look into coating surfaces and especially their ageing. The photo-degradation of polyester in air leads to the formation of a cross-linked network at a surface layer of about 3-4 μm coupled with an increase in hardness and of the glass transition temperature by ˜90 K, the effect is less drastic for a photo-degradation in a nitrogen environment. Moreover, the presence of a non-equilibrium dense surface layer with a higher Tg formed during the drying of the coating formulation and the film solidification can be shown.

  12. Pharmaceutical applications of dynamic mechanical thermal analysis.

    Science.gov (United States)

    Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P

    2012-04-01

    The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V. All rights reserved.

  13. THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR

    International Nuclear Information System (INIS)

    C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER

    2000-01-01

    The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m 2 . A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m 2 . The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements

  14. Compatibility analysis of DUPIC fuel(4) - thermal hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Won; Chae, Kyung Myung; Choi, Hang Bok

    2000-07-01

    Thermal-hydraulic compatibility of the DUPIC fuel bundle in the CANDU reactor has been studied. The critical channel power, the critical power ratio, the channel exit quality and the channel flow are calculated for the DUPIC and the standard fuels by using the NUCIRC code. The physical models and associated parametric values for the NUCIRC analysis of the fuels are also presented. Based upon the slave channel analysis, the critical channel power and the critical power ratios have been found to be very similar for the two fuel types. The same dryout model is used in this study for the standard and the DUPIC fuel bundles. To assess the dryout characteristics of the DUPIC fuel bundle, the ASSERT-PV code has been used for the subchannel analysis. Based upon the results of the subchannel analysis, it is found that the dryout location and the power for the two fuel types are indeed very similar. This study shows that thermal performance of the DUPIC fuel is not significantly different from that of the standard fuel.

  15. Thermal analysis methods in the characterization of photocatalytic titania precursors

    Czech Academy of Sciences Publication Activity Database

    Pulišová, Petra; Večerníková, Eva; Maříková, Monika; Balek, V.; Boháček, Jaroslav; Šubrt, Jan

    2012-01-01

    Roč. 108, č. 2 (2012), s. 489-492 ISSN 1388-6150 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : differential thermal analysis * thermogravimetry * emanation thermal analysis * titanium dioxide * photocatalyst Subject RIV: CA - Inorganic Chemistry Impact factor: 1.982, year: 2012

  16. An Integrated Approach to Thermal Analysis of Pharmaceutical Solids

    Science.gov (United States)

    Riley, Shelley R. Rabel

    2015-01-01

    A three-tiered experiment for undergraduate Instrumental Analysis students is presented in which students characterize the solid-state thermal behavior of an active pharmaceutical ingredient (acetaminophen) and excipient (a-lactose hydrate) using differential scanning calorimetry, thermogravimetric analysis, and thermal microscopy. Students are…

  17. Performance testing of thermal analysis codes for nuclear fuel casks

    International Nuclear Information System (INIS)

    Sanchez, L.C.

    1987-01-01

    In 1982 Sandia National Laboratories held the First Industry/Government Joint Thermal and Structural Codes Information Exchange and presented the initial stages of an investigation of thermal analysis computer codes for use in the design of nuclear fuel shipping casks. The objective of the investigation was to (1) document publicly available computer codes, (2) assess code capabilities as determined from their user's manuals, and (3) assess code performance on cask-like model problems. Computer codes are required to handle the thermal phenomena of conduction, convection and radiation. Several of the available thermal computer codes were tested on a set of model problems to assess performance on cask-like problems. Solutions obtained with the computer codes for steady-state thermal analysis were in good agreement and the solutions for transient thermal analysis differed slightly among the computer codes due to modeling differences

  18. Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test

    Science.gov (United States)

    Bradshaw, Heather

    2012-01-01

    This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.

  19. Thermal Analysis of Sintered Silver Nanoparticles Film

    Directory of Open Access Journals (Sweden)

    M. Keikhaie

    2014-07-01

    Full Text Available Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in materials play very important role on the effective thermal conductivity. In this paper, finite element method (FEM was utilized to simulate the effect of pores on the effective thermal conductivity of sintered silver nanoparticles film. The simulation results indicate that the effective thermal conductivity of film is different at different directions and would be enhanced when the pore angle is 90. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation or conductor property. Because of there is no similar experimental data for this simulation results, this paper is a comparative work among three different models.

  20. Thermal and Structural Analysis of FIMS Grating

    Directory of Open Access Journals (Sweden)

    K.-I. Seon

    2001-06-01

    Full Text Available Far ultraviolet IMaging Spectrograph (FIMS should be designed to maintain its structural stability and to minimize optical performance degradation in launch and in operation enviroments. The structural and thermal analyzes of grating and grating mount system, which are directly related to FIMS optical performance, was performed using finite element method. The grating mount was made to keep the grating stress down, while keeping the natural frequency of the grating mount higher than 100 Hz. Transient and static thermal analyzes were also performed and the results shows that the thermal stress on the grating can be attenuated sufficiently The optical performance variation due to temperature variation was within the allowed range.

  1. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  2. The validation and analysis of novel stereo-derived smoke plume products from AATSR and their application to fire events from the 2008 Russian fire season

    Science.gov (United States)

    Fisher, D.; Muller, J.-P.; Yershov, V.

    2012-04-01

    Biomass burning events in Boreal forests generate significant amounts of important greenhouse gases; including CO2, CO, NOx [1,2]. When the injection height is above the boundary layer (BL), the lifespan of these chemicals is greatly extended, as is their spatial distribution [2]. Typically, in chemical transport models (CTMs), BL injection heights are simplified and assumed to be constant. This is in part due to poor data availability. This leads to a reduction in the accuracy of the distribution outputs from such models. To generate better smoke-plume injection height (SPIH) inputs into CTMs, measurements need to be made of smoke plume heights, which can be used as a proxy for aerosol injection height into the atmosphere. One method of measuring SPIH is through stereo-photogrammetry [5], originally applied to optically thick clouds [3,4]. Here, we present validation and analysis of the M6 stereo matching method [5] for the determination of SPIHs applied to AATSR. It is referred to as M6 due to a shared heritage with the other M-series matchers [3,4]. M6 utilizes novel normalization and matching techniques to generate improved results, in terms of coverage and accuracy, over these afore-referenced matchers of similar type. Validation is carried out against independent, coincident and higher resolution SPIH measurements obtained from both the CALIOP instrument carried onboard the NASA-CNES CALIPSO satellite and also against measurements from the MISR Smoke Plume Product obtained by manual measurements using the MINX system (http://www.openchannelsoftware.com/projects/MINX) with the MISR instrument onboard the NASA satellite Terra. The results of this inter-comparison show an excellent agreement between AATSR and the CALIOP and MISR measurements. Further an inter-comparison between a heritage M-series matcher, M4 [3], also against MISR data demonstrates the significant improvement in SPIH generated by M6. [1] Crutzen, P. J., L. E. Heidt, et al. (1979). "Biomass

  3. Thermal creep force: analysis and application

    OpenAIRE

    Wolfe, David M.

    2016-01-01

    Approved for public release; distribution is unlimited The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force, in particular, has been subject to differing interpretations of the direction in which it acts and its order of magnitude. A horizontal vane radiometer design is provided, which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kin...

  4. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  5. Thermal analysis of annular fins with temperature-dependent thermal properties

    Institute of Scientific and Technical Information of China (English)

    I. G. AKSOY

    2013-01-01

    The thermal analysis of the annular rectangular profile fins with variable thermal properties is investigated by using the homotopy analysis method (HAM). The thermal conductivity and heat transfer coefficient are assumed to vary with a linear and power-law function of temperature, respectively. The effects of the thermal-geometric fin parameter and the thermal conductivity parameter variations on the temperature distribution and fin efficiency are investigated for different heat transfer modes. Results from the HAM are compared with numerical results of the finite difference method (FDM). It can be seen that the variation of dimensionless parameters has a significant effect on the temperature distribution and fin efficiency.

  6. Io Pele plume

    Science.gov (United States)

    2000-01-01

    Voyager 1 took this narrow-angle camera image on 5 March 1979 from a distance of 450,000 kilometers. At this geometry, the camera looks straight down through a volcanic plume at one of Io's most active volcanos, Pele. The large heart-shaped feature is the region where Pele's plume falls to the surface. At the center of the 'heart' is the small dark fissure that is the source of the eruption. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  7. SLAC divertor channel entrance thermal stress analysis

    International Nuclear Information System (INIS)

    Johnson, G.L.; Stein, W.; Lu, S.C.; Riddle, R.A.

    1985-01-01

    X-ray beams emerging from the new SLAC electron-positron storage ring (PEP) impinge on the entrance to tangential divertor channels causing highly localized heating in the channel structure. Analyses were completed to determine the temperatures and thermally-induced stresses due to this heating. These parts are cooled with water flowing axially over them at 30 0 C. The current design and operating conditions should result in the entrance to the new divertor channel operating at a peak temperature of 123 0 C with a peak thermal stress at 91% of yield. Any micro-cracks that form due to thermally-induced stresses should not propagate to the coolant wall nor form a path for the coolant to leak into the storage ring vacuum. 34 figs., 4 tabs

  8. Thermal analysis of a glass bending process

    International Nuclear Information System (INIS)

    Buonanno, G.; Dell'Isola, M.; Frattolillo, A.; Giovinco, G.

    2005-01-01

    The paper presents the thermal simulation of naturally ventilated ovens used in glass sheets hot forming for windscreen production. The determination of thermal and flow conditions in the oven and, consequently, the windshield temperature distribution is necessary both for the productive process optimisation and to assure beforehand, without any iterative tuning process, the required characteristics of the product considered. To this purpose, the authors carried out a 3D numerical simulation of the thermal interaction between the glass and the oven internal surfaces during the whole heating process inside the oven. In particular, a finite volumes method was used to take into account both the convective, conductive and radiative heat transfer in the oven. The numerical temperature distribution in the glass was validated through the comparison with the data obtained from an experimental apparatus designed and built for the purpose

  9. Small thermal oscillation analysis of the MOTA

    International Nuclear Information System (INIS)

    Guthrie, G.L.

    1978-09-01

    The MOTA (Materials Open Test Assembly) was designed to achieve a degree of thermal regulation compatible with the generation of useful materials property data obtained by irradiation of candidate reactor structural materials in the FFTF. Attaining a high degree of regulation is limited by the necessity to avoid undamped thermal oscillations. The report documents some of the analyses used to select usable configurations and determine effects of parameter choices, and investigates limitations on allowable gains of the sensor-control-valve assembly. The main purpose of the document is to make the methods available to others, rather than to give a tabulation of specific numerical results

  10. Dilution in Transition Zone between Rising Plumes and Surface Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben

    2004-01-01

    The papers presents some physical experiments with the dilution of sea outfall plumes with emphasize on the transition zone where the relative fast flowing vertical plume turns to a horizontal surface plume following the slow sea surface currents. The experiments show that a considerable dilution...

  11. Thermal analysis of cold vacuum drying of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G.

    1998-07-20

    The thermal analysis examined transient thermal and chemical behavior of the Multi canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with Mark IV N, Reactor spent fuel in four fuel baskets and one scrap basket. This analysis provides the basis for the MCO thermal behavior at the CVD Facility for its Phase 2 Safety Analysis Report (revision 4).

  12. Inverse thermal analysis method to study solidification in cast iron

    DEFF Research Database (Denmark)

    Dioszegi, Atilla; Hattel, Jesper

    2004-01-01

    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... inverse thermal analysis was tested on both experimental and simulated data....

  13. Thermal analysis of the IDENT 1578 fuel pin shipping container

    International Nuclear Information System (INIS)

    Ingham, J.G.

    1980-01-01

    The IDENT 1578 container, which is a 110-in. long 5.5-in. OD tube, is designed for shipping FFTF fuel elements in T-3 casks between HEDL, HFEF, and other laboratories. The thermal analysis was conducted to evaluate whether or not the container satisfies its thermal design criteria

  14. Thermal analysis elements of liquefied gas storage tanks

    Science.gov (United States)

    Yanvarev, I. A.; Krupnikov, A. V.

    2017-08-01

    Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.

  15. Lumped thermal capacitance analysis of transient heat conduction ...

    African Journals Online (AJOL)

    Lumped thermal capacitance analysis has been undertaken to investigate the transient temperature variations, associated induced thermal stress distributions, and the structural integrity of Ghana Research Reactor-1 (GHAR R-1) vessel after 15 years of operation. The beltline configuration of the cylindrical vessel of the ...

  16. Statistical analysis of thermal conductivity of nanofluid containing ...

    Indian Academy of Sciences (India)

    Thermal conductivity measurements of nanofluids were analysed via two-factor completely randomized design and comparison of data means is carried out with Duncan's multiple-range test. Statistical analysis of experimental data show that temperature and weight fraction have a reasonable impact on the thermal ...

  17. Thermal-buckling analysis of an LMFBR overflow vessel

    International Nuclear Information System (INIS)

    Severud, L.K.

    1983-01-01

    During a reactor scram, cold sodium flows into the hot overflow vessel. The effect on the vessel is a compressive thermal stress in a zone just above the sodium level. This condition must be sufficiently controlled to preclude thermal buckling. Also, under repeated scrams, the vessel should not suffer thermal stress low cycle fatigue. To evaluate the closeness to buckling and satisfaction of ASMA Code limits, a combination of simple approximations, detailed elastic shell buckling analyses, and correlations to results of thermal buckling tests were employed. This paper describes the analysis methods, special considerations, and evaluations accomplished for this FFTF vessel to assure satisfaction of ASME buckling design criteria, rules, and limits

  18. Thermodynamic analysis of pumped thermal electricity storage

    International Nuclear Information System (INIS)

    White, Alexander; Parks, Geoff; Markides, Christos N.

    2013-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater need for electricity storage. Although there are many existing and emerging storage technologies, most have limitations in terms of geographical constraints, high capital cost or low cycle life, and few are of sufficient scale (in terms of both power and storage capacity) for integration at the transmission and distribution levels. This paper is concerned with a relatively new concept which will be referred to here as Pumped Thermal Electricity Storage (PTES), and which may be able to make a significant contribution towards future storage needs. During charge, PTES makes use of a high temperature ratio heat pump to convert electrical energy into thermal energy which is stored as ‘sensible heat’ in two thermal reservoirs, one hot and one cold. When required, the thermal energy is then converted back to electricity by effectively running the heat pump backwards as a heat engine. The paper focuses on thermodynamic aspects of PTES, including energy and power density, and the various sources of irreversibility and their impact on round-trip efficiency. It is shown that, for given compression and expansion efficiencies, the cycle performance is controlled chiefly by the ratio between the highest and lowest temperatures in each reservoir rather than by the cycle pressure ratio. The sensitivity of round-trip efficiency to various loss parameters has been analysed and indicates particular susceptibility to compression and expansion irreversibility

  19. Experimental analysis of current conduction through thermally ...

    Indian Academy of Sciences (India)

    Electrical properties of SiO2 grown on the Si-face of the epitaxial 4H-SiC ... Thermal oxide reliability is one of the most critical concerns in the realization of ... material for high temperature, high power, high frequency, and nonvolatile .... conduction mechanism in MOSiC system with varying oxide thicknesses has been.

  20. Thermal CFD Analysis of Tubular Light Guides

    Directory of Open Access Journals (Sweden)

    Ondřej Šikula

    2013-12-01

    Full Text Available Tubular light guides are applicable for daylighting of windowless areas in buildings. Despite their many positive indoor climate aspects they can also present some problems with heat losses and condensation. A computer CFD model focused on the evaluation of temperature distribution and air flow inside tubular light guides of different dimensions was studied. The physical model of the tested light guides of lengths more than 0.60 m proves shows that Rayleigh numbers are adequate for a turbulent air flow. The turbulent model was applied despite the small heat flux differences between the turbulent and laminar model. The CFD simulations resulted into conclusions that the growing ratio of length/diameter increases the heat transmission loss/linear transmittance as much as by 50 percent. Tubular light guides of smaller diameters have lower heat transmission losses compared to the wider ones of the same lengths with the same outdoor temperature being taken into account. The simulation results confirmed the thermal bridge effect of the tubular light guide tube inside the insulated flat roof details. The thermal transmittance of the studied light guides in the whole roof area was substituted with the point thermal bridges. This substitution gives possibility for simple thermal evaluation of the tubular light pipes in roof constructions.

  1. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  2. Evaluation of Thermal Margin Analysis Models for SMART

    International Nuclear Information System (INIS)

    Seo, Kyong Won; Kwon, Hyuk; Hwang, Dae Hyun

    2011-01-01

    Thermal margin of SMART would be analyzed by three different methods. The first method is subchannel analysis by MATRA-S code and it would be a reference data for the other two methods. The second method is an on-line few channel analysis by FAST code that would be integrated into SCOPS/SCOMS. The last one is a single channel module analysis by safety analysis. Several thermal margin analysis models for SMART reactor core by subchannel analysis were setup and tested. We adopted a strategy of single stage analysis for thermal analysis of SMART reactor core. The model should represent characteristics of the SMART reactor core including hot channel. The model should be simple as possible to be evaluated within reasonable time and cost

  3. Variation in aerosol nucleation and growth in coal-fired power plant plumes due to background aerosol, meteorology and emissions: sensitivity analysis and parameterization.

    Science.gov (United States)

    Stevens, R. G.; Lonsdale, C. L.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.; Pierce, J. R.

    2012-04-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulphur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometres and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this presentation, we focus on sub-grid sulphate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. Based on the results of the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM) with online TwO Moment Aerosol Sectional (TOMAS) microphysics, we develop a computationally efficient, but physically based, parameterization that predicts the characteristics of aerosol formed within coal-fired power plant plumes based on parameters commonly available in global and regional-scale models. Given large-scale mean meteorological parameters, emissions from the power plant, mean background condensation sink, and the desired distance from the source, the parameterization will predict the fraction of the emitted SO2 that is oxidized to H2SO4, the fraction of that H2SO4 that forms new particles instead of condensing onto preexisting particles, the median diameter of the newly-formed particles, and the number of newly-formed particles per kilogram SO2 emitted. We perform a sensitivity analysis of these characteristics of the aerosol size distribution to the meteorological parameters, the condensation sink, and the emissions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large preexisting aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the

  4. On predicting mantle mushroom plumes

    Directory of Open Access Journals (Sweden)

    Ka-Kheng Tan

    2011-04-01

    Top cooling may produce plunging plumes of diameter of 585 km and at least 195 Myr old. The number of cold plumes is estimated to be 569, which has not been observed by seismic tomography or as cold spots. The cold plunging plumes may overwhelm and entrap some of the hot rising plumes from CMB, so that together they may settle in the transition zone.

  5. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  6. An analysis of millimetre-wave interferometry on Hall thruster plumes by finite difference time domain simulations

    International Nuclear Information System (INIS)

    Lee, Jungpyo; Cappelli, Mark A

    2008-01-01

    In this paper, we present finite difference time domain (FDTD) simulations of millimetre-wave propagation through the near-field plasma plume of low power Hall thrusters. The simulations are intended to address potential issues (collisions, magnetic fields) that may affect the validity of simple theory used for phase shift determination in the recent measurements of plasma density using microwave interferometry (Cappelli et al 2006 J. Phys. D: Appl. Phys. 39 4582). One-dimensional plane wave FDTD simulations indicate that plasma non-uniformities along the direction of wave propagation have only a minor effect on the phase shifts estimated from collisionless, non-magnetized wave propagation through a path-length averaged plasma slab. Three-dimensional FDTD simulations that also account for electron collisions and magnetic fields indicate that the departure from the use of usual simple models is no more than about 15%, well within the limits of uncertainty in the experimental measurements taken within the near field of these plasma sources

  7. PLUME and research sotware

    Science.gov (United States)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  8. Buoyant plume calculations

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures

  9. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  10. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  11. Dynamic thermal analysis of machines in running state

    CERN Document Server

    Wang, Lihui

    2014-01-01

    With the increasing complexity and dynamism in today’s machine design and development, more precise, robust and practical approaches and systems are needed to support machine design. Existing design methods treat the targeted machine as stationery. Analysis and simulation are mostly performed at the component level. Although there are some computer-aided engineering tools capable of motion analysis and vibration simulation etc., the machine itself is in the dry-run state. For effective machine design, understanding its thermal behaviours is crucial in achieving the desired performance in real situation. Dynamic Thermal Analysis of Machines in Running State presents a set of innovative solutions to dynamic thermal analysis of machines when they are put under actual working conditions. The objective is to better understand the thermal behaviours of a machine in real situation while at the design stage. The book has two major sections, with the first section presenting a broad-based review of the key areas of ...

  12. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  13. Shuttle TPS thermal performance and analysis methodology

    Science.gov (United States)

    Neuenschwander, W. E.; Mcbride, D. U.; Armour, G. A.

    1983-01-01

    Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program.

  14. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  15. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    Energy Technology Data Exchange (ETDEWEB)

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer`s three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996.

  16. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    International Nuclear Information System (INIS)

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer's three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996

  17. LOFT blowdown loop piping thermal analysis Class I review

    International Nuclear Information System (INIS)

    Kinnaman, T.L.

    1978-01-01

    In accordance with ASME Code, Section III requirements, all analyses of Class I components must be independently reviewed. Since the LOFT blowdown loop piping up through the blowdown valve is a Class I piping system, the thermal analyses are reviewed. The Thermal Analysis Branch comments to this review are also included. It is the opinion of the Thermal Analysis Branch that these comments satisfy all of the reviewers questions and that the analyses should stand as is, without additional considerations in meeting the ASME Code requirements and ANC Specification 60139

  18. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

    Science.gov (United States)

    Esposti Ongaro, Tomaso; Cerminara, Matteo

    2016-10-01

    In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at

  19. Window design : visual and thermal consequences : analysis of the thermal and daylighting performance of windows

    NARCIS (Netherlands)

    Bergem-Jansen, P.M. van; Soeleman, R.S.

    1979-01-01

    Selected results of an analysis for the thermal and lighting requirements associated with windows in utility buildings are presented. This analysis concerns the effects of r¡indow size and shape, orientation and of different ways of supplementing the daylight by artifieial light for a typical office

  20. The analysis of thermally stimulated processes

    CERN Document Server

    Chen, R; Pamplin, Brian

    1981-01-01

    Thermally stimulated processes include a number of phenomena - either physical or chemical in nature - in which a certain property of a substance is measured during controlled heating from a 'low' temperature. Workers and graduate students in a wide spectrum of fields require an introduction to methods of extracting information from such measurements. This book gives an interdisciplinary approach to various methods which may be applied to analytical chemistry including radiation dosimetry and determination of archaeological and geological ages. In addition, recent advances are included, such

  1. Viscoelastic Analysis of Thermally Stiffening Polymer Nanocomposites

    Science.gov (United States)

    Ehlers, Andrew; Rende, Deniz; Senses, Erkan; Akcora, Pinar; Ozisik, Rahmi

    Poly(ethylene oxide), PEO, filled with silica nanoparticles coated with poly(methyl methacrylate), PMMA, was shown to present thermally stiffening behavior above the glass transition temperature of both PEO and PMMA. In the current study, the viscoelastic beahvior of this nanocomposite system is investigated via nanoindenation experiments to complement on going rheological studies. Results were compared to neat polymers, PEO and PMMA, to understand the effect of coated nanoparticles. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  2. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  3. Comparison study of exhaust plume impingement effects of small mono- and bipropellant thrusters using parallelized DSMC method.

    Directory of Open Access Journals (Sweden)

    Kyun Ho Lee

    Full Text Available A space propulsion system is important for the normal mission operations of a spacecraft by adjusting its attitude and maneuver. Generally, a mono- and a bipropellant thruster have been mainly used for low thrust liquid rocket engines. But as the plume gas expelled from these small thrusters diffuses freely in a vacuum space along all directions, unwanted effects due to the plume collision onto the spacecraft surfaces can dramatically cause a deterioration of the function and performance of a spacecraft. Thus, aim of the present study is to investigate and compare the major differences of the plume gas impingement effects quantitatively between the small mono- and bipropellant thrusters using the computational fluid dynamics (CFD. For an efficiency of the numerical calculations, the whole calculation domain is divided into two different flow regimes depending on the flow characteristics, and then Navier-Stokes equations and parallelized Direct Simulation Monte Carlo (DSMC method are adopted for each flow regime. From the present analysis, thermal and mass influences of the plume gas impingements on the spacecraft were analyzed for the mono- and the bipropellant thrusters. As a result, it is concluded that a careful understanding on the plume impingement effects depending on the chemical characteristics of different propellants are necessary for the efficient design of the spacecraft.

  4. Thermal conductivity analysis and applications of nanocellulose materials

    Science.gov (United States)

    Uetani, Kojiro; Hatori, Kimihito

    2017-01-01

    Abstract In this review, we summarize the recent progress in thermal conductivity analysis of nanocellulose materials called cellulose nanopapers, and compare them with polymeric materials, including neat polymers, composites, and traditional paper. It is important to individually measure the in-plane and through-plane heat-conducting properties of two-dimensional planar materials, so steady-state and non-equilibrium methods, in particular the laser spot periodic heating radiation thermometry method, are reviewed. The structural dependency of cellulose nanopaper on thermal conduction is described in terms of the crystallite size effect, fibre orientation, and interfacial thermal resistance between fibres and small pores. The novel applications of cellulose as thermally conductive transparent materials and thermal-guiding materials are also discussed. PMID:29152020

  5. Thermal Analysis Of 3013/9975 Configuration

    International Nuclear Information System (INIS)

    Gupta, N.

    2009-01-01

    The 3013 containers are designed in accordance with the DOE-STD-3013-2004 and are qualified to store plutonium (Pu) bearing materials for 50 years. The U.S. Department of Energy (DOE) certified Model 9975 shipping package is used to transport the 3013 containers to the K-Area Material Storage (KAMS) facility at the Savannah River Site (SRS) and to store the containers until the plutonium can be properly dispositioned. Detailed thermal analyses to support the storage in the KAMS facility are given in References 2, 3, and 4. The analyses in this paper serve to provide non-accident condition, non-bounding, specific 3013 container temperatures for use in the surveillance activities. This paper presents a methodology where critical component temperatures are estimated using numerical methods over a range of package and storage parameters. The analyses include factors such as ambient storage temperature and the content weight, density, heat generation rate, and fill height, that may impact the thermal response of the packages. Statistical methods are used to develop algebraic equations for ease of computations to cover the factor space. All computations were performed in BTU-FT-Hr- o F units.

  6. Stochastic analysis of the efficiency of coupled hydraulic-physical barriers to contain solute plumes in highly heterogeneous aquifers

    Science.gov (United States)

    Pedretti, Daniele; Masetti, Marco; Beretta, Giovanni Pietro

    2017-10-01

    The expected long-term efficiency of vertical cutoff walls coupled to pump-and-treat technologies to contain solute plumes in highly heterogeneous aquifers was analyzed. A well-characterized case study in Italy, with a hydrogeological database of 471 results from hydraulic tests performed on the aquifer and the surrounding 2-km-long cement-bentonite (CB) walls, was used to build a conceptual model and assess a representative remediation site adopting coupled technologies. In the studied area, the aquifer hydraulic conductivity Ka [m/d] is log-normally distributed with mean E (Ya) = 0.32 , variance σYa2 = 6.36 (Ya = lnKa) and spatial correlation well described by an exponential isotropic variogram with integral scale less than 1/12 the domain size. The hardened CB wall's hydraulic conductivity, Kw [m/d], displayed strong scaling effects and a lognormal distribution with mean E (Yw) = - 3.43 and σYw2 = 0.53 (Yw =log10Kw). No spatial correlation of Kw was detected. Using this information, conservative transport was simulated across a CB wall in spatially correlated 1-D random Ya fields within a numerical Monte Carlo framework. Multiple scenarios representing different Kw values were tested. A continuous solute source with known concentration and deterministic drains' discharge rates were assumed. The efficiency of the confining system was measured by the probability of exceedance of concentration over a threshold (C∗) at a control section 10 years after the initial solute release. It was found that the stronger the aquifer heterogeneity, the higher the expected efficiency of the confinement system and the lower the likelihood of aquifer pollution. This behavior can be explained because, for the analyzed aquifer conditions, a lower Ka generates more pronounced drawdown in the water table in the proximity of the drain and consequently a higher advective flux towards the confined area, which counteracts diffusive fluxes across the walls. Thus, a higher σYa2 results

  7. An Overview of Plume Tracker: Mapping Volcanic Emissions with Interactive Radiative Transfer Modeling

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Guiang, C.

    2014-12-01

    Infrared remote sensing is a vital tool for the study of volcanic plumes, and radiative transfer (RT) modeling is required to derive quantitative estimation of the sulfur dioxide (SO2), sulfate aerosol (SO4), and silicate ash (pulverized rock) content of these plumes. In the thermal infrared, we must account for the temperature, emissivity, and elevation of the surface beneath the plume, plume altitude and thickness, and local atmospheric temperature and humidity. Our knowledge of these parameters is never perfect, and interactive mapping allows us to evaluate the impact of these uncertainties on our estimates of plume composition. To enable interactive mapping, the Jet Propulsion Laboratory is collaborating with Spectral Sciences, Inc., (SSI) to develop the Plume Tracker toolkit. This project is funded by a NASA AIST Program Grant (AIST-11-0053) to SSI. Plume Tracker integrates (1) retrieval procedures for surface temperature and emissivity, SO2, NH3, or CH4 column abundance, and scaling factors for H2O vapor and O3 profiles, (2) a RT modeling engine based on MODTRAN, and (3) interactive visualization and analysis utilities under a single graphics user interface. The principal obstacle to interactive mapping is the computational overhead of the RT modeling engine. Under AIST-11-0053 we have achieved a 300-fold increase in the performance of the retrieval procedures through the use of indexed caches of model spectra, optimization of the minimization procedures, and scaling of the effects of surface temperature and emissivity on model radiance spectra. In the final year of AIST-11-0053 we will implement parallel processing to exploit multi-core CPUs and cluster computing, and optimize the RT engine to eliminate redundant calculations when iterating over a range of gas concentrations. These enhancements will result in an additional 8 - 12X increase in performance. In addition to the improvements in performance, we have improved the accuracy of the Plume Tracker

  8. Pressurized Thermal Shock Analysis for OPR1000 Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    The study provides a brief understanding of the analysis procedure and techniques using ANSYS, such as the acceptance criteria, selection and categorization of events, thermal analysis, structural analysis including fracture mechanics assessment, crack propagation and evaluation of material properties. PTS may result from instrumentation and control malfunction, inadvertent steam dump, and postulated accidents such as smallbreak (SB) LOCA, large-break (LB) LOCA, main steam line break (MSLB), feedwater line breaks and steam generator overfill. In this study our main focus is to consider only the LB LOCA due to a cold leg break of the Optimized Power Reactor 1000 MWe (OPR1000). Consideration is given as well to the emergency core cooling system (ECCS) specific sequence with the operating parameters like pressure, temperature and time sequences. The static structural and thermal analysis to investigate the effects of PTS on RPV is the main motivation of this study. Specific surface crack effects and its propagation is also considered to measure the integrity of the RPV. This study describes the procedure for pressurized thermal shock analysis due to a loss of coolant accidental condition and emergency core cooling system operation for reactor pressure vessel.. Different accidental events that cause pressurized thermal shock to nuclear RPV that can also be analyzed in the same way. Considering the limitations of low speed computer only the static analysis is conducted. The modified LBLOCA phases and simplified geometry can is utilized to analyze the effect of PTS on RPV for general understanding not for specific specialized purpose. However, by integrating the disciplines of thermal and structural analysis, and fracture mechanics analysis a clearer understanding of the total aspect of the PTS problem has resulted. By adopting the CFD, thermal hydraulics, uncertainties and risk analysis for different type of accidental conditions, events and sequences with proper

  9. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  10. The Peltier driven frequency domain approach in thermal analysis.

    Science.gov (United States)

    De Marchi, Andrea; Giaretto, Valter

    2014-10-01

    The merits of Frequency Domain analysis as a tool for thermal system characterization are discussed, and the complex thermal impedance approach is illustrated. Pure AC thermal flux generation with negligible DC component is possible with a Peltier device, differently from other existing methods in which a significant DC component is intrinsically attached to the generated AC flux. Such technique is named here Peltier Driven Frequency Domain (PDFD). As a necessary prerequisite, a novel one-dimensional analytical model for an asymmetrically loaded Peltier device is developed, which is general enough to be useful in most practical situations as a design tool for measurement systems and as a key for the interpretation of experimental results. Impedance analysis is possible with Peltier devices by the inbuilt Seebeck effect differential thermometer, and is used in the paper for an experimental validation of the analytical model. Suggestions are then given for possible applications of PDFD, including the determination of thermal properties of materials.

  11. Analysis of Thermal Comfort in an Intelligent Building

    Science.gov (United States)

    Majewski, Grzegorz; Telejko, Marek; Orman, Łukasz J.

    2017-06-01

    Analysis of thermal comfort in the ENERGIS Building, an intelligent building in the campus of the Kielce University of Technology, Poland is the focus of this paper. For this purpose, air temperature, air relative humidity, air flow rate and carbon dioxide concentration were measured and the mean radiant temperature was determined. Thermal sensations of the students occupying the rooms of the building were evaluated with the use of a questionnaire. The students used a seven-point scale of thermal comfort. The microclimate measurement results were used to determine the Predicted Mean Vote and the Predicted Percentage Dissatisfied indices.

  12. Temperature and thermal stress analysis of a switching tube anode

    International Nuclear Information System (INIS)

    Sutton, S.B.

    1979-01-01

    In the design of high power density switching tubes which are subjected to cyclic thermal loads, the temperature induced stresses must be minimized in order to maximize the life expectancy of the tube. Following are details of an analysis performed for the Magnetic Fusion Program at the Lawrence Livermore Laboratory on a proposed tube. The tube configuration is given. The problem was simplified to one-dimensional approximations for both the thermal and stress analyses. The underlying assumptions and their implications are discussed

  13. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  14. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    Science.gov (United States)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  15. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  16. Nonlinear Transient Thermal Analysis by the Force-Derivative Method

    Science.gov (United States)

    Balakrishnan, Narayani V.; Hou, Gene

    1997-01-01

    High-speed vehicles such as the Space Shuttle Orbiter must withstand severe aerodynamic heating during reentry through the atmosphere. The Shuttle skin and substructure are constructed primarily of aluminum, which must be protected during reentry with a thermal protection system (TPS) from being overheated beyond the allowable temperature limit, so that the structural integrity is maintained for subsequent flights. High-temperature reusable surface insulation (HRSI), a popular choice of passive insulation system, typically absorbs the incoming radiative or convective heat at its surface and then re-radiates most of it to the atmosphere while conducting the smallest amount possible to the structure by virtue of its low diffusivity. In order to ensure a successful thermal performance of the Shuttle under a prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle must be done. The surface temperature profile, the transient response of the HRSI interior, and the structural temperatures are all required to evaluate the functioning of the HRSI. Transient temperature distributions which identify the regions of high temperature gradients, are also required to compute the thermal loads for a structural thermal stress analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-dependent thermal properties of the HRSI as well as to model radiation losses.

  17. Thermal Analysis of LANL Ion Exchange Column

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1999-01-01

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades

  18. Thermal stress analysis of a planar SOFC stack

    Science.gov (United States)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  19. Response of mantle transition zone thickness to plume buoyancy flux

    Science.gov (United States)

    Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.

    2010-01-01

    The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).

  20. Long term energy performance analysis of Egbin thermal power ...

    African Journals Online (AJOL)

    This study is aimed at providing an energy performance analysis of Egbin thermal power plant. The plant operates on Regenerative Rankine cycle with steam as its working fluid .The model equations were formulated based on some performance parameters used in power plant analysis. The considered criteria were plant ...

  1. Birth, life, and death of a solar coronal plume

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, Stefano; Romoli, Marco [Department of Physics and Astronomy, University of Firenze, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Poletto, Giannina [INAF-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Sterling, Alphonse C., E-mail: stpucci@arcetri.astro.it [Space Science Office, NASA/MSFC, Huntsville, AL 35812 (United States)

    2014-10-01

    We analyze a solar polar-coronal-hole (CH) plume over its entire ≈40 hr lifetime, using high-resolution Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) data. We examine (1) the plume's relationship to a bright point (BP) that persists at its base, (2) plume outflows and their possible contribution to the solar wind mass supply, and (3) the physical properties of the plume. We find that the plume started ≈2 hr after the BP first appeared and became undetectable ≈1 hr after the BP disappeared. We detected radially moving radiance variations from both the plume and from interplume regions, corresponding to apparent outflow speeds ranging over ≈(30-300) km s{sup –1} with outflow velocities being higher in the 'cooler' AIA 171 Å channel than in the 'hotter' 193 Å and 211 Å channels, which is inconsistent with wave motions; therefore, we conclude that the observed radiance variations represent material outflows. If they persist into the heliosphere and plumes cover ≈10% of a typical CH area, these flows could account for ≈50% of the solar wind mass. From a differential emission measure analysis of the AIA images, we find that the average electron temperature of the plume remained approximately constant over its lifetime, at T {sub e} ≈ 8.5 × 10{sup 5} K. Its density, however, decreased with the age of the plume, being about a factor of three lower when the plume faded compared to when it was born. We conclude that the plume died due to a density reduction rather than to a temperature decrease.

  2. Investigating Rhône River plume (Gulf of Lions, France) dynamics using metrics analysis from the MERIS 300m Ocean Color archive (2002-2012)

    Science.gov (United States)

    Gangloff, Aurélien; Verney, Romaric; Doxaran, David; Ody, Anouck; Estournel, Claude

    2017-07-01

    In coastal environments, river plumes are major transport mechanisms for particulate matter, nutriments and pollutants. Ocean color satellite imagery is a valuable tool to explore river turbid plume characteristics, providing observations at high temporal and spatial resolutions of suspended particulate matter (SPM) concentration over a long time period, covering a wide range of hydro-meteorological conditions. We propose here to use the MERIS-FR (300m) Ocean Color archive (2002-2012) in order to investigate Rhône River turbid plume patterns generated by the two main forcings acting on the north-eastern part of the Gulf of Lions (France): wind and river freshwater discharge. Results are exposed considering plume metrics (area of extension, south-east-westernmost points, shape, centroid, SPM concentrations) extracted from satellite data using an automated image-processing tool. Rhône River turbid plume SPM concentrations and area of extension are shown to be mainly driven by the river outflow while wind direction acts on its shape and orientation. This paper also presents the region of influence of the Rhône River turbid plume over monthly and annual periods, and highlights its interannual variability.

  3. Use of emanation thermal analysis to characterize thermal reactivity of brannerite mineral

    Czech Academy of Sciences Publication Activity Database

    Balek, V.; Vance, E.R.; Zeleňák, V.; Málek, Z.; Šubrt, Jan

    2007-01-01

    Roč. 88, č. 1 (2007), s. 93-98 ISSN 1388-6150 Grant - others:GA MŠk(CZ) LA 292; GA MŠk(CZ) ME 879 Institutional research plan: CEZ:AV0Z40320502 Keywords : brannerite * emanation thermal analysis Subject RIV: CA - Inorganic Chemistry Impact factor: 1.483, year: 2007

  4. Thermal analysis of RFETS SS and C

    International Nuclear Information System (INIS)

    Korinko, P.S.

    2000-01-01

    In support of the gas generation test program (GGTP) for the 9975 shipping container, thermogravimetric analysis (TGA) was conducted. The objective of this activity was to determine the moisture content as an input to the gas generation model

  5. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    International Nuclear Information System (INIS)

    Clough, D; Fletcher, S; Longstaff, A P; Willoughby, P

    2012-01-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  6. Growth of plume ''resident'' fishes in Lake Michigan

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Smith, D.W.

    1974-01-01

    Brown trout, rainbow trout, and chinook salmon were collected from the Point Beach thermal discharge area, tagged with commercial dart tags and temperature-sensitive tags, and released back into the discharge area. RNA and DNA analyses were performed on epaxial muscle samples taken from each tagged fish recaptured in the plume area and from control fish. A table is presented to show mean weights, condition factors, and RNA-DNA ratios for each group of fish. Results indicated that the fish did not experience any severe growth abnormalities as a result of their residence in the thermal plume area

  7. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  9. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    Science.gov (United States)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  10. Development of regulatory technology for thermal-hydraulic safety analysis

    International Nuclear Information System (INIS)

    Bang, Young Seok; Lee, S. H.; Ryu, Y. H.

    2001-02-01

    The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process

  11. Investigation of Balcony Plume Entrainment

    OpenAIRE

    Liu, F.; Nielsen, Peter V.; Heiselberg, Per; Brohus, Henrik; Li, B. Z.

    2009-01-01

    An investigation on the scenarios of the spill plume and its equation was presented in this paper. The study includes two aspects, i.e., the small-scale experiment and the numerical simulation. Two balcony spill plume models are assessed by comparing with the FDS (Fire Dynamic Simulation) and small scale model experiment results. Besides validating the spill model by experiments, the effect of different fire location on balcony plume is also discussed.The results show that the balcony equatio...

  12. Metallography and thermal analysis of ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Tebaldi, V.

    1988-01-01

    The book contains two parts: the ceramography laboratory and the thermal treatment laboratory. After general remarks on sintering the first part includes sample preparation for ceramography (grinding, polishing, etching), microscopic examination and quantitative image analysis. The second part deals with temperature measurement, oxide/metal ratio determination, thermogravimetry, differential thermal analysis (DTA), melting point determination and constitution of phase diagrams. Installation of a Pu laboratory, sample decontamination, and research with a microprobe are described. 188 photomicrographs present the microstructure of ceramics based on U, Pu and higher actinides

  13. Automated thermal mapping techniques using chromatic image analysis

    Science.gov (United States)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  14. Thermal performance analysis of a phase change thermal storage unit for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W. [Institute for Sustainable Systems and Technologies School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2011-01-15

    This paper presents the results of a comprehensive numerical study on the thermal performance of an air based phase change thermal storage unit (TSU) for space heating. The unit is designed for integration into space heating and cooling systems. The unit consists of a number of one dimensional phase change material (PCM) slabs contained in a rectangular duct where air passes between the slabs. The numerical analysis was based on an experimentally validated model. A parametric study has been carried out including the study on the effects of charge and discharge temperature differences, air mass flow rate, slab thicknesses, air gaps and slab dimensions on the air outlet temperatures and heat transfer rates of the thermal storage unit. The paper introduces and discusses quantities called charge and discharge temperature differences which play an important role in the melting and freezing processes. (author)

  15. On the analysis of the thermal line shift and thermal line width of ions in solids

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Brian M., E-mail: brian.m.walsh@nasa.gov [NASA Langley Research Center, Hampton, VA 23681 (United States); Di Bartolo, Baldassare, E-mail: baldassare.dibartolo@bc.edu [Boston College, Department of Physics, Chestnut Hill, MA 23667 (United States)

    2015-02-15

    A method of analysis for the thermally induced line shift and line width of spectral lines regarding the Raman process of ions in solids utilizing rational approximations for the Debye functions is presented. The {sup 2}E level unsplit R-line in V{sup 2+}:MgO is used as an example to illustrate the utility of the methods discussed here in providing a new analytical tool for researchers. - Highlights: • We use rational approximations for Debye functions. • We discuss limits and ranges of applicability of the rational approximations. • We formulate expressions for thermal shift and thermal linewidth for Raman processes using the rational approximations of the Debye functions. • We present an application of the methods to analyze the temperature dependent linewidth and lineshift in V2+:MgO.

  16. The planet beyond the plume hypothesis

    Science.gov (United States)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    but not counterflow, though convergent margin geometry may still induce propagating fractures which set up melting anomalies. Lateral migration of asthenospheric domains allows the sources of Pacific intraplate volcanism to be traced back to continental mantle eroded during the breakup of Gondwana and the amalgamation of Asia in the Paleozoic. Intraplate volcanism in the South Pacific therefore has a common Gondwanan origin to intraplate volcanism in the South Atlantic and Indian Oceans, hence the DUPAL anomaly is entirely of shallow origin. Such domains constitute a second order geochemical heterogeneity superimposed on a streaky/marble-cake structure arising from remixing of subducted crust with the convecting mantle. During the Proterozoic and Phanerozoic, remixing of slabs has buffered the evolution of the depleted mantle to a rate of 2.2 ɛNd units Ga -1, with fractionation of Lu from Hf in the sediment component imparting the large range in 176Hf/ 177Hf relative to 143Nd/ 144Nd observed in MORB. Only the high ɛNd values of some Archean komatiites are compatible with derivation from unbuffered mantle. The existence of a very depleted reservoir is attributed to stabilisation of a large early continental crust through either obduction tectonics or slab melting regimes which reduced the efficiency of crustal recycling back into the mantle. Generation of komatiite is therefore a consequence of mantle composition, and is permitted in ocean ridge environments and/or under hydrous melting conditions. Correspondingly, as intraplate volcanism depends on survival of volatile-bearing sources, its appearance in the Middle Proterozoic corresponds to the time in the Earth's thermal evolution at which minerals such as phlogopite and amphibole could survive in off-ridge environments in the shallow asthenosphere. The geodynamic evolution of the Earth was thus determined at convergent margins, not by plumes and hotspots, with the decline in thermal regime causing both a reduction

  17. Global thermal analysis of air-air cooled motor based on thermal network

    Science.gov (United States)

    Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong

    2018-02-01

    The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.

  18. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    Science.gov (United States)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  19. Development of analysis methodology on turbulent thermal stripping

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Geun Jong; Jeon, Won Dae; Han, Jin Woo; Gu, Byong Kook [Changwon National University, Changwon(Korea)

    2001-03-01

    For developing analysis methodology, important governing factors of thermal stripping phenomena are identified as geometric configuration and flow characteristics such as velocity. Along these factors, performance of turbulence models in existing analysis methodology are evaluated against experimental data. Status of DNS application is also accessed based on literature. Evaluation results are reflected in setting up the new analysis methodology. From the evaluation of existing analysis methodology, Full Reynolds Stress model is identified as best one among other turbulence models. And LES is found to be able to provide time dependent turbulence values. Further improvements in near-wall region and temperature variance equation are required for FRS and implementation of new sub-grid scale models is also required for LES. Through these improvements, new reliable analysis methodology for thermal stripping can be developed. 30 refs., 26 figs., 6 tabs. (Author)

  20. Determination of Polymers Thermal Degradation by Color Change Analysis

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2016-01-01

    Full Text Available Context: It has been observed that thermal degradation of thermoplastic polymers, when they are reprocessed by injection, extrusion and extrusion / injection, undergo color changes in the product, although it not has been established as this change occurs. Method: It analyzed the effect on thermal degradation caused by polymer type, processing type, polymer grade, rotation speed of the extrusion screw and number of reprocessing, which is quantified by the color change using an empirical equation, with experimental data obtained by analysis through a microcolor colorimeter. Results: It was found that the color change analysis provides information about progress of the thermal degradation and stability of thermoplastic polymers, which are undergoing to multiple reprocessing events and processes. Conclusions: It was established that this technique can be implemented as a simple and efficient measure of thermoplastic products quality control, according to their color change.

  1. PANTHER - Polarisation Analysis with Thermal neutron

    International Nuclear Information System (INIS)

    Deen, P.P.; Fennell, T.; Schober, H.; Orecchini, A.; Rols, S.; Andersen, K.H.; Stewart, J.R.

    2011-01-01

    PANTHER will build on the success of IN4, the world's most intense time-of-flight spectrometer. A large position-sensitive detector (PSD) will improve data collection rates significantly, the background will be greatly reduced, and it will incorporate features indispensable for magnetic studies (small angles, polarisation analysis, high magnetic field devices). The new instrument will enable rapid surveys of (Q,ω) space, as well as more detailed studies in fields ranging from magnetism to the structural excitations - phonon densities of states, dispersion of collective modes and molecular vibrations - that govern the behaviour of many important physical and chemical systems. (authors)

  2. Chromatic Image Analysis For Quantitative Thermal Mapping

    Science.gov (United States)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  3. Thermal-economic analysis of cogeneration systems

    International Nuclear Information System (INIS)

    Walter, A.C.S.; Bajay, S.V.

    1992-01-01

    Approximately 80 countries produce sugar, and fortuitously alcohol, from sugar cane. In all these countries the cogeneration technology of steam turbines is utilized, although almost always inefficient. The greater potential of cogeneration in Brazil is in sugar and alcohol sector, because of the use of sugar cane bagasse as combustible. This work applies the techniques of simulation and economic analysis to different configuration of plants, to determine power generation and associated costs of each alternative. The application of the same procedure at operating condition of several configurations in transient system permits the determination of production profile of exceeding during one day. (C.M.)

  4. Thermodynamic analysis of thermal efficiency and power of Minto engine

    International Nuclear Information System (INIS)

    He, Wei; Hou, Jingxin; Zhang, Yang; Ji, Jie

    2011-01-01

    Minto engine is a kind of liquid piston heat engine that operates on a small temperature gradient. But there is no power formula for it yet. And its thermal efficiency is low and formula sometimes is misused. In this paper, deriving the power formula and simplifying the thermal efficiency formula of Minto engine based on energy distribution analysis will be discussed. To improve the original Minto engine, a new design of improved Minto engine is proposed and thermal efficiency formula and power formula are also given. A computer program was developed to analyze thermal efficiency and power of original and improved Minto engines operating between low and high-temperature heat sources. The simulation results show that thermal efficiency of improved Minto engine can reach over 7% between 293.15 K and 353.15 K which is much higher than that of original one; the temperature difference between upper and lower containers is lower than half of that between low and high temperature of heat sources when the original Minto engines output the maximum power; on the contrary, it is higher in the improved Minto engines. -- Highlights: ► The thermal efficiency formula of Minto engine is simplified and the power formula is established. ► A high-powered design of improved Minto engine is proposed. ► A computer simulation program based on real operating environment is developed.

  5. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    Science.gov (United States)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  6. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  7. Solar Coronal Plumes and the Fast Solar Wind Bhola N. Dwivedi1 ...

    Indian Academy of Sciences (India)

    Is there any contribution of plume plasma to the fast SW streams at all? ..... but to a slow diminution of the reconnection activity, presumably with the effect ... might think, even if the thermal energy could be dumped at the base of the plume,.

  8. Thermal Analysis of Bending Under Tension Test

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Martins, Paulo A.F.; Bay, Niels

    2014-01-01

    during testing is similar to the one in the production tool. A universal sheet tribo-tester has been developed, which can run multiple tests automatically from coil. This allows emulating the temperature increase as in production. The present work performs finite element analysis of the evolution......The tribological conditions in deep drawing can be simulated in the Bending Under Tension test to evaluate the performance of new lubricants, tool materials, etc. Deep drawing production with automatic handling runs normally at high rate. This implies considerable heating of the tools, which...... sometimes can cause lubricant film breakdown and galling. In order to replicate the production conditions in bending under tension testing it is thus important to control the tool/workpiece interface temperature. This can be done by pre-heating the tool, but it is essential that the interface temperature...

  9. Product analysis for polyethylene degradation by radiation and thermal ageing

    International Nuclear Information System (INIS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides. - Highlights: ► Products analysis of polyethylene degradation by radiation and thermal ageing. ► Components of carbonyl compounds produced in polyethylene by thermal and radiation oxidation were determined by FTIR. ► Carbonyl compounds comprised carboxylic acid, carboxylic ester, and carboxylic anhydride. ► Carboxylic acid was the primary oxidation product of chain scission at any oxidation temperature. ► Carboxylic ester and carboxylic anhydride are secondary products formed from carboxylic acid at higher temperature.

  10. Analysis of piping response to thermal and operational transients

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    The reactor piping system is an extremely complex three-dimensional structure. Maintaining its structural integrity is essential to the safe operation of the reactor and the steam-supply system. In the safety analysis, various transient loads can be imposed on the piping which may cause plastic deformation and possible damage to the system, including those generated from hydrodynamic wave propagations, thermal and operational transients, as well as the seismic events. At Argonne National Laboratory (ANL), a three-dimensional (3-D) piping code, SHAPS, aimed for short-duration transients due to wave propagation, has been developed. Since 1984, the development work has been shifted to the long-duration accidents originating from the thermal and operational transient. As a result, a new version of the code, SHAPS-2, is being established. This paper describes many features related to this later development. To analyze piping response generated from thermal and operational transients, a 3-D implicit finite element algorithm has been developed for calculating the hoop, flexural, axial, and torsional deformations induced by the thermomechanical loads. The analysis appropriately accounts for stresses arising from the temperature dependence of the elastic material properties, the thermal expansion of the materials, and the changes in the temperature-dependent yield surface. Thermal softening, failure, strain rate, creep, and stress ratching can also be considered

  11. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  12. Thermal analysis of building roof assisted with water heater and ...

    Indian Academy of Sciences (India)

    D Prakash

    2018-03-14

    Mar 14, 2018 ... Thermal analysis; building roof; solar water heating system; roof ... These solar collec- ... several benefits, such as its wide range of storage temper- ... rugated plate, rear plate and back insulation material [12]. ..... [7] Weiss W and Rommel M 2008 Process heat collectors. State of the art within Task 33/IV.

  13. Emanation thermal analysis of SiC based materials

    Czech Academy of Sciences Publication Activity Database

    Bálek, V.; Zeleňák, V.; Mitsuhashi, T.; Bakardjieva, Snejana; Šubrt, Jan; Haneda, H.

    2002-01-01

    Roč. 67, č. 1 (2002), s. 83-89 ISSN 1418-2874 R&D Projects: GA MŠk ME 180 Grant - others:EFDA(XE) TTMA-001 Institutional research plan: CEZ:AV0Z4032918 Keywords : emanation thermal analysis * SEM * SiC nanocomposites Subject RIV: CA - Inorganic Chemistry Impact factor: 0.598, year: 2002

  14. Thermal stresses in the space shuttle orbiter: Analysis versus test

    International Nuclear Information System (INIS)

    Grooms, H.R.; Gibson, W.F. Jr.; Benson, P.L.

    1984-01-01

    Significant temperature differences occur between the internal structure and the outer skin of the Space Shuttle Orbiter as it returns from space. These temperature differences cause important thermal stresses. A finite element model containing thousands of degrees of freedom is used to predict these stresses. A ground test was performed to verify the prediction method. The analysis and test results compare favorably. (orig.)

  15. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  16. Occupancy Analysis of Sports Arenas Using Thermal Imaging

    DEFF Research Database (Denmark)

    Gade, Rikke; Jørgensen, Anders; Moeslund, Thomas B.

    2012-01-01

    This paper presents a system for automatic analysis of the occupancy of sports arenas. By using a thermal camera for image capturing the number of persons and their location on the court are found without violating any privacy issues. The images are binarised with an automatic threshold method...

  17. Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs: Rigorous vs. Simplified Models

    Directory of Open Access Journals (Sweden)

    Bruno Piga

    2017-09-01

    Full Text Available Groundwater Heat Pumps (GWHPs are increasingly adopted for air conditioning in urban areas, thus reducing CO2 emissions, and this growth needs to be managed to ensure the sustainability of the thermal alteration of aquifers. However, few studies have addressed the propagation of thermal plumes from open-loop geothermal systems from a long-term perspective. We provide a comprehensive sensitivity analysis, performed with numerical finite-element simulations, to assess how the size of the thermally affected zone is driven by hydrodynamic and thermal subsurface properties, the vadose zone and aquifer thickness, and plant setup. In particular, we focus the analysis on the length and width of thermal plumes, and on their time evolution. Numerical simulations are compared with two simplified methods, namely (i replacing the time-varying thermal load with its yearly average and (ii analytical formulae for advective heat transport in the aquifer. The former proves acceptable for the assessment of plume length, while the latter can be used to estimate the width of the thermally affected zone. The results highlight the strong influence of groundwater velocity on the plume size and, especially for its long-term evolution, of ground thermal properties and of subsurface geometrical parameters.

  18. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  19. Spent nuclear fuel storage pool thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Gay, R.R.

    1984-01-01

    Storage methods and requirements for spent nuclear fuel at U.S. commercial light water reactors are reviewed in Section 1. Methods of increasing current at-reactor storage capabilities are also outlined. In Section 2 the development of analytical methods for the thermal-hydraulic analysis of spent fuel pools is chronicled, leading up to a discussion of the GFLOW code which is described in Section 3. In Section 4 the verification of GFLOW by comparisons of the code's predictions to experimental data taken inside the fuel storage pool at the Maine Yankee nuclear power plant is presented. The predictions of GFLOW using 72, 224, and 1584 node models of the storage pool are compared to each other and to the experimental data. An example of thermal licensing analysis for Maine Yankee using the GFLOW code is given in Section 5. The GFLOW licensing analysis is compared to previous licensing analysis performed by Yankee Atomic using the RELAP-4 computer code

  20. Differential-thermal analysis of irradiated lignite

    International Nuclear Information System (INIS)

    Chichek, F; Eyubova, N.

    2006-01-01

    Full text: In this theme our purpose is to explain thermo-differential analysis of lignite's irradiated. During experiment Caraman Ermenek (washed), Caraman Ermenek (crude), Nevshehir (crude), Slopi (crude), Trakya Harman (washed) lignite coals were used. Five of five kinds of coal samples with 3mm and 1 gr of each sample were obtained. Then they were filled into the Tubes after having dried total 25 samples with 1 gr at 1000C temperature for one hour. Air in the tubes was pumped out and closed. Coal samples in vacuum medium were irradiated by gamma rays of Co-60 at 5.5 kGy, 19.2 kGy, 65.7 kGy, 169.6 kGy, 411.2 kGy, doses to the normal conditions. At the end coal irradiated samples were compared with original coal samples. At the result of experiment it was revealed that in comparison with original coal samples coal samples irradiated from exothermic and endothermic curves at very reaction pick and temperature intervals of these pick were large. Besides loss of weight was observed to begin at low temperatures in samples irradiated and especially momentary weight loss at some heats in the rang of known temperatures was observed in the coal Slopi contain in bitumen. Because of heat the weight loss in the non irradiated samples forms parabolic curve and because of heat the weight loss in the samples irradiated forms stepped curves. It was shown that the coal irradiated can be easily departed by heat because of the chemical structure in comparison the original one.

  1. Studies of the thermal properties of horn keratin by dielectric spectroscopy, thermogravimetric analysis and differential thermal analysis

    International Nuclear Information System (INIS)

    Marzec, E.; Piskunowicz, P.; Jaroszyk, F.

    2002-01-01

    The dielectric and thermal properties of horn keratin have been studied bu dielectric spectroscopy in the frequency range 10 1 -10 5 Hz, thermogravimetric analysis (TG) and different thermal analysis (DTA). Measurement of non-irradiated and g amma - irradiated keratin with doses 5, 50 kGy were performed at temperature from 22 to 260 o C. The results revealed the occurrence of phase transitions related to release of loosely bound water and bound water up to 200 o Cand the denaturation of the crystalline structure above this temperature. The influence of γ-irradiation on the thermal behaviour of keratin is significant only in the temperature range of denaturation. The decrease in the temperature of denaturation would suggest that γ-irradiation initiates main-chain degradation. (authors)

  2. Thermal analysis of compositionally modulated Fe/Y films

    International Nuclear Information System (INIS)

    Kajiura, M.; Morishita, T.; Togami, Y.; Tsushima, K.

    1987-01-01

    Structures of compositionally modulated Fe/Y films were studied by thermal analysis. The exothermic peak found in the DSC curve of (Fe 12 A/Y 12 A) most probably corresponds to crystallization of an amorphous material. SEM analysis suggested that the composition of crystallized (Fe 12 A/Y 12 A) was YFe2. It is concluded that a compositionally modulated (Fe 12 A/Y 12 A) is amorphous in structure as well as in magnetic properties

  3. CFD and thermal analysis applications at General Motors

    International Nuclear Information System (INIS)

    Johnson, J.P.

    2002-01-01

    The presentation will include a brief history of the growth of CFD and thermal analysis in GM's vehicle program divisions. Its relationship to the underlying computer infrastructure will be sketched. Application results will be presented for calculations in aerodynamics, flow through heat exchangers, engine compartment thermal studies, HVAC systems and others. Current technical challenges will be outlined including grid generation, turbulence modeling, heat transfer, and solution algorithms. The introduction of CFD and heat transfer results into Virtual Vehicle Reviews, and its potential impact on a company's CAE infrastructure will be noted. Finally, some broad comments will be made on the management of CFD and heat transfer technology across a global corporate enterprise. (author)

  4. Interim report on nuclear waste depository thermal analysis

    International Nuclear Information System (INIS)

    Altenbach, T.J.

    1978-01-01

    A thermal analysis of a deep geologic depository for spent nuclear fuel is being conducted. The TRUMP finite difference heat transfer code is used to analyze a 3-dimensional model of the depository. The model uses a unit cell consisting of one spent fuel canister buried in salt beneath a ventilated room in the depository. A base case was studied along with several parametric variations. It is concluded that this method is appropriate for analyzing the thermal response of the system, and that the most important parameter in determining the maximum temperatures is the canister heat generation rate. The effects of room ventilation and different depository media are secondary

  5. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  6. Plume rise from multiple sources

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1975-01-01

    A simple enhancement factor for plume rise from multiple sources is proposed and tested against plume-rise observations. For bent-over buoyant plumes, this results in the recommendation that multiple-source rise be calculated as [(N + S)/(1 + S)]/sup 1/3/ times the single-source rise, Δh 1 , where N is the number of sources and S = 6 (total width of source configuration/N/sup 1/3/ Δh 1 )/sup 3/2/. For calm conditions a crude but simple method is suggested for predicting the height of plume merger and subsequent behavior which is based on the geometry and velocity variations of a single buoyant plume. Finally, it is suggested that large clusters of buoyant sources might occasionally give rise to concentrated vortices either within the source configuration or just downwind of it

  7. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  8. A computational model for thermal fluid design analysis of nuclear thermal rockets

    International Nuclear Information System (INIS)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated

  9. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  10. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)

    1995-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  11. Photovoltaic thermal module concepts and their performance analysis: A review

    International Nuclear Information System (INIS)

    Hasan, M. Arif; Sumathy, K.

    2010-01-01

    This paper presents a review of the available literature covering the latest module aspects of different photovoltaic/thermal (PV/T) collectors and their performances in terms of electrical as well as thermal output. The review covers detailed description of flat-plate and concentrating PV/T systems, using liquid or air as the working fluid, numerical model analysis, experimental work and qualitative evaluation of thermal and electrical output. Also an in-depth review on the performance parameters such as, optimum mass flow rate, PV/T dimensions, air channel geometry is presented in this study. Based on the thorough review, it is clear that PV/T modules are very promising devices and there exists lot of scope to further improve their performances. Appropriate recommendations are made which will aid PV/T systems to improve their efficiency and reducing their cost, making them more competitive in the present market. (author)

  12. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  13. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Ubra, O.; Doubek, M.

    1995-01-01

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.)

  14. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O [Skoda Company, Prague (Switzerland); Doubek, M [Czech Technical Univ., Prague (Switzerland)

    1996-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  15. Photovoltaic thermal module concepts and their performance analysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M. Arif; Sumathy, K. [Department of Mechanical Engineering, North Dakota State University, Fargo, ND (United States)

    2010-09-15

    This paper presents a review of the available literature covering the latest module aspects of different photovoltaic/thermal (PV/T) collectors and their performances in terms of electrical as well as thermal output. The review covers detailed description of flat-plate and concentrating PV/T systems, using liquid or air as the working fluid, numerical model analysis, experimental work and qualitative evaluation of thermal and electrical output. Also an in-depth review on the performance parameters such as, optimum mass flow rate, PV/T dimensions, air channel geometry is presented in this study. Based on the thorough review, it is clear that PV/T modules are very promising devices and there exists lot of scope to further improve their performances. Appropriate recommendations are made which will aid PV/T systems to improve their efficiency and reducing their cost, making them more competitive in the present market. (author)

  16. A Plume Scale Model of Chlorinated Ethene Degradation

    DEFF Research Database (Denmark)

    Murray, Alexandra Marie; Broholm, Mette Martina; Badin, Alice

    leaked from a dry cleaning facility, and a 2 km plume extends from the source in an unconfined aquifer of homogenous fluvio-glacial sand. The area has significant iron deposits, most notably pyrite, which can abiotically degrade chlorinated ethenes. The source zone underwent thermal (steam) remediation...

  17. Kinetic analysis of thermally relativistic flow with dissipation

    International Nuclear Information System (INIS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  18. Thermal analysis of the vertical disposal for HLW

    International Nuclear Information System (INIS)

    Zhao Honggang; Wang Ju; Liu Yuemiao; Su Rui

    2013-01-01

    The temperature on the canister surface is set to be no more than 100℃ in the high level radioactive waste (HLW) repository, it is a criterion to dictate the thermal dimension of the repository. The factors that affect the temperature on the canister surface include the initial power of the canister, the thermal properties of material as the engineered barrier system (EBS), the gaps around the canister in the EBS, the initial ground temperature and thermal properties of the host rock, the repository layout, etc. This article examines the thermal properties of the material in host rock and the EBS, the thermal conductivity properties of the different gaps in the EBS, the temperature evolution around the single canister by using the analysis method and the numerical method. The findings are as follows: 1) The most important and the sensitive parameter is the initial disposal power of the canister; 2) The two key factors that affect the highest temperature on the canister surface are the parameter of uncertainty and nature variability of material as the host rock and the EBS, and the gaps around the canister in the EBS; 3) The temperature difference between the canister and bentonite is no more than 10℃ , and the bigger the inner gaps are, the bigger the temperature difference will be; when the gap between the bentonite and the host rock is filled with water, the temperature difference becomes small, but it will be 1∼3℃ higher than the gaps filled will air. (authors)

  19. Thermal hydrodynamic analysis of a countercurrent gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de

    1999-01-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  20. EM Modelling of RF Propagation Through Plasma Plumes

    Science.gov (United States)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  1. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.

    Science.gov (United States)

    Maton, Cedric; De Vos, Nils; Stevens, Christian V

    2013-07-07

    The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.

  2. Plume rise predictions

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1976-01-01

    Anyone involved with diffusion calculations becomes well aware of the strong dependence of maximum ground concentrations on the effective stack height, h/sub e/. For most conditions chi/sub max/ is approximately proportional to h/sub e/ -2 , as has been recognized at least since 1936 (Bosanquet and Pearson). Making allowance for the gradual decrease in the ratio of vertical to lateral diffusion at increasing heights, the exponent is slightly larger, say chi/sub max/ approximately h/sub e/ - 2 . 3 . In inversion breakup fumigation, the exponent is somewhat smaller; very crudely, chi/sub max/ approximately h/sub e/ -1 . 5 . In any case, for an elevated emission the dependence of chi/sub max/ on h/sub e/ is substantial. It is postulated that a really clever ignorant theoretician can disguise his ignorance with dimensionless constants. For most sources the effective stack height is considerably larger than the actual source height, h/sub s/. For instance, for power plants with no downwash problems, h/sub e/ is more than twice h/sub s/ whenever the wind is less than 10 m/sec, which is most of the time. This is unfortunate for anyone who has to predict ground concentrations, for he is likely to have to calculate the plume rise, Δh. Especially when using h/sub e/ = h/sub s/ + Δh instead of h/sub s/ may reduce chi/sub max/ by a factor of anywhere from 4 to infinity. Factors to be considered in making plume rise predictions are discussed

  3. Cluster analysis of elemental constituents of individual atmospheric aerosol particles from the volcanic plume of Lonquimay eruption in 1989

    International Nuclear Information System (INIS)

    Koltay, E.; Rajta, I.; Kertesz, Zs.; Uzonyi, I.; Kiss, Z.A.; Morales, J.R.

    2002-01-01

    Aerosol samples collected around the Chilean site Lonquimay during major volcanic activities in January 1989 have been subjected to microPIXE measurements of 1 μm lateral resolution in the Debrecen Institute. Elemental concentrations relative to calcium have been determined for Al, Si, P, S, K, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Ba in 187 individual aerosol particles with the particle sizes between 15 μm and 1 μm. On the basis of a cluster analysis performed on the data set we defined eight clusters. Scatter plots for selected pairs of elements as Si/Al, K/Si, S/Cl, and Al/S elemental ratios that are considered as signatures characterizing types and mechanisms in volcanic eruption - have been compared with published data available in the literature for various volcanic sites. (author)

  4. Variations of starting conditions contribution to cooling tower plume predictions; Uticaj promene polaznih uslova na predvidjanje rasprostiranja perjanica rashladnih tornjeva nuklearne elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Vehauc, A; Zaric, Z [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1977-07-01

    The paper deals with quantitative contribution of variations of starting conditions to cooling tower plume predictions. The starting conditions are: plume velocity and temperature and concentration of water drops in the plume at the cooling tower outlet. For the same thermal discharge and meteorological conditions, starting conditions are given by characteristics of cooling towers. (author)

  5. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  6. Using fractal analysis of thermal signatures for thyroid disease evaluation

    Science.gov (United States)

    Gavriloaia, Gheorghe; Sofron, Emil; Gavriloaia, Mariuca-Roxana; Ghemigean, Adina-Mariana

    2010-11-01

    The skin is the largest organ of the body and it protects against heat, light, injury and infection. Skin temperature is an important parameter for diagnosing diseases. Thermal analysis is non-invasive, painless, and relatively inexpensive, showing a great potential research. Since the thyroid regulates metabolic rate it is intimately connected to body temperature, more than, any modification of its function generates a specific thermal image on the neck skin. The shapes of thermal signatures are often irregular in size and shape. Euclidean geometry is not able to evaluate their shape for different thyroid diseases, and fractal geometry is used in this paper. Different thyroid diseases generate different shapes, and their complexity are evaluated by specific mathematical approaches, fractal analysis, in order to the evaluate selfsimilarity and lacunarity. Two kinds of thyroid diseases, hyperthyroidism and papillary cancer are analyzed in this paper. The results are encouraging and show the ability to continue research for thermal signature to be used in early diagnosis of thyroid diseases.

  7. COMTA - a computer code for fuel mechanical and thermal analysis

    International Nuclear Information System (INIS)

    Basu, S.; Sawhney, S.S.; Anand, A.K.; Anantharaman, K.; Mehta, S.K.

    1979-01-01

    COMTA is a generalized computer code for integrity analysis of the free standing fuel cladding, with natural UO 2 or mixed oxide fuel pellets. Thermal and Mechanical analysis is done simultaneously for any power history of the fuel pin. For analysis, the fuel cladding is assumed to be axisymmetric and is subjected to axisymmetric load due to contact pressure, gas pressure, coolant pressure and thermal loads. Axial variation of load is neglected and creep and plasticity are assumed to occur at constant volume. The pellet is assumed to be made of concentric annuli. The fission gas release integral is dependent on the temperature and the power produced in each annulus. To calculate the temperature distribution in the fuel pin, the variation of bulk coolant temperature is given as an input to the code. Gap conductance is calculated at every time step, considering fuel densification, fuel relocation and gap closure, filler gas dilution by released fission gas, gap closure by expansion and irradiation swelling. Overall gap conductance is contributed by heat transfer due to the three modes; conduction convection and radiation as per modified Ross and Stoute model. Equilibrium equations, compatibility equations, stress strain relationships (including thermal strains and permanent strains due to creep and plasticity) are used to obtain triaxial stresses and strains. Thermal strain is assumed to be zero at hot zero power conditions. The boundary conditions are obtained for radial stresses at outside and inside surfaces by making these equal to coolant pressure and internal pressure respectively. A multi-mechanism creep model which accounts for thermal and irradiation creep is used to calculate the overall creep rate. Effective plastic strain is a function of effective stress and material constants. (orig.)

  8. Thermal analysis of the effect of thick thermal barrier coatings on diesel engine performance

    International Nuclear Information System (INIS)

    Hoag, K.L.; Frisch, S.R.; Yonushonis, T.M.

    1986-01-01

    The reduction of heat rejection from the diesel engine combustion chamber has been the subject of a great deal of focus in recent years. In the pursuit of this goal, Cummins Engine Company has received a contract from the Department of Energy for the development of thick thermal barrier coatings for combustion chamber surfaces. This contract involves the analysis of the impact of coatings on diesel engine performance, bench test evaluation of various coating designs, and single cylinder engine tests. The efforts reported in this paper center on the analysis of the effects of coatings on engine performance and heat rejection. For this analysis the conventional water cooled engine was compared with an engine having limited oil cooling, and utilizing zirocnia coated cylinder had firedecks and piston crowns. The analysis showed little or no benefits of similarly coating the valves or cylinder liner

  9. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  10. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    2014-06-01

    Douro River plume is wind-driven. The simulations show important differences in the plume structure and dispersion pathways depending on the wind strength and direction that was simulated. When southerly winds are implemented, it can be seen that those winds push the river water to the north. With this scenario, the water associated with the Douro River can be found in the Galician Rías. The upwelling favorable winds (northerly winds induce plumes with a narrow coastal current. The high surface salinity on the plume regions during strong wind events suggests that the wind enhances the vertical mixing. Several analysis shows that the plume is affected by Coriolis effect but its influence is mitigated by a strong wind forcing. The multi-year climatological study showed a variation of the plume structure with the climatological conditions in the area. During the first months of the simulation, a southwest protruding jet-like plume can be seem, meanwhile, during winter months the bulge and the coastal current seem to evolve to the north, according with the climatic wind conditions. On this simulation it was observed a plume response with the behavior of the offshore geostrophic current system. Offshore eddies and filaments are also responsible for the cross-shore transport, through the horizontal advection of plume waters. Extreme river discharges, associated with southerly winds, can transport debris to the Galician coast in about 60 h, helping to explain the tragic events of the Entre-os-Rios accident of March 2001. Analysis of the Rossby deformation radius and the Kelvin number confirm that the Douro supercritical plumes are strongly affected by the planetary rotation. The supercritical plumes coincided with the coastal current maximum widths. The values obtained for the densimetric Richardson number showed that the supercritical plumes are less mixed than the subcritical ones.

  11. Transient thermal performance analysis of micro heat pipes

    International Nuclear Information System (INIS)

    Liu, Xiangdong; Chen, Yongping

    2013-01-01

    A theoretical analysis of transient fluid flow and heat transfer in a triangular micro heat pipes (MHP) has been conducted to study the thermal response characteristics. By introducing the system identification theory, the quantitative evaluation of the MHP's transient thermal performance is realized. The results indicate that the evaporation and condensation processes are both extended into the adiabatic section. During the start-up process, the capillary radius along axial direction of MHP decreases drastically while the liquid velocity increases quickly at the early transient stage and an approximately linear decrease in wall temperature arises along the axial direction. The MHP behaves as a first-order LTI control system with the constant input power as the 'step input' and the evaporator wall temperature as the 'output'. Two corresponding evaluation criteria derived from the control theory, time constant and temperature constant, are able to quantitatively evaluate the thermal response speed and temperature level of MHP under start-up, which show that a larger triangular groove's hydraulic diameter within 0.18–0.42 mm is able to accelerate the start-up and decrease the start-up temperature level of MHP. Additionally, the MHP starts up fastest using the fluid of ethanol and most slowly using the working fluid of methanol, and the start-up temperature reaches maximum level for acetone and minimum level for the methanol. -- Highlights: • Transient thermal response of micro heat pipe is simulated by an improved model. • Control theory is introduced to quantify the thermal response of micro heat pipe. • Evaluation criteria are proposed to represent thermal response of micro heat pipe. • Effects of groove dimensions and working fluids on start-up of micro heat pipe are evaluated

  12. Small rocket exhaust plume data

    Science.gov (United States)

    Chirivella, J. E.; Moynihan, P. I.; Simon, W.

    1972-01-01

    During recent cryodeposit tests with an 0.18-N thruster, the mass flux in the plume back field was measured for the first time for nitrogen, carbon dioxide, and a mixture of nitrogen, hydrogen, and ammonia at various inlet pressures. This mixture simulated gases that would be generated by a hydrazine plenum attitude propulsion system. The measurements furnish a base upon which to build a mathematical model of plume back flow that will be used in predicting the mass distribution in the boundary region of other plumes. The results are analyzed and compared with existing analytical predictions.

  13. Rise of a cold plume

    International Nuclear Information System (INIS)

    Kakuta, Michio

    1977-06-01

    The rise of smoke from the stacks of two research reactors in normal operation was measured by photogrametric method. The temperature of effluent gas is less than 20 0 C higher than that of the ambient air (heat emission of the order 10 4 cal s -1 ), and the efflux velocity divided by the wind speed is between 0.5 and 2.8 in all 16 smoke runs. The field data obtained within downwind distance of 150m are compared with those by plume rise formulas presently available. Considering the shape of bending-over plume, the Briggs' formula for 'jet' gives a reasonable explanation of the observed plume rise. (auth.)

  14. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  15. Role of thermal analysis in uranium oxide fuel fabrication process

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Yadav, R.B.

    2006-01-01

    The present paper discusses the application of thermal analysis, particularly, differential thermal analysis (Dta) at various stages of fuel fabrication process. The useful role of Dta in knowing the decomposition pattern and calcination temperature of Adu along with de-nitration temperature is explained. The decomposition pattern depends upon the type of drying process adopted for wet ADU cake (ADU C). Also, the paper highlights the utility of DTA in determining the APS and SSA of UO 2+x and U 3 O 8 powders as an alternate technique. Further, the temperature difference (ΔT max ) between the two exothermic peaks obtained in UO 2+x powder oxidation is related to sintered density of UO 2 pellets. (author)

  16. Thermal analysis of cement pastes with superabsorbent polymers

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede; Lukosiute, Irena

    2013-01-01

    Thermal analysis of cement systems is very helpful in the understanding of many different properties of cementitious compounds, both for the original reacting compounds, and also for the resulting hydration products. Superabsorbent polymers can be added to cement systems with many different reasons......, so it is relevant that fundamental knowledge of this new compound on the development of hydration is well understood [1-3]. This paper reports research on thermal analysis of cement pastes with superabsorbent polymers. We have studied several parameters: the concentration of SAP in the system......, the effect of particle size distribution, and their influence on the hydration process with focus on cement-silica systems. This is done at different thermodynamic conditions, so the energy of activation in the different systems can be accessed. This paper provides information relevant to hydration modelling...

  17. The utilisation of thermal analysis to optimise radiocarbon dating procedures

    International Nuclear Information System (INIS)

    Brandova, D.; Keller, W.A.; Maciejewski, M.

    1999-01-01

    Thermal analysis combined with mass spectrometry was applied to radiocarbon dating procedures (age determination of carbon-containing samples). Experiments carried out under an oxygen atmosphere were used to determine carbon content and combustion range of soil and wood samples. Composition of the shell sample and its decomposition were investigated. The quantification of CO 2 formed by the oxidation of carbon was done by the application of pulse thermal analysis. Experiments carried out under an inert atmosphere determined the combustion range of coal with CuO as an oxygen source. To eliminate a possible source of contamination in the radiocarbon dating procedures the adsorption of CO 2 by CuO was investigated. (author)

  18. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    Science.gov (United States)

    Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.

    2012-09-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  19. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    International Nuclear Information System (INIS)

    Adib, M A H M; Ismail, A R; Kardigama, K; Salaam, H A; Ahmad, Z; Johari, N H; Anuar, Z; Azmi, N S N; Adnan, F

    2012-01-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ∼ 60%) acceptable compared to diffuser with 6mm ∼ 40% and 12mm ∼ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  20. Infrared X-ray and thermal analysis of terbium soaps

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Sharma, N.

    1996-01-01

    Terbium sops (laureate, myristate and palmitate) were synthesized by direct metathesis of corresponding potassium soap with an aqueous solution of terbium nitrate. The physico-chemical characteristics of soaps in solid state were investigated by IR spectra, X-ray diffraction patterns and TGA measurements. The IR results revealed that the fatty acids exist in dimeric state through hydrogen bonding while the soaps possess partial ionic character. The X-ray analysis showed that the soaps have double layer structure with molecular axes slightly inclined to the basal plane. The thermal analysis suggested that the decomposition of soaps occur in two steps. The energy of activation, order of reaction and various kinetic parameters (i.e. frequency factor, entropy of activation and free energy) for the thermal decomposition of soaps were evaluated. (author). 26 refs, 4 figs, 4 tabs

  1. Thermal test and analysis of a spent fuel storage cask

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Ozaki, S.; Kosaki, A.

    1993-01-01

    A thermal test simulated with full-scale cask model for the normal storage was performed to verify the storage skill of the spent fuels of the cask. The maximum temperature at each point in the test was lower than the allowable temperature. The integrity of the cask was maintained. It was observed that the safety of containment system was also kept according to the check of the seal before and after the thermal test. Therefore it was shown that using the present skill, it is possible to store spent fuels in the dry-type cask safely. Moreover, because of the good agreement between analysis and experimental results, it was shown that the analysis model was successfully established to estimate the temperature distribution of the fuel cladding and the seal portion. (J.P.N.)

  2. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet

    DEFF Research Database (Denmark)

    Chu, Vena W.; Smith, Laurence C; Rennermalm, Asa K.

    2009-01-01

    ) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided...... the estuary is free of landfast sea ice. A seasonal hysteresis between melt extent and plume area suggests late-season exhaustion in sediment supply. Analysis of plume sensitivity to supraglacial events is less conclusive, with 69% of melt pulses and 38% of lake drainage events triggering an increase in plume...... area. We conclude that remote sensing of sediment plume behavior offers a novel tool for detecting the presence, timing and interannual variability of meltwater release from the ice sheet....

  3. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  4. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  5. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  6. Thermal-hydraulic analysis for wire-wrapped PWR cores

    Energy Technology Data Exchange (ETDEWEB)

    Diller, P. [General Electric Company, 3901 Castle Hayne Rd., Wilmington, NC 28401 (United States)], E-mail: pdiller@gmail.com; Todreas, N. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: todreas@mit.edu; Hejzlar, P. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2009-08-15

    This work focuses on the steady-state and transient thermal-hydraulic analyses for PWR cores using wire wraps in a hexagonal array with either U (45% w/o)-ZrH{sub 1.6} (referred to as U-ZrH{sub 1.6}) or UO{sub 2} fuels. Equivalences (thermal-hydraulic and neutronic) were created between grid spacer and wire wrap designs, and were used to apply results calculated for grid spacers to wire wrap designs. Design limits were placed on the pressure drop, critical heat flux (CHF), fuel and cladding temperature and vibrations. The vibrations limits were imposed for flow-induced vibrations (FIV) and thermal-hydraulic vibrations (THV). The transient analysis examined an overpower accident, loss of coolant accident (LOCA) and loss of flow accident (LOFA). The thermal-hydraulic performance of U-ZrH{sub 1.6} and UO{sub 2} were found very similar. Relative to grid spacer designs, wire wrap designs were found to have smaller fretting wear, substantially lower pressure drop and higher CHF. As a result, wire wrap cores were found to offer substantially higher maximum powers than grid spacer cores, allowing for a 25% power increase relative to the grid spacer uprate [Shuffler, C.A., Malen, J.A., Trant, J.M., Todreas, N.E., 2009a. Thermal-hydraulic analysis for grid supported and inverted fueled PWR cores. Nuclear Technology (this special issue devoted to hydride fuel in LWRs)] and a 58% power increase relative to the reference core.

  7. Experiments on Plume Spreading by Engineered Injection and Extraction

    Science.gov (United States)

    Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.

    2014-12-01

    The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered

  8. Thermal-hydraulic analysis of the OSURR pool for power upgrade with natural convection core cooling

    International Nuclear Information System (INIS)

    Ha, J.J.; Aldemir, T.

    1988-01-01

    Natural convection mode core cooling will be maintained in the LEU conversion/power upgrade of The Ohio State University Research Reactor (OSURR) to 250-500 kW. The pool water will be cooled by a water-glycol-air and a water-water heat exchanger. A plume disperser will be installed in the pool to minimize evaporation from the pool top and to maintain the dose rate due to N-16 activity within allowable levels. The minimization of the pool heat removal system operation costs necessitates maximizing the inlet temperature to the water-glycol-air heat exchanger. For the maximization process, the change in the pool temperature and velocity fields have to be investigated as a function of: location and orientation of the heat removal system components and the plume disperser in the pool; mass flow rate through the plume disperser. The velocity and temperature fields in the pool are determined using COMMIX-1A. The computational system model accounts for the presence of all the pool components (i.e. core, thermal column, beam ports, ion chamber, guide tubes, rabbit, neutron source etc.). The results show that: (1) Both the heat removal system inlet point and the plume disperser have to be located close to the top of the core. (2) Using a disperser system consisting of several pipes may be more feasible than a single unit. (3) For high disperser flow, the disperser jet has to be almost parallel to the top of the core to prevent flow reversal in coolant channels. (4) More than one disperser system may be necessary to create an inversion layer in the pool

  9. Application of thermal analysis in nuclear waste management

    International Nuclear Information System (INIS)

    Raje, Naina; Kalekar, Bhupesh; Acharekar, Darshana; Reddy, A.V.R.

    2009-01-01

    Thermal decomposition of zirconium raffinate and ammonium nitrate has been studied using simultaneous TG - DTA - MS/FTIR measurements. Based on non-isothermal analysis, isothermal measurements have been carried out at different temperatures to fix the calcination temperature/s. Decomposition of ammonium nitrate was studied in inert, oxidizing and reducing environments and the results suggest that the decomposition mechanism is same in inert/oxidizing atmosphere but is different in reducing environment. (author)

  10. Thermal analysis of NNWSI conceptual waste package designs

    International Nuclear Information System (INIS)

    Stein, W.; Hockman, J.N.; O'Neal, W.C.

    1984-04-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This report discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 16 references

  11. The analysis of thermal-hydraulic models in MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M H; Hur, C; Kim, D K; Cho, H J [POhang Univ., of Science and TECHnology, Pohang (Korea, Republic of)

    1996-07-15

    The objective of the present work is to verify the prediction and analysis capability of MELCOR code about the progression of severe accidents in light water reactor and also to evaluate appropriateness of thermal-hydraulic models used in MELCOR code. Comparing the results of experiment and calculation with MELCOR code is carried out to achieve the above objective. Specially, the comparison between the CORA-13 experiment and the MELCOR code calculation was performed.

  12. Proceedings of the 11th Thermal and Fluids Analysis Workshop

    Science.gov (United States)

    Sakowski, Barbara

    2002-07-01

    The Eleventh Thermal & Fluids Analysis WorkShop (TFAWS 2000) was held the week of August 21-25 at The Forum in downtown Cleveland. This year's annual event focused on building stronger links between research community and the engineering design/application world and celebrated the theme "Bridging the Gap Between Research and Design". Dr. Simon Ostrach delivered the keynote address "Research for Design (R4D)" and encouraged a more deliberate approach to performing research with near-term engineering design applications in mind. Over 100 persons attended TFAWS 2000, including participants from five different countries. This year's conference devoted a full-day seminar to the discussion of analysis and design tools associated with aeropropulsion research at the Glenn Research Center. As in previous years, the workshop also included hands-on instruction in state-of-the-art analysis tools, paper sessions on selected topics, short courses and application software demonstrations. TFAWS 2000 was co-hosted by the Thermal/Fluids Systems Design and Analysis Branch of NASA GRC and by the Ohio Aerospace Institute and was co-chaired by Barbara A. Sakowski and James R. Yuko. The annual NASA Delegates meeting is a standard component of TFAWS where the civil servants of the various centers represented discuss current and future events which affect the Community of Applied Thermal and Fluid ANalystS (CATFANS). At this year's delegates meeting the following goals (among others) were set by the collective body of delegates participation of all Centers in the NASA material properties database (TPSX) update: (1) developing and collaboratively supporting multi-center proposals; (2) expanding the scope of TFAWS to include other federal laboratories; (3) initiation of a white papers on thermal tools and standards; and (4) formation of an Agency-wide TFAWS steering committee.

  13. Thermal Analysis of Iodine Satellite (iSAT)

    Science.gov (United States)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  14. Theory and practice of near-field thermal probes for microscopy and thermal analysis

    International Nuclear Information System (INIS)

    Hodges, C.S.

    1999-03-01

    Bacterial mats called biofilms that form on the surfaces of industrial steel pipes can cause corrosion of the pipe. Examining the steel surface of the corroded pipe usually involves removal of the biofilm using acid. This acid can also cause corrosion of the pipe so that the observed corrosion cracks and pits are the result of both the acid and the biofilm. It was thought that non-invasive examination of the corrosion caused by the biofilm may be obtained by using a thin wire bent into a loop that acts as both a heat source a nd a detector of heat, measuring the changes in heat flow out of the wire as the wire passes over the steel with the biofilm still present. This technique of using a heated probe to scan samples on a microscopic scale is called Scanning Thermal Microscopy (SThM) and uses an alternating current to produce a.c. thermal waves that emanate from the probe tip into the sample. The alternating current allows better signal-to-noise ratios and also selective depth imaging of the sample since the thermal wave penetrates into the sample a distance inversely proportional to the applied current frequency. Reversal in the contrast of SThM images on biofilms and subsequently all samples was observed as either the frequency or the amplitude of the temperature waves was altered. Whilst changing the time constant of the feedback circuit attached to the SThM probe did go some way to explain this effect, a full explanation is still wanting. Despite many efforts to image the biofilm/steel interface with the biofilm still present, often the biofilm was either too thick or too complicated to do this. A simpler thermal test sample is required to calibrate the thermal probe. In addition to SThM, one may select a point on a sample surface and ramp the temperature of the probe to obtain a Localised Thermal Analysis (LTA) temperature scan looking for melts, recrystallisations, glass transitions of the part of the sample in contact with the probe. This technique is a

  15. Numerical analysis and nuclear standard code application to thermal fatigue

    International Nuclear Information System (INIS)

    Merola, M.

    1992-01-01

    The present work describes the Joint Research Centre Ispra contribution to the IAEA benchmark exercise 'Lifetime Behaviour of the First Wall of Fusion Machines'. The results of the numerical analysis of the reference thermal fatigue experiment are presented. Then a discussion on the numerical analysis of thermal stress is tackled, pointing out its particular aspects in view of their influence on the stress field evaluation. As far as the design-allowable number of cycles are concerned the American nuclear code ASME and the French code RCC-MR are applied and the reasons for the different results obtained are investigated. As regards a realistic fatigue lifetime evaluation, the main problems to be solved are brought out. This work, is intended as a preliminary basis for a discussion focusing on the main characteristics of the thermal fatigue problem from both a numerical and a lifetime assessment point of view. In fact the present margin of discretion left to the analyst may cause undue discrepancies in the results obtained. A sensitivity analysis of the main parameters involved is desirable and more precise design procedures should be stated

  16. Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors

    Science.gov (United States)

    Sambamurthi, Jay K.

    1995-01-01

    Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

  17. Thermal analysis of the horizontal disposal for HLW

    International Nuclear Information System (INIS)

    Zhao Honggang

    2012-01-01

    The temperature on the canister surface is set to be not more than 100 in the repository, a criterion which dictates the dimension of the repository. The factors that affect the highest temperature on the canister surface include the initial power of the canister, the material thermal properties of the engineered barrier system (EBS), the gaps around the canister in the EBS, the initial ground temperature and thermal properties of the host rock, the repository layout, etc. The article examines the material thermal properties of the host rock and the EBS, the thermal conductivity properties of the different gaps in the EBS, the temperature evolution around the single canister by using the analysis method and the numerical method for horizontal disposal concept. The findings are as follows: 1) The most important and the most sensitive parameter is the initial disposal power of the canister; 2) The two key factors that affect the highest temperature on the canister surface are the material parameter's uncertainty and nature variability of the host rock and the EBS, and the gaps around the canister in the EBS; 3) The temperature offsets between the canister and bentonite is not more than 10, and the bigger the inner gaps, the bigger temperature offsets between the canister and bentonite; When the gap between the bentonite and the host rock is filled with water, the gap's temperature offsets is small, but it will be 1∼3 higher when the gaps between the bentonite and the host rock is filled with air. (author)

  18. Thermal spike analysis of highly charged ion tracks

    International Nuclear Information System (INIS)

    Karlušić, M.; Jakšić, M.

    2012-01-01

    The irradiation of material using swift heavy ion or highly charged ion causes excitation of the electron subsystem at nanometer scale along the ion trajectory. According to the thermal spike model, energy deposited into the electron subsystem leads to temperature increase due to electron–phonon coupling. If ion-induced excitation is sufficiently intensive, then melting of the material can occur, and permanent damage (i.e., ion track) can be formed upon rapid cooling. We present an extension of the analytical thermal spike model of Szenes for the analysis of surface ion track produced after the impact of highly charged ion. By applying the model to existing experimental data, more than 60% of the potential energy of the highly charged ion was shown to be retained in the material during the impact and transformed into the energy of the thermal spike. This value is much higher than 20–40% of the transferred energy into the thermal spike by swift heavy ion. Thresholds for formation of highly charged ion track in different materials show uniform behavior depending only on few material parameters.

  19. Performance analysis of photovoltaic thermal (PVT) water collectors

    International Nuclear Information System (INIS)

    Fudholi, Ahmad; Sopian, Kamaruzzaman; Yazdi, Mohammad H.; Ruslan, Mohd Hafidz; Ibrahim, Adnan; Kazem, Hussein A.

    2014-01-01

    Highlights: • Performances analysis of PVT collector based on energy efficiencies. • New absorber designs of PVT collectors were presented. • Comparison present study with other absorber collector designs was presented. • High efficiencies were obtained for spiral flow absorber. - Abstract: The electrical and thermal performances of photovoltaic thermal (PVT) water collectors were determined under 500–800 W/m 2 solar radiation levels. At each solar radiation level, mass flow rates ranging from 0.011 kg/s to 0.041 kg/s were introduced. The PVT collectors were tested with respect to PV efficiency, thermal efficiency, and a combination of both (PVT efficiency). The results show that the spiral flow absorber exhibited the highest performance at a solar radiation level of 800 W/m 2 and mass flow rate of 0.041 kg/s. This absorber produced a PVT efficiency of 68.4%, a PV efficiency of 13.8%, and a thermal efficiency of 54.6%. It also produced a primary-energy saving efficiency ranging from 79% to 91% at a mass flow rate of 0.011–0.041 kg/s

  20. Analysis of an Attached Sunspace with a Thermal Inertia Floor

    Directory of Open Access Journals (Sweden)

    María José Suárez López

    2018-05-01

    Full Text Available An attached sunspace is a partially or fully glazed enclosure, usually located on the first floor, facing south (in the Northern Hemisphere and adjacent to a conditioned room. Because of the length and orientation of the glazed area, the temperature in the sunspace is usually higher than outside the building. As a Trombe–Mitchel wall, the sunspace has a considerable mass that accumulates thermal energy, but in this case the thermal mass is located in the floor. This capacity to accumulate thermal energy confers the attached sunspace features beyond passive insulation. The sunspace studied in this paper is part of an experimental building located in the North of Spain that was built in the frame of the so-called ARFRISOL project. It consists of a south-facing glazed exterior wall with both clear glass and semi-transparent photovoltaic panels, an intermediate space with a thick layer of sand over a concrete floor, and a partially glazed interior wall. In this paper, a three-dimensional computational model has been implemented to analyse the thermal behaviour inside the sunspace. This analysis takes into account, among other factors, the effects of sun position, incident solar irradiation and temperature both inside and outside.

  1. Methodology for a thermal analysis of a proposed SFR transport cask with the thermal code SYRTHES

    International Nuclear Information System (INIS)

    Peniguel, C.; Rupp, I.; Schneider, J. P.

    2010-01-01

    Fast reactors with liquid metal coolant have received a renewed interest owing to the need of a more efficient usage of the primary uranium resources, and they are one of the proposal for the next Generation IV. In the framework of the 2006 French law on sustainable management of radioactive materials and waste, an evaluation of the industrial perspectives of minor actinides transmutation advantages and drawbacks in Generation IV fast spectrum reactors system is requested for 2012. The CEA is in charge of studying the global problem, but on some aspects, EDF is interested to do its own exploratory studies. Among other points, transport is seen as important for the nuclear industry, to link points of production and treatment. Nuclear fuel is generally transported in thick walled rail or truck casks. These packages are designed to provide confinement, shielding and criticality protection during normal and severe transport conditions. Heat generated within the fuel (and a contribution of solar heating) makes the package becoming quite hot, but one must demonstrate that the cladding temperature does not exceed a long term temperature limit during normal transport. This paper presents a thermal study done on a package in which 9 SFR assemblies are included. Each of them is of hexagonal shape and contains 271 fuel pins. The approach followed for these calculations is to rely on an explicit representation of all pins. For these calculations a 2D analysis is performed thanks to the thermal code SYRTHES. Conduction is solved thanks to a finite element method, while thermal radiation is handled through a radiosity approach. The main aim of this paper is to present a possible numerical methodology to handle the thermal problem. (authors)

  2. Plume rise measurements at Turbigo

    Energy Technology Data Exchange (ETDEWEB)

    Anfossi, D

    1982-01-01

    This paper presents analyses of plume measurements obtained during that campaign by the ENEL ground-based Lidar. The five stacks of Turbigo Power Plant have different heights and emission parameters and their plumes usually combine, so a model for multiple sources was used to predict the plume rises. These predictions are compared with the observations. Measurements of sigma/sub v/ and sigma/sub z/ over the first 1000 m are compared with the curves derived from other observations in the Po Valley, using the no-lift balloon technique over the same range of downwind distance. Skewness and kurtosis distributions are shown, both along the vertical and the horizontal directions. In order to show the plume structure in more detail, we present two examples of Lidar-derived cross sections and the corresponding vertically and horizontally integrated concentration profiles.

  3. thermal analysis of a small scale solid waste-fired steam boiler

    African Journals Online (AJOL)

    user

    Thermal analysis of a small scale solid waste-fired steam generator is presented in this paper. The analysis was based on the chosen design specifications which are operating steam ... include: wind, bio-energy, geothermal, solar thermal,.

  4. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation

    KAUST Repository

    Qiu, Wulin; Chen, Chien-Chiang; Kincer, Matthew R.; Koros, William J.

    2011-01-01

    by reaction with acetic anhydride to produce polyimide (PI). The resulting polymers were characterized using thermal analysis techniques including TGA, derivative weight analysis, TGA-MS, and DSC. The decarboxylation-induced thermal cross-linking, ester cross

  5. Thermal treatment investigation of natural lizardite at the atmospheric pressure, based on XRD and differential thermal analysis/thermal gravimetric analysis methods

    International Nuclear Information System (INIS)

    Dabiri, R.; Karimi Shahraki, B.; Mollaei, H.; Ghaffari, M.

    2009-01-01

    Determination of stability limits, mineralogical changes and thermal reaction of serpentine minerals are very important for the investigation of magmatism, mechanism and depth of plates of subduction. During the subduction process, serpentine (Lizardite) minerals will release their water due to thermal reactions. This dehydration can play an important role in volcanism processes related to the subduction, In this study, serpentine minerals (Lizardite) collected from the Neyriz Ophiolite Complex were dehydrated under the constant atmospheric pressure. These mineralogical changes were determined by X-Ray diffraction and differential thermal analysis-thermal gravimetric analyses methods. This study shows natural lizardites that heated for about one hour is stable up to 550 d eg C . Dehydration reactions on lizardite started at approximately between 100 to 150 d eg C and dehydroxylation reactions started at approximately 550-690 d eg C . As a result of thermal reaction, the decomposition of lizardite will take place and then changes in to olivine (forsterite). Crystallization of olivine (forsterite) will start at 600 d eg C . This mineral is stable up to 700 d eg C and then crystallization of enstatite will start at 700 d eg C . During this dehydration and crystallization reaction, amorphous processes will start at 600 d eg C and some amount water and silica will release.

  6. Development of intelligent system for a thermal analysis instrument

    International Nuclear Information System (INIS)

    Xu Xiaoli; Wu Guoxin; Shi Yongchao

    2005-01-01

    The key techniques for the intelligent analysis instrument developed are proposed. Based on the technique of virtual instrumentation, the intelligent PID control algorithm to control the temperature of thermal analysis instrument is described. The dynamic character and the robust performance of traditional PID controls are improved through the dynamic gain factor, temperature rate change factor, the forecast factor, and the temperature correction factor is introduced. Using the graphic development environment of LabVIEW, the design of system modularization and the graphic display are implemented. By means of multiple mathematical modules, intelligent data processing is realized

  7. Deformation analysis considering thermal expansion of injection mold

    International Nuclear Information System (INIS)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok

    2015-01-01

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations

  8. Deformation analysis considering thermal expansion of injection mold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok [Samsung Electronics Co., LTD., Seoul (Korea, Republic of)

    2015-09-15

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

  9. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da.

    1984-01-01

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt

  10. Smoke plumes: Emissions and effects

    Science.gov (United States)

    Susan O' Neill; Shawn Urbanski; Scott Goodrick; Sim Larkin

    2017-01-01

    Smoke can manifest itself as a towering plume rising against the clear blue sky-or as a vast swath of thick haze, with fingers that settle into valleys overnight. It comes in many forms and colors, from fluffy and white to thick and black. Smoke plumes can rise high into the atmosphere and travel great distances across oceans and continents. Or smoke can remain close...

  11. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  12. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Transient heat conduction across microencapsulated PCM-concrete walls was simulated. • Equivalent homogeneous wall with effective thermal properties was rigorously derived. • Adding PCM to the wall increases daily energy savings and delays peak thermal load. • Energy savings is maximum when PCM melting temperature equals indoor temperature. • Energy savings are limited in extreme climates but time delay can be large. - Abstract: This paper examines the benefits of adding microencapsulated phase change material (PCM) to concrete used in building envelopes to reduce energy consumption and costs. First, it establishes that the time-dependent thermal behavior of microencapsulated PCM-concrete composite walls can be accurately predicted by an equivalent homogeneous wall with appropriate effective thermal properties. The results demonstrate that adding microencapsulated PCM to concrete resulted in a reduction and a time-shift in the maximum heat flux through the composite wall subjected to diurnal sinusoidal outdoor temperature and solar radiation heat flux. The effects of the PCM volume fraction, latent heat of fusion, phase change temperature and temperature window, and outdoor temperature were evaluated. Several design rules were established including (i) increasing the PCM volume fraction and/or enthalpy of phase change increased the energy flux reduction and the time delay, (ii) the energy flux reduction was maximized when the PCM phase change temperature was close to the desired indoor temperature, (iii) the optimum phase change temperature to maximize the time delay increased with increasing average outdoor temperature, (iv) in extremely hot or cold climates, the thermal load could be delayed even though the reduction in daily energy flux was small, and (v) the choice of phase change temperature window had little effect on the energy flux reduction and on the time delay. This analysis can serve as a framework to design PCM composite walls

  13. Two-dimensional disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Seki, Masahiro.

    1988-08-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing components such as first wall and divertor/limiter are subjected to an intense heat load with very high heat flux and short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs, it causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes (melting/evaporation) and radiation heat loss is required in the design of these components. This paper describes the computer code DREAM developed to perform the two-dimensional transient thermal analysis that takes phase changes and radiation into account. The input and output of the code and a sample analysis on a disruption simulation experiment are also reported. The user's input manual is added as an appendix. The profiles and time variations of temperature, and melting and evaporated thicknesses of the material subjected to intense heat load can be obtained, using this computer code. This code also gives the temperature data for elastoplastic analysis with FEM structural analysis codes (ADINA, MARC, etc.) to evaluate the thermal stress and crack propagation behavior within the wall materials. (author)

  14. Thermal analysis of an instrumented capsule using an ANSYS program

    International Nuclear Information System (INIS)

    Choi, Myoung Hwan; Choo, Kee Nam; Kang, Young Hwan; Cho, Man Soon; Sohn, Jae Min; Kim, Bong Goo

    2006-01-01

    An instrumented capsule has been used for an irradiation test of various nuclear materials in the research reactor, HANARO. To obtain the design data of the instrumented capsule, a thermal analysis is performed using a finite element analysis program, ANSYS. The 2-dimensional model for a cross section of the capsule including the specimens is generated, and a gamma-heating rate of the materials for the HANARO power of 24 or 30 MW is considered as an input force. The effect of the gap size and the control rod position on the temperature of the specimens or other components is discussed. From the analysis it is found that the gap between the thermal media and the external tube has a significant effect on the temperature of the specimen. In the case of the material capsule, the maximum temperature for the reactor power of 24 MW is 255degC for an irradiation test and 257degC for a FE analysis at the center stage of the capsule in the axial direction. It is expected that the analysis models using an ANSYS program will be useful in designing the instrumented capsules for an irradiation test and estimating the test results. (author)

  15. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    Science.gov (United States)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  16. Drift scale thermomechanical analysis for thermal loading and retrievability studies

    International Nuclear Information System (INIS)

    Tsai, F.C.

    1995-01-01

    The repository portion of the Mined Geologic Disposal System for the disposal of spent nuclear fuel and high-level radioactive waste is currently in the advanced conceptual design stage. In support of systems studies, a numerical method was used to estimate the stability of emplacement drifts. Thermomechanical analyses, using the Discontinuous Deformation Analysis code, were performed using input data from Yucca Mountain documents. The analysis found that the stresses produced in the rock at thermal loads of 27.4 kilograms uranium per m2 (KgU/m2) would exceed stability criteria and could result in tunnel instability. At thermal loads between 20.5 KgU/m2, the drift is predicted to be stable and its structural integrity remains after thermal loading. In this case, the smaller diameter drift emplacement appears to have better stability. However, local rock spalling may occur. According to the numerical prediction, more rock fall may occur during the retrieval period due to the stress relaxation caused by the rapid cooling in the immediate drift area

  17. Wind tunnel experiments on cooling tower plumes. Pt. 2

    International Nuclear Information System (INIS)

    Andreopoulos, J.

    1986-01-01

    The basic characteristics of plumes issuing into a boundary layer type of cross flow are reported. The flow can be considered as an interaction between two vorticity fields with different length scales and turbulence intensities. The large eddies of the oncoming boundary layer are responsible for the observed sudden changes in the plume direction. The type of structures emanating the tower depends on the instantaneous velocity ratio. Mean velocities and normal velocity gradients are smaller than in the case of uniform cross-flow (Andreopoulos, 1986) and therefore the measured turbulence intensities were lower too. The cross-stream turbulence brings high momentum fluid into the wake region and the velocity defect decays very rapidly. Dilution of the plumes takes place faster in the presence of external turbulence than in the case with uniform cross-flow. The spreading rate is increased dramatically by the external turbulence which causes different effects on the hydrodynamic and thermal fields. (orig.) [de

  18. Thermal fatigue crack growth analysis in a nozzle corner

    International Nuclear Information System (INIS)

    Blauel, J.G.; Hodulak, L.

    1983-01-01

    Calculations of the crack growth under local thermal shock fatigue are performed. Estimates of crack growth are based on stress distributions obtained by a finite element analysis for thermal transients in the structure without crack. Stress intensity factors are calculated using interpolation formulae derived from known basic solutions for part-through cracks under constant and linearly varying load. The crack propagation at selected parts of the crack front is calculated stepwise by integration of the Paris law with material constants C and n interpolated from test results on compact specimens at constant temperatures. Experimental results for the model vessel test MB1 at an internal pressure of 14 N/mm 2 and a temperature of 320 0 C exposed to a repeated local spraying with cold water are presented and compared to predictions

  19. Thermal analysis of rare earth gallates and aluminates

    International Nuclear Information System (INIS)

    O'Bryan, H.M.; Gallagher, P.K.; Berkstresser, G.W.; Brandle, C.D.

    1990-01-01

    Dilatometry, high-temperature x-ray diffraction, differential thermal analysis, and differential scanning calorimetry have been performed on LaGaO 3 , NdGaO 3 , PrGaO 3 , SmAlO 3 , and LaAlO 3 single crystals grown by the Czochralski technique. First order phase transitions have been located at 145 degree C for LaGaO 3 and 785 degree C for SmAlO 3 , and ΔH has been measured for the LaGaO 3 transition. Second order transitions have been identified for LaGaO 3 , PrGaO 3 , NdGaO 3 , and LaAlO 3 . The usefulness of these compounds as substrates for high temperature superconducting films is discussed in terms of thermal expansion matching

  20. Parametric thermal analysis of 75 MHz heavy ion RFQ

    International Nuclear Information System (INIS)

    Mishra, N.K.; Mehrotra, N.; Verma, V.; Gupta, A.K.; Bhagwat, P.V.

    2015-01-01

    An ECR based Heavy Ion Accelerator comprising of a superconducting Electron Cyclotron Resonance (ECR) Ion Source, normal conducting RFQ (Radio Frequency Quadrupole) and superconducting Niobium resonators is being developed at BARC under XII plan. A state-of-the-art 18 GHz superconducting ECR ion source (PK-ISIS) jointly configured with Pantechnik, France is operational at Van-de-Graaff, BARC. The electromagnetic design of the improved version of 75 MHz heavy ion RFQ has been reported earlier. The previous thermal study of 51 cm RFQ model showed large temperature variation axially along the vane tip. A new coolant flow scheme has been worked out to optimize the axial temperature gradient. In this paper the thermal analysis including parametric study of coolant flow rates and inlet temperature variation will be presented. (author)

  1. Thermal and Electrical Analysis of Mars Rover RTGs

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    2012-01-19

    The RTG designs described in the preceding paper in these proceedings were analyzed for their thermal and electrical performance. Each analysis consisted of coupled thermal, thermoelectric, and electrical analyses, using Fairchild-generated specialized computer codes. These were supplemented with preliminary structural and mass analyses. For each design, various cases representing different operating conditions (water-cooled/radiation-cooled, BOM/EOM, summer/winter, day/night) and different thermoelectric performance assumptions (from conservative to optimistic) were analyzed; and for every case, the heat flow rates, temperatures and electrical performance of each layer of thermoelectric elements and of the overall RTG were determined. The analyses were performed in great detail, to obtain accurate answers permitting meaningful comparisons between different designs. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments.

  2. Stochastic thermal stress analysis of clad cylindrical fuel elements

    International Nuclear Information System (INIS)

    Barrett, P.R.

    1975-01-01

    After a review of deterministic elastic thermal stress analysis by means of the displacement method for a cylindrical system in which the temperature distribution is not only radially variable but azimuthally and axially variable also, a method is shown for the determination of the statistical moments of the stress components when (a) the outer boundary of the cladding is a stochastic quantity, and (b) the uncertainties in the elastic and thermal constants of the materials and in the magnitude of the heat generation term are taken into account. A typical model is proposed for describing the statistics of the outer radius of the cladding which is a stochastic variable owing to uncertainties produced by the extrusion process. The theory is illustrated by means of a simple example by examining a meaningful reliability index and the relative importance of each of the uncertainties. (Auth.)

  3. Improved optical flow velocity analysis in SO2 camera images of volcanic plumes - implications for emission-rate retrievals investigated at Mt Etna, Italy and Guallatiri, Chile

    Science.gov (United States)

    Gliß, Jonas; Stebel, Kerstin; Kylling, Arve; Sudbø, Aasmund

    2018-02-01

    Accurate gas velocity measurements in emission plumes are highly desirable for various atmospheric remote sensing applications. The imaging technique of UV SO2 cameras is commonly used to monitor SO2 emissions from volcanoes and anthropogenic sources (e.g. power plants, ships). The camera systems capture the emission plumes at high spatial and temporal resolution. This allows the gas velocities in the plume to be retrieved directly from the images. The latter can be measured at a pixel level using optical flow (OF) algorithms. This is particularly advantageous under turbulent plume conditions. However, OF algorithms intrinsically rely on contrast in the images and often fail to detect motion in low-contrast image areas. We present a new method to identify ill-constrained OF motion vectors and replace them using the local average velocity vector. The latter is derived based on histograms of the retrieved OF motion fields. The new method is applied to two example data sets recorded at Mt Etna (Italy) and Guallatiri (Chile). We show that in many cases, the uncorrected OF yields significantly underestimated SO2 emission rates. We further show that our proposed correction can account for this and that it significantly improves the reliability of optical-flow-based gas velocity retrievals. In the case of Mt Etna, the SO2 emissions of the north-eastern crater are investigated. The corrected SO2 emission rates range between 4.8 and 10.7 kg s-1 (average of 7.1 ± 1.3 kg s-1) and are in good agreement with previously reported values. For the Guallatiri data, the emissions of the central crater and a fumarolic field are investigated. The retrieved SO2 emission rates are between 0.5 and 2.9 kg s-1 (average of 1.3 ± 0.5 kg s-1) and provide the first report of SO2 emissions from this remotely located and inaccessible volcano.

  4. Thermography of the New River Inlet plume and nearshore currents

    Science.gov (United States)

    Chickadel, C.; Jessup, A.

    2012-12-01

    As part of the DARLA and RIVET experiments, thermal imaging systems mounted on a tower and in an airplane captured water flow in the New River Inlet, NC, USA. Kilometer-scale, airborne thermal imagery of the inlet details the ebb flow of the estuarine plume water mixing with ocean water. Multiple fronts, corresponding to the preferred channels through the ebb tidal delta, are imaged in the aerial data. A series of internal fronts suggest discreet sources of the tidal plume that vary with time. Focused thermal measurements made from a tower on the south side of the inlet viewed an area within a radius of a few hundred meters. Sub-meter resolution video from the tower revealed fine-scale flow features and the interaction of tidal exchange and wave-forced surfzone currents. Using the tower and airborne thermal image data we plan to provide geophysical information to compare with numerical models and in situ measurements made by other investigators. From the overflights, we will map the spatial and temporal extent of the estuarine plume to correlate with tidal phase and local wind conditions. From the tower data, we will investigate the structure of the nearshore flow using a thermal particle image velocimetry (PIV) technique, which is based on tracking motion of the surface temperature patterns. Long term variability of the mean and turbulent two-dimensional PIV currents will be correlated to local wave, tidal, and wind forcing parameters.

  5. Uncertainty and sensitivity analysis of the nuclear fuel thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Boulore, A., E-mail: antoine.boulore@cea.fr [Commissariat a l' Energie Atomique (CEA), DEN, Fuel Research Department, 13108 Saint-Paul-lez-Durance (France); Struzik, C. [Commissariat a l' Energie Atomique (CEA), DEN, Fuel Research Department, 13108 Saint-Paul-lez-Durance (France); Gaudier, F. [Commissariat a l' Energie Atomique (CEA), DEN, Systems and Structure Modeling Department, 91191 Gif-sur-Yvette (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A complete quantitative method for uncertainty propagation and sensitivity analysis is applied. Black-Right-Pointing-Pointer The thermal conductivity of UO{sub 2} is modeled as a random variable. Black-Right-Pointing-Pointer The first source of uncertainty is the linear heat rate. Black-Right-Pointing-Pointer The second source of uncertainty is the thermal conductivity of the fuel. - Abstract: In the global framework of nuclear fuel behavior simulation, the response of the models describing the physical phenomena occurring during the irradiation in reactor is mainly conditioned by the confidence in the calculated temperature of the fuel. Amongst all parameters influencing the temperature calculation in our fuel rod simulation code (METEOR V2), several sources of uncertainty have been identified as being the most sensitive: thermal conductivity of UO{sub 2}, radial distribution of power in the fuel pellet, local linear heat rate in the fuel rod, geometry of the pellet and thermal transfer in the gap. Expert judgment and inverse methods have been used to model the uncertainty of these parameters using theoretical distributions and correlation matrices. Propagation of these uncertainties in the METEOR V2 code using the URANIE framework and a Monte-Carlo technique has been performed in different experimental irradiations of UO{sub 2} fuel. At every time step of the simulated experiments, we get a temperature statistical distribution which results from the initial distributions of the uncertain parameters. We then can estimate confidence intervals of the calculated temperature. In order to quantify the sensitivity of the calculated temperature to each of the uncertain input parameters and data, we have also performed a sensitivity analysis using the Sobol' indices at first order.

  6. An Optimized Thermal Analysis of Electronic Unit Used in Aircraft

    International Nuclear Information System (INIS)

    Shah, A.N.; Mir, F.; Farooq, M.; Farooq, M.

    2014-01-01

    In a field where change and growth is inevitable, new electronic packaging problems continuously arise. Smaller, but more powerful devices are prone to overheating causing intermittent system failures, corrupted signals and outright system failure. Current study is focused on the analysis of the optimized working of electronic equipment from thermal point of view. In order to achieve the objective, an approach was developed for the thermal analysis of Printed Circuit Board (PCB) including the heat dissipation of its electronic components and then removal of the heat in a sophisticated manner by considering the conduction and convection modes of heat transfer. Mathematical modeling was carried out for a certain problem to address the thermal design, and then a program was developed in MATLAB for the solution of model by using Newton-Raphson method. The proposed unit is to be mounted on an aircraft having suspected thermal characteristics owing to abrupt changes in pressure and temperature as aircraft moves quickly from a lower altitude to higher altitude. In current study, dominant mode of heat transfer was conduction revealing that the major portion of heat transfer takes place by copper cladding and that heat conduction along the length of PCB can be improved enormously by using even thin layer of copper. The results confirmed that temperatures of all the electronic components were within derated values. Meanwhile, it was known that convection also plays a significant role in the reduction of temperatures of the components. The reduction in nodal temperature was in the range of 13 to 42 %. Furthermore, altitude variation from sea level to 15240 m (above sea level) caused the reduction in pressure from 1atm to 0.1095 atm. Consequently, the temperature of the electronic components increased from 73.25 degree C to 83.83 degree C for first node 'a', and from 66.04 degree C to 68.47 degree C for last node 'n' because of the decrease in the convective heat transfer

  7. Tracing Mantle Plumes: Quantifying their Morphology and Behavior from Seismic Tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jones, T. D.; Garcia, E.; Robson, A.; Mittal, T.; Lithgow-Bertelloni, C. R.; Jackson, M. G.; Lekic, V.; Rudolph, M. L.

    2016-12-01

    Hotspot volcanism provides a direct link between the deep mantle and the surface, but the location, depth and source of the mantle plumes that feed hotspots are highly controversial. In order to address this issue it is important to understand the journey along which plumes have travelled through the mantle. The general behavior of plumes in the mantle also has the potential to tell us about the vigor of mantle convection, net rotation of the mantle, the role of thermal versus chemical anomalies, and important bulk physical properties of the mantle such as the viscosity profile. To address these questions we developed an algorithm to trace plume-like features in shear-wave (Vs) seismic tomographic models based on picking local minima in velocity and searching for continuous features with depth. We apply this method to several of the latest tomographic models and can recover 30 or more continuous plume conduits that are >750 km long. Around half of these can be associated with a known hotspot at the surface. We study the morphology of these plume chains and find that the largest lateral deflections occur near the base of the lower mantle and in the upper mantle. We analyze the preferred orientation of the plume deflections and their gradient to infer large scale mantle flow patterns and the depth of viscosity contrasts in the mantle respectively. We also retrieve Vs profiles for our traced plumes and compare with velocity profiles predicted for different mantle adiabat temperatures. We use this to constrain the thermal anomaly associated with these plumes. This thermal anomaly is then converted to a density anomaly and an upwelling velocity is derived. We compare this to buoyancy fluxes calculated at the surface and use this in conjunction with our measured plume tilts/deflections to estimate the strength of the "mantle wind".

  8. Thermal analysis of LOFT modular DTT for LOCE transient

    International Nuclear Information System (INIS)

    Martin, C.M.

    1978-01-01

    A thermal analysis was performed on the LOFT modular drag-disc turbine transducer (MDTT) modular assembly. The purpose of this analysis was to determine the maximum temperature difference between the MDTT shroud and end cap during a LOCE. This temperature difference is needed for stress analysis of the MDTT endcap to fairing welds. The thermal analysis was done using TRIPLE, a three dimensional finite element code. A three dimensional model of the MDTT was made and transient temperature solutions were found for the different MDTT locations. The fluid temperature transients used for the solutions at all locations were from RELAP4 predictions of the LOFT L2-4 test which is considered the most severe temperature transient. Results of these calculations show the maximum temperature difference is 92 0 C (165 0 F) and occurs in the intact loop cold leg. This value and those found at other locations, are evaluated from the best available RELAP predicted temperatures during a nuclear LOCE

  9. Integrated Software Environment for Pressurized Thermal Shock Analysis

    Directory of Open Access Journals (Sweden)

    Dino Araneo

    2011-01-01

    Full Text Available The present paper describes the main features and an application to a real Nuclear Power Plant (NPP of an Integrated Software Environment (in the following referred to as “platform” developed at University of Pisa (UNIPI to perform Pressurized Thermal Shock (PTS analysis. The platform is written in Java for the portability and it implements all the steps foreseen in the methodology developed at UNIPI for the deterministic analysis of PTS scenarios. The methodology starts with the thermal hydraulic analysis of the NPP with a system code (such as Relap5-3D and Cathare2, during a selected transient scenario. The results so obtained are then processed to provide boundary conditions for the next step, that is, a CFD calculation. Once the system pressure and the RPV wall temperature are known, the stresses inside the RPV wall can be calculated by mean a Finite Element (FE code. The last step of the methodology is the Fracture Mechanics (FM analysis, using weight functions, aimed at evaluating the stress intensity factor (KI at crack tip to be compared with the critical stress intensity factor KIc. The platform automates all these steps foreseen in the methodology once the user specifies a number of boundary conditions at the beginning of the simulation.

  10. A cold plasma plume with a highly conductive liquid electrode

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Wenxing; Chen Shihua; Yang Size

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 10 11 /cm 3 , respectively. The length of plasma plume can reach 5 cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O * , O 3 ) in the downstream oxygen (O2) gas of the plume have been applied to treat the landfill leachate. The results show that the activated O 2 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively. (fluids, plasmas and electric discharges)

  11. Waves generated in the plasma plume of helicon magnetic nozzle

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-01-01

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  12. Waves generated in the plasma plume of helicon magnetic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  13. Thermal Performance Analysis of a Geologic Borehole Repository

    Energy Technology Data Exchange (ETDEWEB)

    Reagin, Lauren [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-16

    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of two WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to

  14. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  15. Comparative environmental analysis of waste brominated plastic thermal treatments

    International Nuclear Information System (INIS)

    Bientinesi, M.; Petarca, L.

    2009-01-01

    The aim of this research activity is to investigate the environmental impact of different thermal treatments of waste electric and electronic equipment (WEEE), applying a life cycle assessment methodology. Two scenarios were assessed, which both allow the recovery of bromine: (A) the co-combustion of WEEE and green waste in a municipal solid waste combustion plant, and (B) the staged-gasification of WEEE and combustion of produced syngas in gas turbines. Mass and energy balances on the two scenarios were set and the analysis of the life cycle inventory and the life cycle impact assessment were conducted. Two impact assessment methods (Ecoindicator 99 and Impact 2002+) were slightly modified and then used with both scenarios. The results showed that scenario B (staged-gasification) had a potentially smaller environmental impact than scenario A (co-combustion). In particular, the thermal treatment of staged-gasification was more energy efficient than co-combustion, and therefore scenario B performed better than scenario A, mainly in the impact categories of 'fossil fuels' and 'climate change'. Moreover, the results showed that scenario B allows a higher recovery of bromine than scenario A; however, Br recovery leads to environmental benefits for both the scenarios. Finally the study demonstrates that WEEE thermal treatment for energy and matter recovery is an eco-efficient way to dispose of this kind of waste

  16. Thermal and structural analysis of the TPX divertor

    International Nuclear Information System (INIS)

    Reis, E.E.; Baxi, C.B.; Chin, E.; Redler, K.M.

    1995-01-01

    The high heat flux on the surfaces of the TPX divertor will require a design in which a carbon-carbon (C-C) tile material is brazed to water cooled copper tubes. Thermal and structural analyses were performed to assist in the design selection of a divertor tile concept and C-C material. The relevancy of finite element analysis (FEA) for evaluating tile design was examined by conducting a literature survey to compare FEA stress results to subsequent brazing and thermal test results. The thermal responses for five tile concepts and four C-C materials were analyzed for a steady-state heat flux of 7.5 MW/m 2 . Elastic-plastic stress analyses were performed to calculate the residual stresses due to brazing C-C tiles to soft copper heat sinks for the various tile designs. Monoblock and archblock divertor tile concepts were analyzed for residual stresses in which elevated temperature creep effects were included with the elastic-plastic behavior of the copper heat sink for an assumed braze cooldown cycle. As a result of these 2D studies, the archblock concept with a 3D fine weave C-C was initially found to be a preferred design for the divertor. A 3D elastic-plastic analysis for brazing of the arch block tile was performed to investigate the singularity effects at the C-C to copper interface in the direction of the tube axis. This analysis showed that the large residual stresses at the tube and tile edge intersection would produce cracks in the C-C and possible delamination along the braze interface. These results, coupled with the difficulties experienced in brazing archblocks for the Tore Supra Limiter, required that other tile designs be considered

  17. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  18. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures.

  19. Experimental investigation of thermal neutron analysis based landmine detection technology

    International Nuclear Information System (INIS)

    Zeng Jun; Chu Chengsheng; Ding Ge; Xiang Qingpei; Hao Fanhua; Luo Xiaobing

    2013-01-01

    Background: Recently, the prompt gamma-rays neutron activation analysis method is wildly used in coal analysis and explosive detection, however there were less application about landmine detection using neutron method especially in the domestic research. Purpose: In order to verify the feasibility of Thermal Neutron Analysis (TNA) method used in landmine detection, and explore the characteristic of this technology. Methods: An experimental system of TNA landmine detection was built based on LaBr 3 (Ce) fast scintillator detector and 252 Cf isotope neutron source. The system is comprised of the thermal neutron transition system, the shield system, and the detector system. Results: On the basis of the TNA, the wide energy area calibration method especially to the high energy area was investigated, and the least detection time for a typical mine was defined. In this study, the 72-type anti-tank mine, the 500 g TNT sample and several interferential objects are tested in loess, red soil, magnetic soil and sand respectively. Conclusions: The experimental results indicate that TNA is a reliable demining method, and it can be used to confirm the existence of Anti-Tank Mines (ATM) and large Anti-Personnel Mines (APM) in complicated condition. (authors)

  20. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    International Nuclear Information System (INIS)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S.

    2016-01-01

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures

  1. Measuring energy expenditure in sports by thermal video analysis

    DEFF Research Database (Denmark)

    Gade, Rikke; Larsen, Ryan Godsk; Moeslund, Thomas B.

    2017-01-01

    Estimation of human energy expenditure in sports and exercise contributes to performance analyses and tracking of physical activity levels. The focus of this work is to develop a video-based method for estimation of energy expenditure in athletes. We propose a method using thermal video analysis...... to automatically extract the cyclic motion pattern, in walking and running represented as steps, and analyse the frequency. Experiments are performed with one subject in two different tests, each at 5, 8, 10, and 12 km/h. The results of our proposed video-based method is compared to concurrent measurements...

  2. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  3. Transient thermal analysis of cryocondensation pump for JET

    International Nuclear Information System (INIS)

    Baxi, C.B.; Obert, W.

    1993-08-01

    A cryopump with pumping speed of 50,000 1/sec is planned to be installed in the Joint European Torus (JET) as part of the pumped divertor. The purpose of this pump is to control the plasma impurities. The pump consists of a helium panel cooled by supercritical helium and a nitrogen shield cooled by liquid nitrogen. This paper presents the following transient thermal flow analysis for this cryopump: 1. Consequences of loss of torus vacuum on helium panel. 2. Cool down of the nitrogen shield form 300 K to 80 K

  4. Momentum integral network method for thermal-hydraulic transient analysis

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1983-01-01

    A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion

  5. Progressive reduction of the thermal wall system by modal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Meslem, A.; Bounif, A.; Kadi, L. [Universite des Sciences et de la Technologie, Oran (Algeria)

    1993-12-31

    A reduction method of thermal systems called ``progress`` using the modal Analysis is presented. It allows to do, at each time of simulation, a synthesis information in the system evolution. Consequently, the limited number of descriptive and significant parameters (proper modes), can produce some extremely useful indication about dynamic evolution. However this method can eliminate proper modes of which the energetic contribution will be neglected or amortized. Some examples were studied, showing the efficiency of this method by reducing the computing time, as well as, having high precision on predicted dynamic response over time of simulation. (Authors). 4 refs., 4 figs.

  6. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence

  7. Plume expansion dynamics during laser ablation of manganates in oxygen atmosphere

    International Nuclear Information System (INIS)

    Amoruso, S.; Sambri, A.; Wang, X.

    2007-01-01

    The effect of ambient gas on the expansion dynamics of the plasma plume generated by excimer laser ablation of a LaMnO 3 target is investigated by using fast photography and optical emission spectroscopy. The plume propagation in an oxygen environment is examined with pressure ranging from vacuum to few hundreds Pa. Imaging analysis of the plume emission has allowed following the changes in the plume front dynamics as a function of time and pressure. The expansion dynamics of the plume front is examined by means of a theoretical description of plume evolution and shock-wave propagation in dimensionless variables. Optical emission spectroscopy analysis showed that the oxides are mainly formed in the gas-phase through reaction of the ablated atomic species with ambient oxygen. Moreover, we observed that the formation of oxides is strongly favoured at a pressure level where the formation of a shock-wave occurs

  8. A multidisciplinary system for monitoring and forecasting Etna volcanic plumes

    Science.gov (United States)

    Coltelli, Mauro; Prestifilippo, Michele; Spata, Gaetano; Scollo, Simona; Andronico, Daniele

    2010-05-01

    One of the most active volcanoes in the world is Mt. Etna, in Italy, characterized by frequent explosive activity from the central craters and from fractures opened along the volcano flanks which, during the last years, caused several damages to aviation and forced the closure of the Catania International Airport. To give precise warning to the aviation authorities and air traffic controller and to assist the work of VAACs, a novel system for monitoring and forecasting Etna volcanic plumes, was developed at the Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania, the managing institution for the surveillance of Etna volcano. Monitoring is carried out using multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation geosynchronous satellite able to track the volcanic plume with a high time resolution, visual and thermal cameras used to monitor the explosive activity, three continuous wave X-band disdrometers which detect ash dispersal and fallout, sounding balloons used to evaluate the atmospheric fields, and finally field data collected after the end of the eruptive event needed to extrapolate important features of explosive activity. Forecasting is carried out daily using automatic procedures which download weather forecast data obtained by meteorological mesoscale models from the Italian Air Force national Meteorological Office and from the hydrometeorological service of ARPA-SIM; run four different tephra dispersal models using input parameters obtained by the analysis of the deposits collected after few hours since the eruptive event similar to 22 July 1998, 21-24 July 2001 and 2002-03 Etna eruptions; plot hazard maps on ground and in air and finally publish them on a web-site dedicated to the Italian Civil Protection. The system has been already tested successfully during several explosive events occurring at Etna in 2006, 2007 and 2008. These events produced eruption

  9. Seismic Evidence for Lower Mantle Plume Under the Yellowstone Hotspot

    Science.gov (United States)

    Nelson, P.; Grand, S.

    2017-12-01

    The mantle plume hypothesis for the origin of intraplate volcanism has been controversial since its inception in the 1970s. The hypothesis proposes hot narrow upwelling of rock rooted at the core mantle boundary (CMB) rise through the mantle and interact with the base of the lithosphere forming linear volcanic systems such as Hawaii and Yellowstone. Recently, broad lower mantle (>500 km in diameter) slow velocity conduits, most likely thermochemical in origin, have been associated with some intraplate volcanic provinces (French and Romanowicz, 2015). However, the direct detection of a classical thin thermal plume in the lower mantle using travel time tomography has remained elusive (Anderson and Natland, 2014). Here we present a new shear wave tomography model for the mantle beneath the western United States that is optimized to find short wavelength, sub-vertical structures in the lower mantle. Our approach uses carefully measured SKS and SKKS travel times recorded by dense North American seismic networks in conjunction with finite frequency kernels to build on existing tomography models. We find the presence of a narrow ( 300 km diameter) well isolated cylindrically shaped slow anomaly in the lower most mantle which we associate with the Yellowstone Hotspot. The conduit has a 2% reduction in shear velocity and is rooted at the CMB near the California/Arizona/Nevada border. A cross sectional view through the anomaly shows that it is slightly tilted toward the north until about 1300 km depth where it appears to weaken and deflect toward the surficial positon of the hotspot. Given the anomaly's strength, proximity to the Yellowstone Hotspot, and morphology we argue that a thermal plume interpretation is the most reasonable. Our results provide strong support for a lower mantle plume origin of the Yellowstone hotspot and more importantly the existence of deep thermal plumes.

  10. Thermal Analysis of Pure Uranium Metal, UMo and UMoSi Alloys Using a Differential Thermal Analyzer

    International Nuclear Information System (INIS)

    Yanlinastuti; Sutri Indaryati; Rahmiati

    2010-01-01

    Thermal analysis of pure uranium metal, U-7%Mo and U-7%Mo-1%Si alloys have been done using a Differential Thermal Analyzer (DTA). The experiments are conducted in order to measure the thermal stability, thermochemical properties of elevated temperature and enthalpy of the specimens. From the analysis results it is showed that uranium metal will transform from α to β phases at temperature of 667.16°C and enthalpy of 2.3034 cal/g and from β to γ phases at temperature of 773.05 °C and enthalpy of 2.8725 cal/g and start melting at temperature of 1125.26 °C and enthalpy of 2.1316 cal/g. The U-7%Mo shows its thermal stability up to temperature of 650 °C and its thermal changes at temperature of 673.75 °C indicated by the formation of an endothermic peak and enthalpy of 0.0257 cal/g. The U-7%Mo-1%Si alloys shows its thermal stability up to temperature of 550 °C and its thermal changes at temperature of 574.18 °C indicated by the formation of an endothermic peak and enthalpy of 0.613 cal/g. From the three specimens it is showed that they have a good thermal stability at temperature up to 550 °C. (author)

  11. Modal analysis of the thermal conductivity of nanowires: examining unique thermal transport features

    Science.gov (United States)

    Samaraweera, Nalaka; Larkin, Jason M.; Chan, Kin L.; Mithraratne, Kumar

    2018-06-01

    In this study, unique thermal transport features of nanowires over bulk materials are investigated using a combined analysis based on lattice dynamics and equilibrium molecular dynamics (EMD). The evaluation of the thermal conductivity (TC) of Lenard–Jones nanowires becomes feasible due to the multi-step normal mode decomposition (NMD) procedure implemented in the study. A convergence issue of the TC of nanowires is addressed by the NMD implementation for two case studies, which employ pristine nanowires (PNW) and superlattice nanowires. Interestingly, mode relaxation times at low frequencies of acoustic branches exhibit signs of approaching constant values, thus indicating the convergence of TC. The TC evaluation procedure is further verified by implementing EMD-based Green–Kubo analysis, which is based on a fundamentally different physical perspective. Having verified the NMD procedure, the non-monotonic trend of the TC of nanowires is addressed. It is shown that the principal cause for the observed trend is due to the competing effects of long wavelength phonons and phonon–surface scatterings as the nanowire’s cross-sectional width is changed. A computational procedure is developed to decompose the different modal contribution to the TC of shell alloy nanowires (SANWs) using virtual crystal NMD and the Allen–Feldman theory. Several important conclusions can be drawn from the results. A propagons to non-propagons boundary appeared, resulting in a cut-off frequency (ω cut); moreover, as alloy atomic mass is increased, ω cut shifts to lower frequencies. The existence of non-propagons partly causes the low TC of SANWs. It can be seen that modes with low frequencies demonstrate a similar behavior to corresponding modes of PNWs. Moreover, lower group velocities associated with higher alloy atomic mass resulted in a lower TC of SANWs.

  12. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Science.gov (United States)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  13. Analysis result for OECD benchmark on thermal fatigue problem

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira; Fujii, Yuzou

    2005-01-01

    The main objective of this analysis is to understand the crack growth behavior under three-dimensional (3D) thermal fatigue by conducting 3D crack initiation and propagation analyses. The possibility of crack propagation through the wall thickness of pipe, and the accuracy of the prediction of crack initiation and propagation are of major interest. In this report, in order to estimate the heat transfer coefficients and evaluate the thermal stress, conventional finite element analysis (FEA) is conducted. Then, the crack driving force is evaluated by using the finite element alternating method (FEAM), which can derive the stress intensity factor (SIF) under 3D mechanical loading based on finite element analysis without generating the mesh for a cracked body. Through these two realistic 3D numerical analyses, it has been tried to predict the crack initiation and propagation behavior. The thermal fatigue crack initiation and propagation behavior were numerically analyzed. The conventional FEA was conducted in order to estimate the heat transfer coefficient and evaluate the thermal stress. Then, the FEAM was conducted to evaluate the SIFs of surface single cracks and interacting multiple cracks, and crack growth was evaluated. The results are summarized as follows: 1. The heat transfer coefficients were estimated as H air = 40 W/m 2 K and H water = 5000 W/m 2 K. This allows simulation of the change in temperature with time at the crack initiation points obtained by the experiment. 2. The maximum stress occurred along the line of symmetry and the maximum Mises equivalent stress was 572 MPa. 3. By taking the effect of mean stress into account according to the modified Goodman diagram, the equivalent stress range and the number of cycles to crack initiation were estimated as 1093 MPa and 3.8x10 4 , respectively, although the tensile strength was assumed to be 600 MPa. 4. It was shown from the evaluated SIFs that longitudinal cracks can penetrate the wall of the pipe

  14. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems

    International Nuclear Information System (INIS)

    Ilyas, Suhaib Umer; Pendyala, Rajashekhar; Narahari, Marneni; Susin, Lim

    2017-01-01

    Highlights: • Alumina nanoparticles are functionalized with oleic acid. • Functionalization of alumina nanoparticles gives better dispersion in thermal oil. • Thermophysical properties of nanofluids are experimentally measured. • TGA confirms the improvement in life of nanofluids. - Abstract: Thermal oils are widely used as cooling media in heat transfer processes. However, their potential has not been utilised exquisitely in many applications due to low thermal properties. Thermal oil-based nanofluids are prepared by dispersing functionalized alumina with varying concentrations of 0.5–3 wt.% to enhance thermal properties of oil for advanced cooling systems. The oleic acid coated alumina is prepared and then dispersed in the oil to overcome the aggregation of nanoparticles in base fluid. The surface characterizations of functionalized nanoparticles are performed using different analysis such as XRD, EDS, SEM, TEM and FTIR. Dispersion behaviour and agglomeration studies are conducted at natural and functionalized conditions using different analysis to ensure long-term stability of nanofluids. In addition, rheological behaviour of non-Newtonian nanofluids is studied at high shear rates (100–2000 s"−"1). Effective densities and enhancement in thermal conductivities are measured for different nanofluids concentrations. Specific heat capacity is measured using Differential Scanning Calorimetry. The correlations are developed for thermophysical properties of nanofluids. Thermogravimetric analysis is performed with respect to temperature and time to exploit the effect of the addition of nanoparticles on the degradation of nanofluids. Significant improvement in the thermal properties of oil is observed using highly stable functionalized alumina nano-additives.

  15. Three dimensional, thermal stress analysis of a welded plate

    International Nuclear Information System (INIS)

    Koening, H.A.; Lai, C.K.-F.; Morral, J.E.

    1985-01-01

    A general finite element thermal stress analysis has been developed. The analysis can be uncoupled to solve either the heat transfer problem or the stress problem independently and it can accommodate non-linear material behavior, initial states of stress and strain, and moving boundary conditions. A unique feature of the model it that it properly accounts for the latent heat effect during phase changes. Applying the moving heat flux boundary condition to simulate arc welding, the model has been used to predict the transient thermal mechanical response of a welded plate. It is the absorption and liberation of latent heat in the fusion zone of a weld which complicates numerical methods of treating welding. For pure materials and eutectic alloys the latent heat effect is less of a problem because phase changes take place at a specific temperature. But for most alloys, phase changes take place over a range of temperatures bounded by the solidus, T S , and liquidus, T L , and the latent heat effect occurs continuously over the temperature range. (author)

  16. A powerful methodology for reactor vessel pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Boucau, J.; Mager, T.

    1994-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). More specifically, the review of the old WWER-type of reactors (WWER 440/230) has indicated a sensitive behaviour to neutron embrittlement. This led already to some remedial actions including safety injection water preheating or vessel annealing. Such measures are usually taken based on the analysis of a selected number of conservative PTS events. Consideration of all postulated cooldown events would draw attention to the impact of operator action and control system effects on reactor vessel PTS. Westinghouse has developed a methodology which couples event sequence analysis with probabilistic fracture mechanics analyses, to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. Once the event sequences of concern are identified, detailed deterministic thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. The results of these analyses can then be used to better define further modifications in vessel and plant system design and to operating procedures. The purpose of the present paper will be to describe this methodology and to show its benefits for decision making. (author). 1 ref., 3 figs

  17. Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC

    Science.gov (United States)

    Scheinherrová, Lenka; Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2017-07-01

    Development of concrete technology and the availability of variety of materials such as silica fume, mineral microfillers and high-range water-reducing admixtures make possible to produce Ultra-High Performance Concrete (UHPC) with compressive strength higher than 160 MPa. However, UHPC is prone to spall under high temperatures what limits its use for special applications only, such as offshore and marine structures, industrial floors, security barriers etc. The spalling is caused by the thermal stresses due to the temperature gradient during heating, and by the splitting force owing to the release of water vapour. Hybrid fibre reinforcement based on combination of steel and polymer fibres is generally accepted by concrete community as a functional solution preventing spalling. In this way, Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) is produced possessing high mechanical strength, durability and resistance to water and salt ingress. Since UHPFRC find use in construction industry in tunnel linings, precast tunnel segments, and high-rise buildings, its behaviour during the high-temperature exposure and its residual parameters are of the particular importance. On this account, Simultaneous Thermal Analysis (STA) and Thermodilatometry Analysis (TDA) were done in the paper to identify the structural and chemical changes in UHPFRC during its high-temperature load. Based on the experimental results, several physical and chemical processes that studied material underwent at high-temperatures were recognized. The obtained data revealed changes in the composition of the studied material and allowed identification of critical temperatures for material damage.

  18. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed

  19. Thermal Analysis of Fission Moly Target Solid Waste Storage

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung Min; Park, Jonghark [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There are various ways to produce Mo-99. Among them, nuclear transmutation of uranium target became the major one owing to its superior specific activity. After the fission molybdenum (FM) target is irradiated, it is transported to treatment facility to extract wanted isotope. During the process, various forms of wastes are produced including filter cake and other solid wastes. The filter cake is mostly consisted of decaying uranium compounds. The solid wastes are then packaged and moved to storage facility which will stay there for considerable amount of time. Being the continuous source of heat, the solid wastes are required to be cooled for the certain amount of time before transported to the storage area. In this study, temperature evaluation of the storage facility is carried out with pre-cooling time sensitivity to check its thermal integrity. In this study, thermal analysis on the FM target solid waste storage is performed. Finite volume method is utilized to numerically discretize and solve the geometry of interest. Analysis shows that the developed method can simulate temperature behavior during storage process, but needs to be checked against other code to see calculation accuracy. Highest temperature distribution is observed when every hole is filled with waste containers. Sensitivity results on pre-cooling time shows that at least 13 months of cooling is necessary to keep the structure integrity.

  20. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  1. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...... the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable...... to be subject to anaerobic oxidation, but the mechanisms are not yet understood. Heavy metals do not seem to constitute a significant pollution problem at landfills, partly because the heavy metal concentrations in the leachate often are low, and partly because of strong attenuation by sorption...

  2. Improved optical flow velocity analysis in SO2 camera images of volcanic plumes – implications for emission-rate retrievals investigated at Mt Etna, Italy and Guallatiri, Chile

    Directory of Open Access Journals (Sweden)

    J. Gliß

    2018-02-01

    Full Text Available Accurate gas velocity measurements in emission plumes are highly desirable for various atmospheric remote sensing applications. The imaging technique of UV SO2 cameras is commonly used to monitor SO2 emissions from volcanoes and anthropogenic sources (e.g. power plants, ships. The camera systems capture the emission plumes at high spatial and temporal resolution. This allows the gas velocities in the plume to be retrieved directly from the images. The latter can be measured at a pixel level using optical flow (OF algorithms. This is particularly advantageous under turbulent plume conditions. However, OF algorithms intrinsically rely on contrast in the images and often fail to detect motion in low-contrast image areas. We present a new method to identify ill-constrained OF motion vectors and replace them using the local average velocity vector. The latter is derived based on histograms of the retrieved OF motion fields. The new method is applied to two example data sets recorded at Mt Etna (Italy and Guallatiri (Chile. We show that in many cases, the uncorrected OF yields significantly underestimated SO2 emission rates. We further show that our proposed correction can account for this and that it significantly improves the reliability of optical-flow-based gas velocity retrievals. In the case of Mt Etna, the SO2 emissions of the north-eastern crater are investigated. The corrected SO2 emission rates range between 4.8 and 10.7 kg s−1 (average of 7.1  ±  1.3 kg s−1 and are in good agreement with previously reported values. For the Guallatiri data, the emissions of the central crater and a fumarolic field are investigated. The retrieved SO2 emission rates are between 0.5 and 2.9 kg s−1 (average of 1.3  ±  0.5 kg s−1 and provide the first report of SO2 emissions from this remotely located and inaccessible volcano.

  3. Transient Thermal Analysis of 3-D Integrated Circuits Packages by the DGTD Method

    KAUST Repository

    Li, Ping; Dong, Yilin; Tang, Min; Mao, Junfa; Jiang, Li Jun; Bagci, Hakan

    2017-01-01

    Since accurate thermal analysis plays a critical role in the thermal design and management of the 3-D system-level integration, in this paper, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed to achieve this purpose

  4. Development of thermal hydraulic analysis code for IHX of FBR

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Naohara, Nobuyuki

    1991-01-01

    In order to obtain flow resistance correlations for thermal-hydrauric analysis code concerned with an intermediate heat exchanger (IHX) of FBR, the hydraulic experiment by air was carried out through a bundle of tubes arranged in an in-line and staggard fashion. The main results are summarized as follows. (1) On pressure loss per unit length of a tube bundle, which is densely a regular triangle arrangement, the in-line fashion is almost the same as the staggard one. (2) In case of 30deg sector model for IHX tube bundle, pressure loss is 1/3 in comparison with the in-line or staggard arrangement. (3) By this experimental data, flow resistance correlations for thermalhydrauric analysis code are obtained. (author)

  5. LOFT ECC Pitot Tube and Thermocouple Rake Penetration thermal analysis

    International Nuclear Information System (INIS)

    Tolan, B.J.

    1977-01-01

    A thermal analysis of the LOFT ECC Pitot Tube and Thermocouple Rake Penetration was performed using COUPLE, a two-dimensional finite element computer code. Four transients which conservatively cover all transients the rake will be exposed to were included in this analysis in order to comply with the ASME Code Section III requirements. The transients conservatively cover hot and cold leg operation, and nuclear and nonnuclear operation. The four transients include the LOCE with ECC injection transient, the single control rod drop transient, the scram transient, and the heatup with 0 to 100% load change transient. Temperature distributions in the rake were obtained for each of the four transients and several plots of node temperatures vs. time are given

  6. Thermal stress analysis of the fuel storage facility

    International Nuclear Information System (INIS)

    Chen, W.W.

    1991-12-01

    This paper presents the results of a nonlinear finite-element analysis to determine the structural integrity of the walls of the nuclear fuel storage room in the Radio Isotope Power System Facility of the Fuels and Materials Examination Facility (FMEF) Project. The analysis was performed to assess the effects of thermal loading on the walls that would result from a loss-of-cooling accident. The results obtained from using the same three-dimensional finite-element model with different types of elements, the eight-node brick element and the nonlinear concrete element, and the calculated results using the analytical solutions, are compared. The concrete responses in terms of octahedral normal and shearing stresses are described. The crack and crush states of the concrete were determined on the basis of multiaxial failure criteria

  7. Thermal hydraulic analysis of the encapsulated nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J.J.; Wade, D.C. [Argonne National Lab., IL (United States)

    2001-07-01

    An analysis has been carried out of the steady state thermal hydraulic performance of the Encapsulated Nuclear Heat Source (ENHS) 125 MWt, heavy liquid metal coolant (HLMC) reactor concept at nominal operating power and shutdown decay heat levels. The analysis includes the development and application of correlation-type analytical solutions based upon first principles modeling of the ENHS concept that encompass both pure as well as gas injection augmented natural circulation conditions, and primary-to-intermediate coolant heat transfer. The results indicate that natural circulation of the primary coolant is effective in removing heat from the core and transferring it to the intermediate coolant without the attainment of excessive coolant temperatures. (authors)

  8. Validation of the TEXSAN thermal-hydraulic analysis program

    International Nuclear Information System (INIS)

    Burns, S.P.; Klein, D.E.

    1992-01-01

    The TEXSAN thermal-hydraulic analysis program has been developed by the University of Texas at Austin (UT) to simulate buoyancy driven fluid flow and heat transfer in spent fuel and high level nuclear waste (HLW) shipping applications. As part of the TEXSAN software quality assurance program, the software has been subjected to a series of test cases intended to validate its capabilities. The validation tests include many physical phenomena which arise in spent fuel and HLW shipping applications. This paper describes some of the principal results of the TEXSAN validation tests and compares them to solutions available in the open literature. The TEXSAN validation effort has shown that the TEXSAN program is stable and consistent under a range of operating conditions and provides accuracy comparable with other heat transfer programs and evaluation techniques. The modeling capabilities and the interactive user interface employed by the TEXSAN program should make it a useful tool in HLW transportation analysis

  9. Mobile Bay turbidity plume study

    Science.gov (United States)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  10. Thermal hydraulic analysis of the JMTR improved LEU-core

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Toshio; Nagao, Yoshiharu; Komukai, Bunsaku; Naka, Michihiro; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takeda, Takashi [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokai, Ibaraki (Japan)

    2003-01-01

    After the investigation of the new core arrangement for the JMTR reactor in order to enhance the fuel burn-up and consequently extend the operation period, the ''improved LEU core'' that utilized 2 additional fuel elements instead of formerly installed reflector elements, was adopted. This report describes the results of the thermal-hydraulic analysis of the improved LEU core as a part of safety analysis for the licensing. The analysis covers steady state, abnormal operational transients and accidents, which were described in the annexes of the licensing documents as design bases events. Calculation conditions for the computer codes were conservatively determined based on the neutronic analysis results and others. The results of the analysis, that revealed the safety criteria were satisfied on the fuel temperature, DNBR and primary coolant temperature, were used in the licensing. The operation license of the JMTR with the improved LEU core was granted in March 2001, and the reactor operation with new core started in November 2001 as 142nd operation cycle. (author)

  11. Resolving superimposed ground-water contaminant plumes characterized by chromium, nitrate, uranium, and technetium--99

    International Nuclear Information System (INIS)

    Hall, S.H.

    1990-02-01

    Leakage from a liquid waste storage and solar evaporation basin at the Hanford Site in southeastern Washington State has resulted in a ground-water contaminant plume characterized by nitrate, hexavalent chromium, uranium, and technetium-99. The plume is superimposed on a larger, pre-existing plume extending from upgradient sites and having the same suite of contaminants. However, the relative abundance of contaminant species is quite different for each plume source. Thus, characteristic concentration ratios, rather than concentrations of individual species, are used as geochemical tracers, with emphasis on graphical analysis. Accordingly, it has been possible to resolve the boundaries of the smaller plume and to estimate the contribution of each plume to the observed contamination downgradient from the storage basin. 11 refs., 7 figs

  12. An algorithm for nonlinear thermal analysis of fuel bearing pads

    International Nuclear Information System (INIS)

    Attia, M.H.; D'Silva, N.

    1983-01-01

    An algorithm has been developed for accurate prediction of the temperature field in a CANDU fuel bearing pad and the extent of the nucleate boiling in the crevice region. The methodology recognizes the nonlinear nature of the problem due to the fact that local boiling is both controlling and being controlled by the conditions of heat transfer at the boundaries. The finite difference model accounts for the volumetric effect of the thermal contact resistance at the bearing pad/pressure tube interface. It also allows the evaluation of the thermal barrier effect caused by applying an oxide film on the radiused surface of the bearing pad. Information pertaining to the distribution of the coefficient of heat transfer over water-cooled surfaces has been generated. Analysis of the results indicated the significance of considering the nonlinear behaviour of the system in determining its state of equilibrium. It also indicated that, depending on the thickness of the oxide layer and the position of the bearing pad along the core of the reactor, the nucleate boiling process can be prevented

  13. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  14. Challenges in thermal and hydraulic analysis of ADS target systems

    International Nuclear Information System (INIS)

    Groetzbach, G.; Batta, A.; Lefhalm, C.-H.; Otic, I.

    2004-01-01

    The liquid metal cooled spallation targets of Accelerator Driven nuclear reactor Systems obey high thermal loads; in addition some flow and cooling conditions are of a prototypical character; in contrast the operating conditions for the engaged materials are narrow; thus, the target development requires a very careful analysis by experimental and numerical means. Especially the cooling of the steel window, which is heated by the proton beam, needs special care. Some of the main goals of the experimental and numerical analyses of the thermal dynamics of those systems are discusses. The prediction of locally detached flows and of flows with larger recirculation areas suffers from insufficient turbulence modeling; this has to be compensated by using prototypical model experiments, e.g. with water, to select the adequate models and numerical schemes. The well known problems with the Reynolds analogy in predicting the heat transfer in liquid metals requires always prototypic liquid metal experiments to select and adapt the turbulent heat flux models. The uncertainties in liquid metal experiments cannot be neglected; so it is necessary to perform CFD calculations and experiments always hand in hand and to develop improve turbulent heat flux models. One contribution to an improved 3 or 4-equation model is deduced from recent Direct Numerical Simulation (DNS) data. (author)

  15. Thermal hydraulics analysis of LIBRA-SP target chamber

    International Nuclear Information System (INIS)

    Mogahed, E.A.

    1996-01-01

    LIBRA-SP is a conceptual design study of an inertially confined 1000 MWe fusion power reactor utilizing self-pinched light ion beams. There are 24 ion beams which are arranged around the reactor cavity. The reaction chamber is an upright cylinder with an inverted conical roof resembling a mushroom, and a pool floor. The vertical sides of the cylinder are occupied by a blanket zone consisting of many perforated rigid HT-9 ferritic steel tubes called PERITs (PEr-forated RIgid Tube). The breeding/cooling material, liquid lead-lithium, flows through the PERITs, providing protection to the reflector/vacuum chamber so as to make it a lifetime component. The neutronics analysis and cavity hydrodynamics calculations are performed to account for the neutron heating and also to determine the effects of vaporization/condensation processes on the surface heat flux. The steady state nuclear heating distribution at the midplane is used for thermal hydraulics calculations. The maximum surface temperature of the HT-9 is chosen to not exceed 625 degree C to avoid drastic deterioration of the metal's mechanical properties. This choice restricts the thermal hydraulics performance of the reaction cavity. The inlet first surface coolant bulk temperature is 370 degree C, and the heat exchanger inlet coolant bulk temperature is 502 degree C. 4 refs., 6 figs., 2 tabs

  16. Thermal analysis on x-ray tube for exhaust process

    Science.gov (United States)

    Kumar, Rakesh; Rao Ratnala, Srinivas; Veeresh Kumar, G. B.; Shivakumar Gouda, P. S.

    2018-02-01

    It is great importance in the use of X-rays for medical purposes that the dose given to both the patient and the operator is carefully controlled. There are many types of the X- ray tubes used for different applications based on their capacity and power supplied. In present thesis maxi ray 165 tube is analysed for thermal exhaust processes with ±5% accuracy. Exhaust process is usually done to remove all the air particles and to degasify the insert under high vacuum at 2e-05Torr. The tube glass is made up of Pyrex material, 95%Tungsten and 5%rhenium is used as target material for which the melting point temperature is 3350°C. Various materials are used for various parts; during the operation of X- ray tube these waste gases are released due to high temperature which in turn disturbs the flow of electrons. Thus, before using the X-ray tube for practical applications it has to undergo exhaust processes. Initially we build MX 165 model to carry out thermal analysis, and then we simulate the bearing temperature profiles with FE model to match with test results with ±5%accuracy. At last implement the critical protocols required for manufacturing processes like MF Heating, E-beam, Seasoning and FT.

  17. FFTF vertical sodium storage tank preliminary thermal analysis

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1995-01-01

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall

  18. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  19. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    Science.gov (United States)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  20. Thermal analysis and safety information for metal nanopowders by DSC

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, J.M.; Huang, S.T. [Institute of Safety and Disaster Prevention Technology, Central Taiwan University of Science and Technology, 666, Buzih Road, Beitun District, Taichung 40601, Taiwan, ROC (China); Duh, Y.S.; Hsieh, T.Y.; Sun, Y.Y. [Department of Safety Health and Environmental Engineering, National United University, Miaoli, Taiwan, ROC (China); Lin, J.Z. [Institute of Safety and Disaster Prevention Technology, Central Taiwan University of Science and Technology, 666, Buzih Road, Beitun District, Taichung 40601, Taiwan, ROC (China); Wu, H.C. [Institute of Occupational Safety and Health, Council of Labor Affairs, Taipei, Taiwan, ROC (China); Kao, C.S., E-mail: jcsk@nuu.edu.tw [Department of Safety Health and Environmental Engineering, National United University, Miaoli, Taiwan, ROC (China)

    2013-08-20

    Highlights: • Metal nanopowders are common and frequently employed in industry. • Nano iron powder experimental results of T{sub o} were 140–150 °C. • Safety information can benefit relevant metal powders industries. - Abstract: Metal nanopowders are common and frequently employed in industry. Iron is mostly applied in high-performance magnetic materials and pollutants treatment for groundwater. Zinc is widely used in brass, bronze, die casting metal, alloys, rubber, and paints, etc. Nonetheless, some disasters induced by metal powders are due to the lack of related safety information. In this study, we applied differential scanning calorimetry (DSC) and used thermal analysis software to evaluate the related thermal safety information, such as exothermic onset temperature (T{sub o}), peak of temperature (T{sub p}), and heat of reaction (ΔH). The nano iron powder experimental results of T{sub o} were 140–150 °C, 148–158 °C, and 141–149 °C for 15 nm, 35 nm, and 65 nm, respectively. The ΔH was larger than 3900 J/g, 5000 J/g, and 3900 J/g for 15 nm, 35 nm, and 65 nm, respectively. Safety information can benefit the relevant metal powders industries for preventing accidents from occurring.

  1. Analysis of carbon based materials under fusion relevant thermal loads

    International Nuclear Information System (INIS)

    Compan, Jeremie Saint-Helene

    2008-01-01

    how anisotropy can be tailored and on the strategies which were applied for the production of the investigated materials. Textures of fibers and microstructures of matrices were also described. Thermo-physical properties such as thermal conductivity and thermal expansion of some CFCs were studied for different materials' orientations. For the first time, some off-axis results of thermal conductivity and thermal expansion for fusion related CFCs are displayed. Room temperature bending and tensile loading of CFCs were performed and they allowed relating the microstructural findings to the anisotropic mechanical response. Fiber architecture of CFCs and interfacial shear strength between the fiber and the matrix appeared to be the main parameters which dictate the fracture mechanisms. In addition, the analysis of five batches of one CFC permitted to understand the difficulty of reproducing such advanced material. The differences in terms of needling process were related to the variations of the tensile properties in the various fibrous directions. Finally, fusion-relevant transient heat loads were simulated on the investigated CBMs within various high heat flux facilities, i.e. electron beam, ion beam and plasma gun. Erosion scenarios at different scales were compiled in relation to the CBM properties but also the type of the transient event. The locally preferential erosion and ejection of material from the surface of the CBM are comprehensively described as well as their implications. This ejection of hot particles from the CBM surface (so-called Brittle Destruction (BD) mechanism) was defined, explained and analyzed. An experimental thermal shock resistance criterion based on thermal-shock induced weight loss is presented. After analyzing the anisotropic response of CFCs to transient heat loads in their three orthotropic fiber directions, attempts to reduce BD were done by loading them under off-axis orientations. It partly succeeded and led to the observation of

  2. Assessment of RANS CFD modelling for pressurised thermal shock analysis

    International Nuclear Information System (INIS)

    Sander M Willemsen; Ed MJ Komen; Sander Willemsen

    2005-01-01

    in the cold leg and downcomer. The initial computations were performed using the commonly used porous medium representation for the core and omission of the lower plenum internals. These assumption, however, lead to unrealistic circumferential flow oscillations in the downcomer, and consequently, a wrong prediction of the thermal load on the RPV wall. Therefore, a detailed geometrical model with a refined numerical mesh was used, which suppressed these erroneous oscillations. Furthermore, it was confirmed that an extended k-ε or SST k-ω turbulence model which include turbulence production/destruction terms due to buoyancy has to be used in order to correctly predict the thermal stratification in the cold leg. The measurements in the downcomer show rapidly fluctuating signals, which indicate vigorous turbulent mixing and/or oscillations. It was found that reasonable agreement could be achieved with RANS type turbulence modelling for the prediction of the phenomena occurring in the downcomer. Improvement of these results can be expected from non-statistically averaged turbulent modelling like Large Eddy Simulations. It is concluded that the current RANS models already provide a significant improvement over thermal-hydraulic system code analysis, since three-dimensional effects are predicted and no tuning of the code to expensive experiments is needed. (authors)

  3. Thermal behaviour analysis of SRF cavities and superconducting HOM couplers

    International Nuclear Information System (INIS)

    Fouaidy, M.; Junquera, T.

    1993-01-01

    Two individual papers appear in this report, titled Thermal model calculations in superconducting RF cavities, and Thermal study of HOM couplers for superconducting RF cavities. Both were indexed separately for the INIS database. (R.P.)

  4. Orbital maneuvering vehicle thermal design and analysis techniques

    Science.gov (United States)

    Chapter, J.

    1986-01-01

    This paper describes the OMV thermal design that is required to maintain components within temperature limits for all mission phases. A key element in the OMV thermal design is the application of a motorized thermal shade assembly that is a replacement for the more conventional variable conductance heat pipes or louvers. The thermal shade assembly covers equipment module radiator areas, and based upon the radiator temperature input to onboard computer, opens and closes the shade, varying the effective radiator area. Thermal design verification thermal analyses results are presented. Selected thermal analyses methods, including several unique subroutines, are discussed. A representation of enclosure Script F equations, in matrix form, is also included. Personal computer application to the development of the OMV thermal design is summarized.

  5. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...

  6. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    ANSYS (1997) computer code has been used to analyse the thermal ... The numerical method is used succesfully to solve the governing equations ... thermal stress is an important criterion for consideration in the design of new compact heat.

  7. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be

  8. Nonlinear thermal reduced model for Microwave Circuit Analysis

    OpenAIRE

    Chang, Christophe; Sommet, Raphael; Quéré, Raymond; Dueme, Ph.

    2004-01-01

    With the constant increase of transistor power density, electro thermal modeling is becoming a necessity for accurate prediction of device electrical performances. For this reason, this paper deals with a methodology to obtain a precise nonlinear thermal model based on Model Order Reduction of a three dimensional thermal Finite Element (FE) description. This reduced thermal model is based on the Ritz vector approach which ensure the steady state solution in every case. An equi...

  9. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  10. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  11. Isotopic analysis of boron by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.; Souza, I.M.S.

    1991-07-01

    This paper presents a methodology for isotopic analysis of boron by thermal ionization mass spectrometry technique through the ion intensity measurement of Na 2 BO + 2 in H 3 BO 3 , B o and B 4 C. The samples were loaded on single tantalum filaments by different methods. In the case of H 3 BO 3 , the method of neutralization with NaOH was used. For B 4 C the alcaline fusion with Na 2 CO 3 and for B o dissolution with 1:1 nitric sulfuric acid mixture followed by neutralization with NaOH was used. The isotopic ratio measurements were obtained by the use of s Faraday cup detector with external precision of ±0,4% and accuracy of ±0,1%, relative to H 3 BO 3 isotopic standard NBS 951. The effects of isotopic fractionation was studied in function of the time during the analyses and the different chemical forms of deposition. (author)

  12. Thermal dynamic analysis of sulfur removal from coal by electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Gao, J.; Meng, F. [Qinghua University, Beijing (China). Dept. of Thermal Engineering

    2002-06-01

    The electrolytic reactions about sulfur removal from coal were studied by using chemical thermal dynamic analysis. According to the thermodynamical data, the Gibbs free energy value of the electrolytic reactions of pyritic and organic sulfur removal from coal is higher than zero. So, these electrolytic reactions are not spontaneous chemical reactions. In order to carry out desulfurisation by electrolysis, a certain voltage is necessary and important. Because theoretic decomposition voltage of pyrite and some parts of organic sulfur model compound is not very high, electrolysis reactions are easily to be carried out by using electrolysis technology. Mn ion and Fe ion are added into electrolysis solutions to accelerate the desulfurisation reaction. The electrolytic decomposition of coal is discussed. Because the theoretical decomposition voltage of some organic model compound is not high, the coal decomposition might happen. 17 refs., 4 tabs.

  13. The analysis of thermal stability of detonation nanodiamond

    International Nuclear Information System (INIS)

    Efremov, V P; Zakatilova, E I

    2016-01-01

    The detonation nanodiamond is a new perspective material. Ammunition recycling with use of high explosives and obtaining nanodiamond as the result of the detonation synthesis have given a new motivation for searching of their application areas. In this work nanodiamond powder has been investigated by the method of synchronous thermal analysis. Experiments have been carried out at atmospheric pressure in the environment of argon. Nanodiamond powder has been heated in the closed corundum crucible at the temperature range of 30-1500 °C. The heating rates were varied from 2 K/min to 20 K/min. After the heat treatment, the samples have been studied by the x-ray diffraction and the electron microscopy. As one of the results of this work, it has been found that the detonation nanodiamond has not started the transition into graphite at the temperature below 800 °C. (paper)

  14. Thermal analysis of gyrotron traveling-wave tube collector

    International Nuclear Information System (INIS)

    Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong

    2013-01-01

    In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)

  15. TAPIR, Thermal Analysis of HTGR with Graphite Sleeve Fuel Elements

    International Nuclear Information System (INIS)

    Weicht, U.; Mueller, W.

    1983-01-01

    1 - Nature of the physical problem solved: Thermal analysis of a reactor core containing internally and/or externally gas cooled prismatic fuel elements of various geometries, rating, power distribution, and material properties. 2 - Method of solution: A fuel element in this programme is regarded as a sector of a fuelled annulus with graphite sleeves of any shape on either side and optional annular gaps between fuel and graphite and/or within the graphite. It may have any centre angle and the fuelled annulus may become a solid cylindrical rod. Heat generation in the fuel is assumed to be uniform over the cross section and peripheral heat flux into adjacent sectors is ignored. Fuel elements and coolant channels are treated separately, then linked together to fit a specified pattern. 3 - Restrictions on the complexity of the problem: Maxima of: 50 fuel elements; 50 cooled channels; 25 fuel geometries; 25 coolant channel geometries; 10 axial power distributions; 10 graphite conductivities

  16. Analysis of thermal systems using the entropy balance method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C L.D.; Fartaj, S A; Fenton, D L [Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering

    1992-04-01

    This study investigates the applicability of the second law of thermodynamics using an entropy balance method to analyse and design thermal systems. As examples, the entropy balance method is used to analyse a single stage chiller system and a single stage heat transformer, both with lithium-bromide/water as the working fluid. The entropy method yields not only the same information as is conveyed by the methods of energy and exergy analysis, but it also predicts clearly the influence of irreversibilities of individual components on the coefficient of performance and its effectiveness, based on the process properties, rather than on ambient conditions. Furthermore, this method is capable of presenting the overall distribution of the heat input by displaying the additional heat required to overcome irreversibility of each component without ambiguity. (Author).

  17. The analysis of thermal stability of detonation nanodiamond

    Science.gov (United States)

    Efremov, V. P.; Zakatilova, E. I.

    2016-11-01

    The detonation nanodiamond is a new perspective material. Ammunition recycling with use of high explosives and obtaining nanodiamond as the result of the detonation synthesis have given a new motivation for searching of their application areas. In this work nanodiamond powder has been investigated by the method of synchronous thermal analysis. Experiments have been carried out at atmospheric pressure in the environment of argon. Nanodiamond powder has been heated in the closed corundum crucible at the temperature range of 30-1500 °C. The heating rates were varied from 2 K/min to 20 K/min. After the heat treatment, the samples have been studied by the x-ray diffraction and the electron microscopy. As one of the results of this work, it has been found that the detonation nanodiamond has not started the transition into graphite at the temperature below 800 °C.

  18. Model-based analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    Thermal insulation properties of coatings based on selected functional filler materials are investigated. The underlying physics, thermal conductivity of a heterogeneous two-component coating, and porosity and thermal conductivity of hollow spheres (HS) are quantified and a mathematical model for...

  19. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...

  20. Computer aided analysis, simulation and optimisation of thermal sterilisation processes.

    Science.gov (United States)

    Narayanan, C M; Banerjee, Arindam

    2013-04-01

    Although thermal sterilisation is a widely employed industrial process, little work is reported in the available literature including patents on the mathematical analysis and simulation of these processes. In the present work, software packages have been developed for computer aided optimum design of thermal sterilisation processes. Systems involving steam sparging, jacketed heating/cooling, helical coils submerged in agitated vessels and systems that employ external heat exchangers (double pipe, shell and tube and plate exchangers) have been considered. Both batch and continuous operations have been analysed and simulated. The dependence of del factor on system / operating parameters such as mass or volume of substrate to be sterilised per batch, speed of agitation, helix diameter, substrate to steam ratio, rate of substrate circulation through heat exchanger and that through holding tube have been analysed separately for each mode of sterilisation. Axial dispersion in the holding tube has also been adequately accounted for through an appropriately defined axial dispersion coefficient. The effect of exchanger characteristics/specifications on the system performance has also been analysed. The multiparameter computer aided design (CAD) software packages prepared are thus highly versatile in nature and they permit to make the most optimum choice of operating variables for the processes selected. The computed results have been compared with extensive data collected from a number of industries (distilleries, food processing and pharmaceutical industries) and pilot plants and satisfactory agreement has been observed between the two, thereby ascertaining the accuracy of the CAD softwares developed. No simplifying assumptions have been made during the analysis and the design of associated heating / cooling equipment has been performed utilising the most updated design correlations and computer softwares.

  1. Validation and further development of a novel thermal analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, E.H.; Shuttleworth, A.G.; Rousseau, P.G. [Pretoria Univ. (South Africa). Dept. of Mechanical Engineering

    1994-12-31

    The design of thermal and energy efficient buildings requires inter alia the investigation of the passive performance, natural ventilation, mechanical ventilation as well as structural and evaporative cooling of the building. Only when these fail to achieve the desired thermal comfort should mechanical cooling systems be considered. Few computer programs have the ability to investigate all these comfort regulating methods at the design stage. The QUICK design program can simulate these options with the exception of mechanical cooling. In this paper, Quick`s applicability is extended to include the analysis of basic air-conditioning systems. Since the design of these systems is based on indoor loads, it was necessary to validate QUICK`s load predictions before extending it. This article addresses validation in general and proposes a procedure to establish the efficiency of a program`s load predictions. This proposed procedure is used to compare load predictions by the ASHRAE, CIBSE, CARRIER, CHEETAH, BSIMAC and QUICK methods for 46 case studies involving 36 buildings in various climatic conditions. Although significant differences in the results of the various methods were observed, it is concluded that QUICK can be used with the same confidence as the other methods. It was further shown that load prediction programs usually under-estimate the effect of building mass and therefore over-estimate the peak loads. The details for the 46 case studies are available to other researchers for further verification purposes. With the confidence gained in its load predictions, QUICK was extended to include air-conditioning system analysis. The program was then applied to different case studies. It is shown that system size and energy usage can be reduced by more than 60% by using a combination of passive and mechanical cooling systems as well as different control strategies. (author)

  2. Applications of artificial neural networks for thermal analysis of heat exchangers - A review

    International Nuclear Information System (INIS)

    Mohanraj, M.; Jayaraj, S.; Muraleedharan, C.

    2015-01-01

    Artificial neural networks (ANN) have been widely used for thermal analysis of heat exchangers during the last two decades. In this paper, the applications of ANN for thermal analysis of heat exchangers are reviewed. The reported investigations on thermal analysis of heat exchangers are categorized into four major groups, namely (i) modeling of heat exchangers, (ii) estimation of heat exchanger parameters, (iii) estimation of phase change characteristics in heat exchangers and (iv) control of heat exchangers. Most of the papers related to the applications of ANN for thermal analysis of heat exchangers are discussed. The limitations of ANN for thermal analysis of heat exchangers and its further research needs in this field are highlighted. ANN is gaining popularity as a tool, which can be successfully used for the thermal analysis of heat exchangers with acceptable accuracy. (authors)

  3. The thermal analysis of low heat generating radioactive wastes in land disposal facilities

    International Nuclear Information System (INIS)

    Lympany, S.D.

    1984-08-01

    A procedure is developed which allows a simple thermal analysis of a radioactive waste repository. The procedure is used to establish if the thermally induced groundwater flow is important when considering the transport of radionuclides from the repository, and thereby indicates if this flow should be taken into account in a detailed thermal assessment. (author)

  4. CFD thermal-hydraulic analysis of a CANDU fuel channel

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational fluid dynamics) methodology approach. Limited computer power available at Bucharest University POLITEHNICA forced the authors to analyse only segments of fuel channel namely the significant ones: fuel bundle junctions with adjacent segments, fuel bundle spacer planes with adjacent segments, regular segments of fuel bundles. The computer code used is FLUENT. Fuel bundles contained in pressure tubes forms a complex flow domain. The flow is characterized by high turbulence and in some parts of fuel channel also by multi-phase flow. The flow in the fuel channel has been simulated by solving the equations for conservation of mass and momentum. For turbulence modelling the standard k-e model is employed although other turbulence models can be used as well. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Since we consider only some relatively short segments of a CANDU fuel channel we can assume, for this starting stage, that heat transfer is not very important for these short segments of fuel channel. The boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. In this paper we present results for Standard CANDU 6 Fuel Bundles as a basis for CFD thermal-hydraulic analysis of INR proposed SEU43 and other new nuclear fuels. (authors)

  5. CFD analysis of aircraft fuel tanks thermal behaviour

    Science.gov (United States)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D'Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  6. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    K. Murugesan

    2009-01-01

    Full Text Available The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50MWe unit of lignite fired steam power plant at Thermal Power Station-I, Neyveli Lignite Corporation Limited,Neyveli, Tamil Nadu, India. The exergy losses occurred in the various subsystems of the plant and their components havebeen calculated using the mass, energy and exergy balance equations. The distribution of the exergy losses in several plantcomponents during the real time plant running conditions has been assessed to locate the process irreversibility. The Firstlaw efficiency (energy efficiency and the Second law efficiency (exergy efficiency of the plant have also been calculated.The comparison between the energy losses and the exergy losses of the individual components of the plant shows that themaximum energy losses of 39% occur in the condenser, whereas the maximum exergy losses of 42.73% occur in the combustor.The real losses of energy which has a scope for the improvement are given as maximum exergy losses that occurredin the combustor.

  7. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe

    Science.gov (United States)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei

    2018-03-01

    The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.

  8. Mitigation method of thermal transient stress by thermalhydraulic-structure total analysis

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Jinbo, Masakazu; Hosogai, Hiromi

    2003-01-01

    This study proposes a rational evaluation and mitigation method of thermal transient loads in fast reactor components by utilizing relationships among plant system parameters and stresses induced by thermal transients of plants. A thermalhydraulic-structure total analysis procedure helps us to grasp relationship among system parameters and thermal stresses. Furthermore, it enables mitigation of thermal transient loads by adjusting system parameters. In order to overcome huge computations, a thermalhydraulic-structure total analysis code and the Design of Experiments methodology are utilized. The efficiency of the proposed mitigation method is validated through thermal stress evaluation of an intermediate heat exchanger in Japanese demonstration fast reactor. (author)

  9. Turbulent forces within river plumes affect spread

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  10. Liquid Booster Module (LBM) plume flowfield model

    Science.gov (United States)

    Smith, S. D.

    1981-01-01

    A complete definition of the LBM plume is important for many Shuttle design criteria. The exhaust plume shape has a significant effect on the vehicle base pressure. The LBM definition is also important to the Shuttle base heating, aerodynamics and the influence of the exhaust plume on the launch stand and environment. For these reasons a knowledge of the LBM plume characteristics is necessary. A definition of the sea level LBM plume as well as at several points along the Shuttle trajectory to LBM, burnout is presented.

  11. Thermal safety analysis of a dry storage cask for the Korean standard spent fuel - 16159

    International Nuclear Information System (INIS)

    Cha, Jeonghun; Kim, S.N.; Choi, K.W.

    2009-01-01

    A conceptual dry storage facility, which is based on a commercial dry storage facility, was designed for the Korea standard spent nuclear fuel (SNF) and preliminary thermal safety analysis was performed in this study. To perform the preliminary thermal analysis, a thermal analysis method was proposed. The thermal analysis method consists of 2 parts. By using the method, the surface temperature of the storage canister corresponding to the SNF clad temperature was calculated and the adequate air duct area was decided using the calculation result. The initial temperature of the facility was calculated and the fire condition and half air duct blockage were analyzed. (authors)

  12. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  13. Transmutation technology development; thermal hydraulic power analysis and structure analysis of the HYPER target beam window

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)

    2002-03-01

    A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)

  14. Generic repository design concepts and thermal analysis (FY11)

    International Nuclear Information System (INIS)

    Howard, Robert; Dupont, Mark; Blink, James A.; Fratoni, Massimiliano; Greenberg, Harris; Carter, Joe; Hardin, Ernest L.; Sutton, Mark A.

    2011-01-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R and D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of

  15. Generic repository design concepts and thermal analysis (FY11).

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the

  16. Thermal behavior analysis of U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  17. Thermal behavior analysis of U-Mo/Al dispersion fuel

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu

    2004-01-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  18. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  19. Teaching the Mantle Plumes Debate

    Science.gov (United States)

    Foulger, G. R.

    2010-12-01

    There is an ongoing debate regarding whether or not mantle plumes exist. This debate has highlighted a number of issues regarding how Earth science is currently practised, and how this feeds into approaches toward teaching students. The plume model is an hypothesis, not a proven fact. And yet many researchers assume a priori that plumes exist. This assumption feeds into teaching. That the plume model is unproven, and that many practising researchers are skeptical, may be at best only mentioned in passing to students, with most teachers assuming that plumes are proven to exist. There is typically little emphasis, in particular in undergraduate teaching, that the origin of melting anomalies is currently uncertain and that scientists do not know all the answers. Little encouragement is given to students to become involved in the debate and to consider the pros and cons for themselves. Typically teachers take the approach that “an answer” (or even “the answer”) must be taught to students. Such a pedagogic approach misses an excellent opportunity to allow students to participate in an important ongoing debate in Earth sciences. It also misses the opportunity to illustrate to students several critical aspects regarding correct application of the scientific method. The scientific method involves attempting to disprove hypotheses, not to prove them. A priori assumptions should be kept uppermost in mind and reconsidered at all stages. Multiple working hypotheses should be entertained. The predictions of a hypothesis should be tested, and unpredicted observations taken as weakening the original hypothesis. Hypotheses should not be endlessly adapted to fit unexpected observations. The difficulty with pedagogic treatment of the mantle plumes debate highlights a general uncertainty about how to teach issues in Earth science that are not yet resolved with certainty. It also represents a missed opportunity to let students experience how scientific theories evolve, warts

  20. Revised Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  1. Water Outgassing from PBX-9502 powder by isoconversional thermal analysis

    International Nuclear Information System (INIS)

    Dinh, L.N.; Glascoe, E.L.; Small, W.

    2009-01-01

    Temperature programmed desorption/decomposition (TPD) were performed on PBX-9502 after 3 hours of vacuum pump. TPD data were analyzed by the technique of isoconversional analysis to obtain outgassing kinetics and moisture content of PBX-9502 powder as well as to construct water outgassing models for PBX-9502 powder as a function of time and temperature. Following 3 hours of vacuum pump, dry storage of PBX-9502 at 300K, quickly gives rise to 180-330 ppm moisture in the first few years. Thereafter, the moisture outgassing continues at a much slower rate, totaling only to ∼ 210-380 ppm after 100 years of storage. In an effort to understand the nature of the moisture outgassing in PBX-9502, we have measured moisture content and outgassing kinetics in PBX-9502 by the experimental technique of TPD and the isoconversional thermal analysis. The results of these measurements were then used to construct moisture outgassing models for PBX-9502 in a dry environment (following 3 hours of vacuum pump)

  2. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  3. Nuclear reactor thermal hydraulics safety analysis and thoughts on FUKUSHIMA

    International Nuclear Information System (INIS)

    Ninokata, Hisashi

    2012-01-01

    The first part of this article is to show my thoughts on the accident at Fukushima Daiichi Nuclear Power Station. It is cited from a summary of my lecture talk in Indonesia, in the beginning of the last December, 2011. This talk was based on my previous lecture and seminar talks including those delivered at MIT, June 16, at the ANS Annual Meeting in Hollywood, Florida, June 28 at NURETH-13 in Toronto, September 27, and others. The content is based on the open and latest information available to date in Japan. It may contain some erroneous or uncertain information. I tried to minimize it to my best capability. Also I tried to eliminate any critical issues or opinions that may jeopardize some people who were involved in. The latter half of this article will be excerpts of my recent R and D activities related to the safety-by-design for sodium cooled fast reactors and light water reactors, thermal hydraulics analysis focusing on the simulation-based technology, in particular subchannel analysis and computational fluid dynamics. (J.P.N.)

  4. Simultaneous Thermal Analysis of Remediated Nitrate Salt Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-13

    The actinide engineering and science group (MET-1) have completed simultaneous thermal analysis and offgas analysis by mass spectrometry (STA-MS) of remediated nitrate salt (RNS) surrogates formulated by the high explosives science and technology group (M-7). The 1.0 to 1.5g surrogate samples were first analyzed as received, then a new set was analyzed with 100-200mL 10M HNO3 +0.3 MHF added, and a third set was analyzed after 200 mL of a concentrated Pu-AM spike (in 10M HNO3 +0.3 MHF) was added. The acid and spike solutions were formulated by the actinide analytical chemistry group (C-AAC) using reagent-grade HNO3 and HF, which was also used to dissolve a small quantity of mixed, high-fired PuO2/ AmO2 oxide.

  5. Design Considerations, Modeling and Analysis for the Multispectral Thermal Imager

    International Nuclear Information System (INIS)

    Borel, C.C.; Clodius, W.B.; Cooke, B.J.; Smith, B.W.; Weber, P.G.

    1999-01-01

    The design of remote sensing systems is driven by the need to provide cost-effective, substantive answers to questions posed by our customers. This is especially important for space-based systems, which tend to be expensive, and which generally cannot be changed after they are launched. We report here on the approach we employed in developing the desired attributes of a satellite mission, namely the Multispectral Thermal Imager. After an initial scoping study, we applied a procedure which we call: ''End-to-end modeling and analysis (EEM).'' We began with target attributes, translated to observable signatures and then propagated the signatures through the atmosphere to the sensor location. We modeled the sensor attributes to yield a simulated data stream, which was then analyzed to retrieve information about the original target. The retrieved signature was then compared to the original to obtain a figure of merit: hence the term ''end-to-end modeling and analysis.'' We base the EEM in physics to ensure high fidelity and to permit scaling. As the actual design of the payload evolves, and as real hardware is tested, we can update the EEM to facilitate trade studies, and to judge, for example, whether components that deviate from specifications are acceptable

  6. Multicriteria analysis of thermal and energy systems for tourist facilities

    International Nuclear Information System (INIS)

    Raguzin, I.

    1999-01-01

    The introductory part of the paper briefly presents the technological, economic and environmental optimisation procedure of thermal and energy systems for tourist facilities with the multicriteria ranging method when choosing an optimum solution. The procedure described includes a systematic analysis of the system's structure, energy-mass balance, balance of costs, environmental impact analysis and the choice of an optimum solution. Special attention was paid to criteria quantification for the choice of solution and the most appropriate ranging method.The procedure's application has been illustrated on an example of a potential tourist facility on the Island of Loinj, i.e. the locality with a potential highest category tourist development. This example includes (a) consumers (heating of rooms, preparation of hot water, heating of swimming pool water and cooling of rooms), and (b) producers (boiler room, cooling engine-rooms, a cogeneration plant and heat pumps). The data have been supplied from the project documentation for the reconstruction of the existing facilities mainly preliminary designs. The multicriteria ranging was conducted based on an appropriate computer programme for problem solution. (author)

  7. Analysis of the sensitivity and sample-furnace thermal-lag of a differential thermal analyzer

    International Nuclear Information System (INIS)

    Roura, P.; Farjas, J.

    2005-01-01

    The heat exchange between the horizontal furnace of a differential thermal analyzer (DTA) and the sample is analyzed with the aim of understanding the parameters governing the thermal signal. The resistance due to radiation and conduction through the gas has been calculated and compared to the experimental values of the thermal-lag between the sample and furnace and apparatus sensitivity. The overall evolution of these parameters with the temperature and their relative values are well understood by considering the temperature differences that arise between the sample and holder. Two RC thermal models are used for describing the apparatus performance at different temperature ranges. Finally, the possibility of improving the signal quality through the control of the leak resistances is stressed

  8. Geographic analysis of thermal equilibria: A bioenergetic model for predicting thermal response of aquatic insect communities

    International Nuclear Information System (INIS)

    Sweeney, B.W.; Newbold, J.D.; Vannote, R.L.

    1991-12-01

    The thermal regime immediately downstream from bottom release reservoirs is often characterized by reduced diel and seasonal (winter warm/summer cool) conditions. These unusual thermal patterns have often been implicated as a primary factor underlying observed downstream changes in the species composition of aquatic macroinvertebrate communities. The potential mechanisms for selective elimination of benthic species by unusual thermal regimes has been reviewed. Although the effects of temperature on the rate and magnitude of larval growth and development has been included in the list of potential mechanisms, only recently have field studies below dams focused on this interrelationship. This study investigates the overall community structure as well as the seasonal pattern of larval growth and development for several univoltine species of insects in the Delaware River below or near the hypolimnetic discharge of the Cannonsville and Pepeacton dams. These dams, which are located on the West and East branches of the Delaware River, respectively, produce a thermal gradient extending about 70 km downstream

  9. Thermal behaviour of layered double hydroxides studied by emanation thermal analysis

    Czech Academy of Sciences Publication Activity Database

    Dorničák, V.; Balek, V.; Kovanda, F.; Večerníková, Eva

    90-91, - (2003), s. 475-480 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z4032918 Keywords : hydrotalcite * layered double hydroxides * thermal decomposition Subject RIV: CA - Inorganic Chemistry Impact factor: 0.687, year: 2003

  10. Thermal Analysis of Cryocooler-Cooled Bi2223 Pulsed Coil

    International Nuclear Information System (INIS)

    Miyazaki, H; Chigusa, S; Tanaka, I; Iwakuma, M; Funaki, K; Hayashi, H; Tomioka, A

    2006-01-01

    We fabricated a cryocooler-cooled Bi2223 superconducting pulsed coil and experimentally studied thermal runaway in dc or ac operation. We carried out numerical simulation of thermal properties of the coil in order to explain thermal runaway of the coil. Firstly, we analyzed the total heat generation of flux-flow loss and ac loss inside the winding from the experimental results of the external field losses and the E-J characteristics for the Bi2223 strands. Secondly, we numerically simulated the thermal properties by using 2- dimensional heat conduction equation with axial symmetry. The numerical simulation shows the relation between the initiation of thermal runaway and the temperature distribution with highly concentrated heat source in the winding. We have a semi-quantitative agreement between the numerical results and the experimental ones for the condition of the thermal runaway

  11. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock

    Directory of Open Access Journals (Sweden)

    Ai Du

    2018-06-01

    Full Text Available Aerogel materials are recognized as promising candidates for the thermal insulator and have achieved great successes for the aerospace applications. However, the harsh environment on the exoplanet, especially for the tremendous temperature difference, tends to affect the tenuous skeleton and performances of the aerogels. In this paper, an evaluation method was proposed to simulate the environment of exoplanet and study the influence on the fiber-reinforced silica aerogels with different supercritical point drying (SPD technology. Thermal conductivity, mechanical property and the microstructure were characterized for understanding the thermal failure mechanism. It was found that structure and thermal property were significantly influenced by the adsorbed water in the aerogels under the thermal shocks. The thermal conductivity of CO2-SPD aerogel increased 35.5% after the first shock and kept in a high value, while that of the ethanol-SPD aerogel increased only 19.5% and kept in a relatively low value. Pore size distribution results showed that after the first shock the peak pore size of the CO2-SPD aerogel increased from 18 nm to 25 nm due to the shrinkage of the skeleton, while the peak pore size of the ethanol-SPD aerogel kept at ~9 nm probably induced by the spring-back effect. An 80 °C treatment under vacuum was demonstrated to be an effective way for retaining the good performance of ethanol-SPD aerogels under the thermal shock. The thermal conductivity increases of the ethanol-SPD aerogels after 5 shocks decreased from ~30 to ~0% via vacuum drying, while the increase of the CO2-SPD aerogels via the same treatments remains ~28%. The high-strain hardening and low-strain soften behaviors further demonstrated the skeleton shrinkage of the CO2-SPD aerogel.

  12. Gas Analysis and Control Methods for Thermal Batteries

    Science.gov (United States)

    2013-09-01

    when using highly efficient microporous thermal insulation packages. An easily implemented method of H2 gas removal from vendor thermal batteries is... microporous thermal insulation packages (1, 4, 5) or reduce volume requirements significantly. More rigorous gas control methods combined with...measured from the DCM pressures and known internal volumes of the 3 GHS that were measured using the ideal gas law with a 10-cc internal volume SS

  13. Time-space distribution of laser-induced plasma parameters and its influence on emission spectra of the laser plumes

    International Nuclear Information System (INIS)

    Ershov-Pavlov, E.A.; Katsalap, K.Yu.; Stepanov, K.L.; Stankevich, Yu.A.

    2008-01-01

    A physical model is developed accounting for dynamics and radiation of plasma plumes induced by nanosecond laser pulses on surface of solid samples. The model has been applied to simulate emission spectra of the laser erosion plasma at the elemental analysis of metals using single- and double-pulse excitation modes. Dynamics of the sample heating and expansion of the erosion products are accounted for by the thermal conductivity and gas dynamic equations, respectively, supposing axial symmetry. Using the resulting time-space distributions of the plasma parameters, emission spectra of the laser plumes are evaluated by solving the radiation transfer equation. Particle concentration in consecutive ionization stages is described by the Saha equation in the Debye approximation. The population of excited levels is determined according to Boltzmann distribution. Local characteristics determining spectral emission and absorption coefficients are obtained point-by-point along an observation line. Voigt spectral line profiles are considered with main broadening mechanisms taken into account. The plasma dynamics and plume emission spectra have been studied experimentally and by the model. A Q-switched Nd:YAG laser at 1064 nm wavelength has been used to irradiate Al sample with the pulses of 15 ns and 50 mJ duration and energy, respectively. It has resulted in maximum power density of 0.8 MW/cm 2 on the sample surface. The laser plume emission spectra have been recorded at a side-on observation. Problems of the spectra contrast and of the elemental analysis efficiency are considered relying on a comparative study of the measurement and simulation results at the both excitation modes

  14. Distribution analysis of thermal effusivity for sub-micrometer YBCO thin films using thermal microscope

    International Nuclear Information System (INIS)

    Yagi, T.; Taketoshi, N.; Kato, H.

    2004-01-01

    Thermal effusivity measurements have been carried out for sub-micrometer YBCO superconducting films using thermal microscope based upon thermoreflectance technique. Two samples were prepared: c-axis aligned YBCO thin films with 800 nm in thickness synthesized on MgO and SrTiO 3 substrates. Measured thermal effusivities perpendicular to the surface, i.e. in parallel with c-axis were determined to be 1770 J/m 2 s 0.5 K on MgO substrate and 1420 J/m 2 s 0.5 K for that on SrTiO 3 substrate, respectively. The scatter of the measurements is estimated to be lower than ±5.2%. These values are consistent with reported values of YBCO single crystal in the direction of c-axis. In addition, 2D profiling image, that is, in-plane distribution of thermal effusivity was well obtained for the YBCO film on MgO substrate by operating this thermal microscope in a scanning mode. Its standard deviation of the in-plane thermal effusivity scattering due to the non-uniformity is evaluated to be ±5.7%

  15. Thermal stress ratcheting analysis of a time-hardening structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1999-01-01

    Thermal stress ratcheting and shakedown is analyzed for a time-hardening structure: the yield stress increases as time goes on under exposure to neutron irradiation or thermal aging. New three modes of ratcheting and shakedown are identified as transition to other deformation modes. Stress regimes and thermal ratchet strains are formulated as a function of time-increasing yield stress. Moreover, a new model of trouble occurrence frequency as a modification to a bath-tube curve is proposed for calculating a time period of a thermal cycle. Application of the proposed formulation tells us a benefit of taking into account the time hardening due to neutron irradiation. (author)

  16. The Phebus FP thermal-hydraulic analysis with Melcor

    International Nuclear Information System (INIS)

    Akgane, Kikuo; Kiso, Yoshihiro; Fukahori, Takanori; Yoshino, Mamoru

    1995-01-01

    The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L'Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700 degrees C and 150 degrees C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment

  17. The Phebus FP thermal-hydraulic analysis with Melcor

    Energy Technology Data Exchange (ETDEWEB)

    Akgane, Kikuo; Kiso, Yoshihiro [Nuclear Power Engineering Corporation, Tokyo (Japan); Fukahori, Takanori [Hitachi Engineering Company, Ltd., Hitachi-shi Ibaraki-ken (Japan); Yoshino, Mamoru [Nuclear Engineering Ltd., Tosabori Nishi-ku (Japan)

    1995-09-01

    The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L`Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700{degrees}C and 150{degrees}C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment.

  18. Detection of land mines using fast and thermal neutron analysis

    International Nuclear Information System (INIS)

    Bach, P.

    1998-01-01

    The detection of land mines is made possible by using nuclear sensor based on neutron interrogation. Neutron interrogation allows to detect the sensitive elements (C, H, O, N) of the explosives in land mines or in unexploded shells: the evaluation of characteristic ratio N/O and C/O in a volume element gives a signature of high explosives. Fast neutron interrogation has been qualified in our laboratories as a powerful close distance method for identifying the presence of a mine or explosive. This method could be implemented together with a multisensor detection system - for instance IR or microwave - to reduce the false alarm rate by addressing the suspected area. Principle of operation is based on the measurement of gamma rays induced by neutron interaction with irradiated nuclei from the soil and from a possible mine. Specific energy of these gamma rays allows to recognise the elements at the origin of neutron interaction. Several detection methods can be used, depending on nuclei to be identified. Analysis of physical data, computations by simulation codes, and experimentations performed in our laboratory have shown the interest of Fast Neutron Analysis (FNA) combined with Thermal Neutron Analysis (TNA) techniques, especially for detection of nitrogen 14 N, carbon 12 C and oxygen 16 O. The FNA technique can be implemented using a 14 MeV sealed neutron tube, and a set of detectors. The mines detection has been demonstrated from our investigations, using a low power neutron generator working in the 10 8 n/s range, which is reasonable when considering safety rules. A fieldable demonstrator would be made with a detection head including tube and detectors, and with remote electronics, power supplies and computer installed in a vehicle. (author)

  19. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    Science.gov (United States)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  20. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.