WorldWideScience

Sample records for thermal nde methods

  1. NDE for Ablative Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for non-destructive evaluation (NDE) methods for quality assessment and defect evaluation of thermal protection systems (TPS),...

  2. NDE for Ablative Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for non-destructive evaluation (NDE) methods for quality assessment and defect evaluation of thermal protection systems (TPS). Novel...

  3. Reliably detectable flaw size for NDE methods that use calibration

    Science.gov (United States)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  4. Feasibility study on infrared electro-thermal NDE of stainless steel

    International Nuclear Information System (INIS)

    Green, D.R.; Hassberger, J.A.

    1975-11-01

    Electro-thermal examination, a branch of thermal testing (TT), is a promising method being developed for NDE of stainless steel welds. This report describes the first phase of development; i.e., preliminary demonstration and laboratory evaluation of the method's sensitivity to notches in Type 304 stainless steel plate specimens. It also includes a description of the basic principles, together with a description of the hardware and experimental results showing that electrical discharge machined notches down to 0.16 cm (0.06 in.) long x 0.08 cm (0.03 in.) deep were detected. A qualitative technique for interpreting the test results to determine whether defects are at the surface or deeper within the material is demonstrated

  5. Infrared electro-thermal NDE of stainless steel

    International Nuclear Information System (INIS)

    Green, D.R.; Hassberger, J.A.

    1975-01-01

    Electro-thermal examination, a branch of thermal testing, is a promising method being developed for nondestructive examination of stainless steel welds. This paper describes the first phase of development; i.e., preliminary demonstration and laboratory evaluation of the method's sensitivity to notches in Type 304 stainless steel plate specimens. It also includes a description of the basic principles, together with a description of the hardware and experimental results showing that electrical discharge machined notches down to 0.16 cm long x 0.08 cm deep were detected. A qualitative technique for interpreting the test results to determine whether defects are at the surface or deeper within the material is demonstrated

  6. Advanced methods in NDE using machine learning approaches

    Science.gov (United States)

    Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank

    2018-04-01

    Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability

  7. Application of NDE methods to green ceramics: initial results

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Karplus, H.B.; Poeppel, R.B.; Ellingson, W.A.; Berger, H.; Robbins, C.; Fuller, E.

    1984-03-01

    This paper describes a preliminary investigation to assess the effectiveness of microradiography, ultrasonic methods, nuclear magnetic resonance, and neutron radiography for the nondestructive evaluation of green (unfired), ceramics. Objective is to obtain useful information on defects, cracking, delaminations, agglomerates, inclusions, regions of high porosity, and anisotropy

  8. NDE of stresses in thick-walled components by ultrasonic methods

    International Nuclear Information System (INIS)

    Goebbels, K.; Pitsch, H.; Schneider, E.; Nowack, H.

    1985-01-01

    The possibilty of measuring stresses - especially residual stresses - by ultrasonic methods has been presented at the 4th and 5th International Conference on NDE in Nuclear Industry. This contribution now presents results of several applications to thick walled components such as turbines and generators for power plants. The measurement technique using linearly polarized shear waves allows one to characterize the homogeneitry of the residual stress situation along and around cylindrically shaped components. Some important results show that the stress distribution integrated over the cross section of the component has not followed in any case the simple relations derived by stress analysts. Conclusions referring to the stress situation inside the components are discussed

  9. Application of NDE methods to green ceramics: initial results

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Karplus, H.B.; Poeppel, R.B.; Ellingson, W.A.; Berger, H.; Robbins, C.; Fuller, E.

    1983-01-01

    The effectiveness of microradiography, ultrasonic methods, unclear magnetic resonance, and neutron radiography was assessed for the nondestructive evaluation of green (unfired) ceramics. The application of microradiography to ceramics is reviewed, and preliminary experiments with a commercial microradiography unit are described. Conventional ultrasonic techniques are difficult to apply to flaw detection green ceramics because of the high attenuation, fragility, and couplant-absorbing properties of these materials. However, velocity, attenuation, and spectral data were obtained with pressure-coupled transducers and provided useful informaion related to density variations and the presence of agglomerates. Nuclear magnetic resonance (NMR) imaging techniques and neutron radiography were considered for detection of anomalies in the distribution of porosity. With NMR, areas of high porosity might be detected after the samples are doped with water. In the case of neutron radiography, although imaging the binder distribution throughout the sample may not be feasible because of the low overall concentration of binder, regions of high binder concentration (thus high porosity) should be detectable

  10. An Utilization Method Cooperating ISO drawings and Bookmarks for NDE

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun-Ju; Cho, Chan-Hee; Lee, Tae-Hun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The inspection of weld parts are performed with various non-destructive test methods such as AUT, VT, PT, ECT, etc. The results have been published in the report booklets. Moreover, huge amount of non-destructive inspection data and reports, which are produced from the '78 Kori 1 to newly constructed power plant, are stored in the management department and DDCC of each power plant. Because the data are not classified, it takes much time to find the corresponding non-destructive test results report of a specific unit of a power plant for a particular year. In addition, it is possibility to make human error because the report is written and submitted after finding manually the non-destructive test results for the concerning weld. When there is a dispute of the results of non-destructive inspection of a particular weld, analyzes the control center, a result of the power plant and the corresponding non-destructive inspection of a particular weld of ISO drawing in many places such as control center, corresponding power plant and CRI was discussed together will be to derive the final conclusion. For discussion, the person in charge of each site, looking for ISO drawings there is a result of the weld, in the past results history report of non-destructive testing for this, by searching the results of the welding site, telephone and E-mail disadvantage of complicated procedures if necessary to the discussion together in -mail is performed I have. In this paper, we describe the contents introduced the ISO drawings and Bookmark function is trying to complement these drawbacks. By applying the present invention utilization, find the ISO drawings manually when querying the results of the non-destructive inspection of past weld, which reduces the time to grasp the content of the non-destructive test results report.

  11. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  12. Shearography: An alternative method of NDE for analysis of corrosion in petroleum pipeline

    International Nuclear Information System (INIS)

    Mohd Yusnisyam Yusof; Wan Saffiey Wan Abdullah

    2009-01-01

    This paper discusses the use of shearography as an alternative method of NDE for analysis of corrosion in petroleum pipeline. Shearography reveals direct information about defect induced stress which utilized the laser wave front pattern on the inspected object. In this study, the laser shearography technique was used to measure the derivative displacement of 7 mm thickness carbon steel pipe wall surface with simulated corrosion area at internal wall. The wave front pattern of internal wall corrosion in petroleum pipeline will be constructed to 3D image profiles in order to measure the severity and magnitude of material deformation. The process may involve of optical phase stepping procedure and the image processing algorithm for wrapped and unwrapped phase image at the deformation area. The unwrapped phase image can be meshed plot which finally lead to 3D image profiles. The phase stepping procedure in this analysis was selected by utilizing four phase stepping procedure using piezoelectric transducer (PZT) attached with optical mirror. (author)

  13. The interaction of NDE and failure analysis

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1988-01-01

    This paper deals with the use of Non-Destructive Examination (NDE) and failure analysis for the assessment of the structural integrity. It appears that failure analysis enables to know whether NDE is required or not, and can help to direct NDE into the most useful directions by identifying the areas where it is most important that defects are absent. It also appears that failure analysis can help the operator to decide which NDE method is best suited to the component studied and provides detailed specifications for this NDE method. The interaction between failure analysis and NDE is then described. (TEC)

  14. The interaction of NDE and failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R W

    1988-12-31

    This paper deals with the use of Non-Destructive Examination (NDE) and failure analysis for the assessment of the structural integrity. It appears that failure analysis enables to know whether NDE is required or not, and can help to direct NDE into the most useful directions by identifying the areas where it is most important that defects are absent. It also appears that failure analysis can help the operator to decide which NDE method is best suited to the component studied and provides detailed specifications for this NDE method. The interaction between failure analysis and NDE is then described. (TEC).

  15. Technical Letter Report - Preliminary Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion

    International Nuclear Information System (INIS)

    Crawford, Susan L.; Cumblidge, Stephen E.; Doctor, Steven R.; Hall, Thomas E.; Anderson, Michael T.

    2008-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has a multi-year program at the Pacific Northwest National Laboratory (PNNL) to provide engineering studies and assessments of issues related to the use of nondestructive evaluation (NDE) methods for the reliable inspection of nuclear power plant components. As part of this program, there is a subtask 2D that was set up to address an assessment of issues related to the NDE of high density polyethylene (HDPE) butt fusion joints. This work is being driven by the nuclear industry wanting to employ HDPE materials in nuclear power plant systems. This being a new material for use in nuclear applications, there are a number of issues related to its use and potential problems that may evolve. The industry is pursuing ASME Code Case N-755 entitled 'Use of Polyethylene (PE) Plastic Pipe for Section III, Division 1, Construction and Section XI Repair/Replacement Activities' that contains the requirements for nuclear power plant applications of HDPE. This Code Case requires that inspections be performed after the fusion joint is made by visually examining the bead that is formed and conducting a pressure test of the joint. These tests are only effective in general if gross through-wall flaws exist in the fusion joint. The NRC wants to know whether a volumetric inspection can be conducted on the fusion joint that will reliably detect lack-of-fusion conditions that may be produced during joint fusing. The NRC has requested that the work that PNNL is conducting be provided to assist them in resolving this inspection issue of whether effective volumetric NDE can be conducted to detect lack of fusion (LOF) in the butt HDPE joints. PNNL had 24 HDPE pipe specimens manufactured of 3408 material to contain LOF conditions that could be used to assess the effectiveness of NDE in detecting the LOF. Basic ultrasonic material properties were measured and used to guide the use of phased arrays and time-of-flight diffraction (TOFD) work that was

  16. European-American workshop: Determination of reliability and validation methods on NDE. Proceedings

    International Nuclear Information System (INIS)

    1997-01-01

    The invited papers focused on the following issues: 1. The different technical and scientific approaches to the problem of how to guarantees or demonstrate the reliability of NDE: a. Application of established prescriptive standards, b. Probabilities of Detection (PDO) and False Alarm (PFA) from blind trials, c. POD and PFA from signal statistics, d. Modeling, e. ''Technical Justification''; 2. The dissimilar validation/qualification concepts used in different industries in Europe and North America: a. Nuclear Power Generation, b. Aerospace Industry, c. Offcshore Industry and d. Service Companies

  17. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  18. NDE methods for determining the materials properties of silicon carbide plates

    Science.gov (United States)

    Kenderian, Shant; Kim, Yong; Johnson, Eric; Palusinski, Iwona A.

    2009-08-01

    Two types of SiC plates, differing in their manufacturing processes, were interrogated using a variety of NDE techniques. The task of evaluating the materials properties of these plates was a challenge due to their non-uniform thickness. Ultrasound was used to estimate the Young's Modulus and calculate the thickness profile and Poisson's Ratio of the plates. The Young's Modulus profile plots were consistent with the thickness profile plots, indicating that the technique was highly influenced by the non-uniform thickness of the plates. The Poisson's Ratio is calculated from the longitudinal and shear wave velocities. Because the thickness is cancelled out, the result is dependent only on the time of flight of the two wave modes, which can be measured accurately. X-Ray was used to determine if any density variations were present in the plates. None were detected suggesting that the varying time of flight of the acoustic wave is attributed only to variations in the elastic constants and thickness profiles of the plates. Eddy Current was used to plot the conductivity profile. Surprisingly, the conductivity profile of one type of plates varied over a wide range rarely seen in other materials. The other type revealed a uniform conductivity profile.

  19. Application of advanced surface and volumetric NDE methods to the detection of cracks in critical regions of turbine blades

    International Nuclear Information System (INIS)

    Porter, J.P.

    1990-01-01

    Advanced NDE inspection techniques capable of detecting small, yet potentially dangerous cracks in turbine blade tenons, blade tie-wire through-holes, trailing edges, and blade root attachment ends have been devised and developed and are now being applied successfully in the field replacing conventional, less-sensitive methods commonly used for crack detection in these blade elements. Under-shroud lateral cracks in tenons are detected ultrasonically by highangle refracted pulse-echo shear wave and 0-degree pitch-catch longitudinal wave methods. Trailing-edge blade cracks and surface-connected cracks in root attachment ends are detected by high frequency eddy current techniques, typically applied remotely using ports in the turbine housing to gain access to the parts under inspection. Cracks emanating from tie-wire holes in blade upper ends are detected by eddy current inspection, which has been found to be a far more effective methods than either magnetic particle or ultrasonic testing for this application. Root attachment ends of side entry blades are inspected volumetrically by ultrasonics, using proprietary coupling techniques that allow examination of heretofore uninspectable regions of blade attachment hooks, known regions of crack initiation. Techniques developed for this collection of applications are described, and the results of actual field inspections are presented and discussed

  20. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, J. R.; Lowe, M. J. S. [UK Research Centre for NDE, Imperial College London, Exhibition Road, London, SW7 2AZ (United Kingdom); Walker, A. E. [Rolls-Royce Nuclear, PO BOX 2000, Derby, DE21 7XX (United Kingdom)

    2015-03-31

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.

  1. Evaluation of methods for leak detection in reactor primary systems and NDE of cast stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Claytor, T.N.; Prine, D.W.; Mathieson, T.A.

    1984-01-01

    Six cracks, including two field-induced IGSCC specimens and two thermal-fatigue cracks, have been installed in a laboratory acoustic leak detection facility. The IGSCC specimens produce stronger acoustic signals than the thermal-fatigue cracks at equivalent leak rates. Despite significant differences in crack geometry, the acoustic signals from the two IGSCC specimens, tested at the same leak rate, are virtually identical in the frequency range from 200 to 400 kHz. Thus, the quantitative correlations between the acoustic signals and leak rate in the 300 to 400 kHz band are very similar for the two IGSCC specimens. Also, acoustic background data have been acquired during a hot functional sensitivity of acoustic leak detection techniques. In addition, cross-correlation techniques have been successfully used in the laboratory to locate the source of an electronically simulated leak signal

  2. Methods of forming thermal management systems and thermal management methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  3. Safety assessment of cast steel valve housing using NDE- and FM-methods

    Energy Technology Data Exchange (ETDEWEB)

    Blauel, J G; Hodulak, L [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg im Breisgau (Germany)

    1988-12-31

    This document presents some results concerning the safety assessment of cast steel valve housing. This risk assessment is performed through the Non Destructive Examination and Fracture Mechanics methods. (TEC).

  4. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Yan, W.

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods

  5. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  6. NDE (Nondestructive examination) by ultrasonic, photo-elastic, strain measuring and FEM (Finite Element Method)

    International Nuclear Information System (INIS)

    Gu Fangyu; Zeng Xiao

    1990-01-01

    It is considered impossible to inspect flaw by using ordinary mechanical measuring methods. In this paper, it is found that the stree and strain distortions of pressure vessel with 2D linear shape crack in the deep location appear the 'cat effect' on the surface of stracture, and that the location and size of the crack can be determined with strain measuring and FEM according to 'cat effect' of strain distortion

  7. NDE Studies on CRDMs Removed From Service

    International Nuclear Information System (INIS)

    Doctor, Steven R.; Cumblidge, Stephen E.; Schuster, George J.; Hockey, Ronald L.; Abrefah, John

    2005-01-01

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are focused on assessing the effectiveness of NDE inspections of control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of ultrasonic testing (UT) and eddy current testing (ET) as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. In describing two CRDM assemblies removed from service, decontaminated, and then used in a series of NDE measurements, this paper will address the following questions: (1) What did each technique detect?, (2) What did each technique miss?, (3) How accurately did each technique characterize the detected flaws? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. One contained suspected PWSCC, based on in-service inspection data; the other contained evidence suggesting through-wall leakage, but this was unconfirmed. The selected NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory based NDE methods will be employed to conduct inspections of the CRDM assemblies, with particular emphasis on inspecting the J-groove weld and buttering. This paper will also describe the NDE methods used and discuss the NDE results. Future work will involve using the results from these NDE studies to guide the development of a destructive characterization plan to reveal the crack morphology, to be compared with NDE responses

  8. NDE reliability and advanced NDE technology validation

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Hutton, P.H.; Reid, L.D.; Simonen, F.A.; Spanner, J.C.; Vo, T.V.

    1989-01-01

    This paper reports on progress for three programs: (1) evaluation and improvement in nondestructive examination reliability for inservice inspection of light water reactors (LWR) (NDE Reliability Program), (2) field validation acceptance, and training for advanced NDE technology, and (3) evaluation of computer-based NDE techniques and regional support of inspection activities. The NDE Reliability Program objectives are to quantify the reliability of inservice inspection techniques for LWR primary system components through independent research and establish means for obtaining improvements in the reliability of inservice inspections. The areas of significant progress will be described concerning ASME Code activities, re-analysis of the PISC-II data, the equipment interaction matrix study, new inspection criteria, and PISC-III. The objectives of the second program are to develop field procedures for the AE and SAFT-UT techniques, perform field validation testing of these techniques, provide training in the techniques for NRC headquarters and regional staff, and work with the ASME Code for the use of these advanced technologies. The final program's objective is to evaluate the reliability and accuracy of interpretation of results from computer-based ultrasonic inservice inspection systems, and to develop guidelines for NRC staff to monitor and evaluate the effectiveness of inservice inspections conducted on nuclear power reactors. This program started in the last quarter of FY89, and the extent of the program was to prepare a work plan for presentation to and approval from a technical advisory group of NRC staff

  9. Training activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Pherigo, G.

    1986-01-01

    The Electric Power Research Institute (EPRI), through its Nondestructive Examination (NDE) Center in Charlotte, North Carolina, has identified two specific categories of NDE training to best serve the industry's need for enhanced personnel qualification programs. These categories include in-service inspection (ISI) training and technical skills training. The ISI training provides operator training in new NDE technology areas that are ready for field application. The technical skills training is developed as part of a long-range plan to support all basic NDE methods typical to the electric power industry. The need for specific training and better documentation of NDE personnel qualifications is becoming more evident. ASME Section XI requirements for the qualification and certification of visual examiners and the recognition by the US Nuclear Regulatory Commission (NRC) of the importance of the ultrasonic (UT) operator in finding intergranular stress corrosion cracking (IGSCC) are two of the major issues being addressed by the training task of the EPRI NDE Center. The overall intent of the center's training is to meet the most critical utility needs with quality training that can be used by the trainee's employer as a part of their certification of that individual. To do this, the center has organized and activated a carefully maintained documentation and records systems built around the continuing education unit

  10. Volume imaging NDE and serial sectioning of carbon fiber composites

    Science.gov (United States)

    Hakim, Issa; Schumacher, David; Sundar, Veeraraghavan; Donaldson, Steven; Creuz, Aline; Schneider, Rainer; Keller, Juergen; Browning, Charles; May, Daniel; Ras, Mohamad Abo; Meyendorf, Norbert

    2018-04-01

    A composite material is a combination of two or more materials with very different mechanical, thermal and electrical properties. The various forms of composite materials, due to their high material properties, are widely used as structural materials in the aviation, space, marine, automobile, and sports industries. However, some defects like voids, delamination, or inhomogeneous fiber distribution that form during the fabricating processes of composites can seriously affect the mechanical properties of the composite material. In this study, several imaging NDE techniques such as: thermography, high frequency eddy current, ultrasonic, x-ray radiography, x-ray laminography, and high resolution x-ray CT were conducted to characterize the microstructure of carbon fiber composites. Then, a 3D analysis was implemented by the destructive technique of serial sectioning for the same sample tested by the NDE methods. To better analyze the results of this work and extract a clear volume image for all features and defects contained in the composite material, an intensive comparison was conducted among hundreds of 3D-NDE and multi serial sections' scan images showing the microstructure variation.

  11. Application of thermoelectricity to NDE of thermally aged cast duplex stainless steels and neutron irradiated ferritic steels

    International Nuclear Information System (INIS)

    Coste, J.F.; Leborgne, J.M.; Massoud, J.P.; Grisot, O.; Miloudi, S.

    1997-10-01

    The thermoelectric power (TEP) of an alloy depends mainly on its temperature, its chemical composition and its atomic arrangement. The TEP measurement technique is used in order to study and follow two degradation phenomena affecting some components of the primary loop of Pressurized Water Reactors (PWR). The first degradation phenomenon is the thermal aging of cast duplex stainless steel components. The de-mixing of the ferritic Fe-Cr-Ni slid solution is responsible for the decreasing of the mechanical characteristics. Laboratory studies have shown the sensitivity of TEP to the de-mixing phenomenon. TEP increases linearly with the ferrite content and with and Arrhenius-type aging parameter depending on time, temperature and activation energy. TEP is also correlated to mechanic characteristics. The second degradation phenomenon is the aging of ferritic steels due to neutron irradiation at about 290 deg C. In this case, the degradation mechanism is the formation of clusters of solute atoms and/or copper rich precipitates that causes the hardening of the material. As a first approach, a study of binary Fe-Cu alloys irradiated by electrons at 288 deg C has revealed the possibility of following the copper depletion of the ferritic matrix. Moreover, the recovery of the mechanical properties of the alloy by annealing can be monitored. Finally, a correlation between Vickers hardness and TEP has been established. (author)

  12. Integration of fracture mechanics and NDE

    International Nuclear Information System (INIS)

    Njo, D.H.; McDonald, N.R.; Nichols, R.W.

    1991-01-01

    This paper addresses issues concerning the effective assessment of the structural integrity of safety related components, principally the primary system, in operating nuclear power plants. The failure mode of greatest safety concern is fracture and this is usually assessed by fracture mechanics (FM) procedures. These require the choice and application of an appropriate analytical method based on a knowledge of the materials, loading and environmental conditions, and characteristics of such defects as have been identified by non destructive examination (NDE). The paper focuses on capabilities and limitations of the NDE procedures, FM methods and other input information which must be taken into account in practical circumstances as well as some problems encountered. It concludes that an integral approach requiring mutual understanding, dialogue and cooperation among the materials, FM and NDE experts is essential for effective and reliable structural integrity assessments

  13. Assessment of the TRINO reactor pressure vessel integrity: theoretical analysis and NDE

    Energy Technology Data Exchange (ETDEWEB)

    Milella, P P; Pini, A [ENEA, Rome (Italy)

    1988-12-31

    This document presents the method used for the capability assessment of the Trino reactor pressure vessel. The vessel integrity assessment is divided into the following parts: transients evaluation and selection, fluence estimate for the projected end of life of the vessel, characterization of unirradiated and irradiated materials, thermal and stress analysis, fracture mechanics analysis and eventually fracture input to Non Destructive Examination (NDE). For each part, results are provided. (TEC).

  14. NDE measurements for understanding of performance: A few case studies on engineering components, human health and cultural heritage

    Science.gov (United States)

    Raj, Baldev; Venkatraman, B.

    2013-01-01

    Life cycle management involves a seamless integration of materials, design, analysis, production, manufacturing, and degradation plus, a wide variety of disciplines relating to surveillance and characterisation with adequate feedback and control. Science and technology of non-destructive evaluation (NDE) links all these domains and disciplines together in a seamless and robust manner. A number of research programs on NDE science and technology have evolved during the last four decades world over including the one at Indira Gandhi Centre for Atomic Research, Kalpakkam, initiated and nurtured by the first author. Many engineering and technology challenges pertaining to fast spectrum reactors have been successfully solved by this Centre through development of innovative sensors, procedures and coupled with strong basic science and modeling approaches. These technologies have also been selectively applied in gaining insights of human health and cultural heritage. This paper highlights some of the innovative NDE sensors and techniques developed in the field of electromagnetic NDE and their successful applications. A few interesting case studies pertaining to NDE in heritage and healthcare using acoustic and thermal methods are also presented.

  15. The middle ground of the NDE R and D spectrum

    International Nuclear Information System (INIS)

    Burte, H.M.; Chimenti, D.E.; Thompson, D.O.; Thompson, R.B.

    1983-01-01

    This keynote talk attempts to call attention to the interdisciplinary nature of NDE (nondestructive evaluation) science and technology and introduce some approaches for fostering R and D in such a situation. The objectives of DARPA, the Air Force core program for developing a science base for NDE are described. Finally, several exploratory development programs are investigated. The needs addressed by NDE include performance demands, safety, conservation, productivity with quality, and minimization of life cycle costs. The science base for electromagnetic techniques includes eddy-current flaw interactions, inversion techniques, and probe figures-of-merit. The problem of inspection reliability is addressed, and an accept-reject methodology schematicized. A methodology for approaching the middle ground of the NDE R and D spectrum is outlined. Finally, future possibilities such as the characterization of flaws in ceramics, transducer understanding, new electromagnetic probes, and thermal wave imaging are also discussed

  16. Review of progress in quantitative NDE. [Nondestructive Evaluation (NDE)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques. (GHH)

  17. NDE Assessment of PWSCC in Control Rod Drive Mechanism Housings

    International Nuclear Information System (INIS)

    Doctor, Steven R.; Cumblidge, Stephen E.; Schuster, George J.; Harris, Rob V.; Crawford, Susan L.

    2006-01-01

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are focused on assessing the effectiveness of Nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. In describing two CRDM assemblies removed from service, decontaminated, and then used in a series of NDE measurements, this paper will address the following questions: (1) What did each technique detect?, (2) What did each technique miss?, (3) How accurately did each technique characterize the detected flaws? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. One contained suspected PWSCC, based on in-service inspection data and through-wall leakage; the other contained evidence suggesting through-wall leakage, but this was unconfirmed. The selected NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on inspecting the J-groove weld and buttering. This paper will also describe the NDE methods used and discuss the NDE results. Future work will involve using the results from these NDE studies to guide the development of a destructive characterization plan to reveal the crack morphology and a comparison of the degradation found by the destructive evaluation with the recorded NDE responses.

  18. The EPRI NDE center after five years

    International Nuclear Information System (INIS)

    Dau, G.J.; Nemzek, T.A.

    1985-01-01

    In 1979, the Electric Power Research Institute (EPRI) established a Nondestructive Evaluation (NDE) Center. The purpose of the Center is to provide the electric utility industry with a dedicated NDE development and field-use-qualification capability. Later, the scope of activities at the NDE Center was expanded. Beginning in 1980, the BWR Owners Group (IGSCC) provided funding necessary to operate the BWR Pipe Remedy Demonstration and Training Facility. In 1984, the Maintenance Equipment Applications Center was established by EPRI. Both functions are co-located within the NDE Center. All three functions share common objectives of providing the electric utility industry with a capability dedicated to assuring reduction to practice of new or improved technology, proof testing, qualification for field use, and obtaining code and regulatory acceptance of qualified methods and training. The purpose of this paper is to describe typical activities of the Center and some of the benefits that have accrued. The next section describes the Center organization, operation, and facility, while the remaining sections discuss the technology transfer thrust and benefits

  19. NDE and SHM Simulation for CFRP Composites

    Science.gov (United States)

    Leckey, Cara A. C.; Parker, F. Raymond

    2014-01-01

    Ultrasound-based nondestructive evaluation (NDE) is a common technique for damage detection in composite materials. There is a need for advanced NDE that goes beyond damage detection to damage quantification and characterization in order to enable data driven prognostics. The damage types that exist in carbon fiber-reinforced polymer (CFRP) composites include microcracking and delaminations, and can be initiated and grown via impact forces (due to ground vehicles, tool drops, bird strikes, etc), fatigue, and extreme environmental changes. X-ray microfocus computed tomography data, among other methods, have shown that these damage types often result in voids/discontinuities of a complex volumetric shape. The specific damage geometry and location within ply layers affect damage growth. Realistic threedimensional NDE and structural health monitoring (SHM) simulations can aid in the development and optimization of damage quantification and characterization techniques. This paper is an overview of ongoing work towards realistic NDE and SHM simulation tools for composites, and also discusses NASA's need for such simulation tools in aeronautics and spaceflight. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with realistic 3-dimensional damage in CFRP composites. The custom code uses elastodynamic finite integration technique and is parallelized to run efficiently on computing cluster or multicore machines.

  20. NDE research at NASA Langley Research Center

    International Nuclear Information System (INIS)

    Heyman, J.S.

    1989-01-01

    The Nondestructive Measurement Science Branch at NASA Langley is the Agency's lead Center for NDE research. The focus of the laboratory is to improve the science base for NDE, evolve a more quantitative, interpretable technology to insure safety and reliability, and transfer that technology to the commercial sector. To address the broad needs of the Agency, the program has developed expertise in many areas, some of which are in ultrasonics, nonlinear acoustics, nano and microstructure characterization, thermal NDE, x-ray tomography, optical fiber sensors, magnetic probing, process monitoring sensors, and image/signal processing. The authors laboratory has recently dedicated its new 20,000 square foot research facility bringing the lab space to 30,000 square feet. The new facility includes a high bay for the x-ray CAT scanner, a revolutionary new concept in materials measurement. The CAT scanner is called QUEST, for quantitative experimental stress tomography lab. This system combines for the first time a microfocus x-ray source and detector with a fatigue load frame. Three dimensional imaging of density/geometry of the tested sample is thus possible during tension/compression loading. This system provides the first 3-D view of crack initiation, crack growth, phase transformation, bonded surface failure, creep-all with a density sensitivity of 0.1% and a resolution of about 25 microns (detectability of about 1 micron)

  1. Status of integration of small computers into NDE systems

    International Nuclear Information System (INIS)

    Dau, G.J.; Behravesh, M.M.

    1988-01-01

    Introduction of computers in nondestructive evaluations (NDE) has enabled data acquisition devices to provide a more thorough and complete coverage in the scanning process, and has aided human inspectors in their data analysis and decision making efforts. The price and size/weight of small computers, coupled with recent increases in processing and storage capacity, have made small personal computers (PC's) the most viable platform for NDE equipment. Several NDE systems using minicomputers and newer PC-based systems, capable of automatic data acquisition, and knowledge-based analysis of the test data, have been field tested in the nuclear power plant environment and are currently available through commercial sources. While computers have been in common use for several NDE methods during the last few years, their greatest impact, however, has been on ultrasonic testing. This paper discusses the evolution of small computers and their integration into the ultrasonic testing process

  2. NDE training activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Pherigo, G.L.

    1988-01-01

    The three principal categories of training activity at the EPRI NDE Center are in-service inspection (ISI) training, technical skills training, and human resource development. The ISI training category, which addresses recently developed NDE technologies that are ready for field application, is divided into two areas. One area provides ongoing training and qualification service to boiling water reactor (BWR) utilities in accordance with the Coordination Plan for NRC/EPRI/BWROG Training and Qualification Activities of NDE Personnel. This plan specifically addresses the detection and sizing of intergranular stress corrosion cracking (IGSCC). The second area includes training activities for other recently developed NDE technologies. Courses in this area include weld overlay examination and advanced eddy current data analysis. The technical skills training is developed and offered to support the basic NDE technology needs of the utilities, with emphasis on utility applications. These programs are provided in direct response to generic or specific needs identified by the utility NDE community. The human resource development activities are focused on long-term utility needs through awareness programs for high schools, technical schools, and universities. These training programs are described

  3. NDE fo Sizewell B

    International Nuclear Information System (INIS)

    Baborovsky, V.M.; Whittle, M.J.

    1988-01-01

    A key feature of the safety case for Sizewell B is the extensive NDE proposed for all primary circuit components whose failure must be demonstrated to be incredible. These incredibility of failure components include the reactor pressure vessel, the pressurizer, steam generator shells and reactor coolant pump casings. All of them are to be inspected by repeated, independent inspections using diverse techniques to ensure the highest reliability. The inspections themselves are checked by an independent inspection validation center. This paper reviews the progress made in implementing the above proposals. A number of components have already been inspected, other inspections are imminent. The work has required major technical and administrative innovations and these are described

  4. NDE and plant life extension

    International Nuclear Information System (INIS)

    Liu, S.N.; Ammirato, F.V.; Nottingham, L.D.

    1991-01-01

    Component life extension is the process of making run-repair-replace decisions for plant components and includes a thorough analysis of the capability of the component to perform throughout the projected lifetime. For many critical plant components, nondestructive evaluation (NDE) is essential in determining whether the component can be operated safely and economically in the extended life period and to help utilities determine safe and economic inspection intervals. NDE technology is required for not only detecting defects that could grow to a size of concern during extended lifetimes, but also will be called upon to measure and monitor accumulating material degradation that strongly affects component reliability. This paper discusses the role of NDE in life extension by reviewing three examples--a reactor pressure vessel, steam turbine-generator rotors, and generator retaining rings. In each example, the contribution of NDE to life extension decisions is described. (author)

  5. Methods of thermal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)

    1998-11-01

    We introduce the basic ideas of thermal field theory and review its path integral formulation. We then discuss the problems of QCD theory at high and at low temperatures. At high temperature the naive perturbation expansion breaks down and is cured by resummation. We illustrate this improved perturbation expansion with the g{sup 2}{phi}{sup 4} theory and then sketch its application to find the gluon damping rate in QCD theory. At low temperature the hadronic phase is described systematically by the chiral perturbation theory. The results obtained from this theory for the quark and the gluon condensates are discussed. (author) 22 refs., 6 figs.

  6. Invariance algorithms for processing NDE signals

    Science.gov (United States)

    Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William

    1996-11-01

    Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.

  7. Apparatus and method for thermal power generation

    International Nuclear Information System (INIS)

    Cohen, P.; Redding, A.H.

    1978-01-01

    An improved thermal power plant and method of power generation is described which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant

  8. Thermal neutron shield and method of manufacture

    Science.gov (United States)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  9. Assessment of NDE methods for detecting cracks and damage in environmental barrier coated CMC tested under tension

    Science.gov (United States)

    Abdul-Aziz, Ali; Wroblewski, Adam C.; Bhatt, Ramakrishna T.; Jaskowiak, Martha H.; Gorican, Daniel; Rauser, Richard W.

    2015-03-01

    For validating physics based analytical models predicting spallation life of environmental barrier coating (EBC) on fiber reinforced ceramic matrix composites, the fracture strength of EBC and kinetics of crack growth in EBC layers need to be experimentally determined under engine operating conditions. In this study, a multi layered barium strontium aluminum silicate (BSAS) based EBC-coated, melt infiltrated silicon carbide fiber reinforced silicon carbide matrix composite (MI SiC/SiC) specimen was tensile tested at room temperature. Multiple tests were performed on a single specimen with increasing predetermined stress levels until final failure. During loading, the damage occurring in the EBC was monitored by digital image correlation (DIC). After unloading from the predetermined stress levels, the specimen was examined by optical microscopy and computed tomography (CT). Results indicate both optical microscopy and CT could not resolve the primary or secondary cracks developed during tensile loading until failure. On the other hand, DIC did show formation of a primary crack at ~ 50% of the ultimate tensile strength and this crack grew with increasing stress and eventually led to final failure of the specimen. Although some secondary cracks were seen in the DIC strain plots prior to final failure, the existence of these cracks were not confirmed by other methods. By using a higher resolution camera, it is possible to improve the capability of DIC in resolving secondary cracks and damage in coated specimen tested at room temperature, but use of DIC at high temperature requires significant development. Based on the current data, it appears that both optical microscopy and CT do not offer any hope for detecting crack initiation or determining crack growth in EBC coated CMC tested at room or high temperatures after the specimen has been unloaded. Other methods such as, thermography and optical/SEM of the polished cross section of EBC coated CMC specimens stressed to

  10. Soup Cooking by Thermal Insulation Method

    OpenAIRE

    佐藤, 辰江; 根本, 勢子; サトウ, タツエ; ネモト, セイコ; TATSUE, SATO; SEIKO, NEMOTO

    1992-01-01

    In order to examine the thermal insulation method of soup cooking, we cooked two kinds of soup. The soup cooked by thermal insulation method was compared with the soup cooked by standard boiling method. ln sensory test, it was more aromatic and palatable than the soup by boiling, and some panels commented that it was rather mild. The measured values of pH, specific gravity, acidity and amount of dry weight of souble solids, total-N, formal-N of the soup cooked by the two methods mentioned abo...

  11. Quantitative ultrasonic coda wave (diffuse field) NDE of carbon-fiber reinforced polymer plates

    Science.gov (United States)

    Livings, Richard A.

    The increasing presence and applications of composite materials in aerospace structures precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from simple damage detection to damage diagnosis and structural prognosis. Structural Health Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess damage with some success, but currently the method is not fully mature or ready to be applied for SHM. Additionally, the damage diagnosis capabilities and limitations of coda wave NDE applied to fibrous composite materials have not been widely addressed in literature. The central objective of this work, therefore, is to develop a quantitative foundation for the use of coda wave NDE for the inspection and evaluation of fibrous composite materials. Coda waves are defined as the superposition of late arriving wave modes that have been scattered or reflected multiple times. This results in long, complex signals where individual wave modes cannot be discriminated. One method of interpreting the changes in such signals caused by the introduction or growth of damage is to isolate and quantify the difference between baseline and damage signals. Several differential signal features are used in this work to quantify changes in the coda waves which can then be correlated to damage size and growth. Experimental results show that coda wave differential features are effective in detecting drilled through-holes as small as 0.4 mm in a 50x100x6 mm plate and discriminating between increasing hole diameter and increasing number of holes. The differential features are also shown to have an underlying basis function that is dependent on the hole volume and can be scaled by a material dependent coefficient to estimate the feature amplitude and size holes. The

  12. NDE Big Data Framework, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NDE data has become "Big Data", and is overwhelming the abilities of NDE technicians and commercially available tools to deal with it. In the current state of the...

  13. Preview of the NASA NNWG NDE Sample Preparation Handbook

    Science.gov (United States)

    2010-01-01

    This viewgraph presents a step-by-step how-to fabrication documentation of every kind of sample that is fabricated for MSFC by UA Huntsville, including photos and illustrations. The tabulation of what kind of samples are being fabricated for what NDE method, detailed instructions/documentation of the inclusion/creation of defects, detailed specifications for materials, processes, and equipment, case histories and/or experiences with the different fabrication methods and defect inclusion techniques, discussion of pitfalls and difficulties associated with sample fabrication and defect inclusion techniques, and a discussion of why certain fabrication techniques are needed as related to the specific NDE methods are included in this presentation.

  14. Method for Predicting Thermal Buckling in Rails

    Science.gov (United States)

    2018-01-01

    A method is proposed herein for predicting the onset of thermal buckling in rails in such a way as to provide a means of avoiding this type of potentially devastating failure. The method consists of the development of a thermomechanical model of rail...

  15. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  16. An Integrated NDE and FEM Characterization of Composite Rotors

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2000-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  17. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  18. Iowa State University's undergraduate minor, online graduate certificate and resource center in NDE

    Science.gov (United States)

    Bowler, Nicola; Larson, Brian F.; Gray, Joseph N.

    2014-02-01

    Nondestructive evaluation is a `niche' subject that is not yet offered as an undergraduate or graduate major in the United States. The undergraduate minor in NDE offered within the College of Engineering at Iowa State University (ISU) provides a unique opportunity for undergraduate aspiring engineers to obtain a qualification in the multi-disciplinary subject of NDE. The minor requires 16 credits of course work within which a core course and laboratory in NDE are compulsory. The industrial sponsors of Iowa State's Center for Nondestructive Evaluation, and others, strongly support the NDE minor and actively recruit students from this pool. Since 2007 the program has graduated 10 students per year and enrollment is rising. In 2011, ISU's College of Engineering established an online graduate certificate in NDE, accessible not only to campus-based students but also to practicing engineers via the web. The certificate teaches the fundamentals of three major NDE techniques; eddy-current, ultrasonic and X-ray methods. This paper describes the structure of these programs and plans for development of an online, coursework-only, Master of Engineering in NDE and thesis-based Master of Science degrees in NDE.

  19. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    Mangus, J.D.

    1979-01-01

    A method is described for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component

  20. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso; Alshareef, Husam N.

    2015-01-01

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  1. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso

    2015-05-28

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  2. Calorimetry and thermal methods in catalysis

    CERN Document Server

    Auroux, Aline

    2013-01-01

    The book is about calorimetry and thermal analysis methods, alone or linked to other techniques, as applied to the characterization of catalysts, supports and adsorbents, and to the study of catalytic reactions in various domains: air and wastewater treatment, clean and renewable energies, refining of hydrocarbons, green chemistry, hydrogen production and storage. The book is intended to fill the gap between the basic thermodynamic and kinetics concepts acquired by students during their academic formation, and the use of experimental techniques such as thermal analysis and calorimetry to answ

  3. Method of manufacturing a thermally insulating body

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.

    1988-10-11

    A method of manufacturing a microporous thermally insulating body comprises mixing together a finely divided microporous insulating material such as silica aerogel or pyrogenic silica and a solid ammonia-generating compound in particulate form, and compressing the mixture to form a thermally insulating body. The ammonia-generating compound is dispersed evenly throughout the insulating material and may comprise, for example, ammonium carbonate, ammonium acetate or urea. Preferably, the ammonia-generating compound comprises a mixture of about one third by weight of ammonium carbonate and about two thirds by weight of ammonium bicarbonate together with a small proportion of magnesium oxide. Experiments are described which illustrate the manufacturing process. 6 tabs.

  4. Data combination of infrared thermography images and lock-in thermography images for NDE of plasma facing components

    International Nuclear Information System (INIS)

    Moysan, J.; Gueudre, C.; Corneloup, G.; Durocher, A.

    2006-01-01

    A pioneering activity has been developed by CEA and the European industry in the field of actively cooled high heat flux plasma facing components (PFC) from the very beginning of Tore Supra project. These components have been developed in order to enable a large power exhaust capability. The goal of this study is to improve the Non Destructive Evaluation (NDE) of these components. The difficulty encountered is the evaluation of the junction between a carbon and a metallic substrate. This was even more difficult when complex designs have to be implemented. A first NDE solution was based on the so called SATIR test. The method is based on infrared measurements of tile surface temperatures during a thermal transient produced by hot/cold water flowing in the heat sink cooling channel. In order to improve the definition of acceptance rules for the PFCs, a second NDE method based on Lock-in Thermography is developed. In this work we present how we can combine the two resulting images in order to accept or to reject a component. This prospective study allows improving the experimental setup and the definition of acceptance criteria. The experimental study was conducted on trial components for the Wendelstein 7X stellarator. The conclusions will also influence future non destructive projects dedicated to the ITER project. (orig.)

  5. Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion with Validation from Mechanical Testing

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Doctor, Steven R.; Moran, Traci L.; Watts, Michael W.

    2010-01-01

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-in. IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer-diameter weld beads were removed for the microwave inspection. In two of the four pipes, both the outer and inner weld beads were removed and the pipe joints re-evaluated. The pipes were sectioned and the joints destructively evaluated with the side-bend test by cutting portions of the fusion joint into slices that were planed and bent. The last step in this limited study will be to correlate the fusion parameters, nondestructive, and destructive evaluation results to validate the effectiveness of what each NDE technology detects and what each does not detect. The results of the correlation will be used in identifying any future work that is needed.

  6. NASA DOE POD NDE Capabilities Data Book

    Science.gov (United States)

    Generazio, Edward R.

    2015-01-01

    This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book, 3rd ed., NTIAC DB-97-02. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. The test methodology used in DOEPOD is based on the field of statistical sequential analysis founded by Abraham Wald. Sequential analysis is a method of statistical inference whose characteristic feature is that the number of observations required by the procedure is not determined in advance of the experiment. The decision to terminate the experiment depends, at each stage, on the results of the observations previously made. A merit of the sequential method, as applied to testing statistical hypotheses, is that test procedures can be constructed which require, on average, a substantially smaller number of observations than equally reliable test procedures based on a predetermined number of observations.

  7. NDE training activities at the EPRI NDE center

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The need for an industry-wide qualification for NDE personnel is becoming more evident in both in-service inspection and technical skills training. ASME Section XI requirements for the qualification and certification of visual, ultrasonic, and eddy current examines is one of the major areas being supported by training at the Center. The other major thrust is in response to the Boiling Water Reactor Owners Group and its recognition of the importance of the UT operator's accurately detecting, discriminating, and sizing intergranular stress corrosion cracks (IGSCC) in piping, and inspecting weld overlay repairs of these cracked pipes. In addition, the pressurized water reactor (PWR) utilities have recognized the importance of improved eddy current data analysis of steam generator tubing. The overall intent of the Center's training is to meet the most critical utility needs with quality training that can be used by the trainee's employer as a part of its certification of that individual. To do this, the Center has organized and activated a carefully maintained documentation and records system built around the Continuing Education Unit (CEU). To address the problem of the small supply of entry-level NDE personnel available to the utilities, the Center has developed, through its Human Resource Development, academic and utility co-op programs to generate guidelines and NDE teaching materials for high schools, technical schools, and universities

  8. Neutronics methods for thermal radiative transfer

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1988-01-01

    The equations of thermal radiative transfer are time discretized in a semi-implicit manner, yielding a linear transport problem for each time step. The governing equation in this problem has the form of a neutron transport equation with fission but no scattering. Numerical methods are described, whose origins lie in neutron transport, and that have been successfully adapted to this new problem. Acceleration methods that have been developed specifically for the radiative transfer problem, but may have generalizations applicable in neutronics problems, are also discussed

  9. Applied mathematical methods in nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1983-01-01

    Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated

  10. Review of progress in quantitative NDE

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques

  11. Steam generator tubing NDE performance

    International Nuclear Information System (INIS)

    Henry, G.; Welty, C.S. Jr.

    1997-01-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed

  12. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  13. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  14. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  15. Analysis of thermal power calibration method

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.

    2000-01-01

    The methods for determining fuel element burnup have recently become interesting because of activities related to the shipment of highly enriched fuel elements back to the United States for final disposal before 2009. The most common and practical method for determining fuel element burnup in research reactors is reactor calculation. Experience has shown that burnup calculations become complicated and biased with uncertainties if a long period of reactor operation must be reproduced. Besides this, accuracy of calculated burnup is always limited with accuracy of reactor power calibration, since burnup calculation is based on calculated power density distribution, which is usually expressed in terms of power released per fuel element and normalised to the reactor power It is obvious that reactor thermal power calibration is very important for precise fuel element burnup calculation. Calculated fuel element burnup is linearly dependent on the thermal reactor power. The reactor power level may be determined from measured absolute thermal flux distribution across the core in the horizontal and vertical planes. Flux distributions are measured with activation of cadmium covered and bare foils irradiated by the steady reactor power. But it should be realised that this method is time consuming and not accurate. This method is practical only for zero power reactors and is in practice very seldom performed for other reactors (e.g. for TRIGA reactor in Ljubljana absolute thermal flux distribution was not performed since reactor reconstruction in 1991). In case of power reactors and research reactors in which a temperature rise across the core is produced and measured than a heat balance method is the most common and accurate method of determining the power output of the core. The purpose of this paper is to analyse the accuracy of calorimetric reactor power calibration method and to analyse the influence of control rod position on nuclear detector reading for TRIGA reactors

  16. Terahertz NDE application for corrosion detection and evaluation under Shuttle tiles

    Science.gov (United States)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-04-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  17. Development of nondestructive evaluation methods for ceramic coatings

    International Nuclear Information System (INIS)

    Ellingson, W. A.; Deemer, C.; Sun, J. G.; Erdman, S.; Muliere, D.; Wheeler, B.

    2002-01-01

    Various nondestructive evaluation (NDE) technologies are being developed to study the use of ceramic coatings on components in the hot-gas path of advanced low-emission gas-fired turbines. The types of ceramic coatings include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades, and combustor liners to allow hotter gas-path temperatures, and EBCs are under development to reduce environmental damage to high-temperature components made of ceramic matrix composites. The NDE methods will be used to (a) provide data to assess the reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages, (c) track growth rates of defects during component use in engines, and (d) allow rational judgment for replace/repair/re-use decisions regarding components. Advances in TBC application, both electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS), are allowing higher temperatures in the hot-gas path. However, as TBCs become ''prime reliant,'' their condition at scheduled or unscheduled outages must be known. NDE methods are under development to assess the condition of the TBC for pre-spall conditions. EB-PVD test samples with up to 70 thermal cycles have been studied by a newly developed method involving polarized laser back-scatter NDE. Results suggest a correlation between the NDE laser data and the TBC/bond-coat topography. This finding is important because several theories directed toward understanding the pre-spall condition suggest that the topography in the thermally grown oxide layer changes significantly as a function of the number of thermal cycles. Tests have also been conducted with this NDE method on APS TBCs. Results suggest that the pre-spall condition is detected for these coatings. One-sided, high-speed thermal imaging also has shown promise for NDE of APS coatings. Testing of SiC/SiC composites for combustor liners

  18. Thermal Testing Methods for Solar Dryers

    DEFF Research Database (Denmark)

    Singh, Shobhana

    2017-01-01

    Solar food drying is a complex heat and mass transfer phenomena which depend on a number of drying process-dependent parameters such as operating conditions and characteristics of the food product to be dried. The variation in these parameters significantly affects the overall performance...... of the dryer system. Since commercial growth and acceptance of any solar dryer system momentously depend on its performance guarantee, the development of a standard methodology for their thermal testing has become necessary. The standard testing method not only provides better performance management...... of the dryer system but allows the manufacturers to achieve competitive efficiency and good product quality by comparing the available designs. In this chapter, an extensive review of solar dryer performance evaluation has been carried out. Furthermore, the chapter describes the existing testing procedures...

  19. Design methods for structures under thermal ratchet

    International Nuclear Information System (INIS)

    Branca, T.R.; McLean, J.L.

    1975-01-01

    Previous work on the thermal ratchet analysis of a simple pipe is extended to the case of an intersection of a pipe with a spherical shell. The chosen nozzle configuration is subjected to an internal pressure which remains constant, and a cyclic thermal transient which is representative of the type of transient that might be expected for components of a LMFBR. A number of cross-sections through the nozzle were examined, each yielding a different combination of elastic primary and secondary stress. These stresses, together with their associated cyclic strain growth, as determined from an elastic-plastic-creep analysis of the nozzle, were then plotted on a Miller or Bree-type diagram. Thus, a number of points, one for each cross-section considered, were available for comparison with the data obtained from the ratchet analysis of simple pipe sections. Both the elastic and inelastic analyses on the nozzle were performed using the finite element method of structural analysis of the ANSYS computer code. The pipe ratchetting cases were computed using the Oak Ridge National Laboratory PLACRE code. For a simple pipe ratchet case, a brief comparison is given between the version of ANSYS used in this study, the ANSYS version used in previous work and PLACRE code. The three programs did not yield identical results. Further study is needed to resolve the discrepancies that were observed. The results of the comparison between the nozzle ratchet and pipe ratchet solutions indicate that reasonable predictions can be made for the nozzle ratchet strains based on elastic parameters and design curves developed from pipe ratchetting solutions. (author)

  20. Entropy generation method to quantify thermal comfort

    Science.gov (United States)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  1. Simplified thermal fatigue evaluations using the GLOSS method

    International Nuclear Information System (INIS)

    Adinarayana, N.; Seshadri, R.

    1996-01-01

    The Generalized Local Stress Strain (GLOSS) method has been extended to include thermal effects in addition to mechanical loadings. The method, designated as Thermal-GLOSS, has been applied to several pressure component configuration of practical interest. The inelastic strains calculated by the Thermal-GLOSS method has been compared with the Molski-Glinka method, the Neuber formula and the inelastic finite element analysis results, and found to give consistently good estimates. This is pertinent to power plant equipment

  2. Automated NDE Flaw Mapping System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Aircraft Aging and Durability Project (AADP) aims to ensure the safety of both commercial and military aviation aircraft. Non-destructive evaluation (NDE)...

  3. Automated NDE Flaw Mapping System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The prevailing approach to non-destructive evaluation (NDE) of aircraft components is to set an inspection schedule based on what is generally known about the...

  4. Evaluation of pipe weld NDE indications

    International Nuclear Information System (INIS)

    Brasse, M.

    2007-01-01

    This paper discusses the evaluation of non-destructive examination (NDE) indications in pipe welds. The evaluation procedure is described in a practical engineer's view and examples are also given. (author)

  5. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  6. Through the looking glass: The future for NDE?

    Science.gov (United States)

    Bond, Leonard J.

    2014-02-01

    Nondestructive testing (NDT) is a mature industry, with global equipment sales fast moving towards 2B. per year. The use of conventional NDT will grow in developing countries and in developed countries the challenges will include those associated with maintaining aging infrastructure. For some systems the future will move to structural health monitoring (SHM) and for others into integration of online measurements in manufacturing. Nondestructive Evaluation (NDE) is a multi-disciplinary area of endeavor that has its origins in materials science and NDT. It seeks to provide an adequate science base for NDT to become a quantitative science. It was seen to be necessary to better detect, size and type defects, improve the reliability of inspection, and probability of detection (POD). There is particular interest in estimating the potential defects could have on performance or potential for loss of structural integrity, under various loading or stressor conditions, and ultimately implement risk-based reliability assessments. NDE must be seen more as a part of the wide field of engineering, as an interdisciplinary endeavor, that brings together the expertise of materials science and metrology, together with the underlying physics for inspection methods, as well as statistics, computers, robotics and software. The adoption of advanced manufacturing, will require new metrology tools and methods to provide data for assessing new materials including powder metals, as used in additive manufacturing, and various composites. The lessons from the past proceedings of this conference series include that the problems faced today are harder than was expected during the first decade of quantitative NDE research. Even with new types of transducers and much improved A/D and powerful computers new approaches and more basic measurement physics being understood, new insights are needed to provide the data needed to solve many real-world NDE problems, to understand and measure early

  7. Thermal Diffusivity Measurement for Thermal Spray Coating Attached to Substrate Using Laser Flash Method

    Science.gov (United States)

    Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio

    2011-11-01

    Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.

  8. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  9. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  10. Comparison between ASHRAE and ISO thermal transmittance calculation methods

    DEFF Research Database (Denmark)

    Blanusa, Petar; Goss, William P.; Roth, Hartwig

    2007-01-01

    is proportional to the glazing/frame sightline distance that is also proportional to the total glazing spacer length. An example calculation of the overall heat transfer and thermal transmittance (U-value or U-factor) using the two methods for a thermally broken, aluminum framed slider window is presented....... The fenestration thermal transmittance calculations analyses presented in this paper show that small differences exist between the calculated thermal transmittance values produced by the ISO and ASHRAE methods. The results also show that the overall thermal transmittance difference between the two methodologies...... decreases as the total window area (glazing plus frame) increases. Thus, the resulting difference in thermal transmittance values for the two methods is negligible for larger windows. This paper also shows algebraically that the differences between the ISO and ASHRAE methods turn out to be due to the way...

  11. Computer-aided methods of determining thyristor thermal transients

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1988-08-01

    An accurate tracing of the thyristor thermal response is investigated. This paper offers several alternatives for thermal modeling and analysis by using an electrical circuit analog: topological method, convolution integral method, etc. These methods are adaptable to numerical solutions and well suited to the use of the digital computer. The thermal analysis of thyristors was performed for the 1000 MVA converter system at the Princeton Plasma Physics Laboratory. Transient thermal impedance curves for individual thyristors in a given cooling arrangement were known from measurements and from manufacturer's data. The analysis pertains to almost any loading case, and the results are obtained in a numerical or a graphical format. 6 refs., 9 figs

  12. Methods and compositions for rapid thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2018-04-10

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  13. Gas Analysis and Control Methods for Thermal Batteries

    Science.gov (United States)

    2013-09-01

    when using highly efficient microporous thermal insulation packages. An easily implemented method of H2 gas removal from vendor thermal batteries is... microporous thermal insulation packages (1, 4, 5) or reduce volume requirements significantly. More rigorous gas control methods combined with...measured from the DCM pressures and known internal volumes of the 3 GHS that were measured using the ideal gas law with a 10-cc internal volume SS

  14. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  15. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    1981-01-01

    A thermal power plant reheat cycle system is described in which the discharge from a first expansion stage is reheated prior to expansion in a subsequent expansion stage. The primary coolant has a high sheet transfer rate and can accommodate temperature changes in the reheat vapor. (U.K.)

  16. Method of producing thermally stable uranium carbonitrides

    International Nuclear Information System (INIS)

    Ugajin, M.; Takahashi, I.

    1975-01-01

    A thermally stable uranium carbonitride can be produced by adding tungsten and/or molybdenum in the amount of 0.2 wt percent or more, preferably 0.5 wt percent or more, to a pure uranium carbonitride. (U.S.)

  17. New method for calculation of integral characteristics of thermal plumes

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2008-01-01

    A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...... of the directional velocity (upward component of the mean velocity). The method is applied for determination of the characteristics of an asymmetric thermal plume generated by a sitting person. The method was validated in full-scale experiments in a climatic chamber with a thermal manikin as a simulator of a sitting...

  18. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  19. Thermal stresses in long prisms by relaxation methods

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, J D [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1959-07-15

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  20. Thermal stresses in long prisms by relaxation methods

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1959-07-01

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  1. Quantitative NDE of Composite Structures at NASA

    Science.gov (United States)

    Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.

    2015-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.

  2. Comparison of Thermal Properties Measured by Different Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan [Geo Innova AB, Linkoeping (Sweden); Kukkonen, Ilmo [Geological Survey of Finland, Helsinki (Finland); Haelldahl, Lars [Hot Disk AB, Uppsala (Sweden)

    2003-04-01

    A strategy for a thermal site descriptive model of bedrock is under development at SKB. In the model different kinds of uncertainties exist. Some of these uncertainties are related to the potential errors in the methods used for determining thermal properties of rock. In two earlier investigations thermal properties of rock samples were analysed according to the TPS method (transient plane source). Thermal conductivity and thermal diffusivity were determined using the TPS method. For a comparison, the same samples have been measured at the Geological Survey of Finland (GSF), using different laboratory methods. In this later investigation, the thermal conductivity was determined using the divided-bar method and the specific heat capacity using a calorimetric method. The mean differences between the results of different methods are relatively low but the results of individual samples show large variations. The thermal conductivity measured by the divided bar method gives for most samples slightly higher values, in average about 3%, than the TPS method. The specific heat capacity measured by the calorimetric method gives lower values, in average about 2%, than the TPS method. Consequently, the thermal diffusivity calculated from thermal conductivity and specific heat capacity gives higher values, in average about 6%, than the TPS method. Reasons for the differences are estimated mainly to be dependent on differences between the samples, errors in the temperature dependence of specific heat and in the transformation from volumetric to specific heat. The TPS measurements are performed using two pieces (sub-samples) of rock. Only one of these two sub-samples was measured using the divided bar method and the calorimetric method. Further, sample preparation involved changes in the size of some of the samples. The mean differences between the results of different methods are within the margins of error reported by the measuring laboratories. However, systematic errors in

  3. Comparison of Thermal Properties Measured by Different Methods

    International Nuclear Information System (INIS)

    Sundberg, Jan; Kukkonen, Ilmo; Haelldahl, Lars

    2003-04-01

    A strategy for a thermal site descriptive model of bedrock is under development at SKB. In the model different kinds of uncertainties exist. Some of these uncertainties are related to the potential errors in the methods used for determining thermal properties of rock. In two earlier investigations thermal properties of rock samples were analysed according to the TPS method (transient plane source). Thermal conductivity and thermal diffusivity were determined using the TPS method. For a comparison, the same samples have been measured at the Geological Survey of Finland (GSF), using different laboratory methods. In this later investigation, the thermal conductivity was determined using the divided-bar method and the specific heat capacity using a calorimetric method. The mean differences between the results of different methods are relatively low but the results of individual samples show large variations. The thermal conductivity measured by the divided bar method gives for most samples slightly higher values, in average about 3%, than the TPS method. The specific heat capacity measured by the calorimetric method gives lower values, in average about 2%, than the TPS method. Consequently, the thermal diffusivity calculated from thermal conductivity and specific heat capacity gives higher values, in average about 6%, than the TPS method. Reasons for the differences are estimated mainly to be dependent on differences between the samples, errors in the temperature dependence of specific heat and in the transformation from volumetric to specific heat. The TPS measurements are performed using two pieces (sub-samples) of rock. Only one of these two sub-samples was measured using the divided bar method and the calorimetric method. Further, sample preparation involved changes in the size of some of the samples. The mean differences between the results of different methods are within the margins of error reported by the measuring laboratories. However, systematic errors in

  4. Measurement of through-thickness thermal diffusivity of thermoplastics using thermal wave method

    Science.gov (United States)

    Singh, R.; Mellinger, A.

    2015-04-01

    Thermo-physical properties, such as thermal conductivity, thermal diffusivity and specific heat are important quantities that are needed to interpret and characterize thermoplastic materials. Such characterization is necessary for many applications, ranging from aerospace engineering to food packaging, electrical and electronic industry and medical science. In this work, the thermal diffusivity of commercially available polymeric films is measured in the thickness direction at room temperature using thermal wave method. The results obtained with this method are in good agreement with theoretical and experimental values.

  5. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  6. A four-probe thermal transport measurement method for nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  7. A four-probe thermal transport measurement method for nanostructures

    International Nuclear Information System (INIS)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li

    2015-01-01

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models

  8. Virginia Power thermal-hydraulics methods

    International Nuclear Information System (INIS)

    Anderson, R.C.; Basehore, K.L.; Harrell, J.R.

    1987-01-01

    Virginia Power's nuclear safety analysis group is responsible for the safety analysis of reload cores for the Surry and North Anna power stations, including the area of core thermal-hydraulics. Postulated accidents are evaluated for potential departure from nucleate boiling violations. In support of these tasks, Virginia Power has employed the COBRA code and the W-3 and WRB-1 DNB correlations. A statistical DNBR methodology has also been developed. The code, correlations and statistical methodology are discussed

  9. Fault-Tolerant NDE Data Reduction Framework, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A distributed fault tolerant nondestructive evaluation (NDE) data reduction framework is proposed in which large NDE datasets are mapped to thousands to millions of...

  10. IVA Ultrasonic and Eddy Current NDE for ISS

    Data.gov (United States)

    National Aeronautics and Space Administration — The project intends to develop a combined Ultrasonic and Eddy Current nondestructive evaluation (NDE) instrument for IVA use on ISS. A suite of IVA and EVA NDE...

  11. Survey of evaluation methods for thermal striping in FBR structures

    International Nuclear Information System (INIS)

    Miura, Naoki; Nitta, Akito; Take, Kohji

    1988-01-01

    In the upper core structures or the sodium mixing tee of Fast Breeder Reactors, sodium mixing streams which are at different temperatures produce rapid temperature fluctuations, namely 'thermal striping', upon component surfaces, and it is apprehended that the high-cycle thermal fatigue causes the crack initiation and propagation. The thermal striping is one of the factors which is considered in FBR component design, however, the standard evaluation method has not built up yet because of the intricacy of that mechanism, the difficulty of an actual proof, the lack of data, and so on. In this report, it is intended to survey of the datails and the present situation of the evaluation method of crack initiation and propagation due to thermal striping, and study the appropriate method which will be made use of the rationalization of design. So it is ascertained that the method which use a quantitative prediction of crack propagation is optimum to evaluate the thermal striping phenomenon. (author)

  12. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2013-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Based on above knowledge, improved methods for the JSME guideline and Numerical simulation methods for thermal fatigue evaluation were studied. Furthermore, probabilistic failure analysis approach with main influence parameters were investigated to be applied for the plant system safety. (author)

  13. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.; Prowant, M.S.; Coble, J.B.; Griffin, J.W.; Pitman, S.G.; Dahl, M.E.; Kafentzis, T.A.; Roosendaal, T.J.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradation of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).

  14. Effect of thermal processing methods on the proximate composition ...

    African Journals Online (AJOL)

    The nutritive value of raw and thermal processed castor oil seed (Ricinus communis) was investigated using the following parameters; proximate composition, gross energy, mineral constituents and ricin content. Three thermal processing methods; toasting, boiling and soaking-and-boiling were used in the processing of the ...

  15. Inverse thermal analysis method to study solidification in cast iron

    DEFF Research Database (Denmark)

    Dioszegi, Atilla; Hattel, Jesper

    2004-01-01

    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... inverse thermal analysis was tested on both experimental and simulated data....

  16. Method for determining thermal neutron decay times of earth formations

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1976-01-01

    A method is disclosed for measuring the thermal neutron decay time of earth formations in the vicinity of a well borehole. A harmonically intensity modulated source of fast neutrons is used to irradiate the earth formations with fast neutrons at three different intensity modulation frequencies. The tangents of the relative phase angles of the fast neutrons and the resulting thermal neutrons at each of the three frequencies of modulation are measured. First and second approximations to the earth formation thermal neutron decay time are derived from the three tangent measurements. These approximations are then combined to derive a value for the true earth formation thermal neutron decay time

  17. Influences in Thermal Conductivity Evaluation Using the Thermal Probe Method; some Practical Aspects

    OpenAIRE

    Strâmbu, Vasile

    2012-01-01

    The thermal probe is a device used for measuring the thermal conductivity of materials in the food industry, plastics industry, geotechnical engineering and studies of soft soils and rocks. The method also started being utilized in the field of construction materials with particularities that take into account their composition and the state they are in.

  18. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Science.gov (United States)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  19. Methods for thermal reactor lattice calculations

    International Nuclear Information System (INIS)

    Schneider, A.

    1976-12-01

    The American code HAMMER and the British code WIMS, for the analysis of thermal reactor lattices, have been investigated. The primary objective of this investigation was to identify the causes for the discrepancies that exist between the calculated and the experimentally determined reactivity of clean critical experiments. Three phases have been undertaken in the research: (a) Detailed comparison between the group cross-sections used by the codes; (b) Definition of the various approximations incorporated into the codes; (c) Comparison between the values of a variety of reaction rates calculated by the two codes. It was concluded that the main cause of discrepancy between calculations and experiments is due to data inaccuracies, while approximations introduced in solving the transport equation are of smaller importance

  20. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.

    Science.gov (United States)

    Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S

    2009-12-01

    Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.

  1. ALTERNATIVE METHOD FOR ON SITE EVALUATION OF THERMAL TRANSMITTANCE

    Directory of Open Access Journals (Sweden)

    Aleksandar Janković

    2017-08-01

    Full Text Available Thermal transmittance or U-value is an indicator of the building envelope thermal properties and a key parameter for evaluation of heat losses through the building elements due to heat transmission. It can be determined by calculation based on thermal characteristics of the building element layers. However, this value does not take into account the effects of irregularities and degradation of certain elements of the envelope caused by aging, which may lead to errors in calculation of the heat losses. An effective and simple method for determination of thermal transmittance is in situ measurement, which is governed by the ISO 9869-1:2014 that defines heat flow meter method. This relatively expensive method leaves marks and damages surface of the building element. Furthermore, the final result is not always reliable, in particular when the building element is light or when the weather conditions are not suitable. In order to avoid the above mentioned problems and to estimate the real thermal transmittance value an alternative experimental method, here referred as the natural convection and radiation method, is proposed in this paper. For determination of thermal transmittance, this method requires only temperatures of inside and outside air, as well as the inner wall surface temperature. A detailed statistical analysis, performed by the software package SPSS ver. 20, shows several more advantages of this method comparing to the standard heat flow meter one, besides economic and non-destructive benefits.

  2. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  3. Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods

    Science.gov (United States)

    Tao, N.; Li, X. L.; Sun, J. G.

    2017-06-01

    Thermal properties are important for material applications involved with temperature. Although many measurement methods are available, they may not be convenient to use or have not been demonstrated suitable for testing of a wide range of materials. To address this issue, we developed a new method for the nondestructive measurement of the thermal effusivity of bulk materials with uniform property. This method is based on the pulsed thermal imaging-multilayer analysis (PTI-MLA) method that has been commonly used for testing of coating materials. Because the test sample for PTI-MLA has to be in a two-layer configuration, we have found a commonly used commercial tape to construct such test samples with the tape as the first-layer material and the bulk material as the substrate. This method was evaluated for testing of six selected solid materials with a wide range of thermal properties covering most engineering materials. To determine both thermal conductivity and heat capacity, we also measured the thermal diffusivity of these six materials by the well-established flash method using the same experimental instruments with a different system setup. This paper provides a description of these methods, presents detailed experimental tests and data analyses, and discusses measurement results and their comparison with literature values.

  4. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  5. An NDE Approach for Characterizing Quality Problems in Polymer Matrix Composites

    Science.gov (United States)

    Roth, Don J.; Baaklini, George Y.; Sutter, James K.; Bodis, James R.; Leonhardt, Todd A.; Crane, Elizabeth A.

    1994-01-01

    Polymer matrix composite (PMC) materials are periodically identified appearing optically uniform but containing a higher than normal level of global nonuniformity as indicated from preliminary ultrasonic scanning. One such panel was thoroughly examined by nondestructive (NDE) and destructive methods to quantitatively characterize the nonuniformity. The NDE analysis of the panel was complicated by the fact that the panel was not uniformly thick. Mapping of ultrasonic velocity across a region of the panel in conjunction with an error analysis was necessary to (1) characterize properly the porosity gradient that was discovered during destructive analyses and (2) account for the thickness variation effects. Based on this study, a plan for future NDE characterization of PMC's is presented to the PMC community.

  6. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2014-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and many patterns, so that their problems still occur in spite of well-known issues. The guideline of the JSME (Japan Society of Mechanical Engineering) for estimation of thermal fatigue failures in piping system is employed as Japanese regulation. To improve this guideline, generation mechanisms of thermal load and fatigue failure have been investigated and summarized into the knowledgebase. And numerical simulation methods to replace experimental based methods were studied. Furthermore, probabilistic failure analysis approach with main influence parameters was investigated to be applied for the plant system safety. Thus, based on the knowledge, estimation methods revised from the JSME guideline were proposed. (author)

  7. EPRI research program NDE techniques for crack initiation of steam turbine rotor

    International Nuclear Information System (INIS)

    Goto, T.; Kimura, J.; Kawamoto, K.; Kadoya, Y.; Viswanathan, R.

    1990-01-01

    EPRI RP 2481-8 aims at the development of nondestructive methods for the life assessment of steam turbine rotor for its crack initiation caused by creep and/or fatigue. As a part of the research project, the demonstration of the state of the art NDE techniques was conducted during June to August of 1988 at EPRI NDE Center, Charlotte, N.C. by Mitsubishi Heavy Industries, Ltd. using four rotors retired after long term service (16-22x10 4 hr). This paper introduces the results of the demonstration

  8. Final report on the development of a disturbanceless NDE compact cooling device; Abschlussbericht zur Entwicklung einer stoerarmen maschinellen NDE-Kompaktkuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, G.

    2002-08-13

    The project comprised the following aspects: 1. Development of a disturbance-free, mechanized compact cooling system for a NDE measuring system on the basis of a commercial SL200-10 split stirling cooling system of AEG Infrarotmodule GmbH, Heilbronn; 2. Support of the development work at the HTSL/Hall magnetometer of Friedrich-Schiller University, Jena; 3. Measurements of HTSL/Hall magnetometer samples and thermal characterisation. [German] Im Rahmen dieses Vorhabens wurden die folgenden Aufgabenstellungen behandelt: 1. Entwicklung einer stoerarmen, maschinellen Kompaktkuehlung fuer ein NDE-Messsystem auf der Basis eines kommerziellen Split-Stirlingkuehlers SL200-10 der Firma AEG Infrarotmodule GmbH, Heilbronn, 2. Unterstuetzung der Entwicklungsarbeiten am HTSL/Hall-Magnetometer, die bei der Friedrich-Schiller-Universitaet in Jena durchgefuehrt wurden, 3. Messungen an HTSL/Hall-Magnetometer-Proben zu deren thermischer Charakterisierung. (orig.)

  9. Method for estimating the lattice thermal conductivity of metallic alloys

    International Nuclear Information System (INIS)

    Yarbrough, D.W.; Williams, R.K.

    1978-08-01

    A method is described for calculating the lattice thermal conductivity of alloys as a function of temperature and composition for temperatures above theta/sub D//2 using readily available information about the atomic species present in the alloy. The calculation takes into account phonon interactions with point defects, electrons and other phonons. Comparisons between experimental thermal conductivities (resistivities) and calculated values are discussed for binary alloys of semiconductors, alkali halides and metals. A discussion of the theoretical background is followed by sufficient numerical work to facilitate the calculation of lattice thermal conductivity of an alloy for which no conductivity data exist

  10. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  11. Adaptive implicit method for thermal compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, A.; Tchelepi, H.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Stanford Univ., Palo Alto (United States)

    2008-10-15

    As the global demand for oil increases, thermal enhanced oil recovery techniques are becoming increasingly important. Numerical reservoir simulation of thermal methods such as steam assisted gravity drainage (SAGD) is complex and requires a solution of nonlinear mass and energy conservation equations on a fine reservoir grid. The most currently used technique for solving these equations is the fully IMplicit (FIM) method which is unconditionally stable, allowing for large timesteps in simulation. However, it is computationally expensive. On the other hand, the method known as IMplicit pressure explicit saturations, temperature and compositions (IMPEST) is computationally inexpensive, but it is only conditionally stable and restricts the timestep size. To improve the balance between the timestep size and computational cost, the thermal adaptive IMplicit (TAIM) method uses stability criteria and a switching algorithm, where some simulation variables such as pressure, saturations, temperature, compositions are treated implicitly while others are treated with explicit schemes. This presentation described ongoing research on TAIM with particular reference to thermal displacement processes such as the stability criteria that dictate the maximum allowed timestep size for simulation based on the von Neumann linear stability analysis method; the switching algorithm that adapts labeling of reservoir variables as implicit or explicit as a function of space and time; and, complex physical behaviors such as heat and fluid convection, thermal conduction and compressibility. Key numerical results obtained by enhancing Stanford's General Purpose Research Simulator (GPRS) were also presented along with a list of research challenges. 14 refs., 2 tabs., 11 figs., 1 appendix.

  12. Methodical Specifics of Thermal Experiments with Thin Carbon Reinforced Plates

    Directory of Open Access Journals (Sweden)

    O. V. Denisov

    2015-01-01

    Full Text Available Polymer composite materials (CM are widely used in creation of large space constructions, especially reflectors of space antennas. Composite materials should provide high level of specific stiffness and strength for space structures. Thermal conductivity in reinforcement plane is a significant factor in case of irregular heating space antennas. Nowadays, data on CM reinforcement plane thermal conductivity are limited and existing methods of its defining are imperfect. Basically, traditional methods allow us to define thermal conductivity in perpendicular direction towards the reinforcement plane on the samples of round or rectangular plate. In addition, the thickness of standard samples is larger than space antenna thickness. Consequently, new methods are required. Method of contact heating, which was developed by BMSTU specialists with long hollow carbon beam, could be a perspective way. This article is devoted to the experimental method of contact heating on the thin carbon plates.Thermal tests were supposed to provide a non-stationary temperature field with a gradient being co-directional with the plane reinforcement in the material sample. Experiments were conducted in vacuum chamber to prevent unstructured convection. Experimental thermo-grams processing were calculated by 1-d thermal model for a thin plate. Influence of uncertainty of experimental parameters, such as (radiation emission coefficients of sample surface, glue, temperature sensors and uncertainty of sensors placement on the result of defined thermal conductivity has been estimated. New data on the thermal conductivity in reinforcement plane were obtained within 295 - 375 K temperature range, which can be used to design and develop reflectors of precision space antennas. In the future it is expedient to conduct tests of thin-wall plates from carbon fiber-reinforced plastic in wide temperature range, especially in the low-range temperatures.

  13. Predicting lattice thermal conductivity with help from ab initio methods

    Science.gov (United States)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  14. Methods for enhancing mapping of thermal fronts in oil recovery

    Science.gov (United States)

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  15. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. NDE of Damage in Aircraft Flight Control Surfaces

    International Nuclear Information System (INIS)

    Hsu, David K.; Barnard, Daniel J.; Dayal, Vinay

    2007-01-01

    Flight control surfaces on an aircraft, such as ailerons, flaps, spoilers and rudders, are typically adhesively bonded composite or aluminum honeycomb sandwich structures. These components can suffer from damage caused by hail stone, runway debris, or dropped tools during maintenance. On composites, low velocity impact damages can escape visual inspection, whereas on aluminum honeycomb sandwich, budding failure of the honeycomb core may or may not be accompanied by a disbond. This paper reports a study of the damage morphology in such structures and the NDE methods for detecting and characterizing them. Impact damages or overload failures in composite sandwiches with Nomex or fiberglass core tend to be a fracture or crinkle or the honeycomb cell wall located a distance below the facesheet-to-core bondline. The damage in aluminum honeycomb is usually a buckling failure, propagating from the top skin downward. The NDE methods used in this work for mapping out these damages were: air-coupled ultrasonic scan, and imaging by computer aided tap tester. Representative results obtained from the field will be shown

  17. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  18. Time-Domain Terahertz Computed Axial Tomography NDE System

    Science.gov (United States)

    Zimdars, David

    2012-01-01

    NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D

  19. Method for enhancing the thermal stability of ionic compounds

    DEFF Research Database (Denmark)

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA.......This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA....

  20. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  1. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  2. Investigation of Thermal Performance for Atria: a Method Overview

    Directory of Open Access Journals (Sweden)

    Moosavi Leila

    2016-01-01

    Full Text Available The importance of low energy design in large buildings has encouraged researchers to implement different methods for predicting a building’s thermal performance. Atria, as energy efficient features, have been implemented to improve the indoor thermal environment in large modern buildings. Though widely implemented, the thorough study of atrium performance is restricted due to its large size, complex thermodynamic behavior and the inaccuracies and limitations of available prediction tools. This study reviews the most common research tools implemented in previous researches on atria thermal performance, to explore the advantages and limitation of different methods for future studies. The methods reviewed are analytical, experimental, computer modelling and a combination of any or all of these methods. The findings showed that CFD (computational fluid dynamic models are the most popular tools of recent due to their higher accuracy, capabilities and user-friendly modification. Although the experimental methods were reliable for predicting atria thermal and ventilation performance, they have mostly been used to provide data for validation of CFD models. Furthermore, coupling CFD with other experimental models could increase the reliability and accuracy of the models and provide a more comprehensive analysis.

  3. Apparatus and method for transient thermal infrared spectrometry

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1991-12-03

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  4. Stabilizing the thermal lattice Boltzmann method by spatial filtering.

    Science.gov (United States)

    Gillissen, J J J

    2016-10-01

    We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference solutions for a number of standardized test cases, including natural convection in two dimensions.

  5. NDE of ceramic insulator blanks by radiography

    International Nuclear Information System (INIS)

    Sarvanan, S.; Venkatraman, B.; Jayakumar, T.; Baldev Raj

    1996-01-01

    The production of ceramic insulators in electrical industry involves a number of steps, one of which is the green blank. The defects such as voids and crack can be present in the extruded green blank. One of the best non-destructive evaluation (NDE) technique radiography. This paper deals with the development of methodology based on theoretical modeling for the examination of ceramics by high sensitivity radiography. (author)

  6. Global NDE Best Practice for Technology Improvement, Outage Management, Foreign Material Exclusion and Dose Control

    International Nuclear Information System (INIS)

    Glass, S. W.; Mohr, F.

    2010-01-01

    Non Destructive Examination (NDE) is a critical element of both Boiling Water and Pressurized Water Reactor outages. Frequently this includes critical path activity so both the utility and the inspection vendor are under intense pressure to perform the work quickly. Concurrent with AREVA's new global organization of NDE resources, AREVA NDE SOLUTIONS, efforts have intensified for global application of lessons learned and best practices. These best practices include new developments as well as continuous improvements to well established tools and NDE techniques. Advancements range from steam generator robots, advanced steam generator deposit characterization sensors and method, new phased array approaches for PWR and BWR reactor vessel examination, new sensors and approaches for RPV head examinations, plus advanced internals examination robots and methods. In addition to specialized tools and techniques, best practice includes numerous management innovations. AREVA's multi-disciplined integrated nuclear worker strategy helps to minimize the total number of personnel deployed to multi-task outages. Specific design and on-site practice has been implemented to minimize or eliminate foreign material from the reactor system and vigorous pursuit of dose management practices keeps our nuclear worker dose as low as reasonably achievable. The industry is moving to much more conservative nuclear worker dose limits. While this is proving to be an issue with many vendors, AREVA has had an internal policy of <2R since 2006. Globalizing the organization also helps AREVA manage peaks and unplanned emergency inspections from an enlarged pool of globally qualified inspection personnel and tools. (Author)

  7. Standard compliance - NDE performance demonstration/inspection in the CANDU industry

    International Nuclear Information System (INIS)

    Choi, E.

    2011-01-01

    CANDU nuclear power plants are operated in 3 provinces in Canada for electric power generation. A table in the paper will show the built and operating plants in Ontario, Quebec, New Brunswick and overseas. The regulator for nuclear power in Canada is the Canadian Nuclear Safety Commission (CNSC). The CNSC holds the plant licensees accountable for compliance to CSA N285.4 for periodic inspections. The Standard basically specifies the 'what, when, where, how, how much and how frequently' NDE is to be done on pressure retaining systems and components in CANDU nuclear power plants. In inspection methods, the Standard specifies they must be non-destructive. The NDE methods were grouped into visual, dimensional, surface, volumetric and integrative. The Standard also specifies that the licensees are responsible for the performance demonstration (PD) of the adequacy of the procedures and the proficiency of the personnel. This paper describes the Standard's requirement in NDE qualification and presents a joint project participated by Canadian and overseas CANDU owners. The sub-project for NDE included providing evidence and technical justification on the adequacy of the procedures and the proficiency of the personnel. The paper describes the qualification methodology followed by the participants. This will be followed by how the participants produced Inspection Specification, tools and procedures, personnel training and qualification programs, test and qualification samples, independent peer reviews and Technical Justification. (author)

  8. An alternative method for performing pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Bishop, B.A.; Meyer, T.A.; Carter, R.G.; Gamble, R.M.

    1997-01-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a c and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab

  9. Thermal-hydraulic methods in fast reactor safety

    International Nuclear Information System (INIS)

    Weber, D.P.; Briggs, L.L.

    1985-01-01

    Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided

  10. A simple method for estimating thermal response of building ...

    African Journals Online (AJOL)

    This paper develops a simple method for estimating the thermal response of building materials in the tropical climatic zone using the basic heat equation. The efficacy of the developed model has been tested with data from three West African cities, namely Kano (lat. 12.1 ºN) Nigeria, Ibadan (lat. 7.4 ºN) Nigeria and Cotonou ...

  11. Thermal test requirements and their verification by different test methods

    International Nuclear Information System (INIS)

    Droste, B.; Wieser, G.; Probst, U.

    1993-01-01

    The paper discusses the parameters influencing the thermal test conditions for type B-packages. Criteria for different test methods (by analytical as well as by experimental means) will be developed. A comparison of experimental results from fuel oil pool and LPG fire tests will be given. (J.P.N.)

  12. An alternative method for performing pressurized thermal shock analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B A; Meyer, T A [Westinghouse Energy Systems, Pittsburgh, PA (United States); Carter, R G [Electric Power Research Inst., Charlotte, NC (United States); Gamble, R M [Sartrex Corp., Rockville, MD (United States)

    1997-09-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a{sub c} and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab.

  13. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  14. Analytical method for thermal stress analysis of plasma facing materials

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  15. Analytical method for thermal stress analysis of plasma facing materials

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2001-01-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed

  16. Rationalization of thermal injury quantification methods: application to skin burns.

    Science.gov (United States)

    Viglianti, Benjamin L; Dewhirst, Mark W; Abraham, John P; Gorman, John M; Sparrow, Eph M

    2014-08-01

    Classification of thermal injury is typically accomplished either through the use of an equivalent dosimetry method (equivalent minutes at 43 °C, CEM43 °C) or through a thermal-injury-damage metric (the Arrhenius method). For lower-temperature levels, the equivalent dosimetry approach is typically employed while higher-temperature applications are most often categorized by injury-damage calculations. The two methods derive from common thermodynamic/physical chemistry origins. To facilitate the development of the interrelationships between the two metrics, application is made to the case of skin burns. This thermal insult has been quantified by numerical simulation, and the extracted time-temperature results served for the evaluation of the respective characterizations. The simulations were performed for skin-surface exposure temperatures ranging from 60 to 90 °C, where each surface temperature was held constant for durations extending from 10 to 110 s. It was demonstrated that values of CEM43 at the basal layer of the skin were highly correlated with the depth of injury calculated from a thermal injury integral. Local values of CEM43 were connected to the local cell survival rate, and a correlating equation was developed relating CEM43 with the decrease in cell survival from 90% to 10%. Finally, it was shown that the cell survival/CEM43 relationship for the cases investigated here most closely aligns with isothermal exposure of tissue to temperatures of ~50 °C. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  17. Apparatus and method for transient thermal infrared emission spectrometry

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  18. Momentum integral network method for thermal-hydraulic transient analysis

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1983-01-01

    A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion

  19. Determination of reactor thermal power using a more accurate method

    International Nuclear Information System (INIS)

    Papuga, J.; Madron, F.; Pliska, J.

    2005-01-01

    Reactor thermal power is an important operational parameter in many respects such as nuclear safety, reactor physics or evaluation of turbine thermal performance. Thermal power of a pressurized water reactor is determined on the basis of the steam generator thermal balance. The balance can be made in several variants differing from one another by the selection of different measuring circuits whose data are used in the balancing. In principle, no one such variant gives the true value of the thermal power. Among the variant values, the one nearest to the unknown true value of reactor thermal power is probably the value calculated with the lowest uncertainty. The determination of such uncertainty is not easy and its value can make even several percent, which has significant economic consequences. This paper presents the method of data reconciliation and its application to the data of the third of Dukovany NPP. The data reconciliation method allows to exploit all the information which process data contain. It is based on the statistical adjustment of the redundant data in such a way that the adjusted data obey generally valid laws of nature (e.g. conservation laws). Mass and energy balances based on the data not yet reconciled do not obey those laws because of measurement errors. For data reconciliation in Dukovany, a detailed model of mass and energy flows describing the 3rd unit from steam generators to alternator and condenser was set up. Laws of mass and energy conservation and phase equilibrium in water-steam systems are thus fulfilled. Moreover, the user can model momentum balances in pipelines and create other equations, which are respected during calculation. The data reconciliation is done regularly for hourly averages (Authors)

  20. Development of thermal stress screening method. Application of green function method

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Shibamoto, Hiroshi; Kasahara, Naoto

    2004-01-01

    This work was achieved for the development of the screening method of thermal transient stresses in FBR components. We proposed an approximation method for evaluations of thermal stress under variable heat transfer coefficients (non-linear problems) using the Green functions of thermal stresses with constant heat transfer coefficients (linear problems). Detailed thermal stress analyses provided Green functions for a skirt structure and a tube-sheet of Intermediate Heat Exchanger. The upper bound Green functions were obtained by the analyses using those upper bound heat transfer coefficients. The medium and the lower bound Green functions were got by the analyses of those under medium and the lower bound heat transfer coefficients. Conventional evaluations utilized the upper bound Green functions. On the other hand, we proposed a new evaluation method by using the upper bound, medium and the lower bound Green functions. The comparison of above results gave the results as follows. The conventional evaluations were conservative and appropriate for the cases under one fluid thermal transient structure such as the skirt. The conventional evaluations were generally conservative for the complicated structures under two or more fluids thermal transients such as the tube-sheet. But the danger locations could exists for the complicated structures under two or more fluids transients, namely the conventional evaluations were non-conservative. The proposed evaluations gave good estimations for these complicated structures. Though above results, we have made the basic documents of the screening method of thermal transient stresses using the conventional method and the new method. (author)

  1. NDE reliability and probability of detection (POD) evolution and paradigm shift

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surendra [NDE Engineering, Materials and Process Engineering, Honeywell Aerospace, Phoenix, AZ 85034 (United States)

    2014-02-18

    The subject of NDE Reliability and POD has gone through multiple phases since its humble beginning in the late 1960s. This was followed by several programs including the important one nicknamed “Have Cracks – Will Travel” or in short “Have Cracks” by Lockheed Georgia Company for US Air Force during 1974–1978. This and other studies ultimately led to a series of developments in the field of reliability and POD starting from the introduction of fracture mechanics and Damaged Tolerant Design (DTD) to statistical framework by Bernes and Hovey in 1981 for POD estimation to MIL-STD HDBK 1823 (1999) and 1823A (2009). During the last decade, various groups and researchers have further studied the reliability and POD using Model Assisted POD (MAPOD), Simulation Assisted POD (SAPOD), and applying Bayesian Statistics. All and each of these developments had one objective, i.e., improving accuracy of life prediction in components that to a large extent depends on the reliability and capability of NDE methods. Therefore, it is essential to have a reliable detection and sizing of large flaws in components. Currently, POD is used for studying reliability and capability of NDE methods, though POD data offers no absolute truth regarding NDE reliability, i.e., system capability, effects of flaw morphology, and quantifying the human factors. Furthermore, reliability and POD have been reported alike in meaning but POD is not NDE reliability. POD is a subset of the reliability that consists of six phases: 1) samples selection using DOE, 2) NDE equipment setup and calibration, 3) System Measurement Evaluation (SME) including Gage Repeatability and Reproducibility (Gage R and R) and Analysis Of Variance (ANOVA), 4) NDE system capability and electronic and physical saturation, 5) acquiring and fitting data to a model, and data analysis, and 6) POD estimation. This paper provides an overview of all major POD milestones for the last several decades and discuss rationale for using

  2. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  3. A new method of measuring the thermal flow

    Directory of Open Access Journals (Sweden)

    Grexová Slávka

    2001-03-01

    Full Text Available The subject of this article is the measurement of thermal flow under laboratory conditions. We can define thermal flow as the amount of heat transmitted through the surface of rock over a certain period of time.According to the Atlas of Geothermal Energy the thermal flow ranges from 40 to 120 mW/m2; it is not possible to measure directly on the surface of the rock. The conventional method of measurement is the use of “separation bar” thermic conduction measurement system or to measure the temperature of the rock in two different places at selected underground depth intervals.The method of measurement suggested by us combines these two techniques. The measurement is based on a sample of processed store from the Slovak Academy of Science. This sample represents the rock massiv:The complex model includes:- a heating system to imitate the thermal flow,- an isolation box to maintain stable conditions,- temperature stabilizing components (thermostat, bulbs, electric conductors,- a heat accumulator including a temperature sensor.A special computer program to measure the thermal flow was created using the Borland Delphi 3.0 programming language. The role of the program is to process extensive data quickly. The results of the measured temperatures and modelled thermal flow are displayed graphically in this article. As seen from the graph, the course of measurement thermal flow is linear. In our geographical location this value is cca 120 m W.m-2. This value proves, that at the projection physical model we are approximating to the reality in areas of sensitive elements. Another fact is that Joule heat which rose into a heater system of transformer straps under muster would thermal flow 2,25 W.m-2. From the present results that by follow the sensitivity measurement scanners it is needed to measure a minimum threefold during a longer time or to improve the sensitivity measurement chains.These measurements and analyses are not sufficient to make a final

  4. Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria a.

    2009-01-01

    This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.

  5. 3-D thermal weight function method and multiple virtual crack extension technique for thermal shock problems

    International Nuclear Information System (INIS)

    Lu Yanlin; Zhou Xiao; Qu Jiadi; Dou Yikang; He Yinbiao

    2005-01-01

    An efficient scheme, 3-D thermal weight function (TWF) method, and a novel numerical technique, multiple virtual crack extension (MVCE) technique, were developed for determination of histories of transient stress intensity factor (SIF) distributions along 3-D crack fronts of a body subjected to thermal shock. The TWF is a universal function, which is dependent only on the crack configuration and body geometry. TWF is independent of time during thermal shock, so the whole history of transient SIF distributions along crack fronts can be directly calculated through integration of the products of TWF and transient temperatures and temperature gradients. The repeated determinations of the distributions of stresses (or displacements) fields for individual time instants are thus avoided in the TWF method. An expression of the basic equation for the 3-D universal weight function method for Mode I in an isotropic elastic body is derived. This equation can also be derived from Bueckner-Rice's 3-D WF formulations in the framework of transformation strain. It can be understood from this equation that the so-called thermal WF is in fact coincident with the mechanical WF except for some constants of elasticity. The details and formulations of the MVCE technique are given for elliptical cracks. The MVCE technique possesses several advantages. The specially selected linearly independent VCE modes can directly be used as shape functions for the interpolation of unknown SIFs. As a result, the coefficient matrix of the final system of equations in the MVCE method is a triple-diagonal matrix and the values of the coefficients on the main diagonal are large. The system of equations has good numerical properties. The number of linearly independent VCE modes that can be introduced in a problem is unlimited. Complex situations in which the SIFs vary dramatically along crack fronts can be numerically well simulated by the MVCE technique. An integrated system of programs for solving the

  6. Thermal disadvantage factor calculation by the multiregion collision probability method

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2004-01-01

    A multi-region collision probability formulation that is capable of applying white boundary condition directly is presented and applied to thermal neutron transport problems. The disadvantage factors computed are compared with their counterparts calculated by S N methods with both direct and indirect application of white boundary condition. The results of the ABH and collision probability method with indirect application of white boundary condition are also considered and comparisons with benchmark Monte Carlo results are carried out. The studies show that the proposed formulation is capable of calculating thermal disadvantage factor with sufficient accuracy without resorting to the fictitious scattering outer shell approximation associated with the indirect application of the white boundary condition in collision probability solutions

  7. NDE of Possible Service-Induced PWSCC in Control Rod Drive Mechanism Housings Removed from Service

    International Nuclear Information System (INIS)

    Cumblidge, Stephen E.; Doctor, Steven R.; Schuster, George J.; Harris, Robert V.; Crawford, Susan L.

    2006-01-01

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are being performed to assess the effectiveness of nondestructive examination (NDE) techniques on removed-from-service control rod drive mechanism (CRDM) nozzles and the associated J-groove attachment welds. This work is being performed to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE techniques such as ultrasonic testing (UT), eddy current testing (ET), and visual testing (VT) as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. The basic NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on the J-groove weld and buttering. This paper describes the NDE measurements that were employed on the two CRDMs to detect and characterize the indications and the analysis of these indications. The two CRDM assemblies were removed from service from the North Anna 2 vessel head, including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material. One nozzle contains suspected PWSCC, based on in-service inspection data; the second contains evidence suggesting through-wall leakage, although this was unconfirmed. A destructive test plan is being developed to directly characterize the indications found using nondestructive testing. The results of this destructive testing will be included when the destructive testing is completed.

  8. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  9. Research into Thermal Sprayed Coatings with Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    Justinas Gargasas

    2012-01-01

    Full Text Available Research on thermal sprayed coatings with ultrasonic methods is the main object of this thesis. Metal surface coating was applied to modify its mechanical and physical-chemical properties and resistance to external impact and improve aesthetics. Spraying was carried out by scanning the rotating sample of 30 cm/s speed. Surface microstructure, ultrasonic thickness, porosity, micro hardness and surface modulus tests performed. Conclusions were formulated.Article in Lithuanian

  10. An analytical method for neutron thermalization calculations in heterogenous reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1965-07-01

    It is well known that the use of the diffusion approximation for stuthermalization in . heterogeneous reactors may result in considerable errors. On the other hand, more exact numerical methods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations.

  11. An analytical method for neutron thermalization calculations in heterogenous reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1965-01-01

    It is well known that the use of the diffusion approximation for studying neutron thermalization in heterogeneous reactors may result in considerable errors. On the other hand, more exact numerical methods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations

  12. Methods of evaluation of thermal tolerance of cyclic sports athletes

    Directory of Open Access Journals (Sweden)

    Kish А.А.

    2017-12-01

    Full Text Available The purpose of the study is investigation of thermal stability in athletes of cyclic sports and assessment of its influence on physical working capacity under hyperthermia. Material and methods. 15 male athletes of cyclic sports who had the senior degree as minimum were included in the study Middle age 24,2±1,1 years. Work was performed in the climatic camera of the Center of sports medicine and rehabilitation in several stages, on each of which assessment of physical working capacity and a thermal condition of athletes was carried out. Results. In the real work the burdening action of the heating climate on indicators of physical working capacity and a thermal condition of athletes of cyclic sports is shown; the operating ranges of high temperatures are determined. Conclusion. The data obtained by means of the offered technique, confirm importance of definition of individual thresholds of shipping of a thermal state at athletes and the burdening action of a heat on their physical working capacity.

  13. Simplified methods to assess thermal fatigue due to turbulent mixing

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Timperi, A.

    2011-01-01

    Thermal fatigue is a safety relevant damage mechanism in pipework of nuclear power plants. A well-known simplified method for the assessment of thermal fatigue due to turbulent mixing is the so-called sinusoidal method. Temperature fluctuations in the fluid are described by a sinusoidally varying signal at the inner wall of the pipe. Because of limited information on the thermal loading conditions, this approach generally leads to overconservative results. In this paper, a new assessment method is presented, which has the potential of reducing the overconservatism of existing procedures. Artificial fluid temperature signals are generated by superposition of harmonic components with different amplitudes and frequencies. The amplitude-frequency spectrum of the components is modelled by a formula obtained from turbulence theory, whereas the phase differences are assumed to be randomly distributed. Lifetime predictions generated with the new simplified method are compared with lifetime predictions based on real fluid temperature signals, measured in an experimental setup of a mixing tee. Also, preliminary steady-state Computational Fluid Dynamics (CFD) calculations of the total power of the fluctuations are presented. The total power is needed as an input parameter for the spectrum formula in a real-life application. Solution of the transport equation for the total power was included in a CFD code and comparisons with experiments were made. The newly developed simplified method for generating the temperature signal is shown to be adequate for the investigated geometry and flow conditions, and demonstrates possibilities of reducing the conservatism of the sinusoidal method. CFD calculations of the total power show promising results, but further work is needed to develop the approach. (author)

  14. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods

    Science.gov (United States)

    Sohrabi, Salman; Liu, Yaling

    2018-03-01

    Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the

  15. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods.

    Science.gov (United States)

    Sohrabi, Salman; Liu, Yaling

    2018-03-01

    Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the

  16. Analysis of thermal systems using the entropy balance method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C L.D.; Fartaj, S A; Fenton, D L [Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering

    1992-04-01

    This study investigates the applicability of the second law of thermodynamics using an entropy balance method to analyse and design thermal systems. As examples, the entropy balance method is used to analyse a single stage chiller system and a single stage heat transformer, both with lithium-bromide/water as the working fluid. The entropy method yields not only the same information as is conveyed by the methods of energy and exergy analysis, but it also predicts clearly the influence of irreversibilities of individual components on the coefficient of performance and its effectiveness, based on the process properties, rather than on ambient conditions. Furthermore, this method is capable of presenting the overall distribution of the heat input by displaying the additional heat required to overcome irreversibility of each component without ambiguity. (Author).

  17. Theoretical Modelling Methods for Thermal Management of Batteries

    Directory of Open Access Journals (Sweden)

    Bahman Shabani

    2015-09-01

    Full Text Available The main challenge associated with renewable energy generation is the intermittency of the renewable source of power. Because of this, back-up generation sources fuelled by fossil fuels are required. In stationary applications whether it is a back-up diesel generator or connection to the grid, these systems are yet to be truly emissions-free. One solution to the problem is the utilisation of electrochemical energy storage systems (ESS to store the excess renewable energy and then reusing this energy when the renewable energy source is insufficient to meet the demand. The performance of an ESS amongst other things is affected by the design, materials used and the operating temperature of the system. The operating temperature is critical since operating an ESS at low ambient temperatures affects its capacity and charge acceptance while operating the ESS at high ambient temperatures affects its lifetime and suggests safety risks. Safety risks are magnified in renewable energy storage applications given the scale of the ESS required to meet the energy demand. This necessity has propelled significant effort to model the thermal behaviour of ESS. Understanding and modelling the thermal behaviour of these systems is a crucial consideration before designing an efficient thermal management system that would operate safely and extend the lifetime of the ESS. This is vital in order to eliminate intermittency and add value to renewable sources of power. This paper concentrates on reviewing theoretical approaches used to simulate the operating temperatures of ESS and the subsequent endeavours of modelling thermal management systems for these systems. The intent of this review is to present some of the different methods of modelling the thermal behaviour of ESS highlighting the advantages and disadvantages of each approach.

  18. Innovation of fission gas release and thermal conductivity measurement methods

    International Nuclear Information System (INIS)

    Van der Meer, K.; Soboler, V.

    1998-01-01

    This presentation described two innovative measurement methods being currently developed at SCK-CEN in order to support the modeling of fuel performance. The first one is an acoustic method to measure the fission gas release in a fuel rod in a non destructive way. The total rod pressure is determined by generating a heat pulse causing a pressure wave that propagates through the gas to an ultrasound transducer. The final pulse width being proportional to the pressure, the latter can thus be determined. The measurement of the acoustic resonance frequency at fixed temperatures enables the distinction between different gas components. The second method is a non-stationary technique to investigate the thermal properties of the fuel rod, like thermal conductivity, diffusivity and heat capacity. These properties are derived from the amplitude and the phase shift of the fuel centre temperature response induced by a periodic temperature variation. These methods did not reveal any physical limitations for the practical applicability. Furthermore, they are rather simple. Preliminary investigations have proven both methods to be more accurate than techniques usually utilized. (author)

  19. Separation of Kr-Xe system by thermal diffusion method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Numata, Kazuyoshi; Matsuda, Yuji; Ouchi, Misao; Naruse, Yuji

    1979-11-01

    Separation experiments of Kr-Xe system were carried out to study the possibility of adapting thermal diffusion method for concentration of krypton in a fuel reprocessing off-gas treatment process. The results are as follows. (1) A batchwise thermal diffusion column of hot tube diameter 21 mm, cold tube diameter 32 mm, effective hight 1000 mm and volume -- 500 CC is the best in separation characteristics and in ease of operation under the different conditions. (2) The overall separation factor increases with increase of the operating temperature in the column with and without reservoir. (3) The optimum operating pressure (about 400 Torr) is independent of the operating conditions such as temperature, reservoir volume and feed gas content. (4) A preliminary design of the Kr-Xe separating plant for a reprocessing plant (1500 ton-U/yr) shows the required number of columns and the total electric power. (author)

  20. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  1. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  2. Simple thermal to thermal face verification method based on local texture descriptors

    Science.gov (United States)

    Grudzien, A.; Palka, Norbert; Kowalski, M.

    2017-08-01

    Biometrics is a science that studies and analyzes physical structure of a human body and behaviour of people. Biometrics found many applications ranging from border control systems, forensics systems for criminal investigations to systems for access control. Unique identifiers, also referred to as modalities are used to distinguish individuals. One of the most common and natural human identifiers is a face. As a result of decades of investigations, face recognition achieved high level of maturity, however recognition in visible spectrum is still challenging due to illumination aspects or new ways of spoofing. One of the alternatives is recognition of face in different parts of light spectrum, e.g. in infrared spectrum. Thermal infrared offer new possibilities for human recognition due to its specific properties as well as mature equipment. In this paper we present the scheme of subject's verification methodology by using facial images in thermal range. The study is focused on the local feature extraction methods and on the similarity metrics. We present comparison of two local texture-based descriptors for thermal 1-to-1 face recognition.

  3. SO2 oxidation catalyst model systems characterized by thermal methods

    DEFF Research Database (Denmark)

    Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M

    2002-01-01

    The molten salts M2S2O7 and MHSO4, the binary molten salt Systems M2S2O7-MHSO4 and the molten salt-gas systems M2S2O7 V2O5 and M2S2O7-M2SO4 V2O5 (M = Na, K, Rb, Cs) in O-2, SO2 and At atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....

  4. Thermal oil recovery method using self-contained windelectric sets

    Science.gov (United States)

    Belsky, A. A.; Korolyov, I. A.

    2018-05-01

    The paper reviews challenges associated with questions of efficiency of thermal methods of impact on productive oil strata. The concept of using electrothermal complexes with WEG power supply for the indicated purposes was proposed and justified, their operating principles, main advantages and disadvantages, as well as a schematechnical solution for the implementation of the intensification of oil extraction, were considered. A mathematical model for finding the operating characteristics of WEG is presented and its main energy parameters are determined. The adequacy of the mathematical model is confirmed by laboratory simulation stand tests with nominal parameters.

  5. Influence of Thermal Preparation Method on Mineral Composition of Mussels

    Directory of Open Access Journals (Sweden)

    Gheorghe Valentin GORAN

    2018-02-01

    Full Text Available This study focuses on evaluation of the effects of 3 different thermal preparation methods (boiling, roasting, microwaving on mineral concentrations of mussels from Bucharest market. The mineral content in raw and cooked mussel samples was evaluated by ICP-OES and relative humidity of raw and cooked mussels by thermogravimetry. Se level in microwaved samples was significantly decreased compared to raw and the other 2 cooked mussel samples. Zn concentration in raw samples was not significantly different compared to those in roasted samples. Fe level was insignificantly different between boiled and roasted samples and significantly lowers in microwaved samples. Ni, Pb, and Se levels were significantly higher in boiled samples, and Cd levels were insignificantly different reported to cooking method. The percentage of water loss during roasting was lower than the other 2 thermal preparation methods. Potassium concentrations in cooked mussels were higher compared to raw ones. Mineral concentrations were highest in roasted samples and heavy metal concentrations in boiled mussels.

  6. Nonequilibrium Green's function method for quantum thermal transport

    Science.gov (United States)

    Wang, Jian-Sheng; Agarwalla, Bijay Kumar; Li, Huanan; Thingna, Juzar

    2014-12-01

    This review deals with the nonequilibrium Green's function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.

  7. Influence of Thermal Preparation Method on Mineral Composition of Shrimps

    Directory of Open Access Journals (Sweden)

    Gheorghe Valentin GORAN

    2017-11-01

    Full Text Available This study goal was to evaluate the effects of 3 different cooking methods (boiling, roasting, and microwaving on mineral concentrations of shrimps from the Bucharest market. Mineral content in shrimp samples was evaluated by ICP-OES, and relative humidity was assessed by thermogravimetry. Cooking method insignificantly influenced the level of Fe. Ca and K levels were higher in cooked samples compared to raw shrimps, independent of cooking method. Essential (Cu, Se, and Zn, and non-essential and toxic (Al, Cd, Ni, and Pb elements levels were significantly increased in boiled shrimps, compared to raw and the other 2 types of cooked samples. Generally, after cooking the lowest values of essential trace elements concentration was registered in roasted samples. The highest percentage of water loss was found in boiled samples. In general, thermal preparation increased mineral concentrations in cooked samples compared to raw shrimps.

  8. Parallelization methods study of thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Gaudart, Catherine

    2000-01-01

    The variety of parallelization methods and machines leads to a wide selection for programmers. In this study we suggest, in an industrial context, some solutions from the experience acquired through different parallelization methods. The study is about several scientific codes which simulate a large variety of thermal-hydraulics phenomena. A bibliography on parallelization methods and a first analysis of the codes showed the difficulty of our process on the whole applications to study. Therefore, it would be necessary to identify and extract a representative part of these applications and parallelization methods. The linear solver part of the codes forced itself. On this particular part several parallelization methods had been used. From these developments one could estimate the necessary work for a non initiate programmer to parallelize his application, and the impact of the development constraints. The different methods of parallelization tested are the numerical library PETSc, the parallelizer PAF, the language HPF, the formalism PEI and the communications library MPI and PYM. In order to test several methods on different applications and to follow the constraint of minimization of the modifications in codes, a tool called SPS (Server of Parallel Solvers) had be developed. We propose to describe the different constraints about the optimization of codes in an industrial context, to present the solutions given by the tool SPS, to show the development of the linear solver part with the tested parallelization methods and lastly to compare the results against the imposed criteria. (author) [fr

  9. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  10. Cutaneous blood flow. A comparative study between the thermal recovery method and the radioxenon clearance method

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, C M; Ferreira, J M; Fernandes, F V

    1975-01-01

    Since 1968 a thermal recovery method to study the cutaneous circulation has been utilized in the detection of skin circulation changes caused by certain pharmacological agents or by some pathological conditions. This method is based in the determination of the thermal recuperation of a small area of the skin previously cooled. In this work, we want to present the results of a comparative analysis between the thermal recovery method and the clearance of the radioactive xenon injected intracutaneously. The study was performed in the distal extremity of the lower limbs in 16 normal subjects, 16 hyperthyroid patients with increased cutaneous temperature and 11 patients with presumably low cutaneous blood flow (3 patients with hypothyroidism and 8 with obstructive arteriosclerosis).

  11. Analysis of Heat Transfer in Power Split Device for Hybrid Electric Vehicle Using Thermal Network Method

    Directory of Open Access Journals (Sweden)

    Jixin Wang

    2014-06-01

    Full Text Available This paper presents a rational prediction of temperature field on the differential hybrid system (DHS based on the thermal network method (TNM. The whole thermal network model is built by considering both the contact thermal resistance between gasket and planet gear and the temperature effect on the physical property parameters of lubricant. The contact thermal resistance is obtained by using the concept of contact branch thermal resistance and G-W elastic model. By building an elaborate thermal network model and computing models for power losses and thermal resistances between components, the whole temperature field of DHS under typical operating condition is predicted. Results show that thermal network method can be effectively used to predict the temperature distribution and the rule of temperature variation, the surface roughness significantly affects contact thermal conduction, and the decrease in the thermal resistance of the natural convection between air and DHS housing can effectively improve the thermal environment of DHS.

  12. Methods and tools to detect thermal noise in fast reactors

    International Nuclear Information System (INIS)

    Motta, M.; Giovannini, R.

    1985-07-01

    The Specialists' Meeting on ''Methods and Tools to Detect Thermal Noise in Fast Reactors'' was held in Bologna on 8-10 October 1984. The meeting was hosted by the ENEA and was sponsored by the IAEA on the recommendation of the International Working Group on Fast Reactors. 17 participants attended the meeting from France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, Joint Research Centre of CEC and from IAEA. The meeting was presided over by Prof. Mario Motta of Italy. The purpose of the meeting was to review and discuss methods and tools for temperature noise detection and related analysis as a potential means for detecting local blockages in fuel and blanket subassemblies and other faults in LMFBR. The meeting was divided into four technical sessions as follows: 1. National review presentations on application purposes and research activities for thermal noise detection. (5 papers); 2. Detection instruments and electronic equipment for temperature measurements in fast reactors. (5 papers); 3. Physical models. (2 papers); 4. Signal processing techniques. (3 papers). A separate abstract was prepared for each of these papers

  13. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  14. Thermal Efficiency Degradation Diagnosis Method Using Regression Model

    International Nuclear Information System (INIS)

    Jee, Chang Hyun; Heo, Gyun Young; Jang, Seok Won; Lee, In Cheol

    2011-01-01

    This paper proposes an idea for thermal efficiency degradation diagnosis in turbine cycles, which is based on turbine cycle simulation under abnormal conditions and a linear regression model. The correlation between the inputs for representing degradation conditions (normally unmeasured but intrinsic states) and the simulation outputs (normally measured but superficial states) was analyzed with the linear regression model. The regression models can inversely response an associated intrinsic state for a superficial state observed from a power plant. The diagnosis method proposed herein is classified into three processes, 1) simulations for degradation conditions to get measured states (referred as what-if method), 2) development of the linear model correlating intrinsic and superficial states, and 3) determination of an intrinsic state using the superficial states of current plant and the linear regression model (referred as inverse what-if method). The what-if method is to generate the outputs for the inputs including various root causes and/or boundary conditions whereas the inverse what-if method is the process of calculating the inverse matrix with the given superficial states, that is, component degradation modes. The method suggested in this paper was validated using the turbine cycle model for an operating power plant

  15. Computing thermal Wigner densities with the phase integration method

    International Nuclear Information System (INIS)

    Beutier, J.; Borgis, D.; Vuilleumier, R.; Bonella, S.

    2014-01-01

    We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems

  16. Computing thermal Wigner densities with the phase integration method.

    Science.gov (United States)

    Beutier, J; Borgis, D; Vuilleumier, R; Bonella, S

    2014-08-28

    We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.

  17. An efficient method for facial component detection in thermal images

    Science.gov (United States)

    Paul, Michael; Blanik, Nikolai; Blazek, Vladimir; Leonhardt, Steffen

    2015-04-01

    A method to detect certain regions in thermal images of human faces is presented. In this approach, the following steps are necessary to locate the periorbital and the nose regions: First, the face is segmented from the background by thresholding and morphological filtering. Subsequently, a search region within the face, around its center of mass, is evaluated. Automatically computed temperature thresholds are used per subject and image or image sequence to generate binary images, in which the periorbital regions are located by integral projections. Then, the located positions are used to approximate the nose position. It is possible to track features in the located regions. Therefore, these regions are interesting for different applications like human-machine interaction, biometrics and biomedical imaging. The method is easy to implement and does not rely on any training images or templates. Furthermore, the approach saves processing resources due to simple computations and restricted search regions.

  18. Thermally stimulated current method applied to highly irradiated silicon diodes

    CERN Document Server

    Pintilie, I; Pintilie, I; Moll, Michael; Fretwurst, E; Lindström, G

    2002-01-01

    We propose an improved method for the analysis of Thermally Stimulated Currents (TSC) measured on highly irradiated silicon diodes. The proposed TSC formula for the evaluation of a set of TSC spectra obtained with different reverse biases leads not only to the concentration of electron and hole traps visible in the spectra but also gives an estimation for the concentration of defects which not give rise to a peak in the 30-220 K TSC temperature range (very shallow or very deep levels). The method is applied to a diode irradiated with a neutron fluence of phi sub n =1.82x10 sup 1 sup 3 n/cm sup 2.

  19. Deposit and scale prevention methods in thermal sea water desalination

    International Nuclear Information System (INIS)

    Froehner, K.R.

    1977-01-01

    Introductory remarks deal with the 'fouling factor' and its influence on the overall heat transfer coefficient of msf evaporators. The composition of the matter dissolved in sea water and the thermal and chemical properties lead to formation of alkaline scale or even hard, sulphate scale on the heat exchanger tube walls and can hamper plant operation and economics seriously. Among the scale prevention methods are 1) pH control by acid dosing (decarbonation), 2) 'threshold treatment' by dosing of inhibitors of different kind, 3) mechanical cleaning by sponge rubber balls guided through the heat exchanger tubes, in general combined with methods no. 1 or 2, and 4) application of a scale crystals germ slurry (seeding). Mention is made of several other scale prevention proposals. The problems encountered with marine life (suspension, deposit, growth) in desalination plants are touched. (orig.) [de

  20. A residual Monte Carlo method for discrete thermal radiative diffusion

    International Nuclear Information System (INIS)

    Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.

    2003-01-01

    Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems

  1. Thermal Modeling Method Improvements for SAGE III on ISS

    Science.gov (United States)

    Liles, Kaitlin; Amundsen, Ruth; Davis, Warren; McLeod, Shawn

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be delivered to the International Space Station (ISS) via the SpaceX Dragon vehicle. A detailed thermal model of the SAGE III payload, which consists of multiple subsystems, has been developed in Thermal Desktop (TD). Many innovative analysis methods have been used in developing this model; these will be described in the paper. This paper builds on a paper presented at TFAWS 2013, which described some of the initial developments of efficient methods for SAGE III. The current paper describes additional improvements that have been made since that time. To expedite the correlation of the model to thermal vacuum (TVAC) testing, the chambers and GSE for both TVAC chambers at Langley used to test the payload were incorporated within the thermal model. This allowed the runs of TVAC predictions and correlations to be run within the flight model, thus eliminating the need for separate models for TVAC. In one TVAC test, radiant lamps were used which necessitated shooting rays from the lamps, and running in both solar and IR wavebands. A new Dragon model was incorporated which entailed a change in orientation; that change was made using an assembly, so that any potential additional new Dragon orbits could be added in the future without modification of the model. The Earth orbit parameters such as albedo and Earth infrared flux were incorporated as time-varying values that change over the course of the orbit; despite being required in one of the ISS documents, this had not been done before by any previous payload. All parameters such as initial temperature, heater voltage, and location of the payload are defined based on the case definition. For one component, testing was performed in both air and vacuum; incorporating the air convection in a submodel that was

  2. Validation and further development of a novel thermal analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, E.H.; Shuttleworth, A.G.; Rousseau, P.G. [Pretoria Univ. (South Africa). Dept. of Mechanical Engineering

    1994-12-31

    The design of thermal and energy efficient buildings requires inter alia the investigation of the passive performance, natural ventilation, mechanical ventilation as well as structural and evaporative cooling of the building. Only when these fail to achieve the desired thermal comfort should mechanical cooling systems be considered. Few computer programs have the ability to investigate all these comfort regulating methods at the design stage. The QUICK design program can simulate these options with the exception of mechanical cooling. In this paper, Quick`s applicability is extended to include the analysis of basic air-conditioning systems. Since the design of these systems is based on indoor loads, it was necessary to validate QUICK`s load predictions before extending it. This article addresses validation in general and proposes a procedure to establish the efficiency of a program`s load predictions. This proposed procedure is used to compare load predictions by the ASHRAE, CIBSE, CARRIER, CHEETAH, BSIMAC and QUICK methods for 46 case studies involving 36 buildings in various climatic conditions. Although significant differences in the results of the various methods were observed, it is concluded that QUICK can be used with the same confidence as the other methods. It was further shown that load prediction programs usually under-estimate the effect of building mass and therefore over-estimate the peak loads. The details for the 46 case studies are available to other researchers for further verification purposes. With the confidence gained in its load predictions, QUICK was extended to include air-conditioning system analysis. The program was then applied to different case studies. It is shown that system size and energy usage can be reduced by more than 60% by using a combination of passive and mechanical cooling systems as well as different control strategies. (author)

  3. Study of thermal-hydraulic analyses with CIP method

    International Nuclear Information System (INIS)

    Doi, Yoshihiro

    1996-09-01

    New type of numerical scheme CIP has been proposed for solving hyperbolic type equations and the CIP is focused on as a less numerical diffusive scheme. C-CUP method with the CIP scheme is adopted to numerical simulations that treat compressible and incompressible fluids, phase change phenomena and Mixture fluids. To evaluate applicabilities of the CIP scheme and C-CUP method for thermal hydraulic analyses related to Fast Breeder Reactors (FBRs), the scheme and the method were reviewed. Feature of the CIP scheme and procedure of the C-CUP method were presented. The CIP scheme is used to solve linear hyperbolic type equations for advection term in basic equations of fluids. Key issues of the scheme is that profile between grid points is described to solve the equation by cubic polynomial and spatial derivatives of the polynomial. The scheme can capture steep change of solution and suppress numerical error. In the C-CUP method, the basic equations of fluids are divided into advection terms and the other terms. The advection terms is solved with CIP scheme and the other terms is solved with difference method. The C-CUP method is robust for numerical instability, but mass of fluid will be in unfair preservation with nonconservative equations for fluids. Numerical analyses with the CIP scheme and the C-CUP method has been performed for phase change, mixture and moving object. These analyses are depend on characteristics of that the scheme and the method are robust for steep change of density and useful for interface tracking. (author)

  4. NDE Techniques Used in PARENT Open Round Robin Testing

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-05

    This is a draft technical letter report for NRC client describing the NDE techniques used in the open testing portion of the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT).

  5. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    Science.gov (United States)

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  6. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cuta, Judith M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doctor, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  7. Gas Control and Thermal Modeling Methods for Pressed Pellet and Fast Rise Thin-Film Thermal Batteries

    Science.gov (United States)

    2015-09-01

    high operating battery case temperatures. Acceptable hermetic seals for thermal batteries ordinarily use laser welding , tungsten inert gas ( TIG ...20 Fig. 16 Sierra TABS Internal Plotter – Final pre- processing step for Low Cost Competent Munition (LCCM) thermal battery (battery shown drawn to...of experimental and DOE statistical methods. Such studies could be used to identify 2 electrochemical and thermodynamic processes that occur

  8. Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method

    Science.gov (United States)

    Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...

  9. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    Directory of Open Access Journals (Sweden)

    Insun Jo

    2015-05-01

    Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  10. Method for limiting movement of a thermal shield for a nuclear reactor, and thermal shield displacement limiter therefor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Boyd, C.H.

    1989-01-01

    This patent describes a method of limiting the movement of a thermal shield of a nuclear reactor. It comprises: machining at least four (4) pockets in upper portions of a thermal shield circumferentially about a core barrel of a nuclear reactor to receive key-wave inserts; tapping bolt holes in the pockets of the thermal shield to receive bolts; positioning key-wave inserts into the pockets of the thermal shield to be bolted in place with the bolt holes; machining dowel holes at least partially through the positioned key-way inserts and the thermal shield to receive dowel pins; positioning dowel pins in the dowel holes in the key-way insert and thermal shield to tangentially restrain movement of the thermal shield relative to the core barrel; sliding limiter keys into the key-way inserts and bolting the limiter keys to the core barrel to tangentially restrain movement of the thermal shield relative and the core barrel while allowing radial and axial movement of the thermal shield relative to the core barrel; machining dowel holes through the limiter key and at least partially through the core barrel to receive dowel pins; positioning dowel pins in the dowel holes in the limiter key and core barrel to restrain tangential movement of the thermal shield relative to the core barrel of the nuclear reactor

  11. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    International Nuclear Information System (INIS)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.

    2013-01-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10 −3 cm 2 /s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s 0.5 /cm 2 K and volume heat capacity (5.2 ± 0.7) J/cm 3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  12. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Science.gov (United States)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  13. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Energy Technology Data Exchange (ETDEWEB)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  14. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  15. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 1

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  16. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 3

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Non destructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  17. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 2

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  18. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 4

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  19. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT V. 5

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.J.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  20. In situ thermal properties characterization using frequential methods

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, O.; Defer, D.; Antczak, E.; Chauchois, A.; Duthoit, B. [Laboratoire dArtois de Mecanique Thermique Instrumentation (LAMTI), FSA Universite dArtois, Technoparc Futura, 62400 Bethune (France)

    2008-07-01

    In numerous fields, especially that of geothermal energy, we need to know about the thermal behaviour of the soil now that the monitoring of renewable forms of energy is an ecological, economic and scientific issue. Thus heat from the soil is widely used for air-conditioning systems in buildings both in Canada and in the Scandinavian countries, and it is spreading. The effectiveness of this technique is based on the soils calorific potential and its thermophysical properties which will define the quality of the exchanges between the soil and a heat transfer fluid. This article puts forward a method to be used for the in situ thermophysical characterisation of a soil. It is based upon measuring the heat exchanges on the surface of the soil and on measuring a temperature a few centimetres below the surface. The system is light, inexpensive, well-suited to the taking of measurements in situ without the sensors used introducing any disturbance into the heat exchanges. Whereas the majority of methods require excitation, the one presented here is passive and exploits natural signals. Based upon a few hours of recording, the natural signals allow us to identify the soils thermophysical properties continuously. The identification is based upon frequency methods the quality of which can be seen when the thermophysical properties are injected into a model with finite elements by means of a comparison of the temperatures modelled and those actually measured on site. (author)

  1. Studies on compatibility of energetic materials by thermal methods

    Directory of Open Access Journals (Sweden)

    Maria Alice Carvalho Mazzeu

    2010-04-01

    Full Text Available The chemical compatibility of explosives, pyrotechnics and propellants with those materials is studied to evaluate potential hazards when in contact with other materials during production, storage and handling. Compatibility can be studied by several thermal methods as DSC (differential scanning calorimetry, TG (Thermogravimetry, VST (Vacuum stability test and others. The test methods and well defined criteria are the most important elements when a compatibility study is being accomplished. In this paper, the compatibility of two very important high explosives used in ammunition, RDX (Cyclo-1,3,5-trimethylene-2,4,6-trinitramine and HMX (Cyclotetramethylene tetranitramine was studied with the materials: fluoroelastomer (Viton and powdered aluminum (Al, using DSC and VST methods. The criteria to judge the compatibility between materials is based on a standardization agreement (STANAG 4147, 2001, and the final conclusion is that explosives and this materials are compatible, but in DSC it was observed that the peak of decomposition temperature of the admixture of RDX with Al decreased in 3º C and another peak appeared after the decomposition peak.

  2. Adsorption desalination: An emerging low-cost thermal desalination method

    KAUST Repository

    Ng, K. C.

    2013-01-01

    Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy intensive. In many instances, they consumed electricity, chemicals for pre- and post-treatment of water. For each kWh of energy consumed, there is an unavoidable emission of Carbon Dioxide (CO2) at the power stations as well as the discharge of chemically-laden brine into the environment. Thus, there is a motivation to find new direction or methods of desalination that consumed less chemicals, thermal energy and electricity.This paper describes an emerging and yet low cost method of desalination that employs only low-temperature waste heat, which is available in abundance from either the renewable energy sources or exhaust of industrial processes. With only one heat input, the Adsorption Desalination (AD) cycle produces two useful effects, i.e., high grade potable water and cooling. In this article, a brief literature review, the theoretical framework for adsorption thermodynamics, a lumped-parameter model and the experimental tests for a wide range of operational conditions on the basic and the hybrid AD cycles are discussed. Predictions from the model are validated with measured performances from two pilot plants, i.e., a basic AD and the advanced AD cycles. The energetic efficiency of AD cycles has been compared against the conventional desalination methods. Owing to the unique features of AD cycle, i.e., the simultaneous production of dual useful effects, it is proposed that the life cycle cost (LCC) of AD is evaluated against the LCC of combined machines that are needed to deliver the same quantities of useful effects using a unified unit of $/MWh. In closing, an ideal desalination system with zero emission of CO2 is presented where geo-thermal heat is employed for powering a temperature-cascaded cogeneration plant.

  3. Comments on Thermal Physical Properties Testing Methods of Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Jingchao Xie

    2013-01-01

    Full Text Available There is no standard testing method of the thermal physical properties of phase change materials (PCM. This paper has shown advancements in this field. Developments and achievements in thermal physical properties testing methods of PCM were commented, including differential scanning calorimetry, T-history measurement, the water bath method, and differential thermal analysis. Testing principles, advantages and disadvantages, and important points for attention of each method were discussed. A foundation for standardized testing methods for PCM was made.

  4. Development of a Novel Scanning Thermal Microscopy (SThM) Method to Measure the Thermal Conductivity of Biological Cells.

    Science.gov (United States)

    Nakanishi, Kouichi; Kogure, Akinori; Kuwana, Ritsuko; Takamatsu, Hiromu; Ito, Kiyoshi

    2017-01-01

     Differences in the physical properties of individual cells cannot be evaluated with conventional experimental methods that are used to study groups of cells obtained from pure cultures. To examine the differences in the thermal tolerance of individual cells that are genetically identical, a method is needed to measure the thermal energy required to kill single cells. We developed a scanning thermal microscopy (SThM) system and measured the thermal conductivity of various bacterial cells, for example, spore formeing Bacillus genus and non spore-forming bacteria such as Escherichia coli. The thermal conductivity of vegetative cells (0.61 to 0.75 W/m・K) was found to be higher than that of spores (0.29 to 0.45 W/m・K). Furthermore the newly developed method enables us to estimate the thermal energy needed to kill individual cells or spores. We believe that this method can estimate the thermal energy required to achieve the cell for sterilization by heating.

  5. Early detection of critical material degradation by means of electromagnetic multi-parametric NDE

    Science.gov (United States)

    Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Seiler, Georg; Altpeter, Iris; Dobmann, Gerd; Herrmann, Hans-Georg; Boller, Christian

    2014-02-01

    With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

  6. Early detection of critical material degradation by means of electromagnetic multi-parametric NDE

    Energy Technology Data Exchange (ETDEWEB)

    Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Altpeter, Iris; Dobmann, Gerd [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Seiler, Georg; Herrmann, Hans-Georg; Boller, Christian [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany and Saarland University, Chair of NDT and Quality Assurance, Campus E3 1, 66123 Saarbrücken (Germany)

    2014-02-18

    With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

  7. Early detection of critical material degradation by means of electromagnetic multi-parametric NDE

    International Nuclear Information System (INIS)

    Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Altpeter, Iris; Dobmann, Gerd; Seiler, Georg; Herrmann, Hans-Georg; Boller, Christian

    2014-01-01

    With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains

  8. Determination of the Local Thermal Conductivity of Functionally Graded Materials by a Laser Flash Method

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....

  9. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  10. Thermal dynamics of thermoelectric phenomena from frequency resolved methods

    Directory of Open Access Journals (Sweden)

    J. García-Cañadas

    2016-03-01

    Full Text Available Understanding the dynamics of thermoelectric (TE phenomena is important for the detailed knowledge of the operation of TE materials and devices. By analyzing the impedance response of both a single TE element and a TE device under suspended conditions, we provide new insights into the thermal dynamics of these systems. The analysis is performed employing parameters such as the thermal penetration depth, the characteristic thermal diffusion frequency and the thermal diffusion time. It is shown that in both systems the dynamics of the thermoelectric response is governed by how the Peltier heat production/absorption at the junctions evolves. In a single thermoelement, at high frequencies the thermal waves diffuse semi-infinitely from the junctions towards the half-length. When the frequency is reduced, the thermal waves can penetrate further and eventually reach the half-length where they start to cancel each other and further penetration is blocked. In the case of a TE module, semi-infinite thermal diffusion along the thickness of the ceramic layers occurs at the highest frequencies. As the frequency is decreased, heat storage in the ceramics becomes dominant and starts to compete with the diffusion of the thermal waves towards the half-length of the thermoelements. Finally, the cancellation of the waves occurs at the lowest frequencies. It is demonstrated that the analysis is able to identify and separate the different physical processes and to provide a detailed understanding of the dynamics of different thermoelectric effects.

  11. Thermal analysis methods in the characterization of photocatalytic titania precursors

    Czech Academy of Sciences Publication Activity Database

    Pulišová, Petra; Večerníková, Eva; Maříková, Monika; Balek, V.; Boháček, Jaroslav; Šubrt, Jan

    2012-01-01

    Roč. 108, č. 2 (2012), s. 489-492 ISSN 1388-6150 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : differential thermal analysis * thermogravimetry * emanation thermal analysis * titanium dioxide * photocatalyst Subject RIV: CA - Inorganic Chemistry Impact factor: 1.982, year: 2012

  12. Study on application of green's function method in thermal stress rapid calculation

    International Nuclear Information System (INIS)

    Zhang Guihe; Duan Yuangang; Xu Xiao; Chen Rong

    2013-01-01

    This paper presents a quick and accuracy thermal stress calculation method, the Green's Function Method, which is a combination of finite element method and numerical algorithm method. Thermal stress calculation of Safe Injection Nozzle of Reactor Coolant Line of PWR plant is performed with Green's function method for heatup and cooldown thermal transients as a demonstration example, and the result is compared with finite element method to verify the rationality and accuracy of this method. The advantage and disadvantage of the Green's function method and the finite element method are also compared. (authors)

  13. Thermally-enhanced oil recovery method and apparatus

    Science.gov (United States)

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  14. Synthesis of magnetite nanoparticles obtained by the thermal decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Renilma de Sousa Pinheiro; Sinfronio, Francisco Savio Mendes; Menezes, Alan Silva de; Sharma, Surender Kumar; Silva, Fernando Carvalho, E-mail: renilma.ufma@gmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil); Moscoso-Londono, Oscar; Muraca, Diego; Knobel, Marcelo [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: Magnetite nanoparticles have found numerous applications in biomedicine such as magnetic separation, drug delivery, magnetic resonance imaging (MRI) and hyperthermia agents [1]. These features are related to their superparamagnetic behavior, low toxicity and high functionalization [2]. Thus, this work aims to obtain oleylamine-coated magnetite nanoparticles by means of thermal decomposition method at different temperatures and reaction time. All samples were characterized by FTIR, XRD and SQUID magnetometer. The infrared spectra showed two vibrational modes at 2920 and 2850 cm{sup -1}, assigned to the asymmetrical and symmetrical stretching of C-H groups of the oleic acid and oleylamine, respectively. The XRD pattern of the samples confirmed the formation of magnetite phase (ICSD 36314) at all temperatures. The average size of the crystallites was determined by Debye-Scherrer equation with values in the range of 1.1-1.5 nm. Field-cooled and zero field-cooled analysis demonstrate that the blocking temperature (T{sub B}) is below room temperature in all cases, indicating that all magnetite nanoparticles are superparamagnetic at room temperature and ferrimagnetic at low temperature. (author)

  15. Synthesis of magnetite nanoparticles obtained by the thermal decomposition method

    International Nuclear Information System (INIS)

    Fonseca, Renilma de Sousa Pinheiro; Sinfronio, Francisco Savio Mendes; Menezes, Alan Silva de; Sharma, Surender Kumar; Silva, Fernando Carvalho; Moscoso-Londono, Oscar; Muraca, Diego; Knobel, Marcelo

    2016-01-01

    Full text: Magnetite nanoparticles have found numerous applications in biomedicine such as magnetic separation, drug delivery, magnetic resonance imaging (MRI) and hyperthermia agents [1]. These features are related to their superparamagnetic behavior, low toxicity and high functionalization [2]. Thus, this work aims to obtain oleylamine-coated magnetite nanoparticles by means of thermal decomposition method at different temperatures and reaction time. All samples were characterized by FTIR, XRD and SQUID magnetometer. The infrared spectra showed two vibrational modes at 2920 and 2850 cm -1 , assigned to the asymmetrical and symmetrical stretching of C-H groups of the oleic acid and oleylamine, respectively. The XRD pattern of the samples confirmed the formation of magnetite phase (ICSD 36314) at all temperatures. The average size of the crystallites was determined by Debye-Scherrer equation with values in the range of 1.1-1.5 nm. Field-cooled and zero field-cooled analysis demonstrate that the blocking temperature (T B ) is below room temperature in all cases, indicating that all magnetite nanoparticles are superparamagnetic at room temperature and ferrimagnetic at low temperature. (author)

  16. Qualification of NDE personnel in the nuclear industry

    International Nuclear Information System (INIS)

    Epps, T.N.

    1984-01-01

    There has been evidence of ineffective programs for certifying nondestructive examination (NDE) personnel who conduct periodic inservice examinations in nuclear power plants under ASME Section XI Code requirements. This was brought to the attention of a group from the electric utility industry, the Electric Power Research Institute (EPRI), some NDE consultants and representatives from the American Society of Mechanical Engineers (ASME) by the Nuclear Regulatory Commission (NRC) in a May, 1982 meeting in Bethesda, Maryland. One problem pointed out by the NRC was the lack of a clear definition of qualification requirements for certification of NDE personnel who conduct ASME Section XI Inservice Inspection work in nuclear power plants. The NRC requested that the nuclear industry resolve this problem by formulating definitive qualification requirements for personnel certification that could be made an industry requirement. In June, 1982 the EPRI NDE Subcommittee held a general meeting for utility representatives to discuss the results of the May, 1982 meeting to develop a plan for industry response to the issue. The consensus was that an Ad Hoc Committee of utility representatives be convened to develop a document outlining qualification requirements for vertification of NDE personnel. The Ad Hoc Committee was formally convened on September 29, 1982

  17. Method of thermal reprocessing of hydrocarbon raw material

    Energy Technology Data Exchange (ETDEWEB)

    Feygin, Ye.A.; Bakhshiyan, Ts.A.; Barashkov, R.Ya.; Kazhdan, A.Z.; Raud, E.A.; Umanchik, N.P.

    1979-09-30

    In the method of thermal reprocessing of hydrocarbon raw material, to raise the efficiency of the process the heat exchange is done using a heat carrier in the form of a melt of metals or their salts, circulating in a closed system with a forced heating source in sequence through the pyrolysis zone, cooling zone, and heating zone. For example, the benzine fraction with initial boiling temperatures of 80-186 degrees C, together with steam, in the amount of 20% at 20 degrees C and pressure of 2 atmospheres, goes to the heating zone. Liquid Li goes there from the cooling zone through a closed circuit at 749 degrees C. The benzine, evaporated and heated to 300 degrees C, together with the melt, go to the pyrolysis zone, where the benzine is heated through the wall by the liquid Li coming from the heat carrier heating zone at 1000 degrees C. From the pyrolysis zone, the products, containing 41% C/sub 2/H/sub 4/, 15% C/sub 3/H/sub 6/ and 21% heavy fractions, go with the melt at 900 degrees C to the cooling zone, where they are cooled through the wall to 400 degrees C by the circulating liquid Li. The Li temperature at the entry into the cooling zone is 350 degrees C. The degree of raw material conversion is over 98%; the melt/raw material weight ratio is 0.2. Using this method enables a reduction in the pyrolysis zone from 80 to 8 m and the cooling zone area from 13 to 0.6 m/sup 2/ compared with the existing one, and transition from a multiple-tube cooling zone design to a tube one. The volume of the furnace unit is reduced from 500 to 10 m/sup 3/; the C/sub 2/H/sub 4/ yield is increased from 26-28 to 40-42%.

  18. Methods and pitfalls of measuring thermal preference and tolerance in lizards.

    Science.gov (United States)

    Camacho, Agustín; Rusch, Travis W

    2017-08-01

    Understanding methodological and biological sources of bias during the measurement of thermal parameters is essential for the advancement of thermal biology. For more than a century, studies on lizards have deepened our understanding of thermal ecophysiology, employing multiple methods to measure thermal preferences and tolerances. We reviewed 129 articles concerned with measuring preferred body temperature (PBT), voluntary thermal tolerance, and critical temperatures of lizards to offer: a) an overview of the methods used to measure and report these parameters, b) a summary of the methodological and biological factors affecting thermal preference and tolerance, c) recommendations to avoid identified pitfalls, and d) directions for continued progress in our application and understanding of these thermal parameters. We emphasize the need for more methodological and comparative studies. Lastly, we urge researchers to provide more detailed methodological descriptions and suggest ways to make their raw data more informative to increase the utility of thermal biology studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. NDE of stainless steel and on-line leak monitoring of LWRs. Annual report, October 1983-September 1984

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Claytor, T.N.; Prine, D.W.

    1985-04-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Results of a workshop on NDE of stainless steel pipes with weld overlays are presented. No currently available, single leak-detection method for reactor cooling systems combines optimal leakage detection sensitivity, leak-locating ability, and leakage measurement accuracy. Current practice with regard to leak detection has been reviewed and assessed for 74 operating plants, including both BWRs and PWRs. Seven cracks, including three field-induced IGSCC specimens and two thermal-fatigue cracks, have been installed in the acoustic leak detection (ALD) facility at ANL. Cross-correlation techniques to improve leak location capabilities have been successfully demonstrated on the laboratory pipe run by use of 375-kHz transducers on waveguides and an electronically simulated leak signal. Preliminary leak detection and location tests have also been run at ANL with a breadboard ALD system. In addition to ALD experiments, laboratory tests have been carried out to help assess the effectiveness of moisture-sensitive tape

  20. Thermal diffusivity measurement by lock-in photothermal shadowgraph method

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, A. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico); Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao (Spain); Alvarado, S. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico); Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Heverlee B-3001 (Belgium); Cabrera, H. [Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Científicas, IVIC, Mérida 5101, Venezuela and SPIE-ICTP Anchor Research in Optics Program Lab, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste (Italy); Calderón, A.; Marín, E., E-mail: emarinm@ipn.mx [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico)

    2016-04-28

    Here, we present a novel application of the shadowgraph technique for obtaining the thermal diffusivity of an opaque solid sample, inspired by the orthogonal skimming photothermal beam deflection technique. This new variant utilizes the shadow projected by the sample when put against a collimated light source. The sample is then heated periodically by another light beam, giving rise to thermal waves, which propagate across it and through its surroundings. Changes in the refractive index of the surrounding media due to the heating distort the shadow. This phenomenon is recorded and lock-in amplified in order to determine the sample's thermal diffusivity.

  1. Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods

    International Nuclear Information System (INIS)

    Jensen, C.; Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H.; Ban, H.

    2013-01-01

    Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ∼52 ± 2 μm deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m −1 K −1 and 26.7 ±1 W m −1 K −1 , respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10 −6 m 2 K W −1 . The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials

  2. Mitigation method of thermal transient stress by thermalhydraulic-structure total analysis

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Jinbo, Masakazu; Hosogai, Hiromi

    2003-01-01

    This study proposes a rational evaluation and mitigation method of thermal transient loads in fast reactor components by utilizing relationships among plant system parameters and stresses induced by thermal transients of plants. A thermalhydraulic-structure total analysis procedure helps us to grasp relationship among system parameters and thermal stresses. Furthermore, it enables mitigation of thermal transient loads by adjusting system parameters. In order to overcome huge computations, a thermalhydraulic-structure total analysis code and the Design of Experiments methodology are utilized. The efficiency of the proposed mitigation method is validated through thermal stress evaluation of an intermediate heat exchanger in Japanese demonstration fast reactor. (author)

  3. Determining Effective Thermal Conductivity of Fabrics by Using Fractal Method

    Science.gov (United States)

    Zhu, Fanglong; Li, Kejing

    2010-03-01

    In this article, a fractal effective thermal conductivity model for woven fabrics with multiple layers is developed. Structural models of yarn and plain woven fabric are derived based on the fractal characteristics of macro-pores (gap or channel) between the yarns and micro-pores inside the yarns. The fractal effective thermal conductivity model can be expressed as a function of the pore structure (fractal dimension) and architectural parameters of the woven fabric. Good agreement is found between the fractal model and the thermal conductivity measurements in the general porosity ranges. It is expected that the model will be helpful in the evaluation of thermal comfort for woven fabric in the whole range of porosity.

  4. A transient divided-bar method for simultaneous measurements of thermal conductivity and thermal diffusivity

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Nielsen, Søren Bom; Balling, Niels

    2016-01-01

    and volumetric heat capacity, and thereby also thermal diffusivity, are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity may also be determined. Finite element formulation provides a flexible forward solution for heat transfer across the bar...... and thermal properties are estimated by inverse Monte Carlo modelling. This methodology enables a proper quantification of experimental uncertainties on measured thermal properties. The developed methodology was applied to laboratory measurements of various materials, including a standard ceramic material......-3 %, and for diffusivity uncertainty may be reduced to about 3-5 %. The main uncertainty originates from the presence of thermal contact resistance associated with the internal interfaces of the bar. They are not resolved during inversion, and it is highly important that they are minimized by careful sample preparation....

  5. Nonlinear Transient Thermal Analysis by the Force-Derivative Method

    Science.gov (United States)

    Balakrishnan, Narayani V.; Hou, Gene

    1997-01-01

    High-speed vehicles such as the Space Shuttle Orbiter must withstand severe aerodynamic heating during reentry through the atmosphere. The Shuttle skin and substructure are constructed primarily of aluminum, which must be protected during reentry with a thermal protection system (TPS) from being overheated beyond the allowable temperature limit, so that the structural integrity is maintained for subsequent flights. High-temperature reusable surface insulation (HRSI), a popular choice of passive insulation system, typically absorbs the incoming radiative or convective heat at its surface and then re-radiates most of it to the atmosphere while conducting the smallest amount possible to the structure by virtue of its low diffusivity. In order to ensure a successful thermal performance of the Shuttle under a prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle must be done. The surface temperature profile, the transient response of the HRSI interior, and the structural temperatures are all required to evaluate the functioning of the HRSI. Transient temperature distributions which identify the regions of high temperature gradients, are also required to compute the thermal loads for a structural thermal stress analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-dependent thermal properties of the HRSI as well as to model radiation losses.

  6. Thermal methods for evaluating polymorphic transitions in nifedipine

    International Nuclear Information System (INIS)

    Grooff, D.; De Villiers, M.M.; Liebenberg, W.

    2007-01-01

    The thermal behaviour of nifedipine was studied with the view to understand the various phase transitions between its polymorphs. The focus was on polymorph identification, accompanying morphological changes during crystallization and the nature of the phase transformations. These features were compared to the complexity of the crystallization mechanisms, studied by dynamic differential scanning calorimetry (DSC) heating techniques. DSC, thermogravimetry (TG) established the temperature limits for preparation of amorphous nifedipine from the melt. DSC studies identified that metastable form B, melting point ∼163 deg. C, was enantiotropically related to a third modification, form C, which existed at lower temperatures. Form C converted endothermically to form B at ∼56 deg. C on heating and was shown by hot stage microscopy (HSM) to be accompanied by morphological changes. Modulated temperature differential scanning calorimetry (MTDSC) showed discontinuities in the reversing heat flow signal during crystallization of amorphous nifedipine (from ∼92 deg. C) to form B, which suggested that a number of polymorphs may nucleate from the melt prior to form B formation. Identification of the number of nifedipine polymorphs included the use of combined DSC-powder X-ray diffraction (PXRD) and variable temperature powder X-ray diffraction (VTPXRD). The crystallization kinetics studied by dynamic DSC heating techniques followed by analysis using the Friedman isoconversion method where values of activation energy (E) and frequency factor (A) were estimated as a function of alpha or extent of conversion (α). The variations in E with α, from 0.05 to 0.9, for the amorphous to form B conversion could indicate the formation of intermediate polymorphs prior to form B. The form B to form A conversion showed a constancy in E on kinetic analysis from α 0.05 to 0.9, which suggested that a constant crystallization mechanism operated during formation of the thermodynamically stable

  7. METHOD FOR DETERMINATION OF THERMAL CHARACTERISTICS OF THE LAYER OF GRANULAR MEDIA WITH ELEMENTS OF PULSED THERMAL NDT

    Directory of Open Access Journals (Sweden)

    Y. V. Shokina

    2015-01-01

    Full Text Available At the Department of Food Production of Murmansk State Technical University (MSTU was developed a method of producing smoke fuel using infrared energy supply. The method provides a stable temperature pyrolysis of wood fuel is less than 400 ° C. Kinetic of the heating layer of fuel (wooden chips is affected by chip's density and moisture content. The method of calculating of the optimum modes of smoke produce, which is based on a system of differential equations of heat and mass transfer in the IR smoke generator, was previously proposed. The system of equations includes thermal characteristics (TC of the fuel layer (e.g. specific heat, thermal conductivity, thermal diffusivity. The exact definition of these characteristics affect the accuracy of the experimental calculation of optimal process conditions with use of the developed software. A definition of layer's TC by a method with elements of pulsed thermal NDT. The use of thermal imager is proposed for measuring the temperature of the irritated surface of the porous wooden chip's lawyer.

  8. Eddy current NDE performance demonstrations using simulation tools

    International Nuclear Information System (INIS)

    Maurice, L.; Costan, V.; Guillot, E.; Thomas, P.

    2013-01-01

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code C armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  9. Advanced Monte Carlo methods for thermal radiation transport

    Science.gov (United States)

    Wollaber, Allan B.

    During the past 35 years, the Implicit Monte Carlo (IMC) method proposed by Fleck and Cummings has been the standard Monte Carlo approach to solving the thermal radiative transfer (TRT) equations. However, the IMC equations are known to have accuracy limitations that can produce unphysical solutions. In this thesis, we explicitly provide the IMC equations with a Monte Carlo interpretation by including particle weight as one of its arguments. We also develop and test a stability theory for the 1-D, gray IMC equations applied to a nonlinear problem. We demonstrate that the worst case occurs for 0-D problems, and we extend the results to a stability algorithm that may be used for general linearizations of the TRT equations. We derive gray, Quasidiffusion equations that may be deterministically solved in conjunction with IMC to obtain an inexpensive, accurate estimate of the temperature at the end of the time step. We then define an average temperature T* to evaluate the temperature-dependent problem data in IMC, and we demonstrate that using T* is more accurate than using the (traditional) beginning-of-time-step temperature. We also propose an accuracy enhancement to the IMC equations: the use of a time-dependent "Fleck factor". This Fleck factor can be considered an automatic tuning of the traditionally defined user parameter alpha, which generally provides more accurate solutions at an increased cost relative to traditional IMC. We also introduce a global weight window that is proportional to the forward scalar intensity calculated by the Quasidiffusion method. This weight window improves the efficiency of the IMC calculation while conserving energy. All of the proposed enhancements are tested in 1-D gray and frequency-dependent problems. These enhancements do not unconditionally eliminate the unphysical behavior that can be seen in the IMC calculations. However, for fixed spatial and temporal grids, they suppress them and clearly work to make the solution more

  10. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  11. An improved method for upscaling borehole thermal energy storage using inverse finite element modelling

    DEFF Research Database (Denmark)

    Tordrup, Karl Woldum; Poulsen, Søren Erbs; Bjørn, Henrik

    2017-01-01

    Dimensioning of large-scale borehole thermal energy storage (BTES) is inherently uncertain due to the natural variability of thermal conductivity and heat capacity in the storage volume. We present an improved method for upscaling a pilot BTES to full scale and apply the method to an operational...

  12. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    2018-01-30

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  13. Solid Waste Decontamination by Thermal Desorption and Catalytic Oxidation Methods

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Topka, Pavel; Soukup, Karel; Jirátová, Květa; Váňová, H.; Kaštánek, František

    2014-01-01

    Roč. 68, č. 9 (2014), s. 1279-1282 ISSN 0366-6352 R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : thermal desorption * catalytic oxidation * soil decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  14. A method of measuring the thermal conductivity of liquids

    NARCIS (Netherlands)

    Held, E.F.M. van der; Drunen, F.G. van

    1949-01-01

    We described the development of an apparatus for the determination of the thermal conductivity of liquids. The apparatus is suitable for all kinds of liquids, including the strongest acids. From a given time we pass an electric current through a thin straight wire, placed in a homogeneous material

  15. Methods of using thermal tolerant avicelase from Acidothermus cellulolyticus

    Science.gov (United States)

    Adney, William S [Golden, CO; Vinzant, Todd B [Golden, CO; Ding, Shih-You [Golden, CO; Himmel, Michael E [Golden, CO

    2011-04-26

    The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus, and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

  16. Study to define NDE research for inspection of stainless steels

    International Nuclear Information System (INIS)

    Reinhart, E.R.

    1978-08-01

    After the boiling water reactor (BWR) stress corrosion cracking incidents on 4- and 10-inch stainless steel piping, the Electric Power Research Institute (EPRI) organized a round-robin ultrasonic examination of piping removed from service (TPS-75-609). Five inspection teams participated in this program, using both a standard procedure and the individual team procedure. The original intent was to section the piping after the program to evaluate the effectiveness of state-of-the-art ultrasonics in finding stress corrosion cracking. The sectioning was delayed, however, to allow research and development (R and D) groups time to perform basic measurements aimed at determining optimum search unit and instrument characteristics for the ultrasonic examination of stainless steel piping and to study the applicability of various advanced inspection methods. This additional effort was funded as part of an EPRI technical planning study (TPS-75-620), A Study to Define NDE Research for Inspection of Stainless Steels. Inspection methods evaluated in this study included (1) processing of manual scan data using a miniature programmable calculator (Aerojet Nuclear); (2) investigation into the performance characteristics of three experimental ultrasonic transducers (Battelle-Columbus Laboratories); (3) analysis of fundamental ultrasonic response data from intergranular stress corrosion cracks in stainless steels (Southwest Research Institute); and (4) a feasibility study of advanced signal processing and pattern recognition for analyzing flaws in stainless steel piping (Ultrasonics International). The results of the studies compiled in the report have indicated the direction for future research and development and have formed the basis for the recently initiated EPRI Research Project 892, Ultrasonic System Optimization

  17. An overview of the NDE Center - The first decade

    International Nuclear Information System (INIS)

    Dau, G.J.

    1990-01-01

    The EPRI NDE Center was established in 1979 to provide the electrical utility industry with a dedicated NDE capability. The Center's role was defined as providing a bridge to transfer the research and development results generated by EPRI R and D programs (as well as other funding agencies) into qualified equipment and procedures in the shortest possible time. The mission is pursued through three distinct thrusts: technology transfer, training, and resource development. Technology transfer is usually accomplished by a combination of equipment and procedure evaluations and demonstrations. Specific training programs are developed to meet the specific needs of the utility industry. One feature of these programs is the reliance on realistic samples during the training programs. Resource development is oriented toward encouraging more people to pursue NDE as a career. This thrust is implemented by working with interested educational institutions to develop appropriate materials. Work in this project divides naturally into technology and training areas. NDE technology work is focused on improving the inspections applied to heat exchangers, piping, steam turbines, and heavy-section components such as the reactor pressure vessel. Training activities involve the provision of formal courses when a large number of people must become proficient in an improved technology. More details on each of these areas are given in sections that immediately follow

  18. NASA OSMA NDE Program Additive Manufacturing Foundational Effort

    Science.gov (United States)

    Waller, Jess; Walker, James; Burke, Eric; Wells, Douglas; Nichols, Charles

    2016-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  19. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification.

    Science.gov (United States)

    Potchter, Oded; Cohen, Pninit; Lin, Tzu-Ping; Matzarakis, Andreas

    2018-08-01

    Over the past century, many research studies have been conducted in an attempt to define thermal conditions for humans in the outdoor environment and to grade thermal sensation. Consequently, a large number of indices have been proposed. The examination of human thermal indices by thermal subjective perception has become recently a methodical issue to confirm the accuracy, applicability and validation of human thermal indices. The aims of this study are: (a) to review studies containing both calculated human thermal conditions and subjective thermal perception in the outdoor environment (b) to identify the most used human thermal indices for evaluating human thermal perception (c) to examine the relation between human thermal comfort range and outdoor thermal environment conditions and (d) to compare between categories of thermal sensation in different climatic zones based on subjective perception and levels of thermal strain. A comprehensive literature review identified 110 peer-reviewed articles which investigated in-situ thermal conditions versus subjective thermal perception during 2001-2017. It seems that out of 165 human thermal indices that have been developed, only 4 (PET, PMV, UTCI, SET*) are widely in use for outdoor thermal perception studies. Examination of the relation between human thermal comfort range and outdoor thermal environment conditions for selective indices in different climatic zones shows that the range of the thermal comfort or dis-comfort is affected by the outdoor thermal environment. For the PET index, the "neutral" range for hot climates of 24-26°C is agreed by 95% of the studies where for cold climate, the "neutral" range of 15-20°C is agreed by 89% of the studies. For the UTCI, the "no thermal stress" category is common to all climates. The "no stress category" of 16-23°C is agreed by 80% of the case studies, while 100% of the case studies agreed that the range is between 18 and 23°C. Copyright © 2018 Elsevier B.V. All rights

  20. Calculated and experimental substantiation of the thermal method for non-destructive testing of fuel elements

    International Nuclear Information System (INIS)

    Maksimov, N.M.; Soldatenko, V.A.; Petrovichev, V.I.; Salimov, S.E.; Aleksandrov, K.A.; Kurov, D.A.

    1985-01-01

    The main systems and methods of thermal testing, their potentialities and advantages, thermal irradiation photodetectors are described. Possible fields of application of thermal testing in nuclear engineering are discussed. Calculations of the fuel element nonstationary temperature field in the three-dimensional geometry in the presence of such an effect as fuel exfaliation from cladding are presented. The developed method and equipment for fuel element thermal testing are described. Preliminary experimental data being in agreement with the calculated ones and opening the prospects for flaw detecting are presened

  1. A Destructive Validation of NDE Responses of Service-Induced PWSCC Found in North Anna 2 Control Rod Drive Nozzle 31

    International Nuclear Information System (INIS)

    Cumblidge, Stephen E.; Doctor, Steven R.; Schuster, George J.; Harris, Robert V.; Crawford, Susan L.; Seffens, Rob J.; Toloczko, Mychailo B.; Bruemmer, Stephen M.; Moyer, C.

    2009-01-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies.

  2. Method for compensating bellows pressure loads while accommodating thermal deformations

    International Nuclear Information System (INIS)

    Woodle, M.H.

    1985-01-01

    Many metal bellows are used on storage ring vacuum chambers. They allow the ring to accommodate deformations associated with alignment, mechanical assembly and thermal expansion. The NSLS has two such electron storage rings, the vuv ring and the x-ray ring. Both rings utilize a number of welded metal bellows within the ring and at every beam port. There are provisions for 16 beam ports on the vuv and 28 ports in the x-ray ring. At each of these locations the bellows are acted on by an external pressure of 1 atmosphere, which causes a 520 lb reaction at the vacuum chamber beam port and at the beamline flange downstream of the bellows. The use of rigid tie rods across the bellows flanges to support this load is troublesome because most storage ring vacuum chambers are baked in situ to achieve high internal vacuum. Significant forces can develop on components if thermal deformation is restrained and damage could occur

  3. Method and apparatus for thermal management of vehicle exhaust systems

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1995-12-26

    A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter. 7 figs.

  4. Testing of Method for Assessing of Room Thermal Stability

    Directory of Open Access Journals (Sweden)

    Charvátová Hana

    2017-01-01

    Full Text Available The paper presents the interim results of our research on the developing methodological procedure which could be used for assessment of a thermal stability of buildings with regards to its thermal accumulative parameters. The principle of testing is based on a combination of computer simulation of cooled room model developed in COMSOL Multiphysics software and on theoretical calculations with respect to compliance with valid European and Czech technical standards used in building industry and architecture under conditions obtained by real measurement for the room to be tested. The presented example shows the effect of the heataccumulation properties of the outside wall insulation materials on the course of the cooling room for winter conditions.

  5. Thermal imaging method to visualize a hidden painting thermally excited by far infrared radiations

    Science.gov (United States)

    Davin, T.; Wang, X.; Chabane, A.; Pawelko, R.; Guida, G.; Serio, B.; Hervé, P.

    2015-06-01

    The diagnosis of hidden painting is a major issue for cultural heritage. In this paper, a non-destructive active infrared thermographic technique was considered to reveal paintings covered by a lime layer. An extended infrared spectral range radiation was used as the excitation source. The external long wave infrared energy source delivered to the surface is then propagated through the material until it encounters a painting zone. Due to several thermal effects, the sample surface then presents non-uniformity patterns. Using a high sensitive infrared camera, the presence of covered pigments can thus be highlighted by the analysis of the non-stationary phenomena. Reconstituted thermal contrast images of mural samples covered by a lime layer are shown.

  6. Method and apparatus for measuring thermal neutron characteristics

    International Nuclear Information System (INIS)

    Johnstone, C.W.

    1983-01-01

    The thermal neutron decay characteristics of an earth formation are measured by detecting indications of the thermal neutron concentration in the formation during a selected set of two measurement intervals following irradiation of the formation with a burst of fast neutrons. These measurement intervals may comprise a sequence of time gates following a delay after the neutron burst. The duration of the neutron bursts, of the delay between the burst and the start of the sequence, and of the individual time gates, may all be adjusted by a common, selected one of a finite number of scale factor values. The set of two measurement intervals is selected from among a number of possible sets as a function of a previously measured value of the decay characteristic. Each measurement interval set is used over only a specific range of decay characteristic values for which it has been determined, in accordance with a previously established relationship between the decay characteristic value and a function of the thermal neutron concentration measurements for the set, to afford enhanced statistical accuracy in the measured value of the decay characteristic. (author)

  7. Rocket center Peenemünde — Personal memories

    Science.gov (United States)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  8. Investigation for thermal stability of U3Si2 and protection methods

    International Nuclear Information System (INIS)

    Zhang Huiying; Sun Jichang; Sun Rongxian

    1994-08-01

    The thermal stability of U 3 Si 2 in Ar, N 2 and air, and the interaction between U 3 Si 2 and Al, Zr have been investigated by thermal analysis method. According to the results of thermal analysis, protection measures for various procedures have been improved. From the practice, it shows that the protection measures can ensure the safety of production and raise the product quality as well as reduce the cost effectively

  9. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S A

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  10. Numerical methods for calculating thermal residual stresses and hydrogen diffusion

    International Nuclear Information System (INIS)

    Leblond, J.B.; Devaux, J.; Dubois, D.

    1983-01-01

    Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)

  11. Method for thermal recovery of hydrocarbons from an underground formation

    Energy Technology Data Exchange (ETDEWEB)

    1962-11-13

    In a thermal recovery procedure for hydrocarbons from an underground formation, an oxygen-containing gas is injected through at least one input well into the formation. A part of the hydrocarbons in the formation is then ignited and an oxidation front is created. This front moves under the influence of the injected gas to at least one production well in the formation. The temperature in the burning front is higher than approximately 200/sup 0/C but lower than approximately 350/sup 0/C. (4 claims)

  12. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  13. Comparison of evaluation results of piping thermal fatigue evaluation method based on equivalent stress amplitude

    International Nuclear Information System (INIS)

    Suzuki, Takafumi; Kasahara, Naoto

    2012-01-01

    In recent years, reports have increased about failure cases caused by high cycle thermal fatigue both at light water reactors and fast breeder reactors. One of the reasons of the cases is a turbulent mixing at a Tee-junction, where hot and cold temperature fluids are mixed, in a coolant system. In order to prevent thermal fatigue failures at Tee-junctions. The Japan Society of Mechanical Engineers published the guideline which is an evaluation method of high cycle thermal fatigue damage at nuclear pipes. In order to justify safety margin and make the procedure of the guideline concise, this paper proposes a new evaluation method of thermal fatigue damage with use of the 'equivalent stress amplitude.' Because this new method makes procedure of evaluation clear and concise, it will contribute to improving the guideline for thermal fatigue evaluation. (author)

  14. A New Method to Determine Thermal Properties of the Mixture of PCM and Concrete

    DEFF Research Database (Denmark)

    R., Cheng; Pomianowski, Michal Zbigniew; Heiselberg, Per

    on the inverse problem was proposed to deal with the measurements of thermal conductivity and specific heat of PCM-concretes during the phase change process. This method transforms the determination process to an optimization problem, which regarded the difference between the measured and calculated heat flux......Integration of phase change materials in building envelopes is a technology that with high potential to decrease the building energy consumption and improve indoor thermal comfort. Accurate measurement of thermal physical properties of PCM-concretes is very important for simulation and evaluation...... of its energy saving performance. However, there isn’t an effective way to measure thermal physical properties of PCM-concretes accurately. The shortcomings of using traditional testing methods to measure thermal physical properties of PCM-concretes were firstly analyzed. Then a new method based...

  15. Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network.

    Science.gov (United States)

    Ghaderi, Forouzan; Ghaderi, Amir H; Ghaderi, Noushin; Najafi, Bijan

    2017-01-01

    Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose.

  16. An accurate method for the determination of unlike potential parameters from thermal diffusion data

    International Nuclear Information System (INIS)

    El-Geubeily, S.

    1997-01-01

    A new method is introduced by means of which the unlike intermolecular potential parameters can be determined from the experimental measurements of the thermal diffusion factor as a function of temperature. The method proved to be easy, accurate, and applicable two-, three-, and four-parameter potential functions whose collision integrals are available. The potential parameters computed by this method are found to provide a faith full representation of the thermal diffusion data under consideration. 3 figs., 4 tabs

  17. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  18. Direct measurement of thermal effusivity of foods by front configuration of the photpyroelectric method

    NARCIS (Netherlands)

    Szafner, G.; Bicanic, D.D.; Kulcsár, R.; Doka, O.

    2014-01-01

    Thermophysical properties of foods are of considerable relevance to food industry. The One among less explored thermophysical quantities is the thermal effusivity. In this paper the front variant of the photopyroelectric method was applied to determine thermal effusivity of both, fresh hen egg¿s

  19. Experimental Methods Related to Coupled Fast-Thermal Systems at the RB Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    In addition to the review of RB reactor characteristics this presentation is focused on the coupled fast-thermal systems achieved at the reactor. The following experimental methods are presented: neutron spectra measurements; steady state experiments and kinetic measurements ( β eff ) related to the coupled fast-thermal cores

  20. Evaluation of thermal shock strengths for graphite materials using a laser irradiation method

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Lee, Young Shin; Kim, Duck Hoi; Park, No Seok; Suh, Jeong; Kim, Jeng O.; Il Moon, Soon

    2004-01-01

    Thermal shock is a physical phenomenon that occurs during the exposure to rapidly high temperature and pressure changes or during quenching of a material. The rocket nozzle throat is exposed to combustion gas of high temperature. Therefore, it is important to select suitable materials having the appropriate thermal shock resistance and to evaluate these materials for rocket nozzle design. The material of this study is ATJ graphite, which is the candidate material for rocket nozzle throat. This study presents an experimental method to evaluate the thermal shock resistance and thermal shock fracture toughness of ATJ graphite using laser irradiation. In particular, thermal shock resistance tests are conducted with changes of specimen thickness, with laser source irradiated at the center of the specimen. Temperature distributions on the specimen surface are detected using type K and C thermocouples. Scanning electron microscope (SEM) is used to observe the thermal cracks on specimen surface

  1. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  2. Thermal treatment investigation of natural lizardite at the atmospheric pressure, based on XRD and differential thermal analysis/thermal gravimetric analysis methods

    International Nuclear Information System (INIS)

    Dabiri, R.; Karimi Shahraki, B.; Mollaei, H.; Ghaffari, M.

    2009-01-01

    Determination of stability limits, mineralogical changes and thermal reaction of serpentine minerals are very important for the investigation of magmatism, mechanism and depth of plates of subduction. During the subduction process, serpentine (Lizardite) minerals will release their water due to thermal reactions. This dehydration can play an important role in volcanism processes related to the subduction, In this study, serpentine minerals (Lizardite) collected from the Neyriz Ophiolite Complex were dehydrated under the constant atmospheric pressure. These mineralogical changes were determined by X-Ray diffraction and differential thermal analysis-thermal gravimetric analyses methods. This study shows natural lizardites that heated for about one hour is stable up to 550 d eg C . Dehydration reactions on lizardite started at approximately between 100 to 150 d eg C and dehydroxylation reactions started at approximately 550-690 d eg C . As a result of thermal reaction, the decomposition of lizardite will take place and then changes in to olivine (forsterite). Crystallization of olivine (forsterite) will start at 600 d eg C . This mineral is stable up to 700 d eg C and then crystallization of enstatite will start at 700 d eg C . During this dehydration and crystallization reaction, amorphous processes will start at 600 d eg C and some amount water and silica will release.

  3. Improved approach for determining thin layer thermal conductivity using the 3 ω method. Application to porous Si thermal conductivity in the temperature range 77–300 K

    International Nuclear Information System (INIS)

    Valalaki, K; Nassiopoulou, A G

    2017-01-01

    An improved approach for determining thermal conductivity using the 3 ω method was used to determine anisotropic porous Si thermal conductivity in the temperature range 77–300 K. In this approach, thermal conductivity is extracted from experimental data of the third harmonic of the voltage (3 ω ) as a function of frequency, combined with consequent FEM simulations. The advantage is that within this approach the finite thickness of the sample and the heater are taken into account so that the corresponding errors introduced in thermal conductivity values when using Cahill’s simplified analytical formula are eliminated. The developed method constitutes a useful tool for measuring the thermal conductivity of samples with unknown thermal properties. The thermal conductivity measurements with the 3 ω method are discussed and compared with those obtained using the well-established dc method. (paper)

  4. A method to measure the thermal-physical parameter of gas hydrate in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Diao, S.B.; Ye, Y.G.; Yue, Y.J.; Zhang, J.; Chen, Q.; Hu, G.W. [Qingdao Inst. of Marine Geology, Qingdao (China)

    2008-07-01

    It is important to explore and make good use of gas hydrates through the examination of the thermal-physical parameters of sediment. This paper presented a new type of simulation experiment using a device that was designed based on the theories of time domain reflection and transient hot wire method. A series of investigations were performed using this new device. The paper described the experiment, with reference to the experiment device and materials and method. It also presented the results of thermal physical properties; result of the thermal conductivity of water, dry sand and wet sand; and results of wet sand under various pressures. The time domain reflection (TDR) method was utilized to monitor the saturation of the hydrates. Both parallel hot-wire method and cross hot-wire method were utilized to measure the thermal conductivity of the gas hydrate in porous media. A TDR sensor which was equipped with both cross hot-wire probe and parallel hot-wire probe was developed in order to measure the cell temperature with these two methods at one time. It was concluded that the TDR probe could be taken as an online measurement skill in investigating the hydrate thermal physical property in porous media. The TDR sensor could monitor the hydrate formation process and the parallel hot-wire method and cross hot-wire method could effectively measure the thermal physical properties of the hydrates in porous media. 10 refs., 7 figs.

  5. Synthesis of Alumina using the solvo thermal method

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslimin

    2007-01-01

    The paper describes work done on synthesis of α- and β-alumina by using the solvo thermal technique. Synthesis of both these aluminas involves the transition reactions of the aluminium hydroxide into alumina by a dehydroxylation process. As there are many forms of transition aluminas produced during this process, x-ray diffraction (XRD) technique was used to identify α-alumina and β-alumina. After establishing the optimum conditions for the production of a single-phase α- and β-aluminas, characteristic study on the product was performed. An important parameter in establishing nano sized powders is their crystallite size and analysis of the β-alumina shows that it is a nano sized powder with a size of 28 nm while the α-alumina has a crystallite size of 200 nm. Other properties analysed include morphology, surface area and particle size. (author)

  6. Methods and apparatus for environmental correction of thermal neutron logs

    International Nuclear Information System (INIS)

    Preeg, W.E.; Scott, H.D.

    1983-01-01

    An on-line environmentally-corrected measurement of the thermal neutron decay time (tau) of an earth formation traversed by a borehole is provided in a two-detector, pulsed neutron logging tool, by measuring tau at each detector and combining the two tau measurements in accordance with a previously established empirical relationship of the general form: tau = tausub(F) +A(tausub(F) + tausub(N)B) + C, where tausub(F) and tausub(N) are the tau measurements at the far-spaced and near-spaced detectors, respectively, A is a correction coefficient for borehole capture cross section effects, B is a correction coefficient for neutron diffusion effects, and C is a constant related to parameters of the logging tool. Preferred numerical values of A, B and C are disclosed, and a relationship for more accurately approximating the A term to specific borehole conditions. (author)

  7. A review of analysis methods about thermal buckling

    International Nuclear Information System (INIS)

    Moulin, D.; Combescure, A.; Acker, D.

    1987-01-01

    This paper highlights the main items emerging from a large bibliographical survey carried out on strain-induced buckling analysis methods applicable in the building of fast neutron reactor structures. The work is centred on the practical analysis methods used in construction codes to account for the strain-buckling of thin and slender structures. Methods proposed in the literature concerning past and present studies are rapidly described. Experimental, theoretical and numerical methods are considered. Methods applicable to design and their degree of validation are indicated

  8. Estimation of oil reservoir thermal properties through temperature log data using inversion method

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Nian, Yong-Le; Li, Tong-Tong; Wang, Chang-Long

    2013-01-01

    Oil reservoir thermal properties not only play an important role in steam injection well heat transfer, but also are the basic parameters for evaluating the oil saturation in reservoir. In this study, for estimating reservoir thermal properties, a novel heat and mass transfer model of steam injection well was established at first, this model made full analysis on the wellbore-reservoir heat and mass transfer as well as the wellbore-formation, and the simulated results by the model were quite consistent with the log data. Then this study presented an effective inversion method for estimating the reservoir thermal properties through temperature log data. This method is based on the heat transfer model in steam injection wells, and can be used to predict the thermal properties as a stochastic approximation method. The inversion method was applied to estimate the reservoir thermal properties of two steam injection wells, it was found that the relative error of thermal conductivity for the two wells were 2.9% and 6.5%, and the relative error of volumetric specific heat capacity were 6.7% and 7.0%,which demonstrated the feasibility of the proposed method for estimating the reservoir thermal properties. - Highlights: • An effective inversion method for predicting the oil reservoir thermal properties was presented. • A novel model for steam injection well made full study on the wellbore-reservoir heat and mass transfer. • The wellbore temperature field and steam parameters can be simulated by the model efficiently. • Both reservoirs and formation thermal properties could be estimated simultaneously by the proposed method. • The estimated steam temperature was quite consistent with the field data

  9. New method of thermal cycling stability test of phase change material

    Directory of Open Access Journals (Sweden)

    Putra Nandy

    2017-01-01

    Full Text Available Phase Change Material (PCM is the most promising material as thermal energy storage nowadays. As thermal energy storage, examination on endurance of material for long-term use is necessary to be carried out. Therefore, thermal cycling test is performed to ensure thermal stability of PCM. This study have found a new method on thermal cycling test of PCM sample by using thermoelectric as heating and cooling element. RT 22 HC was used as PCM sample on this thermal cycling test. The new method had many advantages compared to some references of the same test. It just needed a small container for PCM sample. The thermoelectric could release heat to PCM sample and absorb heat from PCM sample uniformly, respectively, was called as heating and cooling process. Hence, thermoelectric had to be supported by a relay control device to change its polarity so it could heat and cool PCM sample alternately and automatically. On the other hand, the thermoelectric was cheap, easy to be found and available in markets. It can be concluded that new method of thermal cycling test by using thermoelectric as source of heating and cooling can be a new reference for performing thermal cycling test on PCM.

  10. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  11. Development of the finite element method in the thermal field. TRIO-EF software for thermal and radiation analysis

    International Nuclear Information System (INIS)

    Casalotti, N.; Magnaud, J.P.

    1989-01-01

    The possibilities of the TRIO-EF software in the thermal field are presented. The TRIO-EF is a computer program based on the finite element method and used for three-dimensional incompressible flow analysis. It enables the calculation of three-dimensional heat transfer and the fluid/structure analysis. The geometrically complex radiative reactor systems are taken into account in the form factor calculation. The implemented algorithms are described [fr

  12. Application of heat-balance integral method to conjugate thermal explosion

    Directory of Open Access Journals (Sweden)

    Novozhilov Vasily

    2009-01-01

    Full Text Available Conjugate thermal explosion is an extension of the classical theory, proposed and studied recently by the author. The paper reports application of heat-balance integral method for developing phase portraits for systems undergoing conjugate thermal explosion. The heat-balance integral method is used as an averaging method reducing partical differential equation problem to the set of first-order ordinary differential equations. The latter reduced problem allows natural interpretation in appropriately chosen phase space. It is shown that, with the help of heat-balance integral technique, conjugate thermal explosion problem can be described with a good accuracy by the set of non-linear first-order differential equations involving complex error function. Phase trajectories are presented for typical regimes emerging in conjugate thermal explosion. Use of heat-balance integral as a spatial averaging method allows efficient description of system evolution to be developed.

  13. Complementary variational principle method applied to thermal conductivities of a plasma in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, A K; Gupta, S C [Punjabi Univ., Patiala (India). Dept. of Physics

    1982-12-14

    The complementary variational principles method (CVP) is applied to the thermal conductivities of a plasma in a uniform magnetic field. The results of computations show that the CVP derived results are very useful.

  14. A surfactant-thermal method to prepare four new three-dimensional heterometal-organic frameworks

    KAUST Repository

    Gao, Junkuo; He, Mi; Lee, Zhiyi; Cao, Wenfang; Xiong, Weiwei; Li, Yongxin; Ganguly, Rakesh; Wu, Tao; Zhang, Qichun

    2013-01-01

    Here, we report on a surfactant-thermal method to prepare four new 3-D crystalline heterometal-organic frameworks (HMOFs). The results indicate that our new strategy for growing crystalline materials in surfactant media has great potential

  15. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  16. Determination of optimum thermal debinding and sintering process parameters using Taguchi Method

    CSIR Research Space (South Africa)

    Seerane, M

    2015-07-01

    Full Text Available powder and a wax-based binder. The binder’s backbone component is a low density polyethylene (LDPE). Careful selection of thermal debinding parameters was guided by thermo- gravimetric analysis (TGA) results. The Taguchi method was used to determine... International Light Metals Technology Conference (LMT 2015), Port Elizabeth, South Africa, July 27-29 Determination of Optimum Process for Thermal Debinding and Sintering using Taguchi Method SEERANE Mandya,*, CHIKWANDA Hildab, MACHAKA Ronaldc CSIR...

  17. NDE reliability and SAFT-UT final development

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Reid, L.D.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1990-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) program at the Pacific Northwest Laboratory (PNL) was established by the US Nuclear Regulatory Commission (NRC) to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. This is a progress report covering the programmatic work from October 1987 through September 1988. The program for Validation and Technology Transfer for SAFT-UT is designed to accomplish the final step of moving research results into beneficial application. Accomplishments for FY88 in Synthetic Aperture Focusing of Ultrasonic Test data (SAFT-UT) under this program are discussed in this paper. The information is treated under the copies of Code Activities, Field Validation, and Seminars. (orig.)

  18. Benchmarking of Computational Models for NDE and SHM of Composites

    Science.gov (United States)

    Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna

    2016-01-01

    Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.

  19. The role of small business in innovative NDE

    International Nuclear Information System (INIS)

    Berger, H.

    1983-01-01

    Small business is a strong element in the economy in terms of employment, new jobs and the introduction of new products and services. In NDE, small companies have introduced new ideas, products and techniques, making these available for improved inspection. Given more opportunity, small business can be an even stronger factor in NDE technology transfer. This opportunity might be provided in the form of: Greater assistance and encouragement from large organizations who do not plan to move forward on developments within their own laboratories; Greater recognition for people who display the innovative, entrepreneurial spirit needed to start new ventures; and More opportunities in R and D - either in direct contract support or in a subcontractor role in which the small business innovative spirit is encouraged

  20. REVIEW OF METHODS FOR THE SURVEILLANCE AND ACCESS CONTROL USING THE THERMAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mate Krišto

    2016-12-01

    Full Text Available This paper presents methods for human detection for application in the field of national security in the context of state border surveillance. Except in the context of state border security, the presented methods can be applied to monitor other protected object and infrastructure such as ports and airports, power plants, water supply systems, oil pipelines, etc. Presented methods are based on use of thermal imaging systems for the human detection, recognition and identification. In addition to methods for the detection of persons, are presented and methods for face recognition and identification of the person. The use of such systems has special significance in the context of national security in the domain of timely detection of illegal crossing of state border or illegal movement near buildings, which are of special importance for national security such as traffic infrastructure facilities, power plants, military bases, especially in mountain or forests areas. In this context, thermal imaging has significant advantages over the optical camera surveillance systems because thermal imaging is robust to weather conditions and due to such an infrared thermal system can successfully applied in any weather conditions, or the periods of the day. Featured are procedures that has human detection results as well as a brief survey of specific implementation in terms of the use of infrared thermal imagers mounted on autonomous vehicles (AV and unmanned aerial vehicles (UAV. In addition to the above in this paper are described techniques and methods of face detection and human identification based on thermal image (thermogram.

  1. Proceedings: 20th Steam Generator NDE Workshop: Orlando, Florida, July 9-11, 2001

    International Nuclear Information System (INIS)

    2003-01-01

    The 2001 workshop took place in Orlando, Florida, from July 9 to 11, 2001. It covered one full day and two half-days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, NSSS vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE issues and means for their resolution

  2. Adsorption desalination: An emerging low-cost thermal desalination method

    KAUST Repository

    Ng, K. C.; Thu, Kyaw; Kim, Youngdeuk; Chakraborty, Anutosh; Amy, Gary L.

    2013-01-01

    Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy

  3. Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques. 1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy. 1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and 1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy. 1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-...

  4. Steam generator inspection activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Krzywosz, K.

    1988-01-01

    Various types of corrosion and mechanical damage continue to affect the availability of both recirculating and once-through steam generators. Both the tube bundle and its supporting structure are affected. Intergranular attack and stress corrosion cracking (SCC) are the corrosion-assisted tube-wall damage mechanisms of most concern at this time. Fatigue cracking and fretting at antivibration bars are currently the mechanical damage forms causing most concern. Improved NDE equipment and techniques are providing better detection and characterization of adverse conditions within the steam generators and doing it at an earlier stage. This allows timely corrective action. To maintain the projected life expectancy of existing and new steam generators, remedial measures have been implemented. These measures include shot- or roto-peening, U-bend stress relief, chemical cleaning of secondary side, and sleeving of tubes. The improved NDE technology will also be instrumental in monitoring and assessing the effectiveness of the remedial measures. The revision of guidance documents for steam generator in-service inspection (ISI) is providing more relevant information to support this complex operation. A multitasked project is described that includes evaluation of steam generator tube NDE technology, transfer of this technology to utilities, and rapid response utility assistance

  5. Piping inspection activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Ammirato, F.V.

    1988-01-01

    Intergranular stress corrosion cracking (IGSCC) in the primary system of boiling water reactors (BWRs) has been a major reliability issue in recent years. BWR pipe cracking was first reported in 1974 with a low percentage of only small-diameter lines affected. However, with increased plant operating time, the number of reported cracking incidents has risen significantly and in 1982 and 1983 included the large-diameter recirculation lines. With the advent of cracking in large-diameter piping, innovative repair remedies were developed, such as weld overlay for repair (WOR). Although these remedies are effective in extending the service life of piping, they also present challenging NDE problems. The EPRI program for improving piping examination has aimed at systematically resolving the difficulties by optimizing techniques and procedures as well as by developing field-qualified automated examination equipment. The EPRI NDE Center's role has been the evaluation and transfer of the technology necessary to address the current piping examination problems of the nuclear utility industry. These activities normally include the following: technology assessment and improvement; validation through demonstrations and field trials; technology transfer reports, workshops, training, and qualification testing; and acquisition of relevant samples. The activities of the NDE Center are discussed

  6. Alternative method for steam generation for thermal oxidation of silicon

    Science.gov (United States)

    Spiegelman, Jeffrey J.

    2010-02-01

    Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.

  7. A new method for measuring the thermal regulatory properties of phase change material (PCM) fabrics

    International Nuclear Information System (INIS)

    Wan, X; Fan, J

    2009-01-01

    Several methods already exist for the measurement of the thermal regulatory properties of fabrics containing phase change materials (PCMs). However, they do not adequately simulate the actual use condition; consequently the measurements may not have relevance to the performance of PCM fabrics in actual use. Here we report on the development of a new method, which better simulates the real use situation. In this method, a hot plate, simulating the human body, generates a constant amount of heat depending on the type of human activity to be simulated. The hot plate covered by the PCM fabric is then exposed to a thermal transient simulating a wearer moving from one thermal environment to another; the changes of surface temperature and heat loss of the hot plate are then recorded and used to characterize the thermal regulatory properties of the PCM fabrics

  8. Reliability residual-life prediction method for thermal aging based on performance degradation

    International Nuclear Information System (INIS)

    Ren Shuhong; Xue Fei; Yu Weiwei; Ti Wenxin; Liu Xiaotian

    2013-01-01

    The paper makes the study of the nuclear power plant main pipeline. The residual-life of the main pipeline that failed due to thermal aging has been studied by the use of performance degradation theory and Bayesian updating methods. Firstly, the thermal aging impact property degradation process of the main pipeline austenitic stainless steel has been analyzed by the accelerated thermal aging test data. Then, the thermal aging residual-life prediction model based on the impact property degradation data is built by Bayesian updating methods. Finally, these models are applied in practical situations. It is shown that the proposed methods are feasible and the prediction accuracy meets the needs of the project. Also, it provides a foundation for the scientific management of aging management of the main pipeline. (authors)

  9. The role of NDE in maintaining and extending the life cycle of engineering components

    International Nuclear Information System (INIS)

    Doctor, S.R.

    1997-01-01

    A successful life cycle of engineering components begins during the design to select the best materials for a given application, designing for economical maintenance, and accommodating NDE inspections. NDE in the nuclear industry is part of the defense in depth to insure structural integrity of components. High reliability NDE is needed to reliably detect and accurately characterize the failure modes that have occurred in nuclear components. The move toward risk-informed inservice inspection programs focusses the NDE on the most safety significant components. The use of performance demonstration testing is leading to improved inservice inspections through screening out ineffective procedure/equipment/personnel. (orig.)

  10. Application of Automated NDE Data Evaluation to Missile and Aircraft Systems

    National Research Council Canada - National Science Library

    Hildreth, Joseph

    1996-01-01

    ... from the inspection of solid rocket motors during fabrication. The computerized system, called the Automated NDE Data Evaluation System or ANDES, was developed under contract to Martin Marietta...

  11. An Assessment of NDE Capability and Materials Characterization for Complex Additive Manufacturing Aerospace Components

    Data.gov (United States)

    National Aeronautics and Space Administration — This multi-center activity investigates the correlation between nondestructive evaluation (NDE), mechanical testing, microstructure, and additive manufacturing (AM)...

  12. Toward automated interpretation of integrated information: Managing "big data" for NDE

    Science.gov (United States)

    Gregory, Elizabeth; Lesthaeghe, Tyler; Holland, Stephen

    2015-03-01

    Large scale automation of NDE processes is rapidly maturing, thanks to recent improvements in robotics and the rapid growth of computer power over the last twenty years. It is fairly straightforward to automate NDE data collection itself, but the process of NDE remains largely manual. We will discuss three threads of technological needs that must be addressed before we are able to perform automated NDE. Spatial context, the first thread, means that each NDE measurement taken is accompanied by metadata that locates the measurement with respect to the 3D physical geometry of the specimen. In this way, the geometry of the specimen acts as a database key. Data context, the second thread, means that we record why the data was taken and how it was measured in addition to the NDE data itself. We will present our software tool that helps users interact with data in context, Databrowse. Condition estimation, the third thread, is maintaining the best possible knowledge of the condition (serviceability, degradation, etc.) of an object or part. In the NDE context, we can prospectively use Bayes' Theorem to integrate the data from each new NDE measurement with prior knowledge. These tools, combined with robotic measurements and automated defect analysis, will provide the information needed to make high-level life predictions and focus NDE measurements where they are needed most.

  13. Structural evaluation method study and procedure development for pressurizer surge line subjected to thermal stratification phenomenon

    International Nuclear Information System (INIS)

    Zhang Yixiong; Yu Xiaofei; Ai Honglei

    2014-01-01

    Thermal stratification phenomenon of pressurizer surge line can lead potential threaten to plant safety. Base on the mechanism of thermal stratification occurrence, Fr number is used to judge whether the stratification occurs or not. Also the method of calculating heat transfer coefficient is investigated. Theoretically the 3-dimension thermal stress induced by thermal stratification is decoupled to 1-dimension global stress and 2-dimension local stress, and the complex 3-dimension problem is simplified into a combination of 1-dimension and 2-dimension to compute the stress. Comply with criterion RCC-M, the complete structure integrity evaluation is accomplished after combining the stress produced by thermal stratification and the stresses produced by the other loadings. In order to match the above combined analysis method, Code SYSTUS and ROCOCO are developed. By means of aforesaid evaluation method and corresponding analysis program, surge line thermal stratification of Qinshan Phase II Extension project is investigated in this paper. And the results show that structural integrity of the pressurizer surge line affected by thermal stratification still satisfies criterion RCC-M. (authors)

  14. Low Thermal Pretreatment as Method for Increasing the Bioavailability of Organic Matters in Domestic Mixed Sludge

    Directory of Open Access Journals (Sweden)

    Seswoya Roslinda

    2016-01-01

    Full Text Available In practice, primary and secondary sludge are fed into anaerobic digestion. However, the microbial cell exists in secondary sludge are an unfavorable substrate for biodegradation. Thermal pretreatment is proved to increase the bioavailability of organic and improve the biodegradation subsequently. During low thermal pretreatment, both intracellular (within the microbial cell and extracellular (within the polymeric network materials were extracted. This process increases the bioavailability meaning that organic compounds are accessible to the microorganisms for their degradation. This research aims to investigate the effect of thermal pretreatment on domestic mixed sludge disintegration. Domestic mixed sludge was thermally treated at 70°C for various holding times. The pre-thermally treated domestic mixed sludge was measured for protein and carbohydrates following the Lowry Method, and Phenol-Sulphuric Acid Method respectively. DR 6000 UV-Vis spectrophotometer, DRB200 Reactor (digester and COD vial (TNT plus 822 were used for COD determination, based on Reactor Digestion Method approved by USEPA. The results showed that the organic matter in domestic mixed sludge is efficiently solubilised during thermal treatment organic matter. The higher soluble yield for each monitored parameter determined in this study indicated that low thermal pretreatment improve bioavailability.

  15. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  16. NDE performance demonstration in the US nuclear power industry - applications, costs, lessons learned, and connection to NDE reliability

    International Nuclear Information System (INIS)

    Ammirato, F.

    1997-01-01

    Periodic inservice inspection (ISI) of nuclear power plant components is performed in the United States to satisfy legal commitments and to provide plant owners with reliable information for managing degradation. Performance demonstration provides credible evidence that ISI will fulfill its objectives. This paper examines the technical requirements for inspection and discusses how these technical needs are used to develop effective performance demonstration applications. NDE reliability is discussed with particular reference to its role in structural integrity assessments and its connection with performance demonstration. It is shown that the role of NDE reliability can range from very small to critical depending on the particular application and must be considered carefully in design of inspection techniques and performance demonstration programs used to qualify the inspection. Finally, the costs, benefits, and problems associated with performance demonstration are reviewed along with lessons learned from more than 15 years of performance demonstration experience in the US. (orig.)

  17. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.S.

    2004-10-03

    This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.

  18. Evaluation of creep-fatigue crack growth for large-scale FBR reactor vessel and NDE assessment

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Jong Bum; Kim, Seok Hun; Yoo, Bong

    2001-03-01

    Creep fatigue crack growth contributes to the failure of FRB reactor vessels in high temperature condition. In the design stage of reactor vessel, crack growth evaluation is very important to ensure the structural safety and setup the in-service inspection strategy. In this study, creep-fatigue crack growth evaluation has been performed for the semi-elliptical surface cracks subjected to thermal loading. The thermal stress analysis of a large-scale FBR reactor vessel has been carried out for the load conditions. The distributions of axial, radial, hoop, and Von Mises stresses were obtained for the loading conditions. At the maximum point of the axial and hoop stress, the longitudinal and circumferential surface cracks (i.e. PTS crack, NDE short crack and shallow long crack) were postulated. Using the maximum and minimum values of stresses, the creep-fatigue crack growth of the proposed cracks was simulated. The crack growth rate of circumferential cracks becomes greater than that of longitudinal cracks. The total crack growth of the largest PTS crack is very small after 427 cycles. The structural integrity of a large-scale reactor can be maintained for the plant life. The crack depth growth of the shallow long crack is faster than that of the NDE short crack. In the ISI of the large-scale FBR reactor vessel, the ultrasonic inspection is beneficial to detect the shallow circumferential cracks.

  19. Pseudo-harmonics method: an application to thermal reactors

    International Nuclear Information System (INIS)

    Silva, F.C. da; Rotenberg, S.; Thome Filho, Z.D.

    1985-10-01

    Several applications of the Pseudo-Harmonics method are presented, aiming to calculate the neutron flux and the perturbed eigenvalue of a nuclear reactor, like PWR, with three enrichment regions as Angra-1 reactor. In the reference reactor, perturbations of several types as global as local were simulated. The results were compared with those from the direct calculation. (E.G.) [pt

  20. Advanced methods in evaluation of thermal power systems effectiveness

    International Nuclear Information System (INIS)

    Barnak, N.; Jakubcek, P.; Zadrazil, J.

    1993-01-01

    The universal method for thermodynamic systems process irreversibility evaluation based on exergetic approach is elaborated in this article. The method uses the basic property of exergy as extensive state parameter -additivity. Division of the system onto some hierarchic levels is considered and relation between exergetic system characteristics and its parts is defined. There are system structure coefficients in common form expressed article they are analysed. The criteria for technical and economical optimization of the system using expressed structure coefficients are defined. In the article, there are common approaches defined for the method application in the area of nuclear power plant secondary circuits and the method is used for nuclear power plant WWER-1000 secondary circuit analysis. For this, individual exergetic characteristics of secondary circuit and its parts are expressed and some of secondary circuit parameters are optimized. Proposals for practical realisation of the results are stated in the conclusions of the article, mainly in the area of computerized evaluation of technical and economical parameters of nuclear power plant and effectiveness of its operation

  1. Measurement of the thermal diffusivity on ceramics and metals using the laser flash method

    International Nuclear Information System (INIS)

    Blumm, J.; Sauseng, B.

    2001-01-01

    Full Text: In the past few decades measurement of the thermophysical properties such as thermal expansion, specific heat, thermal diffusivity or thermal conductivity has become increasingly important for industrial applications. One example is the optimization of the heat transfer in industrial assemblies used for automotive or space applications. The thermal diffusivity and thermal conductivity of all components exposed to high and/or sub-ambient temperatures or large temperature gradients should be accurately known. Another well known example is the characterization of materials such as graphite used in nuclear reactors. Furthermore, analysis of solid and liquid metals is of paramount importance for the simulation of casting processes using finite element software programs. Thermal barrier coatings (zirconia) are used more and more often for high-temperature turbine blades. Reducing the thermal conductivity and the heat transfer through such coatings usually allows higher working temperatures and therefore higher efficiency of the gas turbine. These examples clearly demonstrate the need of instrumentation for the accurate measurement of the required thermophysical properties. The laser flash method has been developed to become one of the most commonly used techniques for the measurement of the thermal diffusivity of various kinds of solids and liquids. Easy sample preparation, small sample dimensions, fast measurement times and high accuracy are only some of the advantages of this non-destructive measurement technique. In addition, temperature dependent measurements can easily be realized. Since the development of the method by Parker et al. new routines for processing of the raw data have been established. Analytical mathematical descriptions were found to compensate for heat loss and finite pulse effects. Using modern personal computers and non-linear regression routines, mathematical models can be used to fit the raw data, yielding improved results for thermal

  2. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1980-01-01

    This paper presents a method for performing a statistical steady state thermal analysis of a reactor core. The technique is only outlined here since detailed thermal equations are dependent on the core geometry. The method has been applied to a pressurised water reactor core and the results are presented for illustration purposes. Random hypothetical cores are generated using the Monte-Carlo method. The technique shows that by splitting the parameters into two types, denoted core-wise and in-core, the Monte Carlo method may be used inexpensively. The idea of using extremal statistics to characterise the low probability events (i.e. the tails of a distribution) is introduced together with a method of forming the final probability distribution. After establishing an acceptable probability of exceeding a thermal design criterion, the final probability distribution may be used to determine the corresponding thermal response value. If statistical and deterministic (i.e. conservative) thermal response values are compared, information on the degree of pessimism in the deterministic method of analysis may be inferred and the restrictive performance limitations imposed by this method relieved. (orig.)

  3. NDE for the 21st century: industry 4.0 requires NDE 4.0 (Conference Presentation)

    Science.gov (United States)

    Meyendorf, Norbert G.

    2017-04-01

    Industry 4.0 stands for the fourth industrial revolution that is ongoing at present. Industry 4.0 is a terminology preferred used in Europe to characterize the integration of production and communication technologies, the so called "smart factory". The first industrial revolution was the mechanization of work. The second was mass production and the assembly line. While the third revolution was the computer integrated manufacturing. Industry 4.0 encompasses the complete networking of all industrial areas. Lowering costs and efficient in-time production will be possible also for low numbers of very unique parts for example by additive manufacturing (3D printing). A significant aspect is also quality and maintainability of these sometimes unique structures and components. NDE has to follow these trends, not only by adapting NDE techniques to the new technologies, but also introducing the capability of cyber systems into the inspection and maintenance processes. The requirements and challenges for this new technological area will be discussed. Chances for applications of new technologies and systems for NDE will be demonstrated online.

  4. Thermal analysis methods for LMFBR wire wrapped bundles

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1976-11-01

    A note is presented which was written to stimulate an awareness and discussion of the fundamental differences in the formulation of certain existing analysis codes for LMFBR wire wrap bundles. The contention of the note is that for those array types where data exists (one wire per pin, equal start angles), the ENERGY method results for coolant temperature under forced convection conditions provide benchmarks of reliability equal to the results of codes COBRA and TH1-3D

  5. Design of durability and lifetime assessment method under thermomechanical stress for thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Gyoo; Choi, Young Kue; Jeon, Seol; Lee, Hee Soo [Pusan National University, Busan (Korea, Republic of); Jeon, Min Seok [Korea Testing Laboratory, Seoul (Korea, Republic of)

    2014-01-15

    A durability testing method under thermo-mechanical stress for thermal barrier coatings (TBC) specimens was designed by a combination of an electric furnace and a tensile testing machine, which was done on TBCs on NIMONIC 263 substrates by an atmospheric plasma spraying (APS) deposition method. The testing conditions were chosen according to a preliminary experiment that identified the elastic deformation region of the top coating and the substrate during mechanical loading. Surface cracking and a decrease in the thickness of the top coating, which are typical degradation behaviors under conventional thermal shock testing, were observed after the designed thermal fatigue test, and delamination at the top coating-bond coating interface occurred by the mechanical load. Lifetime assessment was conducted by statistical software using life cycle data which were obtained after the thermal fatigue test.

  6. A Method for testing the integrated thermal resistance of thermoelectric modules

    Science.gov (United States)

    Gao, Junling; Du, Qungui; Chen, Min

    2013-11-01

    The integrated thermal resistance (ITR) of thermoelectric modules (TEMs) is an important parameter that represents the thermal-conduction of ceramic substrates, copper conducting strips, and welding material used in the TEM as well as the thermal contact resistances between different materials. In this study, an accurate and practical test method is proposed for the ITR of TEMs according to thermoelectric heat transfer theory and the equivalent characteristics of heat flux through the cold and hot sides of TEMs in an open-circuit situation. By using such measurements and comparisons, it is verified that the measured ITR value in our mode is accurate and reliable. In particular this method accurately predicts the actual operating conditions of TEMs, in which TEMs are under certain mechanical pressure. It effectively solves the problem of thermal resistance extraction from operating TEMs and is of great significance in their analysis and optimization.

  7. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  8. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine

    2016-01-01

    and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition......We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...

  9. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1981-01-01

    In a previous publication the author presented a method for undertaking statistical steady state thermal analyses of reactor cores. The present paper extends the technique to an assessment of confidence limits for the resulting probability functions which define the probability that a given thermal response value will be exceeded in a reactor core. Establishing such confidence limits is considered an integral part of any statistical thermal analysis and essential if such analysis are to be considered in any regulatory process. In certain applications the use of a best estimate probability function may be justifiable but it is recognised that a demonstrably conservative probability function is required for any regulatory considerations. (orig.)

  10. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    International Nuclear Information System (INIS)

    Eydam, Agnes; Suchaneck, Gunnar; Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter

    2014-01-01

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes

  11. A study on the bonding residual thermal stress analysis of dissimilar materials using boundary element method

    International Nuclear Information System (INIS)

    Yi, Won; Yu, Yeong Chul; Jeong, Eui Seob; Lee, Chang Ho

    1995-01-01

    It is very important to evaluate the bonding residual thermal stress in dissimilar materials such as LSI package. In this study, the bonding residual thermal stress was calculated using the boundary element method, varing with the sub-element, geometry of specimen and adhesive thickness. The present results reveal a stress singularity at the edge of the interface, therefore the bonding strength of metal/resin interface can be estimated by taking into account it.

  12. Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Dewei Tang

    2017-03-01

    Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.

  13. Method for forming thermally stable nanoparticles on supports

    Science.gov (United States)

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2013-08-20

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  14. Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1982-01-01

    1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

  15. Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation

    Science.gov (United States)

    Jannot, Y.; Degiovanni, A.; Camus, M.

    2018-04-01

    Standard pore size determination methods like mercury porosimetry, nitrogen sorption, microscopy, or X-ray tomography are not suited to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization has been developed in a previous study. This method has been used with air pressure varying from 10-1 to 105 Pa for materials having a thermal conductivity less than 0.05 W m-1 K-1 at atmospheric pressure. It enables the estimation of pore size distribution between 100 nm and 1 mm. In this paper, we present a new experimental device enabling thermal conductivity measurement under gas pressure up to 106 Pa, enabling the estimation of the volume fraction of pores having a 10 nm diameter. It is also demonstrated that the main thermal conductivity models (parallel, series, Maxwell, Bruggeman, self-consistent) lead to the same estimation of the pore size distribution as the extended parallel model (EPM) presented in this paper and then used to process the experimental data. Three materials with thermal conductivities at atmospheric pressure ranging from 0.014 W m-1 K-1 to 0.04 W m-1 K-1 are studied. The thermal conductivity measurement results obtained with the three materials are presented, and the corresponding pore size distributions between 10 nm and 1 mm are presented and discussed.

  16. The monostandard method in thermal neutron activation analysis of geological, biological and environmental materials

    International Nuclear Information System (INIS)

    Alian, A.; Djingova, R.G.; Kroener, B.; Sansoni, B.

    1984-01-01

    A simple method is described for instrumental multielement thermal neutron activation analysis using a monostandard. For geological and air dust samples, iron is used as a comparator, while sodium has advantages for biological materials. To test the capabilities of this method, the values of the effective cross sections of the 23 elements determined were evaluated in a reactor site with an almost pure thermal neutron flux of about 9x10 12 nxcm -2 xs -1 and an epithermal neutron contribution of less than 0.03%. The values obtained were found to agree mostly well with the best literature values of thermal neutron cross sections. The results of an analysis by activation in the same site agree well with the relative method using multielement standards and for several standard reference materials with certified element contents. A comparison of the element contents obtained by the monostandard and relative methods together with corresponding precisions and accuracies is given. (orig.) [de

  17. Experimental electro-thermal method for nondestructively testing welds in stainless steel pipes

    International Nuclear Information System (INIS)

    Green, D.R.

    1979-01-01

    Welds in austenitic stainless steel pipes are notoriously difficult to nondestructively examine using conventional ultrasonic and eddy current methods. Survace irregularities and microscopic variations in magnetic permeability cause false eddy current signal variations. Ultrasonic methods have been developed which use computer processing of the data to overcome some of the problems. Electro-thermal nondestructive testing shows promise for detecting flaws that are difficult to detect using other NDT methods. Results of a project completed to develop and demonstrate the potential of an electro-thermal method for nondestructively testing stainless steel pipe welds are presented. Electro-thermal NDT uses a brief pulse of electrical current injected into the pipe. Defects at any depth within the weld cause small differences in surface electrical current distribution. These cause short-lived transient temperature differences on the pipe's surface that are mapped using an infrared scanning camera. Localized microstructural differences and normal surface roughness in the welds have little effect on the surface temperatures

  18. Determination of the thermal conductivity and specific heat capacity of neem seeds by inverse problem method

    Directory of Open Access Journals (Sweden)

    S.N. Nnamchi

    2010-01-01

    Full Text Available Determination of the thermal conductivity and the specific heat capacity of neem seeds (Azadirachta indica A. Juss usingthe inverse method is the main subject of this work. One-dimensional formulation of heat conduction problem in a spherewas used. Finite difference method was adopted for the solution of the heat conduction problem. The thermal conductivityand the specific heat capacity were determined by least square method in conjunction with Levenberg-Marquardt algorithm.The results obtained compare favourably with those obtained experimentally. These results are useful in the analysis ofneem seeds drying and leaching processes.

  19. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil

    International Nuclear Information System (INIS)

    Ma, Fujun; Peng, Changsheng; Hou, Deyi; Wu, Bin; Zhang, Qian; Li, Fasheng; Gu, Qingbao

    2015-01-01

    Highlights: • Hg content was reduced to <1.5 mg/kg when treated at 400 °C with citric acid. • The treated soil retained most of its original soil physicochemical properties. • Proton provided by citric acid facilitates thermal removal of mercury. • This thermal treatment method is expected to reduce energy input by 35%. - Abstract: Thermal treatment is a promising technology for the remediation of mercury contaminated soils, but it often requires high energy input at heating temperatures above 600 °C, and the treated soil is not suitable for agricultural reuse. The present study developed a novel method for the thermal treatment of mercury contaminated soils with the facilitation of citric acid (CA). A CA/Hg molar ratio of 15 was adopted as the optimum dosage. The mercury concentration in soils was successfully reduced from 134 mg/kg to 1.1 mg/kg when treated at 400 °C for 60 min and the treated soil retained most of its original soil physiochemical properties. During the treatment process, CA was found to provide an acidic environment which enhanced the volatilization of mercury. This method is expected to reduce energy input by 35% comparing to the traditional thermal treatment method, and lead to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury contaminated soil in future engineering applications.

  20. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fujun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Peng, Changsheng [The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Hou, Deyi [Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Wu, Bin; Zhang, Qian; Li, Fasheng [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Gu, Qingbao, E-mail: guqb@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2015-12-30

    Highlights: • Hg content was reduced to <1.5 mg/kg when treated at 400 °C with citric acid. • The treated soil retained most of its original soil physicochemical properties. • Proton provided by citric acid facilitates thermal removal of mercury. • This thermal treatment method is expected to reduce energy input by 35%. - Abstract: Thermal treatment is a promising technology for the remediation of mercury contaminated soils, but it often requires high energy input at heating temperatures above 600 °C, and the treated soil is not suitable for agricultural reuse. The present study developed a novel method for the thermal treatment of mercury contaminated soils with the facilitation of citric acid (CA). A CA/Hg molar ratio of 15 was adopted as the optimum dosage. The mercury concentration in soils was successfully reduced from 134 mg/kg to 1.1 mg/kg when treated at 400 °C for 60 min and the treated soil retained most of its original soil physiochemical properties. During the treatment process, CA was found to provide an acidic environment which enhanced the volatilization of mercury. This method is expected to reduce energy input by 35% comparing to the traditional thermal treatment method, and lead to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury contaminated soil in future engineering applications.

  1. ARMA processing for NDE ultrasonic imaging

    International Nuclear Information System (INIS)

    Pao, Y.H.; El-Sherbini, A.

    1984-01-01

    This chapter describes a new method for acoustic image reconstruction for an active multiple sensor system operating in the reflection mode in the Fresnel region. The method is based on the use of an ARMA model for the reconstruction process. Algorithms for estimating the model parameters are presented and computer simulation results are shown. The AR coefficients are obtained independently of the MA coefficients. It is shown that when the ARMA reconstruction method is augmented with the multifrequency approach, it can provide a three-dimensional reconstructed image with high lateral and range resolutions, high signal to noise ratio and reduced sidelobe levels. The proposed ARMA reconstruction method results in high quality images and better performance than that obtainable with conventional methods. The advantages of the method are very high lateral resolution with a limited number of sensors, reduced sidelobes level, and high signal to noise ratio

  2. Non thermal plasma surface cleaner and method of use

    KAUST Repository

    Neophytou, Marios

    2017-09-14

    Described herein are plasma generation devices and methods of use of the devices. The devices can be used for the cleaning of various surfaces and/or for inhibiting or preventing the accumulation of particulates, such as dust, or moisture on various surfaces. The devices can be used to remove dust and other particulate contaminants from solar panels and windows, or to avoid or minimize condensation on various surfaces. In an embodiment a plasma generation device is provided. The plasma generation device can comprise: a pair of electrodes (1,2) positioned in association with a surface of a dielectric substrate (3). The pair of electrodes (1,2) can comprise a first electrode (1) and a second electrode (2). The first electrode and second electrode can be of different sizes, one of the electrodes being smaller than the other of the electrodes. The first electrode and second electrode can be separated by a distance and electrically connected to a voltage source (4,5).

  3. Non thermal plasma surface cleaner and method of use

    KAUST Repository

    Neophytou, Marios; Lacoste, Deanna A.; Kirkus, Mindaugas

    2017-01-01

    Described herein are plasma generation devices and methods of use of the devices. The devices can be used for the cleaning of various surfaces and/or for inhibiting or preventing the accumulation of particulates, such as dust, or moisture on various surfaces. The devices can be used to remove dust and other particulate contaminants from solar panels and windows, or to avoid or minimize condensation on various surfaces. In an embodiment a plasma generation device is provided. The plasma generation device can comprise: a pair of electrodes (1,2) positioned in association with a surface of a dielectric substrate (3). The pair of electrodes (1,2) can comprise a first electrode (1) and a second electrode (2). The first electrode and second electrode can be of different sizes, one of the electrodes being smaller than the other of the electrodes. The first electrode and second electrode can be separated by a distance and electrically connected to a voltage source (4,5).

  4. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum therma...

  5. Implementation aspects of the Boundary Element Method including viscous and thermal losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller

    2014-01-01

    The implementation of viscous and thermal losses using the Boundary Element Method (BEM) is based on the Kirchhoff’s dispersion relation and has been tested in previous work using analytical test cases and comparison with measurements. Numerical methods that can simulate sound fields in fluids...

  6. In situ performance and potential applications of a thermal bed-load measurement method

    CSIR Research Space (South Africa)

    Ilgner, HJ

    2010-09-01

    Full Text Available Methods to detect the flow condition at the pipeline invert are reviewed. New results of a small heated plate inserted into a non-metallic pipe are presented. This thermal method is based on mini-heaters and can detect erratic flow behaviour near...

  7. Numerical modeling of probe velocity effects for electromagnetic NDE methods

    Science.gov (United States)

    Shin, Y. K.; Lord, W.

    The present discussion of magnetic flux (MLF) leakage inspection introduces the behavior of motion-induced currents. The results obtained indicate that velocity effects exist at even low probe speeds for magnetic materials, compelling the inclusion of velocity effects in MLF testing of oil pipelines, where the excitation level and pig speed are much higher than those used in the present work. Probe velocity effect studies should influence probe design, defining suitable probe speed limits and establishing training guidelines for defect-characterization schemes.

  8. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    Science.gov (United States)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  9. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    International Nuclear Information System (INIS)

    Guzina, Bojan; Kunerth, Dennis

    2014-01-01

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  10. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guzina, Bojan [Univ. of Minnesota, Minneapolis, MN (United States); Kunerth, Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  11. 40-in. OMS Kevlar(Registered Trademark) COPV S/N 007 Stress Rupture Test NDE

    Science.gov (United States)

    Saulsberry, Regor; Greene, Nate; Forth, Scott; Leifeste, Mark; Gallus, Tim; Yoder, Tommy; Keddy, Chris; Mandaras, Eric; Wincheski, Buzz; Williams, Philip; hide

    2010-01-01

    The presentation examines pretest nondestructive evaluation (NDE), including external/internal visual inspection, raman spectroscopy, laser shearography, and laser profilometry; real-time NDE including eddy current, acoustic emission (AE), and real-time portable raman spectroscopy; and AE application to carbon/epoxy composite overwrapped pressure vessels.

  12. A simplified method for evaluating thermal performance of unglazed transpired solar collectors under steady state

    International Nuclear Information System (INIS)

    Wang, Xiaoliang; Lei, Bo; Bi, Haiquan; Yu, Tao

    2017-01-01

    Highlights: • A simplified method for evaluating thermal performance of UTC is developed. • Experiments, numerical simulations, dimensional analysis and data fitting are used. • The correlation of absorber plate temperature for UTC is established. • The empirical correlation of heat exchange effectiveness for UTC is proposed. - Abstract: Due to the advantages of low investment and high energy efficiency, unglazed transpired solar collectors (UTC) have been widely used for heating in buildings. However, it is difficult for designers to quickly evaluate the thermal performance of UTC based on the conventional methods such as experiments and numerical simulations. Therefore, a simple and fast method to determine the thermal performance of UTC is indispensable. The objective of this work is to provide a simplified calculation method to easily evaluate the thermal performance of UTC under steady state. Different parameters are considered in the simplified method, including pitch, perforation diameter, solar radiation, solar absorptivity, approach velocity, ambient air temperature, absorber plate temperature, and so on. Based on existing design parameters and operating conditions, correlations for the absorber plate temperature and the heat exchange effectiveness are developed using dimensional analysis and data fitting, respectively. Results show that the proposed simplified method has a high accuracy and can be employed to evaluate the collector efficiency, the heat exchange effectiveness and the air temperature rise. The proposed method in this paper is beneficial to directly determine design parameters and operating status for UTC.

  13. Uranium dioxide thermal characterization by the flash laser method from 23 Celsius to 175 Celsius

    International Nuclear Information System (INIS)

    Faeda, K.C.M.; Lameiras, F.S.; Carneiro, L.S.S.; Camarano, D.M.; Ferreira, R.A.N.

    2010-01-01

    The Laser Flash Method has become one of the most common techniques for measuring thermal diffusivity and conductivity in solids and liquids. This method is recognized by INMETRO as standard to be used in Brazil for measuring thermophysical properties of materials, such as metals, carbon composites, ceramics, and also nuclear materials. This article describes the experimental bench of the LMPT-Laboratorio de Medicao de Propriedades Termofisicas de Combustiveis Nucleares e Materiais of the CDTN-Centro de Desenvolvimento da Tecnologia Nuclear, (LMPT), as well as the mathematical model developed based on this method. The obtained results for the thermal diffusivity and for the thermal conductivity of uranium dioxide (U0 2 ) pellets in the temperature range from 25 deg to 175 deg C, are discussed and compared with the literature data. The estimative of the input quantities uncertainty of the mathematical model was determined according to ISO - BIPM-Guide to the Expression of Uncertainty in Measurement and the Monte Carlo Method was used to estimate of the output quantities uncertainty (thermal diffusivity and thermal conductivity). Additionally the results of the x-rays of these pellets are presented. (author)

  14. Simplified Method for the Characterization of Rectangular Straw Bales (RSB) Thermal Conductivity

    Science.gov (United States)

    Conti, Leonardo; Goli, Giacomo; Monti, Massimo; Pellegrini, Paolo; Rossi, Giuseppe; Barbari, Matteo

    2017-10-01

    This research aims to design and implement tools and methods focused at the assessment of the thermal properties of full size Rectangular Straw Bales (RSB) of various nature and origin, because their thermal behaviour is one of the key topics in market development of sustainable building materials. As a first approach a method based on a Hot-Box in agreement with the ASTM C1363 - 11 standard was adopted. This method was found to be difficult for the accurate measurement of energy flows. Instead, a method based on a constant energy input was developed. With this approach the thermal conductivity of a Rectangular Straw-Bale (RSB λ) can be determined by knowing the thermal conductivity of the materials used to build the chamber and the internal and external temperature of the samples and of the chamber. A measurement a metering chamber was built and placed inside a climate chamber, maintained at constant temperature. A known quantity of energy was introduced inside the metering chamber. A series of thermopiles detects the temperature of the internal and external surfaces of the metering chamber and of the specimens allowing to calculate the thermal conductivity of RSB in its natural shape. Different cereal samples were tested. The values were found consistent with those published in scientific literature.

  15. Numerical methods for the prediction of thermal fatigue due to turbulent mixing

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Blom, F.J.

    2011-01-01

    Research highlights: → Thermal fatigue due to turbulent mixing is caused by moving temperature spots on the pipe wall. → Passing temperature spots cause temperature fluctuations of sinusoidal nature. → Input parameters for a sinusoidal model can be obtained by linking it with a coupled CFD-FEM model. → Overconservatism of the sinusoidal method can be reduced, having more knowledge on thermal loads. - Abstract: Turbulent mixing of hot and cold flows is one of the possible causes of thermal fatigue in piping systems. Especially in primary pipework of nuclear power plants this is an important, safety related issue. Since the frequencies of the involved temperature fluctuations are generally too high to be detected well by common plant instrumentation, accurate numerical simulations are indispensable for a proper fatigue assessment. In this paper, a link is made between two such numerical methods: a coupled CFD-FEM model and a sinusoidal model. By linking these methods, more insight is obtained in the physical phenomenon causing thermal fatigue due to turbulent mixing. Furthermore, useful knowledge is acquired on the determination of thermal loading parameters, essential for reducing overconservatism, as currently present in simplified fatigue assessment methods.

  16. Experimental investigation of radiation effect on human thermal comfort by Taguchi method

    International Nuclear Information System (INIS)

    Arslanoglu, Nurullah; Yigit, Abdulvahap

    2016-01-01

    Highlights: • Radiation heat flux from lighting lamps on human thermal comfort is studied. • The effect of posture position on thermal comfort is investigated. • The effect of clothing color on thermal comfort is examined. • Radiation heat flux from halogen reflector lamp increase skin temperature more. • Posture position effect on thermal comfort is less than the other parameters. - Abstract: In this study, the effect of radiation heat flux of lighting lamps on human thermal comfort was investigated by using Taguchi method. In addition, at indoor conditions, clothing color and posture position under the radiation effect on thermal comfort were also investigated. For this purpose, experiments were performed in an air conditioned laboratory room in summer and autumn seasons. The amount of temperature rise on the back was considered as performance parameter. An L8 orthogonal array was selected as an experimental plan for the third parameters mentioned above for summer and autumn seasons. The results were analyzed for the optimum conditions using signal-to-noise (S/N) ratio and ANOVA method. The optimum results were found to be clear halogen lamp as lighting lamp, white as t-shirt color, standing as posture position, in summer season. The optimum levels of the lighting lamp, t-shirt color and posture position were found to be clear halogen lamp, white, sitting in autumn season, respectively.

  17. Intelligent screening of electrofusion-polyethylene joints based on a thermal NDT method

    Science.gov (United States)

    Doaei, Marjan; Tavallali, M. Sadegh

    2018-05-01

    The combinations of infrared thermal images and artificial intelligence methods have opened new avenues for pushing the boundaries of available testing methods. Hence, in the current study, a novel thermal non-destructive testing method for polyethylene electrofusion joints was combined with k-means clustering algorithms as an intelligent screening tool. The experiments focused on ovality of pipes in the coupler, as well as misalignment of pipes-couplers in 25 mm diameter joints. The temperature responses of each joint to an internal heat pulse were recorded by an IR thermal camera, and further processed to identify the faulty joints. The results represented clustering accuracy of 92%, as well as more than 90% abnormality detection capabilities.

  18. Thermal imbalance force modelling for a GPS satellite using the finite element method

    Science.gov (United States)

    Vigue, Yvonne; Schutz, Bob E.

    1991-01-01

    Methods of analyzing the perturbation due to thermal radiation and determining its effects on the orbits of GPS satellites are presented, with emphasis on the FEM technique to calculate satellite solar panel temperatures which are used to determine the magnitude and direction of the thermal imbalance force. Although this force may not be responsible for all of the force mismodeling, conditions may work in combination with the thermal imbalance force to produce such accelerations on the order of 1.e-9 m/sq s. If submeter accurate orbits and centimeter-level accuracy for geophysical applications are desired, a time-dependent model of the thermal imbalance force should be used, especially when satellites are eclipsing, where the observed errors are larger than for satellites in noneclipsing orbits.

  19. Pulsational stabilities of a star in thermal imbalance: comparison between the methods

    International Nuclear Information System (INIS)

    Vemury, S.K.

    1978-01-01

    The stability coefficients for quasi-adiabatic pulsations for a model in thermal imbalance are evaluated using the dynamical energy (DE) approach, the total (kinetic plus potential) energy (TE) approach, and the small amplitude (SA) approaches. From a comparison among the methods, it is found that there can exist two distinct stability coefficients under conditions of thermal imbalance as pointed out by Demaret. It is shown that both the TE approaches lead to one stability coefficient, while both the SA approaches lead to another coefficient. The coefficient obtained through the energy approaches is identified as the one which determines the stability of the velocity amplitudes.For a prenova model with a thin hydrogen-burning shell in thermal imbalance, several radial modes are found to be unstable both for radial displacements and for velocity amplitudes. However, a new kind of pulsational instability also appears, viz., while the radial displacements are unstable, the velocity amplitudes may be stabilized through the thermal imbalance terms

  20. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  1. Near-surface thermal characterization of plasma facing components using the 3-omega method

    International Nuclear Information System (INIS)

    Dechaumphai, Edward; Barton, Joseph L.; Tesmer, Joseph R.; Moon, Jaeyun; Wang, Yongqiang; Tynan, George R.; Doerner, Russell P.; Chen, Renkun

    2014-01-01

    Near-surface regime plays an important role in thermal management of plasma facing components in fusion reactors. Here, we applied a technique referred to as the ‘3ω’ method to measure the thermal conductivity of near-surface regimes damaged by ion irradiation. By modulating the frequency of the heating current in a micro-fabricated heater strip, the technique enables the probing of near-surface thermal properties. The technique was applied to measure the thermal conductivity of a thin ion-irradiated layer on a tungsten substrate, which was found to decrease by nearly 60% relative to pristine tungsten for a Cu ion dosage of 0.2 dpa

  2. On the sensitivity of FPPE - TWRC method in thermal effusivity investigations of solids

    International Nuclear Information System (INIS)

    Dadarlat, Dorin; Streza, Mihaela; Pop, Mircea N; Tosa, Valer

    2009-01-01

    The front detection configuration (FPPE) together with the thermal-wave-resonator-cavity (TWRC) method was used for direct measurement of the thermal effusivity of solid materials inserted as backings in the FPPE detection cell. It was demonstrated that the normalized phase of the FPPE signal has an oscillating dependence as a function of sample's thickness. The paper presents experimental results on solid materials, with various values of thermal effusivity (Cu, brass, steel, bakelite, wood). A study of the sensitivity of the technique for different liquid/backing effusivity ratios is performed. The highest sensitivity was obtained when investigating solids with values of thermal effusivity not far from the effusivity of the liquid layer of the detection cell.

  3. Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect

    International Nuclear Information System (INIS)

    Gupta, A.; Hong, S.; Moacanin, J.

    1981-01-01

    A method and apparatus for measuring thermal diffusivity and molecular relaxation processes in a sample material utilizing two light beams, one being a pulsed laser light beam for forming a thermal lens in the sample material, and the other being a relatively low power probe light beam for measuring changes in the refractive index of the sample material during formation and dissipation of the thermal lens. More specifically, a sample material is irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses is absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate is chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (Cw) laser beam, irradiates the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated. A plot of the changes in refractive index as a function of time during formation of the thermal lens as reflected by changes in intensity of the probe beam, provides a curve related to molecular relaxation characteristics of the material, and a plot during dissipation of the thermal lens provides a curve related to the thermal diffusivity of the sample material

  4. Assessment of NDE for key indicators of aging cables in nuclear power plants - Interim status

    Science.gov (United States)

    Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.

    2016-02-01

    by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and industry (represented by the Electric Power Research Institute), an assessment of cable NDE methods was commissioned. Technologies include both bulk electrical measurements (Tan δ, time domain reflectometry, frequency domain reflectometry (FDR), partial discharge, and other techniques) and local insulation measurement (indenter, dynamic mechanical analysis interdigital capacitance, infrared spectral measurement, etc.). This aging cable NDE program update reviews the full range of techniques but focuses on the most interesting test approaches that have a chance to be deployed in-situ, particularly including Tan δ, FDR, and ultrasound methods that have been reviewed most completely in this progress period.

  5. First 3D thermal mapping of an active volcano using an advanced photogrammetric method

    Science.gov (United States)

    Antoine, Raphael; Baratoux, David; Lacogne, Julien; Lopez, Teodolina; Fauchard, Cyrille; Bretar, Frédéric; Arab-Sedze, Mélanie; Staudacher, Thomas; Jacquemoud, Stéphane; Pierrot-Deseilligny, Marc

    2014-05-01

    Thermal infrared data obtained in the [7-14 microns] spectral range are usually used in many Earth Science disciplines. These studies are exclusively based on the analysis of 2D information. In this case, a quantitative analysis of the surface energy budget remains limited, as it may be difficult to estimate the radiative contribution of the topography, the thermal influence of winds on the surface or potential imprints of subsurface flows on the soil without any precise DEM. The draping of a thermal image on a recent DEM is a common method to obtain a 3D thermal map of a surface. However, this method has many disadvantages i) errors can be significant in the orientation process of the thermal images, due to the lack of tie points between the images and the DEM; ii) the use of a recent DEM implies the use of another remote sensing technique to quantify the topography; iii) finally, the characterization of the evolution of a surface requires the simultaneous acquisition of thermal data and topographic information, which may be expensive in most cases. The stereophotogrammetry method allows to reconstitute the relief of an object from photos taken from different positions. Recently, substantial progress have been realized in the generation of high spatial resolution topographic surfaces using stereophotogrammetry. However, the presence of shadows, homogeneous textures and/or weak contrasts in the visible spectrum (e.g., flowing lavas, uniform lithologies) may prevent from the use of such method, because of the difficulties to find tie points on each image. Such situations are more favorable in the thermal infrared spectrum, as any variation in the thermal properties or geometric orientation of the surfaces may induce temperature contrasts that are detectable with a thermal camera. This system, usually functioning with a array sensor (Focal Plane Array) and an optical device, have geometric characteristics that are similar to digital cameras. Thus, it may be possible

  6. Measurement and Estimation of Effective Thermal Conductivity for Sodium based Nanofluid using 3-Omega Method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sun Ryung; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of); Kim, Moo Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The sodium-cooled fast reactor (SFR) is one of generation IV type reactors and has been extensively researched since 1950s. A strong advantage of the SFR is its liquid sodium coolant which is well-known for its superior thermal properties. However, in terms of possible pipe leakage or rupture, a liquid sodium coolant possesses a critical issue due to its high chemical reactivity which leads to fire or explosion. Due to its safety concerns, dispersion of nanoparticles in liquid sodium has been proposed to reduce the chemical reactivity of sodium. In case of sodium based titanium nanofluid (NaTiNF), the chemical reactivity suppression effect when interacting with water has been proved both experimentally and theoretically [1,2]. Suppression of chemical reactivity is critical without much loss of high heat transfer characteristic of sodium. As there is no research conducted for applying 3-omega sensor in liquid metal as well as high temperature liquid, the sensor development is performed for using in NaTiNF as well as effective thermal conductivity model validation. Based on the acquired effective thermal conductivity of NaTiNF, existing effective thermal conductivity models are evaluated. Thermal conductivity measurement is performed for liquid sodium based titanium nanofluid (NaTiNF) through 3-Omega method. The experiment is conducted at three temperature points of 120, 150, and 180 .deg. C for both pure liquid sodium and NaTiNF. By using 3- omega sensor, thermal conductivity measurement of liquid metal can be more conveniently conducted in labscale. Also, its possibility to measure the thermal conductivity of high temperature liquid metal with metallic nanoparticles being dispersed is shown. Unlike other water or oil-based nanofluids, NaTiNF exhibits reduction of thermal conductivity compare with liquid sodium. Various nanofluid models are plotted, and it is concluded that the MSBM which considers interfacial resistance and Brownian motion can be used in predicting

  7. Measurement and Estimation of Effective Thermal Conductivity for Sodium based Nanofluid using 3-Omega Method

    International Nuclear Information System (INIS)

    Oh, Sun Ryung; Park, Hyun Sun; Kim, Moo Hwan

    2016-01-01

    The sodium-cooled fast reactor (SFR) is one of generation IV type reactors and has been extensively researched since 1950s. A strong advantage of the SFR is its liquid sodium coolant which is well-known for its superior thermal properties. However, in terms of possible pipe leakage or rupture, a liquid sodium coolant possesses a critical issue due to its high chemical reactivity which leads to fire or explosion. Due to its safety concerns, dispersion of nanoparticles in liquid sodium has been proposed to reduce the chemical reactivity of sodium. In case of sodium based titanium nanofluid (NaTiNF), the chemical reactivity suppression effect when interacting with water has been proved both experimentally and theoretically [1,2]. Suppression of chemical reactivity is critical without much loss of high heat transfer characteristic of sodium. As there is no research conducted for applying 3-omega sensor in liquid metal as well as high temperature liquid, the sensor development is performed for using in NaTiNF as well as effective thermal conductivity model validation. Based on the acquired effective thermal conductivity of NaTiNF, existing effective thermal conductivity models are evaluated. Thermal conductivity measurement is performed for liquid sodium based titanium nanofluid (NaTiNF) through 3-Omega method. The experiment is conducted at three temperature points of 120, 150, and 180 .deg. C for both pure liquid sodium and NaTiNF. By using 3- omega sensor, thermal conductivity measurement of liquid metal can be more conveniently conducted in labscale. Also, its possibility to measure the thermal conductivity of high temperature liquid metal with metallic nanoparticles being dispersed is shown. Unlike other water or oil-based nanofluids, NaTiNF exhibits reduction of thermal conductivity compare with liquid sodium. Various nanofluid models are plotted, and it is concluded that the MSBM which considers interfacial resistance and Brownian motion can be used in predicting

  8. Proceedings of the NEA workshop on development priorities for NDE of concrete structures in nuclear plants

    International Nuclear Information System (INIS)

    1998-01-01

    The first session's objectives of this conference were to identify the perspectives of national regulators and plant operators on what is required of NDE. The second session objectives were to provide opportunity for NDE practitioners to share experience and views on the status of development of key NDE techniques: tomographic imaging for investigation of concrete structures, four examples of modern NDE techniques applied to the investigation of nuclear and non-nuclear concrete structures and a vision of future improvements, investigating concrete structures by 3D Radar imaging and imaging using mechanical impact, synopsis NDT of concrete using ultrasonics and radar. The third session objectives were to prioritise development of NDE techniques for safety related concrete structures in nuclear installations: key conclusions from earlier sessions, proposed priorities and next steps

  9. Using the probability method for multigroup calculations of reactor cells in a thermal energy range

    International Nuclear Information System (INIS)

    Rubin, I.E.; Pustoshilova, V.S.

    1984-01-01

    The possibility of using the transmission probability method with performance inerpolation for determining spatial-energy neutron flux distribution in cells of thermal heterogeneous reactors is considered. The results of multigroup calculations of several uranium-water plane and cylindrical cells with different fuel enrichment in a thermal energy range are given. A high accuracy of results is obtained with low computer time consumption. The use of the transmission probability method is particularly reasonable in algorithms of the programmes compiled computer with significant reserve of internal memory

  10. A small-plane heat source method for measuring the thermal conductivities of anisotropic materials

    Science.gov (United States)

    Cheng, Liang; Yue, Kai; Wang, Jun; Zhang, Xinxin

    2017-07-01

    A new small-plane heat source method was proposed in this study to simultaneously measure the in-plane and cross-plane thermal conductivities of anisotropic insulating materials. In this method the size of the heat source element is smaller than the sample size and the boundary condition is thermal insulation due to no heat flux at the edge of the sample during the experiment. A three-dimensional model in a rectangular coordinate system was established to exactly describe the heat transfer process of the measurement system. Using the Laplace transform, variable separation, and Laplace inverse transform methods, the analytical solution of the temperature rise of the sample was derived. The temperature rises calculated by the analytical solution agree well with the results of numerical calculation. The result of the sensitivity analysis shows that the sensitivity coefficients of the estimated thermal conductivities are high and uncorrelated to each other. At room temperature and in a high-temperature environment, experimental measurements of anisotropic silica aerogel were carried out using the traditional one-dimensional plane heat source method and the proposed method, respectively. The results demonstrate that the measurement method developed in this study is effective and feasible for simultaneously obtaining the in-plane and cross-plane thermal conductivities of the anisotropic materials.

  11. Graphics processing unit based computation for NDE applications

    Science.gov (United States)

    Nahas, C. A.; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2012-05-01

    Advances in parallel processing in recent years are helping to improve the cost of numerical simulation. Breakthroughs in Graphical Processing Unit (GPU) based computation now offer the prospect of further drastic improvements. The introduction of 'compute unified device architecture' (CUDA) by NVIDIA (the global technology company based in Santa Clara, California, USA) has made programming GPUs for general purpose computing accessible to the average programmer. Here we use CUDA to develop parallel finite difference schemes as applicable to two problems of interest to NDE community, namely heat diffusion and elastic wave propagation. The implementations are for two-dimensions. Performance improvement of the GPU implementation against serial CPU implementation is then discussed.

  12. A new method for thermal spraying of Zn-Al coatings

    International Nuclear Information System (INIS)

    Gorlach, I.A.

    2009-01-01

    This paper presents the development of the thermal spraying system built on the principles of the high velocity air flame (HVAF) process. HVAF sprayed coatings showed considerably higher bond strength than coatings obtained by the conventional methods, indicating the advantage of this method in areas where the adhesion strength is critically important. The highly dense structure of the coating obtained with HVAF eliminates a need for a top paint coat, which is typically applied on metal sprayed coatings to extend service life. The thermal sprayed coatings were characterized by the standard techniques, such as light microscopy, scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, salt spray and bond strength tests. The results show that thermal sprayed coatings have a dense structure, low presence of oxides and high resistance to corrosion. High spray rate and good coating quality make the HVAF thermal spray method a viable alternative to the conventional thermal spraying technologies, such as Wire Flame and Twin-Wire Arc.

  13. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    Science.gov (United States)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  14. Non-iterative method to calculate the periodical distribution of temperature in reactors with thermal regeneration

    International Nuclear Information System (INIS)

    Sanchez de Alsina, O.L.; Scaricabarozzi, R.A.

    1982-01-01

    A matrix non-iterative method to calculate the periodical distribution in reactors with thermal regeneration is presented. In case of exothermic reaction, a source term will be included. A computer code was developed to calculate the final temperature distribution in solids and in the outlet temperatures of the gases. The results obtained from ethane oxidation calculation in air, using the Dietrich kinetic data are presented. This method is more advantageous than iterative methods. (E.G.) [pt

  15. The Analysis Of Accuracy Of Selected Methods Of Measuring The Thermal Resistance Of IGBTs

    Directory of Open Access Journals (Sweden)

    Górecki Krzysztof

    2015-09-01

    Full Text Available In the paper selected methods of measuring the thermal resistance of an IGBT (Insulated Gate Bipolar Transistor are presented and the accuracy of these methods is analysed. The analysis of the measurement error is performed and operating conditions of the considered device, at which each measurement method assures the least measuring error, are pointed out. Theoretical considerations are illustrated with some results of measurements and calculations.

  16. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  17. Thermal conductivity of wood ash diatomite composites using the transient hot strip method

    International Nuclear Information System (INIS)

    Muia, L.M.; Gaitho, F.

    2003-08-01

    The transient Hot Strip method (THS) was used to determine the thermal conductivities of pure Wood Ash (WA), two kinds of diatomite i.e., DB and DF, and their composites. The effects of grain size and temperature on the thermal conductivities of the three systems and their composites were also determined. The lowest thermal conductivities of 0.02x10 -2 Wm -1 K -1 for wood ash and ∼ 3x10 -2 Wm -1 K -1 for the diatomites are found in the particle size range 60 -80μm. The thermal conductivities of the various composites range between 1.3x10 -3 and 6.8x10 -2 Wm -1 K -1 . These values are a factor of 10 lower than those of the pure materials. The thermal conductivity of the three composites is independent of temperature in the range 26-350 deg. C, in contrast to those pure materials which increase with temperature. Generally, the thermal conductivites of the pure materials which increase as their porosity or moisture contents are increased. (author)

  18. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  19. A debugging method of the Quadrotor UAV based on infrared thermal imaging

    Science.gov (United States)

    Cui, Guangjie; Hao, Qian; Yang, Jianguo; Chen, Lizhi; Hu, Hongkang; Zhang, Lijun

    2018-01-01

    High-performance UAV has been popular and in great need in recent years. The paper introduces a new method in debugging Quadrotor UAVs. Based on the infrared thermal technology and heat transfer theory, a UAV is under debugging above a hot-wire grid which is composed of 14 heated nichrome wires. And the air flow propelled by the rotating rotors has an influence on the temperature distribution of the hot-wire grid. An infrared thermal imager below observes the distribution and gets thermal images of the hot-wire grid. With the assistance of mathematic model and some experiments, the paper discusses the relationship between thermal images and the speed of rotors. By means of getting debugged UAVs into test, the standard information and thermal images can be acquired. The paper demonstrates that comparing to the standard thermal images, a UAV being debugging in the same test can draw some critical data directly or after interpolation. The results are shown in the paper and the advantages are discussed.

  20. A method for evaluating pressure locking and thermal binding of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, T.

    1996-12-01

    A method is described to evaluate the susceptibility of gate valves to pressure locking and thermal binding. Binding of the valve disc in the closed position due to high pressure water trapped in the bonnet cavity (pressure locking) or differential thermal expansion of the disk in the seat (thermal binding) represents a potential mechanism that can prevent safety-related systems from functioning when called upon. The method described here provides a general equation that can be applied to a given gate valve design and set of operating conditions to determine the susceptibility of the valve to fail due to disc binding. The paper is organized into three parts. The first part discusses the physical mechanisms that cause disc binding. The second part describes the mathematical equations. The third part discusses the conclusions.

  1. Method for automated building of spindle thermal model with use of CAE system

    Science.gov (United States)

    Kamenev, S. V.

    2018-03-01

    The spindle is one of the most important units of the metal-cutting machine tool. Its performance is critical to minimize the machining error, especially the thermal error. Various methods are applied to improve the thermal behaviour of spindle units. One of the most important methods is mathematical modelling based on the finite element analysis. The most common approach for its realization is the use of CAE systems. This approach, however, is not capable to address the number of important effects that need to be taken into consideration for proper simulation. In the present article, the authors propose the solution to overcome these disadvantages using automated thermal model building for the spindle unit utilizing the CAE system ANSYS.

  2. Integration of NDE Reliability and Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F. L.; Doctor, S. R.; Heas!er, P. G.; Morris, C. J.; Pitman, S. G.; Selby, G. P.; Simonen, F. A.

    1981-03-01

    The Pacific Northwest Laboratory is conducting a four-phase program for measuring and evaluating the effectiveness and reliability of in-service inspection (lSI} performed on the primary system piping welds of commercial light water reactors (LWRs). Phase I of the program is complete. A survey was made of the state of practice for ultrasonic rsr of LWR primary system piping welds. Fracture mechanics calculations were made to establish required nondestrutive testing sensitivities. In general, it was found that fatigue flaws less than 25% of wall thickness would not grow to failure within an inspection interval of 10 years. However, in some cases failure could occur considerably faster. Statistical methods for predicting and measuring the effectiveness and reliability of lSI were developed and will be applied in the "Round Robin Inspections" of Phase II. Methods were also developed for the production of flaws typical of those found in service. Samples fabricated by these methods wilI be used in Phase II to test inspection effectiveness and reliability. Measurements were made of the influence of flaw characteristics {i.e., roughness, tightness, and orientation) on inspection reliability. These measurernents, as well as the predictions of a statistical model for inspection reliability, indicate that current reporting and recording sensitivities are inadequate.

  3. Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot-humid regions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ruey-Lung [Department of Occupational Safety and Health, China Medical University, 91 Huseh-Shin Road, Taichung 404 (China); Cheng, Ming-Jen [Department of Architecture, Feng Chia University, 100 Wen-Hwa Road, Seatwen, Taichung 407 (China); Lin, Tzu-Ping [Department of Leisure Planning, National Formosa University, 64 Wen-Hua Road, Huwei, Yunlin 632 (China); Ho, Ming-Chin [Architecture and Building Research Institute, Ministry of the Interior, 13F, No. 200, Sec. 3, Bei-sin Road, Sindian City, Taipei County 231 (China)

    2009-06-15

    A field study conducted in workplaces and residences in Taiwan is carried out to clarify two questions in detail: (1) do people in the tropical climate regions demonstrate a correlation between thermal sensation and thermal dissatisfaction the same as the PMV-PPD formula in the ISO 7730; and (2) does the difference in opportunities to choose from a variety of methods to achieve thermal comfort affects thermal perceptions of occupants? A new predicted formula of percentage of dissatisfied (PD) relating to mean thermal sensation votes (TSVs) is proposed for hot and humid regions. Besides an increase in minimum rate of dissatisfied from 5% to 9%, a shift of the TSV with minimum PD to the cool side of sensation scale is suggested by the new proposed formula. It also reveals that the limits of TSV corresponding to 80% acceptability for hot and humid regions are -1.45 and +0.65 rather than -0.85 and +0.85 suggested by ISO 7730. It is revealed in the findings that the effectiveness, availability and cost of a thermal adaptation method can affect the interviewees' thermal adaptation behaviour. According to the discussion of interviewees' idea about the trade-off between thermal comfort and energy saving, it is found that an energy-saving approach at the cost of sacrificing occupant's thermal comfort is difficult to set into action, but those ensure the occupant's comfort are more acceptable and can be easily popularized. (author)

  4. Thermographic method for evaluation of thermal influence of exterior surface colour of buildings

    Science.gov (United States)

    Wu, Yanpeng; Li, Deying; Jin, Rendong; Liu, Li; Bai, Jiabin; Feng, Jianming

    2008-12-01

    Architecture colour is an important part in urban designing. It directly affects the expressing and the thermal effect of exterior surface of buildings. It has proved that four factors affect the sign visibility, graphics, colour, lighting condition and age of the observers, and colour is the main aspect. The best method is to prevent the exterior space heating up in the first place, by reflecting heat away room the exterior surface.The colour of paint to coat building's exterior wall can have a huge impact on energy efficiency. While the suitable colour is essential to increasing the energy efficiency of paint colour during the warm summer months, those products also help paint colour efficiency and reduce heat loss from buildings during winter months making the interior more comfortable all year long. The article is based on analyzing the importance of architecture color design and existing urban colour design. The effect of external surface colour on the thermal behaviour of a building has been studied experimentally by Infrared Thermographic method in University of Science and technology Beijing insummer.The experimental results showed that different colour has quietly different thermal effect on the exterior surface of buildings. The thermal effect of carmine and fawn has nearly the same values. The main factor which is color express, give some suggest ting about urban color design. The investigation reveals that the use of suitable surface colour can dramatically reduce maximum the temperatures of the exterior wall. Keywords: architectural colour, thermal, thermographic

  5. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  6. Initial permeability and vickers hardness of thermally aged FeCu alloy

    International Nuclear Information System (INIS)

    Kikuchi, H.; Onuki, T.; Kamada, Y.; Ara, K.; Kobayashi, S.; Takahashi, S.

    2007-01-01

    The initial permeability obtained from small AC field excitation is a more useful parameter for nondestructive evaluation (NDE) of ferromagnetic materials than one obtained from a major hysteresis loop from the viewpoints of electricity consumption and real-time measurements. In this paper, in order to study the possibility of applying magnetic methods to pressure vessel surveillance at nuclear power plants, permeability of the thermally aged Fe-Cu specimens were evaluated using impedance measurements and the hardness of those specimens was also evaluated. The Vickers hardness increases as aging time increases. The permeability of the cold-rolled specimen decreases with thermal aging. On the other hand, the permeability of as-received specimens increased at first then decreases as thermal aging goes

  7. A surfactant-thermal method to prepare four new three-dimensional heterometal-organic frameworks

    KAUST Repository

    Gao, Junkuo

    2013-01-01

    Here, we report on a surfactant-thermal method to prepare four new 3-D crystalline heterometal-organic frameworks (HMOFs). The results indicate that our new strategy for growing crystalline materials in surfactant media has great potential for the synthesis of novel MOFs with various structures. © 2013 The Royal Society of Chemistry.

  8. Study of Thermal Equilibrium in Heavy Ion Collisions via the Ma Coincidence Method - Test of Applicability

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2002-01-01

    The coincidence method of judging whether a system reached thermal equilibrium is shortly presented. It is used on the model data to test, whether it is applicable in the low-relativistic energy range. Also, the cuts corresponding to real detectors are introduced and their influence is briefly discussed. (author)

  9. Thermal diffusivity measurements with a photothermal method of fusion solid breeder materials

    International Nuclear Information System (INIS)

    Bertolotti, M.; Fabri, L.; Ferrari, A.; Sibilia, C.; Alvani, C.; Casadio, S.

    1989-01-01

    The Photothermal Deflection method is employed in thermal diffusivity measurements. A theoretical analysis is performed to reduce the influence of arbitrary parameters. Measurements on gamma-lithium aluminate samples as a function of temperatures are performed. (author). 5 refs.; 4 figs

  10. Pressure dependence of thermal conductivity and specific heat in CeRh2Si2 measured by an extended thermal relaxation method

    Science.gov (United States)

    Nishigori, Shijo; Seida, Osamu

    2018-05-01

    We have developed a new technique for measuring thermal conductivity and specific heat under pressure by improving a thermal relaxation method. In this technique, a cylindrical sample with a small disc heater is embedded in the pressure-transmitting medium, then temperature variations of the sample and heater were directly measured by thermocouples during a heating and cooling process. Thermal conductivity and specific heat are estimated by comparing the experimental data with temperature variations simulated by a finite element method. The obtained thermal conductivity and specific heat of the test sample CeRh2Si2 exhibit a small enhancement and a clear peak arising from antiferromagnetic transition, respectively. The observation of these typical behaviors for magnetic compounds indicate that the technique is valid for the study on thermal properties under pressure.

  11. Measurement of the thermal conductivity of thin insulating anisotropic material with a stationary hot strip method

    International Nuclear Information System (INIS)

    Jannot, Yves; Degiovanni, Alain; Félix, Vincent; Bal, Harouna

    2011-01-01

    This paper presents a method dedicated to the thermal conductivity measurement of thin insulating anisotropic materials. The method is based on three hot-strip-type experiments in which the stationary temperature is measured at the center of the hot strip. A 3D model of the heat transfer in the system is established and simulated to determine the validity of a 2D transfer hypothesis at the center of the hot strip. A simplified 2D model is then developed leading to the definition of a geometrical factor calculable from a polynomial expression. A very simple calculation method enabling the estimation of the directional thermal conductivities from the three stationary temperature measurements and from the geometrical factor is presented. The uncertainties on each conductivity are estimated. The method is then validated by measurements on polyethylene foam and Ayous (anistropic low-density tropical wood); the estimated values of the thermal conductivities are in good agreement with the values estimated using the hot plate and the flash method. The method is finally applied on a thin super-insulating fibrous material for which no other method is able to measure the in-plane conductivity

  12. 25 years of NDE in fabrication of zirconium alloy mill products and nuclear fuel in the Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Mistry, R.K.; Laxminarayana, B.; Srivastava, R.K.

    1996-01-01

    Failure of nuclear fuel is highly undesirable from both economic and operational aspects. Hence all the components require rigorous QC and inspection checks. NDT plays a major role in assuring the quality of the products both at final and intermediate stages. This paper gives an overall review of NDT methods employed in achieving the integrity of nuclear products. The NDE procedures followed in NFC are visual inspection, radiography, penetrant testing, eddy current testing, ultrasonic testing and helium leak testing. NFC's quality assurance programme is organised to achieve the desired objectives by carrying out in process and final inspection at all critical steps of fabrication. (author)

  13. CHF predictor derived from a 3D thermal-hydraulic code and an advanced statistical method

    International Nuclear Information System (INIS)

    Banner, D.; Aubry, S.

    2004-01-01

    A rod bundle CHF predictor has been determined by using a 3D code (THYC) to compute local thermal-hydraulic conditions at the boiling crisis location. These local parameters have been correlated to the critical heat flux by using an advanced statistical method based on spline functions. The main characteristics of the predictor are presented in conjunction with a detailed analysis of predictions (P/M ratio) in order to prove that the usual safety methodology can be applied with such a predictor. A thermal-hydraulic design criterion is obtained (1.13) and the predictor is compared with the WRB-1 correlation. (author)

  14. Electron-phonon thermalization in a scalable method for real-time quantum dynamics

    Science.gov (United States)

    Rizzi, Valerio; Todorov, Tchavdar N.; Kohanoff, Jorge J.; Correa, Alfredo A.

    2016-01-01

    We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.

  15. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    L. Bayón Arnáu

    2000-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NOx and SO2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network.

  16. Effective methods of solving of model equations of certain class of thermal systems

    International Nuclear Information System (INIS)

    Lach, J.

    1985-01-01

    A number of topics connected with solving of model equations of certain class of thermal systems by the method of successive approximations is touched. A system of partial differential equations of the first degree, appearing most frequently in practical applications of heat and mass transfer theory is reduced to an equivalent system of Volterra integral equations of the second kind. Among a few sample applications the thermal processes appearing in the fuel channel of nuclear reactor are solved. The theoretical analysis is illustrated by the results of numerical calculations given in tables and diagrams. 111 refs., 17 figs., 16 tabs. (author)

  17. Perturbative methods applied for sensitive coefficients calculations in thermal-hydraulic systems

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1993-01-01

    The differential formalism and the Generalized Perturbation Theory (GPT) are applied to sensitivity analysis of thermal-hydraulics problems related to pressurized water reactor cores. The equations describing the thermal-hydraulic behavior of these reactors cores, used in COBRA-IV-I code, are conveniently written. The importance function related to the response of interest and the sensitivity coefficient of this response with respect to various selected parameters are obtained by using Differential and Generalized Perturbation Theory. The comparison among the results obtained with the application of these perturbative methods and those obtained directly with the model developed in COBRA-IV-I code shows a very good agreement. (author)

  18. A new method for evaluation and correction of thermal reactor power and present operational applications

    International Nuclear Information System (INIS)

    Langenstein, M.; Streit, S.; Laipple, B.; Eitschberger, H.

    2005-01-01

    The determination of the thermal reactor power is traditionally be done by heat balance: 1) for a boiling water reactor (BWR) at the interface of reactor control volume and heat cycle. 2) for a pressurised-water reactor (PWR) at the interface of the steam generator control volume and turbine island on the secondary side. The uncertainty of these traditional methods is not easy to determine and can be in the range of several percent. Technical and legal regulations (e.g. 10CFR50) cover an estimated error of instrumentation up to 2% by increasing the design thermal reactor power for emergency analysis to 102 % of the licensed thermal reactor power. Basically the licensee has the duty to warrant at any time operation inside the analyzed region for thermal reactor power. This is normally done by keeping the indicated reactor power at the licensed 100% value. The better way is to use a method which allows a continuous warranty evaluation. The quantification of the level of fulfilment of this warranty is only achievable by a method which: 1) is independent of single measurements accuracies. 2) results in a certified quality of single process values and for the total heat cycle analysis. 3)leads to complete results including 2-sigma deviation especially for thermal reactor power. Here this method, which is called 'process data reconciliation based on VDI 2048 guideline', is presented [1, 2]. This method allows to determine the true process parameters with a statistical probability of 95%, by considering closed material, mass- and energy balances following the Gaussian correction principle. The amount of redundant process information and complexity of the process improves the final results. This represents the most probable state of the process with minimized uncertainty according to VDI 2048. Hence, calibration and control of the thermal reactor power are possible with low effort but high accuracy and independent of single measurement accuracies. Further more, VDI 2048

  19. PC imaging system for reactor NDE

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    PC-based systems have been given recent attention by EPRI to organize and manage inspection data (RP-2405-15, TestPro system); integrate with larger, mainframe computers to maintain dialogue for on-site and remote applications; and, in this project, to aid the operator in providing guidance to render decisions on the data. The PC system configuration for this project consisted of a central processing unit (CPU), a hard disk and a floppy disk, 640K bytes of system memory, a high-resolution graphics card and compatible color monitor, and a mouse for operator interaction with software. The software package was written in FORTRAN under the PC Disk Operating System (PC-DOS) and utilized a graphics package for image display. Application of this package to crack-counterbore discrimination in piping welds was investigated. Present automatic techniques utilize signal features from single, A-scan data to render a decision on whether the reflector is benign (i.e., counterbore, weld root) or a crack. However, experienced manual operators in the field make reliable decisions based on the integrated response from the reflector as the transducer is scanned past the suspicious region. Since this software package could display and manipulate ensemble A-scans, spatial features - similar to those used by experts - were developed as discriminants. Ultrasonic responses from intergranular stress corrosion cracks (IGSCCs) were discovered to vary both in time-of-flight and in their amplitude, whereas counterbore responses were more consistent. The software package contains methods for viewing and quantifying these spatial features

  20. Linear-array systems for aerospace NDE

    International Nuclear Information System (INIS)

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-01-01

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m 2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations

  1. Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)

    2016-01-15

    Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

  2. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method.

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  3. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2018-03-01

    Full Text Available Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS. The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  4. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  5. System and method of providing quick thermal comfort with reduced energy by using directed spot conditioning

    Science.gov (United States)

    Wang, Mingyu; Kadle, Prasad S.; Ghosh, Debashis; Zima, Mark J.; Wolfe, IV, Edward; Craig, Timothy D

    2016-10-04

    A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.

  6. Thermal expansion and magnetostriction measurements at cryogenic temperature using the strain gage method

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-03-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra low temperature (<77 K) environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gage method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 K and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  7. Thermal transport through a spin-phonon interacting junction: A nonequilibrium Green's function method study

    Science.gov (United States)

    Zhang, Zu-Quan; Lü, Jing-Tao

    2017-09-01

    Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.

  8. Online In-Core Thermal Neutron Flux Measurement for the Validation of Computational Methods

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Yahya Ismail

    2016-01-01

    In order to verify and validate the computational methods for neutron flux calculation in RTP calculations, a series of thermal neutron flux measurement has been performed. The Self Powered Neutron Detector (SPND) was used to measure thermal neutron flux to verify the calculated neutron flux distribution in the TRIGA reactor. Measurements results obtained online for different power level of the reactor. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and measured thermal neutron flux in the core are in very good agreement indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux distribution in the reactor core. Since the computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of RTP utilization. (author)

  9. Short-term hydro-thermal scheduling using particle swarm optimization method

    International Nuclear Information System (INIS)

    Yu, Binghui; Yuan, Xiaohui; Wang, Jinwen

    2007-01-01

    The approaches based on different particle swarm optimization (PSO) techniques are applied to solve the short-term hydro-thermal scheduling problem. In the proposed methods, many constraints of the hydro-thermal system, such as power balance, water balance, reservoir volume limits and the operation limits of hydro and thermal plants, are considered. The feasibility of the proposed algorithm is demonstrated through an example system, and the results are compared with the results of a genetic algorithm and evolutionary programming approaches. The experimental results show that all the PSO algorithms have the ability to achieve nearly global solutions, but a local version of PSO with inertia weight appears to be the best amongst all the PSOs in terms of high quality solution

  10. Standard test method for linear thermal expansion of glaze frits and ceramic whiteware materials by the interferometric method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the interferometric determination of linear thermal expansion of premelted glaze frits and fired ceramic whiteware materials at temperatures lower than 1000°C (1830°F). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. A contribution to the method of fast reactor thermal output calculation

    International Nuclear Information System (INIS)

    Harant, M.

    1978-01-01

    The method of stating the heat sources is discussed as being one of the factors influencing the accuracy of the thermal output calculation of fast reactors. The distribution of heat sources in the core and in other inner parts of the fast reactor is described using the least square fit method. Relations are derived of outputs of both individual components of fuel elements and of whole inner parts of the reactor. A comparison is made of various methods used for obtaining source integrals. The optimum integration method was found. (author)

  12. Study on thermal neutron spectra in reactor moderators by time-of-flight method

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1982-12-01

    Prediction of thermal neutron spectra in a reactor core plays very important role in the neutronic design of the reactor for obtaining the accurate thermal group constants. It is well known that the neutron scattering properties of the moderator materials markedly influence the thermal neutron spectra. Therefore, 0 0 angular dependent thermal neutron spectra were measured by the time-of-flight method in the following moderator bulks 1) Graphite bulk poisoned with boron at the temperatures from 20 to 800 0 C, 2) Light water bulk poisoned with Cadmium and/or Indium, 3) Light water-natural uranium heterogeneous bulk. The measured results were compared with calculation utilizing Young-Koppel and Haywood scattering model for graphite and light water respectively. On the other hand, a variety of 20% enriched uranium loaded and graphite moderated cores consisting of the different lattice cell in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments related to Very High Temperature Reactor (VHTR). The experimental data were for the critical masses in 235 U, reactivity worths of experimental burnable poison rods, thorium rods, natural-uranium rods and experimental control rods and kinetic parameters. It is made clear from comparison between measurement and calculation that the accurate thermal group constants can be obtained by use of the Young-Koppel and Haywood neutron scattering models if heterogeneity of reactor core lattices is taken into account precisely. (author)

  13. Production and characterization of TI/PbO2 electrodes by a thermal-electrochemical method

    Directory of Open Access Journals (Sweden)

    Laurindo Edison A.

    2000-01-01

    Full Text Available Looking for electrodes with a high overpotential for the oxygen evolution reaction (OER, useful for the oxidation of organic pollutants, Ti/PbO2 electrodes were prepared by a thermal-electrochemical method and their performance was compared with that of electrodeposited electrodes. The open-circuit potential for these electrodes in 0.5 mol L-1 H2SO4 presented quite stable similar values. X-ray diffraction analyses showed the thermal-electrochemical oxide to be a mixture of ort-PbO, tetr-PbO and ort-PbO2. On the other hand, the electrodes obtained by electrodeposition were in the tetr-PbO2 form. Analyses by scanning electron microscopy showed that the basic morphology of the thermal-electrochemical PbO2 is determined in the thermal step, being quite distinct from that of the electrodeposited electrodes. Polarization curves in 0.5 mol L-1 H2SO4 showed that in the case of the thermal-electrochemical PbO2 electrodes the OER was shifted to more positive potentials. However, the values of the Tafel slopes, quite high, indicate that passivating films were possibly formed on the Ti substrates, which could eventually explain the somewhat low current values for OER.

  14. A passive guard for low thermal conductivity measurement of small samples by the hot plate method

    International Nuclear Information System (INIS)

    Jannot, Yves; Godefroy, Justine; Degiovanni, Alain; Grigorova-Moutiers, Veneta

    2017-01-01

    Hot plate methods under steady state conditions are based on a 1D model to estimate the thermal conductivity, using measurements of the temperatures T 0 and T 1 of the two sides of the sample and of the heat flux crossing it. To be consistent with the hypothesis of the 1D heat flux, either a hot plate guarded apparatus is used, or the temperature is measured at the centre of the sample. On one hand the latter method can be used only if the ratio thickness/width of the sample is sufficiently low and on the other hand the guarded hot plate method requires large width samples (typical cross section of 0.6  ×  0.6 m 2 ). That is why both methods cannot be used for low width samples. The method presented in this paper is based on an optimal choice of the temperatures T 0 and T 1 compared to the ambient temperature T a , enabling the estimation of the thermal conductivity with a centered hot plate method, by applying the 1D heat flux model. It will be shown that these optimal values do not depend on the size or on the thermal conductivity of samples (in the range 0.015–0.2 W m −1 K −1 ), but only on T a . The experimental results obtained validate the method for several reference samples for values of the ratio thickness/width up to 0.3, thus enabling the measurement of the thermal conductivity of samples having a small cross-section, down to 0.045  ×  0.045 m 2 . (paper)

  15. A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building

    International Nuclear Information System (INIS)

    Papafragkou, Anastasios; Ghosh, Siddhartha; James, Patrick A.B.; Rogers, Alex; Bahaj, AbuBakr S.

    2014-01-01

    Highlights: • Our diagnostic method uses a single field measurement from a temperature logger. • Building technical performance and occupant behaviour are addressed simultaneously. • Our algorithm learns a thermal model of a home and diagnoses the heating system. • We propose a novel clustering approach to decouple user behaviour from technical performance. • Our diagnostic confidence is enhanced using a large scale deployment. - Abstract: Traditional approaches to understand the problem of the energy performance in the domestic sector include on-site surveys by energy assessors and the installation of complex home energy monitoring systems. The time and money that needs to be invested by the occupants and the form of feedback generated by these approaches often makes them unattractive to householders. This paper demonstrates a simple, low cost method that generates thermal diagnostics for dwellings, measuring only one field dataset; internal temperature over a period of 1 week. A thermal model, which is essentially a learning algorithm, generates a set of thermal diagnostics about the primary heating system, the occupants’ preferences and the impact of certain interventions, such as lowering the thermostat set-point. A simple clustering approach is also proposed to categorise homes according to their building fabric thermal performance and occupants’ energy efficiency with respect to ventilation. The advantage of this clustering approach is that the occupants receive tailored advice on certain actions that if taken will improve the overall thermal performance of a dwelling. Due to the method’s low cost and simplicity it could facilitate government initiatives, such as the ‘Green Deal’ in the UK

  16. Proposal on the mitigation methods of thermal stress near the sodium

    International Nuclear Information System (INIS)

    Ando, Masanori; Kasahara, Naoto

    2003-09-01

    A Reactor vessel of fast rector plants contains high temperature liquid sodium in its inside and its upper end is supported by a low temperature structures. Therefore, a significant temperature gradient will arise at the vessel wall near the sodium surface. For this reason, a large thermal stress will be generated around this part. To lower this stress and to protect the vessel, a number of methods have been applied the plants. Generally, these mitigation methods by protection equipments for thermal stress also have some problems such as, increase a mount of materials or to be complicate for control, hard to maintenance and so on. In this research, authors suggested another simple methods for thermal stress, and evaluated their effects using computer analysis. The results obtained in this research are as follows. Authors suggested one method, circulate high temperature gas around outside of the vessel and evaluated the effects of this method by analysis. In case of using this method, Sn (one of index values of design) value might be getting lower about 45%. Authors also suggested another method by setting up a heat transfer plate outside of the vessel and evaluated the effects of this method by analysis. Effects of this method depend on material of the plate. In case of using Carbon as material of plate, Sn value might be 27% lower and in case of using 12Cr steel as material of plate, Sn value might be 15% lower. Authors also suggested another method by changing material of the guard vessel to be the one which has good ability of heat transfer and evaluated the effects of this method by analysis. In case of changing material of guard vessel to 12Cr steel, Sn value might be lower about 12%. (author)

  17. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  18. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    Arnáu L. Bayón

    1999-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NO x and SO 2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network. Time-delays are included and the electric network is considered by using the active power balance equation. The volume of water discharge for each hydro-plant is a given constant amount from the optimization interval. The generic minimization algorithm, which is not difficult to construct on the basis of the Ritz method, has certain advantages in comparison with the conventional methods.

  19. Method for identification of fluid mixing zones subject to thermal fatigue damage

    International Nuclear Information System (INIS)

    Vole, O.; Beaud, F.

    2009-01-01

    High cycle thermal fatigue due to the mixing of hot and cold fluids may initiate cracking in pipes of safety related circuits. A method has been developed to identify such fluid mixing zones subjected to potential thermal fatigue damage. This method is based on a loading model and a mechanical model that depend on the main characteristics of the mixing zone and on the material properties. It is supported by a large experimental program. This method has been applied to all the mixing zones of safety related circuits of the EDF pressurised water reactors, allowing to identify sensitive zones and to apply an appropriate inspection program that ensures the control of the risk due to this damage mechanism. (authors)

  20. A method for the dynamic and thermal stress analysis of space shuttle surface insulation

    Science.gov (United States)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1975-01-01

    The thermal protection system of the space shuttle consists of thousands of separate insulation tiles bonded to the orbiter's surface through a soft strain-isolation layer. The individual tiles are relatively thick and possess nonuniform properties. Therefore, each is idealized by finite-element assemblages containing up to 2500 degrees of freedom. Since the tiles affixed to a given structural panel will, in general, interact with one another, application of the standard direct-stiffness method would require equation systems involving excessive numbers of unknowns. This paper presents a method which overcomes this problem through an efficient iterative procedure which requires treatment of only a single tile at any given time. Results of associated static, dynamic, and thermal stress analyses and sufficient conditions for convergence of the iterative solution method are given.

  1. A novel track density measurement method by thermal neutron activation of DYECETs

    International Nuclear Information System (INIS)

    Sohrabi, M.; Mahdi, Sh.

    1995-01-01

    A novel track density evaluation method based on thermal neutron activation of some elements of dyed electrochemically etched tracks (DYECETs) of charged particles in detectors like polycarbonate (PC) followed by measurements of gamma activity of the activated detectors is introduced. In this method, the tracks of charged particles like fast neutron-induced recoils in PC detectors were electrochemically etched, dyed by ''QuicDYECET'' methods as recently introduced by us, activated by thermal neutrons and counted for gamma activity determination to be correlated with track density. The activities of elements such as bromine-82 ( 82 Br) and sodium-24 ( 24 Na) on dyes such as Eosin Yellowish, Eosin Bluish, etc. determined by a hyper-pure germanium detector, were found to be in good correlation with DYECET density and thus particle fluence or dose. The effects of different types of dyes and their elements, dye concentration, neutron fluences and ECE durations on the DYECET density responses were studied. This new development is a method of scientific interest, potentially possessing some interesting features, as an alternative method for ECE track density determination using a gamma activity measuring system. It also has the drawback of being applicable only in centres having thermal neutron facilities. The results of the above studies are presented and discussed. (Author)

  2. Search method optimization technique for thermal design of high power RFQ structure

    International Nuclear Information System (INIS)

    Sharma, N.K.; Joshi, S.C.

    2009-01-01

    RRCAT has taken up the development of 3 MeV RFQ structure for the low energy part of 100 MeV H - ion injector linac. RFQ is a precision machined resonating structure designed for high rf duty factor. RFQ structural stability during high rf power operation is an important design issue. The thermal analysis of RFQ has been performed using ANSYS finite element analysis software and optimization of various parameters is attempted using Search Method optimization technique. It is an effective optimization technique for the systems governed by a large number of independent variables. The method involves examining a number of combinations of values of independent variables and drawing conclusions from the magnitude of the objective function at these combinations. In these methods there is a continuous improvement in the objective function throughout the course of the search and hence these methods are very efficient. The method has been employed in optimization of various parameters (called independent variables) of RFQ like cooling water flow rate, cooling water inlet temperatures, cavity thickness etc. involved in RFQ thermal design. The temperature rise within RFQ structure is the objective function during the thermal design. Using ANSYS Programming Development Language (APDL), various multiple iterative programmes are written and the analysis are performed to minimize the objective function. The dependency of the objective function on various independent variables is established and the optimum values of the parameters are evaluated. The results of the analysis are presented in the paper. (author)

  3. Comparative Studies of Core Thermal Hydraulic Design Methods for the Prototype Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Lim, Jae Yong; Kim, Sang Ji

    2013-01-01

    In this work, various core thermal-hydraulic design methods, which have arisen during the development of a prototype SFR, are compared to establish a proper design procedure. Comparative studies have been performed to determine the appropriate design method for the prototype SFR. The results show that the minimization method show a lower cladding midwall temperature than the fixed outlet temperature methods and superior thermal safety margin with the same coolant flow. The Korea Atomic energy Research Institute (KAERI) has performed a conceptual SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damages in SFR subassemblies are arisen from a creep induced failure. The creep limit is evaluated based on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, the core thermalhydraulic design method, which eventually determines the cladding temperature, is highly important to assure a safe and reliable operation of the reactor systems

  4. Transient Thermal Analysis of 3-D Integrated Circuits Packages by the DGTD Method

    KAUST Repository

    Li, Ping

    2017-03-11

    Since accurate thermal analysis plays a critical role in the thermal design and management of the 3-D system-level integration, in this paper, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed to achieve this purpose. Such as the parabolic partial differential equation (PDE), the transient thermal equation cannot be directly solved by the DGTD method. To address this issue, the heat flux, as an auxiliary variable, is introduced to reduce the Laplace operator to a divergence operator. The resulting PDE is hyperbolic, which can be further written into a conservative form. By properly choosing the definition of the numerical flux used for the information exchange between neighboring elements, the hyperbolic thermal PDE can be solved by the DGTD together with the auxiliary differential equation. The proposed algorithm is a kind of element-level domain decomposition method, which is suitable to deal with multiscale geometries in 3-D integrated systems. To verify the accuracy and robustness of the developed DGTD algorithm, several representative examples are benchmarked.

  5. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    Science.gov (United States)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2018-02-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  6. A numerical analysis method on thermal and shrinkage stress of concrete

    International Nuclear Information System (INIS)

    Takiguchi, Katsuki; Hotta, Hisato

    1991-01-01

    Thermal stress often causes cracks in large scale concrete such as that for dam construction. The drying shrinkage of concrete causes cracks in concrete structures. These thermal stress and drying shrinkage stress may be the main reasons cracks occur in concrete, however there is few research which dealt with both stresses together. The problems on the thermal stress and the drying shrinkage are not independent, and should be dealt with together, because both temperature and water content of concrete affect hydration reaction, and the degree of hydration determines all the characteristics of concrete at early age. In this study, the degree of hydration is formulated experimentally, and a numerical stress analysis method taking the hydration reaction in consideration is presented. The formulation of the rate of hydration reaction, the method of analyzing thermal and drying shrinkage stresses, the analytical results for a concrete column and the influence that continuous load exerted to the tensile strength of concrete are reported. The relatively high stress nearly equal to the tensile strength of concrete arises near the surface. (K.I.)

  7. The GDQ Method of Thermal Vibration Laminated Shell with Actuating Magnetostrictive Layers

    Directory of Open Access Journals (Sweden)

    C.C. Hong

    2017-06-01

    Full Text Available The research of laminated magnetostrictive shell under thermal vibration was computed by using the generalized differential quadrature (GDQ method. In the thermoelastic stress-strain equations that contain the terms linear temperature rise and the magnetostrictive material with velocity feedback control. The dynamic equilibrium differential equations with displacements were normalized and discretized into the dynamic discretized equations by the GDQ method. Two edges of laminated shell with clamped boundary conditions were considered. The values of interlaminar thermal stresses and center displacement of shell with and without velocity feedback control were calculated, respectively. The purpose of this research is to compute the time responses of displacement and stresses in the laminated magnetostrictive shell subjected to thermal vibration with suitable controlled gain values. The numerical GDQ results of displacement and stresses are also obtained and investigated. With velocity feedback and suitable control gain values are found to reduce the amplitude of displacement and stresses into a smaller value. The higher values of temperature get the higher amplitude of displacement and stresses. The GDQ results of actuating magnetostrictive shells can be applied in the field of morphing aircraft (adaptive structures and smart materials to reduce and suppress the vibration when under aero-thermal flutter.

  8. Transient Thermal State of an Active Braille Matrix with Incorporated Thermal Actuators by Means of Finite Element Method

    Science.gov (United States)

    Alutei, Alexandra-Maria; Szelitzky, Emoke; Mandru, Dan

    2013-01-01

    In this article the authors present the transient thermal analysis for a developed thermal linear actuator based on wax paraffin used to drive the cells of a Braille device. A numerical investigation of transient heat transfer phenomenon during paraffin melting and solidification in an encapsulated recipient has been carried out using the ANSYS…

  9. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric

    Energy Technology Data Exchange (ETDEWEB)

    Nejman, Alicja, E-mail: anejman@iw.lodz.pl [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland); Cieślak, Małgorzata [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland); Gajdzicki, Bogumił [Textile Research Institute, Scientific Department of Textile Chemistry and Products Modification, 5/15 Brzezinska St., 92-103 Lodz (Poland); Goetzendorf-Grabowska, Bogna; Karaszewska, Agnieszka [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland)

    2014-08-10

    Highlights: • We applied microcapsules containing n-octadecane for the modification of knitted fabric. • We used printing, coating and padding techniques for the application of microcapsules. • M-PCM application methods allow to regulate the thermal properties of textiles. • M-PCM application methods allow to regulate the air permeability properties of textiles. - Abstract: The aim of the study is to analyze the impact of application methods of microcapsules containing n-octadecane as phase change materials (M-PCM) on the thermal properties and air permeability of modified textile fabric. Polyester knitted fabric, printing, coating and padding methods and polymer pastes with 20 wt.% of M-PCM were used. For the assessment of modification effects the differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. DSC analysis showed that the highest enthalpy of phase transitions has printed fabric and the lowest padded fabric. The widest range of phase transitions temperatures was observed for printed fabric, slightly narrower for coated fabric and the narrowest for padded fabric. SEM analysis showed differences in the morphology of modified fabrics depending on incorporation techniques, which are compatible with differences in air permeability results. M-PCM application techniques allow to regulate the thermal and air permeability properties of fabric.

  10. Structural, optical and thermal properties of PVA/CdS nanocomposites synthesized by radiolytic method

    International Nuclear Information System (INIS)

    Kharazmi, Alireza; Saion, Elias; Faraji, Nastaran; Hussin, Roslina Mat; Yunus, W. Mahmood Mat

    2014-01-01

    Monodispersed spherical CdS nanoparticles stabilized in PVA solution were synthesized by the gamma radiolytic method and found the average particle size increased from 12 to 13 nm with the increment of dose from 10 to 40 kGy. The XRD results show that it has crystalline planes of cubic structure with crystal lattice parameter of 5.832 Å. The optical reflectance revealed a band-edge of CdS nanoparticles at about 475 nm and the reflectance wavelength red shifted with increasing dose due to increasing particle size. The thermal conductivity of CdS/PVA nanocomposites measured by the transient hot wire method that revealed a decrement of the thermal conductivity with an increase of dose caused by effect of radiation on crystallinity of the polymer structure. - Highlights: • CdS/PVA nanocomposite was synthesized by radiolytic method from 10 to 40 kGy doses. • The structure of nanocomposite and the effect of dose on structure were investigated by X-ray powder diffraction. • The morphology of nanoparticles and the effect of dose on nanoparticles were observed by transmission electron microscope. • The optical properties of nanocomposite and the effect of radiation were studied by UV–visible spectroscopy and fluorescence spectroscopy. • The thermal properties of nanocomposite and the effect of dose were investigated by the transient hot wire method

  11. Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods

    Science.gov (United States)

    Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.

    2015-05-01

    A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.

  12. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric

    International Nuclear Information System (INIS)

    Nejman, Alicja; Cieślak, Małgorzata; Gajdzicki, Bogumił; Goetzendorf-Grabowska, Bogna; Karaszewska, Agnieszka

    2014-01-01

    Highlights: • We applied microcapsules containing n-octadecane for the modification of knitted fabric. • We used printing, coating and padding techniques for the application of microcapsules. • M-PCM application methods allow to regulate the thermal properties of textiles. • M-PCM application methods allow to regulate the air permeability properties of textiles. - Abstract: The aim of the study is to analyze the impact of application methods of microcapsules containing n-octadecane as phase change materials (M-PCM) on the thermal properties and air permeability of modified textile fabric. Polyester knitted fabric, printing, coating and padding methods and polymer pastes with 20 wt.% of M-PCM were used. For the assessment of modification effects the differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. DSC analysis showed that the highest enthalpy of phase transitions has printed fabric and the lowest padded fabric. The widest range of phase transitions temperatures was observed for printed fabric, slightly narrower for coated fabric and the narrowest for padded fabric. SEM analysis showed differences in the morphology of modified fabrics depending on incorporation techniques, which are compatible with differences in air permeability results. M-PCM application techniques allow to regulate the thermal and air permeability properties of fabric

  13. Re-inventing NDE as science — How student ideas will help adapt NDE to the new ecosystem of science and technology

    Science.gov (United States)

    Meyendorf, Norbert

    2018-04-01

    Industry 4.0 stands for the fourth industrial revolution that is ongoing at present. Industry 4.0 is a terminology generally used in Europe to characterize the integration of production and communication technologies, the so called "smart factory". Lowering costs and efficient in-time production will be possible for low numbers of unique parts, for example by additive manufacturing (3D printing). A significant aspect is also quality and maintainability of these sometimes unique structures and components. NDE has to follow these trends, but introduce the capability of cyber systems into the inspection and maintenance processes. The author initiated in his NDE introductory class student projects where small groups of students had to identify everyday problems that can be solved by NDE techniques and suggest technical solutions based on today's technology. The results where exiting. After discussing the ecosystem and the present situation of NDE as a science, several of these ideas were presented. Let us listen to the ideas and needs of the young generation to re-invent NDE!

  14. Multiregion, multigroup collision probability method with white boundary condition for light water reactor thermalization calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2005-01-01

    A multiregion, multigroup collision probability method with white boundary condition is developed for thermalization calculations of light water moderated reactors. Hydrogen scatterings are treated by Nelkin's kernel while scatterings from other nuclei are assumed to obey the free-gas scattering kernel. The isotropic return (white) boundary condition is applied directly by using the appropriate collision probabilities. Comparisons with alternate numerical methods show the validity of the present formulation. Comparisons with some experimental results indicate that the present formulation is capable of calculating disadvantage factors which are closer to the experimental results than alternative methods

  15. Methods to determine stratification efficiency of thermal energy storage processes–Review and theoretical comparison

    DEFF Research Database (Denmark)

    Haller, Michel; Cruickshank, Chynthia; Streicher, Wolfgang

    2009-01-01

    This paper reviews different methods that have been proposed to characterize thermal stratification in energy storages from a theoretical point of view. Specifically, this paper focuses on the methods that can be used to determine the ability of a storage to promote and maintain stratification...... during charging, storing and discharging, and represent this ability with a single numerical value in terms of a stratification efficiency for a given experiment or under given boundary conditions. Existing methods for calculating stratification efficiencies have been applied to hypothetical storage...

  16. The dynamic method for time-of-flight measurement of thermal neutron spectra from pulsed sources

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Chuklyaev, S.V.; Tulaev, A.B.; Bobrakov, V.F.

    1995-01-01

    A time-of-flight method for measurement of thermal neutron spectra in pulsed neutron sources with an efficiency more than 10 5 times higher than the standard method is described. The main problems associated with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of special neutron detector design and other questions are discussed. Some experimental results for spectra from the surfaces of water and solid methane moderators obtained at the IBR-2 pulsed reactor (Dubna, Russia) are presented. (orig.)

  17. Numerical analysis of partially molten splat during thermal spray process using the finite element method

    Science.gov (United States)

    Zirari, M.; Abdellah El-Hadj, A.; Bacha, N.

    2010-03-01

    A finite element method is used to simulate the deposition of the thermal spray coating process. A set of governing equations is solving by a volume of fluid method. For the solidification phenomenon, we use the specific heat method (SHM). We begin by comparing the present model with experimental and numerical model available in the literature. In this study, completely molten or semi-molten aluminum particle impacts a H13 tool steel substrate is considered. Next we investigate the effect of inclination of impact of a partially molten particle on flat substrate. It was found that the melting state of the particle has great effects on the morphologies of the splat.

  18. Method for calculating thermal properties of lightweight floor heating panels based on an experimental setup

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    , radiation and conduction of the heat transfer between pipe and surrounding materials. The European Standard for floor heating, EN1264, does not cover lightweight systems, while the supplemental Nordtest Method VVS127 is aimed at lightweight systems. The thermal properties can be found using tabulated values...... simulation model. It has been shown that the method is accurate with an error on the heat fluxes of less than 5% for different supply temperatures. An error of around 5% is also recorded when comparing measurements to calculated heat flows using the Nordtest VVS 127 method based on the experimental setup...

  19. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  20. Applications of CIVA NDE 10 on Eddy Current Modeling

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Ilham Mukhriz Zainal Abidin; AABdul Razak Hamzah

    2011-01-01

    CIVA NDE 10 is the simulation software and used as the platform to develop the models dedicated to Eddy Current testing (ET). It has various application in semi analytical modeling approaches. The focus of this paper is to simulate the signals response on the 40 % external groove of the Inconel 600 heat exchanger tubes with outside diameter of 22.22 mm. The inspection were simulated using 17 mm outside diameter differential probe with 100 kHz and 500 kHZ testing frequency. All the simulation results were validated using the experimental results integrated in the CIVA software. The configurations of the probe and tube consisting the flaw show the good agreement between the experimental and the simulated data. (author)

  1. Bitlis Etnografya Müzesi'nde Bulunan Geleneksel Giysiler

    OpenAIRE

    Sökmen, Sultan

    2016-01-01

    Bu çalışmada, Bitlis Etnografya Müzesi'nde sergilenmekte olan geleneksel giysilerin kumaş, renk, süsleme ve teknik özelliklerinin tanıtımı amaçlanmıştır. Bu amaç doğrultusunda ilgili makamlardan yazılı izin alınarak müze vitrinlerinde sergilenmekte olan ve depolarda koruma altına alınan giysilerin fotoğrafları çekilmiş, gerekli ölçümleri yapılarak teknik özellikleri belirlenmiş, hammadde ve süsleme özellikleri incelenmiştir. Müzede bulunan geleneksel giysi örnekleri yeterince zengin olma...

  2. Comparison of normal and phase stepping shearographic NDE

    Science.gov (United States)

    Andhee, A.; Gryzagoridis, J.; Findeis, D.

    2005-05-01

    The paper presents results of non-destructive testing of composite main rotor helicopter blade calibration specimens using the laser based optical NDE technique known as Shearography. The tests were performed initially using the already well established near real-time non-destructive technique of Shearography, with the specimens perturbed during testing for a few seconds using the hot air from a domestic hair dryer. Subsequent to modification of the shearing device utilized in the shearographic setup, phase stepping of one of the sheared images to be captured by the CCD camera was enabled and identical tests were performed on the composite main rotor helicopter blade specimens. Considerable enhancement of the images manifesting or depicting the defects on the specimens is noted suggesting that phase stepping is a desirable enhancement technique to the traditional Shearographic setup.

  3. Accuracy analysis of the thermal diffusivity measurement of molten salts by stepwise heating method

    International Nuclear Information System (INIS)

    Kato, Yoshio; Furukawa, Kazuo

    1976-11-01

    The stepwise heating method for measuring thermal diffusivity of molten salts is based on the electrical heating of a thin metal plate as a plane heat source in the molten salt. In this method, the following estimations on error are of importance: (1) thickness effect of the metal plate, (2) effective length between the plate and a temperature measuring point and (3) effect of the noise on the temperature rise signal. In this report, a measuring apparatus is proposed and measuring conditions are suggested on the basis of error estimations. The measurements for distilled water and glycerine were made first to test the performance; the results agreed well with standard values. The thermal diffusivities of molten NaNO 3 at 320-380 0 C and of molten Li 2 BeF 4 at 470-700 0 C were measured. (auth.)

  4. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    International Nuclear Information System (INIS)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon; Lee, Young Min

    2011-01-01

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al 2 O 3 +40TiO 2 powder with a particle size of 20 μm and Al 2 O 3 (98%+)powder with a particle size of 45 μm. The metal filters were filter-grade 20 μm, 30 μm, and 50 μm sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 μm sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters

  5. Phonon-mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-based Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chernatynskiy, Aleksandr [Univ. of Florida, Gainesville, FL (United States); Turney, Joseph E. [Carnegie Mellon Univ., Pittsburgh, PA (United States); McGaughey, Alan J. H. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Amon, Christina H. [Univ. of Toronto, ON (Canada); Phillpot, Simon R. [Univ. of Florida, Gainesville, FL (United States)

    2011-07-22

    Phonon properties predicted from lattice dynamics calculations and the Boltzmann Transport Equation (BTE) are used to elucidate the thermal-transport properties of ionic materials. It is found that a rigorous treatment of the Coulombic interactions within the harmonic analysis is needed for the analysis of the phonon structure of the solid, while a short-range approximation is sufficient for the third-order force constants. The effects on the thermal conductivity of the relaxation time approximation, the classical approximation to the phonon statistics, the direct summation method for the electrostatic interactions, and the quasi-harmonic approximation to lattice dynamics are quantified. Quantitative agreement is found between predictions from molecular dynamics simulations (a method valid at temperatures above the Debye temperature) and the BTE result within quasi-harmonic approximation over a wide temperature range.

  6. Thermal stability of octadecylsilane hybrid silicas prepared by grafting and sol-gel methods

    International Nuclear Information System (INIS)

    Brambilla, Rodrigo; Santos, Joao H.Z. dos; Miranda, Marcia S.L.; Frost, Ray L.

    2008-01-01

    Hybrid silicas bearing octadecylsilane groups were prepared by grafting and sol-gel (SG) methods. The effect of the preparative route on the thermal stability was evaluated by means of thermal gravimetric analysis (TGA), infrared emission spectroscopy (IRES) and, complementary, by 13 C solid-state nuclear magnetic resonance ( 13 C NMR) and matrix assisted laser deionization time of flight mass spectroscopy (MALDI-TOF-MS). Silicas prepared by the grafting route seem to be slightly more stable than those produced by the sol-gel method. This behavior seems to be associated to the preparative route, since grafting affords a liquid-like conformation, while in the case of sol-gel a highly organized crystalline chain conformation was observed

  7. Effective thermal conductivity estimate of heterogenous media by a lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Arab, M.R.; Pateyron, B.; El Ganaoui, M.; Labbe, J.C. [Limoges Univ., Limoges (France). Science des Procedes Ceramiques et de Traitements de Surface

    2009-07-01

    Statistical lattice Boltzmann methods (LBM) are often used to simulate isothermal fluid flow for problems with complex geometry or porous structures. This study used an LBM algorithm to evaluate the effective thermal conductivity (ETC) of simple 2-D configurations. The LBM algorithm was also used to estimate the ECT of a porous structure. The Bhatnagar-Gross-Krook approximation was used to determine the discrete form of the Boltzmann equation for a single phase flow. A comparison with the finite element method (FEM) was also conducted. Results of the study demonstrated that the LBM algorithm accurately simulates the phenomena of heat and mass transfer for both the simple 2-D configurations as well as the porous media. The tool will be used to determine the influence of thermal contact resistance on heat transfer. 6 refs., 1 tab., 7 figs.

  8. Thermal stress measurement in continuous welded rails using the hole-drilling method

    Science.gov (United States)

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2016-04-01

    The absence of expansion joints in Continuous Welded Rail (CWR) has created the need for the railroad industry to determine the in-situ level of thermal stresses so as to prevent train accidents caused by rail buckling in hot weather and by rail breakage in cold weather. The development of non-destructive or semi-destructive methods for determining the level of thermal stresses in rails is today a high research priority. This study explores the known hole-drilling method as a possible solution to this problem. A new set of calibration coefficients to compute the relieved stress field with the finer hole depth increments was determined by a 3D Finite Element Analysis that modeled the entire hole geometry, including the mechanics of the hole bottom and walls. To compensate the residual stress components, a linear relationship was experimentally established between the longitudinal and the vertical residual stresses of two common sizes of rails, the 136RE and the 141RE, with statistical significance. This result was then utilized to isolate the longitudinal thermal stress component in hole-drilling tests conducted on the 136RE and 141RE thermally-loaded rails at the Large-scale CWR Test-bed of UCSD's Powell Research Laboratories. The results from the Test-bed showed that the hole-drilling procedure, with the appropriate residual stress compensation, can indeed estimate the in-situ thermal stresses to achieve a +/-5°F accuracy of Neutral Temperature determination with a 90% statistical confidence, which is the desired industry gold standard.

  9. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  10. Determining Accuracy of Thermal Dissipation Methods-based Sap Flux in Japanese Cedar Trees

    Science.gov (United States)

    Su, Man-Ping; Shinohara, Yoshinori; Laplace, Sophie; Lin, Song-Jin; Kume, Tomonori

    2017-04-01

    Thermal dissipation method, one kind of sap flux measurement method that can estimate individual tree transpiration, have been widely used because of its low cost and uncomplicated operation. Although thermal dissipation method is widespread, the accuracy of this method is doubted recently because some tree species materials in previous studies were not suitable for its empirical formula from Granier due to difference of wood characteristics. In Taiwan, Cryptomeria japonica (Japanese cedar) is one of the dominant species in mountainous area, quantifying the transpiration of Japanese cedar trees is indispensable to understand water cycling there. However, no one have tested the accuracy of thermal dissipation methods-based sap flux for Japanese cedar trees in Taiwan. Thus, in this study we conducted calibration experiment using twelve Japanese cedar stem segments from six trees to investigate the accuracy of thermal dissipation methods-based sap flux in Japanese cedar trees in Taiwan. By pumping water from segment bottom to top and inserting probes into segments to collect data simultaneously, we compared sap flux densities calculated from real water uptakes (Fd_actual) and empirical formula (Fd_Granier). Exact sapwood area and sapwood depth of each sample were obtained from dying segment with safranin stain solution. Our results showed that Fd_Granier underestimated 39 % of Fd_actual across sap flux densities ranging from 10 to 150 (cm3m-2s-1); while applying sapwood depth corrected formula from Clearwater, Fd_Granier became accurately that only underestimated 0.01 % of Fd_actual. However, when sap flux densities ranging from 10 to 50 (cm3m-2s-1)which is similar with the field data of Japanese cedar trees in a mountainous area of Taiwan, Fd_Granier underestimated 51 % of Fd_actual, and underestimated 26 % with applying Clearwater sapwood depth corrected formula. These results suggested sapwood depth significantly impacted on the accuracy of thermal dissipation

  11. Note: Photopyroelectric measurement of thermal effusivity of transparent liquids by a method free of fitting procedures

    Science.gov (United States)

    Ivanov, R.; Marín, E.; Villa, J.; Hernández Aguilar, C.; Domínguez Pacheco, A.; Hernández Garrido, S.

    2016-02-01

    In a recent paper published in this journal [R. Ivanov et al., Rev. Sci. Instrum. 86, 064902 (2015)], a methodology free of fitting procedures for determining the thermal effusivity of liquids using the electropyroelectric technique was reported. Here the same measurement principle is extended to the well-known photopyroelectric technique. The theoretical basis and experimental basis of the method are presented and its usefulness is demonstrated with measurements on test samples.

  12. Development of a thermal method for the measurement of elemental carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lavanchy, V.M.H. [Bern Univ. (Switzerland); Baltensperger, U.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A thermal method was developed to measure the organic carbon (OC) and elemental carbon (EC) content of atmospheric aerosols. OC is first oxidized under an O{sub 2} flow during a precombustion step and measured with an Non-Dispersive Infrared Analyzer (NDIR). The remaining carbon, defined as EC, is then oxidized at 650{sup o}C. (author) 1 fig., 1 tab., 3 refs.

  13. A novel approach radiolabeling detonation nanodiamonds through the tritium thermal activation method

    Energy Technology Data Exchange (ETDEWEB)

    Badun, Gennadii A.; Chernysheva, Maria G.; Semenenko, Mikhail N.; Lisichkin, Georgii V. [Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.; Yakovlev, Ruslan Yu.; Leonidov, Nikolai B. [Pavlov Ryazan State Medical Univ. (Russian Federation)

    2014-07-01

    Tritium labeling was introduced into detonation nanodiamonds (ND) through the tritium thermal activation method. Two target preparation techniques were developed to increase the radioactivity and the specific radioactivity of the labeled product: the desiccation of the waterless solvent suspension and the lyophilization of the hydrosol. The specific radioactivity of the labeled product was shown to correlate with the hydrogen content in the starting material and to achieve 2.6 TBq/g.

  14. A novel approach radiolabeling detonation nanodiamonds through the tritium thermal activation method

    International Nuclear Information System (INIS)

    Badun, Gennadii A.; Chernysheva, Maria G.; Semenenko, Mikhail N.; Lisichkin, Georgii V.

    2014-01-01

    Tritium labeling was introduced into detonation nanodiamonds (ND) through the tritium thermal activation method. Two target preparation techniques were developed to increase the radioactivity and the specific radioactivity of the labeled product: the desiccation of the waterless solvent suspension and the lyophilization of the hydrosol. The specific radioactivity of the labeled product was shown to correlate with the hydrogen content in the starting material and to achieve 2.6 TBq/g.

  15. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    OpenAIRE

    Pavel Novák; Alena Michalcová; Milena Voděrová; Ivo Marek; Dalibor Vojtěch

    2013-01-01

    Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning) or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis) was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by...

  16. Moisture disturbance when measuring boron content in wet glass fibre materials with thermal neutron transmission method

    International Nuclear Information System (INIS)

    Zhang Zhiping; Liu Shengkang; Zhang Yongjie

    2001-01-01

    The theoretical calculation and experimental study on the moisture disturbance in the boron content measurement of wet glass fibre materials using the thermal neutron transmission method were reported. The relevant formula of the moisture disturbance was derived. For samples with a mass of 16 g, it was found that a moisture variation of 1% (mass percent) would result in a deviation of 0.28% (mass percent) in the measurement of boron contents

  17. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The study of the ''Admissible thermal loading in geological formations and its consequence on radioactive waste disposal methods'' comprises four volumes: Volume 1. ''Synthesis report'' (English/French text). Volume 2. Granite formations (French text). Volume 3. Salt formations (German text). Volume 4. Clay formations (French text). The present ''synthesis report'' brings together the formation produced by the three specific studies dealing with granite, salt and clay

  18. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Smoothed Normalized Difference Vegetation Index (NDVI) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Visible Infrared Imaging Radiometer Suite (VIIRS) Smoothed Normalized Difference Vegetation Index (NDVI) from NDE is a weekly product derived from the VIIRS...

  19. Field experience with advanced inservice inspection NDE-techniques for detection and sizing

    International Nuclear Information System (INIS)

    Engl, G.; Kronig, M.

    1988-01-01

    This document deals with Non-Destructive Examination (NDE) techniques used for the detection and sizing of cracks. Several techniques, such as L-SAFT, ALOK and Phased Array with UT-Tomography are discussed and compared. (TEC)

  20. Nondestructive examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties

  1. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactor (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987

  2. Application of X-ray NDE in treating with chemical weapons abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Zhang Guohua; Jiang Yishan

    2006-01-01

    According as need of treating with CW abandoned by Japan, this paper designs a X-ray NDE system for chemical weapons. It consist of X-ray shooting unit, control and identification unit and some assistant equipment. (authors)

  3. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their ability to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.

  4. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Vegetation Health and Drought Products (VHDP) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The VIIRS Vegetation Health and Drought Products (VHDP) from NDE algorithm provides weekly estimates of the Vegetation Condition Index (VCI), Temperature Condition...

  5. Entering the Era of "Super" NDE Instruments, Followed by Progressive Miniaturization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An ideal NDE data acquisition and analysis tool would be a versatile and precise device capable of providing support for a large number of inspections using numerous...

  6. Printed Ultra-High Temperature NDE Sensors for Complex Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal will address the use of innovative additive manufacturing technologies applicable to Non-Destructive Evaluation (NDE) and Structural...

  7. Field experience with advanced inservice inspection NDE-techniques for detection and sizing

    Energy Technology Data Exchange (ETDEWEB)

    Engl, G; Kronig, M

    1988-12-31

    This document deals with Non-Destructive Examination (NDE) techniques used for the detection and sizing of cracks. Several techniques, such as L-SAFT, ALOK and Phased Array with UT-Tomography are discussed and compared. (TEC).

  8. The use of fracture mechanics for the evaluation of NDE flaw acceptance standards

    Energy Technology Data Exchange (ETDEWEB)

    Alicino, A; Capurro, E; Ansaldo, Sp; Corvi, A [Ansaldo SpA, Genoa (Italy)

    1988-12-31

    This document deals with the use of fracture mechanics criteria to evaluate the Non Destructive Examination (NDE) flaw acceptance standards. The communication discusses the general schemes and the guidelines of the activity carried out. (TEC).

  9. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987. (author)

  10. Composite Stress Rupture NDE Research and Development Project (Kevlar[R] and Carbon)

    Science.gov (United States)

    Saulsberry, Regor

    2010-01-01

    The objective was to develop and demonstrate nondestructive evaluation (NDE) techniques capable of assessing stress rupture related strength degradation for carbon composite pressure vessels, either in a structural health monitoring (SHM) or periodic inspection mode.

  11. The application of X-ray NDE in treating with chemical weapons abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Jiang Yishan; Zhang Guohua

    2003-01-01

    According as need of treating with CW abandoned by Japan, this paper designs a X-ray NDE system for chemical weapons, it consist of X-ray shooting unit, control and identification unit and some assistant equipments

  12. Computer Aided Feature Extraction, Classification and Acceptance Processing of Digital NDE Data

    National Research Council Canada - National Science Library

    Hildreth, Joseph

    1996-01-01

    ... from the inspection of solid rocket motors during fabrication. The computerized system, called the Automated NDE Data Evaluation System or ANDES, was developed under contract to Martin Marietta, now Lockheed Martin...

  13. Novel Ultra-Miniature Flexible Videoscope for On-Orbit NDE, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional videoscopes for NDE suffer many shortcomings, including large diameter, limited flexibility, inadequate image quality, high cost and lack of 3D imaging...

  14. Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms

    International Nuclear Information System (INIS)

    Kim, Dae Won

    2005-01-01

    Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances

  15. An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video

    Directory of Open Access Journals (Sweden)

    Dong Huilong

    2016-03-01

    Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.

  16. Experimental Study on Solar Cooling Tube Using Thermal/Vacuum Emptying Method

    Directory of Open Access Journals (Sweden)

    Huizhong Zhao

    2012-01-01

    Full Text Available A solar cooling tube using thermal/vacuum emptying method was experimentally studied in this paper. The coefficient of performance (COP of the solar cooling tube was mostly affected by the vacuum degree of the system. In past research, the thermal vacuum method, using an electric oven and iodine-tungsten lamp to heat up the adsorbent bed and H2O vapor to expel the air from the solar cooling tube, was used to manufacture solar cooling tubes. This paper presents a novel thermal vacuum combined with vacuum pump method allowing an increased vacuum state for producing solar cooling tubes. The following conclusions are reached: the adsorbent bed temperature of solar cooling tube could reaches up to 233°C, and this temperature is sufficient to meet desorption demand; the refrigerator power of a single solar cooling tube varies from 1 W to 12 W; the total supply refrigerating capacity is about 287 kJ; and the COP of this solar cooling tube is about 0.215.

  17. THE EFFECT OF IMAGE ENHANCEMENT METHODS DURING FEATURE DETECTION AND MATCHING OF THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    O. Akcay

    2017-05-01

    Full Text Available A successful image matching is essential to provide an automatic photogrammetric process accurately. Feature detection, extraction and matching algorithms have performed on the high resolution images perfectly. However, images of cameras, which are equipped with low-resolution thermal sensors are problematic with the current algorithms. In this paper, some digital image processing techniques were applied to the low-resolution images taken with Optris PI 450 382 x 288 pixel optical resolution lightweight thermal camera to increase extraction and matching performance. Image enhancement methods that adjust low quality digital thermal images, were used to produce more suitable images for detection and extraction. Three main digital image process techniques: histogram equalization, high pass and low pass filters were considered to increase the signal-to-noise ratio, sharpen image, remove noise, respectively. Later on, the pre-processed images were evaluated using current image detection and feature extraction methods Maximally Stable Extremal Regions (MSER and Speeded Up Robust Features (SURF algorithms. Obtained results showed that some enhancement methods increased number of extracted features and decreased blunder errors during image matching. Consequently, the effects of different pre-process techniques were compared in the paper.

  18. Comparative performance of the conjugate gradient and SOR [Successive Over Relaxation] methods for computational thermal hydraulics

    International Nuclear Information System (INIS)

    King, J.B.; Anghaie, S.; Domanus, H.M.

    1987-01-01

    Finite difference approximations to the continuity, momentum, and energy equations in thermal hydraulics codes result in a system of N by N equations for a problem having N field points. In a three dimensional problem, N increases as the problem becomes larger or more complex, and more rapidly as the computational mesh size is reduced. As a consequence, the execution time required to solve the problem increases, which may lead to placing limits on the problem resolution or accuracy. A conventinal method of solution of these systems of equations is the Successive Over Relaxation (SOR) technique. However, for a wide range of problems the execution time may be reduced by using a more efficient linear equation solver. One such method is the conjugate gradient method which was implemented in COMMIX-1B thermal hydraulics code. It was found that the execution time required to solve the resulting system of equations was reduced by a factor of about 2 for some problems. This paper summarizes the characteristics of these iterative solution procedures and compares their performance in modeling of a variety of reactor thermal hydraulic problems, using the COMMIX-1B computer code

  19. Dynamic, large-deflection, inelastic and thermal stress analysis by the finite element method

    International Nuclear Information System (INIS)

    Haisler, W.E.; Stricklin, J.A.

    1975-01-01

    A finite element theory and computer program have been developed for predicting the dynamic, large displacement, inelastic and thermal response of stiffened and layered structures. The dependence of material properties on temperature is explicitly accounted for and any arbitrary, transient mechanical or thermal load history is allowed. The shell may have internal or external stiffeners and be constructed with up to three layers. The equations of motion are developed by using the pseudo force approach to represent all nonlinearities and are then solved by using either the Houbolt method or central differences. Moderately large rotations are allowed. The program is based on an incremental theory of plasticity using the Von Mises yield condition and associated flow rule. The post yield or work-hardening behavior is idealized with either the isotropic hardening or mechanical sublayer models. Two models are utilized since it has been found through comparison with experimental results that isotropic hardening is best for simple loading conditions while the mechanical sublayer model is better for reverse and cyclic loading. Strain-rate effects are also accounted for in the program by using a power-law type model based on the strain rate. The dependence of material properties on temperature is taken into account in the pseudo forces. Young's modulus, Poisson's ratio, thermal coefficient of expansion, the yield stress, and the entire stress strain curve are treated as functions of the applied temperature. Containment vessels subjected to transient and shock-type mechanical and thermal loads have been analyzed

  20. Method of estimating thermal power distribution of core of BWR type reactor

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1982-01-01

    Purpose: To accurately and rapidly predict the thermal power of the core of a BWR they reactor at load follow-up operating time. Method: A parameter value corrected from a correction coefficient deciding unit and a xenon density distribution value predicted and calculated from a xenon density distributor are inputted to a thermal power distribution predicting devise, the status amount such as coolant flow rate or the like predetermined at this and next high power operating times is substituted for physical model to predict and calculate the thermal power distribution. The status amount of a nuclear reactor at the time of operating in previous high power corresponding to the next high power operation to be predicted is read from the status amount of the reactor stored in time series manner is a reactor core status memory, and the physical model used in the prediction and calculation of the thermal power distribution at the time of next high power operation is corrected. (Sikiya, K.)

  1. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.

    Science.gov (United States)

    Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos

    2009-10-07

    This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.

  2. New method for evaluating the kinetic constant of thermal protection materials

    International Nuclear Information System (INIS)

    Bae, Ji Yeul; Yi, Jong Ju; Park, Sul Ki; Cho, Hyung Hee; Bae, Ju Chan; Ham, Hee Cheol

    2013-01-01

    Thermal protection material (TPM) is used to protect rocket structures from extreme conditions created by the hot exhaust of the rocket. Designing TPM is an important step in the rocket design process. Considering that an increase in the system weight decreases the overall performance of a rocket, the amount of TPM is carefully determined during the design process. Therefore, the precise properties of TPM guarantee an accurate thermal analysis and the successful design of the rocket. Among the many properties of TPM, the kinetic constant and activation energy, which govern the thermochemical reaction of the TPM, are the most important. Thus, an experiment to measure the kinetic constant and activation energy is conducted as part of this research. A theoretical approach to deduce the properties from measured data is discussed, and a method to apply the theory to experimental data, termed the R 2 method, is developed. Compared to a previous method which was difficult to apply, the R 2 method reduces unclear selections of the reaction time and does not require intervention by an interpreter. The properties deduced by the R 2 method show good agreement with the other method despite the limited number of experimental results.

  3. New method for evaluating the kinetic constant of thermal protection materials

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ji Yeul; Yi, Jong Ju; Park, Sul Ki; Cho, Hyung Hee [Yonsei University, Seoul (Korea, Republic of); Bae, Ju Chan; Ham, Hee Cheol [Agency for Defense Development, Daegu (Korea, Republic of)

    2013-06-15

    Thermal protection material (TPM) is used to protect rocket structures from extreme conditions created by the hot exhaust of the rocket. Designing TPM is an important step in the rocket design process. Considering that an increase in the system weight decreases the overall performance of a rocket, the amount of TPM is carefully determined during the design process. Therefore, the precise properties of TPM guarantee an accurate thermal analysis and the successful design of the rocket. Among the many properties of TPM, the kinetic constant and activation energy, which govern the thermochemical reaction of the TPM, are the most important. Thus, an experiment to measure the kinetic constant and activation energy is conducted as part of this research. A theoretical approach to deduce the properties from measured data is discussed, and a method to apply the theory to experimental data, termed the R{sup 2} method, is developed. Compared to a previous method which was difficult to apply, the R{sup 2} method reduces unclear selections of the reaction time and does not require intervention by an interpreter. The properties deduced by the R{sup 2} method show good agreement with the other method despite the limited number of experimental results.

  4. Experimental study on reactivity measurement in thermal reactor by polarity correlation method

    International Nuclear Information System (INIS)

    Yasuda, Hideshi

    1977-11-01

    Experimental study on the polarity correlation method for measuring the reactivity of a thermal reactor, especially the one possessing long prompt neutron lifetime such as graphite on heavy water moderated core, is reported. The techniques of reactor kinetics experiment are briefly reviewed, which are classified in two groups, one characterized by artificial disturbance to a reactor and the other by natural fluctuation inherent in a reactor. The fluctuation phenomena of neutron count rate are explained using F. de Hoffman's stochastic method, and correlation functions for the neutron count rate fluctuation are shown. The experimental results by polarity correlation method applied to the β/l measurements in both graphite-moderated SHE core and light water-moderated JMTRC and JRR-4 cores, and also to the measurement of SHE shut down reactivity margin are presented. The measured values were in good agreement with those by a pulsed neutron method in the reactivity range from critical to -12 dollars. The conditional polarity correlation experiments in SHE at -20 cent and -100 cent are demonstrated. The prompt neutron decay constants agreed with those obtained by the polarity correlation experiments. The results of experiments measuring large negative reactivity of -52 dollars of SHE by pulsed neutron, rod drop and source multiplication methods are given. Also it is concluded that the polarity and conditional polarity correlation methods are sufficiently applicable to noise analysis of a low power thermal reactor with long prompt neutron lifetime. (Nakai, Y.)

  5. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.

    Science.gov (United States)

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-04-29

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  6. The Dynamic Method for Time-of-Flight Measurement of Thermal Neutron Spectra from Pulsed Sources

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tulaev, A.B.; Bobrakov, V.F.

    1994-01-01

    The time-of-flight method for a measurement of thermal neutron spectra in the pulsed neutron sources with high efficiency of neutron registration, more than 10 5 times higher in comparison with traditional one, is described. The main problems connected with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of a special neutron detector design and other questions are discussed. Some experimental results, spectra from surfaces of the water and solid methane moderators, obtained in the pulsed reactor IBR-2 (Dubna, Russia) are presented. 4 refs., 5 figs

  7. Methods and systems to thermally protect fuel nozzles in combustion systems

    Science.gov (United States)

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  8. A hot-wire method based thermal conductivity measurement apparatus for teaching purposes

    International Nuclear Information System (INIS)

    Alvarado, S; Marín, E; Juárez, A G; Calderón, A; Ivanov, R

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer and a high purity platinum wire). The wire, which is immersed in the investigated sample, is heated by passing a constant electrical current through it, and its temperature evolution, ΔT, is measured as a function of time, t, for several values of the current. A straightforward methodology is then used for data processing in order to obtain the liquid thermal conductivity. The start point is the well known linear relationship between ΔT and ln(t) predicted for long heating times by a model based on a solution of the heat conduction equation for an infinite lineal heat source embedded in an infinite medium into which heat is conducted without convective and radiative heat losses. A criterion is used to verify that the selected linear region is the one that matches the conditions imposed by the theoretical model. As a consequence the method involves least-squares fits in linear, semi-logarithmic (semi-log) and log-log graphs, so that it becomes attractive not only to teach about heat transfer and thermal properties measurement techniques, but also as a good exercise for students of undergraduate courses of physics and engineering learning about these kinds of mathematical functional relationships between variables. The functionality of the experiment was demonstrated by measuring the thermal conductivity in samples of liquids with well known thermal properties. (paper)

  9. Development of In-plane Thermal Conductivity Calculation Methods in Thin Films

    Directory of Open Access Journals (Sweden)

    A. A. Barinov

    2017-01-01

    Full Text Available The future nanoelectronics development involves using the smaller- -and-smaller-sized circuit components based on the micro- and nanostructures. This causes a growth of the specific heat flows up to 100 W/cm2. Since performance of electronic devices is strongly dependent on the temperature there is a challenge to create the heat transfer models, which take into account the size effect and ensure a reliable estimate of the thermal conductivity. This is one of the crucial tasks for development of new generations of integrated circuits.The paper studies heat transfer processes using the silicon thin films as an example. Thermal conductivity calculations are performed taking into account the influence of the classical size effect in the context of the Sondheimer model based on the solution of the Boltzmann transport equation.The paper, for the first time, presents and considers the influence of various factors on the thermal conductivity of thin films, namely temperature, film thickness, polarization of the phonon waves (transverse and longitudinal, velocity and relaxation time versus frequency for the phonons of different wave types.Based on the analysis, three models with different accuracy are created to estimate the influence of detailing processes under consideration on the thermal conductivity in a wide range of temperatures (from 10 K to 450 К and film thickness (from 10 nm to 100 µm.So in the model I for the first time in calculating thermal conductivity of thin films we properly and circumstantially take into account the dependence of the velocity and the relaxation time of phonons on the frequency and polarization. The obtained values are in a good agreement with available experimental data and theoretical models of other authors. In the following models we use few average methods for relaxation times and velocities, which leads to significant reduction in calculating accuracy up to the values exceeding 100%.Therefore, when calculating

  10. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  11. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    Science.gov (United States)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  12. A Truly Second-Order and Unconditionally Stable Thermal Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2017-03-01

    Full Text Available An unconditionally stable thermal lattice Boltzmann method (USTLBM is proposed in this paper for simulating incompressible thermal flows. In USTLBM, solutions to the macroscopic governing equations that are recovered from lattice Boltzmann equation (LBE through Chapman–Enskog (C-E expansion analysis are resolved in a predictor–corrector scheme and reconstructed within lattice Boltzmann framework. The development of USTLBM is inspired by the recently proposed simplified thermal lattice Boltzmann method (STLBM. Comparing with STLBM which can only achieve the first-order of accuracy in time, the present USTLBM ensures the second-order of accuracy both in space and in time. Meanwhile, all merits of STLBM are maintained by USTLBM. Specifically, USTLBM directly updates macroscopic variables rather than distribution functions, which greatly saves virtual memories and facilitates implementation of physical boundary conditions. Through von Neumann stability analysis, it can be theoretically proven that USTLBM is unconditionally stable. It is also shown in numerical tests that, comparing to STLBM, lower numerical error can be expected in USTLBM at the same mesh resolution. Four typical numerical examples are presented to demonstrate the robustness of USTLBM and its flexibility on non-uniform and body-fitted meshes.

  13. In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods

    Directory of Open Access Journals (Sweden)

    Radu Alexandru Roşu

    2012-03-01

    Full Text Available Titanium alloys are successfully used in medicine as implants due to their high mechanical properties and good biocompatibility. To improve implant osseointegration of titanium alloys, they are covered with hydroxyapatite because of its bioactive properties. Coating the implants with hydroxyapatite by thermal spraying, due to the temperatures developed during the deposition process, the structure can be degraded, leading to formation of secondary phases, such as TCP, TT CP, CaO. The paper presents the experimental results of hydroxyapatite layers deposition by two thermal spraying methods: Atmospheric Plasma Spraying (APS and High Velocity Oxy-Fuel (HVOF. The microstructure of the deposited layers is characterized by X-ray diffraction analysis and electronic microscopy. The bioactivity of the hydroxyapatite layers was investigated in Simulated Body Fluid (SBF by immersing the covered samples deposited by the two thermal spraying methods. In both cases the coatings did not present defects as cracks or microcracks. X-ray diffraction performed on hydroxyapatite deposited layers shows that the structure was strongly influenced by plasma jet temperature, the structure consisting mainly of TCP (Ca3PO42. The samples deposited by HVO F after immersing in SBF lead to formation of biological hydroxyapatite, certifying the good bioactivity of the coatings.

  14. Evaluation of fatigue damage induced by thermal striping in a T junction using the three dimensional coupling method and frequency response method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hye; Choi, Jae boong; Kim, Moon Ki [Sungkyunkwan Univ., Seoul (Korea, Republic of); Huh, Nam Su [Seoul Nat' l Univ., Seoul (Korea, Republic of); Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Thermal fatigue cracking induced by thermal stratification, cycling and striping have been observed in several PWR plants. Especially, thermal striping, the highly fluctuating thermal layer, became one of the significant problems, since it can cause un predicted high cycle thermal fatigue (HCTF) at piping systems. This problem are usually found in T junctions of energy cooling systems, where cold and hot flows with high level of turbulence mix together. Thermal striping can cause the networks of fatigue crack at the vicinity of weld parts and these cracks can propagate to significant depth in a relatively short time. Therefore, thermal striping and fatigue crack initiations should be predicted in advance to prevent the severe failure of piping systems. The final goal of this research is to develop a rational thermal and mechanical model considering thermohydraulic characteristics of thermal striping and an evaluation procedure to predict the initiation of thermal fatigue crack. As a first step, we evaluated the fatigue damage in a T junction using two widely used methods. Then, we analyzed the results of each method and conducted comparisons and verifications.

  15. Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    Directory of Open Access Journals (Sweden)

    N. Yu. Dudareva

    2015-01-01

    Full Text Available The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units, which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can

  16. Improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1986-01-01

    An improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell has been developed. Expanding the neutron flux and source into a series of even powers of the radius, one' gets a convenient method for integration of the one-energy group integral transport equation. It is shown that it is possible to perform an analytical integration in the x-y plane in one variable and to use the effective Gaussian integration over another one. Choosing a convenient distribution of space points in fuel and moderator the transport matrix calculation and cell reaction rate integration were condensed. On the basis of the proposed method, the computer program DISKRET for the ZUSE-Z 23 K computer has been written. The suitability of the proposed method for the calculation of the thermal-neutron-flux distribution in a reactor cell can be seen from the test results obtained. Compared with the other collision probability methods, the proposed treatment excels with a mathematical simplicity and a faster convergence. (author)

  17. Electret ionization chamber: a new method for detection and dosimetry of thermal neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.

    1988-01-01

    An electret ionization chamber with boron coated walls is presented as a new method for detecting thermal neutrons. The efficiency of electret ionization chambers with different wall materials for the external electrode was inferred from the results. Detection of slow neutrons with discrimination against the detection of γ-rays and energetic neutrons was shown to depend on the selection of these materials. The charge stability over a long period of time and the charge decay owing to natural radiation were also studied. Numerical analysis was developed by the use of a micro-computer PC-XT. Both the experimental and numerical results show that the sensitivity of the electret ionization chamber for detection of thermal neutrons is comparable with that of the BF 3 ionization chamber and that new technologies for deposition of the boron layer will produce higher efficiency detectors. (author). 102 refs, 32 fig, 10 tabs

  18. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    Science.gov (United States)

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  19. Thermal and structural study of guava (Psidium guajava L powders obtained by two dehydration methods

    Directory of Open Access Journals (Sweden)

    Coralia Osorio

    2011-01-01

    Full Text Available Two food products (powders were obtained by hot-air drying or lyophilisation methods on the whole guava fruits. The powders were characterised by sensory and thermal analyses (TGA-DSC, infrared spectroscopy (IR, X-ray diffraction (XRD and scanning electron microscopy (SEM. Thermal, morphological and structural characterisations showed a similar behaviour for the two solids. TGA-DSC and IR showed the presence of pectin as the main constituent of solids. A semi-crystalline profile was evidenced by XRD, and lamellar/spherical morphologies were observed by SEM. Sensory analyses revealed an aroma highly related to guava. These value-added food products are an alternative to process guava and avoid loss during postharvest handling.

  20. Method and Apparatus for Measuring Thermal Conductivity of Small, Highly Insulating Specimens

    Science.gov (United States)

    Miller, Robert A (Inventor); Kuczmarski, Maria A (Inventor)

    2013-01-01

    A method and apparatus for the measurement of thermal conductivity combines the following capabilities: 1) measurements of very small specimens; 2) measurements of specimens with thermal conductivity on the same order of that as air; and, 3) the ability to use air as a reference material. Care is taken to ensure that the heat flow through the test specimen is essentially one-dimensional. No attempt is made to use heated guards to minimize the flow of heat from the hot plate to the surroundings. Results indicate that since large correction factors must be applied to account for guard imperfections when specimen dimensions are small, simply measuring and correcting for heat from the heater disc that does not flow into the specimen is preferable.