WorldWideScience

Sample records for thermal neutral zone

  1. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality.

    Science.gov (United States)

    Romanovsky, Andrej A; Ivanov, Andrei I; Shimansky, Yury P

    2002-06-01

    There is a misbelief that the same animal has the same thermoneutral zone (TNZ) in different experimental setups. In reality, TNZ strongly depends on the physical environment and varies widely across setups. Current methods for determining TNZ require elaborate equipment and can be applied only to a limited set of experimental conditions. A new, broadly applicable approach that rapidly determines whether given conditions are neutral for a given animal is needed. Consistent with the definition of TNZ [the range of ambient temperature (T(a)) at which body core temperature (T(c)) regulation is achieved only by control of sensible heat loss], we propose three criteria of thermoneutrality: 1) the presence of high-magnitude fluctuations in skin temperature (T(sk)) of body parts serving as specialized heat exchangers with the environment (e.g., rat tail), 2) the closeness of T(sk) to the median of its operational range, and 3) a strong negative correlation between T(sk) and T(c). Thermocouple thermometry and liquid crystal thermography were performed in five rat strains at 13 T(a). Under the conditions tested (no bedding or filter tops, no group thermoregulation), the T(a) range of 29.5-30.5 degrees C satisfied all three TNZ criteria in Wistar, BDIX, Long-Evans, and Zucker lean rats; Zucker fatty rats had a slightly lower TNZ (28.0-29.0 degrees C). Skin thermometry or thermography is a definition-based, simple, and inexpensive technique to determine whether experimental or housing conditions are neutral, subneutral, or supraneutral for a given animal.

  2. Thermal Conductivity of the Multicomponent Neutral Atmosphere

    Science.gov (United States)

    Pavlov, A. V.

    2017-12-01

    Approximate expressions for the thermal conductivity coefficient of the multicomponent neutral atmosphere consisting of N2, O2, O, He, and H are analyzed and evaluated for the atmospheric conditions by comparing them with that given by the rigorous hydrodynamic theory. The new approximations of the thermal conductivity coefficients of simple gases N2, O2, O, He, and H are derived and used. It is proved that the modified Mason and Saxena approximation of the atmospheric thermal conductivity coefficient is more accurate in reproducing the atmospheric values of the rigorous hydrodynamic thermal conductivity coefficient in comparison with those that are generally accepted in atmospheric studies. This approximation of the thermal conductivity coefficient is recommended to use in calculations of the neutral temperature of the atmosphere.

  3. Oil flow resumes in war torn onshore Neutral Zone

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Oil production has resumed in the war ravaged onshore fields of the Neutral Zone between Saudi Arabia and Kuwait 1 year after the end of Persian Gulf War. Initial production of about 40,000 b/d is expected to rise to 60,000 b/d by year end. This paper reports that prior to the January-February 1991 war to oust occupying Iraqi military forces from Kuwait, the Neutral Zone's Wafra, South Umm Gudair, and South Fuwaris onshore fields produced about 135,000 b/d

  4. Solar Thermal | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    building can still be designed and constructed to be solar ready with roof exposures and slopes that accept Solar Thermal Solar Thermal Solar thermal applications can be simple, cost effective, and diverse for research campuses. The following links go to sections that describe when and where solar thermal

  5. Thermal breeder fuel enrichment zoning

    International Nuclear Information System (INIS)

    Capossela, H.J.; Dwyer, J.R.; Luce, R.G.; McCoy, D.F.; Merriman, F.C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect. 1 figure

  6. Thermal structure and geodynamics of subduction zones

    Science.gov (United States)

    Wada, Ikuko

    The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70--80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70--80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid

  7. Formation of Neutral Disk-Like Zone Around the Active Hot Stars in Symbiotic Binaries

    Directory of Open Access Journals (Sweden)

    Cariková Z.

    2012-06-01

    Full Text Available In this contribution we present the ionization structure in the enhanced wind from the hot star in symbiotic binaries during active phases. Rotation of the hot star leads to the compression of the outflowing material towards its equatorial plane. As a result, a neutral disk-like zone around the active hot star near the orbital plane is created. We modeled the compression of the wind and calculated the neutral disk-like zone in the enhanced wind from the hot star using the equation of the photoionization equilibrium. the presence of such neutral disk-like zones was also suggested on the basis of the modeling the spectral energy distribution of symbiotic binaries. We confront the calculated ionization structures in the enhanced wind from the hot star with the observations. the calculated column density of the neutral hydrogen atoms in the neutral disk-like zone and the emission measure of the ionized part of the wind from the hot star are in a good agreement with the quantities derived from observations during active phases. the presence of such neutral disk-like zones is transient, being connected with the active phases of symbiotic binaries. During quiescent phases, such neutral disk-like zones cannot be created because of insufficient mass-loss rate from the hot star.

  8. The thermal pressure distribution of a simulated cold neutral medium

    Energy Technology Data Exchange (ETDEWEB)

    Gazol, Adriana, E-mail: a.gazol@crya.unam.mx [Centro de Radioastronomía y Astrofísica, UNAM, A. P. 3-72, c.p. 58089 Morelia, Michoacán (Mexico)

    2014-07-01

    We numerically study the thermal pressure distribution in a gas with thermal properties similar to those of the cold neutral interstellar gas by analyzing three-dimensional hydrodynamic models in boxes with sides of 100 pc with turbulent compressible forcing at 50 pc and different Mach numbers. We find that at high pressures and for large Mach numbers, both the volume-weighted and the density-weighted distributions can be appropriately described by a log-normal distribution, whereas for small Mach numbers they are better described by a power law. Thermal pressure distributions resulting from similar simulations but with self-gravity differ only for low Mach numbers; in this case, they develop a high pressure tail.

  9. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression

    Science.gov (United States)

    Sun, Shuai; Hou, Guiting; Zheng, Chunfang

    2017-11-01

    Stress variation associated with folding is one of the controlling factors in the development of tectonic fractures, however, little attention has been paid to the influence of neutral surfaces during folding on fracture distribution in a fault-related fold. In this study, we take the Cretaceous Bashijiqike Formation in the Kuqa Depression as an example and analyze the distribution of tectonic fractures in fault-related folds by core observation and logging data analysis. Three fracture zones are identified in a fault-related fold: a tensile zone, a transition zone and a compressive zone, which may be constrained by two neutral surfaces of fold. Well correlation reveals that the tensile zone and the transition zone reach the maximum thickness at the fold hinge and get thinner in the fold limbs. A 2D viscoelastic stress field model of a fault-related fold was constructed to further investigate the mechanism of fracturing. Statistical and numerical analysis reveal that the tensile zone and the transition zone become thicker with decreasing interlimb angle. Stress variation associated with folding is the first level of control over the general pattern of fracture distribution while faulting is a secondary control over the development of local fractures in a fault-related fold.

  10. Quantifying intervertebral disc mechanics: a new definition of the neutral zone

    NARCIS (Netherlands)

    Smit, Theodoor H.; van Tunen, Manon Slm; van der Veen, Albert J.; Kingma, Idsart; van Dieën, Jaap H.

    2011-01-01

    The neutral zone (NZ) is the range over which a spinal motion segment (SMS) moves with minimal resistance. Clear as this may seem, the various methods to quantify NZ described in the literature depend on rather arbitrary criteria. Here we present a stricter, more objective definition. To

  11. The response of human thermal sensation and its prediction to temperature step-change (cool-neutral-cool.

    Directory of Open Access Journals (Sweden)

    Xiuyuan Du

    Full Text Available This paper reports on studies of the effect of temperature step-change (between a cool and a neutral environment on human thermal sensation and skin temperature. Experiments with three temperature conditions were carried out in a climate chamber during the period in winter. Twelve subjects participated in the experiments simulating moving inside and outside of rooms or cabins with air conditioning. Skin temperatures and thermal sensation were recorded. Results showed overshoot and asymmetry of TSV due to the step-change. Skin temperature changed immediately when subjects entered a new environment. When moving into a neutral environment from cool, dynamic thermal sensation was in the thermal comfort zone and overshoot was not obvious. Air-conditioning in a transitional area should be considered to limit temperature difference to not more than 5°C to decrease the unacceptability of temperature step-change. The linear relationship between thermal sensation and skin temperature or gradient of skin temperature does not apply in a step-change environment. There is a significant linear correlation between TSV and Qloss in the transient environment. Heat loss from the human skin surface can be used to predict dynamic thermal sensation instead of the heat transfer of the whole human body.

  12. The Response of Human Thermal Sensation and Its Prediction to Temperature Step-Change (Cool-Neutral-Cool)

    Science.gov (United States)

    Du, Xiuyuan; Li, Baizhan; Liu, Hong; Yang, Dong; Yu, Wei; Liao, Jianke; Huang, Zhichao; Xia, Kechao

    2014-01-01

    This paper reports on studies of the effect of temperature step-change (between a cool and a neutral environment) on human thermal sensation and skin temperature. Experiments with three temperature conditions were carried out in a climate chamber during the period in winter. Twelve subjects participated in the experiments simulating moving inside and outside of rooms or cabins with air conditioning. Skin temperatures and thermal sensation were recorded. Results showed overshoot and asymmetry of TSV due to the step-change. Skin temperature changed immediately when subjects entered a new environment. When moving into a neutral environment from cool, dynamic thermal sensation was in the thermal comfort zone and overshoot was not obvious. Air-conditioning in a transitional area should be considered to limit temperature difference to not more than 5°C to decrease the unacceptability of temperature step-change. The linear relationship between thermal sensation and skin temperature or gradient of skin temperature does not apply in a step-change environment. There is a significant linear correlation between TSV and Qloss in the transient environment. Heat loss from the human skin surface can be used to predict dynamic thermal sensation instead of the heat transfer of the whole human body. PMID:25136808

  13. Beyond the classic thermoneutral zone: Including thermal comfort.

    Science.gov (United States)

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  14. The human thermoneutral and thermal comfort zones: Thermal comfort in your own skin blood flow.

    Science.gov (United States)

    Schlader, Zachary J

    2015-01-01

    Human thermoregulation is achieved via autonomic and behavioral responses. Autonomic responses involve 2 synchronous 'components'. One counteracts large thermal perturbations, eliciting robust heat loss or gain (i.e., sweating or shivering). The other fends off smaller insults, relying solely on changes in sensible heat exchange (i.e., skin blood flow). This sensible component occurs within the thermoneutral zone [i.e., the ambient temperature range in which temperature regulation is achieved only by sensible heat transfer, without regulatory increases in metabolic heat production (e.g., shivering) or evaporative heat loss (e.g., sweating)].(1) The combination of behavior and sensible heat exchange permits a range of conditions that are deemed thermally comfortable, which is defined as the thermal comfort zone.(1) Notably, we spend the majority of our lives within the thermoneutral and thermal comfort zones. It is only when we are unable to stay within these zones that deleterious health and safety outcomes can occur (i.e., hypo- or hyperthermia). Oddly, although the thermoneutral zone and thermal preference (a concept similar to the thermal comfort zone) has been extensively studied in non-human animals, our understanding of human thermoregulation within the thermoneutral and thermal comfort zones remains rather crude.

  15. Neutralization of Aerosolized Bio-Agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms

    Science.gov (United States)

    2016-06-01

    Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms Distribution Statement A. Approved for public...of Cincinnati Project Title: Neutralization of Aerosolized Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation...fire ball, where they will not effectively interact with any viable bio -aerosol. 1.1.4. Conclusions Cryo-milling is necessary to achieve a

  16. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  17. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  18. Evolution of a neutral-ion 2 fluid system using thermal lattice Boltzmann model

    International Nuclear Information System (INIS)

    Vahala, L.; Vahala, G.; Carter, J.; Pavlo, P.

    2000-01-01

    The 2D evolution of a 2-species system is examined using the thermal lattice Boltzmann model (TLBM). The effects of velocity shear layers on sharp heat fronts are considered for a neutral-ion system in the case where both species are turbulent. The rate at which the species velocities and temperatures equilibrate no longer follow the Morse estimate. (author)

  19. Shear heating and metamorphism in subduction zones, 1. Thermal models

    Science.gov (United States)

    Kohn, M. J.; Castro, A. E.; Spear, F. S.

    2017-12-01

    Popular thermal-mechanical models of modern subduction systems are 100-500 °C colder at c. 50 km depth than pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks. This discrepancy has been ascribed by some to profound bias in the rock record, i.e. metamorphic rocks reflect only anomalously warm subduction, not normal subduction. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting depths of seismicity, fluid release, and sub-arc melting conditions. Here, we show that adding realistic shear stresses to thermal models implies P-T conditions quantitatively consistent with those recorded by exhumed metamorphic rocks, suggesting that metamorphic rock P-T conditions are not anomalously warm. Heat flow measurements from subduction zone fore-arcs typically indicate effective coefficients of friction (µ) ranging from 0.025 to 0.1. We included these coefficients of friction in analytical models of subduction zone interface temperatures. Using global averages of subducting plate age (50 Ma), subduction velocity (6 cm/yr), and subducting plate geometry (central Chile), temperatures at 50 km depth (1.5 GPa) increase by c. 200 °C for µ=0.025 to 700 °C for µ=0.1. However, at high temperatures, thermal softening will reduce frictional heating, and temperatures will not increase as much with depth. Including initial weakening of materials ranging from wet quartz (c. 300 °C) to diabase (c. 600 °C) in the analytical models produces concave-upward P-T distributions on P-T diagrams, with temperatures c. 100 to 500 °C higher than models with no shear heating. The absolute P-T conditions and concave-upward shape of the shear-heating + thermal softening models almost perfectly matches the distribution of P-T conditions derived from a compilation of exhumed metamorphic rocks. Numerical models of modern subduction zones that include shear heating also overlap metamorphic data. Thus, excepting the

  20. Regional thermal comfort zone in males and females.

    Science.gov (United States)

    Ciuha, Ursa; Mekjavic, Igor B

    2016-07-01

    Skin regions differ in their sensitivity to temperature stimuli. The present study examined whether such regional differences were also evident in the perception of thermal comfort. Regional thermal comfort was assessed in males (N=8) and females (N=8), by having them regulate the temperature of the water delivered to a water-perfused suit (WPS), within a temperature range considered thermally comfortable. In separate trials, subjects regulated the temperature of the WPS, or specific regions of the suit covering different skin areas (arms, legs, front torso and back torso). In the absence of subjective temperature regulation (TR), the temperature changed in a sinusoidal manner from 10°C to 50°C; by depressing a switch and reversing the direction of the temperature at the limits of the thermal comfort zone (TCZ), each subject defined TCZ for each body region investigated. The range of regulated temperatures did not differ between genders and skin regions. Local Tsk at the lower and upper limits of the TCZ was similar for both genders. Higher (pthermally comfortable conditions, the well-established regional differences in thermosensitivity are not reflected in the TCZ, with similar temperature preferences by both genders. Thermal comfort of different skin regions and overall body is not achieved at a single skin temperature, but at range of temperatures, defined as the TCZ. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones

    Energy Technology Data Exchange (ETDEWEB)

    Hoof, Joost van; Hensen, Jan L.M. [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2007-01-15

    Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national level, adaptive thermal comfort guidelines come into being, such as in the Netherlands. This paper discusses two implementations of the adaptive comfort model in terms of usability and energy use for moderate maritime climate zones by means of literature study, a case study comprising temperature measurements, and building performance simulation. It is concluded that for moderate climate zones the adaptive model is only applicable during summer months, and can reduce energy for naturally conditioned buildings. However, the adaptive thermal comfort model has very limited application potential for such climates. Additionally we suggest a temperature parameter with a gradual course to replace the mean monthly outdoor air temperature to avoid step changes in optimum comfort temperatures. (author)

  2. Conceptual thermal-mechanical design of the TFTR first wall armor against neutral beam impingement

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Flaherty, R.

    1976-01-01

    The Tokamak Fusion Test Reactor (TFTR) is designed to operate in a pulsed mode with relatively low duty cycles. Each pulse consists of a short plasma heat-up period, a reaction period, followed by a relatively long cooldown period. Plasma heating is accomplished by ohmic heating by a current induced change in the magnetically linked ohmic heating coils, followed by neutral beam injection for further preheat and the initiation of fusion reactions. During normal operation, the bulk of the neutral beam energy will be absorbed by the plasma, while the remainder will impinge on the vacuum vessel wall. The amount of thermal energy deposited on an unprotected wall is expected to be excessive, limiting the frequency of pulses and requiring frequent wall replacement. A faulted condition would cause penetration of an unprotected wall. As a consequence, a wall armoring (or liner) concept was developed to protect the vacuum vessel wall and to permit ease of liner replacement

  3. Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pairojpiriyakul, Thirasak; Soottitantawat, Apinan; Arpornwichanop, Amornchai; Assabumrungrat, Suttichai [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University (Thailand); Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University (Thailand); Wiyaratn, Wisitsree [Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut' s University of Technology Thonburi (Thailand); Laosiripojana, Navadol [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Croiset, Eric [Department of Chemical Engineering, University of Waterloo (Canada)

    2010-10-15

    Thermodynamic analysis of hydrogen production from glycerol under thermal neutral conditions is studied in this work. Heat requirement from the process can be achieved from the exothermic reaction of glycerol with oxygen in air fed to the system. Two modes of operation for air feeding are considered including (i) Single-feed mode in which air is fed in combination with water and glycerol to the reformer, and (ii) Split-feed mode in which air and part of glycerol is fed to a combustor in order to generate heat. The thermal neutral conditions are considered for two levels including Reformer and System levels. It was found that the H{sub 2} yield from both modes is not significantly different at the Reformer level. In contrast, the difference becomes more pronounced at the System level. Single-feed and Split-feed modes offer high H{sub 2} yield in low (600-900 K) and high (900-1200 K) temperature ranges, respectively. The maximum H{sub 2} yields are 5.67 (water to glycerol ratio, WGR = 12, oxygen to glycerol ratio, OGR = 0.37, T = 900 K, Split-feed mode), and 3.28 (WGR = 3, OGR = 1.40, T = 900 K, Single-feed mode), for the Reformer and System levels, respectively. The difference between H{sub 2} yields in both levels mainly arises from the huge heat demand for preheating feeds in the System level, and therefore, a higher amount of air is needed to achieve the thermal neutral condition. Split-feed mode is a favorable choice in term of H{sub 2} purity because the gas product is not diluted with N{sub 2} from the air. The use of pure O{sub 2} and afterburner products (ABP) stream were also considered at the System level. The maximum H{sub 2} yield becomes 3.75 (WGR = 5.21, OGR = 1.28, T = 900 K, Split-feed mode) at thermal neutral condition when utilizing heat from the ABP stream. Finally comparisons between the different modes and levels are addressed in terms of yield of by-products, and carbon formation. (author)

  4. Effects of normobaric hypoxic bed rest on the thermal comfort zone.

    Science.gov (United States)

    Ciuha, Ursa; Eiken, Ola; Mekjavic, Igor B

    2015-01-01

    Future Lunar and Mars habitats will maintain a hypobaric hypoxic environment to minimise the risk of decompression sickness during the preparation for extra-vehicular activity. This study was part of a larger study investigating the separate and combined effects of inactivity associated with reduced gravity and hypoxia, on the cardiovascular, musculoskeletal, neurohumoural, and thermoregulatory systems. Eleven healthy normothermic young male subjects participated in three trials conducted on separate occasions: (1) Normobaric hypoxic ambulatory confinement, (2) Normobaric hypoxic bedrest and (3) Normobaric normoxic bedrest. Normobaric hypoxia was achieved by reduction of the oxygen fraction in the air (FiO2 = 0.141 ± 0.004) within the facility, while the effects of reduced gravity were simulated by confining the subjects to a horizontal position in bed, with all daily routines performed in this position for 21 days. The present study investigated the effect of the interventions on behavioural temperature regulation. The characteristics of the thermal comfort zone (TCZ) were assessed by a water-perfused suit, with the subjects instructed to regulate the sinusoidally varying temperature of the suit within a range considered as thermally comfortable. Measurements were performed 5 days prior to the intervention (D-5), and on days 10 (D10) and 20 (D20) of the intervention. no statistically significant differences were found in any of the characteristics of the TCZ between the interventions (HAMB, HBR and NBR), or between different measurement days (D-5, D10, D20) within each intervention. rectal temperature remained stable, whereas skin temperature (Tsk) increased during all interventions throughout the one hour trial. no difference in Tsk between D-5, D10 and D20, and between HAMB, HBR and NBR were revealed. subjects perceived the regulated temperature as thermally comfortable, and neutral or warm. we conclude that regulation of thermal comfort is not compromised by

  5. Experimental modeling of weld thermal cycle of the heat affected zone (HAZ

    Directory of Open Access Journals (Sweden)

    J. Kulhánek

    2016-10-01

    Full Text Available Contribution deals with experimental modeling of quick thermal cycles of metal specimens. In the introduction of contribution will be presented measured graphs of thermal cycle of heat affected zone (HAZ of weld. Next will be presented experimental simulation of measured thermal cycle on the standard specimens, useable for material testing. This approach makes possible to create material structures of heat affected zone of weld, big enough for standard material testing.

  6. The measurement of neutral beam thermal profiles on 'V'-shaped calorimeters

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Lagin, L.J.; Silber, K.

    1995-01-01

    It is customary in high power neutral beam systems to use a V-shaped calorimeter to stop and measure the beam. With proper instrumentation, it is possible to determine both the neutral beam power and divergence. By utilizing a near-grazing angle of incidence, the area over which the beam is in contact with the surface is increased, thereby decreasing the power density over the case of normal incidence. Thermocouples on the back of the calorimeter, in conjunction with real time fitting algorithms, are used to deduce the divergence from the thermal profile. This measurement implicitly assumes that the measured profile corresponds to that of the incident beam. It is shown that such is not the case. Energetic particle reflection at near-grazing angle causes the thermal profile on the calorimeter to be more peaked than the incident distribution. The implications of this on the non-linear multiple regression technique of determining the divergence are discussed. With the aid of a reflection model, developed and applied to the beam from a typical TFTR ion source, it is shown that a peaked power density can be modelled. Neural networks are being studied as a means of supplanting the older regression technique of measuring divergence. Y-direction divergences have been successfully derived using a one-dimensional neural network

  7. Determination of the capabilities of a detachment for neutralizing chemical attack effects in the brigade defense zone

    Directory of Open Access Journals (Sweden)

    Dejan R. Inđić

    2012-04-01

    Full Text Available This paper presents one possible way of deploying detachments for neutralizing the effects of chemical attacks in a brigade defense zone. The detachment composition is provisional and depends on the assessment of whether the enemy in the incoming combat will use weapons of mass destruction. A detachment consists of several organizational units: medical care forces, chemical reconnaissance forces, forces for the establishment of combat efficiency and chemical decontamination forces. The capabilities of the mentioned forces depend on their size, equipment, training level, extent of effects and combat conditions. The paper indicates a potential to overcome the gap in the provisions after disbanding the Army Corps.

  8. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  9. Neutralized solar wind ahead of the Earth's magnetopause as contribution to non-thermal exospheric hydrogen

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2018-03-01

    Full Text Available In a most recent paper by Qin and Waldrop (2016, it had been found that the scale height of hydrogen in the upper exosphere of the Earth, especially during solar minimum conditions, appears to be surprisingly large. This indicates that during minimum conditions when exobasic temperatures should be small, large exospheric H-scale heights predominate. They thus seem to indicate the presence of a non-thermal hydrogen component in the upper exosphere. In the following parts of the paper we shall investigate what fraction of such expected hot hydrogen atoms could have their origin from protons of the shocked solar wind ahead of the magnetopause converted into energetic neutral atoms (ENAs via charge-exchange processes with normal atmospheric, i.e., exospheric hydrogen atoms that in the first step evaporate from the exobase into the magnetosheath plasma region. We shall show that, dependent on the sunward location of the magnetopause, the density of these types of non-thermal hydrogen atoms (H-ENAs becomes progressively comparable with the density of exobasic hydrogen with increasing altitude. At low exobasic heights, however, their contribution is negligible. At the end of this paper, we finally study the question of whether the H-ENA population could even be understood as a self-consistency phenomenon of the H-ENA population, especially during solar activity minimum conditions, i.e., H-ENAs leaving the exosphere being replaced by H-ENAs injected into the exosphere.

  10. Neutralized solar wind ahead of the Earth's magnetopause as contribution to non-thermal exospheric hydrogen

    Science.gov (United States)

    Fahr, Hans J.; Nass, Uwe; Dutta-Roy, Robindro; Zoennchen, Jochen H.

    2018-03-01

    In a most recent paper by Qin and Waldrop (2016), it had been found that the scale height of hydrogen in the upper exosphere of the Earth, especially during solar minimum conditions, appears to be surprisingly large. This indicates that during minimum conditions when exobasic temperatures should be small, large exospheric H-scale heights predominate. They thus seem to indicate the presence of a non-thermal hydrogen component in the upper exosphere. In the following parts of the paper we shall investigate what fraction of such expected hot hydrogen atoms could have their origin from protons of the shocked solar wind ahead of the magnetopause converted into energetic neutral atoms (ENAs) via charge-exchange processes with normal atmospheric, i.e., exospheric hydrogen atoms that in the first step evaporate from the exobase into the magnetosheath plasma region. We shall show that, dependent on the sunward location of the magnetopause, the density of these types of non-thermal hydrogen atoms (H-ENAs) becomes progressively comparable with the density of exobasic hydrogen with increasing altitude. At low exobasic heights, however, their contribution is negligible. At the end of this paper, we finally study the question of whether the H-ENA population could even be understood as a self-consistency phenomenon of the H-ENA population, especially during solar activity minimum conditions, i.e., H-ENAs leaving the exosphere being replaced by H-ENAs injected into the exosphere.

  11. Application of the Faddeev-Watson expansion to thermal collisions of Rydberg atoms with neutral particles

    International Nuclear Information System (INIS)

    de Prunele, E.

    1983-01-01

    The Faddeev-Watson expansion (FWE) for the T operator is applied to the study of thermal collisions between Rydberg atom and neutral atom. These collisions are considered as a three-body problem (the perturber, the Rydberg electron, and its parent core) and it is assumed, as already done in most theoretical works dealing with Rydberg-atom--atom collisions, that the core-perturber interaction can be neglected. Then the evaluation of the FWE first- and second-order terms is made tractable by using an appropriate separable potential for the Rydberg-electron--perturber interaction. The evaluation of the second-order term allows us to estimate the importance of taking into account explicitly the Rydberg-electron--core interaction in the expression of the (three-body) T operator for the thermal collisions considered. Detailed calculations for the process Rb(n, l = 0)+He →Rb(n',l')+He are presented and discussed. The FWE second-order term has been evaluated for the first time by taking the (two-body) t operator associated with the Rydberg atom (valence electron plus parent core) as the Coulomb potential. The contribution of the FWE second-order term to the scattering amplitude decreases as n increases and is found especially significant when both the momentum transfers involved in the collision are large and the values of l and l' are small

  12. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    Science.gov (United States)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  13. Complexation of buffer constituents with neutral complexation agents: part II. Practical impact in capillary zone electrophoresis.

    Science.gov (United States)

    Beneš, Martin; Riesová, Martina; Svobodová, Jana; Tesařová, Eva; Dubský, Pavel; Gaš, Bohuslav

    2013-09-17

    This article elucidates the practical impact of the complexation of buffer constituents with complexation agents on electrophoretic results, namely, complexation constant determination, system peak development, and proper separation of analytes. Several common buffers, which were selected based on the pH study in Part I of this paper series (Riesová, M.; Svobodová, J.; Tošner, Z.; Beneš, M.; Tesařová, E.; Gaš, B. Anal. Chem., 2013, DOI: 10.1021/ac4013804); e.g., CHES, MES, MOPS, Tricine were used to demonstrate behavior of such complex separation systems. We show that the value of a complexation constant determined in the interacting buffers environment depends not only on the analyte and complexation agent but it is also substantially affected by the type and concentration of buffer constituents. As a result, the complexation parameters determined in the interacting buffers cannot be regarded as thermodynamic ones and may provide misleading information about the strength of complexation of the compound of interest. We also demonstrate that the development of system peaks in interacting buffer systems significantly differs from the behavior known for noncomplexing systems, as the mobility of system peaks depends on the concentration and type of neutral complexation agent. Finally, we show that the use of interacting buffers can totally ruin the results of electrophoretic separation because the buffer properties change as the consequence of the buffer constituents' complexation. As a general conclusion, the interaction of buffer constituents with the complexation agent should always be considered in any method development procedures.

  14. Integrated geophysical investigations to study thermal zones at Boku ...

    African Journals Online (AJOL)

    The cap rock is formed by the self-sealing process through hydro thermal alterations of the Plio-Quaternary volcanic rocks in the area as witnessed by the surface ... Quaternary faults that are the major tectonic structures for the passage of the deep-seated vapour to the surface, and the recharging of the geothermal reservoir.

  15. Method for identification of fluid mixing zones subject to thermal fatigue damage

    International Nuclear Information System (INIS)

    Vole, O.; Beaud, F.

    2009-01-01

    High cycle thermal fatigue due to the mixing of hot and cold fluids may initiate cracking in pipes of safety related circuits. A method has been developed to identify such fluid mixing zones subjected to potential thermal fatigue damage. This method is based on a loading model and a mechanical model that depend on the main characteristics of the mixing zone and on the material properties. It is supported by a large experimental program. This method has been applied to all the mixing zones of safety related circuits of the EDF pressurised water reactors, allowing to identify sensitive zones and to apply an appropriate inspection program that ensures the control of the risk due to this damage mechanism. (authors)

  16. The effects of thermal motion of neutrals on the non-potential instabilities in a weakly sodium plasma

    International Nuclear Information System (INIS)

    Zigman, V.J.; Milic, B.S.

    1982-01-01

    The results of recent experimental measurements of the differential cross-section for elastic scattering of electrons on sodium atoms are used to evaluate the electron steady-state distribution function in a weakly ionized, uniform and non-magnetized sodium plasma placed in a d.c. electric field. The field is assumed to be of moderate intensity, so that the thermal motion of the neutrals has to be taken into account in the evaluation of the distribution function. The resulting 'modified Druyvesteinian function' is applied to study the non-potential instabilities arising from the presence of the field in this particular plasma. Threshold drifts for both very slow and slow modes are obtained and the conditions for the onset of instabilities are discussed. It is shown that the thermal motion of the neutrals affects both critical drifts and the angles of propagation. (author)

  17. Impact of a 1,000-foot thermal mixing zone on the steam electric power industry

    International Nuclear Information System (INIS)

    Veil, J.A.

    1994-04-01

    Thermal discharge requirements for power plants using once-through cooling systems are based on state water quality standards for temperatures that must be met outside of designated mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones to no more than 1,000 feet from the discharge point. Data were collected from 79 steam electric plants. Of the plants currently using once-through cooling systems, 74% could not meet current thermal standards at the edge of a 1,000-foot mixing zone. Of this total, 68% would retrofit cooling towers, and 6% would retrofit diffusers. The estimated nationwide capital cost for retrofitting plants that could not meet current thermal standards at the edge of a 1,000-foot mixing zone is $21.4 billion. Conversion of a plant from once-through cooling to cooling towers or addition of diffusers would result in a lower energy output from that plant. For the affected plants, the total estimated replacement cost would be $370 to $590 million per year. Some power companies would have to construct new generating capacity to meet the increased energy demand. The estimated nationwide cost of this additional capacity would be $1.2 to $4.8 billion. In addition to the direct costs associated with compliance with a 1,000-foot mixing zone limit, other secondary environmental impacts would also occur. Generation of the additional power needed would increase carbon dioxide emissions by an estimated 8.3 million tons per year. In addition, conversion from once-through cooling systems to cooling towers at affected plants would result in increased evaporation of about 2.7 million gallons of water per minute nationwide

  18. Study of thermal stress in heat affected zones during welding

    International Nuclear Information System (INIS)

    Devaux, J.C.

    1979-01-01

    The importance of applications of welding in the nuclear industry leads to the study of the main problem concerning metal welding: sensibility to cracking. The development of computation methods allows the numerical simulation of welding effects. Due to the complexity of this problem, it is divided in three steps: thermal, metallurgical and mechanical calculus. Interactions between the 3 steps are examined. Mathematical models necessary to get residual stress (i.e. stress remaining when welding is completed and structure at ambient temperature) are described. Then parameters for metallurgical structure determination are given and compared to experiments. A508 and A533 type steels of primary coolant circuit of PWR reactors are taken as examples and the numerical simulation of a test is presented [fr

  19. Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones

    NARCIS (Netherlands)

    Hoof, van J.; Hensen, J.L.M.

    2007-01-01

    Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national

  20. Preliminary study on acceptability of scope of thermal discharge mixing zone for nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongye; Yang Yang; Wang Liang; Chen Xiaoqiu; Liu Senlin

    2012-01-01

    Based on the situation that the existing domestic temperature control standards are not performable, the preliminary study on the acceptability of the mixing zone scope of thermal discharge for nuclear power plant was conducted in this paper, taking a coastal power station SNP as a case. The following preliminary conclusions could be drawn from the results of cluster analysis of the SNP site under different results of mathematical modeling and physical model test: 1) The influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable under SNP-1 (Unit 1 and 2) operating condition; 2) the influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable in spring under SNP-1 (Unit 1 and 2) and SNP-2 (Unit 3 and 4) operating condition, while the influence intensity of ecological function of the SNP site seawater is large and the scope of mixing zone is unacceptable in autumn under the same operating condition. (authors)

  1. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  2. Climatic zoning for the calculation of the thermal demand of buildings in Extremadura (Spain)

    Science.gov (United States)

    Moral, Francisco J.; Pulido, Elena; Ruíz, Antonio; López, Fernando

    2017-08-01

    The present work reports on a methodology to assess the climatic severity of a particular geographic region as compared to specific information available in the current regulations. The viability for each of the 387 municipalities in the Autonomous Community of Extremadura (Spain) is analysed, making a distinction between those with reliable climate reports and those for which no such information is available. In the case study, although the weather conditions in Extremadura are quite homogeneous according to the Spanish Technical Building Code (STBC 2015) classification and most areas are associated to zone C4 (soft winters and hot summers), the southern area in the region is associated to zone D1, similar to the north of Spain, where winters and summers are cool, which does not coincide with the actual climate in the south of Extremadura. The general climatic homogeneity in Extremadura was also highlighted with the new procedure, predominating zone C4, but unexpected or unreal climatic zoning was not generated, giving place to a consistent spatial distribution of zones throughout the region. Consequently, the proposed method allows a more accurate climatic zoning of any region in agreement with the Spanish legislation on energy efficiency in buildings, which would enhance the setting of thermal demand rates according to the actual climatic characterisation of the area in which a particular municipality is located.

  3. Normal zone propagation and Thermal Hydraulic Quenchback in a cable-in-conduit superconductor

    International Nuclear Information System (INIS)

    Lue, J.W.; Dresner, L.

    1993-01-01

    When a local normal zone appears in a cable-in-conduit superconductor, a slug of hot helium is produced. The pressure rises and the hot helium expands. Thus the normal zone propagation in such a conductor can be governed by the hot helium expansion, rather than the heat conduction along the conductor. The expansion of the hot helium compresses the cold helium outside of the normal zone. This raises th at sign temperature of the cold helium. When the temperature rise reaches the current sharing limit, the superconductor in contact goes normal. Thus a rapid increase in normal zone propagation occur. This phenomenon is termed Thermal Hydraulic Quenchback (THQ). An experiment was performed to investigate this process. The existence of THQ was verified. Thresholds of THQ were also observed by varying the conductor current, the magnetic field, the temperature, and the initial normal zone length. When THQ occurred, normal zone propagation approaching the velocity of sound was observed. A better picture of THQ is obtained by a careful comparison of the data with analytical studies

  4. Operation and thermal loading of three-level Neutral-Point-Clamped wind power converter under various grid faults

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2012-01-01

    In order to fulfill the continuous growing grid-side demands, the full-scale power converters are becoming more and more popular in the wind power application. Nevertheless, the more severe loading of the power semiconductor devices in the full-scale power converters, especially during Low Voltage...... Ride Through (LVRT) operation under grid faults, may compromise the reliability of the system and consequently further increase its cost. In this paper, the impact of various grid faults on a three-level Neutral-Point-Clamped (3L-NPC) grid-converter in terms of thermal loading of power semiconductor...

  5. Robust multi-model predictive control of multi-zone thermal plate system

    Directory of Open Access Journals (Sweden)

    Poom Jatunitanon

    2018-02-01

    Full Text Available A modern controller was designed by using the mathematical model of a multi–zone thermal plate system. An important requirement for this type of controller is that it must be able to keep the temperature set-point of each thermal zone. The mathematical model used in the design was determined through a system identification process. The results showed that when the operating condition is changed, the performance of the controller may be reduced as a result of the system parameter uncertainties. This paper proposes a weighting technique of combining the robust model predictive controller for each operating condition into a single robust multi-model predictive control. Simulation and experimental results showed that the proposed method performed better than the conventional multi-model predictive control in rise time of transient response, when used in a system designed to work over a wide range of operating conditions.

  6. Monitoring of thermal regime of permafrost in the coastal zone of Western Yamal

    Science.gov (United States)

    Vasiliev, A.

    2009-04-01

    Data on thermal regime of permafrost are required for estimation of the climate change influence on permafrost dynamics. Monitoring of thermal regime of permafrost was arranged in the area of weather station "Marre-Sale", western Yamal. In terms of geomorphology, the area of our observations belongs to the second and third marine terraces; the surface of these terraces has been partly modified by recent cryogenic processes. The elevation varies from 10 to 30 m a.s.l. Marine clays lie at the base of the geological section of the coastal deposits. Their upper part was eroded and uneven surface of marine sediments is overlain by continental sandy sediments. Marine clays are saline. In the southern part of study area, low accumulative islands are forming. Their heights above sea level do not exceed 0.5 meters, and during high tides their surface is covered by sea water. The sediments accumulating at these islands are saline silty clays. Western Yamal region is located within continuous permafrost zone with thickness of 150 to 200 meters. Study of thermal regime in the on-shore zone has been performed since 1979 using the 10-12-m-deep boreholes. In 2007, five boreholes were included in the work program of the Thermal State of Permafrost (TSP) project developed as a part of IPY scientific activities. According to TSP program, temperature sensors were installed at depths 2, 3, 5, and 10 meters; measurements have been performed every six hours. In this presentation, results of our observations related to climate change are discussed. For different terrain units, increase of mean annual permafrost temperature during the last 30 years has reached 0.6 to 1.5 deg. C. In the transit zone, monitoring of thermal regime have been performed since 2006. Sensors were installed at depths 0, 0.25, 0.6, 0.75, 1.25, 1.75, and 2.25 meters. The active layer depth here reaches 1.9 meters, thus the 2.25-m-sensor is located within permafrost. Monitoring data show the sharp increase in mean

  7. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    Science.gov (United States)

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.

  8. MODELING OF THERMOELECTRIC SYSTEM FOR LOCAL THERMAL EFFECTS ON HUMAN FOREARM ZONE

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2013-01-01

    Full Text Available In this paper we consider a model of the thermoelectric system for the thermal effect on the human forearm. The model is implemented on the basis of numerical solution of differentialequations of heat conduction for bodies of complex configuration. Two-dimensional and onedimensional graphs of the temperature change in different zones of the object of exposure aregiven.

  9. Thermal and microstructural modelling in weld heat-affected zones: microstructural development

    International Nuclear Information System (INIS)

    Ribera, J.M.; Prado, J.M.

    1996-01-01

    After having analysed in Part 2 of this work the thermal effects caused by a welding process, a metallurgical model which uses those results is proposed to predict the hardness and the microstructure resulting in weld heat affected zones. This model simulates the decomposition of austenite to its various products: martensite, bainite, pearlite and ferrite. Thus, it allows one to optimize welding process parameters to achieve the best microstructure possible. (Author) 5 refs

  10. Transition from positive to neutral in mutation fixation along with continuing rising fitness in thermal adaptive evolution.

    Science.gov (United States)

    Kishimoto, Toshihiko; Iijima, Leo; Tatsumi, Makoto; Ono, Naoaki; Oyake, Ayana; Hashimoto, Tomomi; Matsuo, Moe; Okubo, Masato; Suzuki, Shingo; Mori, Kotaro; Kashiwagi, Akiko; Furusawa, Chikara; Ying, Bei-Wen; Yomo, Tetsuya

    2010-10-21

    It remains to be determined experimentally whether increasing fitness is related to positive selection, while stationary fitness is related to neutral evolution. Long-term laboratory evolution in Escherichia coli was performed under conditions of thermal stress under defined laboratory conditions. The complete cell growth data showed common continuous fitness recovery to every 2°C or 4°C stepwise temperature upshift, finally resulting in an evolved E. coli strain with an improved upper temperature limit as high as 45.9°C after 523 days of serial transfer, equivalent to 7,560 generations, in minimal medium. Two-phase fitness dynamics, a rapid growth recovery phase followed by a gradual increasing growth phase, was clearly observed at diverse temperatures throughout the entire evolutionary process. Whole-genome sequence analysis revealed the transition from positive to neutral in mutation fixation, accompanied with a considerable escalation of spontaneous substitution rate in the late fitness recovery phase. It suggested that continually increasing fitness not always resulted in the reduction of genetic diversity due to the sequential takeovers by fit mutants, but caused the accumulation of a considerable number of mutations that facilitated the neutral evolution.

  11. Evaluation of outdoor human thermal sensation of local climate zones based on long-term database

    Science.gov (United States)

    Unger, János; Skarbit, Nóra; Gál, Tamás

    2018-02-01

    This study gives a comprehensive picture on the diurnal and seasonal general outdoor human thermal sensation levels in different urban quarters based on long-term (almost 3 years) data series from urban and rural areas of Szeged, Hungary. It is supplemented with a case study dealing with an extreme heat wave period which is more and more frequent in the last decades in the study area. The intra-urban comparison is based on a thermal aspect classification of the surface, namely, the local climate zone (LCZ) system, on an urban meteorological station network and on the utilization of the physiologically equivalent temperature (PET) comfort index with categories calibrated to the local population. The selected stations represent sunlit areas well inside the LCZ areas. The results show that the seasonal and annual average magnitudes of the thermal load exerted by LCZs in the afternoon and evening follow their LCZ numbers. It is perfectly in line with the LCZ concept originally concentrating only on air temperature ( T air) differences between the zones. Our results justified the subdivision of urban areas into LCZs and give significant support to the application possibilities of the LCZ concept as a broader term covering different thermal phenomena.

  12. Thermal transport in phononic crystals: The role of zone folding effect

    Science.gov (United States)

    Dechaumphai, Edward; Chen, Renkun

    2012-04-01

    Recent experiments [Yu et al., Nature Nanotech 5, 718 (2010); Tang et al., Nano Lett. 10, 4279 (2010); Hopkins etal., Nano Lett. 11, 107(2011)] on silicon based nanoscale phononic crystals demonstrated substantially reduced thermal conductivity compared to bulk Si, which cannot be explained by incoherent phonon boundary scattering within the Boltzmann Transport Equation (BTE). In this paper, partial coherent treatment of phonons, where phonons are regarded as either wave or particles depending on their frequencies, was considered. Phonons with mean free path smaller than the characteristic size of phononic crystals are treated as particles and the transport in this regime is modeled by BTE with phonon boundary scattering taken into account. On the other hand, phonons with mean free path longer than the characteristic size are treated as waves. In this regime, phonon dispersion relations are computed using the Finite Difference Time Domain (FDTD) method and are found to be modified due to the zone folding effect. The new phonon spectra are then used to compute phonon group velocity and density of states for thermal conductivity modeling. Our partial coherent model agrees well with the recent experimental results on in-plane thermal conductivity of phononic crystals. Our study highlights the importance of zone folding effect on thermal transport in phononic crystals.

  13. Thermal Structure of the Cascadia Subduction Zone on the Washington Margin (AT26-04, EM122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We propose to conduct a comprehensive study of the thermal environment of the Cascadia Subduction Zone (CSZ) within the NSF GeoPRISM Corridor off the Washington...

  14. Thermal treatment system of hazardous residuals in three heating zones based on a microprocessor

    International Nuclear Information System (INIS)

    Luna H, C.L.

    1997-01-01

    Thermal treatment system consists of a high power electric oven of three heating zones where each zone works up to 1200 Centigrades; it has the capacity of rising the central zone temperature up to 1000 Centigrades in 58 minutes approximately. This configuration of three zones could be programmed to different temperatures and they will be digitally controlled by a control microprocessor, which has been controlled by its own assembler language, in function of the PID control. There are also other important controls based on this microprocessor, as a signal amplification, starting and shutdown of high power step relays, activation and deactivation of both analogic/digital and digital/analogic convertors, port activation and basic data storage of the system. Two main characteristics were looked for this oven design; the first was the possibility of controlling the three zone temperature and the second was to reduce the rising and stabilization operation time and its digitized control. The principal function of the three zone oven is to accelerate the degradation of hazardous residuals by an oxidation instead combustion, through relatively high temperatures (minimum 800 Centigrades and maximum 1200 Centigrades); this process reduces the ash and volatile particulate production. The hazardous residuals will be pumped into the degradation system and after atomized through a packaged column; this step will avoid the direct contact of the residuals with the oven cores. These features make this system as closed process, which means that the residuals can not leak to the working area, reducing the exposure risk to the personnel. This three step oven system is the first stage of the complete hazardous residuals degradation system; after this, the flow will go into a cold plasma region where the process is completed, making a closed system. (Author)

  15. Thermal Aging Effects on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Jun Hyuk; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Dissimilar metal weld (DMW), consists of Alloy 600, Alloy 182, and A508 Gr.3, is now being widely used as the reactor pressure vessel penetration nozzle and the steam generator tubing material for pressurized water reactors (PWR) because of its mechanical property, thermal expansion coefficient, and corrosion resistance. The heat affected zone (HAZ) on Alloy 600 which is formed by welding process is critical to crack. According to G.A. Young et al. crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions [3]. And according to Z.P. Lu et al. CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. To predict the life time of components, there is a model which can calculate the effective degradation years (EDYs) of the material as a function of operating temperature. This study was conducted to investigate how thermal aging affects the hardness of dissimilar metal weld from the fusion boundary to Alloy 600 base metal and the residual strain at Alloy 600 heat affected zone. Following conclusions can be drawn from this study. The hardness, measured by Vickers hardness tester, peaked near the fusion boundary between Alloy 182 and Alloy 600, and it decreases as the picked point goes to Alloy 600 base metal. Even though the formation of precipitate such as Cr carbide, thermal aging doesn't affect the value and the tendency of hardness because of reduced residual stress. According to kernel average misorientation mapping, residual strain decreases when the material thermally aged. And finally, in 30 years simulated specimen, the high residual strain almost disappears. Therefore, the influence of residual strain on primary water stress corrosion cracking can be diminished when the material undergoes thermal aging.

  16. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  17. The Rotary Zone Thermal Cycler: A Low-Power System Enabling Automated Rapid PCR

    Science.gov (United States)

    Bartsch, Michael S.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; Branda, Steven S.; Patel, Kamlesh D.

    2015-01-01

    Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis. PMID:25826708

  18. The rotary zone thermal cycler: a low-power system enabling automated rapid PCR.

    Directory of Open Access Journals (Sweden)

    Michael S Bartsch

    Full Text Available Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC, a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR amplification, and second strand cDNA synthesis.

  19. Experimental study on thermal dispersion in and near the surf zone

    International Nuclear Information System (INIS)

    Komori, Shuzo; Tanaka, Hiroyoshi; Wada, Akira

    1978-01-01

    The site of Fukushima No. 1 Nuclear Power Station of Tokyo Electric Power Company was selected, and first, irregular waves with the typical wave spectra (in usual time and in storm time) in the sea region of the site were reproduced in the hydraulic model, then the characteristics of thermal dispersion and the velocityfield of warmed water (its discharge is 25.3 m 3 /sec.) in and near the surf zone under the action of those irregular waves were discussed. Finally, the similarity was investigated between the dispersion phenomenon in the hydraulic model and that in the prototype by comparing the experimental results of the dispersion range of warmed water with the results of field measurements. It may be concluded that the enveloped range of thermal dispersion in prototype can be predicted fairly correctly under almost the same discharge condition as this experiment if the prototype conditions of waves and currents are considered carefully and reproduced in a hydraulic model. (Kobatake, H.)

  20. Simulating the Thermal History of the Unsaturated Zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    B.D. Marshal; J.F. Whelan

    2001-01-01

    Heat transfer within Earth's upper crust is primarily by conduction, and conductive thermal models adequately explain the cooling history of deep, batholith-scale intrusions and surrounding wall rocks, as confirmed by numerous thermochronometric studies. However, caldera magmatic systems require consideration of the small and localized component of hydrothermal convection and numerical models to simulate additional boundary conditions, irregular magma chamber shapes, and complex intrusive histories. At Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository, simulating the detailed thermal history at any location in the unsaturated zone requires knowledge of the shape of the magma chamber and its proximity to Yucca Mountain (the southern margin of the Timber Mountain caldera complex is approximately 8 km north of the potential repository site), the temporal and spatial extent of hydrothermal convection, the erosional history of the area, and past levels of the water table

  1. Thermal loads on the TJ-II Vacuum Vessel under Neutral Beam Injection

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    1996-01-01

    In this study a numerical analysis of power loads on the complex 3D structure of the TJ-II Vacuum Vessel, moderated with reasonable accuracy, under NBI, is done. To do this it has been necessary to modify deeply the DENSB code for power loads in order to include the TJ-II VV wall parts as targets and as beam scrapers, allowing the possibility of self-shadowing. After a short description of the primitive version of the DENSB code (paragraph 2) and of the visualisation code MOVIE(paragraph 3), the DENSB upgrading are described (paragraphs 4,5) and finally the results are presented (paragraph 6). These code modifications and the improving on the visualization tools provide more realistic load evaluations, both with and without plasma, validating former results and showing clearly the VV zones that will need new protections. (Author)

  2. Thermal waters along the Konocti Bay fault zone, Lake County, California: a re-evaluation

    Science.gov (United States)

    Thompson, J.M.; Mariner, R.H.; White, L.D.; Presser, T.S.; Evans, William C.

    1992-01-01

    The Konocti Bay fault zone (KBFZ), initially regarded by some as a promising target for liquid-dominated geothermal systems, has been a disappointment. At least five exploratory wells were drilled in the vicinity of the KBFZ, but none were successful. Although the Na-K-Ca and Na-Li geothermometers indicate that the thermal waters discharging in the vicinity of Howard and Seigler Springs may have equilibrated at temperatures greater than 200??C, the spring temperatures and fluid discharges are low. Most thermal waters along the KBFZ contain >100 mg/l Mg. High concentrations of dissolved magnesium are usually indicative of relatively cool hydrothermal systems. Dissolution of serpentine at shallow depths may contribute dissolved silica and magnesium to rising thermal waters. Most thermal waters are saturated with respect to amorphous silica at the measured spring temperature. Silica geothermometers and mixing models are useless because the dissolved silica concentration is not controlled by the solubility of either quartz or chalcedony. Cation geothermometry indicates the possibility of a high-temperature fluid (> 200??C) only in the vicinity of Howard and Seigler Springs. However, even if the fluid temperature is as high as that indicated by the geothermometers, the permeability may be low. Deuterium and oxygen-18 values of the thermal waters indicate that they recharged locally and became enriched in oxygen-18 by exchange with rock. Diluting meteoric water and the thermal water appear to have the same deuterium value. Lack of tritium in the diluted spring waters suggest that the diluting water is old. ?? 1992.

  3. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Whelan, Joseph F.; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D.; Roedder, Edwin

    2008-01-01

    (24-26 deg. C at a depth of 250 m) by 2-4 Ma. The evidence of elevated temperatures persisting in ash flow tuffs adjacent to parent calderas for as much as ∼8 Ma is a new finding, but consistent with thermal modeling. Simulations using the HEAT code demonstrate that prolonged cooling of the unsaturated zone is consistent with magmatic heat inputs and deep-seated (sub-water table) hydrothermal activity generated by the large magma body ∼8 km to the north that produced the 15-11 Ma ash flows and ash falls that make up Yucca Mountain. The evidence discussed in this and preceding papers strongly supports unsaturated zone deposition of the secondary minerals from descending meteoric waters. Although depositional temperatures reflect conductive (and possibly vapor-phase convective) heating of the unsaturated zone related to regional magmatic sources until perhaps 6 Ma, depositional conditions similar to the present-day unsaturated zone have prevailed for at least the past 2-4 Ma

  4. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Joseph F. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States)], E-mail: jfwhelan@usgs.gov; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States); Roedder, Edwin [Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 (United States)

    2008-05-15

    that maximum unsaturated zone temperatures probably predate {approx}10 Ma and that the unsaturated zone had cooled to near-present-day temperatures (24-26 deg. C at a depth of 250 m) by 2-4 Ma. The evidence of elevated temperatures persisting in ash flow tuffs adjacent to parent calderas for as much as {approx}8 Ma is a new finding, but consistent with thermal modeling. Simulations using the HEAT code demonstrate that prolonged cooling of the unsaturated zone is consistent with magmatic heat inputs and deep-seated (sub-water table) hydrothermal activity generated by the large magma body {approx}8 km to the north that produced the 15-11 Ma ash flows and ash falls that make up Yucca Mountain. The evidence discussed in this and preceding papers strongly supports unsaturated zone deposition of the secondary minerals from descending meteoric waters. Although depositional temperatures reflect conductive (and possibly vapor-phase convective) heating of the unsaturated zone related to regional magmatic sources until perhaps 6 Ma, depositional conditions similar to the present-day unsaturated zone have prevailed for at least the past 2-4 Ma.

  5. Thermal-hydraulic characteristics of reacting zone for TWR bundles based on CFD method

    International Nuclear Information System (INIS)

    Lu Chuan; Yan Mingyu; Lu Jianchao

    2013-01-01

    Thermal-hydraulic characteristics of reacting zone for TWR (travelling wave reactor) bundles were analysed by CFD method. The calculation results of 7, 19 and 37 fuel pin bundles show the similar characteristics. The hot coolant seems to congregate into the centre as flowing to the downstream area. The high temperature coolant always distributes in the inner area while the temperature shows distinct gradation in the outer area. The temperature difference is more than 100 ℃ for the bundle whose diameter is about 26 cm. The major temperature gradations mainly locate in the outermost fuel rods of two circles while other circles show much smaller temperature gradients. This conclusion is estimated to be true for more fuel pin bundles such as 217 fuel pin bundles. The fuel assembly structure of the existing TWR design should be optimized in future. (authors)

  6. Emission of Polycyclic Aromatic Hydrocarbons from the Exhalation Zones of Thermally Active Mine Waste Dumps

    Directory of Open Access Journals (Sweden)

    Patrycja Kuna-Gwoździewicz

    2013-01-01

    Full Text Available The article presents results of research carried out on the occurrence of polycyclic aromatic hydrocarbons (PAH in gases of exhalation zones, created on the surface of a thermally active coal mine waste dump. The oxidation and self-heating of mine waste are accompanied with the intensive emission of flue gases, including PAH group compounds. Taking into consideration the fact the hydrocarbons show strong genotoxic, mutagenic and carcinogenic properties, research was conducted to establish their content in the examined gases. The research object was a gangue dump located in Rybnik. The research was performed in 2012. In total, 24 samples of gas were collected with PUF (polyurethane foam sampling cartridges with a quartz fibre filter and an aspirator. The collected samples were analysed with the use of high performance liquid chromatography (HPLC and a fluorescence detector (FLD to evaluate the amount of PAH present.

  7. THERMAL EVOLUTION AND LIFETIME OF INTRINSIC MAGNETIC FIELDS OF SUPER-EARTHS IN HABITABLE ZONES

    International Nuclear Information System (INIS)

    Tachinami, C.; Ida, S.; Senshu, H.

    2011-01-01

    We have numerically studied the thermal evolution of different-mass terrestrial planets in habitable zones, focusing on the duration of dynamo activity to generate their intrinsic magnetic fields, which may be one of the key factors in habitability of the planets. In particular, we are concerned with super-Earths, observations of which are rapidly developing. We calculated the evolution of temperature distributions in the planetary interior using Vinet equations of state, the Arrhenius-type formula for mantle viscosity, and the astrophysical mixing-length theory for convective heat transfer modified for mantle convection. After calibrating the model with terrestrial planets in the solar system, we apply it for 0.1-10 M + rocky planets with a surface temperature of 300 K (in habitable zones) and Earth-like compositions. With the criterion of heat flux at the core-mantle boundary (CMB), the lifetime of the magnetic fields is evaluated from the calculated thermal evolution. We found that the lifetime slowly increases with planetary mass (M p ), independent of the initial temperature gap at the CMB (ΔT CMB ), but beyond the critical value M c,p (∼O(1) M + ) it abruptly declines from the mantle viscosity enhancement due to the pressure effect. We derived M c,p as a function of ΔT CMB and a rheological parameter (activation volume, V*). Thus, the magnetic field lifetime of super-Earths with M p >M p,c sensitively depends on ΔT CMB , which reflects planetary accretion, and V*, which has uncertainty at very high pressure. More advanced high-pressure experiments and first-principle simulation, as well as planetary accretion simulation, are needed to discuss the habitability of super-Earths.

  8. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications

    International Nuclear Information System (INIS)

    Beyhan, Beyza; Paksoy, Halime; Daşgan, Yıldız

    2013-01-01

    Highlights: • PCM based passive root zone temperature control system was developed. • The system was tested with zucchinis and peppers in a greenhouse in Turkey. • Two different fatty acids and mixtures were determined as suitable PCMs. • The optimum temperature levels necessary for growth of vegetables were maintained. - Abstract: A new root zone temperature control system based on thermal energy storage in phase change materials (PCM) has been developed for soilless agriculture greenhouses. The aim was to obtain optimum growing temperatures around the roots of plants. The candidate PCMs were 40% oleic acid–60% decanoic acid mixture and oleic acid alone. Field experiments with these PCMs were carried out in November 2009 with Cucurbite Pepo and March 2010 with Capsicum annum plants. No additional heating system was used in the greenhouse during these periods. In the November 2009 tests with zucchini, 40% oleic acid + 60% capric acid mixture was the PCM and a temperature increase in the PCM container (versus the control container) was measured as 1.9 °C. In our March 2010 tests with peppers, both PCMs were tried and the PCM mixture was found to be more effective than using oleic acidalone. A maximum temperature difference achieved by the PCM mixture around the roots of peppers was 2.4 °C higher than that near the control plants

  9. Zone modelling of the thermal performances of a large-scale bloom reheating furnace

    International Nuclear Information System (INIS)

    Tan, Chee-Keong; Jenkins, Joana; Ward, John; Broughton, Jonathan; Heeley, Andy

    2013-01-01

    This paper describes the development and comparison of a two- (2D) and three-dimensional (3D) mathematical models, based on the zone method of radiation analysis, to simulate the thermal performances of a large bloom reheating furnace. The modelling approach adopted in the current paper differs from previous work since it takes into account the net radiation interchanges between the top and bottom firing sections of the furnace and also allows for enthalpy exchange due to the flows of combustion products between these sections. The models were initially validated at two different furnace throughput rates using experimental and plant's model data supplied by Tata Steel. The results to-date demonstrated that the model predictions are in good agreement with measured heating profiles of the blooms encountered in the actual furnace. It was also found no significant differences between the predictions from the 2D and 3D models. Following the validation, the 2D model was then used to assess the impact of the furnace responses to changing throughput rate. It was found that the potential furnace response to changing throughput rate influences the settling time of the furnace to the next steady state operation. Overall the current work demonstrates the feasibility and practicality of zone modelling and its potential for incorporation into a model based furnace control system. - Highlights: ► 2D and 3D zone models of large-scale bloom reheating furnace. ► The models were validated with experimental and plant model data. ► Examine the transient furnace response to changing the furnace throughput rates. ► No significant differences found between the predictions from the 2D and 3D models.

  10. Chemical zoning and homogenization of Pasamonte-type pyroxene and their bearing on thermal metamorphism of a howardite parent body

    Science.gov (United States)

    Miyamoto, M.; Duke, M. B.; Mckay, D. S.

    1985-01-01

    The Mg-Fe zoning of pyroxenes in Pasamonte and Juvinas eucrites is examined in order to gain a better understanding of the metamorphism in the surface layer of a eucrite/howardite parent body. Three distinct types of Ca-Mg-Fe zoning of Pasamonte pyroxenes are identified. The wide compositional range of the zoned pyroxenes suggests that Pasamonte is less metamorphosed than previously believed. It is also found that a Pasamonte-type pyroxene may yield a Juvinas-type pyroxene by thermal metamorphism. Calculations imply that the homogenization of Juvinas pyroxenes may have occurred during later reheating events rather than during initial cooling.

  11. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    Science.gov (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Loss and thermal redistributed modulation methods for three-level neutral-point-clamped wind power inverter undergoing Low Voltage Ride Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    The three-level neutral-point-clamped (3L-NPC) converter is a promising multilevel topology in the application of mega-watts wind power generation system. However, the growing requirements by grid codes may impose high stress and even give reliability problem to this converter topology. This paper...... modulation methods, the thermal distribution in the 3L-NPC wind power inverter undergoing LVRT becomes more equal, and the junction temperature of the most stressed devices can be also relieved. Also the control ability of DC-bus neutral point potential, which is one of the crucial considerations for the 3L...

  13. Thermal comfort zone of the hands, feet and head in males and females.

    Science.gov (United States)

    Ciuha, Urša; Mekjavic, Igor B

    2017-10-01

    The present study compared the thermal comfort zones (TCZ) of the hands, feet and head in eight male and eight female participants, assessed with water-perfused segments (WPS). On separate occasions, and separated by a minimum of one day, participants were requested to regulate the temperature of three distal skin regions (hands, feet and head) within their TCZ. On each occasion they donned a specific water-perfused segment (WPS), either gloves, socks or hood for assessing the TCZ of the hands, feet and head, respectively. In the absence of regulation, the temperature of the water perfusing the WPS changed in a saw-tooth manner from 10 to 50°C; by depressing a switch and reversing the direction of the temperature at the limits of the TCZ, each participant defined the TCZ for each skin region investigated. The range of regulated temperatures (upper and lower limits of the TCZ) did not differ between studied skin regions or between genders. Participants however maintained higher head (35.7±0.4°C; p˂0.001) skin temperature (Tsk) compared to hands (34.5±0.8°C) and feet (33.8±1.1°C). When exposed to normothermic conditions, distal skin regions do not differ in ranges of temperatures, perceived as thermally comfortable. Copyright © 2017. Published by Elsevier Inc.

  14. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gábor Y. Molnár

    2016-03-01

    Full Text Available Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd. It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself.

  15. Effect of Thermal Distress on Residual Behavior of CFRP-Strengthened Steel Beams Including Periodic Unbonded Zones

    Directory of Open Access Journals (Sweden)

    Isamu Yoshitake

    2015-11-01

    Full Text Available This paper presents the residual behavior of wide-flange steel beams strengthened with high-modulus carbon fiber-reinforced polymer (CFRP laminates subjected to thermal loading. Because the coefficients of thermal expansion of the steel and the CFRP are different, temperature-induced distress may take place along their interface. Periodic unbonded zones are considered to represent local interfacial damage. Five test categories are designed depending on the size of the unbonded zones from 10 to 50 mm, and corresponding beams are loaded until failure occurs after exposing to a cyclic temperature range of ΔT = 25 °C (−10 to 15 °C up to 84 days. The composite action between the CFRP and the steel substrate is preserved until yielding of the beams happens, regardless of the thermal cycling and periodic unbonded zones. The initiation and progression of CFRP debonding become apparent as the beams are further loaded, particularly at geometric discontinuities in the vicinity of the unbonded zones along the interface. A simple analytical model is employed to predict the interfacial stress of the strengthened beams. A threshold temperature difference of ΔT = 30 °C is estimated for the initiation and progression of CFRP debonding. Multiple debonding-progression stages in conjunction with the extent of thermal distress appear to exist. It is recommended that high-modulus CFRP be restrictively used for strengthening steel members potentially exposed to a wide temperature variation range.

  16. Do people like to feel 'neutral'? Exploring the variation of the desired thermal sensation on the ASHRAE scale

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, Michael A; Hancock, Mary [Oxford Institute for Sustainable Development, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford OX3 0BP (United Kingdom)

    2007-07-15

    This analysis explores the pattern of variation of the desired thermal sensation on the ASHRAE scale, applying the method of direct enquiry. Data are from studies of thermal comfort at university lectures and in selected dwellings. Respondents reported both their thermal sensation and the sensation they would have desired at that time. The data contain 868 comparisons of the actual and the desired sensation. On 57% of occasions the desired sensation was other than 'neutral'. The respondents did not always desire the same sensation, and the mean desired sensation differed systematically among the respondents. The mean desired sensation depended to some extent on the actual sensation, there being a positive correlation in the region from 'neutral' and 'warm' and a negative correlation outside this region. Sensations on the ASHRAE scale are shown to have more than one meaning. Adjusting the ASHRAE scale to allow for the desired sensation yields different distributions of thermal comfort and different group-optimum temperatures. The adjustment should therefore be applied whenever the ASHRAE scale is used. The implications for thermal simulation and for energy use in buildings are considered. (author)

  17. The effect of the melt thermal gradient on the size of the constitutionally supercooled zone

    International Nuclear Information System (INIS)

    Prasad, A; StJohn, D; Yuan, L; Lee, P D; Easton, M

    2016-01-01

    Recent verification of the analytical Interdependence model by a numerical solidification model (µMatIC) confirmed the critical role of constitutional supercooling (CS) in achieving sufficient undercooling to trigger successful nucleation events. The location of the maximum amount of CS (ΔT CSmax ) is some distance from the interface of the previously growing grain and this distance contributes to the final as-cast grain size. The effect of the thermal gradient, G, on the size of the CS zone (CSZ) was neglected in that work. However, G is expected to affect the size of the CSZ (i.e. the length of the CSZ, x’ CSZ , and the location of ΔTCSmax, x’ CSmax ). This investigation assesses the effect of G on x’csz and x' CSmax . A range of G values is introduced into both the analytical and the numerical models to obtain a correlation between the value of G and the dimensions of the CSZ. The result of a test case from the analytical model shows that x’ CSmax initially decreases rapidly and then decreases gradually approaching zero at very high values of G. Independent of the analytical model, the results from the numerical model replicate the trend obtained from the analytical model. (paper)

  18. Thermal performance of natural airflow window in subtropical and temperate climate zones - A comparative study

    International Nuclear Information System (INIS)

    Chow Tintai; Lin Zhang; Fong Kwongfai; Chan Lokshun; He Miaomiao

    2009-01-01

    Airflow window is highly useful in conserving building energy, and lessens the comfort problems caused by glazing. In this study, the thermal performance of a natural airflow window was examined through the use of a dynamic model, developed based on the integrated energy balance and airflow networks. The validity of the model was first tested by measured data obtained from a prototype installed at an environmental chamber. The application in the subtropical and temperate climate zones were then examined with the typical weather data of Hong Kong and Beijing. The findings confirmed that the natural airflow window can achieve substantial energy saving in both cities, and the reversible window frame is only required for Beijing, a location with hot summer and cold winter. The space cooling load via fenestration in Hong Kong, a subtropical city, can be reduced to 60% of the commonly used single absorptive glazing. In Beijing, as an example of the temperate climate, this can be reduced to 75% of the commonly used double glazing configuration in the summer period, and the space heat gain can be improved by 46% in the winter period.

  19. Creys-Malville nuclear plant. Simulation of the cold plenum thermal-hydraulics. 12 zone model presentation

    International Nuclear Information System (INIS)

    Faulot, J.P.

    1990-05-01

    The CRUSIFI code has been developed by SEPTEN (Engineering and Construction Division) with SICLE software during 1983-1985 in order to study the CREYS-MALVILLE dynamic behavior. At the time, the version was based on project data (version 2.3). It includes a 2 zones model for the cold plenum thermal-hydraulics, modelling which does not allow to reproduce accurately dissymetries apt to occur as well in usual operating (hydraulic dissymetries bound to one or many systems out of order), as during incidentally operating (hydraulic dissymetries bound to primary pump working back or thermal dissymetries after a transient on one or many secondary loops). Moreover, a 2 zones model cannot simulate axial temperature gradients which appear during double stratification phenomenon (upper and lower part of the plenum) produced by alternating thermal shock. A 12 zones model (4 sectors with 3 axial zones each) such as model developed by R$DD (Research and Development Division) allows to satisfy correctly these problems. This report is a specification of the chosen modelling. This model is now operational after qualifying with experimental transients on mockup and reactor. It is to-day connected with the EDF general operating code CRUSIFI (calibrating version 3.0). It could be easily integrated in a four loops plant modelling such as the CREYS-MALVILLE simulator in a four loops plant modelling such as the CREYS-MALVILLE simulator under construction at the present time by THOMSON

  20. Design parameters of a non-air-conditioned cinema hall for thermal comfort under arid-zone climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, G.N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Lugani, N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Singh, A.K. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies)

    1993-01-01

    In this communication, a design of a cinema hall suitable for climatic conditions in an arid zone has been presented. The various cooling techniques, namely evaporative cooling, wind tower, ventilation/infiltration and natural cooling, have been incorporated in the design to achieve thermal comfort during the period of operation. The design parameters have been optimized on the basis of numerical computations after establishing an energy balance for each component of a cinema hall. It is observed that cooling treatment, i.e., a wind tower with a cooling pool on the roof provides reasonable thermal comfort inside the enclosure. (orig.)

  1. Thermally driven interaction of the littoral and limnetic zones by autumnal cooling processes

    Directory of Open Access Journals (Sweden)

    Kolumban HUTTER

    2005-02-01

    Full Text Available In autumn, during the transition period, shores influence the interior dynamics of large temperate lakes by the formation of horizontal water-temperature gradients between the shallow and deep areas, whilst vertical temperature gradients are smoothed by convection due to surface cooling. A simple heat budget model, based on the heat balance of the water column without horizontal advection and turbulent mixing, allows deduction of the time-dependent difference between the mean temperature within the littoral area and the temperature in the upper mixed layer. The model corroborates that littoral areas cool faster than regions distant from shores, and provides a basis for an estimation of structure of flows from the beginning of cooling process till the formation of the thermal bar. It predicts the moment in the cooling process, when the corresponding density difference between the littoral and limnetic parts reaches a maximum. For a linear initial vertical temperature profile, the time-dependent "target depth" is explicitly calculated; this is the depth in the pelagic area with a temperature, characteristic of the littoral zone. This depth is estimated as 4/3 of the (concurrent thickness of the upper mixed layer. It is shown that, for a linear initial vertical temperature profile, the horizontal temperature profile between the shore and the lake has a self-similar behavior, and the temperature difference between the littoral waters and the upper mixed off-shore layer, divided by the depth of the upper mixed layer, is an invariant of the studied process. The results are in conformity with field data.

  2. Hygienic assessment of asbestos containing dust in the air of the working zone at thermal power plants

    Directory of Open Access Journals (Sweden)

    Moshkovskiy V.E.

    2016-09-01

    Full Text Available Asbestos and artificial mineral fibers were used actively at thermal power plants (TPP as heat insulation of pipes, seal plates, electrical insulation, etc. But content of asbestos fibers in the air of working zone at TPP was not registered to date. Therefore, aim of the work was to assess asbestos containing dust in the air of working zone at steam turbine and gas turbine TPP in the east region of the country. It was found that old insulation at TPP is mixture of asbestoses that contains chrysotile asbestos and traces of amphibole asbestoses – crocidolite and anthophyllite. In the majority of investigated workplaces at the steam turbine TPP significant dust generation with exceed of maximum one-time exposure limits (2 mg/m3 was observed. Concentration of respirable fibers in the air of working zone in all workplaces did not exceed actual hygienic standard (1 fiber/cm3.

  3. The approximate thermal-model-testing method for non-stationary temperature fields in central zones of fast reactor assemblies

    International Nuclear Information System (INIS)

    Mikhin, V.I.; Matukhin, N.M.

    2000-01-01

    The approach to generalization of the non-stationary heat exchange data for the central zones of the nuclear reactor fuel assemblies and the approximate thermal-model-testing criteria are proposed. The fuel assemblies of fast and water-cooled reactors with different fuel compositions have been investigated. The reason of the non-stationary heat exchange is the fuel-energy-release time dependence. (author)

  4. Critical Evaluation of State-of-the-Art In Situ Thermal Treatment Technologies for DNAPL Source Zone Treatment

    Science.gov (United States)

    2010-01-01

    valent iron (ZVI) powder in a water/ guar slurry for remediation of chlorinated DNAPL source zones. The ZVI continues the remediation after the thermal...MUST BE FOLLOWED BY PERSONNEL ON SITE 1. Smoking, eating, chewing gum or tobacco, or drinking are forbidden except in clean or designated areas...WORK PRACTICES ER-0314 69 Appendix D THE FOLLOWING PRACTICES MUST BE FOLLOWED BY PERSONNEL ON SITE 12. Smoking, eating, chewing gum or tobacco

  5. The 3D thermal-hydraulic numerical simulation for the fuel zone outlet of China experimental fast reactor

    International Nuclear Information System (INIS)

    Xue Xiuli; Yang Hongyi; Yang Fuchang

    2008-01-01

    Detailed 3D thermal-hydraulic numerical analyses to the fuel zone outlet are actualized with the STAR-CD CFD code. The performance of sodium mixing is studied and detailed velocity and temperature distribution are obtained in this region which will offer foundations and references to study the rationality of temperature monitoring-spot arrangement and to assess the effect of temperature fluctuations to control rod guide tubes in this region, and so on. (authors)

  6. Variability in Rock Thermal Properties in the Late Archean Crust of the Kapuskasing Structural Zone and Implications for its Thermal Structure and Metamorphic History.

    Science.gov (United States)

    Merriman, J. D.; Whittington, A. G.; Hofmeister, A. M.

    2017-12-01

    The thermal properties of rocks such as internal heat production and thermal diffusivity (α) play a key role in determining the thermal structure of the lithosphere, and consequently, the rates and styles of metamorphism within the crust. Over the last decade, measurements of α using the method laser flash analysis have shown the ability of a rock to conduct heat can vary by as much as a factor of 5 between common rock types, and decrease by up to a factor of 10 for the same rock between 25-1000°C. Here we present a preliminary model for the variability in rock throughout the crust based on measurements of the α of a suite of 100 samples from late Archean crust exposed in and around the Kapuskasing Structural Zone in Ontario, Canada. Preliminary results suggest that α is controlled primarily by mineralogy, and can vary not only between different rock types as described above, but also within the same rock by a factor of 1.5 (or more). Thermal diffusivity results were combined with heat producing element concentrations measured with ICP-MS to create a thermal model of the Kapuskasing Structural Zone prior its uplift and exposure. To provide additional constraints for P-T conditions within the pre-uplift KSZ crust, a combination of trace-element and pseudosection thermobarometry was used to estimate metamorphic temperatures during an extended period of crustal stability at the end of the Archean. Preliminary results were compared to finite-difference numerical models of the steady-state geothermal gradient using heat production back-calculated to 2.6 Ga. Results suggest a minimum thickness of the continental lithosphere during the late Archean of at least 150 km. To test the response of the crust to the effects of large thermal events such as pluton emplacement, we also performed time-dependent models of the thermal structure of the pre-uplift KSZ crust. These models suggest that heat from thermal events in the upper and middle crust result in a more insulating

  7. Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules

    Science.gov (United States)

    Miyamoto, Masamichi; Mckay, David S.; Mckay, Gordon A.; Duke, Michael B.

    1986-01-01

    The extent and degree of homogenization of chemical zoning of olivines in type 3 ordinary chondrites is studied in order to obtain some constraints on cooling histories of chondrites. Based on Mg-Fe and CaO zoning, olivines in type 3 chondrites are classified into four types. A single chondrule usually contains olivines with the same type of zoning. Microporphyritic olivines show all four zoning types. Barred olivines usually show almost homogenized chemical zoning. The cooling rates or burial depths needed to homogenize the chemical zoning are calculated by solving the diffusion equation, using the zoning profiles as an initial condition. Mg-Fe zoning of olivine may be altered during initial cooling, whereas CaO zoning is hardly changed. Barred olivines may be homogenized during initial cooling because their size is relatively small. To simulated microporphyritic olivine chondrules, cooling from just below the liquidus at moderately high rates is preferable to cooling from above the liquidus at low rates. For postaccumulation metamorphism of type 3 chondrites to keep Mg-Fe zoning unaltered, the maximum metamorphic temperature must be less than about 400 C if cooling rates based on Fe-Ni data are assumed. Calculated cooling rates for both Fa and CaO homogenization are consistent with those by Fe-Ni data for type 4 chondrites. A hot ejecta blanket several tens of meters thick on the surface of a parent body is sufficient to homogenize Mg-Fe zoning if the temperature of the blanket is 600-700 C. Burial depths for petrologic types of ordinary chondrites in a parent body heated by Al-26 are broadly consistent with those previously proposed.

  8. Reduction of ion thermal diffusivity associated with the transition of the radial electric field in neutral-beam-heated plasmas in the large helical device.

    Science.gov (United States)

    Ida, K; Funaba, H; Kado, S; Narihara, K; Tanaka, K; Takeiri, Y; Nakamura, Y; Ohyabu, N; Yamazaki, K; Yokoyama, M; Murakami, S; Ashikawa, N; deVries, P C; Emoto, M; Goto, M; Idei, H; Ikeda, K; Inagaki, S; Inoue, N; Isobe, M; Itoh, K; Kaneko, O; Kawahata, K; Khlopenkov, K; Komori, A; Kubo, S; Kumazawa, R; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Morita, S; Mutoh, T; Muto, S; Nagayama, Y; Nakanishi, H; Nishimura, K; Noda, N; Notake, T; Kobuchi, T; Ohdachi, S; Ohkubo, K; Oka, Y; Osakabe, M; Ozaki, T; Pavlichenko, R O; Peterson, B J; Sagara, A; Saito, K; Sakakibara, S; Sakamoto, R; Sanuki, H; Sasao, H; Sasao, M; Sato, K; Sato, M; Seki, T; Shimozuma, T; Shoji, M; Suzuki, H; Sudo, S; Tamura, N; Toi, K; Tokuzawa, T; Torii, Y; Tsumori, K; Yamamoto, T; Yamada, H; Yamada, I; Yamaguchi, S; Yamamoto, S; Yoshimura, Y; Watanabe, K Y; Watari, T; Hamada, Y; Motojima, O; Fujiwara, M

    2001-06-04

    Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.

  9. Modulation Methods for Neutral-Point-Clamped Wind Power Converter Achieving Loss and Thermal Redistribution Under Low-Voltage Ride-Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2014-01-01

    The three-level neutral-point (NP)-clamped (3L-NPC) converter is a promising multilevel topology in the application of megawatt wind power generation systems. However, the growing requirements by grid codes may impose high stress and even give reliability problem to this converter topology......, with the proposed modulation methods, the thermal distribution in the 3L-NPC wind power inverter undergoing LVRT becomes more equal, and the junction temperature of the most stressed devices can be also relieved. Also, the control ability of the dc-bus NP potential, which is one of the crucial considerations...

  10. Parametric study of the thermal performance of a typical administrative building in the six thermal zones according to the RTCM, using TRNSYS

    Directory of Open Access Journals (Sweden)

    Abdelghafour LAMRANI

    2018-01-01

    Full Text Available In this work, we present a parametric study of a new administrative building, located in El-Ksar El Kebir region (Morocco. In order to have a building that complies with the RTCM in a technically and economically sound manner, we have carried out a number of interventions to insulate the components of the building, namely external walls, exposed roofs and openings. In this perspective, we have modelled the building envelope as a multi-zone building in TRNSYS and we have adopted an occupation scenario for this type of building. After determining the optimal insulation solutions, we simulated the administrative building in the five other thermal zones, to determine its feasibility in the latter.

  11. Assimilation of a thermal remote sensing-based soil moisture proxy into a root-zone water balance model

    Science.gov (United States)

    Crow, W. T.; Kustas, W. P.

    2006-05-01

    Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches are commonly applied to monitoring root-zone soil water availability. Water and Energy Balance (WEB) SVAT modeling are based forcing a prognostic water balance model with precipitation observations. In constrast, thermal Remote Sensing (RS) observations of canopy radiometric temperatures can be integrated into purely diagnostic SVAT models to predict the onset of vegetation water stress due to low root-zone soil water availability. Unlike WEB-SVAT models, RS-SVAT models do not require observed precipitation. Using four growings seasons (2001 to 2004) of profile soil moisture, micro-meteorology, and surface radiometric temperature observations at the USDA's OPE3 site, root-zone soil moisture predictions made by both WEB- and RS-SVAT modeling approaches are intercompared with each other and availible root- zone soil moisture observations. Results indicate that root-zone soil moisture estimates derived from a WEB- SVAT model have slightly more skill in detecting soil moisture anomalies at the site than comporable predictions from a competing RS-SVAT modeling approach. However, the relative advantage of the WEB-SVAT model disappears when it is forced with lower-quality rainfall information typical of continental and global-scale rainfall data sets. Most critically, root-zone soil moisture errors associated with both modeling approaches are sufficiently independent such that the merger of both information from both proxies - using either simple linear averaging or an Ensemble Kalman filter - creates a merge soil moisture estimate that is more accurate than either of its parent components.

  12. THE INFLUENCE OF REPOSITORY THERMAL LOAD ON MULTIPHASE FLOW AND HEAT TRANSFER IN THE UNSATURATED ZONE OF YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    Yu-Shu Wu; Sumit Mukhopadhyay; Keni Zhang; G.S. Bodvarsson

    2006-01-01

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH) processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts

  13. The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

    2006-01-01

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH)processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts

  14. Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method

    Science.gov (United States)

    Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui

    2013-12-01

    A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.

  15. Thermal energy and economic analysis of a PCM-enhanced household envelope considering different climate zones in Morocco

    Science.gov (United States)

    Kharbouch, Yassine; Mimet, Abdelaziz; El Ganaoui, Mohammed; Ouhsaine, Lahoucine

    2018-07-01

    This study investigates the thermal energy potentials and economic feasibility of an air-conditioned family household-integrated phase change material (PCM) considering different climate zones in Morocco. A simulation-based optimisation was carried out in order to define the optimal design of a PCM-enhanced household envelope for thermal energy effectiveness and cost-effectiveness of predefined candidate solutions. The optimisation methodology is based on coupling Energyplus® as a dynamic simulation tool and GenOpt® as an optimisation tool. Considering the obtained optimum design strategies, a thermal energy and economic analysis are carried out to investigate PCMs' integration feasibility in the Moroccan constructions. The results show that the PCM-integrated household envelope allows minimising the cooling/heating thermal energy demand vs. a reference household without PCM. While for the cost-effectiveness optimisation, it has been deduced that the economic feasibility is stilling insufficient under the actual PCM market conditions. The optimal design parameters results are also analysed.

  16. Decay of the pulsed thermal neutron flux in two-zone hydrogenous systems - Monte Carlo simulations using MCNP standard data libraries

    International Nuclear Information System (INIS)

    Wiacek, Urszula; Krynicka, Ewa

    2006-01-01

    Pulsed neutron experiments in two-zone spherical and cylindrical geometry has been simulated using the MCNP code. The systems are built of hydrogenous materials. The inner zone is filled with aqueous solutions of absorbers (H 3 BO 3 or KCl). It is surrounded by the outer zone built of Plexiglas. The system is irradiated with the pulsed thermal neutron flux and the thermal neutron decay in time is observed. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances have been used to simulate the neutron transport. The time decay constant of the fundamental mode of the thermal neutron flux determined in each simulation has been compared with the corresponding result of the real pulsed neutron experiment

  17. Measurement and evaluation of thermal effects in the intermixing zone at low power nuclear station outfall

    International Nuclear Information System (INIS)

    Kamath, P.R.; Gurg, R.P.; Bhat, I.S.; Vyas, P.V.

    1978-01-01

    Observations and evaluations of thermal effects in the lake near the RAPS-1 REACTOR, are reported. The coolant waters are drawn from the lake at a depth of 8-10 m below the surface and discharged through an open channel with a temperature rise of 10deg C. Temperature profiles and spread in the velocity of the outfall are mapped using in situ monitors. These studies show evidence of thermal stratification in the period following winter and the existence of a well established thermocline. Parasitism and eutrophication are also observed. The thermal effects are found to be accentuated by photosynthetic effects. Proposal to utilise waste heat for algal culture in the Kalpakkam nuclear site in South and mariculture (lobsters, prawns) in the heated effluents canal at the Tarapur Atomic Power Station near Bombay are discussed. (K.B.)

  18. Development of TiC and TiN coated molybdenum limiter system and initial results of the thermal testing in neutral beam heated JFT-2 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Sengoku, Seio; Maeno, Masaki; Yamamoto, Shin; Seki, Masahiro; Kazawa, Minoru

    1982-06-01

    This paper describes the limiter drive system for TiC and TiN coated molybdenum limiters and the thermal testing results of the TiC coated limiter in the JFT-2 tokamak using neutral beam injection (0.7 MW). To investigate the influence of TiC coated limiter on plasma behavior and adhesion property under tokamak plasma, a full scale limiter test has been performed in the JFT-2. Reproducible plasma was obtained after the plasma conditioning. Maximum heat flux to the limiter, measured by IR camera, was 1.5 -- 6.5 kW/cm 2 in 25 msec. Cracking, exfoliation and melting on TiC coated limiter were not observed, except for a number of arc tracks. Finally, the permissible heat fluxes of TiC coated molybdenum first wall are discussed. (author)

  19. Quench pressure, thermal expulsion, and normal zone propagation in internally cooled superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    When a nonrecovering normal zone appears in an internally cooled superconductor, the pressure in the conductor rises, helium is expelled from its ends, and the normal zone grows in size. This paper presents a model of these processes that allows calculation of the pressure, the expulsion velocity, and the propagation velocity with simple formulas. The model is intended to apply to conductors such as the cable-in-conduit conductor of the Westinghouse LCT (WH-LCT) coil, the helium volumes of which have very large length-to-diameter ratios (3 /times/ 10 5 ). The predictions of the model agree with the rather limited data available from propagation experiments carried out on the WH-LCT coil. 3 refs., 1 fig

  20. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  1. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone

    Directory of Open Access Journals (Sweden)

    Andrés Gallardo

    2016-07-01

    Full Text Available This study aims to determine the optimal approach for evaluating thermal comfort in an office that uses natural ventilation as the main conditioning strategy; the office is located in Quito-Ecuador. The performance of the adaptive model included in CEN Standard EN15251 and the traditional PMV model are compared with reports of thermal environment satisfaction surveys presented simultaneously to all occupants of the office to determine which of the two comfort models is most suitable to evaluate the thermal environment. The results indicate that office occupants have developed some degree of adaptation to the climatic conditions of the city where the office is located (which only demands heating operation, and tend to accept and even prefer lower operative temperatures than those considered optimum by applying the PMV model. This is an indication that occupants of naturally conditioned buildings are usually able to match their comfort temperature to their normal environment. Therefore, the application of the adaptive model included in CEN Standard EN15251 seems like the optimal approach for evaluating thermal comfort in naturally conditioned buildings, because it takes into consideration the adaptive principle that indicates that if a change occurs such as to produce discomfort, people tend to react in ways which restore their comfort.

  2. Linear thermal expansion data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.; Chocas, C.S.

    1992-07-01

    Experiment results are presented for linear thermal expansion measurements on tuffaceous rocks from the unsaturated < one at Yucca Mountain, Nevada. Data were obtained both with and without confining pressure. The accuracy of the unconfined data collected between 50 and 250 degrees C is better than 1.8 percent, with the precision better than 4.5;percent. The accuracy of the unconfined data collected between ambient temperature and 50 degrees C and is approximately 11 percent deviation from the true value, with a precision of 12 percent of the mean value. Because of experiment design and the lack of information related calibrations, the accuracy and precision of the confined thermal expansion measurements could not be determined

  3. Comparison of experimentally-inferred ion thermal diffusivities with neoclassical theory for neutral beam-heated discharges in the Doublet III tokamak

    International Nuclear Information System (INIS)

    Groebner, R.J.

    1986-04-01

    The study of ion transport in neutral beam-heated discharges in tokamaks is necessary to determine if neoclassical theory can reliably be used to predict the performance of future machines. Previous studies of ion tranport have generally been difficult due to the lack of information regarding the ion temperature profile. The standard procedure used to study ion transport has been to model the T/sub i/ profile with the assumption that the ion thermal diffusivity profile chi/sub i/(r) was equal to a multiplier times chi/sub i//sup neo/(r), the ion thermal diffusivity calculated from neoclassical theory. The multiplier was varied until the calculated T/sub i/ profile agreed with the available ion temperature data, usually T/sub i/(0) or the measured neutron rate. Values of the multiplier in the range of 1 to 10 have generally been obtained with few estimates of the uncertainties in these values. Furthermore, there have been few, if any, attempts to calculate chi/sub i/ by modeling the ion temperature profiles in other ways. As a result, the issue as to whether or not the ion transport in tokamaks is in agreement with neoclassical theory has not been definitively answered

  4. Integration of eaves and shading devices for improving the thermal comfort in a multi-zone building

    Directory of Open Access Journals (Sweden)

    Haddam Muhammad Abdalkhalaq Chuayb

    2015-01-01

    Full Text Available This paper introduces a new approach to the description and modelling of multi-zone buildings in Saharan climate. Therefore, nodal method was used to apprehend thermo-aeraulic behavior of air subjected to varied solicitations. A coupling was made between equations proposed by P. Rumianowski and some equations of a building thermal energy model found in the TRNSYS user manual. Runge-Kutta fourth order numerical method was used to solve the obtained system of differential equations. Theses results show that proper design of passive houses in an arid region is based on the control of direct solar gains, temperatures and specific humidities. According to the compactness index, the insersion of solar shading and eaves can provide improved thermo-aeraulic comfort.

  5. Response of thermal multi zone reactors to local perturbation of reactivity; Odziv termalnih multizonih reaktora na lokalnu perturbaciju reaktivnosti

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D; Jevtovic, V [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-01-15

    A modal analysis method, spatial eigenfunctions expansion, was applied for solving the time dependent diffusion equation in two-group approximation. The absorption cross section in the thermal neutron range was time dependent. The response functions for radially multi-zone reactor systems and homogeneous reactors were obtained as solutions of the time dependent diffusion equation. Some numerical results obtained by this method are included. U radu je primenjena modalna analiza, razvoj po prostornim svojstvenim funkcijama, za resavanje vremenski zavisne difuzione jednacine u dvogrupnoj aproksimaciji, kada je presek za apsorpciju u termalnoj grupi funkcija vremena. Kao rezultat resavanja vremenski zavisne difuzione jednacine dobijeni su izrazi za prenosne funkcije radijalno multizonih reaktorskih sistema i homogenih reaktorskih sistema. Dati su i neki numericki rezultati primene ove metode (author)

  6. The TIMODAZ project: Thermal impact on the damaged zone around a radioactive waste disposal in clay host rocks

    International Nuclear Information System (INIS)

    XiangLing, L.

    2009-01-01

    The management of spent nuclear fuel and other long-lived radio active waste is an important environmental issue today. Disposal in deep clay geological formations is one of the promising options to dispose of these wastes. In this context, the related research activities in the Euratom Framework Programme of European Commission are continually taking on an enhanced significance. The TIMODAZ is one of the STREP projects (Specific Targeted Research Project) in the Sixth EURATOM Framework Programme and contributes to the research related to the geological disposal of radioactive waste. The consortium is composed of a strong multidisciplinary team involving both European radioactive waste management organizations and nuclear research institutes, universities, industrial partners as well as consultancy companies (SME's). Totally, 15 partners coming from 8 countries are involved with a total budget of about 4000k EURO. Being the coordinator (through the EURIDICE expertise group), SCK-CEN plays the leading role in the project. Meanwhile, SCK-CEN participates the research in different work packages covering the laboratory tests, in-situ tests as well as the integration of TIMODAZ results within the safety case. An important item for the long-term safety of underground disposal is the proper evaluation of the DZ (damaged zone) in the clay host rock. The DZ is defined here as the zone of host rock that experiences THMC (Thermo-Hydro-Mechanical-Chemical) modifications induced by the repository, with potential major changes in the transport properties for radionuclides. The DZ is first initiated during the repository construction. Its behaviour is dynamic, dependent on changing conditions that vary from the open-drift period, to initial closure period and to the entire heating-cooling cycle of the decaying waste. The early THMC disturbances created by the excavation, the operational phase and the thermal load might be the most severe transient that the repository will undergo

  7. Thermal Stability of Zone Melting p-Type (Bi, Sb)2Te3 Ingots and Comparison with the Corresponding Powder Metallurgy Samples

    Science.gov (United States)

    Jiang, Chengpeng; Fan, Xi'an; Hu, Jie; Feng, Bo; Xiang, Qiusheng; Li, Guangqiang; Li, Yawei; He, Zhu

    2018-04-01

    During the past few decades, Bi2Te3-based alloys have been investigated extensively because of their promising application in the area of low temperature waste heat thermoelectric power generation. However, their thermal stability must be evaluated to explore the appropriate service temperature. In this work, the thermal stability of zone melting p-type (Bi, Sb)2Te3-based ingots was investigated under different annealing treatment conditions. The effect of service temperature on the thermoelectric properties and hardness of the samples was also discussed in detail. The results showed that the grain size, density, dimension size and mass remained nearly unchanged when the service temperature was below 523 K, which suggested that the geometry size of zone melting p-type (Bi, Sb)2Te3-based materials was stable below 523 K. The power factor and Vickers hardness of the ingots also changed little and maintained good thermal stability. Unfortunately, the thermal conductivity increased with increasing annealing temperature, which resulted in an obvious decrease of the zT value. In addition, the thermal stabilities of the zone melting p-type (Bi, Sb)2Te3-based materials and the corresponding powder metallurgy samples were also compared. All evidence implied that the thermal stabilities of the zone-melted (ZMed) p-type (Bi, Sb)2Te3 ingots in terms of crystal structure, geometry size, power factor (PF) and hardness were better than those of the corresponding powder metallurgy samples. However, their thermal stabilities in terms of zT values were similar under different annealing temperatures.

  8. Trace metal concentrations in mussels in the outfall zones of thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Krishna Kumar, P.T.; Sekimoto, Hiroshi

    2008-01-01

    Many trace elements (TE) like Mn, Fe, Cu, and Zn, occur naturally in marine environments and these TE accomplish decisive functions in humans to maintain good health. Living organisms like Mytilus galloprovincialis are a rich source of TE and are grown extensively near the industrial water outfalls. Some of these TE tend to be pollutants when their elevated levels produce deleterious effects on the ecological system. As chemical analysis for TE toxicity are expensive, organisms like Mytilus galloprovincialis can be used as monitors of environmental contamination. Most studies reported so far are directed towards the effect of a single environmental factor on marine bivalves. However in the areas receiving mixed effluents from various point and non-point sources, the studies on combined effect of two or more stresses would be a more practical approach. In this paper, We investigate the heavy metal concentrations of mercury, cadmium, lead, zinc, cooper, nickel, manganese, and chromium in Mytilus galloprovincialis to provide information on the pollution of water bodies by thermal and nuclear power plants for the choice of sites from where edible mussels can be harvested. We also propose a chemometric approach developed by us using information theory to mitigate trace element toxicity in the edible part of Mytilus galloprovincialis harvested in these sites. (author)

  9. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia - observations and modeling (Lena River Delta, Siberia)

    Science.gov (United States)

    Boike, J.; Georgi, C.; Kirilin, G.; Muster, S.; Abramova, K.; Fedorova, I.; Chetverova, A.; Grigoriev, M.; Bornemann, N.; Langer, M.

    2015-10-01

    Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop

  10. Positron annihilation lifetime in float-zone n-type silicon irradiated by fast electrons: a thermally stable vacancy defect

    International Nuclear Information System (INIS)

    Arutyunov, Nikolay; Emtsev, Vadim; Oganesyan, Gagik; Krause-Rehberg, Reinhard; Elsayed, Mohamed; Kozlovskii, Vitalii

    2016-01-01

    Temperature dependency of the average positron lifetime has been investigated for n-type float-zone silicon, n-FZ-Si(P), subjected to irradiation with 0.9 MeV electrons at RT. In the course of the isochronal annealing a new defect-related temperature-dependent pattern of the positron lifetime spectra has been revealed. Beyond the well known intervals of isochronal annealing of acceptor-like defects such as E-centers, divacancies and A-centers, the positron annihilation at the vacancy defects has been observed in the course of the isochronal annealing from ∝ 320 C up to the limit of reliable detecting of the defect-related positron annihilation lifetime at ≥ 500 C. These data correlate with the ones of recovery of the concentration of the charge carriers and their mobility which is found to continue in the course of annealing to ∝ 570 C; the annealing is accomplished at ∝650 C. A thermally stable complex consisting of the open vacancy volume and the phosphorus impurity atom, V_o_p-P, is suggested as a possible candidate for interpreting the data obtained by the positron annihilation lifetime spectroscopy. An extended couple of semi-vacancies, 2V_s_-_e_x_t, as well as a relaxed inwards a couple of vacancies, 2V_i_n_w, are suggested as the open vacancy volume V_o_p to be probed with the positron. It is argued that a high thermal stability of the V_s_-_e_x_t PV_s_-_e_x_t (or V_i_n_wPV_i_n_w_.) configuration is contributed by the efficiency of PSi_5 bonding. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Diapir versus along-channel ascent of crustal material during plate convergence: constrained by the thermal structure of subduction zones

    Science.gov (United States)

    Liu, M. Q.; Li, Z. H.

    2017-12-01

    Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. The crustal rocks undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channel; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. Thick overriding continental plate and low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, thin overriding lithosphere and steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge. This may corresponds to the origination of continental arc volcanism from mafic to ultramafic metasomatites in the bottom of the mantle wedge. In addition, the plate

  12. Neutral currents

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1977-01-01

    It is stated that over the past few years considerable progress has been made in the field of weak interactions. The existence of neutral currents involving leptons and hadrons has been established and some of the questions concerning their detailed structure have been answered. This imposes constraints on the gauge theories and has eliminated large classes of models. New questions have also been raised, one of which concerns the conservation laws obeyed by neutral currents. The wide range of investigations is impressive and is expected to continue with new results from particle, nuclear, and atomic physics. Headings include - various aspects of a gauge theory (choice of group, the symmetry breaking scheme, representation assignments for fermion fields); space-time structure; isospin structure; leptonic neutral currents; and atomic experiments. (U.K.)

  13. Post-Triassic thermal history of the Tazhong Uplift Zone in the Tarim Basin, Northwest China: Evidence from apatite fission-track thermochronology

    Directory of Open Access Journals (Sweden)

    Caifu Xiang

    2013-11-01

    Full Text Available The Tarim Basin is a representative example of the basins developed in the northwest China that are characterized by multiple stages of heating and cooling. In order to better understand its complex thermal history, apatite fission track (AFT thermochronology was applied to borehole samples from the Tazhong Uplift Zone (TUZ. Twelve sedimentary samples of Silurian to Triassic depositional ages were analyzed from depths coinciding with the apatite partial annealing zone (∼60–120 °C. The AFT ages, ranging from 132 ± 7 Ma (from a Triassic sample to 25 ± 2 Ma (from a Carboniferous sample, are clearly younger than their depositional ages and demonstrate a total resetting of the AFT thermometer after deposition. The AFT ages vary among different tectonic belts and decrease from the No. Ten Faulted Zone (133–105 Ma in the northwest, the Central Horst Zone in the middle (108–37 Ma, to the East Buried Hill Zone in the south (51–25 Ma. Given the low magnitude of post-Triassic burial heating evidenced by low vitrinite reflectance values (Ro < 0.7%, the total resetting of the AFT system is speculated to result from the hot fluid flow along the faults. Thermal effects along the faults are well documented by younger AFT ages and unimodal single grain age distributions in the vicinity of the faults. Permian–early Triassic basaltic volcanism may be responsible for the early Triassic total annealing of those samples lacking connectivity with the fault. The above arguments are supported by thermal modeling results.

  14. Neutral currents

    International Nuclear Information System (INIS)

    Aubert, B.

    1994-11-01

    The evidence for the existence of weak neutral current has been a very controverted topics in the early 1970's, as well as the muon did in the 1930's. The history is very rich considering the evolution of the experimental techniques in high energy particle physics. The history of the discovery and the study of weak neutral current is reviewed. Later the quest of the intermediate vector boson continues with the decision of the community to build a large proton antiproton collider. (K.A.). 14 refs., 1 fig

  15. Thermal and microstructural modelling in weld heat-affected zones. Part I: thermal cycles; Modelizacion termica y microestructural de la zona afectada por el calor en la soldadura. Parte I: ciclos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Ribera, J.M.; Prado, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica Universidad Politecnica de Cataluna, Barcelona (Spain)

    1995-12-31

    After a review about theoretical concepts involved in heat transfer, the ``double ellipsoid`` model is proposed which will be useful to simulate the welding heat input accurately. The different steps to perform an analysis using the Finite Elements Method (FEM) are described in order to compute the transient temperature field for any point of interest, and the transfer equations are solved numerically for several welding situations. The thermal cycles are obtained and so it will be possible to understand the metallurgical behavior that takes place in weld heat affected zones. In addition the effects of different welding parameters on the shape of the computed thermal cycles are shown. (Author) 5 refs.

  16. Techno-economic and environmental analysis of a thermal treatment technology for the generation of electrical energy by municipal solid waste from the zone of Los Santos

    International Nuclear Information System (INIS)

    Carranza Campos, Kevin; Monge Leiva, Matias

    2014-01-01

    A technical, economic and environmental assessment is realized of a thermal treatment technology. The energetic valorization from municipal solid waste and electric power generation in the zone of Los Santos, Costa Rica, are made by the multicriteria hierarchical analysis methodology. The national and cantonal situation is examined in the integral management of municipal solid waste (GIRS), with emphasis on the cantons from the zone of Los Santos. A comparative analysis is developed among some cantons of Costa Rica that have had GIRS studies, and the zone of Los Santos to know the fraction of municipal solid waste that can be valued energetically and calorific power that present. The similarity in the characterization, composition and physico-chemical properties is determined in the study of residues between the cantons analyzed and the zone of Los Santos. The legislation relating the waste processing is analyzed, according Law 8839 for integral management of waste and laws similar to the implementation of a power generation plant. An analysis is developed for the environmental compliance of thermal treatment technologies, including aspects for control of contaminants. The main technologies of energy valorization from waste are investigated and some real cases of Latin America and the world are exposed. A thermal treatment technology of municipal solid waste is selected through a decision-making methodology to evaluate technical, environmental and economic aspects. Operation requirements and functioning of the devices that conform a power generation plant are described by municipal solid waste of the technology selected. The economic viability of the selected proposal has determined by an economic analysis, to extend on the most influential aspects developing alternative scenarios. The diagnosis of the situation of solid waste in the zone of Los Santos has specified that the cardboard, paper and plastics have been the most adequate for the thermal utilization

  17. Patterns of zone management uncertainty in cotton using tarnished plant bug distributions, NDVI, soil EC, yield and thermal imagery

    Science.gov (United States)

    Management zones for various crops have been delineated using NDVI (Normalized Difference Vegetation Index), apparent bulk soil electrical conductivity (ECa - Veris), and yield data; however, estimations of uncertainty for these data layers are equally important considerations. The objective of this...

  18. Analysis of the Slab Temperature, Thermal Stresses and Fractures Computed with the Implementation of Local and Average Boundary Conditions in the Secondary Cooling Zones

    Directory of Open Access Journals (Sweden)

    Hadała B.

    2016-12-01

    Full Text Available The numerical simulations of the temperature fields have been accomplished for slab casting made of a low carbon steel. The casting process of slab of 1500 mm in width and 225 mm in height has been modeled. Two types of boundary condition models of heat transfer have been employed in numerical simulations. The heat transfer coefficient in the first boundary condition model was calculated from the formula which takes into account the slab surface temperature and water flow rate in each secondary cooling zone. The second boundary condition model defines the heat transfer coefficient around each water spray nozzle. The temperature fields resulting from the average in zones water flow rate and from the nozzles arrangement have been compared. The thermal stresses and deformations resulted from such temperature field have given higher values of fracture criterion at slab corners.

  19. Thermal Evolution of Juvenile Subduction Zones ' New Constraints from Lu-Hf Geochronology on HP oceanic rocks (Halilbaǧi, Central Anatolia)

    Science.gov (United States)

    Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca

    2015-04-01

    The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit

  20. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  1. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  2. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Geletič, Jan; Lehnert, M.; Savić, S.; Milošević, D.

    2018-01-01

    Roč. 624, 15 May (2018), s. 385-395 ISSN 0048-9697 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67985807 Keywords : HUMIDEX * MUKLIMO_3 * air temperature * relative humidity * local climate zones * heat wave Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.900, year: 2016

  3. Tectono-thermal evolution in a region with thin-skinned tectonics: the western nappes in the Cantabrian Zone (Variscan belt of NW Spain)

    Science.gov (United States)

    Bastida, F.; Brime, C.; García-López, S.; Sarmiento, G. N.

    The palaeotemperature distribution in the transition from diagenesis to metamorphism in the western nappes of the Cantabrian Zone (Somiedo, La Sobia and Aramo Units) are analysed by conodont colour alteration index (CAI) and illite crystallinity (IC). Structural and stratigraphic control in distribution of CAI and IC values is observed. Both CAI and IC value distributions show that anchizonal conditions are reached in the lower part of the Somiedo Unit. A disruption of the thermal trend by basal thrusts is evidenced by CAI and IC values. There is an apparent discrepancy between the IC and CAI values in Carboniferous rocks of the Aramo Unit; the IC has mainly anchizonal values, whereas the CAI has diagenetic values. Discrepant IC values are explained as a feature inherited from the source area. In the Carboniferous rocks of the La Sobia Unit, both IC and CAI indicate diagenetic conditions. The anchimetamorphism predated completion of emplacement of the major nappes; it probably developed previously and/or during the early stages of motion of the units. Temperature probably decreased when the metamorphosed zones of the sheets rose along ramps and were intensely eroded. In the context of the Iberian Variscan belt, influence of tectonic factors on the metamorphism is greater in the internal parts, where the strain and cleavage are always present, than in the external parts (Cantabrian Zone), where brittle deformation and rock translation are dominant, with an increasing role of the burial on the metamorphism.

  4. Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution

    Science.gov (United States)

    Friedson, A. James; Gonzales, Erica J.

    2017-11-01

    We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for

  5. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones

    Science.gov (United States)

    Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.

    2007-02-01

    We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.

  6. Effect of Welding Thermal Cycles on Microstructure and Mechanical Properties of Simulated Heat Affected Zone for a Weldox 1300 Ultra-High Strength Alloy Steel

    Directory of Open Access Journals (Sweden)

    Węglowski M. St.

    2016-03-01

    Full Text Available In the present study, the investigation of weldability of ultra-high strength steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on microstructure and mechanical properties of heat affected zone (HAZ for a Weldox 1300 ultra-high strength steel. In the frame of these investigation the microstructure was studied by light and transmission electron microscopies. Mechanical properties of parent material were analysed by tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 ÷ 300 sec. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The microstructure of ultra-high strength steel is mainly composed of tempered martensite. The results show that the impact toughness and hardness decrease with increase of t8/5 under condition of a single thermal cycle in simulated HAZ. The increase of cooling time to 300 s causes that the microstructure consists of ferrite and bainite mixture. Lower hardness, for t8/5 ≥ 60 s indicated that low risk of cold cracking in HAZ for longer cooling time, exists.

  7. Effects of a Mixed Zone on TGO Displacement Instabilities of Thermal Barrier Coatings at High Temperature in Gas-Cooled Fast Reactors

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available Thermally grown oxide (TGO, commonly pure α-Al2O3, formed on protective coatings acts as an insulation barrier shielding cooled reactors from high temperatures in nuclear energy systems. Mixed zone (MZ oxide often grows at the interface between the alumina layer and top coat in thermal barrier coatings (TBCs at high temperature dwell times accompanied by the formation of alumina. The newly formed MZ destroys interface integrity and significantly affects the displacement instabilities of TGO. In this work, a finite element model based on material property changes was constructed to investigate the effects of MZ on the displacement instabilities of TGO. MZ formation was simulated by gradually changing the metal material properties into MZ upon thermal cycling. Quantitative data show that MZ formation induces an enormous stress in TGO, resulting in a sharp change of displacement compared to the alumina layer. The displacement instability increases with an increase in the MZ growth rate, growth strain, and thickness. Thus, the formation of a MZ accelerates the failure of TBCs, which is in agreement with previous experimental observations. These results provide data for the understanding of TBC failure mechanisms associated with MZ formation and of how to prolong TBC working life.

  8. Life Management Technique of Thermal Fatigue for SMST Boiler Tube at Different Heating Zone Using Smithy Furnace

    OpenAIRE

    Shekhar Pal,; Pradeep Suman

    2014-01-01

    This paper highlights on the evaluation of thermal fatigue failure for SMST (Salzgitter Mannesmann strain less boiler tube) DMV 304 HCu boiler tube using life management technique by using of smithy furnace. Boiler tubes are highly affected by operating conditions like, high temperature and high pressure. So it needs periodic checking for the purpose of safety and health assessment of the plant. So using this technique we can identify the degradation of tubes at microstructure...

  9. ECOENVELOPES R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones

    Directory of Open Access Journals (Sweden)

    Varini, C.

    2013-09-01

    Full Text Available “Ecoenvelopes” is about the development of building envelope solutions for tropical humid climates involving passive control of thermal gains on their surfaces, allowing for better internal conditions and comfort without the use of thermal machines. Environmental principles, design, and technological aspects are specifically defined based on the peculiar conditions (geo-climatic, technological, of biodiversity, economic and anthropic present in the Colombian low altitude regions, marked by constant high temperatures. Thermal and CFD simulations orient the process of experimental verification in a permanent laboratory counting on partnerships and available know-how.“Ecoenvolventes” plantea el desarrollo de soluciones de envolventes arquitectónicas para clima tropical húmedo, que permiten el control pasivo de las ganancias térmicas en sus superficies permitiendo el mejoramiento de las condiciones internas e generar condiciones de confort sin el uso de máquinas térmicas. Principios, diseño, tecnologías y aspectos medioambientales son expresamente definidos en función de las peculiares condiciones (e.i. geo-climáticas, tecnológicas, de biodiversidad, económicas y antrópicas presentes en las regiones colombianas con baja altitud, caracterizadas por altas temperaturas a lo largo de todo el año. Simulaciones térmicas y CFD orientan el proceso de verificación experimental en un laboratorio permanente contando con convenios con empresas locales y know-how disponible in situ.

  10. DYNAMIC MIXING MODEL OF THE CHIGNAHUAPAN THERMAL SPRING IN THE GEOTHERMAL ZONE OF THE ACOCULCO CALDERA, PUEBLA, MEXICO

    Science.gov (United States)

    Gutierrez-Cirlos, A.; Torres-Rodriguez, V.

    2009-12-01

    The Acoculco Caldera, of Pliocenic age, is located within the limits of the Transmexican Volcanic Belt (CVT) and the Sierra Madre Oriental (SMOr). The Acoculco geothermal zone consists of a 790m thick igneous sequence, related to a volcanic complex formed by andesites and rhyolitic domes emplaced in an 18 Km diameter annular fracture. It unconformably overlies a 5000 m thick section of folded and faulted Jurassic-Cretaceous carbonate rocks. The Chignahuapan Spring, located in the extreme eastern part of the Geothermal Zone of the Acoculco Caldera, yields temperatures of 49°C and discharges an estimated of 98 lps from the karstified Lower Cretaceous limestone. Both major and trace element geochemical analysis were carried out, and results were interpreted using Piper and Stiff diagrams, as well as geothermometry. The results indicate that water belongs to the calcium-bicarbonate type and yield temperatures in a range of 70-80°C at depth, which suggest an extensive lateral flow from the main reservoir and mixing with shallow groundwaters. The spring suffers significant variations in its temperature throughout the year, especially during the rainy season, when water temperature decreases up to 10°C. Analyzing the hot spring water temperature data from of the last 10 years and comparing it with the precipitation and air temperature curves of the region, we expect to develop a dynamic mixing model which depicts the relation between these factors and the importance of each one in the water temperature variation. We also look forward to be able to forecast water temperature trends for the next several years and correlate it with climate change in the area.

  11. Drought Conditions Maximize the Impact of High-Frequency Flow Variations on Thermal Regimes and Biogeochemical Function in the Hyporheic Zone.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-01

    Anthropogenic activities, such as dam operations, often induce larger and more frequent stage fluctuations than those occurring in natural rivers. However, the long-term impact of such flow variations on thermal and biogeochemical dynamics of the associated hyporheic zone (HZ) is poorly understood. A heterogeneous, two-dimensional thermo-hydro-biogeochemical model revealed an important interaction between high-frequency flow variations and watershed-scale hydrology. High-frequency stage fluctuations had their strongest thermal and biogeochemical impacts when the mean river stage was low during fall and winter. An abnormally thin snowpack in 2015, however, created a low river stage during summer and early fall, whereby high frequency stage fluctuations caused the HZ to be warmer than usual. This study provided the scientific basis to assess the potential ecological consequences of the high-frequency flow variations in a regulated river, as well as guidance on how to maximize the potential benefits—or minimize the drawbacks—of river regulation to river ecosystems.

  12. Using the Pairs of Lines Broadened by Collisions with Neutral and Charged Particles for Gas Temperature Determination of Argon Non-Thermal Plasmas at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Cristina Yubero

    2017-10-01

    Full Text Available The spectroscopic method for gas temperature determination in argon non-thermal plasmas sustained at atmospheric pressure proposed recently by Spectrochimica Acta Part B 129 14 (2017—based on collisional broadening measurements of selected pairs of argon atomic lines, has been applied to other pairs of argon atomic lines, and the discrepancies found in some of these results have been analyzed. For validation purposes, the values of the gas temperature obtained using the different pairs of lines have been compared with the rotational temperatures derived from the OH ro-vibrational bands, using the Boltzmann-plot technique.

  13. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc

    Science.gov (United States)

    Currie, C. A.; Wang, K.; Hyndman, Roy D.; He, Jiangheng

    2004-06-01

    At subduction zones, geophysical and geochemical observations indicate that the arc and backarc regions are hot, in spite of the cooling effects of a subducting plate. At the well-studied Cascadia subduction zone, high mantle temperatures persist for over 500 km into the backarc, with little lateral variation. These high temperatures are even more surprising due to the juxtaposition of the hot Cascadia backarc against the thick, cold North America craton lithosphere. Given that local heat sources appear to be negligible, mantle flow is required to transport heat into the wedge and backarc. We have examined the thermal effects of mantle flow induced by traction along the top of the subducting plate. Through systematic tests of the backarc model boundary, we have shown that the model thermal structure of the wedge is primarily determined by the assumed temperatures along this boundary. To get high temperatures in the wedge, it is necessary for flow to mine heat from depth, either by using a temperature-dependent rheology, or by introducing a deep cold boundary through a thick adjacent lithosphere, consistent with the presence of a craton. Regardless of the thermal conditions along the backarc boundary, flow within an isoviscous wedge is too slow to transport a significant amount of heat into the wedge corner. With a more realistic stress- and temperature-dependent wedge rheology, flow is focused into the wedge corner, resulting in rapid flow upward toward the corner and enhanced temperatures below the arc, compatible with temperatures required for arc magma generation. However, this strong flow focusing produces a nearly stagnant region further landward in the shallow backarc mantle, where model temperatures and heat flow are much lower than observed. Observations of high backarc temperatures, particularly in areas that have not undergone recent extension, provide an important constraint on wedge dynamics. None of the models of simple traction-driven flow were able

  14. Impact of Climate Change on Outdoor Thermal Comfort and Health in Tropical Wet and Hot Zone (Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Modeste Kameni Nematchoua

    2014-04-01

    Full Text Available Abstract Background and purpose:Climate change has an important role on the health and productivity of the occupant of the building. The objective of this study is to estimate the effects of climate change on thermal comfort in hot and wet areas, as in the case of the city of Douala. Materials and Methods:The general circulation model (CSMK3 Model, Scenario B1 was adopted for this purpose.Outdoor daily parameters of temperature, sunshine, and precipitation of last 40 years were analyzed and allowed us to make forecast on this area. The past (1990-2000, the present (2001-2011, and the future (2012-2022 were considered in the hypotheses. Results:It has been found that Douala like some large cities of Africa is already and will be severely hit of advantage by climate change if anything is not going to slow. By 2033, it is expected to have an increase of more than 0.21° C of temperature thus, a decrease of precipitation. Conclusion:In 2023, total discomfort will reign in the dry season, especially in January where humidex could reach 42.9. On the other hand, in the rainy season, humidex will increase of 0.91 compared to year 2013. This effect will have an increase of temperature. When we maintain relative humidity, and we increase temperature, humidex varies enormously and displays a maximum value, with maximum temperature.

  15. Thermal room modelling adapted to the test of HVAC control systems; Modele de zone adapte aux essais de regulateurs de systemes de chauffage et de climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Riederer, P.

    2002-01-15

    Room models, currently used for controller tests, assume the room air to be perfectly mixed. A new room model is developed, assuming non-homogeneous room conditions and distinguishing between different sensor positions. From measurement in real test rooms and detailed CFD simulations, a list of convective phenomena is obtained that has to be considered in the development of a model for a room equipped with different HVAC systems. The zonal modelling approach that divides the room air into several sub-volumes is chosen, since it is able to represent the important convective phenomena imposed on the HVAC system. The convective room model is divided into two parts: a zonal model, representing the air at the occupant zone and a second model, providing the conditions at typical sensor positions. Using this approach, the comfort conditions at the occupant zone can be evaluated as well as the impact of different sensor positions. The model is validated for a test room equipped with different HVAC systems. Sensitivity analysis is carried out on the main parameters of the model. Performance assessment and energy consumption are then compared for different sensor positions in a room equipped with different HVAC systems. The results are also compared with those obtained when a well-mixed model is used. A main conclusion of these tests is, that the differences obtained, when changing the position of the controller's sensor, is a function of the HVAC system and controller type. The differences are generally small in terms of thermal comfort but significant in terms of overall energy consumption. For different HVAC systems the cases are listed, in which the use of a simplified model is not recommended. (author)

  16. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    Science.gov (United States)

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  17. Measurement of a neutral particle flux by a thermal method using the junction temperature effect; Mesure d'un flux de particules neutres par une methode thermique mettant a contribution l'effet de temperature des jonctions

    Energy Technology Data Exchange (ETDEWEB)

    Caron, Anthime [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Services Scientifiques

    1966-07-01

    Among all the methods suitable for measuring neutral particle fluxes obtained by proton charge exchange in an organic gas, the thermal method has been chosen. The energy imparted by the neutral particles to the target in the form of heat leads to the latter temperature increasing; this temperature is usually followed with a thermocouple. In order to increase the sensitivity and the elegance of the apparatus the thermocouple has been replaced by a junction whose characteristics are known to vary with temperature. A calibration is carried out using a beam of charged particles. The response obtained is linear. Measurements have been made with a power of up to 1 mW; the accuracy increases with the energy provided; for 4 joules an accuracy of 10 per cent is obtained. The apparatus may be improved in particular by extending the measurement range towards low power values, and by increasing the accuracy. (author) [French] Parmi toutes les methodes utilisees pour la mesure d'un flux de particules neutres, obtenues par echange de charge de protons dans un gaz organique, nous avons choisi la methode thermique. L'energie cedee par les particules neutres a la cible sous forme de chaleur provoque une elevation de temperature de celle-ci; cette temperature est habituellement reperee par thermocouple. Pour accroitre la sensibilite et la finesse de l'appareillage, nous avons substitue au thermocouple une jonction dont on sait que les caracteristiques varient avec la temperature. Un etalonnage est realise par un faisceau de particules chargees. La reponse obtenue est lineaire. Des puissances de l'ordre du mW ont ete mesurees; la precision croit avec l'energie apportee; elle est de 10 pour cent quand celle-ci est de 4 joules. L'appareillage peut etre notablement perfectionne, pour reculer la gamme des mesures vers les basses puissances et accroitre la precision. (auteur)

  18. Structural Basis for Differential Neutralization of Ebolaviruses

    Directory of Open Access Journals (Sweden)

    John M. Dye

    2012-04-01

    Full Text Available There are five antigenically distinct ebolaviruses that cause hemorrhagic fever in humans or non-human primates (Ebola virus, Sudan virus, Reston virus, Taï Forest virus, and Bundibugyo virus. The small handful of antibodies known to neutralize the ebolaviruses bind to the surface glycoprotein termed GP1,2. Curiously, some antibodies against them are known to neutralize in vitro but not protect in vivo, whereas other antibodies are known to protect animal models in vivo, but not neutralize in vitro. A detailed understanding of what constitutes a neutralizing and/or protective antibody response is critical for development of novel therapeutic strategies. Here, we show that paradoxically, a lower affinity antibody with restricted access to its epitope confers better neutralization than a higher affinity antibody against a similar epitope, suggesting that either subtle differences in epitope, or different characteristics of the GP1,2 molecules themselves, confer differential neutralization susceptibility. Here, we also report the crystal structure of trimeric, prefusion GP1,2 from the original 1976 Boniface variant of Sudan virus complexed with 16F6, the first antibody known to neutralize Sudan virus, and compare the structure to that of Sudan virus, variant Gulu. We discuss new structural details of the GP1-GP2 clamp, thermal motion of various regions in GP1,2 across the two viruses visualized, details of differential interaction of the crystallized neutralizing antibodies, and their relevance for virus neutralization.

  19. Neutral Buoyancy Laboratory (NBL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutral Buoyancy Laboratory (NBL) is an astronaut training facility and neutral buoyancy pool operated by NASA and located at the Sonny Carter Training Facility,...

  20. Study of neutral particles

    International Nuclear Information System (INIS)

    Bartel, W.; Bulos, F.; Eisner, A.

    1975-01-01

    The range of physics problems for which a detector emphasizing neutrals is most suitable is discussed. The primary goals are the all neutrals cross section, sigma/sub o/ (e + e - → neutrals), the characterization of the neutral energy in multi-hadronic events, the search for monoenergetic photons, and good sensitivity in the difficult region of low energy photons. Those features of multi-hadronic events which are most relevant to a neutral detector were calculated using a jet model with parameters extrapolated from SPEAR energies. These distributions are presented and discussed

  1. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan

    Science.gov (United States)

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4°C and 17.6-30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  2. On neutral plasma oscillations

    International Nuclear Information System (INIS)

    Shadwick, B.A.; Morrison, P.J.

    1993-06-01

    We examine the conditions for the existence of spectrally stable neutral modes in a Vlasov-Poisson plasma and show that for stable equilibria of systems that have unbounded spatial domain, the only possible neutral modes are those with phase velocities that correspond to stationary inflection points of the equilibrium distribution function. It is seen that these neutral modes can possess positive or negative free energy

  3. Neutral beam monitoring

    International Nuclear Information System (INIS)

    Fink, J.H.

    1979-01-01

    A neutral beam generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange partially neutralizes the high energy beam, is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are identified. (U.K.)

  4. On neutral plasma oscillations

    International Nuclear Information System (INIS)

    Shadwick, B.A.; Texas Univ., Austin; Morrison, P.J.; Texas Univ., Austin

    1994-01-01

    We examine the conditions for the existence of spectrally stable neutral modes in a Vlasov-Poisson plasma and show that for stable equilibria of systems that have unbounded spatial domain, the only possible neutral modes are those with phase velocities that correspond to stationary inflection points of the equilibrium distribution function. It is seen that these neutral modes can posses positive or negative free energy. (orig.)

  5. Search for neutral leptons

    International Nuclear Information System (INIS)

    Perl, M.L.

    1984-12-01

    At present we know of three kinds of neutral leptons: the electron neutrino, the muon neutrino, and the tau neutrino. This paper reviews the search for additional neutral leptons. The method and significance of a search depends upon the model used for the neutral lepton being sought. Some models for the properties and decay modes of proposed neutral leptons are described. Past and present searches are reviewed. The limits obtained by some completed searches are given, and the methods of searches in progress are described. Future searches are discussed. 41 references

  6. Quantifying the Influence of Near-Surface Water-Energy Budgets on Soil Thermal Properties Using a Network of Coupled Meteorological and Vadose Zone Instrument Arrays in Indiana, USA

    Science.gov (United States)

    Naylor, S.; Gustin, A. R.; Ellett, K. M.

    2012-12-01

    Weather stations that collect reliable, sustained meteorological data sets are becoming more widely distributed because of advances in both instrumentation and data server technology. However, sites collecting soil moisture and soil temperature data remain sparse with even fewer locations where complete meteorological data are collected in conjunction with soil data. Thanks to the advent of sensors that collect continuous in-situ thermal properties data for soils, we have gone a step further and incorporated thermal properties measurements as part of hydrologic instrument arrays in central and northern Indiana. The coupled approach provides insights into the variability of soil thermal conductivity and diffusivity attributable to geologic and climatological controls for various hydrogeologic settings. These data are collected to facilitate the optimization of ground-source heat pumps (GSHPs) in the glaciated Midwest by establishing publicly available data that can be used to parameterize system design models. A network of six monitoring sites was developed in Indiana. Sensors that determine thermal conductivity and diffusivity using radial differential temperature measurements around a heating wire were installed at 1.2 meters below ground surface— a typical depth for horizontal GSHP systems. Each site also includes standard meteorological sensors for calculating reference evapotranspiration following the methods by the Food and Agriculture Organization (FAO) of the United Nations. Vadose zone instrumentation includes time domain reflectometry soil-moisture and temperature sensors installed at 0.3-meter depth intervals down to a 1.8-meter depth, in addition to matric potential sensors at 0.15, 0.3, 0.6, and 1.2 meters. Cores collected at 0.3-meter intervals were analyzed in a laboratory for grain size distribution, bulk density, thermal conductivity, and thermal diffusivity. Our work includes developing methods for calibrating thermal properties sensors based on

  7. Development of embrittlement prediction models for U.S. power reactors and the impact of the heat-affected zone to thermal annealing

    International Nuclear Information System (INIS)

    Wang, J.A.

    1998-05-01

    The NRC Regulatory Guide 1.99 Revision 2 was based on 177 surveillance data points and the EPRI data base, where 76% of 177 data points and 60% of EPRI data base were from Westinghouse's data. Therefore, other vendors' radiation environment may not be properly characterized by R.G. 1.99's prediction. To minimize scatter from the influences of the irradiation temperature, neutron energy spectrum, displacement rate, and plant operation procedures on embrittlement models, improved embrittlement models based on group data that have similar radiation environments and reactor design and operation criteria are examined. A total of 653 shift data points from the current FR-EDB, including 397 Westinghouse data, 93 B and W data, 37 CE data, and 106 GE data, are used. A nonlinear least squares fitting FORTRAN program, incorporating a Monte Carlo procedure with 35% and 10% uncertainty assigned to the fluence and shift data, respectively, was written for this study. In order to have the same adjusted fluence value for the weld and plate material in the same capsule, the Monte Carlo least squares fitting procedure has the ability to adjust the fluence values while running the weld and plate formula simultaneously. Six chemical components, namely, copper, nickel, phosphorus, sulfur, manganese, and molybdenum, were considered in the development of the new embrittlement models. The overall percentage of reduction of the 2-sigma margins per delta RTNDT predicted by the new embrittlement models, compared to that of R.G. 1.99, for weld and base materials are 42% and 36%, respectively. Currently, the need for thermal annealing is seriously being considered for several A302B type RPVs. From the macroscopic view point, even if base and weld materials were verified from mechanical tests to be fully recovered, the linking heat affected zone (HAZ) material has not been properly characterized. Thus the final overall recovery will still be unknown. The great data scatter of the HAZ metals may

  8. Characteristics of the local cutaneous sensory thermoneutral zone

    Science.gov (United States)

    Zhang, Hui; Arens, Edward A.

    2017-01-01

    Skin temperature detection thresholds have been used to measure human cold and warm sensitivity across the temperature continuum. They exhibit a sensory zone within which neither warm nor cold sensations prevail. This zone has been widely assumed to coincide with steady-state local skin temperatures between 32 and 34°C, but its underlying neurophysiology has been rarely investigated. In this study we employ two approaches to characterize the properties of sensory thermoneutrality, testing for each whether neutrality shifts along the temperature continuum depending on adaptation to a preceding thermal state. The focus is on local spots of skin on the palm. Ten participants (age: 30.3 ± 4.8 yr) underwent two experiments. Experiment 1 established the cold-to-warm inter-detection threshold range for the palm’s glabrous skin and its shift as a function of 3 starting skin temperatures (26, 31, or 36°C). For the same conditions, experiment 2 determined a thermally neutral zone centered around a thermally neutral point in which thermoreceptors’ activity is balanced. The zone was found to be narrow (~0.98 to ~1.33°C), moving with the starting skin temperature over the temperature span 27.5–34.9°C (Pearson r = 0.94; P cold-to-warm inter-threshold range (~2.25 to ~2.47°C) but is only half as wide. These findings provide the first quantitative analysis of the local sensory thermoneutral zone in humans, indicating that it does not occur only within a specific range of steady-state skin temperatures (i.e., it shifts across the temperature continuum) and that it differs from the inter-detection threshold range both quantitatively and qualitatively. These findings provide insight into thermoreception neurophysiology. NEW & NOTEWORTHY Contrary to a widespread concept in human thermoreception, we show that local sensory thermoneutrality is achievable outside the 32–34°C skin temperature range. We propose that sensory adaption underlies a new mechanism of temperature

  9. Thermal treatment system of hazardous residuals in three heating zones based on a microprocessor; Sistema de tratamiento termico de residuos peligrosos en tres zonas de calentamiento a base de un microcontrolador.

    Energy Technology Data Exchange (ETDEWEB)

    Luna H, C L

    1997-12-01

    Thermal treatment system consists of a high power electric oven of three heating zones where each zone works up to 1200 Centigrades; it has the capacity of rising the central zone temperature up to 1000 Centigrades in 58 minutes approximately. This configuration of three zones could be programmed to different temperatures and they will be digitally controlled by a control microprocessor, which has been controlled by its own assembler language, in function of the PID control. There are also other important controls based on this microprocessor, as a signal amplification, starting and shutdown of high power step relays, activation and deactivation of both analogic/digital and digital/analogic convertors, port activation and basic data storage of the system. Two main characteristics were looked for this oven design; the first was the possibility of controlling the three zone temperature and the second was to reduce the rising and stabilization operation time and its digitized control. The principal function of the three zone oven is to accelerate the degradation of hazardous residuals by an oxidation instead combustion, through relatively high temperatures (minimum 800 Centigrades and maximum 1200 Centigrades); this process reduces the ash and volatile particulate production. The hazardous residuals will be pumped into the degradation system and after atomized through a packaged column; this step will avoid the direct contact of the residuals with the oven cores. These features make this system as closed process, which means that the residuals can not leak to the working area, reducing the exposure risk to the personnel. This three step oven system is the first stage of the complete hazardous residuals degradation system; after this, the flow will go into a cold plasma region where the process is completed, making a closed system. (Author).

  10. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  11. Consequences of the Thermal Transient on the Evolution of the Damaged Zone Around a Repository for Heat-Emitting High-Level Radioactive Waste in a Clay Formation: a Performance Assessment Perspective

    Science.gov (United States)

    Yu, Li; Weetjens, Eef; Sillen, Xavier; Vietor, Tim; Li, Xiangling; Delage, Pierre; Labiouse, Vincent; Charlier, Robert

    2014-01-01

    A proper evaluation of the perturbations of the host rock induced by the excavation and the emplacement of exothermic wastes is essential for the assessment of the long-term safety of high-level radioactive waste disposals in clay formations. The impact of the thermal transient on the evolution of the damaged zone (DZ) has been explored in the European Commission project TIMODAZ (thermal impact on the damaged zone around a radioactive waste disposal in clay host rocks, 2006-2010). This paper integrates the scientific results of the TIMODAZ project from a performance assessment (PA) point of view, showing how these results support and justify key PA assumptions and the values of PA model parameters. This paper also contextualises the significance of the thermal impact on the DZ from a safety case perspective, highlighting how the project outcomes result into an improved understanding of the thermo-hydro-mechanical behaviour of the clay host rocks. The results obtained in the TIMODAZ project strengthen the assessment basis of the safety evaluation of the current repository designs. There was no evidence throughout the TIMODAZ experimental observations of a temperature-induced additional opening of fractures nor of a significant permeability increase of the DZ. Instead, thermally induced plasticity, swelling and creep seem to be beneficial to the sealing of fractures and to the recovery of a very low permeability in the DZ, close to that of an undisturbed clay host rock. Results from the TIMODAZ project indicate that the favourable properties of the clay host rock, which guarantee the effectiveness of the safety functions of the repository system, are expected to be maintained after the heating-cooling cycle. Hence, the basic assumptions usually made in PA calculations so far are expected to remain valid, and the performance of the system should not be affected in a negative way by the thermal evolution of the DZ around a radioactive waste repository in clay host rock.

  12. Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles.

    Science.gov (United States)

    Lin, Tzu-Ping; Hwang, Ruey-Lung; Huang, Kuo-Tsang; Sun, Chen-Yi; Huang, Ying-Che

    2010-05-01

    While thermal comfort in mass transportation vehicles is relevant to service quality and energy consumption, benchmarks for such comfort that reflect the thermal adaptations of passengers are currently lacking. This study reports a field experiment involving simultaneous physical measurements and a questionnaire survey, collecting data from 2,129 respondents, that evaluated thermal comfort in short- and long-haul buses and trains. Experimental results indicate that high air temperature, strong solar radiation, and low air movement explain why passengers feel thermally uncomfortable. The overall insulation of clothing worn by passengers and thermal adaptive behaviour in vehicles differ from those in their living and working spaces. Passengers in short-haul vehicles habitually adjust the air outlets to increase thermal comfort, while passengers in long-haul vehicles prefer to draw the drapes to reduce discomfort from extended exposure to solar radiation. The neutral temperatures for short- and long-haul vehicles are 26.2 degrees C and 27.4 degrees C, while the comfort zones are 22.4-28.9 degrees C and 22.4-30.1 degrees C, respectively. The results of this study provide a valuable reference for practitioners involved in determining the adequate control and management of in-vehicle thermal environments, as well as facilitating design of buses and trains, ultimately contributing to efforts to achieve a balance between the thermal comfort satisfaction of passengers and energy conserving measures for air-conditioning in mass transportation vehicles.

  13. Energizing and depletion of neutrals by a collisional plasma

    International Nuclear Information System (INIS)

    Fruchtman, A

    2008-01-01

    Neutral depletion can significantly affect the steady state of low temperature plasmas. Recent theoretical analyses predicted previously unexpected effects of neutral depletion in both collisional and collisionless regimes. In this paper we address the effect of the energy deposited in the neutral gas by a collisional plasma. The fraction of power deposited in the neutrals is shown to be independent of the amount of power. The first case we address is of a thermalized neutral gas. It is shown that a low heat conductivity of the neutral gas is followed by a high neutral temperature that results in a high neutral depletion even if the plasma pressure is small. In the second case neutrals are accelerated through charge exchange with ions leading to what we call neutral pumping, which is equivalent to ion pumping in a collisionless plasma. Neutral depletion is found in the second case for both a closed system (no net mass flow) and an open system (a finite mass flow). A thruster that employs a collisional plasma and pumped neutrals is compared with the thruster analyzed before that employs collisionless plasma.

  14. Neutralized transport experiment

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Eylon, S.; Henestroza, E.; Anders, A.; Gilson, E.P.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; Waldron, W.L.; Shuman, D.B.; Vanecek, D.L.; Welch, D.R.; Rose, D.V.; Thoma, C.; Davidson, R.C.; Efthimion, P.C.; Kaganovich, I.; Sefkow, A.B.; Sharp, W.M.

    2005-01-01

    Experimental details on providing active neutralization of high brightness ion beam have been demonstrated for Heavy Ion Fusion program. A K + beam was extracted from a variable-perveance injector and transported through 2.4 m long quadrupole lattice for final focusing. Neutralization was provided by a localized cathode arc plasma plug and a RF volume plasma system. Effects of beam perveance, emittance, convergence focusing angle, and axial focusing position on neutralization have been investigated. Good agreement has been observed with theory and experiment throughout the study

  15. Are "Market Neutral" Hedge Funds Really Market Neutral?

    OpenAIRE

    Andrew J. Patton

    2009-01-01

    Using a variety of different definitions of "neutrality," this study presents significant evidence against the neutrality to market risk of hedge funds in a range of style categories. I generalize standard definitions of "market neutrality," and propose five different neutrality concepts. I suggest statistical tests for each neutrality concept, and apply these tests to a database of monthly returns on 1423 hedge funds from five style categories. For the "market neutral" style, approximately o...

  16. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  17. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification.

    Science.gov (United States)

    Potchter, Oded; Cohen, Pninit; Lin, Tzu-Ping; Matzarakis, Andreas

    2018-08-01

    Over the past century, many research studies have been conducted in an attempt to define thermal conditions for humans in the outdoor environment and to grade thermal sensation. Consequently, a large number of indices have been proposed. The examination of human thermal indices by thermal subjective perception has become recently a methodical issue to confirm the accuracy, applicability and validation of human thermal indices. The aims of this study are: (a) to review studies containing both calculated human thermal conditions and subjective thermal perception in the outdoor environment (b) to identify the most used human thermal indices for evaluating human thermal perception (c) to examine the relation between human thermal comfort range and outdoor thermal environment conditions and (d) to compare between categories of thermal sensation in different climatic zones based on subjective perception and levels of thermal strain. A comprehensive literature review identified 110 peer-reviewed articles which investigated in-situ thermal conditions versus subjective thermal perception during 2001-2017. It seems that out of 165 human thermal indices that have been developed, only 4 (PET, PMV, UTCI, SET*) are widely in use for outdoor thermal perception studies. Examination of the relation between human thermal comfort range and outdoor thermal environment conditions for selective indices in different climatic zones shows that the range of the thermal comfort or dis-comfort is affected by the outdoor thermal environment. For the PET index, the "neutral" range for hot climates of 24-26°C is agreed by 95% of the studies where for cold climate, the "neutral" range of 15-20°C is agreed by 89% of the studies. For the UTCI, the "no thermal stress" category is common to all climates. The "no stress category" of 16-23°C is agreed by 80% of the case studies, while 100% of the case studies agreed that the range is between 18 and 23°C. Copyright © 2018 Elsevier B.V. All rights

  18. Effect of long term thermal ageing on the mechanical properties of ASTM A533B and A508 steels in the quenched and tempered and simulated heat affected zone conditions

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.G.; Gage, G.; Jordan, G.

    1985-04-01

    Manganese-molybdenum-nickel steels are used commonly in the fabrication of critical components in the PWR primary circuit operating at temperatures up to 345 C for periods up to several hundred thousand hours. Demonstration of structural integrity throughout service life requires quantification of the effects of thermal ageing on mechanical properties. Thermal ageing in the temperature range 300 to 550 C for durations up to 2000 h was studied in quenched and tempered A533B plate and simulated heat-affected-zone (HAZ) microstructures in A533B and A508 materials. A combination of tensile, hardness and Charpy impact tests were used to assess changes in rheological and toughness related properties. Quantitative fractography and Auger spectroscopy were used to characterize associated changes in fracture mode and grain boundary composition.

  19. Bunched beam neutralization

    International Nuclear Information System (INIS)

    Gammel, G.M.; Maschke, A.W.; Mobley, R.M.

    1979-01-01

    One of the steps involved in producing an intense ion beam from conventional accelerators for Heavy Ion Fusion (HIF) is beam bunching. To maintain space charge neutralized transport, neutralization must occur more quickly as the beam bunches. It has been demonstrated at BNL that a 60 mA proton beam from a 750 kV Cockcroft--Walton can be neutralized within a microsecond. The special problem in HIF is that the neutralization must occur in a time scale of nanoseconds. To study neutralization on a faster time scale, a 40 mA, 450 kV proton beam was bunched at 16 MHz. A biased Faraday cup sampled the bunched beam at the position where maximum bunching was nominally expected, about 2.5 meters from the buncher. Part of the drift region, about 1.8 meters, was occupied by a series of Gabor lenses. In addition to enhancing beam transport by transverse focussing, the background cloud of electrons in the lenses provided an extra degree of neutralization. With no lens, the best bunch factor was at least 20. Bunch factor is defined here as the ratio of the distance between bunches to the FWHM bunch length. With the lens, it was hoped that the increased plasma frequency would decrease the neutralization time and cause an increase in the bunch factor. In fact, with the lens, the instantaneous current increased about three times, but the bunch factor dropped to about 10. Even with the lens, the FWHM of the bunches at the position of maximum bunching was still comparable to or less than the oscillation period of the surrounding electron plasma. Thus, the electron density in the lens must increase before neutralization could be effective in this case, or bunching should be done at a lower frequency

  20. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.

    2016-10-21

    The opportunity for ignition assistance by a pulsed applied voltage is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields (E/N ≈ 100 Td) by a DC potential applied across the domain, resulting in non-thermal behavior of the plasma formed during the discharge. A two-fluid approach is employed to couple thermal neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported from the ignition zone drift rapidly through the domain, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect, which results in an increase in the energy of the electrons in the fresh mixture with increasing time. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame\\'s preheat zone. In the configuration considered, the effect of the nanosecond pulse is to increase the mass of fuel burned at equivalent times relative to the unsupported ignition through enhanced radical generation, resulting in an increased heat release rate in the immediate aftermath of the pulse.

  1. Flow characteristics in occupied zone – An experimental study with symmetrically located thermal plumes and low-momentum diffuse ceiling air distribution

    DEFF Research Database (Denmark)

    Lestinen, Sami; Kilpeläinen, Simo; Kosonen, Risto

    2018-01-01

    and turbulent mixing that can further yield a draught discomfort in an occupied zone. The main objective was to investigate large-scale airflow patterns and fluctuations as a result of interaction of buoyancy flows and diffuse ceiling flow. Experiments were performed in a test room of 5.5 m (length) x 3.8 m...

  2. Synthesis of gravity, magnetic and thermal studies at the Las Tres Virgenes geothermal zone, Baja California Sur, Mexico. Sintesis de los estudios de gravimetria, magnetometria y termometria en la zona geotermica de Las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Estrada, Gerardo (Departamento de Exploracion, Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)); Gonzalez Lopez, Macario (Residencia General de Cerro Prieto, Mexicali (Mexico))

    1998-01-15

    Las Tres Virgenes geothermal zone is located in the NE-SW central sector of a sigmoidal basin that regionally has a NW-SE trend. In the local deepest zone there is a NE-SE granodioritic basement horst acting as hydrologic barrier, that makes the fluids flow up. After moving in a direction parallel to the local horst, waters continue its regional SE-NW movement controlled by regional tectonics. The flanks of the granodioritic basement horst, and local N-S faulting act as fluid paths in the hydrothermal zone, but regional NW-SE regional faults determine the general flow direction. Both regional and local tectonics show magnetic evidences of the emplacement of magmatic bodies of intermediate to basic composition. Those along NW-SE trends are more noticeable but we consider they are not the present day heat source. Intermediate magmatism along NE-SW local trend seems to be less extensive but it is younger, so, we consider it constitutes the heat source of the hydrothermal system. Thermal data suggest that the heat source is located below the volcanic chain toward the S or SW of the wells, phenomena related with the general displacement of magmatism from NE to SW along the volcanic chain. However, recent intensive faulting permits a higher permeability in the northern sector in which there are slightly smaller temperatures but at shallower depths and with higher flow rates.

  3. Neutral beam development plan

    International Nuclear Information System (INIS)

    Staten, H.S.

    1980-08-01

    The national plan is presented for developing advanced injection systems for use on upgrades of existing experiments, and use on future facilities such as ETF, to be built in the late 1980's or early 90's where power production from magnetic fusion will move closer to a reality. Not only must higher power and longer pulse length systems be developed , but they must operate reliably; they must be a tool for the experimenter, not the experiment itself. Neutral beam systems handle large amounts of energy and as such, they often are as complicated as the plasma physics experiment itself. This presents a significant challenge to the neutral beam developer

  4. Neutral beam program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The structure of the beam injection program for the Doublet-3 device is discussed. The design considerations for the beam line and design parameters for the Doublet-3 ion souce are given. Major components of the neutral beam injector system are discussed in detail. These include the neutralizer, magnetic shielding, reflecting magnets, vacuum system, calorimeter and beam dumps, and drift duct. The planned location of the two-injector system for Doublet-3 is illustrated and site preparation is considered. The status of beamline units 1 and 2 and the future program schedule are discussed

  5. Fotointerpretation and geological integration of San Diego-El Naranjo thermal zone in the Nayarit State, Mexico; Fotointerpretacion e integracion geologica de la zona termal de San Diego-El Naranjo, Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Castillo H, Daniel [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1996-01-01

    The lithological, structural and thermal characteristics of a zone located in the State of Nayarit, Mexico between the Sierra Madre Occidental (SMO) and the Llanura Costera del Pacifico (PCP) are presented. The SMO is constituted by both extrusive and intrusive rocks of Oligo-Miocene age whereas the PCP is formed by conglomerates and erosional products derived from the disintegration of these rocks. Nine thermal superficial manifestations were observed at the site, with temperatures ranging from 35 degrees celsius to 80 degrees celsius. The chemical nature of these geothermal fluids is sodium-sulfate with estimated deep temperatures of 185 degrees celsius. From the structural view point, the zone is affected by faults and fractures aligned NE-SW and NW-SE; these structural trends control the thermalism. On the other hand, a 20 x 20 km ring-shaped geologic feature was identified within the area, which may be associated with the SMO. [Espanol] Se presentan las caracteristicas litologicas, estructurales y termales de una zona del Estado de Nayarit, comprendida entre las Provincias de la Sierra Madre Occidental (SMO) y la Llanura Costera del Pacifico (PCP). La primera comprende rocas igneas, intrusivas y extrusivas, de edad oligomiocenica. La segunda agrupa productos erosivos y conglomeraticos producidos por la desintegracion de las rocas; su edad se considera del Cuaternario. En la zona existen nueve localidades termales con un intervalo de temperatura de 35 grados celsius a 80 grados celsius, y un caracter quimico sulfatado-sodico. Por geotermometria se obtuvo una temperatura de 185 grados celsius. Estructuralmente dominan las fallas y fracturas NE-SW y NW-SE, que afectan a todas las rocas expuestas y controlan tambien al termalismo. Dentro del area se identifico una geoforma circular de 20 x 20 km, que se considera asociada y controlada geneticamente por la SMO.

  6. Effect of preliminary thermal treatment of EhP-56 on resistivity to cold cracks formation in the joint heat affected zone

    International Nuclear Information System (INIS)

    Fedorov, V.G.; Shubin, V.I.; Belov, Yu.M.

    1975-01-01

    Data are given on the influence of the conditions of prior heat treatment on the resistance of steel EP56 to cold cracking in the joint heat affected zone /HAZ/. Other things being equal, the resistance of steel EP56 to cold cracking in the HAZ increases with reduction of hardness and increase of austenite content. Conditions for welding steel EP56, preventing cracking in the HAZ, have been determined

  7. Kinetic Properties of the Neutral Solar Wind

    International Nuclear Information System (INIS)

    Florinski, V.; Heerikhuisen, J.

    2017-01-01

    Charge-exchange collisions between the solar wind protons and interstellar hydrogen produce a distinctive population of neutral hydrogen streaming radially at nearly the solar-wind speed. This tenuous population, known as the neutral solar wind (NSW) is thought to play a key role in the appearance of the Interplanetary Boundary EXplorer ribbon, a bright circular band in the sky that is the source of neutral hydrogen with energies near 1 keV. According to the leading model of the ribbon, the velocity distribution of NSW hydrogen is imparted on the pickup ions (PUIs) generated via charge exchange with the interstellar protons beyond the heliopause, and in this way controls the stability of the resulting ring distribution of PUIs against hydromagnetic wave generation. In this paper, we examine the velocity distributions of the NSW atoms in the heliosphere and the outer heliosheath regions by following the phase-space trajectories of the Boltzmann equation. It is demonstrated that these distributions are highly anisotropic, with the parallel (radial) temperature greatly exceeding the perpendicular temperature. Ions picked up near 90° from the anisotropic NSW would form a stable ring distribution capable of generating the ribbon flux. We also discuss a second population of neutrals born in charge transfer collisions with interstellar PUIs, the so-called neutralized pickup ion (NPI) component. Their high thermal velocities translate into large parallel velocity spread of the daughter ribbon PUIs, which would adversely affect plasma stability in local interstellar space.

  8. Kinetic Properties of the Neutral Solar Wind

    Science.gov (United States)

    Florinski, V.; Heerikhuisen, J.

    2017-03-01

    Charge-exchange collisions between the solar wind protons and interstellar hydrogen produce a distinctive population of neutral hydrogen streaming radially at nearly the solar-wind speed. This tenuous population, known as the neutral solar wind (NSW) is thought to play a key role in the appearance of the Interplanetary Boundary EXplorer ribbon, a bright circular band in the sky that is the source of neutral hydrogen with energies near 1 keV. According to the leading model of the ribbon, the velocity distribution of NSW hydrogen is imparted on the pickup ions (PUIs) generated via charge exchange with the interstellar protons beyond the heliopause, and in this way controls the stability of the resulting ring distribution of PUIs against hydromagnetic wave generation. In this paper, we examine the velocity distributions of the NSW atoms in the heliosphere and the outer heliosheath regions by following the phase-space trajectories of the Boltzmann equation. It is demonstrated that these distributions are highly anisotropic, with the parallel (radial) temperature greatly exceeding the perpendicular temperature. Ions picked up near 90° from the anisotropic NSW would form a stable ring distribution capable of generating the ribbon flux. We also discuss a second population of neutrals born in charge transfer collisions with interstellar PUIs, the so-called neutralized pickup ion (NPI) component. Their high thermal velocities translate into large parallel velocity spread of the daughter ribbon PUIs, which would adversely affect plasma stability in local interstellar space.

  9. Mod en neutral seksualitet!

    DEFF Research Database (Denmark)

    Leer, Jonatan

    2013-01-01

    Towards a Neutral Sexuality! or Roland Barthes as a Queer Thinker? This article argues that the work of Roland Barthes has interesting perspectives in common with the queer theory. This argument will be put forward by using his concept of ‘the neutral’ that Barthes defines as “that which outplays...

  10. Issues in neutral currents

    International Nuclear Information System (INIS)

    Sehgal, L.M.

    1980-01-01

    The experimental results on low energy confirming the structure of the effective Lagrangian of the weak neutral current processes as predicted by the Salam-Weinberg model are reviewed. Some possible modifications of the effective Lagrangian and the feasibility of their experimental verification are also considered. (P.L.)

  11. ITER neutral beam system

    International Nuclear Information System (INIS)

    Mondino, P.L.; Di Pietro, E.; Bayetti, P.

    1999-01-01

    The Neutral Beam (NB) system for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration with the tokamak and with the rest of the plant. Operational requirements and maintainability have been considered in the design. The paper considers the integration with the tokamak, discusses design improvements which appear necessary and finally notes R and D progress in key areas. (author)

  12. CINEMA (Cubesat for Ion, Neutral, Electron, MAgnetic fields)

    Science.gov (United States)

    Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Wang, L.; Sample, J. G.; Horbury, T. S.; Roelof, E. C.; Lee, D.; Seon, J.; Hines, J.; Vo, H.; Tindall, C.; Ho, J.; Lee, J.; Kim, K.

    2009-12-01

    The NSF-funded CINEMA mission will provide cutting-edge magnetospheric science and critical space weather measurements, including high sensitivity mapping and high cadence movies of ring current, >4 keV Energetic Neutral Atom (ENA), as well as in situ measurements of suprathermal electrons (>~2 keV) and ions (>~ 4 keV) in the auroral and ring current precipitation regions, all with ~1 keV FWHM resolution and uniform response up to ~100 keV. A Suprathermal Electron, Ion, Neutral (STEIN) instrument adds an electrostatic deflection system to the STEREO STE (SupraThermal Electron) 4-pixel silicon semiconductor sensor to separate ions from electrons and from ENAs up to ~20 keV. In addition, inboard and outboard (on an extendable 1m boom) magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. A new attitude control system (ACS) uses torque coils, a solar aspect sensor and the magnetometers to de-tumble the 3u CINEMA spacecraft, then spin it up to ~1 rpm with the spin axis perpendicular to the ecliptic, so STEIN can sweep across most of the sky every minute. Ideally, CINEMA will be placed into a high inclination low earth orbit that crosses the auroral zone and cusp. An S-band transmitter will be used to provide > ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station. Two more identical CINEMA spacecraft will be built by Kyung Hee University (KHU) in Korea under their World Class University (WCU) program, to provide stereo ENA imaging and multi-point in situ measurements. Furthermore, CINEMA’s development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft will be important for future nanosatellite space missions.

  13. Thermal-hydraulic design calculations for the annular fuel element with replaceable test bundles (TOAST) on the test zone position 205 of KNK II/3

    International Nuclear Information System (INIS)

    Norajitra, P.

    1984-10-01

    Annular fuel elements are foreseen in KNK II as carrier elements for irradiation inserts and test bundles. For the third core a reloadable annular element on position 205 is foreseen, in which replaceable 19-pin test bundles (TOAST) shall be irradiated. The present report deals with the thermal-hydraulic design of the annular carrier element and the test bundle, whereby the test bundle required additional optimization. The code CIA has been used for the calculations. Start of irradiation of the subassembly is planned at the beginning of the third core operation. After optimization of the pin-spacer geometry in the test bundle, design calculations for both bundles were performed, whereby thermal coupling between both was taken into account. The calculated mass-flows and temperature distributions are given for the nominal and the eccentric element configuration. The calculated bundle pressure losses have been corrected according to experimental results [de

  14. Segregation behavior of phosphorus in the heat-affected zone of an A533B/A182 dissimilar weld joint before and after simulated thermal aging

    International Nuclear Information System (INIS)

    Zhai, Ziqing; Miyahara, Yuichi; Abe, Hiroshi; Watanabe, Yutaka

    2014-01-01

    Highlights: • Impacts of aging on P segregation in actual heat-affected zone were examined by 3D-APT. • Non-equilibrium segregation of P dominated in subsequent cooling after welding. • Equilibrium segregation of P prevailed in step-cooling heat treatment. • High enrichment of P at grain/packet boundaries occurred in CGHAZ and ICCGHAZ. • Level of P enrichment at precipitate/matrix interface seemed species-dependent. - Abstract: The segregation behavior of phosphorus (P) in the heat-affected zone (HAZ) of an A533B/A182 dissimilar weld joint before and after step cooling was investigated with atom probe tomography. At grain/packet boundaries, the final P segregation level consisted of non-equilibrium segregation that occurred during cooling after welding and post-weld heat treatment (PWHT) and equilibrium segregation that occurred during step cooling. In both processes, higher P coverage was observed in the coarse-grained and intercritically reheated coarse-grained HAZ than in the fine-grained HAZ and base material. The cooling after welding and PWHT seemed to have a pronounced impact on P segregation in the subsequent aging process. In addition, P segregation also occurred at the precipitate/matrix interfaces of cementite, Mo 2 C and Al–Si rich precipitates. The evolution of P coverage at these two types of sites suggested increasing risks of embrittlement with an increase in aging time

  15. Modeling of thermalization phenomena in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.

    2018-05-01

    Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.

  16. Antihypertensive neutral lipid

    Science.gov (United States)

    Snyder, F.L.; Blank, M.L.

    1984-10-26

    The invention relates to the discovery of a class of neutral acetylated either-linked glycerolipids having the capacity to lower blood presure in warm-blooded animals. This physiological effect is structure sensitive requiring a long chain alkyl group at the sn-1 position and a short carbon chain acyl group (acetyl or propionyl) at the sn-2 position, and a hydroxyl group at the sn-3 position.

  17. Exercise Equipment: Neutral Buoyancy

    Science.gov (United States)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  18. Neutral beams for mirrors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1983-01-01

    An important demonstration of negative ion technology is proposed for FY92 in the MFTF-α+T, an upgrade of the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory. This facility calls for 200-keV negative ions to form neutral beams that generate sloshing ions in the reactor end plugs. Three different beam lines are considered for this application. Their advantages and disadvantages are discussed

  19. Gargamelle: neutral current event

    CERN Multimedia

    1973-01-01

    This event shows real tracks of particles from the 1200 litre Gargamelle bubble chamber that ran on the PS from 1970 to 1976 and on the SPS from 1976 to 1979. In this image a neutrino passes close to a nucleon and reemerges as a neutrino. Such events are called neutral curent, as they are mediated by the Z0 boson which has no electric charge.

  20. Climate Neutral Campus Key Terms and Definitions | Climate Neutral Research

    Science.gov (United States)

    Campuses | NREL Neutral Campus Key Terms and Definitions Climate Neutral Campus Key Terms and Definitions The term climate neutral evolved along with net zero and a number of other "green" and accuracy in these areas lets research campuses know exactly how close they are to climate

  1. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  2. Corrosion protection method by neutral treatment for boilers

    International Nuclear Information System (INIS)

    Ishikawa, Hisashige

    1978-01-01

    The corrosion protection method by neutral treatment has been applied in Europe mainly for boilers and nuclear reactors instead of existing all volatile treatment. The cause of corrosion of steel and copper in water and the effect of neutral treatment, that is the effect of protection film of magnetite in steel and cuprous oxide in copper alloy, are explained with the characteristic figure of PH, electromotive force and chemical formula. The experience of applying this neutral treatment to the Wedel thermal power plant and the system flow sheet, the water treatment equipment, relating instrumentations and the water examination are described in detail. Hydrogen peroxide is injected in this neutral treatment. The comparison between the existing water treatment and the neutral treatment and their merits and demerits are explained. (Nakai, Y.)

  3. Bremsstrahlung and neutral currents

    International Nuclear Information System (INIS)

    Ellis, R.G.; McKellar, B.H.J.

    1979-01-01

    The utility of the bremsstrahlung process in detecting parity violations from V-A weak neutral current interference is analysed in two ways. Firstly, bremsstrahlung from polarized lepton-nucleus scattering has an asymmetry with respect to the polarization of the incident leptons, and secondly, bremsstrahlung from unpolarized lepton nucleus scattering has a small circular polarization. The magnitude of each effect is calculated. The ratio of the parity violating contribution and the parity conserving contribution to the cross section is shown to be a misleading measure of the utility of these experiments. A parameter, the figure of merit, is introduced and used to discuss the feasibility of possible experiments

  4. Plasma neutralizer for H- beams

    International Nuclear Information System (INIS)

    Grossman, M.W.

    1977-01-01

    Neutralization of H - beams by a hydrogen plasma is discussed. Optimum target thickness and maximum neutralization efficiency as a function of the fraction of the hydrogen target gas ionized is calculated for different H - beam energies. Also, the variation of neutralization efficiency with respect to target thickness for different H - beam energies is computed. The dispersion of the neutralized beam by a magnetic field for different energies and different values of B . z is found. Finally, a type of plasma jet is proposed, which may be suitable for a compact H - neutralizer

  5. Summary of fueling by neutral beams

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1978-01-01

    Injected neutral beams supply energy, particles, and momentum to a plasma, while the thermalizing fast ions also increase the fusion reactivity by beam-target or hot-ion reactions. Magnetic mirror machines take advantage of all of these features, with the exception of the momentum input. Neutral-beam injection into toroidal plasmas has been proposed and has so far been utilized mainly as a source of heat, and secondarily as a source of increased neutron production. Nevertheless, fueling by injected beams can also play an important role in toroidal plasmas, especially in the start-up phase of ignited plasmas, or for the quasi-steady maintenance of low-Q plasmas where the average ion energy may exceed the electron energy by a large factor

  6. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China

    Directory of Open Access Journals (Sweden)

    Zhibin Wu

    2017-09-01

    Full Text Available Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC located in the hot summer and cold winter (HSCW climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET* was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  7. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China.

    Science.gov (United States)

    Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong

    2017-09-21

    Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  8. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  9. Geochemistry of the thermal springs from Piedras de Lumbre Zone, Chihuahua, Mexico; Geoquimica de los manantiales termales de la zona de Piedras de Lumbre, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tello Hinojosa, Enrique [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1996-01-01

    Chemical analysis of water produced by 12 hot springs in the geothermal areas of Recubichi and Piedras de Lumbre, Chihuahua, Mexico were carried out in order to establish the geochemical characteristic of the groundwater and to know their interaction with deeper geothermal fluids. We made two sampling of water and gases in 1984 and 1995. The chemical composition of waters produced by the springs is of sulfate alkaline type. It was found, according to the Na:K:Mg relative content that most hot springs are located in the partial equilibrium zone, whereas the lowest temperature hot springs shift toward the groundwaters domain. The temperature estimated from gas geothermometry was 187 degrees celsius. It was found that the He has a deep origin, whereas the N{sub 2} is of atmospheric origin. Methane was not detected, suggesting that equilibria between gases and the liquid phase was reached at temperatures over 150 degrees celsius. The chemical compositions for the springs at Recubichi and Piedras de Lumbre zones are similar, so, it suggests that they have the same origin. The water quality of the springs for agricultural use, is classified between C2-S2 and C2-S3 types, that suggest that this water can be used for irrigation. The arsenic element was not detected and the concentration for the boron element is lower that 0.175 ppm. [Espanol] Los analisis quimicos de agua de 12 manantiales y 4 fumarolas de las zonas de Recubichi y Piedras de Lumbre, Chihuahua, Mexico fueron estudiados con el fin de conocer las caracteristicas geoquimicas del acuifero somero y su interaccion con fluidos geotermicos. Se realizaron 2 muestreos tanto de agua como de gases en 1984 y 1995. En ambos muestreos se encontro que la composicioon quimica del agua de todos los manantiales es del tipo sulfatado-sodico. De acuerdo con el contenido relativo de Na:K:Mg el agua de los manantiales mas calientes (93 grados celsius), se ubica en la zona de equilibrio parcial, mientras que en los de menor

  10. Stochastic Inversion of Geomagnetic Observatory Data Including Rigorous Treatment of the Ocean Induction Effect With Implications for Transition Zone Water Content and Thermal Structure

    Science.gov (United States)

    Munch, F. D.; Grayver, A. V.; Kuvshinov, A.; Khan, A.

    2018-01-01

    In this paper we estimate and invert local electromagnetic (EM) sounding data for 1-D conductivity profiles in the presence of nonuniform oceans and continents to most rigorously account for the ocean induction effect that is known to strongly influence coastal observatories. We consider a new set of high-quality time series of geomagnetic observatory data, including hitherto unused data from island observatories installed over the last decade. The EM sounding data are inverted in the period range 3-85 days using stochastic optimization and model exploration techniques to provide estimates of model range and uncertainty. The inverted conductivity profiles are best constrained in the depth range 400-1,400 km and reveal significant lateral variations between 400 km and 1,000 km depth. To interpret the inverted conductivity anomalies in terms of water content and temperature, we combine laboratory-measured electrical conductivity of mantle minerals with phase equilibrium computations. Based on this procedure, relatively low temperatures (1200-1350°C) are observed in the transition zone (TZ) underneath stations located in Southern Australia, Southern Europe, Northern Africa, and North America. In contrast, higher temperatures (1400-1500°C) are inferred beneath observatories on islands, Northeast Asia, and central Australia. TZ water content beneath European and African stations is ˜0.05-0.1 wt %, whereas higher water contents (˜0.5-1 wt %) are inferred underneath North America, Asia, and Southern Australia. Comparison of the inverted water contents with laboratory-constrained water storage capacities suggests the presence of melt in or around the TZ underneath four geomagnetic observatories in North America and Northeast Asia.

  11. High-Latitude Neutral Mass Density Maxima

    Science.gov (United States)

    Huang, C. Y.; Huang, Y.; Su, Y.-J.; Huang, T.; Sutton, E. K.

    2017-10-01

    Recent studies have reported that thermospheric effects due to solar wind driving can be observed poleward of auroral latitudes. In these papers, the measured neutral mass density perturbations appear as narrow, localized maxima in the cusp and polar cap. They conclude that Joule heating below the spacecraft is the cause of the mass density increases, which are sometimes associated with local field-aligned current structures, but not always. In this paper we investigate neutral mass densities measured by accelerometers on the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) spacecraft from launch until years 2010 (CHAMP) and 2012 (GRACE), approximately 10 years of observations from each satellite. We extract local maxima in neutral mass densities over the background using a smoothing window with size of one quarter of the orbit. The maxima have been analyzed for each year and also for the duration of each set of satellite observations. We show where they occur, under what solar wind conditions, and their relation to magnetic activity. The region with the highest frequency of occurrence coincides approximately with the cusp and mantle, with little direct evidence of an auroral zone source. Our conclusions agree with the "hot polar cap" observations that have been reported and studied in the past.

  12. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  13. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  14. Preparation of translationally cold neutral molecules.

    Science.gov (United States)

    Di Domenicantonio, Giulia; Bertsche, Benjamin; Osterwalder, Andreas

    2011-01-01

    Efforts at EPFL to obtain translationally cold neutral molecules are described. Active deceleration of polar molecules is performed by confining the molecules in moving three-dimensional electrostatic traps, and by appropriately choosing the velocity of those traps. Alternatively, cold molecules can be obtained by velocity filtering. Here, the velocity of the molecules is not changed, but instead the cold molecules are extracted from a thermal sample by using the competition between the electrostatic force and the centrifugal force inside a bent electrostatic guide for polar molecules.

  15. Spectroscopy of neutral radium

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Aran; De, Subhadeep; Jungmann, Klaus; Wilschut, Hans; Willmann, Lorenz [KVI, University of Groningen, Groningen (Netherlands)

    2008-07-01

    The heavy alkaline earth atoms radium is uniquely sensitive towards parity and time reversal symmetry violations due to a large enhancement of an intrinsic permanent electric dipole moment of the nucleous or the electron. Furthermore, radium is sensitive to atomic parity violation and the nuclear anapole moment. To prepare such experiments spectroscopy of relevant atomic states need to be done. At a later stage we will build a neutral atom trap for radium. We have built an atomic beam of the short lived isotope {sup 225}Ra with a flux of several 10{sup 4} atoms/sec. We are preparing the laser spectroscopy using this beam setup. In the preparation for efficient laser cooling and trapping we have successfully trapped barium, which is similar in it's requirements for laser cooling. The techniques which we have developed with barium can be used to trap rare radium isotopes. We report on the progress of the experiments.

  16. NEUTRAL Na IN COMETARY TAILS AS A REMNANT OF EARLY AQUEOUS ALTERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, Y.; Pauzat, F.; Doronin, M.; Zicler, E. [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7616, F-75252 Paris CEDEX 05 (France); Mousis, O. [Laboratoire d’Astrophysique de Marseille (LAM), Aix Marseille Université, CNRS, UMR 7326, F-13388 Marseille (France); Guilbert-Lepoutre, A.; Ali-Dib, M. [Observatoire des Sciences de l’Univers de Besançon, Université de Franche-Comté, Institut UTINAM, CNRS/INSU, UMR 6213, F-35030 Besançon CEDEX (France); Leblanc, F. [LATMOS/IPSL, Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 8190, F-75252 Paris CEDEX 05 (France); Doressoundiram, A. [LESIA—Observatoire de Paris, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, CNRS UMR 8109, F-92190 Meudon (France)

    2015-03-10

    Observations of comet C/1995O1 Hale-Bopp during the spring of 1997 led to the discovery of a neutral sodium tail whose origin is still not clearly understood. Here, we propose an interpretation for the origin of this sodium tail, which is based upon chemical grounds. Starting from Na{sup +} trapped chemically during the condensation of refractory material in the protosolar nebula to its incorporation in the building blocks of comets and its transfer from refractory to volatile phases in the nucleus due to aqueous alteration, we follow the chemical path of sodium until its transformation into a neutral atom when released from the sublimating cometary ice. We propose that two Na reservoirs should coexist in a comet: one coming from the refractory dust, the other one from the icy matrix. Their relative importance would depend on the extent of the zone where liquid water formed within the nucleus and the time during which water remained liquid, thus favoring the Na{sup +} exchange between rocks and ice. These two key parameters would in turn strongly depend on the thermal history of the comet (amounts of radiogenic nuclides, orbital history, etc.). If our model is correct, the detection of Na originating from water ice would be a testimonial of the past aqueous alteration of the comet or its parent body.

  17. Geochemistry of the thermal springs from San Antonio El Bravo zone, Chihuahua, Mexico; Geoquimica de manantiales termales de la zona de San Antonio El Bravo, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tello Hinojosa, Enrique [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1996-05-01

    Isotopic and chemical analysis o water produced by 14 springs in the San Antonio El Bravo, Chihuahua, Mexico geothermal area, were carried out in order to establish the geochemical characteristics of the groundwater and to know their interaction with deeper geothermal fluids. We made two samplings of water and gases in 1984 and 1995. The chemical composition of waters produced by the springs in of sodium-bicarbonate-chloride type. It was found, according to the Na:K:Mg relative content, that most hot springs are located in the partial equilibrium zone, whereas the lowest temperature hot springs shift toward the groundwaters domain. The temperature estimated from gas geothermometry was 129 degrees celsius. The isotopic composition at Ojo Caliente and Infiernito springs presents enrichment in {delta}{sup 18}O, product rock-water interaction at high temperature. The Agua Roque spring is located in the line of meteoric waters. Analysis of metals was carried out too, the concentration of gold element is 0.09 mg/l in Ojo Caliente and Infiernito springs, whereas silver, aluminum and iron elements were not detected. The water quality of the springs for agricultural use, is classified between C2-S1, C3-S1, C3- S2, C4-S3 and C4-S4 types, that suggests that only the water from Agua Roque can be used for irrigation. The arsenic element was not detected but the concentration of the boron element is high for irrigation use (2.39 ppm). [Espanol] Los analisis quimicos e isotopicos de agua de 14 manantiales de la zona de San Antonio El Bravo. Chihuahua, Mexico, fueron realizados con el fin de conocer las caracteristicas geoquimicas del acuifero somero y su interaccion con fluidos geotermicos. Se realizaron 2 muestreos tanto de agua como de gases en 1984 y 1995. En ambos muestreos se encontro que la composicion quimica del agua de todos los manantiales es del tipo bicarbonatado-clorurado-sodico. De acuerdo con el contenido relativo de Na:K:Mg el agua de los manantiales mas calientes

  18. Net neutrality and audiovisual services

    OpenAIRE

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication networks: the control over the distribution of audiovisual services constitutes a vital part of the problem. In this contribution, the phenomenon of net neutrality is described first. Next, the European a...

  19. Effect of welding thermal cycles on the structure and properties of simulated heat-affected zone areas in X10CrMoVNb9-1 (T91) steel at a state after 100,000 h of operation

    Energy Technology Data Exchange (ETDEWEB)

    Łomozik, Mirosław, E-mail: miroslaw.lomozik@is.gliwice.pl [Instytut Spawalnictwa, Testing of Materials Weldability and Welded Constructions Department, 44-100 Gliwice, Bł. Czesława 16-18 (Poland); Hernas, Adam, E-mail: adam.hernas@polsl.pl [Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 40-019 Katowice, Krasińskiego 8 str. (Poland); Zeman, Marian L., E-mail: marian.zeman@is.gliwice.pl [Instytut Spawalnictwa, Testing of Materials Weldability and Welded Constructions Department, 44-100 Gliwice, Bł. Czesława 16-18 (Poland)

    2015-06-18

    The article presents results of structural tests (light, scanning electron and scanning transmission electron microscopy) of X10CrMoVNb9-1 (T91) creep-resisting steel after approximately 100,000 h of operation. It was ascertained that the parent metal of T91 steel is characterized by the microstructure of tempered martensite with M{sub 23}C{sub 6} carbide precipitates and few dispersive precipitates of MX-type niobium and vanadium carbonitrides. The most inconvenient change in T91 steel precipitate morphology due to long-term operation is the appearance of the Laves Fe{sub 2}Mo phase which along with M{sub 23}C{sub 6} carbide particles forms elongated blocks and conglomerates on grain boundaries. The article also presents results of tests related to the effect of simulated welding thermal cycles on selected properties of X10CrMoVNb9-1 (T91) grade steel at a state after approximately 100,000 h of operation. The tests involved the determination of the chemical composition of the steel tested as well as impact tests, hardness measurements and microscopic metallographic examination (based on light microscopy) of simulated heat-affected zone (HAZ) areas for a cooling time (t{sub 8/5}) restricted within a range between 3 s and 120 s, with and without heat treatment. The tests revealed that, among other results, hardness values of simulated HAZ areas in X10CrMoVNb9-1 (T91) steel do not guarantee cold crack safety of the steel at the state without additional heat treatment. It was also observed that simulated welding thermal cycles of cooling times t{sub 8/5}=3, 12, 60 and 120 s do not significantly affect the toughness and hardness of simulated HAZ areas of the steel tested.

  20. LADEE Neutral Mass Spectrometer Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains the data collected by the Neutral Mass Spectrometer (NMS) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE)...

  1. Phenomenology of neutral current interactions

    International Nuclear Information System (INIS)

    Sakurai, J.J.

    1978-01-01

    Neutral-current interactions are discussed within a rather general phenomenological framework without commitment to any particular theoretical model. Three points are kept in mind: what various experiments really measure; the performing of complete experiments to determine the neutral-current couplings; and the testing of models in an objective, emotionally uninvolved manner. The following topics are considered: neutrino-electron scattering, hadronic currents and models, neutrino-induced inclusive hadronic reactions, neutrino-induced exclusive hadronic reactions, and neutral-current phenomena without neutrinos. In conclusion, what has actually been learned about neutral-current interactions is summarized. 9 figures, 2 tables

  2. Performance of the PDX neutral beam wall armor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Eubank, H.P.; Kozub, T.A.; Williams, M.D.

    1985-02-01

    The PDX wall armor was designed to function as an inner wall thermal armor, a neutral beam diagnostic, and a large area inner toroidal plasma limiter. In this paper we discuss its thermal performance as wall armor during two years of PDX neutral beam heating experiments. During this period it provided sufficient inner wall protection to permit perpendicular heating injections into normal and disruptive plasmas as well as injections in the absence of plasma involving special experiments, calibrations, and tests important for the optimization and development of the PDX neutral beam injection system. Many of the design constraints and performance issues encountered in this work are relevant to the design of larger fusion devices

  3. On becoming neutral: effects of experimental neutralizing reconsidered.

    Science.gov (United States)

    van den Hout, M; van Pol, M; Peters, M

    2001-12-01

    Behaviour Research and Therapy 34 (1996) 889-898 found that writing out a negative thought produced anxiety and an urge to neutralize the thought, that instructing participants to neutralize the thought reduced anxiety/neutralization urge in the short run (i.e. within 2 min), but that in the control group 20 min without instruction was attended by the same reduction in anxiety/urge to neutralize ("natural decay"). The observations were made with pariticipants who scored high on "thought action fusion" and the experiment was set up as exerimental model of obsessions. We repeated the study with participants that were not selected on thought action fusion. All the findings reported by Behaviour Research and Therapy 34 (1996) 889-898 were replicated. Correlational analysis indicated that the strength of the effect was not related to scores on scales measuring "thought action fusion". Behaviour Research and Therapy 34 (1996) 889-898 did not assess whether non-neutralizing was followed by immediate reductions in distress. We did assess this and found that the larger part of the immediate reduction of distress after neutralization also occurs when no neutralization instruction is given. The effects of neutralization instructions in the present type of experiment are considerably less powerful than suggested earlier.

  4. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  5. The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland

    Directory of Open Access Journals (Sweden)

    Jan K. Kazak

    2018-04-01

    Full Text Available The increasing level of antropopression has a negative impact on environmental resources and has reached the level of our planetary boundaries. One limitation is land use change caused by urbanization. Global policies prove the need to undertake action in order to develop more sustainable human settlements, which would be adapted better to potential future climate change effects. Among such changes are the increase of average temperatures and extreme events like heat waves. Those changes are more severe in urban areas due to land use development, and result in the urban heat island effect (UHI, which has a negative impact on the thermal comfort of citizens. The paper presents a decision support system that can be used for the assessment of areas to the potential exposure to the UHI effect. The system integrates scenario analysis, land use modelling in cellular automata (Metronamica, and an indicator-based assessment in a geographic information system (ArcGIS. The applicability of the model is illustrated through developing scenarios for the future land use allocation of the Wrocław Larger Urban Zone (Poland. The results of the calculations show which scenario is the least vulnerable to UHI effects. Moreover, for each scenario, cores of urban areas were identified, in which certain urban design patterns accounting for adaptation to climate change could be implemented. The study provides a guideline for local authorities on where to focus actions in order to create more sustainable urban structures and to better adapt to climate change and environmental extremes.

  6. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  7. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  8. Is science metaphysically neutral?

    Science.gov (United States)

    Fry, Iris

    2012-09-01

    This paper challenges the claim that science is metaphysically neutral upheld by contenders of the separation of peacefully co-existent science and religion and by evolutionary theists. True, naturalistic metaphysical claims can neither be refuted nor proved and are thus distinct from empirical hypotheses. However, metaphysical assumptions not only regulate the theoretical and empirical study of nature, but are increasingly supported by the growing empirical body of science. This historically evolving interaction has contributed to the development of a naturalistic worldview that renounces the necessity of a transcendent god and of purposeful design. The thesis presented here differs not only from the claims of the "separatists" and of evolutionary theists. In pointing to the metaphysical aspects of science, I also criticize the failure of some evolutionary naturalists to distinguish between empirical and metaphysical contentions. Most important, based on the examination of science suggested here, creationists' false accusation that science is only a naturalistic dogma is refuted. Finally, the difficulties involved in the position endorsed here for the public support of evolution are acknowledged, taking into account the high religious profile of the American society and the social and political context in the US and in other countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Neutral Beam Power System for TPX

    International Nuclear Information System (INIS)

    Ramakrishnan, S.; Bowen, O.N.; O'Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-01-01

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements

  10. Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: a comparative study between Melbourne and Hong Kong

    Science.gov (United States)

    Lam, Cho Kwong Charlie; Lau, Kevin Ka-Lun

    2018-04-01

    The Universal Thermal Climate Index (UTCI) is an index for assessing outdoor thermal environment which aims to be applicable universally to different climates. However, the scale of UTCI thermal stress classification can be interpreted depending on the context. Previous studies validated the UTCI in individual cities, but comparative studies between different cities are scarce. This study examines the differences in thermal perception and clothing choices between residents from two climate zones over similar UTCI ranges in summer. We compared summer thermal comfort survey data from Melbourne (n = 2162, January-February 2014) and Hong Kong (n = 414, July-August 2007). We calculated the UTCI from outdoor weather station data and used t tests to compare the differences in thermal sensation and clothing between Hong Kong and Melbourne residents. When the UTCI was between 23.0 and 45.9 °C, Melbourne residents wore significantly more clothing (0.1 clo) than Hong Kong residents. Hong Kong residents reported neutral to warm sensation at a higher UTCI range compared with the dynamic thermal sensation (DTS) model. Moreover, Melbourne residents reported warm and hot sensation at a higher UTCI range than the DTS model. Respondents in Melbourne also exhibited different responses to the mean radiant temperature under shaded and sunny conditions, while such a trend was not observed in Hong Kong. It would be advisable to define different thermal sensation thresholds for the UTCI scale according to different climate zones for better prediction of the outdoor thermal comfort of different urban populations.

  11. The merits of neutral theory

    NARCIS (Netherlands)

    Alonso, D.; Etienne, R.S.; McKane, A.J.

    2006-01-01

    Hubbell's neutral theory of biodiversity has challenged the classic niche-based view of ecological community structure. Although there have been many attempts to falsify Hubbell's theory, we argue that falsification should not lead to rejection, because there is more to the theory than neutrality

  12. Neutral evolution of mutational robustness

    NARCIS (Netherlands)

    Nimwegen, Erik van; Crutchfield, James P.; Huynen, Martijn

    1999-01-01

    We introduce and analyze a general model of a population evolving over a network of selectively neutral genotypes. We show that the population s limit distribution on the neutral network is solely determined by the network topology and given by the principal eigenvector of the network

  13. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  14. Design Features of the Neutral Particle Diagnostic System for the ITER Tokamak

    Science.gov (United States)

    Petrov, S. Ya.; Afanasyev, V. I.; Melnik, A. D.; Mironov, M. I.; Navolotsky, A. S.; Nesenevich, V. G.; Petrov, M. P.; Chernyshev, F. V.; Kedrov, I. V.; Kuzmin, E. G.; Lyublin, B. V.; Kozlovski, S. S.; Mokeev, A. N.

    2017-12-01

    The control of the deuterium-tritium (DT) fuel isotopic ratio has to ensure the best performance of the ITER thermonuclear fusion reactor. The diagnostic system described in this paper allows the measurement of this ratio analyzing the hydrogen isotope fluxes (performing neutral particle analysis (NPA)). The development and supply of the NPA diagnostics for ITER was delegated to the Russian Federation. The diagnostics is being developed at the Ioffe Institute. The system consists of two analyzers, viz., LENPA (Low Energy Neutral Particle Analyzer) with 10-200 keV energy range and HENPA (High Energy Neutral Particle Analyzer) with 0.1-4.0MeV energy range. Simultaneous operation of both analyzers in different energy ranges enables researchers to measure the DT fuel ratio both in the central burning plasma (thermonuclear burn zone) and at the edge as well. When developing the diagnostic complex, it was necessary to account for the impact of several factors: high levels of neutron and gamma radiation, the direct vacuum connection to the ITER vessel, implying high tritium containment, strict requirements on reliability of all units and mechanisms, and the limited space available for accommodation of the diagnostic hardware at the ITER tokamak. The paper describes the design of the diagnostic complex and the engineering solutions that make it possible to conduct measurements under tokamak reactor conditions. The proposed engineering solutions provide a safe—with respect to thermal and mechanical loads—common vacuum channel for hydrogen isotope atoms to pass to the analyzers; ensure efficient shielding of the analyzers from the ITER stray magnetic field (up to 1 kG); provide the remote control of the NPA diagnostic complex, in particular, connection/disconnection of the NPA vacuum beamline from the ITER vessel; meet the ITER radiation safety requirements; and ensure measurements of the fuel isotopic ratio under high levels of neutron and gamma radiation.

  15. A neutral-particle-based divertor model for Tokamak reactors

    International Nuclear Information System (INIS)

    Emmert, G.A.

    1977-04-01

    A zero-dimensional divertor model is derived from one-dimensional 'fluid' equations for the plasma and neutral particles. In this model the important process determining wall bombardment is charge exchange between the background neutral gas and the ions. Simple formulas are presented for the rate of wall bombardment, for the mean temperature and for the shielding efficiency of the plasma in the scrape-off zone. Only the latter parameter is strongly dependent on the parallel transport process in the scrape-off zone. None of the parameters are dependent on the perpendicular transport process. The model shows reasonable agreement with the one-dimensional computer simulation calculations of Mense. (orig.) [de

  16. Disruption Neutral Point Experiment on Alcator C-Mod

    Science.gov (United States)

    Granetz, R. S.; Nakamura, Y.

    2000-10-01

    Disruptions of single-null elongated plasmas generally result in loss of vertical position control, leading to a current quench occurring at the top or bottom of the machine, with all the attendant problems of halo and eddy currents flowing in divertor structures. On JT-60U, it has been found that if the plasma is operated with its magnetic axis at a particular height, called the neutral point, the initial vertical drift after a thermal quench is significantly slower than usual, and sometimes can even be arrested, thereby avoiding a current quench in the divertor region entirely. In an ongoing collaboration between MIT and JAERI, the neutral point concept is being tested in Alcator C-Mod, which has a significantly higher plasma elongation than JT-60U (1.65 vs 1.3). Calculations using TSC predict a neutral point at z~=+1 cm above the midplane (a=22 cm). The existence of a neutral point has now been experimentally confirmed, albeit at a height of z=+2.7 cm. The plasma has remained vertically stable for up to 9 ms after the disruption thermal quench, which in principle, is long enough for the PF control system to respond, if programmed appropriately. In addition, the physics of the neutral point stability on C-Mod appears to be somewhat different than that on JT-60U.

  17. Is an inequality-neutral flat tax reform really neutral?

    OpenAIRE

    Juan Prieto Rodríguez; Juan Gabriel Rodríguez; Rafael Salas

    2004-01-01

    . Let us assume a revenue- and inequality-neutral flat tax reform shifting from a graduated-rate tax. Is this reform really neutral in terms of the income distribution? Traditionally, there has been a bias toward the inequality analysis, forgetting other relevant aspects of the income distribution. This kind of reforms implies a set of composite transfers, both progressive and regressive, even though inequality remains unchanged. This paper shows that polarization is a useful tool for charact...

  18. MAVEN Pickup Ion Constraints on Mars Neutral Escape

    Science.gov (United States)

    Rahmati, A.; Larson, D. E.; Cravens, T.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.

    2017-12-01

    Mars is currently losing its atmosphere mainly due to the escape of neutral hydrogen and oxygen. Directly measuring the rate of escaping neutrals is difficult, because the neutral density in the Mars exosphere is dominated, up to several Martian radii, by atoms that are gravitationally bound to the planet. Neutral atoms in the Martian exosphere, however, can get ionized, picked up, and accelerated by the solar wind motional electric field and energized to energies high enough for particle detectors to measure them. The MAVEN SEP instrument detects O+ pickup ions that are created at altitudes where the escaping part of the exosphere is dominant. Fluxes of these ions reflect neutral densities in the distant exosphere of Mars, allowing us to constrain neutral oxygen escape rates. The MAVEN SWIA and STATIC instruments measure pickup H+ and O+ created closer to Mars; comparisons of these data with models can be used to constrain exospheric hot O and thermal H densities and escape rates. In this work, pickup ion measurements from SEP, SWIA, and STATIC, taken during the first 3 Earth years of the MAVEN mission, are compared to the outputs of a pickup ion model to constrain the variability of neutral escape at Mars. The model is based on data from six MAVEN instruments, namely, MAG providing magnetic field used in calculating pickup ion trajectories, SWIA providing solar wind velocity as well as 3D pickup H+ and O+ spectra, SWEA providing solar wind electron spectrum used in electron impact ionization rate calculations, SEP providing pickup O+ spectra, STATIC providing mass resolved 3D pickup H+ and O+ spectra, and EUVM providing solar EUV spectra used in photoionization rate calculations. A variability of less than a factor of two is observed in hot oxygen escape rates, whereas thermal escape of hydrogen varies by an order of magnitude with Mars season. This hydrogen escape variability challenges our understanding of the H cycle at Mars, but is consistent with other

  19. Experimental investigations of overvoltages in neutral isolated networks

    Energy Technology Data Exchange (ETDEWEB)

    Vukelja, P I; Naumov, R M; Vucinic, M M; Budisin, P B [Electrotechnicki Inst. ' Nikola Tesla' , Belgrade (Yugoslavia)

    1993-09-01

    For more than a decade, the Nikola Tesla Institute has worked intensively on experimental investigations of transient voltages and currents in neutral isolated networks, usually at 6 kV. The paper presents the results of investigations of overvoltages at the instant of appearance of an earth fault and during its interruption, the earth-fault currents and overvoltages during ferroresonance. Investigations were performed on cable station service networks in hydro- and thermal-power plants, industrial and similar installations in Yugoslavia. On the basis of these investigations, some measures are suggested for improving the reliability of operation of neutral isolated networks. (author)

  20. Neutrality Versus Materiality: A Thermodynamic Theory of Neutral Surfaces

    Directory of Open Access Journals (Sweden)

    Rémi Tailleux

    2016-09-01

    Full Text Available In this paper, a theory for constructing quasi-neutral density variables γ directly in thermodynamic space is formulated, which is based on minimising the absolute value of a purely thermodynamic quantity J n . Physically, J n has a dual dynamic/thermodynamic interpretation as the quantity controlling the energy cost of adiabatic and isohaline parcel exchanges on material surfaces, as well as the dependence of in-situ density on spiciness, in a description of water masses based on γ, spiciness and pressure. Mathematically, minimising | J n | in thermodynamic space is showed to be equivalent to maximising neutrality in physical space. The physics of epineutral dispersion is also reviewed and discussed. It is argued, in particular, that epineutral dispersion is best understood as the aggregate effect of many individual non-neutral stirring events (being understood here as adiabatic and isohaline events with non-zero buoyancy, so that it is only the net displacement aggregated over many events that is approximately neutral. This new view resolves an apparent paradox between the focus in neutral density theory on zero-buoyancy motions and the overwhelming evidence that lateral dispersion in the ocean is primarily caused by non-zero buoyancy processes such as tides, residual currents and sheared internal waves. The efficiency by which a physical process contributes to lateral dispersion can be characterised by its energy signature, with those processes releasing available potential energy (negative energy cost being more efficient than purely neutral processes with zero energy cost. The latter mechanism occurs in the wedge of instability, and its source of energy is the coupling between baroclinicity, thermobaricity, and density compensated temperature/salinity anomalies. Such a mechanism, which can only exist in a salty ocean, is speculated to be important for dissipating spiciness anomalies and neutral helicity. The paper also discusses potential

  1. Net Neutrality: Background and Issues

    National Research Council Canada - National Science Library

    Gilroy, Angele A

    2006-01-01

    .... The move to place restrictions on the owners of the networks that compose and provide access to the Internet, to ensure equal access and nondiscriminatory treatment, is referred to as "net neutrality...

  2. Thermal-hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T., LLNL

    1998-04-29

    This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.

  3. Weak neutral-current interactions

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1978-08-01

    The roles of each type of experiment in establishing uniquely the values of the the neutral-current couplings of u and d quarks are analyzed together with their implications for gauge models of the weak and electromagnetic interactions. An analysis of the neutral-current couplings of electrons and of the data based on the assumption that only one Z 0 boson exists is given. Also a model-independent analysis of parity violation experiments is discussed. 85 references

  4. Revisiting the physical characterisitics of the subduction interplate seismogenic zones

    Science.gov (United States)

    Heuret, Arnauld; Lallemand, Serge; Funiciello, Francesca; Piromallo, Claudia

    2010-05-01

    extent of the seismogenic zone, and it fits with vs and with the subducting plate thermal state; 4- mega-events occurrence determines the level of seismic energy released along the subduction interface, whatever  is; 5- to some extent, the potential size of earthquakes fits with vs and with the seismogenic zone geometry, but second order controlling parameters are more difficult to detect; 6- the plate coupling, measured through Upper Plate Strain, is one possible second order parameter: mega-events are preferentially associated to neutral subductions, i.e. moderate compressive stresses along the plate interface; high plate coupling (compressive UPS) is thought to inhibit mega-events genesis by enhancing the locking of the plate interface and preventing the rupture to extend laterally. This research was supported as part of the Eurohorcs/ESF — European Young Investigators Awards Scheme (resp. F.F.), by funds from the National Research Council of Italy and other National Funding Agencies participating in the 3rd Memorandum of Understanding, as well as from the EC Sixth Framework Programme.

  5. Experimental evidence of energetic neutrals production in an ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Pushkarev, A.I., E-mail: aipush@mail.ru; Isakova, Y.I.; Khaylov, I.P.

    2015-01-15

    The paper presents several experimental proofs of the formation of energetic charge-exchange neutrals in a self-magnetically insulated ion diode with a graphite cathode. The energetic neutrals are thought to be produced as a result of charge exchange process between accelerated ions and stationary neutral molecules. The experiments have been carried out using both a diode with externally applied magnetic insulation (single-pulse mode: 100 ns, 250–300 kV) and a diode with self-magnetic insulation (double-pulse mode: 300–500 ns, 100–150 kV (negative pulse); 120 ns, 250–300 kV (positive pulse)). The motivation for looking at the neutral component of the ion beam came when we compared two independent methods to measure the energy density of the beam. A quantitative comparison of infrared measurements with signals from Faraday cups and diode voltage was made to assess the presence of neutral atoms in the ion beam. As another proof of charge-exchange effects in ion diode we present the results of statistical analysis of diode performance. It was found that the shot-to shot variation of the energy density in a set of 50–100 shots does not exceed 11%, whilst the same variation for ion current density was 20–30%; suggesting the presence of neutrals in the beam. Moreover, the pressure in the zone of ion beam energy dissipation exceeds the results stated in cited references. The difference between our experimental data and results stated by other authors we attribute to the presence of a low-energy charge-exchange neutral component in the ion beam.

  6. Gas cell neutralizers (Fundamental principles)

    International Nuclear Information System (INIS)

    Fuehrer, B.

    1985-06-01

    Neutralizing an ion-beam of the size and energy levels involved in the neutral-particle-beam program represents a considerable extension of the state-of-the-art of neutralizer technology. Many different mediums (e.g., solid, liquid, gas, plasma, photons) can be used to strip the hydrogen ion of its extra electron. A large, multidisciplinary R and D effort will no doubt be required to sort out all of the ''pros and cons'' of these various techniques. The purpose of this particular presentation is to discuss some basic configurations and fundamental principles of the gas type of neutralizer cell. Particular emphasis is placed on the ''Gasdynamic Free-Jet'' neutralizer since this configuration has the potential of being much shorter than other type of gas cells (in the beam direction) and it could operate in nearly a continuous mode (CW) if necessary. These were important considerations in the ATSU design which is discussed in some detail in the second presentation entitled ''ATSU Point Design''

  7. JET neutral beam duct Optical Interlock

    Energy Technology Data Exchange (ETDEWEB)

    Ash, A.D.; Jones, T.T.C.; Surrey, E.; Ćirić, D.; Hall, S.I.; Young, D.; Afzal, M.; Hackett, L.; Day, I.E.; King, R.

    2015-10-15

    Highlights: • Optical Interlocks were installed on the JET NBI system as part of the EP2 upgrade. • The system protects the JET tokamak and NBI systems from thermal load damage. • Balmer-α beam emission is used to monitor the neutral beam-line pressure. • We demonstrate an improved trip delay of 2 ms compared to 50 ms before EP2. - Abstract: The JET Neutral Beam Injection (NBI) system is the most powerful neutral beam plasma heating system currently operating. Optical Interlocks were installed on the beam lines in 2011 for the JET Enhancement Project 2 (EP2), when the heating power was increased from 23 MW to 34 MW. JET NBI has two beam lines. Each has eight positive ion injectors operating in deuterium at 80 kV–125 kV (accelerator voltage) and up to 65 A (beam current). Heating power is delivered through two ducts where the central power density can be more than 100 MW/m{sup 2}. In order to deliver this safely, the beam line pressure should be below 2 × 10{sup −5} mbar otherwise the power load on the duct from the re-ionised fraction of the beam is excessive. The new Optical Interlock monitors the duct pressure by measuring the Balmer-α beam emission (656 nm). This is proportional to the instantaneous beam flux and the duct pressure. Light is collected from a diagnostic window and focused into 1-mm diameter fibres. The Doppler shifted signal is selected using an angle-tuned interference filter. The light is measured by a photo-multiplier module with a logarithmic amplifier. The interlock activation time of 2 ms is sufficient to protect the system from a fully re-ionised beam—a significant improvement on the previous interlock. The dynamic range is sufficient to see bremsstrahlung emission from JET plasma and not saturate during plasma disruptions. For high neutron flux operations the optical fibres within the biological shield can be annealed to 350 °C. A self-test is possible by illuminating the diagnostic window with a test lamp and measuring

  8. Measurement of plasma production and neutralization in gas neutralizers

    International Nuclear Information System (INIS)

    Maor, D.; Meron, M.; Johnson, B.; Jones, K.; Agagu, A.; Hu, B.

    1986-01-01

    In order to satisfy the need of experimental data for the designing of gas neutralizers we have started a project aimed at measuring all relevant cross sections for the charge exchange of H - , H 0 and H + projectiles, as well as the cross sections for the production of ions in the target. The expected results of these latter measurements are shown schematically

  9. Neutral currents in semileptonic reactions

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1975-05-01

    The evidence for weak neutral currents is analyzed in semileptonic reactions with special emphasis on their Lorentz and internal symmetry structure. It is found that present observations are consistent with the expectations of gauge theories, but other possibilities can not be ruled out. Of particular interest in this respect is the presence of a large isoscalar component. The excitation of the Δ-resonance by neutral currents is analyzed, and pion-nucleon mass distributions are presented. Charge asymmetries sensitive to isoscalar-isovector interferences are discussed. (U.S.)

  10. Numerical calculation of axisymmetric non-neutral plasma equilibria

    International Nuclear Information System (INIS)

    Spencer, R.L.; Rasband, S.N.; Vanfleet, R.R.

    1993-01-01

    Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy

  11. Neutral beam heating in stellarators: a numerical approach

    International Nuclear Information System (INIS)

    Hokin, S.A.; Rome, J.A.; Hender, T.C.; Fowler, R.H.

    1983-03-01

    Calculation of neutral beam deposition and heating in stellarators is complicated by the twisty stellarator geometry and by the usual beam focusing, divergence, and cross-sectional shape considerations. A new deposition code has been written that takes all of this geometry into account. A unique feature of this code is that it gives particle deposition in field-line coordinates, enabling the thermalization problem to be solved more efficiently

  12. Theory of neutral injection heating of toroidal plasmas

    International Nuclear Information System (INIS)

    Cordey, J.G.

    1976-01-01

    The present state of injection theory is reviewed with particular emphasis on the consequences of high power injection. The subject is divided into the following six sections: fast ion deposition; the slowing down and scattering of the fast ions; energy and momentum transfer rates; heating of the thermal ions; other perturbations; microinstabilities. The theory is compared with the experimental results. The questions that remain to be answered to establish neutral injection as a useful heating technique in reactors, are listed (26 references)

  13. Impact of coal-fired thermal power plant emissions on surrounding vegetative environment: a case study

    International Nuclear Information System (INIS)

    Soni, D.K.; Senger, C.B.S.

    1993-01-01

    Vegetative system around the thermal power plants are exposed to perpetual emissions of particulates as well as gaseous pollutants in various forms and nature. These emissions evidently are reflected in plant responses. In order to assess the response of natural flora of this region, 2 plant species, that is Mangifera indica and Holarrhina artidysentrica and certain pollution sensitive parameter, such as leaf area, pH of wash water of foliage and sugar content of the leaves were identified for this study. It was observed that the pH of wash solution of leaves was close to neutral in upstream locations and in polluted zone pH was acidic. Leaf area was higher in least polluted zone and lower in more polluted locations. Dust deposition on leaves was observed be lower in upstream locations and higher in influenced areas. Sugar variations in leaves showed negative impact in affected areas. (author). 9 refs., 5 tabs

  14. Neutral and plasma shielding model for pellet ablation

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.

    1987-10-01

    The neutral gas shielding model for ablation of frozen hydrogenic pellets is extended to include the effects of an initial Maxwelliam distribution of incident electron energies; a cold plasma shield outside the neutral shield and extended along the magnetic field; energetic neutral beam ions and alpha particles; and self-limiting electron ablation in the collisionless plasma limit. Including the full electron distribution increases ablation, but adding the cold ionized shield reduces ablation; the net effect is a modest reduction in pellet penetration compared with the monoenergetic electron neutral shielding model with no plasma shield. Unlike electrons, fast ions can enter the neutral shield directly without passing through the cold ionized shield because their gyro-orbits are typically larger than the diameter of the cold plasma tube. Fast alpha particles should not enhance the ablation rate unless their population exceeds that expected from local classical thermalization. Fast beam ions, however, may enhance ablation in the plasma periphery if their population is high enough. Self-limiting ablation in the collisionless limit leads to a temporary distortion of the original plasma electron Maxwellian distribution function through preferential depopulation of the higher-energy electrons. 23 refs., 9 figs

  15. Zone separator for multiple zone vessels

    Science.gov (United States)

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  16. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    Science.gov (United States)

    2017-01-25

    calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012

  17. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro; Tanaka, Shigeru; Akiba, Masato

    1991-03-01

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  18. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  19. Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    the background. Set an example for climate neutrality. Use NREL's climate action planning process and more. Climate Action Planning Process Identify the best technology options for a climate action plan . Climate Action Planning Tool Identify the best technology options for a climate action plan. Technology

  20. PLT neutral beam injection systems

    International Nuclear Information System (INIS)

    Menon, M.M.; Barber, G.C.; Blue, C.W.

    1979-01-01

    A brief description of the Princeton Large Torus (PLT) neutral beam injection system is given and its performance characteristics are outlined. A detailed operational procedure is included, as are some tips on troubleshooting. Proper operation of the source is shown to be a crucial factor in system performance

  1. Neutral Models with Generalised Speciation

    NARCIS (Netherlands)

    Haegeman, Bart; Etienne, Rampal S.

    Hubbell's neutral theory claims that ecological patterns such as species abundance distributions can be explained by a stochastic model based on simple assumptions. One of these assumptions, the point mutation assumption, states that every individual has the same probability to speciate. Etienne et

  2. Multimegawatt neutral beams for tokamaks

    International Nuclear Information System (INIS)

    Kunkel, W.B.

    1979-03-01

    Most of the large magnetic confinement experiments today and in the near future use high-power neutral-beam injectors to heat the plasma. This review briefly describes this remarkable technique and summarizes recent results as well as near term expectations. Progress has been so encouraging that it seems probable that tokamaks will achieve scientific breakeven before 1990

  3. Heavy neutral leptons at FASER

    Science.gov (United States)

    Kling, Felix; Trojanowski, Sebastian

    2018-05-01

    We study the prospects for discovering heavy neutral leptons at Forward Search Experiment (FASER), the newly proposed detector at the LHC. Previous studies showed that a relatively small detector with ˜10 m length and ≲1 m2 cross sectional area can probe large unconstrained parts of parameter space for dark photons and dark Higgs bosons. In this work, we show that FASER will also be sensitive to heavy neutral leptons that have mixing angles with the active neutrinos that are up to an order of magnitude lower than current bounds. In particular, this is true for heavy neutral leptons produced dominantly in B -meson decays, in which case FASER's discovery potential is comparable to the proposed SHiP detector. We also illustrate how the search for heavy neutral leptons at FASER will be complementary to ongoing searches in high-pT experiments at the LHC and can shed light on the nature of dark matter and the process of baryogenesis in the early Universe.

  4. Money neutrality: Rethinking the myth

    Directory of Open Access Journals (Sweden)

    Issaoui Fakhri

    2015-01-01

    Full Text Available Considered as an axiomatic basis of classical, neoclassical, and monetarist theories, the long-run money neutrality assumption does not always seem to be verified. Indeed, in our view, the money, in the sense of M2, can constitute a long-run channel of growth transmission. Thus, this paper examines the long-term relationship among money supply (M2, income (GDP, and prices (CPI. The subprime crisis in 2007 has shown that the demand for money does not only meet motives of transaction, precaution, and speculation but also of fictional or quasi-fictional future demands due to the fact that they are created without real counterparts. The capacity of production systems in developed countries to respond to increases in money supply by creating more wealth, involves the assumption of money neutrality in the long-run. However, in developing countries, the excess of money supply may lead to inflation trends. The present study has confirmed the long-term non-neutrality of money supply in the USA, and its neutrality in Gabon and Morocco.

  5. The manipulation of neutral particles

    International Nuclear Information System (INIS)

    Chu, S.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The author's personal contribution to the discovery of laser cooling and trapping of neutral atoms is described, and applications of this phenomenon in atomic physics are highlighted. The article is completed by Mr. Steven Chu's autobiography

  6. Net Neutrality in the Netherlands

    NARCIS (Netherlands)

    van Eijk, N.

    2014-01-01

    The Netherlands is among the first countries that have put specific net neutrality standards in place. The decision to implement specific regulation was influenced by at least three factors. The first was the prevailing social and academic debate, partly due to developments in the United States. The

  7. Latitudinal phytoplankton distribution and the neutral theory of biodiversity

    KAUST Repository

    Chust, Guillem

    2012-11-16

    Recent studies have suggested that global diatom distributions are not limited by dispersal, in the case of both extant species and fossil species, but rather that environmental filtering explains their spatial patterns. Hubbell\\'s neutral theory of biodiversity provides a framework in which to test these alternatives. Our aim is to test whether the structure of marine phytoplankton (diatoms, dinoflagellates and coccolithophores) assemblages across the Atlantic agrees with neutral theory predictions. We asked: (1) whether intersite variance in phytoplankton diversity is explained predominantly by dispersal limitation or by environmental conditions; and (2) whether species abundance distributions are consistent with those expected by the neutral model. Location: Meridional transect of the Atlantic (50° N-50° S). Methods: We estimated the relative contributions of environmental factors and geographic distance to phytoplankton composition using similarity matrices, Mantel tests and variation partitioning of the species composition based upon canonical ordination methods. We compared the species abundance distribution of phytoplankton with the neutral model using Etienne\\'s maximum-likelihood inference method. Results: Phytoplankton communities are slightly more determined by niche segregation (24%), than by dispersal limitation and ecological drift (17%). In 60% of communities, the assumption of neutrality in species\\' abundance distributions could not be rejected. In tropical zones, where oceanic gyres enclose large stable water masses, most communities showed low species immigration rates; in contrast, we infer that communities in temperate areas, out of oligotrophic gyres, have higher rates of species immigration. Conclusions: Phytoplankton community structure is consistent with partial niche assembly and partial dispersal and drift assembly (neutral processes). The role of dispersal limitation is almost as important as habitat filtering, a fact that has been

  8. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  9. Optimization of a constrained linear monochromator design for neutral atom beams

    International Nuclear Information System (INIS)

    Kaltenbacher, Thomas

    2016-01-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.

  10. Optimization of a constrained linear monochromator design for neutral atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbacher, Thomas

    2016-04-15

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.

  11. Neutral atom traps of radioactives

    International Nuclear Information System (INIS)

    Behr, J.A.

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear β decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left up to other presenters

  12. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  13. Neutral particles identification at LHCb

    CERN Multimedia

    Quintana, Boris Julien

    2018-01-01

    Important analyses of the core LHCb physics program rely on calorimetry to identify photons, high-energy neutral pions and electrons. For this purpose, the LHCb calorimeter system is composed of a scintillating pad plane, a preshower detector, an electromagnetic and a hadronic sampling calorimeters. The interaction of a given particle in these detectors leaves a specific signature. This is exploited for particle identification (PID) by combining calorimeters and tracking information into multi-variate classifiers. In this contribution, we focus on the identification of photons against high-energy neutral pion and hadronic backgrounds. Performance on Run 1 data will be shown. Small discrepancies with simulation predictions are then discussed, with special emphasis on the methods to correctly estimate PID cut efficiencies by means of large calibration samples of abundant beauty and charm decays to final states with photons. Finally, the technical aspects of the collection of these samples in Run 2 are presented...

  14. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  15. Emergent neutrality drives phytoplankton species coexistence

    Science.gov (United States)

    Segura, Angel M.; Calliari, Danilo; Kruk, Carla; Conde, Daniel; Bonilla, Sylvia; Fort, Hugo

    2011-01-01

    The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a ‘microscopic’ Lotka–Volterra competition (MLVC) model (i.e. with explicit recipes to compute its parameters), we provide a mechanistic explanation of species coexistence along a niche axis (i.e. organismic volume). We based our model on empirically measured quantities, minimal ecological assumptions and stochastic processes. In nature, we found aggregated patterns of species biovolume (i.e. clumps) along the volume axis and a peak in species richness. Both patterns were reproduced by the MLVC model. Observed clumps corresponded to niche zones (volumes) where species fitness was highest, or where fitness was equal among competing species. The latter implies the action of equalizing processes, which would suggest emergent neutrality as a plausible mechanism to explain community patterns. PMID:21177680

  16. Vendor neutral archive in PACS

    International Nuclear Information System (INIS)

    Agarwal, Tapesh Kumar; Sanjeev

    2012-01-01

    An archive is a location containing a collection of records, documents, or other materials of historical importance. An integral part of Picture Archiving and Communication System (PACS) is archiving. When a hospital needs to migrate a PACS vendor, the complete earlier data need to be migrated in the format of the newly procured PACS. It is both time and money consuming. To address this issue, the new concept of vendor neutral archive (VNA) has emerged. A VNA simply decouples the PACS and workstations at the archival layer. This is achieved by developing an application engine that receives, integrates, and transmits the data using the different syntax of a Digital Imaging and Communication in Medicine (DICOM) format. Transferring the data belonging to the old PACS to a new one is performed by a process called migration of data. In VNA, a number of different data migration techniques are available to facilitate transfer from the old PACS to the new one, the choice depending on the speed of migration and the importance of data. The techniques include simple DICOM migration, prefetch-based DICOM migration, medium migration, and the expensive non-DICOM migration. “Vendor neutral” may not be a suitable term, and “architecture neutral,” “PACS neutral,” “content neutral,” or “third-party neutral” are probably better and preferred terms. Notwithstanding this, the VNA acronym has come to stay in both the medical IT user terminology and in vendor nomenclature, and radiologists need to be aware of its impact in PACS across the globe

  17. Electromagnetic disturbance neutralizing radiation detector

    International Nuclear Information System (INIS)

    Gripentog, W.G.

    1975-01-01

    A radiation detector of the Neher-White type is described which automatically neutralizes induced negative charges on the electrometer tube control grid which shut off the electrometer tube. The detector includes means for establishing a voltage of one polarity in response to plate current and voltage of opposite polarity in response to an absence of plate current and means for connecting the control grid to a reference potential for draining the negative charge in response to the voltage of opposite polarity. (author)

  18. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  19. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Hooper, B.

    1977-01-01

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (10 14 particles/cm 3 ) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  20. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    Science.gov (United States)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  1. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process

    OpenAIRE

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-01-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution e...

  2. Vibrational relaxation of NO+ (v=3,2,1) by various neutrals

    International Nuclear Information System (INIS)

    Dobler, W.; Federer, W.; Howorka, F.; Durup-Ferguson, M.; Lindinger, W.

    1983-01-01

    The quenching of state selected NO + (v=3,2,1) by various neutrals has been investigated in a SIFDT in the energy range from thermal to about 1 eV, KEsub(cm). With a few exceptions, the quenching rate coefficients decline with increasing KEsub(cm), indicating complex formation. The quenching rate coefficients increase strongly with increasing polarizability of the neutrals, however the rare gases do not fit into this pattern. (Authors)

  3. Transducer for measuring normal and friction stress in contact zone during rolling

    DEFF Research Database (Denmark)

    Henningsen, Poul; Wanheim, Tarras; Arentoft, Mogens

    2004-01-01

    , generating frictional stresses contrary to the direction of rolling. In a narrow area in the deformation zone, the velocity of the deformed material is equal to the velocity of the rolls. This area or line is named “neutral line”[2]. The position of the neutral line depends on friction, reduction ratio...

  4. Capillary electrophoretic enantioseparation of selegiline, methamphetamine and ephedrine using a neutral β-cyclodextrin epichlorhydrin polymer

    NARCIS (Netherlands)

    Sevcik, J.; Stransky, Z.; Ingelse, B.A.; Lemr, K.

    1996-01-01

    This paper describes the development of a capillary zone electrophoretic method for chiral separation of three basic compounds of the selegiline synthetic pathway: ephedrine, methamphetamine and selegiline. The method developed allows one to separate the studied compounds in one run using a neutral

  5. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  6. The Neutral Interest Rate: Estimates for Chile

    OpenAIRE

    Rodrigo Fuentes S; Fabián Gredig U.

    2008-01-01

    To estimate the neutral real interest rate for Chile, we use a variety of methods that can be classified into three categories: those derived from economic theory, the neutral rate implicit in financial assets, and statistical procedures using macroeconomic data. We conclude that the neutral rate is not constant over time, but it is closely related with—though not equivalent to—the potential GDP growth rate. The application of the different methods yields fairly similar results. The neutral r...

  7. Realization of the Zone Length Measurement during Zone Refining Process via Implementation of an Infrared Camera

    Directory of Open Access Journals (Sweden)

    Danilo C. Curtolo

    2018-05-01

    Full Text Available Zone refining, as the currently most common industrial process to attain ultrapure metals, is influenced by a variety of factors. One of these parameters, the so-called “zone length”, affects not only the ultimate concentration distribution of impurities, but also the rate at which this distribution is approached. This important parameter has however neither been investigated experimentally, nor ever varied for the purpose of optimization. This lack of detections may be due to the difficult temperature measurement of a moving molten area in a vacuum system, of which the zone refining methodology is comprised. Up to now, numerical simulation as a combination of complex mathematical calculations, as well as many assumptions has been the only way to reveal it. This paper aims to propose an experimental method to accurately measure the molten zone length and to extract helpful information on the thermal gradient, temperature profile and real growth rate in the zone refining of an exemplary metal, in this case aluminum. This thermographic method is based on the measurement of the molten surface temperature via an infrared camera, as well as further data analysis through the mathematical software MATLAB. The obtained results show great correlation with the visual observations of zone length and provide helpful information to determine the thermal gradient and real growth rate during the whole process. The investigations in this paper approved the application of an infrared camera for this purpose as a promising technique to automatically control the zone length during a zone refining process.

  8. SECONDARY POPULATION OF INTERSTELLAR NEUTRALS seems deflected to the side

    Science.gov (United States)

    Nakagawa, H.; Bzowski, M.; Yamazaki, A.; Fukunishi, H.; Watanabe, S.; Takahashi, Y.; Taguchi, M.

    Recently the neutral hydrogen flow in the inner heliosphere was found to be deflected relative to the helium flow by about 4 degrees Lallement et al 2005 The explanation of this delfection offered was a distortion of the heliosphere under the action of an ambient interstellar magnetic field In a separate study a number of data sets pertaining to interstellar neutral atoms obtained with various techniques were compiled and interpreted as due to an inflow of interstellar gas from an ecliptic longitude shifted by 10 - 40 degrees from the canonical upstream interstellar neutral flow direction at 254 degrees Collier et al 2004 The origin and properties of such a flow is still under debate We have performed a cross-experiment analysis of the heliospheric hydrogen and helium photometric observations performed simltaneously by the Nozomi spacecraft between the Earth and Mars orbit and explored possible deflection of hydrogen and helium flows with respect to the canonical upwind direction For the interpretation we used predictions of a state of the art 3D and fully time-dependent model of the neutral gas in the heliosphere with the boundary conditions ionization rates and radiation pressure taken from literature The model includes two populations of the thermal interstellar hydrogen predicted by the highly-reputed Moscow Monte Carlo model of the heliosphere The agreement between the data and simulations is not satifactory when one assumes that the upwind direction is the same for both populations and identical with the direction derived from inerstellar helium

  9. Anomalous electrodynamics of neutral pion matter in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Department of Mathematics and Natural Sciences, University of Stavanger,N-4036 Stavanger (Norway); Kadam, Saurabh V. [Indian Institute of Science Education and Research (IISER),Pune 411008 (India)

    2017-03-03

    The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions https://arxiv.org/abs/1609.05213. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave https://www.doi.org/10.1103/PhysRevD.93.085036 and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T{sup 5/2}(B/f{sub π}){sup 3/2}.

  10. Neutrality in mediation: an ambiguous ethical value

    OpenAIRE

    Bailey, Paul

    2014-01-01

    Mediator neutrality would appear, by definition, to be a necessary and required ethical principle for all mediators to practice. But what is meant by neutrality in mediation? Is it practically possible to be completely neutral between parties in mediation while at the same time being fair to both of them? This paper attempts to answer these two questions.

  11. Ion-beam Plasma Neutralization Interaction Images

    International Nuclear Information System (INIS)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-01

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented

  12. Ion-beam Plasma Neutralization Interaction Images

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  13. The Net Neutrality Debate: The Basics

    Science.gov (United States)

    Greenfield, Rich

    2006-01-01

    Rich Greenfield examines the basics of today's net neutrality debate that is likely to be an ongoing issue for society. Greenfield states the problems inherent in the definition of "net neutrality" used by Common Cause: "Network neutrality is the principle that Internet users should be able to access any web content they choose and…

  14. Heat flux in the coastal zone

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Edson, J.

    1998-01-01

    correlation data taken at a mast two kilometres off the Danish coast in RASEX. For these coastal zone data, the thermal roughness length shows no well-defined relation to the momentum roughness length or roughness Reynolds number, in contrast to previous theories. The variation of the momentum roughness...

  15. Volcano-Hydrothermal Systems of the Kuril Island Arc (Russia): Geochemistry of the Thermal Waters and Gases.

    Science.gov (United States)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Kotenko, T.; Tarasov, K.

    2017-12-01

    More than 30 active volcanoes with historical eruptions are known on 20 main islands composing the Kuril Arc. Eight islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy, Urup, Iturup and Kunashir - are characterized by hydrothermal activity, complementary to the fumarole activity in the craters and volcano slopes. At Paramushir, Shiashkotan, Iturup and Kunashir most of thermal manifestations are acidic to ultra-acidic hot springs associated with hydrothermal aquifers inside volcano edifices. The most powerful of them is the ultra-acid hydrothermal system of Ebeko volcano (Paramushir island) with more than 80 t/day of the chloride output and pH of springs of 1.5. At the summit part of the Ebeko volcano there are 12 thermal fields with the total thermal area exceeding 1 km2. The measured temperatures of fumaroles are from 98º C to 500ºC. Another type of hydrothermal activity are the wide spread coastal hot and neutral springs situated as a rule within the tide zone. Four groups of this type of thermal manifestation were found on the western shore of Shiashkotan island. It have Na-Ca-Cl-SO4 composition with temperatures 50-80°C and TDS 7-8 g/L. Coastal neutral springs were found also on Russhua, Uturup and Kunashir islands. Ushishir volcano-hydrothermal system in the middle of the arc is formed by the absorption of magmatic gases by seawater. In the crater of the Pallas cone (Ketoy island) there is a small Glazok lake with acid SO4 water and pH=2.4, TDS=2g/L, T=12oC. Ketoy volcano on the same island hosts a high temperature hydrothermal system with unusual boiling Ca-Na-SO4 neutral springs and steam vents. Mendeleev and Golovnin volcanoes on Kunashir Island are the southernmost of the Kuril arc. Mendeleev edifice is a centre of a large thermal area with many manifestations of different types including steam vents, acid springs and neutral coastal springs. In a 4.2x4 km wide caldera of Golovnin volcano there are two lakes with acid Cl-SO4 water and numerous

  16. Advanced neutral-beam technology

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1980-09-01

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described

  17. Plasma neutralizers for H- or D- beams

    International Nuclear Information System (INIS)

    Berkner, K.H.; Pyle, R.V.; Savas, S.E.; Stalder, K.R.

    1980-10-01

    Plasma neutralizers can produce higher conversion efficiencies than are obtainable with gas neutralizers for the production of high-energy neutral beams from negative hydrogen ions. Little attention has been paid to experimental neutralizer studies because of the more critical problems connected with the development of negative-ion sources. With the prospect of accelerating ampere dc beams from extrapolatable ion sources some time next year, we are re-examining plasma neutralizers. Some basic considerations, two introductory experiments, and a next-step experiment are described

  18. ORNL positive ion neutral beam program

    International Nuclear Information System (INIS)

    Whealton, J.H.; Haselton, H.H.; Barber, G.C.

    1978-01-01

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  19. Neutral beam deployment on DEMO and its influence on design

    Energy Technology Data Exchange (ETDEWEB)

    Surrey, Elizabeth, E-mail: elizabeth.surrey@ccfe.ac.uk [EURATOM/CCFE, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); King, Damian; Lister, Jonathan; Porton, Michael; Timmis, William; Ward, David [EURATOM/CCFE, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)

    2011-10-15

    The demands on the neutral beam heating and current drive system of a DEMO device exceed those of existing fusion experiments by several orders of magnitude. By predicting possible power waveforms it is possible to analyse the technological advances necessary to achieve a system relevant to deployment on a power plant. Achieving the necessary efficiency will require simultaneous improvements in beam current density, neutralization efficiency and beam transmission. Considering the deployment on the tokamak vessel shows no major disruption to the tritium breeder blanket and no requirement to reach a high packing density of injectors. The thermal management of components subjected to low heat flux for many hours is considered and it is shown that radiation cooling can be exploited to control the temperature of such items.

  20. Corrosion of carbon steel in neutral water

    International Nuclear Information System (INIS)

    Kawai, Noboru; Iwahori, Toru; Kurosawa, Tatsuo

    1983-01-01

    The initial corrosion behavior of materials used in the construction of heat exchanger and piping system of BWR nuclear power plants and thermal power plants have been examined in neutral water at 30, 50, 100, 160, 200, and 285 deg C with two concentrations of dissolved oxygen in the water. In air-saturated water, the corrosion rate of carbon steel was so higher than those in deaerated conditions and the maximum corrosion rate was observed at 200 deg C. The corrosion rate in deaerated water gradually increased with increasing the water temperature. Low alloy steel (2.25 Cr, 1Mo) exhibited good corrosion resistance compared with the corrosion of carbon steel under similar testing conditions. Oxide films grown on carbon steel in deaerated water at 50, 100, 160, 200, and 285 deg C for 48 and 240 hrs were attacked by dissolved oxygen in room temperature water respectively. However the oxide films formed higher than about 160 deg C showed more protective. The electrochemical behavior of carbon steel with oxide films was also similar to the effect of temperature on the stability of oxide films. (author)

  1. Thermal comfort assessment of a surgical room through computational fluid dynamics using local PMV index.

    Science.gov (United States)

    Rodrigues, Nelson J O; Oliveira, Ricardo F; Teixeira, Senhorinha F C F; Miguel, Alberto Sérgio; Teixeira, José Carlos; Baptista, João S

    2015-01-01

    Studies concerning indoor thermal conditions are very important in defining the satisfactory comfort range in health care facilities. This study focuses on the evaluation of the thermal comfort sensation felt by surgeons and nurses, in an orthopaedic surgical room of a Portuguese hospital. Two cases are assessed, with and without the presence of a person. Computational fluid dynamic (CFD) tools were applied for evaluating the predicted mean vote (PMV) index locally. Using average ventilation values to calculate the PMV index does not provide a correct and enough descriptive evaluation of the surgical room thermal environment. As studied for both cases, surgeons feel the environment slightly hotter than nurses. The nurses feel a slightly cold sensation under the air supply diffuser and their neutral comfort zone is located in the air stagnation zones close to the walls, while the surgeons feel the opposite. It was observed that the presence of a person in the room leads to an increase of the PMV index for surgeons and nurses. That goes in line with the empirical knowledge that more persons in a room lead to an increased heat sensation. The clothing used by both classes, as well as the ventilation conditions, should be revised accordingly to the amount of persons in the room and the type of activity performed.

  2. Current disruptions in the near-earth neutral sheet region

    International Nuclear Information System (INIS)

    Liu, A.T.Y.; Anderson, B.J.; Takahashi, K.; Zanetti, L.J.; McEntire, R.W.; Potemra, T.A.; Lopez, R.E.; Klumpar, D.M.; Greene, E.M.; Strangeway, R.

    1992-01-01

    Observations from the Charge Composition Explorer in 1985 and 1986 revealed fifteen current disruption events in which the magnetic field fluctuations were large and their onsets coincided well with ground onsets of substorm expansion or intensification. Over the disruption interval, the local magnetic field can change by as much as a factor of ∼7. In general, the stronger the current buildup and the closer the neutral sheet, the larger the resultant field change. There is also a tendency for a larger subsequent enhancement in the AE index with a stronger current buildup prior to current disruption. For events with good pitch angle coverage and extended observation in the neutral sheet region the authors find that the particle pressure increases toward the disruption onset and decreases afterward. Just prior to disruption, either the total particle pressure is isotropic, or the perpendicular component (P perpendicular ) dominates the parallel component (P parallel ), the plasma beta is seen to be as high as ∼70, and the observed plasma pressure gradient at the neutral sheet is large along the tail axis. The deduced local current density associated with pressure gradient is ∼27-80 n/Am 2 and is ∼85-105 mA/m when integrated over the sheet thickness. They infer from these results that just prior to the onset of current disruption, (1) an extremely thin current sheet requiring P parallel > P perpendicular for stress balance does not develop at these distances, (2) the thermal ion orbits are in the chaotic or Speiser regime while the thermal electrons are in the adiabatic regime and, in one case, exhibit peaked fluxes perpendicular to the magnetic field, thus implying no electron orbit chaotization to possibly initiate ion tearing instability, and (3) the neutral sheet is in the unstable regime specified by the cross-field current instability

  3. Discrete symmetries with neutral mesons

    Science.gov (United States)

    Bernabéu, José

    2018-01-01

    Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.

  4. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    Science.gov (United States)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; hide

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  5. Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: a comparative study between Melbourne and Hong Kong.

    Science.gov (United States)

    Lam, Cho Kwong Charlie; Lau, Kevin Ka-Lun

    2018-04-12

    The Universal Thermal Climate Index (UTCI) is an index for assessing outdoor thermal environment which aims to be applicable universally to different climates. However, the scale of UTCI thermal stress classification can be interpreted depending on the context. Previous studies validated the UTCI in individual cities, but comparative studies between different cities are scarce. This study examines the differences in thermal perception and clothing choices between residents from two climate zones over similar UTCI ranges in summer. We compared summer thermal comfort survey data from Melbourne (n = 2162, January-February 2014) and Hong Kong (n = 414, July-August 2007). We calculated the UTCI from outdoor weather station data and used t tests to compare the differences in thermal sensation and clothing between Hong Kong and Melbourne residents. When the UTCI was between 23.0 and 45.9 °C, Melbourne residents wore significantly more clothing (0.1 clo) than Hong Kong residents. Hong Kong residents reported neutral to warm sensation at a higher UTCI range compared with the dynamic thermal sensation (DTS) model. Moreover, Melbourne residents reported warm and hot sensation at a higher UTCI range than the DTS model. Respondents in Melbourne also exhibited different responses to the mean radiant temperature under shaded and sunny conditions, while such a trend was not observed in Hong Kong. It would be advisable to define different thermal sensation thresholds for the UTCI scale according to different climate zones for better prediction of the outdoor thermal comfort of different urban populations.

  6. Zoning Districts - Volusia County HUB Zones

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Historically Underutilized Business (HUB) Zones in Volusia County. Go to http://www.sba.gov/hubzone or contact the Department of Economic Development (386) 248-8048...

  7. Noninterferometric phase imaging of a neutral atomic beam

    International Nuclear Information System (INIS)

    Fox, P.J.; Mackin, T.R.; Turner, L.D.; Colton, I.; Nugent, K.A.; Scholten, R.E.

    2002-01-01

    We demonstrate quantitative phase imaging of a neutral atomic beam by using a noninterferometric technique. A collimated thermal atomic beam is phase shifted by an off-resonant traveling laser beam with both a Gaussian and a TEM 01 profile and with both red and blue detuning of as much as 50 GHz. Phase variations of more than 1000 rad were recovered from velocity-selective measurements of the propagation of the atomic beam and were found to be in quantitative agreement with theoretical predictions based on independently measured phase object intensity profiles and detunings

  8. Happy birthday, little neutral one

    International Nuclear Information System (INIS)

    Sutton, C.

    1990-01-01

    This article looks at the history of the neutrino particle, a tiny neutral particle which reacts only with the weak force. Its existence was originally postulated by Wolfgang Pauli in 1930, to explain beta decay energy conservation but because of the extreme experimental difficulties involved, neutrinos were not observed experimentally until 1956. Notwithstanding this the neutrino has become a valuable tool in high energy physics. Neutrino beams are used to probe matter and were used to reveal the existence of quarks within the particles once viewed as elementary, the proton and neutron. Cosmic neutrinos may be detected in the Deep Underwater Muon and Neutrino Detector off the coast of Hawaii and the Moon itself is a target for ultra high energy neutrinos in a Russian experiment to detect cascades of charge particles produced by these neutrinos in ice in the Antarctic. (UK)

  9. Gargamelle and the neutral currents

    International Nuclear Information System (INIS)

    Rousset, A.

    1996-06-01

    In order to simplify the description of forces, the physicists want to reduce the number of four interactions to a smaller one. They want to unify them. Einstein tried to unify the electromagnetic interaction and the gravitation interaction but it was probably the most difficult to unify. during the sixties, the American physicists Sheldon Glashow and Steven Weinberg and the Pakistani Abdus Salam ( each rewarded by the Nobel price of 1979) propose to unify the weak and electromagnetic interactions interactions under the form of an only interaction, the electro-weak interaction. To check the validity of this theory exist the demonstration by the weak neutral currents. In 1973, European physicians which analyzed photos taken in the bubble chamber called Gargamelle brought the experimental proof. This book tells the story of this discovery. (N.C.)

  10. $\\tau$ decays with neutral kaons

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; Davis, R.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Ferrari, P.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lawson, I.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Meyer, I.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    The branching ratio of the tau lepton to a neutral K meson is measured from a sample of approximately 200,000 tau decays recorded by the OPAL detector at centre-of-mass energies near the Z0 resonance. The measurement is based on two samples which identify one-prong tau decays with KL and KS mesons. The combined branching ratios are measured to be B(tau- -->pi- K0bar nutau) = (9.33+-0.68+-0.49)x10^-3 B(tau- -->pi- K0bar [>=1pi0] nutau) = (3.24+-0.74+-0.66)x10^-3 B(tau- -->K- K0bar [>=0pi0] nutau) = (3.30+-0.55+-0.39)x10^-3 where the first error is statistical and the second systematic.

  11. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B V; Clarke, M; Hu, H; Betz, [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  12. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  13. TFTR neutral beam power system

    International Nuclear Information System (INIS)

    Deitz, A.; Murray, H.; Winje, R.

    1977-01-01

    The TFTR NB System will be composed of four beam lines, each containing three ion sources presently being developed for TFTR by the Lawrence Berkeley Laboratories (LBL). The Neutral Beam Power System (NBPS) will provide the necessary power required to operate these Ion Sources in both an experimental or operational mode as well as test mode. This paper describes the technical as well as the administrative/management aspects involved in the development and building of this system. The NBPS will combine the aspects of HV pulse (120 kV) and long pulse width (0.5 sec) together to produce a high power system that is unique in the Electrical Engineering field

  14. Fluctuations in transverse energy and multiplicity, energy densities, and neutral pion spectra in nucleus-nucleus collissions at 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Plasil, F.; Albrecht, R.; Awes, T.C.

    1989-01-01

    The main goal of the CERN heavy-ion experiments is the search for an indication that the predicted state of deconfined quarks and gluons, the quark-gluon plasma (QGP), has been produced. The quantity most crucial to the probability of QGP formation is the thermalized energy density attained during the heavy-ion reaction. The amount of energy radiated transverse to the beam direction is the experimental quantity which is believed to be a measure of the amount of energy deposition in the reaction, and hence to reflect the energy density attained. In this presentation we consider the systematics of transverse energy production at CERN SPS energies, and we use the results to make estimates, under various assumptions, of attained energy densities. Measurements of direct photons and lepton pairs are considered to be among the most promising methods for studies of the QGP. In contrast to hadrons, direct photons are not expected to undergo any interactions after their creation. The WA80 collaboration has undertaken the measurement of direct photons, which is a difficult task due to the presence of a high background of photons from the decay of neutral pions. The π 0 spectra themselves, however, provide us with the opportunity to study the excited reaction zone during the hadronization phase. We present here measurements of neutral pions produced in 16 O + Au collisions at 200 GeV/nucleon. 22 refs., 11 figs

  15. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  16. Molecular clock on a neutral network.

    Science.gov (United States)

    Raval, Alpan

    2007-09-28

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  17. Neutral particle beam alternative concept for ITER

    International Nuclear Information System (INIS)

    Sedgley, D.; Brook, J.; Luzzi, T.; Deutsch, L.

    1989-01-01

    An analysis of an ITER neutral particle beam system is presented. The analysis covers the neutralizer, ion dumps, pumping, and geometric aspects. The US beam concept for ITER consists of three or four clusters of beamlines delivering approximately 80 MW total of 1.6-MeV deuterium to three or four reactor ports. Each cluster has three self-contained beamlines featuring plasma neutralizers and electrostatic ion dumps. In this study, each of the beamlines has two source assemblies with separate gas neutralizers and magnetic ion dumps. Deuterium is injected into the gas neutralizers by a separate system. Saddle-shaped copper coils augment the tokamak poloidal field to turn the charged particles into the ion dumps. The gas flow from the source, neutralizer, and ion dump is pumped by regenerable cryopanels. The effect of the port between the TF coils and the beam injection angle on the plasma footprint was studied

  18. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  19. Guidelines for Remote Handling Maintenance of ITER Neutral Beam Components

    International Nuclear Information System (INIS)

    Cordier, J.-J.; Hemsworth, R.; Bayetti, P.

    2006-01-01

    Remote handling maintenance of ITER components is one of the main challenges of the ITER project. This type of maintenance shall be operational for the nuclear phase of exploitation of ITER, and be considered at a very early stage since it significantly impacts on the components design, interfaces management and integration business. A large part of the R/H equipment will be procured by the EU partner, in particular the whole Neutral Beam Remote Handling (RH) equipment package. A great deal of work has already been done in this field during the EDA phase of ITER project, but improvements and alternative option that are now proposed by ITER lead to added RH and maintenance engineering studies. The Neutral Beam Heating -and- Current Drive system 1 is being revisited by the ITER project. The vertical maintenance scheme that is presently considered by ITER, may significantly impact on the reference design of the Neutral Beam (NB) system and associated components and lead to new design of the NB box itself. In addition, revision of both NB cell radiation level zoning and remote handling classification of the beam line injector will also significantly impact on components design and maintenance. Based on the experience gained on the vertical maintenance scheme, developed in detail for the ITER Neutral Beam Test Facility 2 to be built in Europe in a near future, guidelines for the revision of the design and preliminary feasibility study of the remote handling vertical maintenance scheme of beam line components are described in the paper. A maintenance option for the SINGAP3 accelerator is also presented. (author)

  20. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1986-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500 to 700 keV are needed for this device

  1. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1987-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500-700 keV are needed for this device

  2. Control of penetration zone GMAW

    Directory of Open Access Journals (Sweden)

    Віталій Петрович Iванов

    2016-11-01

    Full Text Available Thermal properties of the base metal, shielding medium and the nature of the electrode metal transfer to a great extent determine the penetration area formation in gas-arc welding. It is not always possible to take into account the influence of these factors on penetration front forming within the existing models. The aim of the work was to research the penetration area forming in gas-arc welding. The research of the penetration area forming in gas-arc welding of CrNi austenitic steels was made. The parameters of the regime as well as the kind of the gaseous medium influence on the formation of the penetration zone were studied. The article shows a linear proportional relationship between the electrode feed rate and the size of the base metal plate. The penetration area formation mode for welding in argon and carbon dioxide have been worked out. Diameter, feed rate and the speed of the electrode movement have been chosen as the main input parameters. Multiple regression analysis method was used to make up the modes. The relations of the third order that make it possible to take into account the electrode metal transfer and thermal properties change of the materials to be welded were used. These relationships show quite good agreement with the experimental measurements in the calculation of the fusion zone shape with consumable electrode in argon and carbon dioxide. It was determined that the shape of the melting front curve can be shown as a generalized function in which the front motion parameters depend on feed rate and the diameter of the electrode. Penetration zone growth time is determined by the welding speed and is calculated as a discrete function of the distance from the electrode with the spacing along the movement coordinate. The influence of the mode parameters on the formation of the fusion zone has been investigated and the ways to manage and stabilize the weld pool formation have been identified. The modes can be used to develop

  3. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Confinement studies during neutral beam injection in PLT

    International Nuclear Information System (INIS)

    Goldston, R.; Davis, S.; Eubank, H.

    1980-12-01

    Neutral beam injection experiments on PLT have provided definitive information on ion energy confinement in highly collisionless plasmas. We find that ion thermal conduction is consistent, within a factor of approx. 3, with neoclassical theory, and that anomalous thermal convection of ion energy is a factor of 2-3 less than would be calculated from the INTOR D/sub e/ with a convection loss term of the form 5/2nkTv/sub r/. From our experiments with a shunted TF coil we have found that a single shallow ripple well of 2.5% has a neglible effect on ion energy confinement, even at the lowest collisionality obtainable on PLT. Scrutiny of the analytic theories of ripple induced transport motivated by these experiments, suggests that more theoretical (and perhaps numerical) work is needed in this area

  5. An investigation into the applicability of thermal infrared scanning for exploration

    International Nuclear Information System (INIS)

    Broicher, H.

    1981-07-01

    PRATT's theory of thermal inertia stripping leads to thermal inertia calculations for the subsurface zones subjected to the diurnal and the annual temperature variations, as well as to temperatures at the zone limits. Thermal inertia mapping after separating these zones gains in importance for exploration. It should be investigated, if orebodies would cause detectable subsurface temperature anomalies. Technical infrastructure problems caused the termination of the project. The realization of thermal inertia stripping should be pursued. (orig.) [de

  6. On implicit abstract neutral nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br [Universidade de São Paulo, Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (Brazil); O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie [National University of Ireland, School of Mathematics, Statistics and Applied Mathematics (Ireland)

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  7. Liberal Neutrality : Constructivist, not foundationalist

    Directory of Open Access Journals (Sweden)

    Lendell Horne

    2009-06-01

    Full Text Available In defending the principle of neutrality, liberals have often appealed to a more general moral principle that forbids coercing persons in the name of reasons those persons themselves cannot reasonably be expected to share. Yet liberals have struggled to articulate a non-arbitrary, non-dogmatic distinction between the reasons that persons can reasonably be expected to share and those they cannot. The reason for this, I argue, is that what it means to “share a reason” is itself obscure. In this paper I articulate two different conceptions of what it is to share a reason; I call these conceptions “foundationalist” and “constructivist.” On the foundationalist view, two people “share” a reason just in the sense that the same reason applies to each of them independently. On this view, I argue, debates about the reasons we share collapse into debates about the reasons we have, moving us no closer to an adequate defense of neutrality. On the constructivist view, by contrast, “sharing reasons” is understood as a kind of activity, and the reasons we must share are just those reasons that make this activity possible. I argue that the constructivist conception of sharing reasons yields a better defense of the principle of neutrality. À travers leur défense du principe de neutralité, les libéraux ont souvent interpellé un principe moral plus général qui interdit de contraindre des personnes pour des raisons dont on ne peut raisonnablement attendre que ces personnes elles-mêmes les partagent. Les libéraux éprouvent cependant de la difficulté à articuler une distinction non-arbitraire et non-dogmatique entre les raisons dont on peut raisonnablement attendre que les personnes les partagent et celles dont on ne le peut pas. Je soutiens dans cet article que cette difficulté provient du fait que «partager une raison » est une notion obscure. Pour illustrer cela, je me pencherai sur deux conceptions distinctes de ce que veut dire

  8. Direct Photon and Neutral Mesons Measurements with the ALICE Detector

    CERN Document Server

    Matyja, Adam

    2016-01-01

    The ALICE experiment at LHC is dedicated to studies of the Quark– Gluon Plasma (QGP) state, which is going to be created in heavy-ion collisions. Both photons and neutral mesons are excellent probes for QGP formation. Photons are produced during the different stages of the expan- sion of the initial hot matter fireball. They do not interact strongly with the medium and passing through it, they carry information on their emis- sion point. The prompt photons which are formed at the early stage of the collision enable us to test perturbative QCD constraining parton distri- butions and fragmentation functions. Looking into the regime of thermal photons, one can extract the temperature of the medium. The medium- induced energy loss of particles can be investigated via the measurement of neutral meson spectra for different centrality classes as well as via neutral meson–hadron correlations. A decrease of the nuclear modification factor ( R AA ) with centrality of the collision is observed. The suppression of th...

  9. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  10. Precise measurements of neutral gas temperature using Fiber Bragg Grating sensor in Argon capacitively coupled plasmas

    Science.gov (United States)

    Han, Daoman; Liu, Zigeng; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-09-01

    Neutral gas temperature was measured using Fiber Bragg Grating sensor (FBGs) in capacitively coupled argon plasmas. Thermometry is based on the thermal equilibrium between the sensor and neutral gases, which is found to become faster with increasing pressure. It is also observed that the neutral gas temperature is higher than the room temperature by 10 120 °depending on the experiental conditions, and gas temperature shows significant non-uniformity in space. In addition, radial profiles of neutral temperature at different pressures, resemble these of ion density, obtained by a floating double probe. Specifically, at low pressure, neutral gas temperature and ion density peak at the center of the reactor, while the peak appears at the edge of the electrode at higher pressure. The neutral gas heating is mainly caused by the elastic collisions of Ar + with neutral gas atoms in the sheath region after Ar + gaining a certain energy. This work was supported by the National Natural Science Foundation of China (NSFC) (Grants No. 11335004, 11405018, and 61137005).

  11. ZoneLib

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob; Schiøler, Henrik

    2006-01-01

    We present a dynamic model for climate in a livestock building divided into a number of zones, and a corresponding modular Simulink library (ZoneLib). While most literature in this area consider air flow as a control parameter we show how to model climate dynamics using actual control signals...... development of ZoneLib....

  12. The status of neutral currents

    International Nuclear Information System (INIS)

    Zwirner, F.

    1987-11-01

    The situation of particle physics today is quite puzzling. On the one hand, the Standard Model (SM) of strong and electroweak interactions is consistent with all confirmed experimental data but theoretically rather unsatisfactory. On the other hand, none of the many theoretical speculations which try to go beyond the SM has (yet) received the slightest experimental support. The solution to this dilemma can only come from new data: either from the detection of a new particle threshold at high energy colliders, or from the appearance of some small discrepancy in high-precision experiments. A crucial sector for testing the SM and its extensions is that of neutral currents (NC), where an impressive amount of data has been collected in recent years. While waiting for the next generation of experiments, it is certainly useful to take stock of our knowledge, determining the NC parameters as precisely as we can and putting limits on possible deviations from the SM. The present talk contains the results of a recent analysis along these lines: the first part illustrates how a set of 'model-independent' parameters can be extracted from the available NC data, the second part particularizes the analysis to the SM and to some superstring-inspired models with an additional Z' in their low-energy spectrum. 27 refs., 3 figs., 1 tab

  13. Nonequilibrium forces between neutral atoms mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2010-01-01

    We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.

  14. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  15. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.; Han, Jie; Belhi, Memdouh; Arias, Paul G.; Bisetti, Fabrizio; Im, Hong G.; Chen, Jyh Yuan

    2016-01-01

    neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported

  16. Auditors' Professional Skepticism: Neutrality versus Presumptive Doubt

    NARCIS (Netherlands)

    Groot, T.L.C.M.; Quadackers, L.M.; Wright, A.

    2014-01-01

    Although skepticism is widely viewed as essential to audit quality, there is a debate about what form is optimal. The two prevailing perspectives that have surfaced are "neutrality" and "presumptive doubt." With neutrality, auditors neither believe nor disbelieve client management. With presumptive

  17. 32 CFR 644.323 - Neutral language.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Neutral language. 644.323 Section 644.323 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal § 644.323 Neutral language. Wherever the words “man”, “men”, or their related...

  18. 3He neutral current detectors at SNO

    International Nuclear Information System (INIS)

    Elliott, S.R.; Browne, M.C.; Doe, P.J.

    1998-01-01

    The flux of solar neutrinos measured via charged and neutral current interactions can provide a model independent test of neutrino oscillations. Since the Sudbury Neutrino Observatory uses heavy water as a target, it has a large sensitivity to both interactions. A technique for observing the neutral current breakup of the deuteron using 3 He proportional counters is described

  19. Photoproduction of neutral pions off protons

    NARCIS (Netherlands)

    Crede, V.; Sparks, N.; Wilson, A.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, R.; Bartholomy, O.; Bayadilov, D.; Beck, R.; Beloglazov, Y. A.; Castelijns, R.; Dutz, H.; Elsner, D.; Ewald, R.; Frommberger, F.; Funke, Chr; Gregor, R.; Gridnev, A.; Gutz, E.; Hillert, W.; Hoffmeister, P.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Kammer, S.; Klein, Frank; Klein, Friedrich; Klempt, E.; Kotulla, M.; Krusche, B.; Löhner, H.; Lopatin, I. V.; Lugert, S.; Menze, D.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Nanova, M.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Sarantsev, A. V.; Schadmand, S.; Schmidt, C.; Schmieden, H.; Schoch, B.; Shende, S.; Sokhoyan, V.; Suele, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Wendel, Ch

    2011-01-01

    Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector in the reaction gamma p -> p pi(0) for photon energies between 0.85 and 2.50 GeV. The pi(0) mesons are observed in their dominant neutral decay mode: pi(0) -> gamma gamma. For the first time, the differential cross

  20. On the possible eigenoscillations of neutral sheets

    International Nuclear Information System (INIS)

    Almeida, W.A.; Costa, J.M. da; Aruquipa, E.G.; Sudano, J.P.

    1974-12-01

    A neutral sheet model with hyperbolic tangent equilibrium magnetic field and hyperbolic square secant density profiles is considered. It is shown that the equation for small oscillations takes the form of an eigenvalue oscillation problem. Computed eigenfrequencies of the geomagnetic neutral sheet were found to be in the range of the resonant frequencies of the geomagnetic plasma sheet computed by other authors

  1. Gender Neutrality: Women's Friend or Foe?

    Science.gov (United States)

    Steuernagel, Trudy

    Gender neutral public policies are those that are either silent on the question of the existence of significant gender differences or incorporate a perspective which mandates that such differences be ignored. Prominent voices today contend that gender neutrality favors males and have held the male standard as the one for which women should aspire.…

  2. Targets for high power neutral beams

    International Nuclear Information System (INIS)

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs

  3. On plasma-neutral gas interaction

    International Nuclear Information System (INIS)

    Venkataramani, N.; Mattoo, S.K.

    1980-01-01

    The importance of plasma-neutral gas interaction layer has been emphasized by pointing out its application to a wide variety of physical phenomena. The interaction of a magnetised plasma stream penetrating a neutral gas cloud is discussed in the light of Alfven's critical velocity and Varma's threshold velocity on the ionising interaction. Interaction of a moving magnetised plasma with a stationary neutral gas has been studied and described. The device comprises of a plasma gun and an interaction region where neutral gas cloud is injected. The interaction region is provided with a transverse magnetic field of upto 1000 G. Several diagnostics deployed at the interaction region to make measurements on the macroscopic parameters of plasma and neutral gas are described. The parameters of discharge circuits are measured with high current and voltage probes. An interaction between a magnetised plasma stream and a neutral gas cloud is demonstrated. It is shown that this interaction does not have Varma's threshold on their relative velocity. The Alfven's critical velocity phenomenon is shown to depend on the integrated column neutral gas density that a plasma stream encounters while penetrating through it and not on the neutral gas density in the range of 10 17 -10 21 m -3 . (auth.)

  4. Net Neutrality and Inflation of Traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, F.

    2015-01-01

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate different net neutrality rules. Content differs in its sensitivity to delay.

  5. Net neutrality and inflation of traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, Florian

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate the short-run effects of different net neutrality rules. Content differs in its

  6. Neutralization of wastewater from nitrite passivation

    International Nuclear Information System (INIS)

    Pawlowski, L.; Mientki, B.; Wasag, H.

    1982-01-01

    A method for neutralization of wastewater formed in nitrite passivation has been presented. The method consists of introducing urea into wastewater and acidifying it with sulphuric acid. Wastewater is neutralized with lime. After clarification, wastewater can be drained outside the plant

  7. A neutral sampling formula for multiple samples and an `exact' test of neutrality

    NARCIS (Netherlands)

    Etienne, R.S.

    2007-01-01

    As the utility of the neutral theory of biodiversity is increasingly being recognized, there is also an increasing need for proper tools to evaluate the relative importance of neutral processes (dispersal limitation and stochasticity). One of the key features of neutral theory is its close link to

  8. A neutral sampling formula for multiple samples and an 'exact' test of neutrality

    NARCIS (Netherlands)

    Etienne, Rampal S.

    As the utility of the neutral theory of biodiversity is increasingly being recognized, there is also an increasing need for proper tools to evaluate the relative importance of neutral processes (dispersal limitation and stochasticity). One of the key features of neutral theory is its close link to

  9. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Science.gov (United States)

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  10. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  11. Neutral beam in ALVAND IIC tokamak

    International Nuclear Information System (INIS)

    Ghrannevisse, M.; Moradshahi, M.; Avakian, M.

    1992-01-01

    Neutral beams have a wide application in tokamak experiments. It used to heat; fuel; adjust electric potentials in plasmas and diagnose particles densities and momentum distributions. It may be used to sustain currents in tokamaks to extend the pulse length. A 5 KV; 500 mA ion source has been constructed by plasma physics group, AEOI and it used to produce plasma and study the plasma parameters. Recently this ion source has been neutralized and it adapted to a neutral beam source; and it used to heat a cylindrical DC plasma and the plasma of ALVAND IIC Tokamak which is a small research tokamak with a minor radius of 12.6 cm, and a major radius of 45.5 cm. In this paper we report the neutralization of the ion beam and the results obtained by injection of this neutral beam into plasmas. (author) 2 refs., 4 figs

  12. Tax Neutrality on International Capital Investments

    Directory of Open Access Journals (Sweden)

    Gizem KAPUCU

    2017-07-01

    Full Text Available The tax policies which states follow with regard to developing technology and capital investments with raising mobility due to globalism are need to be discussed in its legal basis. The principle of tax neutrality has the aim of being legal foundation for these policies. According to this, the neutrality principle in taxation of international capital investments is provided with two measures, namely; not effecting the investment decision and not discriminate between investments. In this paper, initially focused on the conceptual framework and the foundations of the tax neutrality principle and later capital export neutrality and capital import neutrality are considered and explained with regard to international capital movements. Moreover, conformity and diversion to the principle of the current situation and regulations in OECD, EU and Turkey are examined.

  13. Sputtering of neutral and ionic indium clusters

    International Nuclear Information System (INIS)

    Ma, Z.; Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.; Von Nagy-Felsobuki, E.I.

    1993-01-01

    Secondary neutral and secondary ion cluster yields were measured during the sputtering of a polycrystalline indium surface by normally incident ∼4 keV Ar + ions. In the secondary neutral mass spectra, indium clusters as large as In 32 were observed. In the secondary ion mass spectra, indium clusters up to In 18 + were recorded. Cluster yields obtained from both the neutral and ion channel exhibited a power law dependence on the number of constituent atoms, n, in the cluster, with the exponents measured to be -5.6 and -4. 1, respectively. An abundance drop was observed at n=8, 15, and 16 in both the neutral and ion yield distributions suggesting that the stability of the ion (either secondary ion or photoion) plays a significant role in the observed distributions. In addition, our experiments suggest that unimolecular decomposition of the neutral cluster may also plays an important role in the measured yield distributions

  14. Neutral-beam-heating applications and development

    International Nuclear Information System (INIS)

    Menon, M.M.

    1981-01-01

    The technique of heating the plasma in magnetically confined fusion devices by the injection of intense beams of neutral atoms is described. The basic principles governing the physics of neutral beam heating and considerations involved in determining the injection energy, power, and pulse length required for a fusion reactor are discussed. The pertinent experimental results from various fusion devices are surveyed to illustrate the efficacy of this technique. The second part of the paper is devoted to the technology of producing the neutral beams. A state-of-the-art account o the development of neutral injectors is presented, and the prospects for utilizing neutral injection to heat the plasma in a fusion reactor are examined

  15. ORNL neutral-beam program in 1978

    International Nuclear Information System (INIS)

    Whealton, J.H.

    1982-12-01

    This report was presented at the ion source workshop held at Culham Laboratory, Abingdon, Oxfordshire, in 1978. Because the proceedings of that conference are unavailable, and because the material in this report is still not to be found elsewhere, it is issued as a laboratory report. The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G.G. Kelley and O.B. Morgan. We describe the ion sources under development at this laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  16. Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements in the Closed Source Neutral mode

    Science.gov (United States)

    Cui, Jun

    -1 , referred to Titan's surface. The H 2 escape flux is about a factor of ~3 higher than the Jeans value, which is interpreted as enhanced thermal escape driven primarily by an upward conductive heat flux. Such a conclusion is based on kinetic model calculations in the 13-moment approximation that require energy continuity at the upper boundary. On the other hand, a proper interpretation of the observed CH 4 escape has to rely on the detailed nonthermal processes, which are still unknown at the present time. The INMS observations of the nitrogen isotope ratio implies 14 N/ 15 N=131.6 near Titan's surface. The profile of carbon isotope ratio combining INMS and GCMS results implies that both CH 4 and its isotope escape from Titan's exobase with roughly the same drift velocity, in contrast to the Jeans case which requires that CH 4 escapes with a much larger velocity due to its smaller mass. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan's thermosphere. The equatorial regions, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidences for the depletion of light species such as CH 4 . Meridional variations of most heavy species are also observed, with a trend of depletion toward the north pole. Though some of the above variations might be interpreted by either the solar-driven models or plasma-driven models, a physical scenario that reconciles all the observed horizontal/diurnal variations in a consistent way is still missing, With a careful evaluation of the effect of restricted sampling, some of the features shown in the INMS data are more likely to be observational biases.

  17. Work zone safety analysis.

    Science.gov (United States)

    2013-11-01

    This report presents research performed analyzing crashes in work zones in the state of New Jersey so as to : identify critical areas in work zones susceptible to crashes and key factors that contribute to these crashes. A field : data collection on ...

  18. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  19. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  20. Feline Immunodeficiency Virus (FIV Neutralization: A Review

    Directory of Open Access Journals (Sweden)

    Margaret J. Hosie

    2011-10-01

    Full Text Available One of the major obstacles that must be overcome in the design of effective lentiviral vaccines is the ability of lentiviruses to evolve in order to escape from neutralizing antibodies. The primary target for neutralizing antibodies is the highly variable viral envelope glycoprotein (Env, a glycoprotein that is essential for viral entry and comprises both variable and conserved regions. As a result of the complex trimeric nature of Env, there is steric hindrance of conserved epitopes required for receptor binding so that these are not accessible to antibodies. Instead, the humoral response is targeted towards decoy immunodominant epitopes on variable domains such as the third hypervariable loop (V3 of Env. For feline immunodeficiency virus (FIV, as well as the related human immunodeficiency virus-1 (HIV-1, little is known about the factors that lead to the development of broadly neutralizing antibodies. In cats infected with FIV and patients infected with HIV-1, only rarely are plasma samples found that contain antibodies capable of neutralizing isolates from other clades. In this review we examine the neutralizing response to FIV, comparing and contrasting with the response to HIV. We ask whether broadly neutralizing antibodies are induced by FIV infection and discuss the comparative value of studies of neutralizing antibodies in FIV infection for the development of more effective vaccine strategies against lentiviral infections in general, including HIV-1.

  1. Net Neutrality: Media Discourses and Public Perception

    Directory of Open Access Journals (Sweden)

    Christine Quail

    2010-01-01

    Full Text Available This paper analyzes media and public discourses surrounding net neutrality, with particular attention to public utility philosophy, from a critical perspective. The article suggests that further public education about net neutrality would be beneficial. The first portion of this paper provides a survey of the existing literature surrounding net neutrality, highlighting the contentious debate between market-based and public interest perspectives. In order to contextualize the debate, an overview of public utility philosophy is provided, shedding light on how the Internet can be conceptualized as a public good. Following this discussion, an analysis of mainstream media is presented, exploring how the media represents the issue of net neutrality and whether or not the Internet is discussed through the lens of public utility. To further examine how the net neutrality debate is being addressed, and to see the potential impacts of media discourses on the general public, the results of a focus group are reported and analyzed. Finally, a discussion assesses the implications of the net neutrality debate as presented through media discourses, highlighting the future of net neutrality as an important policy issue.

  2. Thermal comfort, physiological responses and performance during exposure to a moderate temperature drift

    DEFF Research Database (Denmark)

    Schellen, Lisje; van Marken Lichtenbelt, Wouter; de Wit, Martin

    2008-01-01

    The objective of this research was to study the effects of a moderate temperature drift on human thermal comfort, physiological responses, productivity and performance. A dynamic thermophysiological model was used to examine the possibility of simulating human thermal responses and thermal comfort...... temperature corresponding with a neutral thermal sensation (control situation). During the experiments both physiological responses and thermal sensation were measured. Productivity and performance were assessed with a ‘Remote Performance Measurement’ (RPM) method. Physiological and thermal sensation data...

  3. Thermal comfort in commercial kitchens (RP-1469)

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.; Stoops, John L.

    2013-01-01

    The indoor climate in commercial kitchens is often unsatisfactory, and working conditions can have a significant effect on employees’ comfort and productivity. The type of establishment (fast food, casual, etc.) and climatic zone can influence thermal conditions in the kitchens. Moreover, the size...... and arrangement of the kitchen zones, appliances, etc., further complicate an evaluation of the indoor thermal environment in commercial kitchens. In general, comfort criteria are stipulated in international standards (e.g., ASHRAE 55 or ISO EN 7730), but are these standardized methods applicable...... dissatisfied (PMV/PPD) index is not directly appropriate for all thermal conditions in commercial kitchens....

  4. Neutral Supersymmetric Higgs Boson Searches

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Stephen Luke [Imperial College, London (United Kingdom)

    2008-07-01

    In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL

  5. Evaluation of smallpox vaccines using variola neutralization.

    Science.gov (United States)

    Damon, Inger K; Davidson, Whitni B; Hughes, Christine M; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Frey, Sharon E; Newman, Frances; Belshe, Robert B; Yan, Lihan; Karem, Kevin

    2009-08-01

    The search for a 'third'-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific 'in vitro' activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination.

  6. Neutral currents, supernovae neutrinos, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    The inelastic interactions of neutrinos during stellar collapse and neutron star cooling are discussed. The primary mechanism for dissipative neutrino reactions is nuclear excitation by neutral current scattering, a process not included in standard descriptions of supernovae. Charge-current and neutral current ''preheating'' of iron lying outside the shock front appears to be significant in the few milliseconds near shock breakout. This could help produce a more energetic shock. During the cooling phase, the neutral current interactions of muon and taon neutrinos appear to be responsible for some interesting nucleosynthesis. I discuss two examples the production of fluorine and neutrino-induced r-process nucleosynthesis. 26 refs., 1 fig., 3 tabs

  7. Rare decays of neutral π and eta

    International Nuclear Information System (INIS)

    Poutissou, J.M.

    1983-09-01

    The decays of the pseudoscalar neutral mesons π degree and eta degree have provided a test of fundamental principles. The main branch, π degree → 2γ, was investigated in the late 60's in the context of current algebra and the decay rate calculated from the singular triangle diagram is in excellent agreement with experiment. Rare leptonic decays of the neutral pseudoscalar mesons are of interest because of the information they reveal about neutral currents or other exotic interactions between leptons and quarks. The author discusses recent information on the π degree → e + e - decay

  8. Soviet exoatmospheric neutral particle beam research

    International Nuclear Information System (INIS)

    Leiss, J.E.; Abrams, R.H.; Ehlers, K.W.; Farrell, J.A.; Gillespie, G.H.; Jameson, R.A.; Keefe, D.; Parker, R.K.

    1988-02-01

    This technical assessment was performed by a panel of eight U.S. scientists and engineers who are familiar with Soviet research through their own research experience, their knowledge of the published scientific literature and conference proceedings, and personal contacts with Soviet scientists and other foreign colleagues. Most of the technical components of a neutral particle beam generating system including the ion source, the accelerator, the accelerator radio frequency power supply, the beam conditioning and aiming system, and the beam neutralizer system are addressed. It does not address a number of other areas important to an exoatmospheric neutral beam system

  9. Fast Neutral Pressure Measurements in NSTX

    International Nuclear Information System (INIS)

    R. Raman; H.W. Kugel; T. Provost; R. Gernhardt; T.R. Jarboe; M.G. Bell

    2002-01-01

    Several fast neutral pressure gauges have been installed on NSTX [National Spherical Torus Experiment] to measure the vessel and divertor pressure during inductive and coaxial helicity injected (CHI) plasma operations. Modified, PDX [Poloidal Divertor Experiment]-type Penning gauges have been installed on the upper and lower divertors. Neutral pressure measurements during plasma operations from these and from two shielded fast Micro ion gauges at different toroidal locations on the vessel mid-plane are described. A new unshielded ion gauge, referred to as the In-vessel Neutral Pressure (INP) gauge is under development

  10. Negative ion formation and neutralization processes, (2)

    International Nuclear Information System (INIS)

    Sugiura, Toshio

    1982-09-01

    This review is 2nd part of the report published at January 1982 (JAERI-M-9902). A compilation includes the survey of the data of the cross sections of H - and D - ion formations and the neutralization of these ions. This is also presented new information about the photosensitization by laser beam in dissociative-resonance electron capture of sulfur hexafluoride reported by Chen et al., for reference to enhancement of D - ions in discharge. For neutralization, the data of mutual neutralization and photodetachment are also presented. (author)

  11. Spectral and thermal investigation of tetrabenzoylacetonatobenzoylacetonediuranyl

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Klavsut', G.N.; Umrejko, D.S.

    1989-01-01

    Uranium(6) compound with benzoylacetone (NBA) of [(UO 2 ) 2 (NBA)(BA) 4 ] composition was prepared by the method of electrochemical synthesis in oxidizing medium. Spectral and thermal investigation (data of IR, Raman spectra, TG, DTA) was conducted to show that four NBA molecules entered the compound as acidoligands and one NBA molecule (being a bridge) - as neutral ligand in keto-form. Mechanism of thermal decomposition was suggested and kinetic parameters of thermolysis of examined substance were calculated

  12. Search for an explanation for neutralization rates of atomic ion-ion reactions

    Science.gov (United States)

    Miller, Thomas M.; Wiens, Justin P.; Shuman, Nicholas S.; Viggiano, Albert A.

    2016-09-01

    We have measured well over a hundred rate coefficients k for cation-anion mutual neutralization reactions at thermal energies. For molecular ions, the k at 300 K tend not to vary more than a factor of two or three, presumably because a great many neutral states cross the incoming Coulombic potential energy curve. Atomic-atomic systems, for which there are few favorable curve crossings between the neutral and Coulombic curves, show variation of at least a factor of 60 in the measured k values at 300 K. For reactions involving the noble-gas cations, we assume that the final state is the lowest excited state of the neutral, plus the ground state of the neutralized anion, because otherwise the crossing distance R is so small that the curve-crossing probability is nil. We plotted measured k values (in cm3/s) vs the distance R (in bohr) at which the neutral and Coulombic curves cross, the found that the data are fairly well fit by a power law for k, 10-4R - 2 . 8 . The question is, is there a physical explanation for the observed dependence on R? We will discuss the data and the expectations of Landau-Zener theory. Supported by Air Force Office of Scientific Research (AFOSR-2303EP).

  13. Neutral Color Semitransparent Microstructured Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.; Burlakov, Victor M.; Goriely, Alain; Snaith, Henry J.

    2014-01-01

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form

  14. Charge neutralization of small ion beam clumps

    Energy Technology Data Exchange (ETDEWEB)

    Welch, D R [Mission Research Corp., Albuquerque, NM (United States); Olson, C L; Hanson, D L [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    The mega-ampere currents associated with light ion fusion (LIF) require excellent charge neutralization to prevent divergence growth. As the size and space-charge potential of a beam clump or `beamlet` become small (submillimeter size and kilovolt potentials), the neutralization becomes increasingly difficult. Linear theory predicts that plasma electrons cannot neutralize potentials < {phi}{sub crit} = (1/2)m{sub e}v{sub i}{sup 2}/e, where m{sub e} is the electron mass and v{sub i} is the ion beam velocity. A non-uniform beam would, therefore, have regions with potentials sufficient to add divergence to beam clumps. The neutralization of small beamlets produced on the SABLE accelerator and in numerical simulation has supported the theory, showing a plateau in divergence growths as the potential in the beamlet exceeds {phi}{sub crit}. (author). 1 tab., 2 figs., 4 refs.

  15. UV Ionizer for Neutral Wind Mass Spectrometers

    Data.gov (United States)

    National Aeronautics and Space Administration — Current neutral particle instrumentation relies on hot cathode filaments or an electron gun for ionizing the target medium.  These ionization sources represent a...

  16. Kinetics of neutralization of Po-218

    International Nuclear Information System (INIS)

    Chu, K.D.

    1987-01-01

    In a well-defined experimental system the neutralization of polonium-218 ions was investigated as a function of the physical and chemical properties of the controlled composition atmosphere. The mobilities of Po + and PoO 2 + are determined by combining experimental results with a computer model of the system. Three neutralization mechanisms were individually studied. The small ion recombination rate has been found to be proportional to the square root of radon concentration. The electron scavenging mechanism is responsible for the neutralization of Po + in NO 2 or H 2 O in nitrogen. When PoO 2 + is formed, the electron transfer mechanism dominates the neutralization process. The electron is transferred to PoO 2 + from molecules with lower ionization potentials. The ionization potential of PoO 2 + is also determined to be 10.44 +/- 0.05 eV

  17. An experimenter's history of neutral currents

    International Nuclear Information System (INIS)

    Sciulli, F.

    1979-01-01

    The history of the experimental study of neutral currents, defined as the class of weak interactions engaged in by lepton pairs of net zero charge, is traced under the headings; historical motivations, experimental searches, first positive indications, neutral currents corroborated, neutrino experiments on neutral currents and some general experimental comments. It is concluded that the neutral current does exist and predicted on the basis of gauge theory ideas, and though to connect the weak and electromagnetic interactions, its very general experimental properties are quite consistent with those ideas. Among these are flavor conserving complicated isospin structure, complicated V, A structure and a structure which depends on the type (or quantum numbers) of the target. 50 references. (UK)

  18. Transport of neutral solute across articular cartilage: the role of zonal diffusivities.

    Science.gov (United States)

    Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A

    2015-07-01

    Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.

  19. Development of provisions for oil contaminated soil neutralizing in the conditions of Siberia and the Arctic

    Science.gov (United States)

    Shtripling, L. O.; Kholkin, E. G.

    2017-08-01

    Siberia and the Arctic zone of the Russian Federation occupy a large area of the country and they differ from other regions in special climatic conditions, in particular, a long period of freezing temperatures and relatively poor infrastructure. The main problem of neutralizing soils contaminated with oil products in conditions of negative ambient temperature is that the contaminated soil is in a frozen state, and it prevents the normal course of neutralization process, so additional energy is required for preparing the soil. There is proposed a technology adapted to the conditions of Siberia and the Arctic for the operational elimination of emergency situations consequences accompanied with oil spills. The technology for neutralizing soils contaminated with petroleum products is based on the encapsulation of a pollutant (reagent capsulation technology) using an alkaline calcium-based reagent. Powdered building quicklime is used as a reagent, and it is a product of roasting carbonate rocks or a mixture of this product with mineral additives (calcium oxide). The encapsulated material obtained as a result of neutralizing soils contaminated with petroleum products is resistant to natural and man-made factors such as moisture, temperature fluctuations, acid rain and high pressure. Energy use from the chemical detoxification exothermic process of soils contaminated with petroleum products in combination with the forced supply of carbon dioxide to the neutralization zone during the formation of a shell from calcium carbonate on the surface of the pollutant makes it possible to neutralize soils contaminated with oil products in the extreme climatic conditions of the Arctic using reagent Encapsulation. The principle of equipment operation that allows neutralizing soils contaminated with petroleum products in the natural and climatic conditions of the Arctic using reagent capsulation technology has been described. The results of experimental studies have been presented that

  20. VT Data - Zoning 20120709, Huntington

    Data.gov (United States)

    Vermont Center for Geographic Information — Zoning district data for the Town of Huntington, Vermont. For details regarding each zoning district refer to the current zoning regulations on town of Huntington's...

  1. ITER neutral beam system US conceptual design

    International Nuclear Information System (INIS)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D - source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus

  2. Neutral-particle-beam production and injection

    International Nuclear Information System (INIS)

    Post, D.; Pyle, R.

    1982-07-01

    This paper is divided into two sections: the first is a discussion of the interactions of neutral beams with confined plasmas, the second is concerned with the production and diagnosis of the neutral beams. In general we are dealing with atoms, molecules, and ions of the isotopes of hydrogen, but some heavier elements (for example, oxygen) will be mentioned. The emphasis will be on single-particle collisions; selected atomic processes on surfaces will be included

  3. Neutral signature Walker-VSI metrics

    International Nuclear Information System (INIS)

    Coley, A; McNutt, D; Musoke, N; Brooks, D; Hervik, S

    2014-01-01

    We will construct explicit examples of four-dimensional neutral signature Walker (but not necessarily degenerate Kundt) spaces for which all of the polynomial scalar curvature invariants vanish. We then investigate the properties of some particular subclasses of Ricci flat spaces. We also briefly describe some four-dimensional neutral signature Einstein spaces for which all of the polynomial scalar curvature invariants are constant. (paper)

  4. Nitrogen-neutrality: a step towards sustainability

    Science.gov (United States)

    Leip, Adrian; Leach, Allison; Musinguzi, Patrick; Tumwesigye, Trust; Olupot, Giregon; Tenywa, John Stephen; Mudiope, Joseph; Hutton, Olivia; Cordovil, Claudia M. d. S.; Bekunda, Mateete; Galloway, James

    2014-11-01

    We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, N-neutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US 3050 was collected from the participants and used to offset the conference’s N footprint by supporting the UN Millennium Village cluster Ruhiira in South-Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates.

  5. Γ-source Neutral Point Clamped Inverter

    DEFF Research Database (Denmark)

    Mo, Wei; Loh, Poh Chiang; Blaabjerg, Frede

    Transformer based Z-source inverters are recently proposed to achieve promising buck-boost capability. They have improved higher buck-boost capability, smaller size and less components count over Z-source inverters. On the other hand, neutral point clamped inverters have less switching stress...... and better output performance comparing with traditional two-level inverters. Integrating these two types of configurations can help neutral point inverters achieve enhanced votlage buck-boost capability....

  6. TFTR neutral beam injection system conceptual design

    International Nuclear Information System (INIS)

    1975-01-01

    Three subsystems are described in the following chapters: (1) Neutral Beam Injection Line; (2) Power Supplies; and (3) Controls. Each chapter contains two sections: (1) Functions and Design Requirements; this is a brief listing of the requirements of components of the subsystem. (2) Design Description; this section describes the design and cost estimates. The overall performance requirements of the neutral beam injection system are summarized. (MOW)

  7. Neutral currents without gauge theory prejudices

    International Nuclear Information System (INIS)

    Sakurai, J.J.

    1976-01-01

    The measurement of weak neutral current processes allows a determination of the space-time structure and the isospin structure of these currents. The inclusive production data and the elastic neutrino electron scattering rules out a pure V or A structure of the current. A pure isoscalar current is in disagreement with the experimental data for the one pion production off neutrinos. Further aspects of the neutral current can be determined in neutrino-nucleus-scattering experiments. (BJ) [de

  8. Negative ion formation and neutralization processes, (1)

    International Nuclear Information System (INIS)

    Sugiura, Toshio

    1982-01-01

    This review has been made preliminary for the purpose of contribute to the plasma heating by ''negative ion based neutral beam injection'' in the magnetic confinement fusion reactor. A compilation includes the survey of the general processes of negative ion formation, the data of the cross section of H - ion formation and the neutralization of H - ion, and some of new processes of H - ion formation. The data of cross section are mainly experimental, but partly include the results of theoretical calculation. (author)

  9. Nitrogen-neutrality: a step towards sustainability

    International Nuclear Information System (INIS)

    Leip, Adrian; Leach, Allison; Hutton, Olivia; Galloway, James; Musinguzi, Patrick; Tumwesigye, Trust; Olupot, Giregon; Stephen Tenywa, John; Mudiope, Joseph; Cordovil, Claudia M d S; Bekunda, Mateete

    2014-01-01

    We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, N-neutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US$ 3050 was collected from the participants and used to offset the conference’s N footprint by supporting the UN Millennium Village cluster Ruhiira in South-Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates. (paper)

  10. Applications of neutral beam and rf technologies

    International Nuclear Information System (INIS)

    Haselton, H.H.

    1987-04-01

    This presentation provides an update on the applications of neutral beams and radiofrequency (rf) power in the fusion program; highlights of the ion cyclotron heating (ICH) experiments now in progress, as well as the neutral beam experiments; and heating requirements of future devices and some of the available options. Some remarks on current drive are presented because this area of technology is one that is being considered for future devices

  11. Apparatus for neutralization of accelerated ions

    International Nuclear Information System (INIS)

    Fink, J.H.; Frank, A.M.

    1979-01-01

    Apparatus is described for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H - ), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (lambda = 8000 A for H - ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (approx. 85%) of neutralization

  12. Welding metallurgy of SA508 Cl II heat affected zones

    International Nuclear Information System (INIS)

    Alberry, P.J.; Lambert, J.A.

    1982-01-01

    A weld thermal simulation technique has been used to investigate the metallurgical response of SA508 class II material during welding. Dynamic Ac 1 and Ac 3 data, grain growth kinetics and continuous cooling transformation diagrams have been measured. The heat affected zone structure, grain size and precipitate distribution are described in terms of the weld thermal cycle experienced and compared with a weld heat affected zone. The as-welded hardness and tempering response of a range of possible heat affected zone structures has been established. The tempering effects of various weld thermal cycles are calculated from isothermal tempering data. The likely tempering effects during welding are estimated and compared with the tempering of actual welds during welding and in subsequent conventional post weld heat treatment. 16 figures, 6 tables

  13. Double seismic zone for deep earthquakes in the izu-bonin subduction zone.

    Science.gov (United States)

    Iidaka, T; Furukawa, Y

    1994-02-25

    A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.

  14. Negative ion based neutral beams for plasma heating

    International Nuclear Information System (INIS)

    Prelec, K.

    1978-01-01

    Neutral beam systems based on negative ions have been considered because of a high expected power efficiency. Methods for the production, acceleration and neutralization of negative ions will be reviewed and possibilities for an application in neutral beam lines explored

  15. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    Hemsworth, R.S.; Feist, J.; Hanada, M.; Heinemann, B.; Inoue, T.; Kuessel, E.; Kulygin, V.; Krylov, A.; Lotte, P.; Miyamoto, K.; Miyamoto, N.; Murdoch, D.; Nagase, A.; Ohara, Y.; Okumura, Y.; Pamela, J.; Panasenkov, A.; Shibata, K.; Tanii, M.

    1996-01-01

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D 0 to the ITER plasma for pulse length of ≥1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D - . This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  16. Neutral particle kinetics in fusion devices

    International Nuclear Information System (INIS)

    Tendler, M.; Heifetz, D.

    1986-05-01

    The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub α/ emission rates, plenum pressures, and charge-exchange emission spectra

  17. Neutral particle kinetics in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Tendler, M.; Heifetz, D.

    1986-05-01

    The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub ..cap alpha../ emission rates, plenum pressures, and charge-exchange emission spectra.

  18. Promise Zones for Applicants

    Data.gov (United States)

    Department of Housing and Urban Development — This tool assists applicants to HUD's Promise Zone initiative prepare data to submit with their application by allowing applicants to draw the exact location of the...

  19. Speeds in school zones.

    Science.gov (United States)

    2009-02-01

    School speed zones are frequently requested traffic controls for school areas, based on the common belief : that if the transportation agency would only install a reduced speed limit, then drivers would no longer : speed through the area. This resear...

  20. Buffer Zone Fact Sheets

    Science.gov (United States)

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  1. Automated Facial Coding Software Outperforms People in Recognizing Neutral Faces as Neutral from Standardized Datasets

    Directory of Open Access Journals (Sweden)

    Peter eLewinski

    2015-09-01

    Full Text Available Little is known about people’s accuracy of recognizing neutral faces as neutral. In this paper, I demonstrate the importance of knowing how well people recognize neutral faces. I contrasted human recognition scores of 100 typical, neutral front-up facial images with scores of an arguably objective judge – automated facial coding (AFC software. I hypothesized that the software would outperform humans in recognizing neutral faces because of the inherently objective nature of computer algorithms. Results confirmed this hypothesis. I provided the first-ever evidence that computer software (90% was more accurate in recognizing neutral faces than people were (59%. I posited two theoretical mechanisms, i.e. smile-as-a-baseline and false recognition of emotion, as possible explanations for my findings.

  2. SYNTHESIS, SPECTRAL AND THERMAL PROPERTIES OF SOME ...

    African Journals Online (AJOL)

    The infrared spectral studies reveal that the ligand HNAAPTS is coordinated in neutral tridentate (N,N,S) fashion. The coordination number of Th(IV) in these coordination compounds varies from 6, 8, 10 or 11; while for U(VI) the coordination number are 8, 9 or 10. Thermal stabilities of these complexes were investigated ...

  3. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  4. Building concepts for a transition towards energy neutrality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, B.J.; Paauw, J. [TNO Built Environment and Geosciences, Delft (Netherlands); Opstelten, I.J.; Bakker, E.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands)

    2007-03-15

    In this paper building concepts for the near future are described which enable the transition towards a net energy neutral building sector in the Netherlands by the year 2050. With 'net energy neutrality' is meant that, on a yearly basis, the total energy consumption in the built environment is compensated by local renewable energy production e.g. by using solar thermal (T), photovoltaic (PV), PVT and/or wind. A study concerning the feasibility of a 'net energy neutral built environment by 2050' set the energetic ambitions for the building concepts to be developed. This resulted in different concepts for residential buildings and for office-buildings. The building concepts are based on passive house technology to minimise the heating and cooling demand, and make optimal use of active and passive solar energy. Concepts for new to build domestic buildings are in fact energy producing to compensate for the remaining energy demand of existing, renovated dwellings. In all concepts the 'trias energetica' or 'energy pyramid' served as a general guideline, striving for minimisation of energy demand, maximal usage of renewable energy and usage of fossil fuels as efficiently as possible. Different full roof integrated options for using solar energy (PV, T or PVT) with variable storage options have been compared by making simulations with a dynamic simulation programme, to gain insight on their impact on energy, building engineering and economic impact. Also different possibilities for installations to fulfil the heating demand for the space heating and DHW demand are compared. For each concept, the resulting primary energy profiles for space heating and cooling, domestic hot water, electricity consumption for lighting, ventilation and household appliances are given.

  5. Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments.

    Science.gov (United States)

    Hwang, R-L; Chen, C-P

    2010-06-01

    This study investigated the thermal sensation of elderly people in Taiwan, older than 60 years, in indoor microclimate at home, and their requirements for establishing thermal comfort. The study was conducted using both a thermal sensation questionnaire and measurement of indoor climatic parameters underlying the thermal environment. Survey results were compared with those reported by Cheng and Hwang (2008, J. Tongji Univ., 38, 817-822) for non-elders to study the variation between different age groups in requirements of indoor thermal comfort. The results show that the predominant strategy of thermal adaptation for elders was window-opening in the summer and clothing adjustment in the winter. The temperature of thermal neutrality was 25.2 degrees C and 23.2 degrees C for the summer and the winter, respectively. Logistically regressed probit modeling on percentage of predicted dissatisfied (PPD) against mean thermal sensation vote revealed that the sensation votes corresponding to a PPD of 20% were +/- 0.75 for elders, about +/- 0.10 less than the levels projected by ISO 7730 model. The range of operative temperature for 80% thermal acceptability for elders in the summer was 23.2-27.1 degrees C, narrower than the range of 23.0-28.6 degrees C reported for non-elders. This is likely a result of a difference in the selection of adaptive strategies. Taiwan in the last decade has seen a rapid growth in the elderly population in its societal structure, and as such the quality of indoor thermal comfort increasingly concerns the elderly people. This study presents the results from field-surveying elders residing in major geographical areas of Taiwan, and discusses the requirements of these elders for indoor thermal comfort in different seasons. Through a comparison with the requirements by non-elders, this study demonstrates the unique sensitivity of elders toward indoor thermal quality and the selection of adaptive strategies that need to be considered when a thermal

  6. Excitation of an instability by neutral particle ionization induced fluxes in the tokamak edge plasma

    International Nuclear Information System (INIS)

    Bachmann, P.; Sunder, D.

    1991-01-01

    Strong density and potential fluctuations in the edge plasma of toroidal nuclear fusion devices can lead to anomalously fast particle and energy transport. There are some reasons to assume the level of these fluctuations to be connected with neutral particles which enter the plasma by gas puffing or recycling processes. The influence of neutral particles on the behaviour of electrostatic drift modes was investigated. Using the ballooning transformation the excitation of dissipative drift waves in tokamak was studied taking ionization and charge exchange into consideration. Ionization driven drift wave turbulence was analyzed. The higher the neutral particle density is the more important the plasma-wall interaction and the less important the action of the limiter becomes. Instabilities localized in the edge plasma and far from the limiter can be one of the reasons of such a phenomenon. In the present paper we show that such an instability may exist. Usually the neutral particle density is large in the vicinity of the limiter and decreases rapidly with the distance from it. Plasma particles generated by ionization of these neutrals outside the limiter shadow, move along the magnetic field lines into a region without neutrals and diffuse slowly across the magnetic field. We solve the stability problem for modes with a perpendicular wave length that is much larger than the ion Larmor radius with electron temperature, and much smaller than the minor plasma radius. The excitation of such modes localized far from the limiter is investigated. A one-dimensional differential equation is derived in the cold ion approximation without taking shear and toroidal effects into consideration. In the case of low flow velocities a nearly aperiodic instability is found analytically. Its growth rate is proportional to the equilibrium plasma velocity at the boundary of the neutral particle's free region and to the inverse of the extension of this zone. This mode is localized in the edge

  7. Sheet Fluorescence and Annular Analysis of Ultracold Neutral Plasmas

    International Nuclear Information System (INIS)

    Castro, J.; Gao, H.; Killian, T. C.

    2009-01-01

    Annular analysis of fluorescence imaging measurements on Ultracold Neutral Plasmas (UNPs) is demonstrated. Spatially-resolved fluorescence imaging of the strontium ions produces a spectrum that is Doppler-broadened due to the thermal ion velocity and shifted due to the ion expansion velocity. The fluorescence excitation beam is spatially narrowed into a sheet, allowing for localized analysis of ion temperatures within a volume of the plasma with small density variation. Annular analysis of fluorescence images permits an enhanced signal-to-noise ratio compared to previous fluorescence measurements done in strontium UNPs. Using this technique and analysis, plasma ion temperatures are measured and shown to display characteristics of plasmas with strong coupling such as disorder induced heating and kinetic energy oscillations.

  8. Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation

    International Nuclear Information System (INIS)

    Halpern, Federico D.; Kritz, Arnold H.; Bateman, G.; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.

    2008-01-01

    Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037

  9. Output power characteristics of the neutral xenon long laser

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

  10. Effect of neutral particles on density limits in tokamaks

    International Nuclear Information System (INIS)

    Abramov, V.A.; Morozov, D.Kh.; Bachmann, P.; Suender, D.

    1993-01-01

    The global stability and confinement of a tokamak plasma are significantly influenced by the boundary plasma parameters. The onset of density disruptions, which limit the maximum plasma density, is triggered by impurity radiation in the edge plasma and can be connected with the radiative thermal instability. At the density n c the total radiative power P rad is equal to the total input power P in into the plasma (S:=P rad /P in =1). Above n c (S>1) no steady state of the plasma column exists. Contrary to predictions made elsewhere, where neutral particle kinetics is not taken into consideration, experimental results show that disruptions can occur for S R as a function of the plasma temperature T, ξ N :=N/n and ξ i :=n i /n, where N, n i , n are the densities of hydrogen atoms, impurity ions and the plasma, respectively. We investigate the influence of the neutral particles on the critical densities and the stability of the system, taking into account ionization, charge exchange and impurity cooling. (author) 6 refs., 3 figs

  11. Experimental Investigation of the Neutral sheet Profile During Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Ji, H.; Yamada, M.; Kulsrud, R.; Hsu, S.; Carter, T.

    1999-01-01

    During magnetic reconnection, a ''neutral sheet'' current is induced, heating the plasma. The resultant plasma thermal pressure forms a stationary equilibrium with the opposing magnetic fields. The reconnection layer profile holds significant clues about the physical mechanisms which control reconnection. On the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)], a quasi steady-state and axisymmetric neutral sheet profile has been measured precisely using a magnetic probe array with spatial resolution equal to one quarter of the ion gyro-radius. It was found that the reconnecting field profile fits well with a Harris-type profile [E. G. Harris, Il Nuovo Cimento 23, 115 (1962)], B(x) approximately tanh(x/delta). This agreement is remarkable since the Harris theory does not take into account reconnection and associated electric fields and dissipation. An explanation for this agreement is presented. The sheet thickness delta is found to be approximately 0.4 times the ion skin depth, which agrees with a generalized Harris theory incorporating non-isothermal electron and ion temperatures and finite electric field. The detailed study of additional local features of the reconnection region is also presented

  12. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.; Vila-Comamala, Joan; Lai, Barry; Maser, Jorg M.; Roehrig, Christian; Wojcik, Michael J.; Vogt, Franz Stefan

    2017-04-04

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respective zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.

  13. Computational studies of the effect of magnetic field ''ripple'' on neutral beam heating of ZEPHYR

    International Nuclear Information System (INIS)

    Lister, G.G.; Gruber, O.

    1981-01-01

    The results of computations to estimate the heating efficiency of neutral injection in the proposed ZEPHYR experiment are presented. A suitably modified version of the Monte-Carlo neutral deposition and orbit following code FREYA was used for these calculations, in which particular emphasis has been placed on the effects of toroidal field ripple. We find that the ripple associated with the preliminary design of the experiment (+-6%) would result in intolerable energy losses due to ''ripple trapping'' of the fast ions produced by the neutral beam and insufficient heating of the central plasma. The necessary conditions for ignition can be obtained with a total heating power of 25 MW provided the ripple can be reduced to +-1%, in which case energy losses could be kept below 30%. These results are compatible with those found from transport code calculations of the losses to be expected due to ripple enhanced thermal conduction in the plasma

  14. Toroidal confinement of non-neutral plasma - A new approach to high-beta equilibrium

    International Nuclear Information System (INIS)

    Yoshida, Z.; Ogawa, Y.; Morikawa, J.

    2001-01-01

    Departure from the quasi-neutral condition allows us to apply significant two-fluid effects that impart a new freedom to the design of high-performance fusion plasma. The self-electric field in a non-neutralized plasma induces a strong ExB-drift flow. A fast flow produces a large hydrodynamic pressure that can balance with the thermal pressure of the plasma. Basic concepts to produce a toroidal non-neutral plasma have been examined on the internal-conductor toroidal confinement device Proto-RT. A magnetic separatrix determines the boundary of the confinement region. Electrons describe chaotic orbits in the neighborhood of the magnetic null point on the separatrix. The chaos yields collisionless diffusion of electrons from the particle source (electron gun) towards the confinement region. Collisionless heating also occurs in the magnetic null region, which can be applied to produce a plasma. (author)

  15. Serbia's Military Neutrality: Origins, effects and challenges

    Directory of Open Access Journals (Sweden)

    Ejdus Filip

    2014-10-01

    Full Text Available Serbia is the only state in the Western Balkans that is not seeking NATO membership. In December 2007, Serbia declared military neutrality and in spite of its EU membership aspirations, developed very close relations with Moscow. The objective of this paper is threefold. First, I argue that in order to understand why Serbia declared military neutrality, one has to look both at the discursive terrain and domestic power struggles. The key narrative that was strategically used by mnemonic entrepreneurs, most importantly by the former Prime Minister Vojislav Koštunica, to legitimize military neutrality was the trauma of NATO intervention in 1999 and the ensuing secession of Kosovo. In the second part of the paper, I discuss the operational consequences of the military neutrality policy for Serbia's relations with NATO and Russia, as well as for military reform and EU accession. Finally, I spell out the challenges ahead in Serbia's neutrality policy and argue that its decision makers will increasingly be caught between pragmatic foreign policy requirements on the one hand and deeply entrenched traumatic memories on the other.

  16. Neutral axis as damage sensitive feature

    International Nuclear Information System (INIS)

    Sigurdardottir, D H; Glisic, B

    2013-01-01

    Structural health monitoring (SHM) is the process of continuously or periodically measuring structural parameters and the transformation of the collected data into information on real structural conditions. The centroid of stiffness is a universal parameter and its position in a cross-section can be evaluated for any load-carrying beam structure as the position of the neutral axis under conveniently chosen loads. Thus, a change in the position of the neutral axis within a cross-section can indicate a change in the position of the centroid of stiffness, i.e., unusual structural behaviors. This paper proposes a novel monitoring method based on deterministic and probabilistic determination of the position of the neutral axis under conveniently chosen conditions. Therefore, the method proposed in this paper is potentially applicable to a large variety of beam-like structures. Data from two existing structures were used to validate the method and assess its performance: Streicker Bridge at Princeton University and the US202/NJ23 highway overpass in Wayne, NJ. The results show that the neutral axis location is varying even when damage is not present. Reasons for this variation are determined and the accuracy in the evaluation assessed. This paper concludes that the position of the neutral axis can be evaluated with sufficient accuracy using static and dynamic strain measurements performed on appropriate time-scales and indicates its potential to be used as a damage sensitive feature. (paper)

  17. Neutral axis as damage sensitive feature

    Science.gov (United States)

    Sigurdardottir, D. H.; Glisic, B.

    2013-07-01

    Structural health monitoring (SHM) is the process of continuously or periodically measuring structural parameters and the transformation of the collected data into information on real structural conditions. The centroid of stiffness is a universal parameter and its position in a cross-section can be evaluated for any load-carrying beam structure as the position of the neutral axis under conveniently chosen loads. Thus, a change in the position of the neutral axis within a cross-section can indicate a change in the position of the centroid of stiffness, i.e., unusual structural behaviors. This paper proposes a novel monitoring method based on deterministic and probabilistic determination of the position of the neutral axis under conveniently chosen conditions. Therefore, the method proposed in this paper is potentially applicable to a large variety of beam-like structures. Data from two existing structures were used to validate the method and assess its performance: Streicker Bridge at Princeton University and the US202/NJ23 highway overpass in Wayne, NJ. The results show that the neutral axis location is varying even when damage is not present. Reasons for this variation are determined and the accuracy in the evaluation assessed. This paper concludes that the position of the neutral axis can be evaluated with sufficient accuracy using static and dynamic strain measurements performed on appropriate time-scales and indicates its potential to be used as a damage sensitive feature.

  18. Evaluation of the potential for operating carbon neutral WWTPs in China.

    Science.gov (United States)

    Hao, Xiaodi; Liu, Ranbin; Huang, Xin

    2015-12-15

    Carbon neutrality is starting to become a hot topic for wastewater treatment plants (WWTPs) all over the world, and carbon neutral operations have emerged in some WWTPs. Although China is still struggling to control its water pollution, carbon neutrality will definitely become a top priority for WWTPs in the near future. In this review, the potential for operating carbon neutral WWTPs in China is technically evaluated. Based on the A(2)/O process of a typical municipal WWTP, an evaluation model is first configured, which couples the COD/nutrient removals (mass balance) with the energy consumption/recovery (energy balance). This model is then applied to evaluate the potential of the organic (COD) energy with regards to carbon neutrality. The model's calculations reveal that anaerobic digestion of excess sludge can only provide some 50% of the total amount of energy consumption. Water source heat pumps (WSHP) can effectively convert the thermal energy contained in wastewater to heat WWTPs and neighbourhood buildings, which can supply a net electrical equivalency of 0.26 kWh when 1 m(3) of the effluent is cooled down by 1 °C. Photovoltaic (PV) technology can generate a limited amount of electricity, barely 10% of the total energy consumption. Moreover, the complexity of installing solar panels on top of tanks makes PV technology almost not worth the effort. Overall, therefore, organic and thermal energy sources can effectively supply enough electrical equivalency for China to approach to its target with regards to carbon neutral operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. New insights on the collisional escape of light neutrals from Mars

    Science.gov (United States)

    Gacesa, Marko; Zahnle, Kevin

    2017-04-01

    Photodissociative recombination (PDR) of atmospheric molecules on Mars is a major mechanism of production of hot (suprathermal) atoms with sufficient kinetic energy to either directly escape to space or to eject other atmospheric species. This collisional ejection mechanism is important for evaluating the escape rates of all light neutrals that are too heavy to escape via Jeans escape. In particular, it plays a role in estimating the total volume of escaped water constituents (i.e., O and H) from Mars, as well as influences evolution of the atmospheric [D]/[H] ratio1. We present revised estimates of total collisional escape rates of neutral light elements including H, He, and H2, based on recent (years 2015-2016) atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission. We also estimate the contribution to the collisional escape from Energetic Neutral Atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases2,3. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism1,3. The escape rates are evaluated using a 1D model of the atmosphere supplemented with MAVEN measurements of the neutrals. Finally, new estimates of contributions of these non-thermal mechanisms to the estimated PDR escape rates from young Mars4 are presented. [1] M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012). [2] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014). [3] M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", Icarus 284, 90 (2017). [4] J. Zhao, F. Tian, Y. Ni, and X. Huang, "DR-induced escape of O and C from early Mars", Icarus 284, 305 (2017).

  20. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  1. A Measurement of Coherent Neutral Pion Production in Neutrino Neutral Current Interactions in NOMAD experiment

    CERN Document Server

    Kullenberg, C T

    2009-01-01

    We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to $1.44 \\times 10^6$ muon-neutrino Charged Current interactions in the energy range $2.5 \\leq E_{\

  2. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.; Spolaore, M. [Consorzio RFX, Padova 35127 (Italy); Sartori, E. [Consorzio RFX, Padova 35127 (Italy); Università degli Studi di Padova, Padova 35122 (Italy); Veltri, P. [Consorzio RFX, Padova 35127 (Italy); INFN-LNL, Legnaro (PD) 35020 (Italy)

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  3. The control of powerful neutral beams

    International Nuclear Information System (INIS)

    Theil, E.; Jacobson, V.

    1986-01-01

    While significant progress has been made in the development of neutral beams for the heating and sustaining of plasmas in large fusion experiments, the control of such devices has largely been a matter of hardware interlocks and operator experience. The need for computer-assisted control becomes more evident, however, with the initiation of multi-beamline experiments. This paper describes a software system that incorporates simple mathematical models coupled to Kalman filters for control of the high power (6 to 8 MW) beams currently under development at Lawrence Berkeley Laboratory's Neutral Beam Engineering Test Facility. Among the principal features of the system are: reduction of a large number of operator variables to just a few (usually one or two); the ability to describe most of the major neutral beams in use and under development; a foundation resting on statistical data analysis and control system principles rather than rules-of-thumb

  4. Neutralization kinetics of charged polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: manabendra.mukherjee@saha.ac.in

    2008-04-15

    In case of photoemission spectroscopy of an insulating material the data obtained from the charged surface are normally distorted due to differential charging. Recently, we have developed a controlled surface neutralization technique to study the kinetics of the surface charging. Using this technique and the associated data analysis scheme with an effective charging model, quantitative information from the apparently distorted photoemission data from PTFE surfaces were extracted. The surface charging was controlled by tuning the electron flood current as well as the X-ray intensity. The effective model was found to describe the charging consistently for both the cases. It was shown that the non-linear neutralization response of differential charging around a critical neutralizing electron flux or a critical X-ray emission current was due to percolation of equipotential surface domains. The obtained value of the critical percolation exponent {gamma} close to unity indicates a percolation similar to that of avalanche breakdown or chain reaction.

  5. The Framing of Network Neutrality Governance

    DEFF Research Database (Denmark)

    Perry, James

    The neutrality of the internet with regard to applications (e.g. search, social networking, email, to mention only three) has been central to innovation and growth in the knowledge-economy over the past two decades. Until recently, neutrality was built into the internet's design via its core stan...... with a critical analysis of their respective operational paradigms, the paper seeks to understand who is framing the debate, how they are doing so, and to what (systemic) effect....... generative: Useful innovations in applications of the internet could take hold easily, and it was difficult – or indeed impossible - for incumbent business interests to disrupt or sabotage them. However, this neutrality is now under threat. New technologies have given incumbent businesses the ability...

  6. Current neutralization of converging ion beams

    International Nuclear Information System (INIS)

    Mosher, D.

    1978-01-01

    It is desired to consider the problem of current neutralization of heavy ion beams traversing gas backgrounds in which the conductivity changes due to beam heating and beam convergence. The procedure is to determine Green's-function solutions to the magnetic-diffusion equation derived from Maxwell's equations and an assumed scaler-plasma conductivity sigma for the background-electron current density j/sub e/. The present calculation is more general than some previously carried out in that arbitrary time variations for the beam current j/sub b/ and conductivity are allowed and the calculation is valid for both weak and strong neutralization. Results presented here must be combined with an appropriate energy-balance equation for the heated background in order to obtain the neutralization self-consistently

  7. Zones of emotional labour

    DEFF Research Database (Denmark)

    Strøbæk, Pernille Solveig

    2011-01-01

    The paper suggests that due to the difficult nature of their work public family law caseworkers are to be included in the definition of emotional labour even though they are omitted by Hochschild. Based upon a review of the structures involved in emotional labour an explorative qualitative study...... is put forth among 25 Danish public family law caseworkers. The study points to personal, professional, and social zones of emotional labour through which the caseworkers carry out their work. Emotional labour zones mark emotion structures that may be challenging due to complex emotional intersections...

  8. Nuclear free zone

    International Nuclear Information System (INIS)

    Christoffel, T.

    1987-01-01

    Health professionals have played a leading role in alerting and educating the public regarding the danger of nuclear war which has been described as the last epidemic our civilization will know. Having convinced most people that the use of nuclear weapons would mean intolerable consequences, groups such as Physicians for Social Responsibility have focused on the second critical question how likely is it that these weapons will be used? The oultlook is grim. This article describes the nuclear free zone movement, explores relevant legal questions, and shows how the political potential of nuclear free zones threatens to open a deep rift in the American constitutional system

  9. Optimal exploration target zones

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available -of-evidence (WofE) method logistic regression canonical favorability analysis neural networks evidential belief functions Optimal Exploration Target Zones Debba, Carranza, Stein, van der Meer Introduction to Remote Sensing Background and Objective of the study... for the following equation: n∑ i=r ( n i ) pi(1− p)n−i = 0.95 . (1) Optimal Exploration Target Zones Debba, Carranza, Stein, van der Meer Introduction to Remote Sensing Background and Objective of the study Methodology Results METHODS (cont. . . ): FITNESS FUNCTION...

  10. Dike zones on Venus

    Science.gov (United States)

    Markov, M. S.; Sukhanov, A. L.

    1987-01-01

    Venusian dike zone structures were identified from Venera 15 and 16 radar images. These include: a zone of subparallel rows centered at 30 deg N, 7 deg E; a system of intersecting bands centered at 67 deg N, 284 deg E; polygonal systems in lavas covering the structural base uplift centered at 47 deg N, 200 deg E; a system of light bands in the region of the ring structure centered at 43 deg N, 13 deg E; and a dike band centered at 27 deg N, 36 deg E.

  11. Structure and properties of melt-spun high acrylonitrile copolymer fibers via continuous zone-drawing and zone-annealing processes

    International Nuclear Information System (INIS)

    Wu Zongquan; Zhang Anqiu; Percec, Simona; Jin Shi; Jing, Alexander J.; Ge, Jason J.; Cheng, Stephen Z.D.

    2003-01-01

    Continuous zone-drawing and zone-annealing processes have been utilized to probe improvements in mechanical performance of melt-spun high acrylonitrile copolymer fibers (AMLON TM ). The as-spun fibers were zone-drawn at different ratios in a narrow temperature range of 100-105 deg. C and then zone-annealed. As a result of these processes, the fibers show substantial increases in tensile strength and tensile modulus (about three times) and significant improvements in elongation-at-break (about two times) after zone annealing. The thermal transition behavior, dimensional stability and dynamic relaxation properties of the as-spun, zone-drawn and zone-annealed fibers have been studied using differential scanning calorimetry, thermal mechanical and dynamic mechanical experiments. Their mechanical and thermal property changes after the zone-drawing and zone-annealing processes can be associated with the microscopic structural evolution including crystallinity, crystal orientation and apparent crystallite size detected by wide angle X-ray diffraction experiments

  12. Optimal neutral beam heating scenario for FED

    International Nuclear Information System (INIS)

    Hively, L.M.; Houlberg, W.A.; Attenberger, S.E.

    1981-01-01

    Optimal neutral beam heating scenarios are determined for FED based on a 1/one-half/-D transport analysis. Tradeoffs are examined between neutral beam energy, power, and species mix for positive ion systems. A ramped density startup is found to provide the most economical heating. The resulting plasma power requirements are reduced by 10-30% from a constant density startup. For beam energies between 100 and 200 keV, the power needed to heat the plasma does not decrease significantly as beam energy is increased. This is due to reduced ion heating, more power in the fractional energy components, and rising power supply requirements as beam energy increases

  13. Inducing Risk Neutral Preferences with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2013-01-01

    validity of any strategic equilibrium behavior, or even the customary independence axiom. We show that subjects sampled from our population are generally risk averse when lotteries are defined over monetary outcomes, and that the binary lottery procedure does indeed induce a statistically significant shift......We evaluate the binary lottery procedure for inducing risk neutral behavior. We strip the experimental implementation down to bare bones, taking care to avoid any potentially confounding assumptions about behavior having to be made. In particular, our evaluation does not rely on the assumed...... toward risk neutrality. This striking result generalizes to the case in which subjects make several lottery choices and one is selected for payment....

  14. Simplified Stability Criteria for Delayed Neutral Systems

    Directory of Open Access Journals (Sweden)

    Xinghua Zhang

    2014-01-01

    Full Text Available For a class of linear time-invariant neutral systems with neutral and discrete constant delays, several existing asymptotic stability criteria in the form of linear matrix inequalities (LMIs are simplified by using matrix analysis techniques. Compared with the original stability criteria, the simplified ones include fewer LMI variables, which can obviously reduce computational complexity. Simultaneously, it is theoretically shown that the simplified stability criteria and original ones are equivalent; that is, they have the same conservativeness. Finally, a numerical example is employed to verify the theoretic results investigated in this paper.

  15. Neutral Naturalness from Orbifold Higgs Models

    Science.gov (United States)

    Craig, Nathaniel; Knapen, Simon; Longhi, Pietro

    2015-02-01

    We present a general class of natural theories in which the Higgs boson is a pseudo-Goldstone boson in an orbifolded gauge theory. The symmetry protecting the Higgs boson at low energies is an accidental global symmetry of the quadratic action, rather than a full continuous symmetry. The lightest degrees of freedom protecting the weak scale carry no standard model (SM) quantum numbers and interact with visible matter principally through the Higgs portal. This opens the door to the systematic study of "neutral naturalness": natural theories with SM-neutral states that are as yet untested by the LHC.

  16. Greenhouse gas neutral Germany in 2050

    International Nuclear Information System (INIS)

    Benndorf, Rosemarie; Bernicke, Maja; Bertram, Andreas

    2014-01-01

    In order to answer the question how a greenhouse gas neutral Germany would look like an interdisciplinary process was started by the Federal Environmental Agency. It was clear from the beginning of this work that a sustainable regenerative energy supply could not be sufficient. Therefore all relevant emission sources were included into the studies: traffic, industry, waste and waste water, agriculture, land usage, land usage changes and forestry. The necessary transformation paths to reach the aim of a greenhouse gas neutral Germany in 2050, economic considerations and political instruments were not part of this study.

  17. PDX neutral-beam reionization losses

    International Nuclear Information System (INIS)

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stewart, L.D.; von Halle, A.; Williams, M.D.

    1982-02-01

    Reionization losses for 1.5 MW H 0 and 2 MW D 0 neutral beams injected into the PDX tokamak were studied using pressure gauges, photo-transistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed

  18. Water absorption in neutralized Nafion membranes

    International Nuclear Information System (INIS)

    Rodmacq, B.; Roche, E.; Pineri, M.; Escoubez, M.; Duplessix, R.; Eisenberg, A.

    1979-01-01

    In this paper some results are reported about the interactions between water and Nafion neutralized with different cations. The energy of water absorption have been measured in the whole range of relative humidity pressures. Moessbauer spectra permit to get information about the change of environment of the iron atoms during the hydration. Small angle neutron and X ray scattering experiments have then been performed to define a possible phase segregation. From these results a model of clustering in the Nafion membranes is proposed. The neutralized Nafion samples have been obtained by soaking the acid samples in solutions containing the different salts

  19. Neutral beam injection in 2XIIB

    International Nuclear Information System (INIS)

    Hibbs, S.M.

    1975-01-01

    Integrated into the operation of the 2XIIB controlled fusion experiment is a 600-A, 20-keV neutral injection system: the highest neutral-beam current capacity of any existing fusion machine. This paper outlines the requirements of the injection system and the design features to which they led. Both mechanical and electrical aspects are discussed. Also included is a brief description of some operational aspects of the system and some of the things we have learned along the way, as well as a short history of the most significant developments

  20. The net neutrality debate on Twitter

    Directory of Open Access Journals (Sweden)

    Wolf J. Schünemann

    2015-12-01

    Full Text Available The internet has been seen as a medium that empowers individual political actors in relation to established political elites and media gatekeepers. The present article discusses this “net empowerment hypothesis” and tests it empirically by analysing Twitter communication on the regulation of net neutrality. We extracted 503.839 tweets containing #NetNeutrality posted between January and March 2015 and analysed central developments and the network structure of the debate. The empirical results show that traditional actors from media and politics still maintain a central role.

  1. Density peaking in the JFT-2M tokamak plasma with counter neutral beam injection

    International Nuclear Information System (INIS)

    Ida, K.; Itoh, S.; Itoh, K.

    1991-05-01

    A significant particle pinch and reduction of the effective thermal diffusivity are observed after switching the neutral beam direction from co- to counter- injection in the JFT-2M tokamak. A time delay in the occurrence of density peaking to that of plasma rotation is found. This shows that the particle pinch is related to the profile of the electric field as determined by the plasma rotation profile. The measured particle flux shows qualitative agreement with the theoretically-predicted inward pinch. (author)

  2. Beam-plasma instability in ion beam systems used in neutral beam generation

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.

    1977-02-01

    The beam-plasma instability is analyzed for the ion beams used for neutral beam generation. Both positive and negative ion beams are considered. Stability is predicted when the beam velocity is less than the electron thermal velocity; the only exception occurs when the electron density accompanying a negative ion beam is less than the ion density by nearly the ratio of electron to ion masses. For cases in which the beam velocity is greater than the electron thermal velocity, instability is predicted near the electron plasma frequency

  3. Neutral particle time-of-flight analyzer for the Tandem Mirror Experiment Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Carter, M.R.; Coutts, G.W.

    1985-01-01

    We describe the design and performance of a time-of-flight (ToF) analyzer being built for installation on the east end cell of the Tandem Mirror Experiment Upgrade (TMX-U). Its primary purpose is to measure the velocity distribution of escaping charge exchange neutral particles having energies between 20 and 5000 electron volts (eV). It also enables direct determination of the thermal barrier potential when used in conjunction with the plasma potential diagnostic and the end loss ion spectrometer. In addition, it can measure the velocity distribution of passing ions leaving the central cell and of ions trapped in the thermal barrier

  4. The harbours in Bremen as a 'neutral zone' for nuclear fuels?

    International Nuclear Information System (INIS)

    Ruttloff, Marc

    2013-01-01

    The federal legislator has delivered his energy policy commitment as part of the energy turnaround with the decision on the forced backing out from nuclear energy to be completed until the end of 2022 at the latest. This was obviously not enough for the parliamentary groups of the SPD and Die Gruenen (Green party) of the Bremen City Parliament. With an Act dated 25 January 2012, the Bremen Parliament decided to amend the Harbour Operation Act insofar as '..the turnover of nuclear fuels in the sense of paragraph 2 Para. 1 of the Nuclear Act is excluded..'. This means that the turnover of nuclear fuels in the Bremer harbours is principally forbidden, unless the senate grants an explicit exception. However: Can a federal legislator enforce its energy policies like that? In order to receive an answer to this question, the representatives of the CDU parliamentary group of the Bremen Parliament lodged a complaint of unconstitutionality at the Bremen State Court of Justice. The decision was delivered on 12 April 2013 (AZ: St 1/12). And what answer did the CDU parliamentary group receive to their question? None. The Bremen State Court of Justice did not make a decision on this politically controversial issue. As its position, the State Court stated that the rules of the Basic Law on the limitations for the legislative jurisdiction between the Federation and the federal states do not constitute a component of the Bremen federal state constitution. And the legal criterion of the State Court of Justice is solely the Bremen constitution, not however, the Basic Law. In short: The State Court of Justice declares itself de facto not competent. (orig.)

  5. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    Science.gov (United States)

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-07-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  6. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    Directory of Open Access Journals (Sweden)

    Toshihiko Kishimoto

    2015-07-01

    Full Text Available The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  7. Splenic marginal zone lymphoma.

    Science.gov (United States)

    Piris, Miguel A; Onaindía, Arantza; Mollejo, Manuela

    Splenic marginal zone lymphoma (SMZL) is an indolent small B-cell lymphoma involving the spleen and bone marrow characterized by a micronodular tumoral infiltration that replaces the preexisting lymphoid follicles and shows marginal zone differentiation as a distinctive finding. SMZL cases are characterized by prominent splenomegaly and bone marrow and peripheral blood infiltration. Cells in peripheral blood show a villous cytology. Bone marrow and peripheral blood characteristic features usually allow a diagnosis of SMZL to be performed. Mutational spectrum of SMZL identifies specific findings, such as 7q loss and NOTCH2 and KLF2 mutations, both genes related with marginal zone differentiation. There is a striking clinical variability in SMZL cases, dependent of the tumoral load and performance status. Specific molecular markers such as 7q loss, p53 loss/mutation, NOTCH2 and KLF2 mutations have been found to be associated with the clinical variability. Distinction from Monoclonal B-cell lymphocytosis with marginal zone phenotype is still an open issue that requires identification of precise and specific thresholds with clinical meaning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Nuclear weapons free zones

    International Nuclear Information System (INIS)

    Stahl, K.

    1990-01-01

    The article analyses the concept and problems of the two nuclear weapons free zones in Latin America and in the South Pacific established by the Treaty of Tlatelolco and the Treaty of Rarotonga. So far the nuclear weapons states except China have refused to sign the additional protocols of the Treaties or have signed them only with considerable provisos. Therefore they don't fully recognize the nuclear weapons free status of those zones, or they don't recognize it at all. Both Treaties contain no provisions to regulate the transit of nuclear weapons through the zones. This allows de facto the stationing of nuclear weapons in the military bases of the US which are located within the nuclear weapons free zone of Latin America. The Treaty of Tlatelolco contains also the right of the states, party to the Treaty, to explode nuclear devices for peaceful purposes. Since peaceful and military nuclear explosions cannot be distinguished technically, this right could also undermine the nuclear weapons free status of the region. Important nuclear threshold countries like Argentina and Brazil have furthermore refrained from putting the Treaty into force. (orig.) [de

  9. Navigating ECA-Zones

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Hendriksen, Christian

    This report examines the effect that ECA-zone regulation has on the optimal vessel fuel strategies for compliance. The findings of this report are trifold, and this report is coupled with a calculation tool which is released to assist ship-owners in the ECA decision making. The first key insight...... much time their operated vessels navigate the ECA in the future....

  10. Buffer Zone Sign Template

    Science.gov (United States)

    The certified pesticide applicator is required to post a comparable sign, designating a buffer zone around the soil fumigant application block in order to control exposure risk. It must include the don't walk symbol, product name, and applicator contact.

  11. Buffer Zone, Nicosia

    OpenAIRE

    Sorensen, Marie Louise

    2010-01-01

    Images of the United Nations Buffer Zone or Green Line which has partitioned Cyprus since 1974 The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 217411.

  12. Arid Zone Hydrology

    Science.gov (United States)

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  13. Modulation Methods for Three-level Neutral-Point-Clamped Inverter Achieving Stress Redistribution under Moderate Modulation Index

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2016-01-01

    This letter investigates the loss and thermal behaviors of a three-level neutral-point-clamped (3L-NPC) inverter undergoing moderate modulation index, which is typically presented during minor voltage sags of the power grid or speed changes of the electric machines. A series of new space vector m...

  14. Impact of manakin motion on particle transport in the breathing zone

    Science.gov (United States)

    The current experimental investigation is focused on particle measurements using Phase Doppler Anemometry (PDA) in the breathing zone of a seated, breathing, thermal manikin under stationary and rotational conditions. Particle size, concentration, flux, and velocity data were co...

  15. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis

    KAUST Repository

    Erdem, E. Yegâ n; Cheng, Jim C.; Doyle, Fiona M.; Pisano, Albert P.

    2013-01-01

    Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating

  16. First observations of partially neutralized and quasineutral plasmas in the Columbia Non-neutral Torus

    Science.gov (United States)

    Sarasola, Xabier; Brenner, Paul; Hahn, Michael; Pedersen, Thomas

    2009-11-01

    The Columbia Non-neutral Torus (CNT) is the first stellarator devoted to the study of pure electron, partially neutralized and positron-electron plasmas. To date, CNT usually operates with electron rich plasmas (with negligible ion density) [1], but a stellarator can also confine plasmas of arbitrary degree of neutralization. In CNT the accumulation of ions alters the equilibrium of electron plasmas and a global instability has been observed when the ion fraction exceeds 10 %. A characterization of this instability is presented in [2], analyzing its parameter dependence and spatial structure (non- resonant with rational surfaces). A new set of experiments is currently underway studying plasmas of arbitrary degree of neutralization, ranging from pure electron to quasineutral plasmas. Basic observations show that the plasma potential decouples from emitter bias when we increase the degree of the neutralization of our plasmas. Partially neutralized plasmas are also characterized by multiple mode behavior with dominant modes between 20 and 200 kHz. When the plasma becomes quasineutral, it reverts to single mode behavior. The first results on partially neutralized plasmas confined on magnetic surfaces will be presented. [1] J. Kremer, PRL 97, (2006) 095003 [2] Q. Marksteiner, PRL 100 (2008) 065002

  17. How Objective a Neutral Word Is? A Neutrosophic Approach for the Objectivity Degrees of Neutral Words

    Directory of Open Access Journals (Sweden)

    Mihaela Colhon

    2017-11-01

    Full Text Available In the latest studies concerning the sentiment polarity of words, the authors mostly consider the positive and negative constructions, without paying too much attention to the neutral words, which can have, in fact, significant sentiment degrees. More precisely, not all the neutral words have zero positivity or negativity scores, some of them having quite important nonzero scores for these polarities. At this moment, in the literature, a word is considered neutral if its positive and negative scores are equal, which implies two possibilities: (1 zero positive and negative scores; (2 nonzero, but equal positive and negative scores. It is obvious that these cases represent two different categories of neutral words that must be treated separately by a sentiment analysis task. In this paper, we present a comprehensive study about the neutral words applied to English as is developed with the aid of SentiWordNet 3.0: the publicly available lexical resource for opinion mining. We designed our study in order to provide an accurate classification of the so-called “neutral words” described in terms of sentiment scores and using measures from neutrosophy theory. The intended scope is to fill the gap concerning the neutrality aspect by giving precise measurements for the words’ objectivity.

  18. Neutralization escape mutants define a dominant immunogenic neutralization site on hepatitis A virus

    International Nuclear Information System (INIS)

    Stapleton, J.T.; Lemon, S.M.

    1987-01-01

    Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development

  19. Is a neutral expression also a neutral stimulus? A study with functional magnetic resonance.

    Science.gov (United States)

    Carvajal, Fernando; Rubio, Sandra; Serrano, Juan M; Ríos-Lago, Marcos; Alvarez-Linera, Juan; Pacheco, Lara; Martín, Pilar

    2013-08-01

    Although neutral faces do not initially convey an explicit emotional message, it has been found that individuals tend to assign them an affective content. Moreover, previous research has shown that affective judgments are mediated by the task they have to perform. Using functional magnetic resonance imaging in 21 healthy participants, we focus this study on the cerebral activity patterns triggered by neutral and emotional faces in two different tasks (social or gender judgments). Results obtained, using conjunction analyses, indicated that viewing both emotional and neutral faces evokes activity in several similar brain areas indicating a common neural substrate. Moreover, neutral faces specifically elicit activation of cerebellum, frontal and temporal areas, while emotional faces involve the cuneus, anterior cingulated gyrus, medial orbitofrontal cortex, posterior superior temporal gyrus, precentral/postcentral gyrus and insula. The task selected was also found to influence brain activity, in that the social task recruited frontal areas while the gender task involved the posterior cingulated, inferior parietal lobule and middle temporal gyrus to a greater extent. Specifically, in the social task viewing neutral faces was associated with longer reaction times and increased activity of left dorsolateral frontal cortex compared with viewing facial expressions of emotions. In contrast, in the same task emotional expressions distinctively activated the left amygdale. The results are discussed taking into consideration the fact that, like other facial expressions, neutral expressions are usually assigned some emotional significance. However, neutral faces evoke a greater activation of circuits probably involved in more elaborate cognitive processing.

  20. Neutron production by neutral beam sources

    International Nuclear Information System (INIS)

    Berkner, K.H.; Massoletti, D.J.; McCaslin, J.B.; Pyle, R.V.; Ruby, L.

    1979-11-01

    Neutron yields, from interactions of multiampere 40- to 120-keV deuterium beams with deuterium atoms implanted in copper targets, have been measured in order to provide input data for shielding of neutral-deuterium beam facilities for magnetic fusion experiments

  1. Neutron production by neutral beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.H.; Massoletti, D.J.; McCaslin, J.B.; Pyle, R.V.; Ruby, L.

    1979-11-01

    Neutron yields, from interactions of multiampere 40- to 120-keV deuterium beams with deuterium atoms implanted in copper targets, have been measured in order to provide input data for shielding of neutral-deuterium beam facilities for magnetic fusion experiments.

  2. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading...... potassium nitrate as the electrolyte and potassium phosphates as the buffer system....

  3. Special solutions of neutral functional differential equations

    Directory of Open Access Journals (Sweden)

    Győri István

    2001-01-01

    Full Text Available For a system of nonlinear neutral functional differential equations we prove the existence of an -parameter family of "special solutions" which characterize the asymptotic behavior of all solutions at infinity. For retarded functional differential equations the special solutions used in this paper were introduced by Ryabov.

  4. Engineering problems of future neutral beam injectors

    International Nuclear Information System (INIS)

    Fink, J.

    1977-01-01

    Because there is no limit to the energy or power that can be delivered by a neutral-beam injector, its use will be restricted by either its cost, size, or reliability. Studies show that these factors can be improved by the injector design, and several examples, taken from mirror reactor studies, are given

  5. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  6. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  7. elative controllability of nonlinear neutral Volterra Integrodiferential ...

    African Journals Online (AJOL)

    In this paper we established sufficient conditions for the relative controllability of the nonlinear neutral volterra integro-differential systems with distributed delays in the control. The results were established using the Schauder's fixed point theorem which is an extension of known results. Journal of the Nigerian Association of ...

  8. If It's Neutral, It's Not Technology

    Science.gov (United States)

    Strate, Lance

    2012-01-01

    Taking a media ecology perspective, this article argues that technology cannot be neutral, because it is a form of change, and it has an inherent bias based on the properties of its materials and methods. Additionally, the application of a technology is an intrinsic part of the technology itself, as is technique, instructions, software, or…

  9. Neutral beam data systems at ORNL

    International Nuclear Information System (INIS)

    Stewart, C.R.

    1982-01-01

    A control system for neutral injection beam lines has been designed, implemented, and used with much success. Despite the problems with very high power levels this system is very successful in relieving the operators burdens of slow conditioning, data recording, and mode switching. The use of computer control with multiple beam lines now appears very promising

  10. Risk neutral second best toll pricing.

    Science.gov (United States)

    2011-08-01

    We propose a risk-neutral second best toll pricing scheme to account for the possible no uniqueness : of user equilibrium solutions. The scheme is designed to optimize for the expected objective value : as the UE solution varies within the solution s...

  11. Neutral theory of chemical reaction networks

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Holme, Petter; Minnhagen, Petter; Bernhardsson, Sebastian; Kim, Beom Jun

    2012-01-01

    To what extent do the characteristic features of a chemical reaction network reflect its purpose and function? In general, one argues that correlations between specific features and specific functions are key to understanding a complex structure. However, specific features may sometimes be neutral and uncorrelated with any system-specific purpose, function or causal chain. Such neutral features are caused by chance and randomness. Here we compare two classes of chemical networks: one that has been subjected to biological evolution (the chemical reaction network of metabolism in living cells) and one that has not (the atmospheric planetary chemical reaction networks). Their degree distributions are shown to share the very same neutral system-independent features. The shape of the broad distributions is to a large extent controlled by a single parameter, the network size. From this perspective, there is little difference between atmospheric and metabolic networks; they are just different sizes of the same random assembling network. In other words, the shape of the degree distribution is a neutral characteristic feature and has no functional or evolutionary implications in itself; it is not a matter of life and death. (paper)

  12. Neutral gas transport modeling with DEGAS 2

    International Nuclear Information System (INIS)

    Karney, C.; Stotler, D.

    1993-01-01

    The authors are currently re-writing the neutral gas transport code, DEGAS, with a view to making it both faster and easier to include new physics. They present model calculations including ionization and charge exchange illustrating the way that reactions are included into DEGAS 2 and its operation on a distributed network of workstations

  13. Niche versus neutrality: a dynamical analysis

    Science.gov (United States)

    Michael Kalyuzhny; Efrat Seri; Rachel Chocron; Curtis H. Flather; Ronen Kadmon; Nadav M. Shnerb

    2014-01-01

    Understanding the forces shaping ecological communities is of crucial importance for basic science and conservation. After 50 years in which ecological theory has focused on either stable communities driven by niche-based forces or nonstable “neutral” communities driven by demographic stochasticity, contemporary theories suggest that ecological communities are driven...

  14. Neutral anion receptors: design and application

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Reinhoudt, David

    1998-01-01

    After the development of synthetic cation receptors in the late 1960s, only in the past decade has work started on the development of synthetic neutral anion receptors. Combination and preorganization of different anion binding groups, like amides, urea moieties, or Lewis acidic metal centers lead

  15. Laser cooling and trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.

    1998-01-01

    The article is a translation of the lecture given on the occasion of the 1997 Nobel Prize awarding ceremony. The history of the discovery of laser cooling and trapping of neutral atoms is described. An explanation of this phenomenon is presented and the author's personal contribution to the discovery is highlighted. The article is completed by Dr. Phillips' autobiography. (Z.J.)

  16. Possible neutral beam requirements for TFTR upgrades

    International Nuclear Information System (INIS)

    Prichard, B.A. Jr.; Little, R.; Post, D.E.; Schmidt, J.A.

    1977-01-01

    A discussion is provided of possible neutral beam requirements and constraints for a TFTR upgrade. The time scale is the early 80s and beams of 250 keV D 0 , probably using 65 ampere negative ion sources, existing power supplies and vacuum enclosures would be required

  17. Transition radiation of ultrarelativistic neutral particles

    International Nuclear Information System (INIS)

    Grimus, W.; Neufeld, H.

    1994-10-01

    We perform a quantum theoretical calculation of transition radiation by neutral particles with spin 1/2 equipped with magnetic moments and/or electric dipole moments. The limit of vanishing masses is treated exactly for arbitrary refraction index. Finally we apply our result to the solar neutrino flux. (author)

  18. A storage ring for neutral molecules

    NARCIS (Netherlands)

    Crompvoets, F.M.H.

    2005-01-01

    Time-varying inhomogeneous electric fields can be used to manipulate the motion of neutral molecules in phase-space, i.e., position-momentum space, via their electric dipole moment. A theoretical background is given on the motion of the molecules in phase-space. As the forces exerted on the

  19. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  20. Modeling of the lithium based neutralizer for ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Dure, F., E-mail: franck.dure@u-psud.fr [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France); Lifschitz, A.; Bretagne, J.; Maynard, G. [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France); Simonin, A. [IRFM, Institut de Recherche sur la Fusion Magnetique, CEA Cadarache, 13108 Saint-Paul lez Durance (France); Minea, T. [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer We compare different lithium based neutraliser configurations to the deuterium one. Black-Right-Pointing-Pointer We study characteristics of the secondary plasma and the propagation of the 1 MeV beam. Black-Right-Pointing-Pointer Using lithium increases the neutralisation effiency keeping correct beam focusing. Black-Right-Pointing-Pointer Using lithium also reduces the backstreaming effect in direction of the ion source. - Abstract: To achieve thermonuclear temperatures necessary to produce fusion reactions in the ITER Tokamak, additional heating systems are required. One of the main method to heat the plasma ions in ITER will be the injection of energetic neutrals (NBI). In the neutral beam injector, negative ions (D{sup -}) are electrostatically accelerated to 1 MeV, and then stripped of their extra electron via collisions with a target gas, in a structure known as neutralizer. In the current ITER specification, the target gas is deuterium. It has been recently proposed to use lithium vapor instead of deuterium as target gas in the neutralizer. This would allow to reduce the gas load in the NBI vessel and to improve the neutralization efficiency. A Particle-in-Cell Monte Carlo code has been developed to study the transport of the beams and the plasma formation in the neutralizer. A comparison between Li and D{sub 2} based neutralizers made with this code is presented here, as well as a parametric study on the geometry of the Li based neutralizer. Results demonstrate the feasibility of a Li based neutralizer, and its advantages with respect to the deuterium based one.

  1. Misconceptions and false expectations in neutral evolution

    Directory of Open Access Journals (Sweden)

    CARLOS Y. VALENZUELA

    2000-01-01

    Full Text Available Neutral evolution results from random recurrent mutation and genetic drift. A small part of random evolution, that which is related to protein or DNA polymorphisms, is the subject of the Neutral Theory of Evolution. One of the foundations of this theory is the demonstration that the mutation rate (m is equal to the substitution rate. Since both rates are independent of population size, they are independent of drift, which is dependent upon population size. Neutralists have erroneously equated the substitution rate with the fixation rate, despite the fact that they are antithetical conceptions. The neutralists then applied the random walk stochastic model to justify alleles or bases that were fixated or eliminated. In this model, once the allele or base frequencies reach the monomorphic states (values of 1.0 or 0.0, the absorbing barriers, they can no longer return to the polymorphic state. This operates in a pure mathematical model. If recurrent mutation occurs (as in biotic real systems fixation and elimination are impossible. A population of bacteria in which m=10-8 base mutation (or substitution/site/generation and the reproduction rate is 1000 cell cycle/year should replace all its genome bases in approximately 100,000 years. The expected situation for all sites is polymorphism for the four bases rather than monomorphism at 1.0 or 0.0 frequencies. If fixation and elimination of a base for more than 500,000 years are impossible, then most of the neutral theory is untenable. A new complete neutral model, which allows for recurrent substitutions, is proposed here based on recurrent mutation or substitution and drift alone. The model fits a binomial or Poisson distribution and not a geometric one, as does neutral theory.

  2. Development of climatic zones and passive solar design in Madagascar

    International Nuclear Information System (INIS)

    Rakoto-Joseph, O.; Garde, F.; David, M.; Adelard, L.; Randriamanantany, Z.A.

    2009-01-01

    Climate classification is extremely useful to design buildings for thermal comfort purposes. This paper presents the first work for a climate classification of Madagascar Island. This classification is based on the meteorological data measured in different cities of this country. Three major climatic zones are identified. Psychometric charts for the six urban areas of Madagascar are proposed, and suited passive solar designs related to each climate are briefly discussed. Finally, a total of three passive design zones have been identified and appropriate design strategies such as solar heating, natural ventilation, thermal mass are suggested for each zone. The specificity of this work is that: it is the first published survey on the climate classification and the passive solar designs for this developing country

  3. Evaluation of Ohio work zone speed zones process.

    Science.gov (United States)

    2014-06-01

    This report describes the methodology and results of analyses performed to determine the effectiveness of Ohio Department of Transportation processes for establishing work zone speed zones. Researchers observed motorists speed choice upstream of a...

  4. Empowerment Zones and Enterprise Districts - MDC_EnterpriseZone

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Polygon feature class of Miami Dade County Enterprise Zones. Enterprise Zones are special areas in the county where certain incentives from the State are available...

  5. Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel

    Science.gov (United States)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun

    2018-04-01

    A soft zone in Cr-Mo steel weldments has been reported to accompany the infamous Type IV cracking, the highly localized creep damage in the heat-affected zone of creep-resistant steels. However, the microstructural features and formation mechanism of this soft zone are not well understood. In this study, using microhardness profiling and microstructural verification, the initial soft zone in the as-welded condition was identified to be located in the intercritical heat-affected zone of P91 steel weldments. It has a mixed structure, consisting of Cr-rich re-austenitized prior austenite grains and fine Cr-depleted, tempered martensite grains retained from the base metal. The presence of these further-tempered retained grains, originating from the base metal, is directly responsible for the hardness reduction of the identified soft zone in the as-welded condition. The identified soft zone exhibits a high location consistency at three thermal stages. Local chemistry analysis and thermodynamic calculation show that the lower chromium concentrations inside these retained grains thermodynamically decrease their potentials for austenitic transformation during welding. Heterogeneous grain growth is observed in the soft zone during postweld heat treatment. The mismatch of strengths between the weak Cr-depleted grains and strong Cr-rich grains enhances the creep damage. Local deformation of the weaker Cr-depleted grains accelerates the formation of creep cavities.

  6. Thermal fatigue of beryllium

    International Nuclear Information System (INIS)

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-01-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m 2 to 5 MW/m 2 and under pulsed heat fluxes (10-20 MW/m 2 ) for which the time averaged heat flux is 5 MW/m 2 . These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures ≤ 600 degrees C produced no visible fatigue cracks. In the second series of tests, with T max ≤ 750 degrees C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with Φ = 25 MW/m 2 and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed

  7. Electric current-driven migration of electrically neutral particles in liquids

    International Nuclear Information System (INIS)

    Zhang, Xinfang; Qin, Rongshan

    2014-01-01

    We design and experimentally demonstrate a migration of electrically neutral particles in liquids driven by electric current according to the discrepancies of their electrical conductivities. A force from electric current to electrically neutral particles has been identified to drive the particles toward the lateral surface from the centre of suspension via three distinguishable zones, namely, pushing, trapping, and expelling zones. The driving force can overtake gravity in practical cases. The property of the force is found neither similar to that of the force in electromagnetophoresis nor similar to that of the electromigration force in terms of direction and magnitude. An expression for the force at the pushing zone has been developed based on the numerical calculation of the thermodynamics of suspension fluids. The excellent agreement between numerical calculations and experimental data demonstrates that our calculation provides fundamental and predictive insight into particles separation from the liquids. Therefore, it is possible to use the force in many engineering applications such as separation of particles according to the differences of their electrical conductivities

  8. Thermal Properties and Thermal Analysis:

    Science.gov (United States)

    Kasap, Safa; Tonchev, Dan

    The chapter provides a summary of the fundamental concepts that are needed to understand the heat capacity C P, thermal conductivity κ, and thermal expansion coefficient α L of materials. The C P, κ, and α of various classes of materials, namely, semiconductors, polymers, and glasses, are reviewed, and various typical characteristics are summarized. A key concept in crystalline solids is the Debye theory of the heat capacity, which has been widely used for many decades for calculating the C P of crystals. The thermal properties are interrelated through Grüneisen's theorem. Various useful empirical rules for calculating C P and κ have been used, some of which are summarized. Conventional differential scanning calorimetry (DSC) is a powerful and convenient thermal analysis technique that allows various important physical and chemical transformations, such as the glass transition, crystallization, oxidation, melting etc. to be studied. DSC can also be used to obtain information on the kinetics of the transformations, and some of these thermal analysis techniques are summarized. Temperature-modulated DSC, TMDSC, is a relatively recent innovation in which the sample temperature is ramped slowly and, at the same time, sinusoidally modulated. TMDSC has a number of distinct advantages compared with the conventional DSC since it measures the complex heat capacity. For example, the glass-transition temperature T g measured by TMDSC has almost no dependence on the thermal history, and corresponds to an almost step life change in C P. The new Tzero DSC has an additional thermocouple to calibrate better for thermal lags inherent in the DSC measurement, and allows more accurate thermal analysis.

  9. Special zone territory decontamination

    International Nuclear Information System (INIS)

    Samojlenko, Yu.N.; Golubev, V.V.

    1989-01-01

    Special zone is the Chernobyl' NPP operating site (OS). OS decontamination is described including reactor ruins from the accident moment. The process was begun from reactor bombardment with absorbing and filtering materials (sand, clay, lead, boron compounds). Then were produced soil shovelling, territory filling by dry concrete and laying concrete layer with thickness up to 300 mm. NPP room and equipment decontamination is described. 3 figs.; 3 tabs

  10. Parametric study for design of thermal sleeves

    International Nuclear Information System (INIS)

    Mukherjee, A.B.; Mehra, V.K.

    1985-01-01

    Thermal sleeves are used inside nozzle in many reactor components. Basic aim in design of thermal sleeve is to arrive at a set of dimensions for gap and annulus length, which will give rise to minimum thermal gradient in the base metal of the associated nozzle. Study includes the minimisation of the thermal gradient in the crotch zone by suitable choice of gap and annulus length. Three different geometries of nozzle radii 50.00 mm., 100 mm. and 200.0 mm. are studied for single and two concentric thermal sleeves model. The paper also presents effect of parameters like velocity of flow, temperature of fluid, materials etc. on the design of thermal sleeves. (orig.)

  11. Radiant zone heated particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  12. Cornell Mixing Zone Expert System

    Science.gov (United States)

    This page provides an overview Cornell Mixing Zone Expert System water quality modeling and decision support system designed for environmental impact assessment of mixing zones resulting from wastewater discharge from point sources

  13. VT Data - Zoning 20070306, Marlboro

    Data.gov (United States)

    Vermont Center for Geographic Information — Zoning districts, Marlboro, Vermont. Surface water buffer overlay is in a separate shapefile. Data were originally created by WRC in 2005. Marlboro's zoning bylaw...

  14. Decay of a hot zone in finite nuclei

    International Nuclear Information System (INIS)

    De, J.N.; Gregoire, C.

    1987-01-01

    Assuming that a hot zone is formed in nuclear collisions, we study its decay in the surrounding colder nuclear matter. Thermal equilibration resulting from energy transport is analyzed in terms of a classical model and within the Vlasov-Uehling-Uhlenbeck self-consistent approach. Convection is found to be the dominant energy propagation mode. Thermal equilibration time is found to be of the order of the damping of isoscalar quadrupole vibration, i.e. a few 10 -21 sec. This feature may not be fully consistent with recent available experimental data and casts doubt on the possibility of formation of a sharply localised thermally equilibrated hot zone as a likely intermediate state for excitation in finite nuclei in intermediate energy collisions. 16 refs

  15. A behavioral continuum synthesizing Neutralization Theory, situational ethics and juvenile delinquency.

    Science.gov (United States)

    Norris, T D; Dodder, R A

    1979-01-01

    This paper develops some ideas in Matza's Neutralization theory into a continuum containing four categories ranging from extreme goodness to rebellion. We labeled these categories as Moral Absolute, Situational Ethic, Neutralization, and Rebellious Absolute. We discuss the percentages expected in each category and hypothesize that involvement in delinquency will increase progressively across these four categories. The rationale behind this hypothesis is that youth in the United States are viewed as being socialized to accept absolute norms but also to allow exceptions to these norms for particular situations, and that delinquent youth extend these exceptions to zones wider than are tolerated by law officers and wider than are generally accepted. A modified version of the Nye-Short self-reported delinquency scale and measures of normative oreintation which we constructed were used in a mail-out questionnaire to public school students (N = 351). We view our findings as being basically consistent with these expectations.

  16. Angra-1 NPP thermal influence on liquid effluent discharge zone

    International Nuclear Information System (INIS)

    Costa, Daniel de Araujo

    1996-01-01

    The Angra I Nuclear Power Plant makes use of sea-water to condense the steam generated in its secondary circuit. This water, collected from Itaorna bay, is then chlorinated and discharged, with higher temperature, in the Piraquara de Fora bay. Aiming the study of the marine ecosystem, submitted to the effects of the Nuclear Power Plant discharge water, the temperature, residual chlorine, flora and fauna are periodically monitored. Being sensitive to temperature variations and to chemical products, macroscopic algae are also bio-accumulators and primary producers, because of this, they are considered the main link in the food chain and therefore important bio-indicator. This paper shows the variation of species from the brown algae near the discharge of Angra I Nuclear Power Plant. (author)

  17. Panel discussion on exploitation of geothermal resources in thermal zones

    Energy Technology Data Exchange (ETDEWEB)

    Viramonte, J G; Mange, J; Stefani, G

    1978-03-01

    The topics discussed include the major known geothermal resources, varying ways of exploiting geothermal resources, technical and economic difficulties in the exploitation, the place of geothermal energy in the total energy policy of a given country, advanced exploration techniques, and indications of needed areas of study. The panelists represented most of the South American countries, Mexico, and Italy. (JSR)

  18. An applied model for the height of the daytime mixed layer and the entrainment zone

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik

    1994-01-01

    A model is presented for the height of the mixed layer and the depth of the entrainment zone under near-neutral and unstable atmospheric conditions. It is based on the zero-order mixed layer height model of Batchvarova and Gryning (1991) and the parameterization of the entrainment zone depth......-layer height: friction velocity, kinematic heat flux near the ground and potential temperature gradient in the free atmosphere above the entrainment zone. When information is available on the horizontal divergence of the large-scale flow field, the model also takes into account the effect of subsidence...

  19. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  20. Research on Stress Neutral Layer Offset in the Straightening Process

    Directory of Open Access Journals (Sweden)

    Hailian Gui

    2015-01-01

    Full Text Available The stress neutral layer offset is analyzed by theoretical and numerical calculation methods. In traditional straightening theory, the stress neutral layer was consistent with the geometric central layer. However, there is a phenomenon that the stress neutral layer has some offset with the geometric neutral layer. This offset is a very important factor for improving the precision of the straightening force. The formula of the stress neutral layer offset is obtained by a theoretical method and the change law is given by numerical calculation method. The neutral layer offset theory provides the theoretical basis for establishing the model of straightening force precisely.

  1. Habitable Zones in the Universe

    OpenAIRE

    Gonzalez, G.

    2005-01-01

    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review...

  2. (IAM Series No 005) Are “Market Neutral” Hedge Funds Really Market Neutral?

    OpenAIRE

    Andrew Patton

    2004-01-01

    One can consider the concept of market neutrality for hedge funds as having breadth and depth: breadth reflects the number of market risks to which a fund is neutral, while depth reflects the completeness of the neutrality of the fund to market risks. We focus on market neutrality depth, and propose five different neutrality concepts. Mean neutrality nests the standard correlation-based definition of neutrality. Variance neutrality, Value-at-Risk neutrality and tail neutrality all relate to t...

  3. Zone refining of sintered, microwave-derived YBCO superconductors

    International Nuclear Information System (INIS)

    Warrier, K.G.K.; Varma, H.K.; Mani, T.V.; Damodaran, A.D.; Balachandran, U.

    1993-07-01

    Post-sintering treatments such as zone melting under thermal gradient has been conducted on sintered YBCO tape cast films. YBCO precursor powder was derived through decomposition of a mixture of nitrates of cations in a microwave oven for ∼4 min. The resulting powder was characterized and made into thin sheets by tape casting and then sintered at 945 C for 5 h. The sintered tapes were subjected to repeated zone refining operations at relatively high speeds of ∼30 mm/h. A microstructure having uniformly oriented grains in the a-b plane throughout the bulk of the sample was obtained by three repeated zone refining operations. Details of precursor preparation, microwave processing and its advantages, zone refining conditions, and microstructural features are presented in this paper

  4. Energy of linear quasi-neutral electrostatic drift waves

    International Nuclear Information System (INIS)

    Pfirsch, D.; Correa-Restrepo, D.

    1992-01-01

    An exact energy expression for linear quasi-neutral electrostatic perturbations is derived within the framework of dissipationless multi-fluid theory, valid for any geometry. Taking the mass as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat the full dynamics and also to restrict consideration to parallel dynamics or to the completely adiabatic case. Application to slab configurations yields the result that in plane geometry the adiabatic approximation does not allow negative-energy perturbations, whereas inclusion of the parallel dynamics does. This is in agreement with a numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott. Unlike Scott, we consider a dissipationless theory. Whereas the nonlinear energy is just kinetic plus potential plus thermal energy, the energy of perturbations depends on constraints. In a multi-fluid quasi-neutral electrostatic theory, from which we start, such constraints are mass conservation and entropy conservation. The latter is violated if heat conduction, heat sources (e.g. Joule heating) and heat sinks play a role. Hence, the energy expressions obtained are, valid only when situations where this is not the case or where these phenomena do not influence the entropy constraint. The latter is the case if the heat conduction is infinitely large such that the equilibrium temperature profiles T ν (x) of the various particle species ν are independent of x and δT ν =0. A vanishing temperature perturbation results in an entropy-conserving theory if one takes the adiabatic coefficients γ ν =1. This is possible, however, only for the perturbations; the equilibrium energy would diverge. When we consider this case, we do it in the way that the γs are put equal to 1 only after having obtained the perturbed energy for general γs. (author) 7 refs

  5. A new approach to entangling neutral atoms.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deutsch, Ivan H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Grant W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Our team has developed a new approach to entangling neutral atoms with a Rydberg-dressed interaction. Entangling neutral atoms is an essential key of quantum technologies such as quantum computation, many-body quantum simulation, and high-precision atomic sensors . The demonstrated Rydberg-dressed protocol involves adiabatically imposing a light shift on the ground state by coupling an excited Rydberg state with a tuned laser field. Using this technique, we have demonstrated a strong and tunable dipole - dipole interaction between two individually trapped atoms with energy shifts of order 1 MHz, which has been challenging to achieve in other protocols . During this program, we experimentally demonstrated Bell-state entanglement and the isomorphism to the Jaynes - Cumming model of a Rydberg-dressed two-atom system. Our theoretical calculations of a CPHASE quantum logic gate and arbitrary Dicke state quantum control in this system encourage further work.

  6. Particle reflection and TFTR neutral beam diagnostics

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O'Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12 degrees). Beamline calorimeters, of a ''V''-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the ''V'', complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected

  7. Fast Neutral Pressure Gauges in NSTX

    International Nuclear Information System (INIS)

    Raman, R.; Kugel, H.W.; Gernhardt, R.; Provost, T.; Jarboe, T.R.; Soukhanovskii, V.

    2004-01-01

    Successful operation in NSTX of two prototype fast-response micro ionization gauges during plasma operations has motivated us to install five gauges at different toroidal and poloidal locations to measure the edge neutral pressure and its dependence on the type of discharge (L-mode, H-mode, CHI) and the fueling method and location. The edge neutral pressure is also used as an input to the transport analysis codes TRANSP and DEGAS-2. The modified PDX-type Penning gauges are well suited for pressure measurements in the NSTX divertor where the toroidal field is relatively high. Behind the NSTX outer divertor plates where the field is lower, an unshielded fast ion gauge of a new design has been installed. This gauge was developed after laboratory testing of several different designs in a vacuum chamber with applied magnetic fields

  8. Mass separated neutral particle energy analyser

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi; Matsuda, Toshiaki; Miura, Yukitoshi; Shiho, Makoto; Maeda, Hikosuke; Hashimoto, Kiyoshi; Hayashi, Kazuo.

    1983-09-01

    A mass separated neutral particle energy analyser which could simultaneously measure hydrogen and deuterium atoms emitted from tokamak plasma was constructed. The analyser was calibrated for the energy and mass separation in the energy range from 0.4 keV to 9 keV. In order to investigate the behavior of deuteron and proton in the JFT-2 tokamak plasma heated with ion cyclotron wave and neutral beam injection, this analyser was installed in JFT-2 tokamak. It was found that the energy spectrum could be determined with sufficient accuracy. The obtained ion temperature and ratio of deuteron and proton density from the energy spectrum were in good agreement with the value deduced from Doppler broadening of TiXIV line and the line intensities of H sub(α) and D sub(α) respectively. (author)

  9. Biofilm community succession: a neutral perspective.

    Science.gov (United States)

    Woodcock, Stephen; Sloan, William T

    2017-05-22

    Although biofilms represent one of the dominant forms of life in aqueous environments, our understanding of the assembly and development of their microbial communities remains relatively poor. In recent years, several studies have addressed this and have extended the concepts of succession theory in classical ecology into microbial systems. From these datasets, niche-based conceptual models have been developed explaining observed biodiversity patterns and their dynamics. These models have not, however, been formulated mathematically and so remain untested. Here, we further develop spatially resolved neutral community models and demonstrate that these can also explain these patterns and offer alternative explanations of microbial succession. The success of neutral models suggests that stochastic effects alone may have a much greater influence on microbial community succession than previously acknowledged. Furthermore, such models are much more readily parameterised and can be used as the foundation of more complex and realistic models of microbial community succession.

  10. Neutralization method for a hydrofluoric acid release

    International Nuclear Information System (INIS)

    Williams, D.L.; Deacon, L.E.

    1976-01-01

    A laboratory investigation of methods for neutralizing a release at the hydrofluoric acid tank farm at the Portsmouth Gaseous Diffusion Plant has revealed that the best neutralization method incorporates the use of a lime/water slurry. In this method, settling of suspended solids in the liquid is enhanced by the application of sodium dodecyl sulfate, which causes immediate flocculation and settling. Dilution and expulsion of the supernatant liquid above the flocculated solids result in an effluent which meets the one part per million fluoride limit established by the U.S. Environmental Protection Agency. A fluoride specific ion electrode is used to determine fluoride concentration. This method presently is being adapted for use in the hydrofluoric acid tank farm and is being considered for use at the plant's fluorine generation facility. It could be adapted for use in any facility that contains fluoride in aqueous solution

  11. Capacitive Neutralization Dialysis for Direct Energy Generation.

    Science.gov (United States)

    Liu, Yue; Zhang, Yi; Ou-Yang, Wei; Bastos Sales, Bruno; Sun, Zhuo; Liu, Fei; Zhao, Ran

    2017-08-15

    Capacitive neutralization dialysis energy (CNDE) is proposed as a novel energy-harvesting technique that is able to utilize waste acid and alkaline solutions to produce electrical energy. CNDE is a modification based on neutralization dialysis. It was found that a higher NaCl concentration led to a higher open-circuit potential when the concentrations of acid and alkaline solutions were fixed. Upon closing of the circuit, the membrane potential was used as a driving force to move counter ions into the electrical double layers at the electrode-liquid interface, thereby creating an ionic current. Correspondingly, in the external circuit, electrons flow through an external resistor from one electrode to the other, thereby generating electrical energy directly. The influence of external resistances was studied to achieve greater energy extraction, with the maximum output of 110 mW/m 2 obtained by employing an external resistance of 5 Ω together with the AC-coated electrode.

  12. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...

  13. Neutral Particle Analyzer Diagnostic on NSTX

    International Nuclear Information System (INIS)

    Medley, S.S.; Roquemore, A.L.

    2004-01-01

    The Neutral Particle Analyzer (NPA) diagnostic on the National Spherical Torus Experiment (NSTX) utilizes a PPPL-designed E||B spectrometer that measures the energy spectra of minority hydrogen and bulk deuterium species simultaneously with 39 energy channels per mass specie and a time resolution of 1 ms. The calibrated energy range is E = 0.5-150 keV and the energy resolution varies from AE/E = 3-7% over the surface of the microchannel plate detector

  14. PLT neutral injection ignitron accelerating supply

    International Nuclear Information System (INIS)

    Ashcroft, D.L.; Murray, J.G.; Newman, R.A.; Peterson, F.L.

    1975-11-01

    A phase-controlled rectifier was designed for the accelerating supply on the PLT Neutral Beam Injection system at PPPL. The rectifier must furnish 70 amperes at up to 50 KV for 300 milliseconds, with a duty cycle of up to 10 percent. Protection of the injectors requires the supply to withstand repeated crowbarring. The rectifying element selected to satisfy these requirements was a commercially-available ignitron, installed in a supporting frame and using firing circuits and controls designed by PPPL

  15. Neutral Particle Analyzer Diagnostic on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; A.L. Roquemore

    2004-03-16

    The Neutral Particle Analyzer (NPA) diagnostic on the National Spherical Torus Experiment (NSTX) utilizes a PPPL-designed E||B spectrometer that measures the energy spectra of minority hydrogen and bulk deuterium species simultaneously with 39 energy channels per mass specie and a time resolution of 1 ms. The calibrated energy range is E = 0.5-150 keV and the energy resolution varies from AE/E = 3-7% over the surface of the microchannel plate detector.

  16. Neutral beam source commercialization study. Final report

    International Nuclear Information System (INIS)

    King, H.J.

    1980-06-01

    The basic tasks of this Phase II project were to: generate a set of design drawings suitable for quantity production of sources of this design; fabricate a functional neutral beam source incorporating as many of the proposed design changes as proved feasible; and document the procedures and findings developed during the contract. These tasks have been accomplished and represent a demonstrated milestone in the industrialization of this complete device

  17. What is a truly neutral particle?

    International Nuclear Information System (INIS)

    Tsan, Ung Chan

    2004-01-01

    An electrically charged particle is necessarily different from its antiparticle while an electrically neutral particle is either identical with or different from its antiparticle. A truly neutral particle is a particle identical to its antiparticle, which means that all its algebraic intrinsic properties are equal to zero since particle and antiparticle have all their algebraic intrinsic properties opposite. We propose two complementary methods to recognize the true nature of any electrically neutral particle. On the one hand, any non-null algebraic intrinsic property of a particle (properties such as Q, magnetic moment already known from classical physics, or quantum numbers such as baryonic number A, lepton number L or flavors, which are meaningful only in the quantum world) reveals that it is distinct from its antiparticle. On the other hand, any particle decaying through a self-conjugate channel or/and through both two conjugate channels is a truly neutral particle implying then that all algebraic intrinsic properties, known or yet unknown, of this particle are null. According to these methods, the neutrino, like any fermion, cannot be its own antiparticle, so neutrinoless double beta decay cannot take place in nature. We point out the internal contradiction required by the existence of hypothetical neutrinoless double beta decay. We suggest that persistent failure to find experimental evidence for this decay mechanism despite huge efforts dedicated to this aim is consistent with the physics of this process. The immediate consequence would be that limits of neutrino mass deduced from neutrinoless double beta decay cannot be used as constraints in contrast with mass limits deduced from the behavior of the end-point in simple beta spectra. (author)

  18. PLT neutral injection ignitron accelerating supply

    International Nuclear Information System (INIS)

    Ashcroft, D.L.; Murray, J.G.; Newman, R.A.; Peterson, F.L.

    1976-03-01

    A phase-controlled rectifier has been designed for the accelerating supply on the PLT Neutral Beam Injection system at PPPL. The rectifier must furnish 70 amperes at up to 50 KV for 300 milliseconds, with a duty cycle of up to 10 percent. Protection of the injectors requires the supply to withstand repeated crowbarring. The rectifying element selected to satisfy these requirements was a commercially-available ignitron, installed in a supporting frame and using firing circuits and controls designed by PPPL

  19. Oscillations of neutral B mesons systems

    CERN Document Server

    Boucrot, J.

    1999-01-01

    The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is

  20. Probing Supersymmetry with Neutral Current Scattering Experiments

    Science.gov (United States)

    Kurylov, A.; Ramsey-Musolf, M. J.; Su, S.

    2004-02-01

    We compute the supersymmetric contributions to the weak charges of the electron (QWe) and proton (QWp) in the framework of Minimal Supersymmetric Standard Model. We also consider the ratio of neutral current to charged current cross sections, R v and Rv¯ at v (v¯)-nucleus deep inelastic scattering, and compare the supersymmetric corrections with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement.