WorldWideScience

Sample records for thermal monitoring sheet

  1. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  2. Performance evaluation of a conformal thermal monitoring sheet sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments.

    Science.gov (United States)

    Arunachalam, K; Maccarini, P; Juang, T; Gaeta, C; Stauffer, P R

    2008-06-01

    This paper presents a novel conformal thermal monitoring sheet (TMS) sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self-heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. A prototype with 4 x 4 array of fiber-optic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter-based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self-heating was observed when irradiated with 915 MHz microwave and 3.4 MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease.

  3. Flexible Structural-Health-Monitoring Sheets

    Science.gov (United States)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  4. The Greenland Ice Sheet Monitoring Network (GLISN)

    Science.gov (United States)

    Anderson, K. R.; Beaudoin, B. C.; Butler, R.; Clinton, J. F.; Dahl-Jensen, T.; Ekstrom, G.; Giardini, D.; Govoni, A.; Hanka, W.; Kanao, M.; Larsen, T.; Lasocki, S.; McCormack, D. A.; Mykkeltveit, S.; Nettles, M.; Agostinetti, N. P.; Stutzmann, E.; Tsuboi, S.; Voss, P.

    2010-12-01

    The GreenLand Ice Sheet monitoring Network (GLISN) is an international, broadband seismic capability for Greenland, being installed and implemented through the collaboration of Denmark, Canada, Germany, Italy, Japan, Norway, Poland, Switzerland, and USA. GLISN is a real-time sensor array of seismic stations to enhance and upgrade the performance of the sparse Greenland seismic infrastructure for detecting, locating, and characterizing glacial earthquakes and other cryo-seismic phenomena, and contributing to our understanding of Ice Sheet dynamics. Complementing data from satellites, geodesy, and other sources, and in concert with these technologies, GLISN will provide a powerful tool for detecting change, and will advance new frontiers of research in the glacial systems; the underlying geological and geophysical processes affecting the Greenland Ice Sheet; interactions between oceans, climate, and the cryosphere; and other multidisciplinary areas of interest to geoscience and climate dynamics. The glacial processes that induce seismic events (internal deformation, sliding at the base, disintegration at the calving front, drainage of supra-glacial lakes) are all integral to the overall dynamics of glaciers, and seismic observations of glaciers therefore provide a quantitative means for monitoring changes in their behavior over time. Long-term seismic monitoring of the Greenland Ice Sheet will contribute to identifying possible unsuspected mechanisms and metrics relevant to ice sheet collapse, and will provide new constraints on Ice Sheet dynamic processes and their potential roles in sea-level rise during the coming decades. GLISN will provide a new, fiducial reference network in and around Greenland for monitoring these phenomena in real-time, and for the broad seismological study of Earth and earthquakes. The 2010 summer field season saw the installation or upgrade of 9 stations in the GLISN network. Sites visited under the GLISN project include Station Nord (NOR

  5. Thermal Transport Properties of Dry Spun Carbon Nanotube Sheets

    Directory of Open Access Journals (Sweden)

    Heath E. Misak

    2016-01-01

    Full Text Available The thermal properties of carbon nanotube- (CNT- sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an IR Camera. The heat flux of CNT-sheet was compared to that of copper, and it was found that the CNT-sheet has significantly higher specific heat transfer properties compared to those of copper. CNT-sheet is a potential candidate to replace copper in thermal transport applications where weight is a primary concern such as in the automobile, aircraft, and space industries.

  6. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.

    Science.gov (United States)

    Mortazavi, Bohayra; Pötschke, Markus; Cuniberti, Gianaurelio

    2014-03-21

    We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.

  7. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-12-01

    This factsheet describes a project that developed a new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets to replace metals and ceramics in heat transfer applications.

  8. Electric thermal inspection of metal sheets

    Science.gov (United States)

    Golovin, Yu. I.; Tyurin, A. I.; Golovin, D. Yu.; Samodurov, A. A.

    2017-10-01

    An electrothermal method of nondestructive inspection of conducting materials is proposed and tested experimentally. This method is based on filming the IR emission of the surface induced in a sheet sample excited by a millisecond current pulse. Subsequent computer processing of the nonstationary thermalfield patterns reveals millimeter and submillimeter defects and provides an opportunity to estimate their geometrical parameters and the temperature-diffusivity coefficient of the material.

  9. Monitoring and thermal management.

    Science.gov (United States)

    Lenhardt, Rainer

    2003-12-01

    Anaesthesia alters normal thermoregulatory control of the body, usually leading to perioperative hypothermia. Hypothermia is associated with a large number of serious complications. To assess perianaesthetic hypothermia, core temperature should be monitored vigorously. Pulmonary artery, tympanic membrane, distal oesophageal or nasopharyngeal temperatures reflect core temperature reliably. Core temperatures can be often estimated with reasonable accuracy using oral, axillary and bladder temperatures, except during extreme thermal perturbations. The body site for measurements should be chosen according to the surgical procedure. Unless hypothermia is specifically indicated, efforts should be made to maintain intraoperative core temperatures above 36 degrees C. Forced air is the most effective, commonly available, non-invasive warming method. Resistive heating electrical blankets and circulating water garment systems are an equally effective alternative. Intravenous fluid warming is also helpful when large volumes are required. In some patients, induction of mild therapeutic hypothermia may become an issue for the future. Recent studies indicate that patients suffering from neurological disease may profit from rapid core cooling.

  10. Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.

    Science.gov (United States)

    Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A

    2016-05-01

    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.

  11. Monitoring Thermal Conditions in Footwear

    Science.gov (United States)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  12. The GreenLand Ice Sheet monitoring Network (GLISN)

    Science.gov (United States)

    Larsen, Tine B.; Anderson, K. R.; Beaudoin, B. C.; Butler, R.; Clinton, J. F.; Dahl-Jensen, T.; Ekstrom, G.; Giardini, D.; Hanka, W.; Kanao, M.; McCormack, D.; Mykkelveit, S.; Nettles, M.; Piana Agostinetti, N.; Tsuboi, S.; Voss, P.

    2010-05-01

    The GreenLand Ice Sheet monitoring Network (GLISN) is a new, international, broadband seismic capability for Greenland, being installed and implemented through the joint collaboration of USA, Denmark, Switzerland, Germany, Canada, Italy, Japan and Norway. GLISN is a real-time sensor array consisting of more than 20 broad band stations. The purpose of the project is to enhance and upgrade the performance of the scarce existing Greenland seismic infrastructure for detecting, locating, and characterizing both tectonic and in particular glacial earthquakes and other cryo-seismic phenomena. Complementing data from satellites, geodesy, and other sources, and in concert with these technologies, GLISN will provide a powerful tool for detecting change, and will advance new frontiers of research in the glacial systems as well as in the underlying geological and geophysical processes affecting the Greenland Ice Sheet. The glacial processes that induce seismic events are all integral to the overall dynamics of glaciers, and seismic observations of glaciers therefore provide a quantitative means for monitoring changes in their behaviour over time. Long-term seismic monitoring of the Greenland Ice Sheet will contribute to identifying possible unsuspected mechanisms, and also detect if the areas of cryo-seismic events change and expand in the coming decades. GLISN will provide a new reference network in and around Greenland for monitoring these phenomena in real-time, and for the broad seismological study of Earth and earthquakes. The GLISN development takes its starting point in the existing permanent and long-time stations in and around Greenland operated by members of GLISN. These stations will be upgraded to a common standard with real-time telemetry. The network will be expanded by installing new, telemetered, broadband seismic stations on Greenland's perimeter and ice sheet. An open virtual network is established were all GLISN data can be downloaded. In collaboration with

  13. The ingestible thermal monitoring system

    Science.gov (United States)

    Cutchis, Protagoras N.; Hogrefe, Arthur F.; Lesho, Jeffery C.

    1988-03-01

    A thermal monitoring system for measuring body core temperatures was developed that contains an ingestible pill which is both commandable and rechargeable, and which uses magnetic induction for command and telemetry as well as for recharging. The pill electronics consist of a battery power source, a crystal-controlled oscillator that drives a small air coil, and a command detection circuit. The resulting 262-kHz magnetilc field can be easily detected from a distance of 1 m. The pill oscillator functions at voltages less than 1 V, supplied by a single Ni-Cd battery, which must be recharged after 72 h of continuous transmission. The pill can be recalibrated periodically to compensate for long-term drift.

  14. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.

    Science.gov (United States)

    Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S

    2014-11-26

    Thermal properties of single wall carbon nanotube sheets (SWCNT-sheets) are of significant importance in the area of thermal management, as an isolated SWCNT possesses high thermal conductivity of the value about 3000 W m(-1) K(-1). Here we report an indirect method of estimating the thermal conductivity of a nanometer thick suspended SWCNT-sheet by employing the Raman scattering technique. Tube diameter size is examined by the transmissions electron microscopy study. The Raman analysis of the radial breathing modes predicts narrow diameter size distribution with achiral (armchair) symmetry of the constituent SWCNTs. From the first order temperature coefficient of the A1g mode of the G band along with the laser power dependent frequency shifting of this mode, the thermal conductivity of the suspended SWCNT-sheet is estimated to be about ∼18.3 W m(-1) K(-1). Our theoretical study shows that the thermal conductivity of the SWCNT-sheet has contributions simultaneously from the intratube and intertube thermal transport. The intertube thermal conductivity (with contributions from the van der Waals interaction) is merely around 0.7 W m(-1) K(-1), which is three orders smaller than the intratube thermal conductivity, leading to an abrupt decrease in the thermal conductivity of the SWCNT-sheet as compared to the reported value for isolated SWCNT.

  15. Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets.

    Science.gov (United States)

    Uetani, Kojiro; Okada, Takumi; Oyama, Hideko T

    2015-07-13

    The thermal conductive properties, including the thermal diffusivity and resultant thermal conductivity, of nonwoven nanocellulose sheets were investigated by separately measuring the thermal diffusivity of the sheets in the in-plane and thickness directions with a periodic heating method. The cross-sectional area (or width) of the cellulose crystallites was the main determinant of the thermal conductive properties. Thus, the results strongly indicate that there is a crystallite size effect on phonon conduction within the nanocellulose sheets. The results also indicated that there is a large interfacial thermal resistance between the nanocellulose surfaces. The phonon propagation velocity (i.e., the sound velocity) within the nanocellulose sheets was estimated to be ∼800 m/s based on the relationship between the thermal diffusivities and crystallite widths. The resulting in-plane thermal conductivity of the tunicate nanocellulose sheet was calculated to be ∼2.5 W/mK, markedly higher than other plastic films available for flexible electronic devices.

  16. Interactions between topographically and thermally forced stationary waves: implications for ice-sheet evolution

    Directory of Open Access Journals (Sweden)

    Johan Liakka

    2012-01-01

    Full Text Available This study examines mutual interactions between stationary waves and ice sheets using a dry atmospheric primitive-equation model coupled to a three-dimensional thermomechanical ice-sheet model. The emphasis is on how non-linear interactions between thermal and topographical forcing of the stationary waves influence the ice-sheet evolution by changing the ablation. Simulations are conducted in which a small ice cap, on an idealised Northern Hemisphere continent, evolves to an equilibrium continental-scale ice sheet. In the absence of stationary waves, the equilibrium ice sheet arrives at symmetric shape with a zonal equatorward margin. In isolation, the topographically induced stationary waves have essentially no impact on the equilibrium features of the ice sheet. The reason is that the temperature anomalies are located far from the equatorward ice margin. When forcing due to thermal cooling is added to the topographical forcing, thermally induced perturbation winds amplify the topographically induced stationary-wave response, which that serves to increase both the equatorward extent and the volume of the ice sheet. Roughly, a 10% increase in the ice volume is reported here. Hence, the present study suggests that the topographically induced stationary-wave response can be substantially enhanced by the high albedo of ice sheets.

  17. Effect of highly reflective roofing sheet on building thermal loads for a school in Osaka

    Directory of Open Access Journals (Sweden)

    Yuan Jihui

    2017-01-01

    Full Text Available Currently, urban heat island (UHI phenomenon and building energy consumptions are becoming serious. Strategies to mitigate UHI and reduce building energy consumptions are implemented worldwide. In Japan, as an effective means of mitigating UHI and saving energy of buildings, highly reflective (HR and green roofs are increasingly used. In order to evaluate the effect of roofs with high reflection and thermal insulation on the energy conservation of buildings, we investigated the roof solar reflectivity of the subject school in Osaka, in which the HR roofing sheet was installed on the roof from 2010. Thermal loads, including cooling and heating loads of the top floor of school, were calculated using the thermal load calculation software, New HASP/ACLD-β. Comparing the thermal loads after HR roofing sheet installation to previous, the annual thermal load decreased about 25 MJ/m2-year and the cooling load decreased about 112 MJ/m2-year. However, the heating load increased about 87 MJ/m2-year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered be used together with HR roofing sheet in this study. The results showed that the combination of HR roofing sheet and high thermal insulation is more effective to reduce the annual thermal load.

  18. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.

    Science.gov (United States)

    Wei, Ning; Xu, Lanqing; Wang, Hui-Qiong; Zheng, Jin-Cheng

    2011-03-11

    Graphene is an outstanding material with ultrahigh thermal conductivity. Its thermal transfer properties under various strains are studied by reverse nonequilibrium molecular dynamics. Based on the unique two-dimensional structure of graphene, the distinctive geometries of graphene sheets and graphene nanoribbons with large flexibility and their intriguing thermal properties are demonstrated under strains. For example, the corrugation under uniaxial compression and helical structure under light torsion, as well as tube-like structure under strong torsion, exhibit enormously different thermal conductivity. The important robustness of thermal conductivity is found in the corrugated and helical configurations of graphene nanoribbons. Nevertheless, thermal conductivity of graphene is very sensitive to tensile strain. The relationship among phonon frequency, strain and thermal conductivity are analyzed. A similar trend line of phonon frequency dependence of thermal conductivity is observed for armchair graphene nanoribbons and zigzag graphene nanoribbons. The unique thermal properties of graphene nanoribbons under strains suggest their great potentials for nanoscale thermal managements and thermoelectric applications.

  19. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites

    Energy Technology Data Exchange (ETDEWEB)

    Jakubinek, Michael B.; Kim, Keun Su; Simard, Benoit [Security and Disruptive Technologies, Division of Emerging Technologies, National Research Council Canada, Ottawa, ON (Canada); Niven, John F. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Johnson, Michel B. [Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Ashrafi, Behnam [Aerospace, Division of Engineering, National Research Council Canada, Montreal, QC (Canada); White, Mary Anne [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Department of Chemistry, Dalhousie University, Halifax, NS (Canada)

    2016-08-15

    The thermal conductivity of bulk, self-supporting boron nitride nanotube (BNNT) sheets composed of nominally 100% BNNTs oriented randomly in-plane was measured by a steady-state, parallel thermal conductance method. The sheets were either collected directly during synthesis or produced by dispersion and filtration. Differences between the effective thermal conductivities of filtration-produced BNNT buckypaper (∝1.5 W m{sup -1} K{sup -1}) and lower-density as-synthesized sheets (∝0.75 W m{sup -1} K{sup -1}), which are both porous materials, were primarily due to their density. The measured results indicate similar thermal conductivity, in the range of 7-12 W m{sup -1} K{sup -1}, for the BNNT network in these sheets. High BNNT-content composites (∝30 wt.% BNNTs) produced by epoxy impregnation of the porous BNNT network gave 2-3 W m{sup -1} K{sup -1}, more than 10 x the baseline epoxy. The combination of manufacturability, thermal conductivity, and electrical insulation offers exciting potential for electrically insulating, thermally conductive coatings and packaging. Thermal conductivity of free-standing BNNT buckypaper, buckypaper composites, and related materials at room temperature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Huang, Xiaopeng; Zeng, Xiao Cheng

    2015-11-28

    A recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this work, thermal conductivity (κ) of monolayer phosphorene is calculated using large-scale classical non-equilibrium molecular dynamics (NEMD) simulations. The predicted thermal conductivities for infinite length armchair and zigzag phosphorene sheets are 63.6 and 110.7 W m(-1) K(-1) respectively. The strong anisotropic thermal transport is attributed to the distinct atomic structures at altered chiral directions and direction-dependent group velocities. Thermal conductivities of 2D graphene sheets with the same dimensions are also computed for comparison. The extrapolated κ of the 2D graphene sheet are 1008.5(+37.6)(-37.6) and 1086.9(+59.1)(-59.1) W m(-1) K(-1) in the armchair and zigzag directions, respectively, which are an order of magnitude higher than those of phosphorene. The overall and decomposed phonon density of states (PDOS) are calculated in both structures to elucidate their thermal conductivity differences. In comparison with graphene, the vibrational frequencies that can be excited in phosphorene are severely limited. The temperature effect on the thermal conductivity of phosphorene and graphene sheets is investigated, which reveals a monotonic decreasing trend for both structures.

  1. Monitoring Motion of Pigs in Thermal Videos

    DEFF Research Database (Denmark)

    Gronskyte, Ruta; Kulahci, Murat; Clemmensen, Line Katrine Harder

    2013-01-01

    We propose a new approach for monitoring animal movement in thermal videos. The method distinguishes movements as walking in the expected direction from walking in the opposite direction, stopping or lying down. The method utilizes blob detection combined with opti-cal ow to segment the pigs...

  2. Monitoring Antarctic ice sheet surface melting with TIMESAT algorithm

    Science.gov (United States)

    Ye, Y.; Cheng, X.; Li, X.; Liang, L.

    2011-12-01

    Antarctic ice sheet contributes significantly to the global heat budget by controlling the exchange of heat, moisture, and momentum at the surface-atmosphere interface, which directly influence the global atmospheric circulation and climate change. Ice sheet melting will cause snow humidity increase, which will accelerate the disintegration and movement of ice sheet. As a result, detecting Antarctic ice sheet melting is essential for global climate change research. In the past decades, various methods have been proposed for extracting snowmelt information from multi-channel satellite passive microwave data. Some methods are based on brightness temperature values or a composite index of them, and others are based on edge detection. TIMESAT (Time-series of Satellite sensor data) is an algorithm for extracting seasonality information from time-series of satellite sensor data. With TIMESAT long-time series brightness temperature (SSM/I 19H) is simulated by Double Logistic function. Snow is classified to wet and dry snow with generalized Gaussian model. The results were compared with those from a wavelet algorithm. On this basis, Antarctic automatic weather station data were used for ground verification. It shows that this algorithm is effective in ice sheet melting detection. The spatial distribution of melting areas(Fig.1) shows that, the majority of melting areas are located on the edge of Antarctic ice shelf region. It is affected by land cover type, surface elevation and geographic location (latitude). In addition, the Antarctic ice sheet melting varies with seasons. It is particularly acute in summer, peaking at December and January, staying low in March. In summary, from 1988 to 2008, Ross Ice Shelf and Ronnie Ice Shelf have the greatest interannual variability in amount of melting, which largely determines the overall interannual variability in Antarctica. Other regions, especially Larsen Ice Shelf and Wilkins Ice Shelf, which is in the Antarctic Peninsula

  3. The response of the southern Greenland ice sheet to the Holocene thermal maximum

    DEFF Research Database (Denmark)

    Larsen, Nicolaj Krog; Kjær, Kurt H.; Lecavalier, Benoit

    2015-01-01

    To determine the long-term sensitivity of the Greenland ice sheet to a warmer climate, we explored how it responded to the Holocene thermal maximum (8–5 cal. kyr B.P.; calibrated to calendar years before present, i.e., A.D. 1950), when lake records show that local atmospheric temperatures...

  4. A Synthesis of the Basal Thermal State of the Greenland Ice Sheet

    Science.gov (United States)

    Macgregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Aschwanden, A.; Clow, G. D.; Colgan, W. T.; Gogineni, S. P.; Morlighem, M.; Nowicki, S. M. J.; Paden, J. D.; hide

    2016-01-01

    Greenland's thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth's depths. Knowing whether Greenland's ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future. But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Our study synthesizes several independent methods to infer the Greenland Ice Sheet's basal thermal state -whether the bottom of the ice is melted or not-leading to the first map that identifies frozen and thawed areas across the whole ice sheet. This map will guide targets for future investigations of the Greenland Ice Sheet toward the most vulnerable and poorly understood regions, ultimately improving our understanding of its dynamics and contribution to future sea-level rise. It is of particular relevance to ongoing Operation IceBridge activities and future large-scale airborne missions over Greenland.

  5. Tool Monitoring and Electronic Event Logging for Sheet Metal Forming Processes

    Directory of Open Access Journals (Sweden)

    Gerd Heiserich

    2010-06-01

    Full Text Available This contribution describes some innovative solutions regarding sensor systems for tool monitoring in the sheet metal industry. Autonomous and tamper-proof sensors, which are integrated in the forming tools, can detect and count the strokes carried out by a sheet metal forming press. Furthermore, an electronic event logger for documentary purposes and quality control was developed. Based on this technical solution, new business models such as leasing of sheet metal forming tools can be established for cooperation among enterprises. These models allow usage-based billing for the contractors, taking the effectively produced number of parts into account.

  6. Characterization of the deformation and thermal behavior of granitic exfoliation sheets with LiDAR and infrared thermography (Yosemite Valley, USA)

    Science.gov (United States)

    Guerin, Antoine; Derron, Marc-Henri; Jaboyedoff, Michel; Collins, Brian D.; Stock, Greg M.

    2017-04-01

    Yosemite Valley is a long (11 km) and deep ( 1 km) glacier-carved valley, bounded by steep granitic cliffs cutting the western slope of the central Sierra Nevada mountain range (California, USA). These cliffs produce numerous rockfalls every year (925 events reported between 1857 and 2011) and this rockfall activity is often linked to the presence of sheeting joints (Stock et al., 2013), also called exfoliation joints, formed in response to stress changes associated with changes in the topography (Martel, 2011). Furthermore, the historical rockfall inventory indicates that many events occurred without recognized triggers (Austin et al., 2014), in summer time, and on sunny days in particular. This suggests that thermal stress changes are involved in triggering of rockfalls (Collins and Stock, 2016). To further characterize the relationship between thermal stresses and rock face deformation, we carried out three experiments in Yosemite Valley during October 2015: (i) monitoring of a sub-vertical granodiorite exfoliation sheet on the Rhombus Wall for 24 consecutive hours (from 8:00 p.m. to 8:00 p.m.) using terrestrial LiDAR, crackmeters and infrared thermal sensors; (ii) monitoring the El Capitan rockwall composed of tens of exfoliation sheets for 8 consecutive hours (from 5:30 p.m. to 1:30 a.m.) with terrestrial LiDAR and thermal imaging; (iii) collecting several sequences of thermal GigaPan panoramas during periods of rock cooling on both cliffs (Rhombus Wall and El Capitan). In parallel to these experiments, we also developed a method for calibrating and correcting the raw apparent temperature measured by our thermal imager (a FLIR T660 infrared camera) from thermoresistances, reflective and black papers and by using some information given by the LiDAR point clouds (range, dip and dip direction). LiDAR monitoring of experiments (i) and (ii) allowed us to detect millimetric deformations for the exfoliations sheets whose crack aperture is persistent, deep and greater

  7. Fiber Optic Thermal Health Monitoring of Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  8. Observations from the Programme for Monitoring of the Greenland Ice Sheet

    Science.gov (United States)

    Andersen, S. B.; Ahlstrom, A. P.; Andersen, M. L.; Box, J. E.; Citterio, M.; Colgan, W. T.; Fausto, R. S.; van As, D.; Forsberg, R.; Skourup, H.; Sandberg Sørensen, L.; Kristensen, S. S.; Dall, J.; Kusk, A.; Petersen, D.

    2014-12-01

    The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) is as an on-going effort initiated in 2007 to monitor changes in the mass budget of the Greenland Ice Sheet. The aim of the programme is to quantify the mass loss of the Greenland ice sheet and track changes in the extent of the glaciers, ice caps and ice sheet margin. Specifically, PROMICE aims to estimate the mass loss derived from three fundamentally different sources: Surface melt water runoff from the ice sheet margin Iceberg production Mass loss of individual glaciers and ice caps surrounding the ice sheet The first is observed by a network of automatic weather stations (AWS) on the ice sheet margin measuring ice ablation as well as meteorological parameters. The second is determined by establishing a so-called 'flux gate' along the entire ice sheet margin and keeping track of the ice passing through this gate. The flux gate is obtained from airborne surveys of ice sheet surface elevation and thickness. The volume of the ice passing through the gate is derived from maps of the surface velocity of the ice sheet, produced from satellite radar. The third is investigated through regular mapping of area and elevation of the approximately 20.000 individual glaciers and ice caps in Greenland. Mapping is carried out using recent satellite imagery as well as aerial ortho-photos. Within PROMICE data sets from these activities are collected. They include observations from the network of currently about 20 AWS on the margin of the Greenland ice sheet. Airborne surveys, yielding surface elevation and ice depth along the entire margin of the Greenland ice sheet carried out in 2007 and 2011. A map of all Greenland ice masses, based on the highest detail aero-photogrammetric maps produced from mid-80's aerial photographs. Real-time data from the PROMICE AWS network is shown at the web site www.promice.org and the data is freely available for download. Data from the airborne surveys and mapping activities are

  9. Variation in mouthguard thickness according to heating conditions during fabrication Part 2: sheet shape and effect of thermal shrinkage.

    Science.gov (United States)

    Takahashi, Mutsumi; Koide, Kaoru

    2016-06-01

    The aim of this study was to investigate the influence of the thermal shrinkage to thickness of the mouthguard with the heating method by the setting position of a sheet and the working model using an ethylene vinyl acetate sheet prepared by extrusion. Mouthguards were fabricated with EVA sheets (4.0 mm thick) using a vacuum-forming machine. Two forming conditions were compared: the square sheet was pinched by the clamping frame attached to the forming machine (S); and the round sheet was pinched at the top and bottom and stabilized by the circle tray (R). The sheet was aligned to make the sheet's extrusion direction vertical (V) or parallel (P) to the midline of the working model. The following two heating conditions were compared: (i) the sheet was molded when it sagged 15 mm below the level of the sheet frame measured at the top of the post in condition S (S-0), or that sagged 10 mm in condition R (R-0) in the usual position; (ii) the sheet frame was lowered by 50 mm from the ordinary height (S-50, R-50). Postmolding thickness was determined using a measuring device. Measurement points were the incisal and molar portion. Differences in the change of thickness of mouthguards molded under different heating conditions and extrusion directions for each sheet shape were analyzed by two-way analysis of variance (anova). The results of this study showed that by lowering the height of the sheet frame, the difference of the sheet temperature of each part was reduced. Among all sheets, condition V produced under S-50 and R-50 had the largest thickness independently of shape sheet. Furthermore, thickness reduction is effectively suppressed by aligning the direction of the extruded sheet to be vertical to the midline of the model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage.

    Science.gov (United States)

    Danielson, Christian; Mehrnezhad, Ali; YekrangSafakar, Ashkan; Park, Kidong

    2017-06-14

    Self-folding or micro-origami technologies are actively investigated as a novel manufacturing process to fabricate three-dimensional macro/micro-structures. In this paper, we present a simple process to produce a self-folding structure with a biaxially oriented polystyrene sheet (BOPS) or Shrinky Dinks. A BOPS sheet is known to shrink to one-third of its original size in plane, when it is heated above 160 °C. A grid pattern is engraved on one side of the BOPS film with a laser engraver to decrease the thermal shrinkage of the engraved side. The thermal shrinkage of the non-engraved side remains the same and this unbalanced thermal shrinkage causes folding of the structure as the structure shrinks at high temperature. We investigated the self-folding mechanism and characterized how the grid geometry, the grid size, and the power of the laser engraver affect the bending curvature. The developed fabrication process to locally modulate thermomechanical properties of the material by engraving the grid pattern and the demonstrated design methodology to harness the unbalanced thermal shrinkage can be applied to develop complicated self-folding macro/micro structures.

  11. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    Science.gov (United States)

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  12. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    Full Text Available In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  13. Development of neutron-monitor detector using liquid organic scintillator coupled with 6Li + ZnS(Ag) Sheet.

    Science.gov (United States)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Takahashi, Fumiaki

    2004-01-01

    A phoswitch-type detector has been developed for monitoring neutron doses in high-energy accelerator facilities. The detector is composed of a liquid organic scintillator (BC501A) coupled with ZnS(Ag) sheets doped with 6Li. The dose from neutrons with energies above 1 MeV is evaluated from the light output spectrum of the BC501A by applying the G-function, which relates the spectrum to the neutron dose directly. The dose from lower energy neutrons, on the other hand, is estimated from the number of scintillations emitted from the ZnS(Ag) sheets. Characteristics of the phoswitch-type detector were studied experimentally in some neutron fields. It was found from the experiments that the detector has an excellent property of pulse-shape discrimination between the scintillations of BC501A and the ZnS(Ag) sheets. The experimental results also indicate that the detector is capable of reproducing doses from thermal neutrons as well as neutrons with energies from one to several tens of megaelectronvolts (MeV).

  14. Tunable wideband-directive thermal emission from SiC surface using bundled graphene sheets

    Science.gov (United States)

    Inampudi, Sandeep; Mosallaei, Hossein

    2017-09-01

    Coherent thermal radiation emitters based on diffraction gratings inscribed on surface of a polar material, such as silicon carbide, always possess high angular dispersion resulting in wideband-dispersive or monochromatic-directive emission. In this paper, we identify roots of the high angular dispersion as the rapid surface phonon polariton (SPhP) resonance of the material surface and the misalignment of the dispersion curve of the diffraction orders of the grating with respect to light line. We minimize the rapid variation of SPhP resonance by compensating the material dispersion using bundled graphene sheets and mitigate the misalignment by a proper choice of the grating design. Utilizing a modified form of rigorous coupled wave analysis to simultaneously incorporate atomic-scale graphene sheets and bulk diffraction gratings, we accurately compute the emissivity profiles of the composite structure and demonstrate reduction in the angular dispersion of thermal emission from as high as 30∘ to as low as 4∘ in the SPhP dominant wavelength range of 11-12 μ m . In addition, we demonstrate that the graphene sheets via their tunable optical properties allow a fringe benefit of dynamical variation of the angular dispersion to a wide range.

  15. Thermal indicating paints for ammunition health monitoring

    Science.gov (United States)

    Zunino, James L., III; Iqbal, Zafar

    2010-04-01

    Thermochromic semiconductive polymers that change color in response to external stimuli, such as heat and radiation, can be utilized to monitor the temperature range and elapsed time profiles of stored and prepositioned munitions. These polymers are being tailored to create paints and coatings that will alert Army logistic staff of dangerous temperature exposures. Irreversible indication via color change in multiple thermal bands, 145 F - 164 F (63o-73°C), 165 F - 184 F (74° - 84° C) and over 185 F (>85°C) are possible with these thermochromic polymers. The resulting active coating can be visually inspected to determine if safe temperatures were exceeded. More detailed information, including cumulative time of exposure in certain temperature bands through changes in optical chromaticity describing the vividness or dullness of a color, can be assessed using a hand-held optical densitometer.

  16. Monitoring of the Greenland ice sheet using a broadband seismometer network: the GLISN project

    Directory of Open Access Journals (Sweden)

    Genti Toyokuni

    2014-03-01

    Full Text Available Global climate change is currently causing melting of the Greenland ice sheet. Recently, a new type of seismic event, referred to as a "glacial earthquake", has been recognized. Such earthquakes are generated by the movements of large masses of ice within the terminal regions of glacier, and represent a new approach for monitoring ice sheet dynamics. In 2009, the multinational GreenLand Ice Sheet monitoring Network (GLISN, a large broadband seismological network in and around Greenland, was initiated to monitor these events. Japan, a partner country of the GLISN project, has been sending a field team to Greenland each year since 2011, when a joint USA and Japanese team first established a dual seismic-GPS station (station code: ICESG-GLS2 on the Greenland ice sheet. In 2012, the same team contributed to the maintenance of ICESG-GLS2, as well as two other stations (NUUK and DY2G-GLS1. The quality of the long-period seismic waveform data obtained by these stations has been checked by comparing the data with global synthetic seismograms. Results indicate that the data from the three stations have not been substantially affected by noise, and that the quality is well controlled.

  17. A ductile fracture criterion with Zener-Hollomon parameter of pure molybdenum sheet in thermal forming

    Directory of Open Access Journals (Sweden)

    Wang Chu

    2015-01-01

    Full Text Available Formability of pure molybdenum in thermal forming process has been greatly improved, but it is still hard to avoid the generation of rupture and other quality defects. In this paper, a ductile fracture criterion of pure molybdenum sheet in thermal forming was established by considering the plastic deformation capacity of material and stress states, which can be used to describe fracture behaviour and critical rupture prediction of pure molybdenum sheet during hot forming process. Based on the isothermal uniaxial tensile tests which performed at 993 to 1143 K with strain rate range from 0.0005 to 0.2 s−1, the material parameters are calculated by the combination method of experiment with FEsimulation. Based on the observation, new fracture criteria can be expressed as a function of Zener-Hollomon parameter. The critical fracture value that calculated by Oyane-Sato criterion increases with increasing temperature and decreasing strain rate. The ductile fracture criterion with Zener-Hollomon parameter of pure molybdenum in thermal forming is proposed.

  18. Chemically and thermally stable silica nanowires with a β-sheet peptide core for bionanotechnology.

    Science.gov (United States)

    Al-Garawi, Zahraa S; Kostakis, George E; Serpell, Louise C

    2016-12-01

    A series of amyloidogenic peptides based on the sequence KFFEAAAKKFFE template the silica precursor, tetraethyl orthosilicate to form silica-nanowires containing a cross-β peptide core. Investigation of the stability of these fibres reveals that the silica layers protect the silica-nanowires allowing them to maintain their shape and physical and chemical properties after incubation with organic solvents such as 2-propanol, ethanol, and acetonitrile, as well as in a strong acidic solution at pH 1.5. Furthermore, these nanowires were thermally stable in an aqueous solution when heated up to 70 °C, and upon autoclaving. They also preserved their conformation following incubation up to 4 weeks under these harsh conditions, and showed exceptionally high physical stability up to 1000 °C after ageing for 12 months. We show that they maintain their β-sheet peptide core even after harsh treatment by confirming the β-sheet content using Fourier transform infrared spectra. The silica nanowires show significantly higher chemical and thermal stability compared to the unsiliconised fibrils. The notable chemical and thermal stability of these silica nanowires points to their potential for use in microelectromechanics processes or fabrication for nanotechnological devices.

  19. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  20. A new programme for monitoring the mass loss of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Gravesen, Peter; Bech Andersen, Signe

    2008-01-01

    The Greenland ice sheet has been losing mass at a dramatic rate in recent years, raising political concern worldwide due to the possible impact on global sea level rise and climate dynamics (Luthcke et al. 2006; Rignot & Kanagaratnam 2006; Velicogna & Wahr 2006; IPCC 2007; Shepherd & Wingham 2007...... of the Greenland ice sheet, track changes in the extent of local glaciers and ice caps, and track changes in the position of the ice-sheet margin.......The Greenland ice sheet has been losing mass at a dramatic rate in recent years, raising political concern worldwide due to the possible impact on global sea level rise and climate dynamics (Luthcke et al. 2006; Rignot & Kanagaratnam 2006; Velicogna & Wahr 2006; IPCC 2007; Shepherd & Wingham 2007...... for Monitoring of the Green land Ice Sheet (PROMICE), designed and operated by the Geological Survey of Denmark and Greenland (GEUS) in collaboration with the National Space Institute at the Technical University of Denmark and Asiaq (Greenland Survey). The aim of the programme is to quantify the annual mass loss...

  1. Thermal fluctuations and effective bending stiffness of elastic thin sheets and graphene: A nonlinear analysis

    Science.gov (United States)

    Ahmadpoor, Fatemeh; Wang, Peng; Huang, Rui; Sharma, Pradeep

    2017-10-01

    The study of statistical mechanics of thermal fluctuations of graphene-the prototypical two-dimensional material-is rendered rather complicated due to the necessity of accounting for geometric deformation nonlinearity. Unlike fluid membranes such as lipid bilayers, coupling of stretching and flexural modes in solid membranes like graphene leads to a highly anharmonic elastic Hamiltonian. Existing treatments draw heavily on analogies in the high-energy physics literature and are hard to extend or modify in the typical contexts that permeate materials, mechanics and some of the condensed matter physics literature. In this study, using a variational perturbation method, we present a ;mechanics-oriented; treatment of the thermal fluctuations of elastic sheets such as graphene and evaluate their effect on the effective bending stiffness at finite temperatures. In particular, we explore the size, pre-strain and temperature dependency of the out-of-plane fluctuations, and demonstrate how an elastic sheet becomes effectively stiffer at larger sizes. Our derivations provide a transparent approach that can be extended to include multi-field couplings and anisotropy for other 2D materials. To reconcile our analytical results with atomistic considerations, we also perform molecular dynamics simulations on graphene and contrast the obtained results and physical insights with those in the literature.

  2. 2010 Lead (Pb) Air Monitoring Requirements & 2013 Method for Determination of Lead (Pb) in Total Suspended Particulate Matter Fact Sheets

    Science.gov (United States)

    This page contains a variety of fact sheets and other documents that are supplementary to the 2010 final revisions to lead (Pb) ambient air monitoring requirements and the 2013 final method for determination of Pb in total suspended particulate matter.

  3. Thermal sensitivity of Lamb waves for structural health monitoring applications.

    Science.gov (United States)

    Dodson, J C; Inman, D J

    2013-03-01

    One of the drawbacks of the current Lamb wave structural health monitoring methods are the false positives due to changing environmental conditions such as temperature. To create an environmental insensitive damage detection scheme, the physics of thermal effects on Lamb waves must be understood. Dispersion and thermal sensitivity curves for an isotropic plate with thermal stress and thermally varying elastic modulus are presented. The thermal sensitivity of dispersion curves is analytically developed and validated by experimental measurements. The group velocity thermal sensitivity highlights temperature insensitive features at two critical frequencies. The thermal sensitivity gives us insight to how temperature affects Lamb wave speeds in different frequency ranges and will help those developing structural health monitoring algorithms. Published by Elsevier B.V.

  4. Monitoring of Apoptosis in 3D Cell Cultures by FRET and Light Sheet Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Petra Weber

    2015-03-01

    Full Text Available Non-radiative cell membrane associated Förster Resonance Energy Transfer (FRET from an enhanced cyan fluorescent protein (ECFP to an enhanced yellow fluorescent protein (EYFP is used for detection of apoptosis in 3-dimensional cell cultures. FRET is visualized in multi-cellular tumor spheroids by light sheet based fluorescence microscopy in combination with microspectral analysis and fluorescence lifetime imaging (FLIM. Upon application of staurosporine and to some extent after treatment with phorbol-12-myristate-13-acetate (PMA, a specific activator of protein kinase c, the caspase-3 sensitive peptide linker DEVD is cleaved. This results in a reduction of acceptor (EYFP fluorescence as well as a prolongation of the fluorescence lifetime of the donor (ECFP. Fluorescence spectra and lifetimes may, therefore, be used for monitoring of apoptosis in a realistic 3-dimensional system, while light sheet based microscopy appears appropriate for 3D imaging at low light exposure.

  5. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

    Science.gov (United States)

    Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo

    2017-11-01

    The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

  6. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage Impacts of heterogeneity, thermal interference and bioremediation Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2 Abstract Aquifer thermal energy storage (ATES) is

  7. Numerical Simulation of Entropy Generation with Thermal Radiation on MHD Carreau Nanofluid towards a Shrinking Sheet

    Directory of Open Access Journals (Sweden)

    Muhammad Mubashir Bhatti

    2016-05-01

    Full Text Available In this article, entropy generation with radiation on non-Newtonian Carreau nanofluid towards a shrinking sheet is investigated numerically. The effects of magnetohydrodynamics (MHD are also taken into account. Firstly, the governing flow problem is simplified into ordinary differential equations from partial differential equations with the help of similarity variables. The solution of the resulting nonlinear differential equations is solved numerically with the help of the successive linearization method and Chebyshev spectral collocation method. The influence of all the emerging parameters is discussed with the help of graphs and tables. It is observed that the influence of magnetic field and fluid parameters oppose the flow. It is also analyzed that thermal radiation effects and the Prandtl number show opposite behavior on temperature profile. Furthermore, it is also observed that entropy profile increases for all the physical parameters.

  8. Performance monitoring pavements with thermal segregation in Texas.

    Science.gov (United States)

    2012-04-01

    This project conducted work to investigate the performance of asphalt surface mixtures that exhibited : thermal segregation during construction. From 2004 to 2009, a total of 14 construction projects were : identified for monitoring. Five of these pr...

  9. Effects of β-sheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk.

    Science.gov (United States)

    Park, Jinju; Kim, Duckjong; Lee, Seung-Mo; Choi, Ji-Ung; You, Myungil; So, Hye-Mi; Han, Junkyu; Nah, Junghyo; Seol, Jae Hun

    2017-03-01

    We measured the thermal conductivity of Araneus ventricosus' spider dragline silk using a suspended microdevice. The thermal conductivity of the silk fiber was approximately 0.4Wm-1K-1 at room temperature and gradually increased with an increasing temperature in a manner similar to that of other disordered crystals or proteins. In order to elucidate the effect of β-sheet crystals in the silk, thermal denaturation was used to reduce the quantity of the β-sheet crystals. A calculation with an effective medium approximation supported this measurement result showing that the thermal conductivity of β-sheet crystals had an insignificant effect on the thermal conductivity of SDS. Additionally, the enhancement of bonding strength in a glycine-rich matrix by atomic layer deposition did not increase the thermal conductivity. Thus, this study suggests that the disordered part of the glycine-rich matrix prevented the peptide chains from being coaxially extended via the cross-linking covalent bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Ibukun Sarah Oyelakin

    2016-06-01

    Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.

  11. Characterization of thermal neutron beam monitors

    Directory of Open Access Journals (Sweden)

    F. Issa

    2017-09-01

    Full Text Available Neutron beam monitors with a wide range of efficiencies, low γ sensitivity, and high time and space resolution are required in neutron beam experiments to continuously diagnose the delivered beam. In this work, commercially available neutron beam monitors have been characterized using the R2D2 beamline at IFE (Norway and using a Be-based neutron source. For the γ sensitivity measurements different γ sources have been used. The evaluation of the monitors includes, the study of their efficiency, attenuation, scattering, and sensitivity to γ. In this work we report the results of this characterization.

  12. Thermal radiation effects on stagnation point flow past a stretching/shrinking sheet in a Maxwell fluid with slip condition

    Science.gov (United States)

    Ishak, Nazila; Hashim, Hasmawani; Khairul Anuar Mohamed, Muhammad; Sarif, Norhafizah Md; Rosli, Norhayati; Zuki Salleh, Mohd

    2017-09-01

    In this study, the numerical solution of the thermal radiation effects on a stagnation point flow past a stretching/shrinking sheet in a Maxwell fluid with slip condition is considered. The transformed boundary layer equations are solved numerically using the Runge-Kutta-Fehlberg (RKF) method. Numerical solutions are obtained for the skin friction coefficient and the wall temperature as well as the temperature and the velocity profiles. The features of the flow and the heat transfer characteristics for various values of Prandtl number, stretching/shrinking parameter, thermal radiation parameter, Maxwell parameter, dimensionless velocity slip parameter and thermal slip parameter are analyzed and discussed.

  13. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  14. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation.

    Science.gov (United States)

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo; Madurga, Vicente

    2017-12-05

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  15. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation

    Directory of Open Access Journals (Sweden)

    José Vergara

    2017-12-01

    Full Text Available We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM. Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  16. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-09-01

    Full Text Available The boundary layer flow and heat transfer towards a porous exponential stretching sheet in presence of a magnetic field is presented in this analysis. Velocity slip and thermal slip are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter as well as with the increasing magnetic parameter. Temperature increases with the increasing values of magnetic parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.

  17. Shock wave interaction with a thermal layer produced by a plasma sheet actuator

    Science.gov (United States)

    Koroteeva, E.; Znamenskaya, I.; Orlov, D.; Sysoev, N.

    2017-03-01

    This paper explores the phenomena associated with pulsed discharge energy deposition in the near-surface gas layer in front of a shock wave from the flow control perspective. The energy is deposited in 200 ns by a high-current distributed sliding discharge of a ‘plasma sheet’ type. The discharge, covering an area of 100× 30 mm2, is mounted on the top or bottom wall of a shock tube channel. In order to analyse the time scales of the pulsed discharge effect on an unsteady supersonic flow, we consider the propagation of a planar shock wave along the discharge surface area 50-500 μs after the discharge pulse. The processes in the discharge chamber are visualized experimentally using the shadowgraph method and modelled numerically using 2D/3D CFD simulations. The interaction between the planar shock wave and the discharge-induced thermal layer results in the formation of a lambda-shock configuration and the generation of vorticity in the flow behind the shock front. We determine the amount and spatial distribution of the electric energy rapidly transforming into heat by comparing the calculated flow patterns and the experimental shadow images. It is shown that the uniformity of the discharge energy distribution strongly affects the resulting flow dynamics. Regions of turbulent mixing in the near-surface gas are detected when the discharge energy is deposited non-uniformly along the plasma sheet. They account for the increase in the cooling rate of the discharge-induced thermal layer and significantly influence its interaction with an incident shock wave.

  18. Mountain glaciers vs Ice sheet in Greenland - learning from a new monitoring site in West Greenland

    Science.gov (United States)

    Abermann, Jakob; van As, Dirk; Wacker, Stefan; Langley, Kirsty

    2017-04-01

    Only 5 out of the 20.000 peripheral glaciers and ice caps surrounding Greenland are currently monitored due to logistical challenges and despite their significance for sea level rise. Large spatial coast-to-icesheet mass and energy balance gradients limit simple upscaling methods from ice-sheet observations, which builds the motivation for this study. We present results from a new mass and energy balance time series at Qasigiannguit glacier (64°09'N; 51°21'W) in Southwest Greenland. Inter-annual variability is discussed and the surface energy balance over two summers is quantified and a ranking of the main drivers performed. We find that short-wave net radiation is by far the most dominant energy source during summer, followed by similar amounts of net longwave radiation and sensible heat, respectively. We then relate these observations to synchronous measurements at similar latitude on an outlet glacier of the ice sheet a mere 100 km away. We find very pronounced horizontal surface mass balance gradients, with generally more positive values closer to the coast. We conclude that despite minor differences of atmospheric parameters (i.e. humidity, radiation, and temperature) the main reason for the strongly different signal is a pronounced winter precipitation gradient that translates in a different duration of ice exposure and through that an albedo gradient. Modelled energy balance gradients converted into mass changes show good agreement to measured surface mass balance gradients and we explore a latitudinal signal of these findings.

  19. Thermal design and validation of radiation detector for the ChubuSat-2 micro-satellite with high-thermal-conductive graphite sheets

    Science.gov (United States)

    Park, Daeil; Miyata, Kikuko; Nagano, Hosei

    2017-07-01

    This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.

  20. Satellite Radar Interferometry for Monitoring Ice-Sheet Motion: Application to an Antarctic Ice Stream

    Science.gov (United States)

    Goldstein, R. M.; Engelhardt, H.; Kamb, B.; Frolich, R. M.

    1993-01-01

    As a new means of monitoring the flow velocities and grounding-line positions of ice streams, which are indicators of response of the Antarctic and Greenland ice sheets to climatic change or internal instability, the method of satellite radar interferometry (SRI) is here proposed and applied to the Rutford Ice Stream, Antarctica. The method uses phase comparison of the radar signal obtained for a pair of SAR images taken a few days apart to plot an interferogram which directly displays relative ground motions that have occurred in the time interval between images. The detection limit is about 1.5 mm for vertical motions and about 4 mm for horizontal motions in the radar beam direction. In the Rutford Ice Stream, SRI velocities agree fairly well with earlier ground-truth data over a longitudinal interval of 29 km; the comparison suggests a secular decrease in velocity of about 2 percent from 1978-80 to 1992...

  1. Minimally invasive ultrasound thermal therapy with MR thermal monitoring and guidance

    Science.gov (United States)

    Diederich, Chris J.; Stafford, R. Jason; Price, Roger E.; Nau, William H.; Tyreus, Per Daniel; Rivera, Belinda; Schomer, Donald; Olsson, Lars; Hazle, John D.

    2001-06-01

    In this study both transurethral and interstitial ultrasound thermal therapy were applied to thermally coagulate targeted portions of the canine prostate or brain and implanted TVT tumors while using MRI-based thermal mapping techniques to monitor the therapy. MRI was also used for target definition, positioning of the applicator, and evaluation of target viability post-therapy. The complex phase-difference mapping technique using an iGE-EPI sequence with lipid suppression was used for determining temperature elevations within the in vivo prostate or brain and surrounding structures. Calculated temperature distributions, thermal dose exposures, T2-wieghted & T1-contrast enhanced images, gross inspection, and histology of sectioned prostates and brains were in good agreement with each other in defining destroyed tissue zones. Interstitial and transurethral ultrasound applicators produce directed zones of thermal coagulation within targeted tissue and implanted tumor, which can be accurately monitored and evaluated by MRI.

  2. Effects of variable viscosity and thermal conductivity on unsteady MHD flow of non-Newtonian fluid over a stretching porous sheet

    National Research Council Canada - National Science Library

    Rahman Abdel-Gamal M

    2013-01-01

    The unsteady flow and heat transfer in an incompressible laminar, electrically conducting and non-Newtonian fluid over a non-isothermal stretching sheet with the variation in the viscosity and thermal...

  3. Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homotopy analysis method

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2015-09-01

    Full Text Available This paper investigates the theoretical influence of buoyancy and thermal radiation on MHD flow over a stretching porous sheet. The model which constituted highly nonlinear governing equations is transformed using similarity solution and then solved using homotopy analysis method (HAM. The analysis is carried out up to the 5th order of approximation and the influences of different physical parameters such as Prandtl number, Grashof number, suction/injection parameter, thermal radiation parameter and heat generation/absorption coefficient and also Hartman number on dimensionless velocity, temperature and the rate of heat transfer are investigated and discussed quantitatively with the aid of graphs. Numerical results obtained are compared with the previous results published in the literature and are found to be in good agreement. It was found that when the buoyancy parameter and the fluid velocity increase, the thermal boundary layer decreases. In case of the thermal radiation, increasing the thermal radiation parameter produces significant increases in the thermal conditions of the fluid temperature which cause more fluid in the boundary layer due to buoyancy effect, causing the velocity in the fluid to increase. The hydrodynamic boundary layer and thermal boundary layer thickness increase as a result of increase in radiation.

  4. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  5. Preparation of SnS thin films with gear-like sheet appearance by close-spaced vacuum thermal evaporation

    Science.gov (United States)

    Shao, Zhangpeng; Shi, Chengwu; Chen, Junjun; Zhang, Yanru

    2017-07-01

    SnS thin films with gear-like sheet appearance were successfully prepared by close-spaced vacuum thermal evaporation using SnS powders as a source. The influence of substrate temperature on the surface morphology, chemical composition, crystal structure and optical property of SnS thin films was investigated by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and ultraviolet-visible-near infrared spectroscopy. The results revealed that serration architecture appeared obviously in the edge of the SnS sheet and the strongest peak at 2𝜃=31.63∘ was broadened and many shoulder peaks were observed with increasing substrate temperature. The atomic ratio of Sn to S increased from 1:1.08 to 1:1.20, the grain size became slightly smaller and the optical absorption edge had a blueshift in the SnS thin film with decreasing substrate temperature.

  6. Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles.

    Science.gov (United States)

    Pawar, Shital Patangrao; Stephen, Samuel; Bose, Suryasarathi; Mittal, Vikas

    2015-06-14

    Electromagnetic interference shielding (EMI) materials were designed using PC (polycarbonate)/SAN [poly(styrene-co-acrylonitrile)] blends containing few-layered graphene nanosheets decorated with nickel nanoparticles (G-Ni). The graphene nanosheets were decorated with nickel nanoparticles via the uniform nucleation of the metal salt precursor on graphene sheets as the substrate. In order to localize the nanoparticles in the PC phase of the PC/SAN blends, a two-step mixing protocol was adopted. In the first step, graphene sheets were mixed with PC in solution and casted into a film, followed by dilution of these PC master batch films with SAN in the subsequent melt extrusion step. The dynamic mechanical properties, ac electrical conductivity, EMI shielding effectiveness and thermal conductivity of the composites were evaluated. The G-Ni nanoparticles significantly improved the electrical and thermal conductivity in the blends. In addition, a total shielding effectiveness (SET) of -29.4 dB at 18 GHz was achieved with G-Ni nanoparticles. Moreover, the blends with G-Ni exhibited an impressive 276% higher thermal conductivity and 29.2% higher elastic modulus with respect to the neat blends.

  7. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Feng Ling

    2017-11-01

    Full Text Available Dams play a significant role in altering the spatial pattern of temperature in rivers and contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding the temporal and spatial variation of thermal pollution caused by dams is important to prevent or mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice because of the inaccessibility of water temperature records and the scarcity of gauges along rivers. By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal pollution downstream of dams in large rivers, because it can cover a large area and observe the same zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+ thermal infrared imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes acquired in the period from 2000 to 2014. The results show that water temperatures downstream of both dams are much cooler than those upstream of both dams in summer, and the water temperature remains stable along the river in winter, showing evident characteristic of the thermal pollution caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+ imagery, the proposed technique in the current study provides a promising method for globally monitoring the thermal pollution caused by dams in large rivers.

  8. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  9. Monitoring thermal discharge from a nuclear plant through Landsat 8

    Science.gov (United States)

    Wang, Difeng; Pan, Delu; Wei, Ji-An; Gong, Fang; Zhu, Qiankun; Chen, Peng

    2016-10-01

    The National Development and Reform Commission of China has approved a large number of nuclear power projects, with a total capacity of 23,000 MW. However, concomitant with the accelerated development of nuclear power stations, the environmental effects of thermal discharge will become a problem that cannot be avoided. Real-time monitoring of water temperature needs to be installed following station construction in order to measure its variation with time and to ensure that the operation of the nuclear plant does not result in adverse environmental damage. Landsat is the world's oldest, continuously acquired collection of space-based, moderate-resolution, land remote sensing data. On May 30, 2013, data from the Landsat 8 satellite became available, and the data quality and radiometric quantization of the thermal infrared sensor (TIRS) are significantly greater than those of previous Landsat instruments. The analysis of sea surface temperature (SST) obtained from Landsat 8's TIRS data was used to enhance information about the plume shape, dimensions, and direction of dispersion of the thermal discharge from the Qinshan Nuclear Power Plant in Hangzhou Bay on the East China Sea coast. Both single-channel and split-window algorithms were used and focused. The detection of temperature increases through split-window algorithms is considered a preferable method for warm discharge monitoring. Recent results showed that the thermal discharge from the nuclear plant was controlled over a small area, and that it never breached national water quality standards.

  10. MHD stagnation point flow toward a linearly-stretching thermally-insulated sheet with induced magnetic field

    CERN Document Server

    El-Mistikawy, Tarek M A

    2016-01-01

    The equations governing the magnetohydrodynamic stagnation point flow toward a non-conducting, thermally insulated, nonporous, linearly stretching sheet are cast in a self similar form. Consistent boundary conditions on the velocity, magnetic field and temperature are invoked. The flow problem involves three parameters- the magnetic Prandtl number, the magnetic interaction number, and the ratio of the stretching rate to the strength of the stagnation point flow. The energy equation includes viscous dissipation and Joule heating, and introduces the Prandtl number as a fourth parameter. Numerical solutions are obtained and sample results are presented.

  11. MHD Natural Convection Flow of Casson Nanofluid over Nonlinearly Stretching Sheet Through Porous Medium with Chemical Reaction and Thermal Radiation.

    Science.gov (United States)

    Ullah, Imran; Khan, Ilyas; Shafie, Sharidan

    2016-12-01

    In the present work, the effects of chemical reaction on hydromagnetic natural convection flow of Casson nanofluid induced due to nonlinearly stretching sheet immersed in a porous medium under the influence of thermal radiation and convective boundary condition are performed numerically. Moreover, the effects of velocity slip at stretching sheet wall are also examined in this study. The highly nonlinear-coupled governing equations are converted to nonlinear ordinary differential equations via similarity transformations. The transformed governing equations are then solved numerically using the Keller box method and graphical results for velocity, temperature, and nanoparticle concentration as well as wall shear stress, heat, and mass transfer rate are achieved through MATLAB software. Numerical results for the wall shear stress and heat transfer rate are presented in tabular form and compared with previously published work. Comparison reveals that the results are in good agreement. Findings of this work demonstrate that Casson fluids are better to control the temperature and nanoparticle concentration as compared to Newtonian fluid when the sheet is stretched in a nonlinear way. Also, the presence of suspended nanoparticles effectively promotes the heat transfer mechanism in the base fluid.

  12. The Effects of Thermal Radiation on an Unsteady MHD Axisymmetric Stagnation-Point Flow over a Shrinking Sheet in Presence of Temperature Dependent Thermal Conductivity with Navier Slip.

    Science.gov (United States)

    Mondal, Sabyasachi; Haroun, Nageeb A H; Sibanda, Precious

    2015-01-01

    In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an unsteady and electrically conducting incompressible viscous fluid in with temperature dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear velocity. The magnetic field is imposed normally to the sheet. The model equations that describe this fluid flow are solved by using the spectral relaxation method. Here, heat transfer processes are discussed for two different types of wall heating; (a) a prescribed surface temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the various parameters affect the fluid flow, heat transfer and the temperature field with the aid of different graphical presentations and tabulated results.

  13. Thermally Induced Alpha-Helix to Beta-Sheet Transition in Regenerated Silk Fibers and Films

    Energy Technology Data Exchange (ETDEWEB)

    Drummy,L.; Phillips, D.; Stone, M.; Farmer, B.; Naik, R.

    2005-01-01

    The structure of thin films cast from regenerated solutions of Bombyx mori cocoon silk in hexafluoroisopropyl alcohol (HFIP) was studied by synchrotron X-ray diffraction during heating. A solid-state conformational transition from an alpha-helical structure to the well-known beta-sheet silk II structure occurred at a temperature of approximately 140 degrees C. The transition appeared to be homogeneous, as both phases do not coexist within the resolution of the current study. Modulated differential scanning calorimetry (DSC) of the films showed an endothermic melting peak followed by an exothermic crystallization peak, both occurring near 140 degrees C. Oriented fibers were also produced that displayed this helical molecular conformation. Subsequent heating above the structural transition temperature produced oriented beta-sheet fibers very similar in structure to B. mori cocoon fibers. Heat treatment of silk films at temperatures well below their degradation temperature offers a controllable route to materials with well-defined structures and mechanical behavior.

  14. USING THE VIDEOEXTENSOMETRY AND UCI - HARDNESS FOR MONITORING OF AUTOMOTIVE STEEL SHEETS

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2011-09-01

    Full Text Available The paper deals with examination of relation between the hardness and the size of plastic zone during the tensile loading. UCI (Ultrasonic Contact Impedance micro-hardness method was used for hardness measurements. Deformation was evaluated by non-contact extensometry method – videoextensometry. The result present existence of the power lawl relation between hardness and plastic deformation: HV = HV(p+ kE^a. Hot rolled sheet and thin automotive sheet were investigated.

  15. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  16. MHD boundary layer flow and heat transfer due to an exponentially shrinking sheet in a nanofluid with thermal radiation and chemical reaction

    Science.gov (United States)

    Hamid, Rohana Abdul; Nazar, Roslinda

    2017-08-01

    In this paper, the problem of magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a nanofluid with the influences of the chemical reaction and thermal radiation over an exponentially shrinking sheet is studied numerically. The model used for the nanofluid is called the Buongiorno model which incorporates the effects of the Brownian motion and thermophoresis. The governing dimensionless ordinary differential equations are solved using the bvp4c method. The effects of the magnetic field parameter, thermal radiation parameter and chemical reaction parameter on the velocity, temperature and concentration profiles of the nanofluid over an exponentially permeable shrinking sheet are discussed and presented through graphs and tables.

  17. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation.

    Science.gov (United States)

    Wu, Zhong-Shuai; Ren, Wencai; Gao, Libo; Zhao, Jinping; Chen, Zongping; Liu, Bilu; Tang, Daiming; Yu, Bing; Jiang, Chuanbin; Cheng, Hui-Ming

    2009-02-24

    We developed a hydrogen arc discharge exfoliation method for the synthesis of graphene sheets (GSs) with excellent electrical conductivity and good thermal stability from graphite oxide (GO), in combination with solution-phase dispersion and centrifugation techniques. It was found that efficient exfoliation and considerable deoxygenation of GO, and defect elimination and healing of exfoliated graphite can be simultaneously achieved during the hydrogen arc discharge exfoliation process. The GSs obtained by hydrogen arc discharge exfoliation exhibit a high electrical conductivity of approximately 2 x 10(3) S/cm and high thermal stability with oxidization resistance temperature of 601 degrees C, which are much better than those prepared by argon arc discharge exfoliation (approximately 2 x 10(2) S/cm, 525 degrees C) and by conventional thermal exfoliation (approximately 80 S/cm, 507 degrees C) with the same starting GO. These results demonstrate that this hydrogen arc discharge exfoliation method is a good approach for the preparation of GSs with a good quality.

  18. MHD Stagnation-Point Flow of Casson Fluid and Heat Transfer over a Stretching Sheet with Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Krishnendu Bhattacharyya

    2013-01-01

    Full Text Available The two-dimensional magnetohydrodynamic (MHD stagnation-point flow of electrically conducting non-Newtonian Casson fluid and heat transfer towards a stretching sheet have been considered. The effect of thermal radiation is also investigated. Implementing similarity transformations, the governing momentum, and energy equations are transformed to self-similar nonlinear ODEs and numerical computations are performed to solve those. The investigation reveals many important aspects of flow and heat transfer. If velocity ratio parameter (B and magnetic parameter (M increase, then the velocity boundary layer thickness becomes thinner. On the other hand, for Casson fluid it is found that the velocity boundary layer thickness is larger compared to that of Newtonian fluid. The magnitude of wall skin-friction coefficient reduces with Casson parameter (β. The velocity ratio parameter, Casson parameter, and magnetic parameter also have major effects on temperature distribution. The heat transfer rate is enhanced with increasing values of velocity ratio parameter. The rate of heat transfer is enhanced with increasing magnetic parameter M for B > 1 and it decreases with M for B < 1. Moreover, the presence of thermal radiation reduces temperature and thermal boundary layer thickness.

  19. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation.

    Science.gov (United States)

    Ramzan, Muhammad; Bilal, Muhammad

    2015-01-01

    The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.

  20. DEVELOPMENT OF CORES FOR MINI MOTORS FROM LAMINATED SHEETS OF ELECTRIC STEEL ABNT (Brazilian Association of Technical Standards 35F 420M WITH THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    Halston Mozetic

    2016-06-01

    Full Text Available The purposes of this paper were to study the thermal treatment of Fe-Si sheet, as well as the sheet cutting concerning the topology of a mini stepper motor and mini motor simulation using finite element software. The research consisted of the execution of an "Inductive Reheating" thermal treatment of Iron Silicon sheets, NM71-2000/35F 420M with GNO (Grain Non Oriented, and 0.35mm width. The new technique has the benefit of minimizing magnetic losses produced by the cut on the edge of electric sheets. To carry out the process, the system includes a furnace, an induction coil, and a power supply that, when activated in a controlled way, causes relevant changes to the crystalline structure of the material. Related to the cut of the sheets, the topology of a three phase mini stepper motor was considered. The sheets were initially cut using the geometry of the rotor and stator cores. Firstly, a die cutting process was used and later a wire electroerosion cutting process was employed, which provided parts with excellent finishing. Finally, the mini motor was simulated using the finite element software FEMM 4.2 in order to analyze the airgap flow and torque development of the axis end, in comparison to a solid block of the same material (Fe-Si

  1. A Sensor-less Method for Online Thermal Monitoring of Switched Reluctance Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Stator winding is one of the most vulnerable parts in Switched Reluctance Machine (SRM), especially under thermal stresses during frequently changing operation circumstances and susceptible heat dissipation conditions. Thus real-time online thermal monitoring of the stator winding is of great......, neither machine parameters nor thermal impedance parameters are required in the scheme. Simulation results under various operating conditions confirm the proposed sensor-less online thermal monitoring approach....

  2. Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects

    Science.gov (United States)

    Rashid, Irfan; Ul Haq, Rizwan; Al-Mdallal, Qasem M.

    2017-05-01

    This study deals the simultaneous effects of inclined magnetic field and prescribed surface temperature (PST) on boundary layer flow of nanofluid over a stretching sheet. In order to make this mechanism more feasible, we have further considered the velocity slip and thermal radiation effects. Moreover, this perusal is made to consider the two kinds of nanofluid namely: Cu -water and A l2O3-water. Inclined magnetic field is utilized to accompanying an aligned angle that varies from 0 to π / 2 . The exact solutions are acquired from the transformed non-dimensional momentum and energy equations in the form of confluent hypergeometric function. Lorentz forces and aligned magnetic field depicts the significant effects on nanofluid. We found that, due to the increase in the aligned angle provides the enhancement in local skin friction coefficient and a reduction in the local Nusselt number. The combined impacts of inclined magnetic field with other emerging parameters such as velocity slip, thermal radiation and nanoparticles volume fraction on velocity, temperature, local Nusselt number and skin friction coefficient are examined. Flow behavior of nanofluid is also determined via stream lines pattern.

  3. Thermal tracing of retained meltwater in the lower accumulation area of the Southwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Charalampidis, Charalampos; Van As, Dirk; Colgan, William T.

    2016-01-01

    We present in situ firn temperatures from the extreme 2012 melt season in the southwestern lower accumulation area of the Greenland ice sheet. The upper 2.5 m of snow and firn was temperate during the melt season, when vertical meltwater percolation was inefficient due to a similar to 5.5 m thick...... ice layer underlying the temperate firn. Meltwater percolation and refreezing beneath 2.5 m depth only occurred after the melt season. Deviations from temperatures predicted by pure conductivity suggest that meltwater refroze in discrete bands at depths of 2.0-2.5, 5.0-6.0 and 8.0-9.0 m. While we find...... winter was on average 4.7 degrees C warmer due to meltwater refreezing. Our observations also suggest that the 2012 firn conditions were preconditioned by two warm summers and ice layer formation in 2010 and 2011. Overall, firn temperatures during the years 2009-13 increased by 0.6 ºC....

  4. Monitoring solar-thermal systems: An outline of methods and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1994-04-01

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  5. Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry

    Science.gov (United States)

    Yilbas, B. S.; Akhtar, S. S.; Karatas, C.

    2017-11-01

    A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.

  6. A Thermal Melt Probe System for Extensive, Low-Cost Instrument Deployment Within and Beneath Ice Sheets

    Science.gov (United States)

    Winebrenner, D. P.; Elam, W. T.; Carpenter, M.; Kintner, P., III

    2014-12-01

    More numerous observations within and beneath ice sheets are needed to address a broad variety of important questions concerning ice sheets and climate. However, emplacement of instruments continues to be constrained by logistical burdens, especially in cold ice a kilometer or more thick. Electrically powered thermal melt probes are inherently logistically light and efficient, especially for reaching greater depths in colder ice. They therefore offer a means of addressing current measurement problems, but have been limited historically by a lack of technology for reliable operation at the necessary voltages and powers. Here we report field tests in Greenland of two new melt probes. We operated one probe at 2.2 kilowatts (kW) and 1050 volts (V), achieving a depth of 400 m in the ice in ~ 120 hours, without electrical failure. That depth is the second greatest achieved thus far with a thermal melt probe, exceeded only by one deployment to 1005 m in Greenland in 1968, which ended in an electrical failure. Our test run took place in two intervals separated by a year, with the probe frozen at 65 m depth during the interim, after which we re-established communication, unfroze the probe, and proceeded to the greater depth. During the second field test we operated a higher-power probe, initially at 2.5 kW and 1500 V and progressing to 4.5 kW and 2000 V. Initial data indicate that this probe achieved a descent rate of 8 m/hr, which if correct would be the fastest rate yet achieved for such probes. Moreover, we observed maintenance of vertical probe travel using pendulum steering throughout both tests, as well as autonomous descent without operator-intervention after launch. The latter suggests potential for crews of 1-2 to operate several melt probes concurrently. However, the higher power probe did suffer electrical failure of a heating element after 7 hours of operation at 2000 V (24 hours after the start of the test), contrary to expectations based on laboratory

  7. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes

    Science.gov (United States)

    Im, Hyeongwook; Kim, Taewoo; Song, Hyelynn; Choi, Jongho; Park, Jae Sung; Ovalle-Robles, Raquel; Yang, Hee Doo; Kihm, Kenneth D.; Baughman, Ray H.; Lee, Hong H.; Kang, Tae June; Kim, Yong Hyup

    2016-01-01

    Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-cost and relatively high-efficiency materials for this application. When normalized to the cell cross-sectional area, a maximum power output of 6.6 W m−2 is obtained for a 51 °C inter-electrode temperature difference, with a Carnot-relative efficiency of 3.95%. The importance of electrode purity, engineered porosity and catalytic surfaces in enhancing the thermocell performance is demonstrated. PMID:26837457

  8. Monitoring thermally grown oxides under thermal barrier coatings using photoluminescence piezospectroscopy (PLPS)

    Energy Technology Data Exchange (ETDEWEB)

    Del Corno, A.; De Maria, L.; Rinaldi, C. [ERSE, Milan (Italy); Nalin, L.; Simms, N.J. [Cranfield Univ., Bedford (United Kingdom). Energy Technology Centre

    2010-07-01

    The use of thermal barrier coatings (TBCs) on cooled components in industrial gas turbine has enabled higher inlet gas temperatures to be used and hence higher efficiencies to be achieved, without increasing component metal temperatures. However TBCs have a complex coating structure that during high temperature exposure and thermal cycling modifies until TBC spalling which can result in dangerous over-heating of components. This paper reports the results of a TBC exposure programme planned to monitor TGOs development in an example TBC system in terms of both stress evolution within the TGOs and TGO growth. The COST538 reference TBC system was used: an yttria stabilised zirconia TBC applied to an Amdry 995 bond coat on an CMSX-4 substrate. Samples were in the form of 10 mm diameter bars, with the TBC applied to their curved surface. Coated samples were exposed in simulated combustion gases at temperatures 850, 900 and 950 C for periods of up to 10,000 hours. Every 1000 hours samples were cooled and weighed to monitor the progression of the oxidation: selected samples NDT inspected using PLPS and/or destructive examination. Cross-sections were prepared and examined in a scanning electron microscope (SEM) at multiple locations to determine TGO thickness distributions. PLPS spectra were measured and elaborated with a system self developed in ERSE, able to calculate and map the TGO residual stress values under columnar TBCs. So the positions could be evidenced where the damage of the TBC /TGO/BC interface is higher on the exposed bars. The data of TGO thickness distributions and PLPS stress measurement distributions were compared to the exposures carried out on samples to identify and quantify trends in their development. Metallography confirmed that the PLPs technique can reliably detect interface cracking before visible EB-PVD TBC spalling. (orig.)

  9. Preparation and Characterization of HDPE/EVA Flat Sheet Membranes by Thermally Induced Phase Separation Method

    Directory of Open Access Journals (Sweden)

    Zahra Shoeyb

    2015-06-01

    Full Text Available The adjustment of material composition in fabrication of modified polymeric membrane has been considered the most efficient and easiest method. For this purpose blended membranes of high density polyethylene (HDPE–ethylene vinyl acetate (EVA were prepared by thermally induced phase separation method. The impact of EVA in the presence of diluent on the crystalization temperature was assessed using differential scanning calorimetry (DSC. The obtained results showed that EVA has no significant effect on the crystalization temperature of HDPE. The absorption frequencies at 1248 and 1749 cm-1, respectively, due to C-O and C=O streching vibrations of EVA functional groups, confirmed the existence of EVA in HDPE membrane. The pure water permeability of HDPE/EVA blend was measured and compared with that of neat HDPE membrane. The results showed that an EVA content up to 2.5 wt% raised water permeability considerably and the leafy structure of the membranes contracted and the pure water permeation dropped with higher EVA content. The results of porosity measurement and scanning electronic microscopic (SEM analysis also confirmed these findings. Contact angel measurements and atomic force microscopy (AFM examinations and static absorption of collagen protein on the membrane surfaces revealed that EVA content up to 5 wt% lowered the hydrophobicity of the membrane. By EVA content above 10 wt%, due to the structural alteration on the membrane surface, the contact angel and the collagen absorption on the surface of membrane increased. The measurement of tensile strength showed that with increasing EVA content the mechanical properties of the membranes improved due to interactions of polar groups in EVA.

  10. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    Science.gov (United States)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  11. Stability analysis of boundary layer flow and heat transfer over a permeable exponentially shrinking sheet in the presence of thermal radiation and partial slip

    Science.gov (United States)

    Adnan, N. S. M.; Arifin, N. M.

    2017-09-01

    In this paper, the steady boundary layer fluid flow with heat transfer over an exponentially shrinking sheet with thermal radiation, partial slip and suction is studied. The similarity transformation was applied to the governing partial differential equations to transform into a set of ordinary differential equations which are then solved numerically using bvp4c function in Matlab. It is reveal that dual solutions exist in our observations. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

  12. GRID based Thermal Images Processing for volcanic activity monitoring

    Science.gov (United States)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  13. Intelligent neonatal monitoring based on a virtual thermal sensor.

    Science.gov (United States)

    Abbas, Abbas K; Leonhardt, Steffen

    2014-03-02

    Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes. Body surface temperature was recorded under several clinical conditions using an infrared thermography imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was designed for active follow-up of the defined region of interest over a neonate's geometry. The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate's body surface. This paper presents the design and implementation of a virtual temperature sensing application that can assist neonatologists in interpreting a neonate's skin temperature patterns. Regarding the surface temperature, the influence of different environmental conditions inside the incubator has

  14. Thermal boundary layer in stagnation-point flow past a permeable shrinking sheet with variable surface temperature

    Directory of Open Access Journals (Sweden)

    Md.Sharif Uddin

    2017-09-01

    Full Text Available An investigation is made to study the heat transfer in boundary layer stagnation-point flow over a non-isothermal permeable shrinking sheet with suction/injection. In this study, power-law variation of sheet temperature is considered. By similarity transformation, the governing equations with the boundary conditions are transformed to self-similar nonlinear ordinary differential equations and then those are solved numerically by shooting method. In presence of variable sheet temperature, the variation of temperature is analysed. For larger shrinking rate compared to that of straining rate, dual solutions for velocity and temperature are obtained. It is found that for positive value of power-law exponent of variable sheet temperature heat transfer at the sheet as well as heat absorption at the sheet with temperature overshoot near the sheet occur and for negative value heat transfer from the sheet occurs though there is overshoot away from the sheet. With increasing positive power-law exponent heat transfer reduces for first solution and heat absorption enhances for second solution. Whereas, with increasing magnitude of negative power-law exponent heat transfer increases for second solution and for first solution the heat transfer increases for larger shrinking rate and it decreases for smaller shrinking rate. Due to suction heat transfer/absorption increases in all cases and for injection heat transfer/absorption increases for first solution and decreases for second solution. Also, interesting effects of suction/injection and Prandtl number on temperature distribution are observed when the sheet temperature varies (directly/inversely along the sheet.

  15. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    Science.gov (United States)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  16. Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet

    Science.gov (United States)

    Khan, Noor Saeed; Gul, Taza; Islam, Saeed; Khan, Waris

    2017-01-01

    The influences of thermophoresis and thermal radiation of a magnetohydrodynamic two-dimensional thin-film second-grade fluid with heat and mass transfer flow in the presence of viscous dissipation past a stretching sheet are analyzed. The main focus of the study is to discuss the significant roll of the fluid variable properties like thermal conductivity and viscosity under the variation of the thin film. The thermal conductivity varies directly as a linear function of temperature showing the property that expresses the ability of a material to transfer heat, and the viscosity is assumed to vary inversely as a linear function of temperature showing that viscous forces become weak at increasing temperature. Thermophoresis occurs to discuss the mass deposition at the surface of the stretching sheet while thermal radiation occurs, especially, at high temperature. The basic governing equations for the velocity, temperature and concentration of the fluid flow have been transformed to high nonlinear coupled differential equations with physical conditions by invoking suitable similarity transformations. The solution of the problem has been obtained by using HAM (Homotopy Analysis Method). The heat and mass transfer flow behaviors are affected significantly by the thin film. The physical influences of thin film parameter and all other parameters have been studied graphically and illustrated. The residual graphs and residual error table elucidate the authentication of the present work.

  17. In-Situ Real-Time Temperature Monitoring of Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for interfacial and in-depth temperature monitoring of thermal protection systems (TPS). Novel, linear drive, eddy current methods...

  18. On-Orbit Health Monitoring and Repair Assessment of Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers On-orbit health MoNItoring and repair assessment of THERMal protection systems (OMNI_THERM). OMNI_THERM features impedance-based...

  19. Visualization of Magnetic Surfaces during Current Ramp-Up Phase Using Thermal Lithium Sheet Beam in CPD

    National Research Council Canada - National Science Library

    KIKUKAWA, Tetsushi; ZUSHI, Hideki; MORISAKI, Tomohiro; BHATTACHARYAY, Rajendraprasad; RYOUKAI, Tomofumi; YOSHINAGA, Tomokazu; HASEGAWA, Makoto; HANADA, Kazuaki; IDEI, Hiroshi; CPD Experimental Group

    2008-01-01

    ... (Compact PWI experimental Device) using Li sheet beam imaging technique. The topological change from the open magnetic field line configuration to the closed one is visualized by this technique...

  20. Numerical Investigation of Thermal Radiation and Viscous Effects on Entropy Generation in Forced Convection Blood Flow over an Axisymmetric Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-05-01

    Full Text Available Numerical and analytical investigation of the effects of thermal radiation and viscous heating on a convective flow of a non-Newtonian, incompressible fluid in an axisymmetric stretching sheet with constant temperature wall is performed. The power law model of the blood is used for the non-Newtonian model of the fluid and the Rosseland model for the thermal radiative heat transfer in an absorbing medium and viscous heating are considered as the heat sources. The non-dimensional governing equations are transformed to similarity form and solved numerically. A parameter study on entropy generation in medium is presented based on the Second Law of Thermodynamics by considering various parameters such as the thermal radiation parameter, the Brinkman number, Prandtl number, Eckert number.

  1. Thermal radiation effect on a mixed convection flow and heat transfer of the Williamson fluid past an exponentially shrinking permeable sheet with a convective boundary condition

    Science.gov (United States)

    Zaib, A.; Bhattacharyya, K.; Khalid, M.; Shafie, S.

    2017-05-01

    The thermal radiation effect on a steady mixed convective flow with heat transfer of a nonlinear (non-Newtonian) Williamson fluid past an exponentially shrinking porous sheet with a convective boundary condition is investigated numerically. In this study, both an assisting flow and an opposing flow are considered. The governing equations are converted into nonlinear ordinary differential equations by using a suitable transformation. A numerical solution of the problem is obtained by using the Matlab software package for different values of the governing parameters. The results show that dual nonsimilar solutions exist for the opposing flow, whereas the solution for the assisting flow is unique. It is also observed that the dual nonsimilar solutions exist only if a certain amount of mass suction is applied through the porous sheet, which depends on the Williamson parameter, convective parameter, and radiation parameter.

  2. Integrated platform for functional monitoring of biomimetic heart sheets derived from human pluripotent stem cells.

    Science.gov (United States)

    Chen, Aaron; Lee, Eugene; Tu, Roger; Santiago, Kevin; Grosberg, Anna; Fowlkes, Charless; Khine, Michelle

    2014-01-01

    We present an integrated platform comprised of a biomimetic substrate and physiologically aligned human pluripotent stem cell-derived cardiomyocytes (CMs) with optical detection and algorithms to monitor subtle changes in cardiac properties under various conditions. In the native heart, anisotropic tissue structures facilitate important concerted mechanical contraction and electrical propagation. To recapitulate the architecture necessary for a physiologically accurate heart response, we have developed a simple way to create large areas of aligned CMs with improved functional properties using shrink-wrap film. Combined with simple bright field imaging, obviating the need for fluorescent labels or beads, we quantify and analyze key cardiac contractile parameters. To evaluate the performance capabilities of this platform, the effects of two drugs, E-4031 and isoprenaline, were examined. Cardiac cells supplemented with E-4031 exhibited an increase in contractile duration exclusively due to prolonged relaxation peak. Notably, cells aligned on the biomimetic platform responded detectably down to a dosage of 3 nM E-4031, which is lower than the IC50 in the hERG channel assay. Cells supplemented with isoprenaline exhibited increased contractile frequency and acceleration. Interestingly, cells grown on the biomimetic substrate were more responsive to isoprenaline than those grown on the two control surfaces, suggesting topography may help induce more mature ion channel development. This simple and low-cost platform could thus be a powerful tool for longitudinal assays as well as an effective tool for drug screening and basic cardiac research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan.

    Science.gov (United States)

    Chio, Shih-Hong; Lin, Cheng-Horng

    2017-07-18

    Thermal infrared cameras sense the temperature information of sensed scenes. With the development of UASs (Unmanned Aircraft Systems), thermal infrared cameras can now be carried on a quadcopter UAV (Unmanned Aircraft Vehicle) to appropriately collect high-resolution thermal images for volcanic geothermal monitoring in a local area. Therefore, the quadcopter UAS used to acquire thermal images for volcanic geothermal monitoring has been developed in Taiwan as part of this study to overcome the difficult terrain with highly variable topography and extreme environmental conditions. An XM6 thermal infrared camera was employed in this thermal image collection system. The Trimble BD970 GNSS (Global Navigation Satellite System) OEM (Original Equipment Manufacturer) board was also carried on the quadcopter UAV to gather dual-frequency GNSS observations in order to determine the flying trajectory data by using the Post-Processed Kinematic (PPK) technique; this will be used to establish the position and orientation of collected thermal images with less ground control points (GCPs). The digital surface model (DSM) and thermal orthoimages were then produced from collected thermal images. Tests conducted in the Hsiaoyukeng area of Taiwan's Yangmingshan National Park show that the difference between produced DSM and airborne LIDAR (Light Detection and Ranging) data are about 37% between -1 m and 1 m, and 66% between -2 m and 2 m in the area surrounded by GCPs. As the accuracy of thermal orthoimages is about 1.78 m, it is deemed sufficient for volcanic geothermal monitoring. In addition, the thermal orthoimages show some phenomena not only more globally than do the traditional methods for volcanic geothermal monitoring, but they also show that the developed system can be further employed in Taiwan in the future.

  4. Monitoring of the thermal deformations on polymer parts using a vision system

    DEFF Research Database (Denmark)

    Dalla Costa, Giuseppe; Madruga, Daniel González; De Chiffre, Leonardo

    2017-01-01

    must be monitored and the measurements compensated. In this investigation thermal deformations on polymer parts are monitored using a vision system consisting of a camera equipped with telecentriclenses focused on the surface of the part. The magnification of the optics and an axial illumination allow...

  5. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    Science.gov (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  6. Effects of radiation and thermal conductivity on MHD boundary layer flow with heat transfer along a vertical stretching sheet in a porous medium

    KAUST Repository

    Ferdows, M.

    2017-03-10

    A steady two-dimensional free convective flow of a viscous incompressible fluid along a vertical stretching sheet with the effect of magnetic field, radiation and variable thermal conductivity in porous media is analyzed. The nonlinear partial differential equations, governing the flow field under consideration, have been transformed by a similarity transformation into a systemof nonlinear ordinary differential equations and then solved numerically. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters. Finally, the effects of the pertinent parameters, which are of physical and engineering interest, are examined both in graphical and tabular form.

  7. Transport of thermal-energy ionospheric oxygen (O+) ions between the ionosphere and the plasma sheet and ring current at quiet times preceding magnetic storms

    Science.gov (United States)

    Yau, Andrew W.; Howarth, Andrew; Peterson, W. K.; Abe, Takumi

    2012-07-01

    The presence of energetic O+ ions in the ring current at the onset of a magnetic storm prompts the question of the possible role of “in-transit” ionospheric O+ ions between the ionosphere and the plasma sheet and ring current in the quiet periods immediately preceding the main phase of a magnetic storm. Thermal-energy O+ ions are often observed in the quiet time high-altitude (>7000 km) polar ionosphere on Akebono, at temperatures of ˜0.2-0.3 eV and flow velocities of a few km/s. In this paper, we use single-particle trajectory simulation to study the transport of these ions in the periods preceding a number of large magnetic storms (Dst wind and other low-energy O+ ions reaches the plasma sheet during such periods; the actual percentage is a factor of ˜3 larger in the dusk sector on average compared with the dawn sector and dependent on the IMF and the O+ ion temperature. This provides a low but non-negligible flux of O+ ions between the ionosphere and the plasma sheet and ring current, which is believed to constitute a significant “in-transit” oxygen ion population over a period of a few (˜4) hours preceding a magnetic storm. Such a population could explain the presence of energetic O+ ions at the onset of the main phase of the storm, when the heavy ions could potentially modify the evolution of the ring current.

  8. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  9. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    Science.gov (United States)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  10. Antarctic Ice Sheet Grounding line migration monitoring using COSMO-SkyMed very short repeat-time SAR Interferometry.

    Science.gov (United States)

    Milillo, P.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.; Morlighem, M.; Li, X.; Salzer, J. T.

    2016-12-01

    We employ data from the second generation of SAR systems e.g. the Italian COSMO-SkyMed constellation and the German TanDEM-X formation to monitor the characteristics of grounding line migration using short repeat-time interferometry and accurate InSAR DEM in the Amundsen Sea Embayment (ASE), West Antarctica. The ASE is a marine-based ice sheet with a retrograde bed containing enough ice to raise global sea level by 120 cm. Several studies have inferred the mechanical properties of portions of ASE using observationally constrained numerical models, but these studies offer only temporal snapshots of basal mechanics owing to a dearth of observational time series. Using 1-day CSK repeat pass data and TanDEM-X DEMs, we collected frequent, high-resolution grounding line measurements of Pine Island (PIG), Thwaites, Kohler and Smith glaciers spanning 2015-2016. We compare the results with ERS data spanning 1996-2011, and Sentinel-1a 2014-2015 data. We observe an ongoing, rapid 2km/yr grounding line retreat on Smith, 0.5 km/yr retreat on Pope, ongoing 1 km/yr retreat on Thwaites and PIG and a slight re-advance on Kohler since 2011. On PIG, the data reveal seawater infiltration at high tides over many km along the glacier flanks, significantly more than in 1996/2000. We attribute these infiltrations to the fast retreat of PIG over a rough bed. Such intrusion of warm water fuel the melting of basal ice at the grounding line, which provides an additional positive feedback to the glacier retreat not accounted for in models. We do not observe similar patterns on the other glaciers.

  11. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  12. Wearable Physiological Monitoring for Human Thermal-Work Strain Optimization.

    Science.gov (United States)

    Buller, Mark J; Welles, Alexander Pearson; Friedl, Karl E

    2017-08-10

    Safe performance limits of soldiers and athletes have typically relied on predictive work-rest models of ambient conditions, average work intensity, and characteristics of the population. Bioengineering advances in noninvasive sensor technologies including miniaturization, reduced cost, power requirements, and comfort now make it possible to produce individual predictions of safe thermal-work limits. These precision medicine assessments depend on the development of thoughtful algorithms based on physics and physiology. Both physiological telemetry and thermal-strain indices have been available for more than fifty years but greater computing power and better wearable sensors now make it possible to provide actionable information at the individual level. Core temperature can be practically estimated from time series heart rate data, and, using an adaptive physiological strain index, provides meaningful predictions of safe work limits that cannot be predicted from only core temperature or heart rate measurements. Early adopters of this technology include specialized occupations where individuals operate in complete encapsulation such as chemical protective suits. Emerging technologies that focus on heat flux measurements at the skin show even greater potential for estimating thermal-work strain using a parsimonious sensor set. Applications of these wearable technologies include many sports and military training venues where inexperienced individuals can learn effective work pacing strategies and train to safe personal limits. The same strategies can also provide a technologically-based performance edge for experienced workers and athletes faced with novel and non-intuitive physiological challenges, such as health care providers in full protective clothing treating Ebola patients in West Africa in 2014. Copyright © 2017, Journal of Applied Physiology.

  13. Instrumentation and control systems for monitoring and data acquisition for thermal recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, J.; Hernandez, E.; Perozo, H. [PDVSA Intevep, S.A. (Venezuela)

    2011-07-01

    Thermal recovery methods are often applied to enhance oil recovery in heavy oil reservoirs, one of its challenges is to control the displacement of the thermal front. Methods are thus implemented to obtain data on the temperatures in the wells at any given time and to monitor other variables so that the behaviour of the thermal front can be predicted. The aim of this paper is to present a new control and instrumentation scheme to measure all of the variables. A software was created using Labview a graphs-based programming language software and PostgreSQL, a database management system. Using this software, sensors can be added or removed at any time; trends can be immediately visualized; and quality of the information is ensured since there is no human intervention in the data collection or processing. This paper presented a software which improves monitoring of all of the variables affecting the behaviour of the thermal front.

  14. Validation of Reef-Scale Thermal Stress Satellite Products for Coral Bleaching Monitoring

    Directory of Open Access Journals (Sweden)

    Scott F. Heron

    2016-01-01

    Full Text Available Satellite monitoring of thermal stress on coral reefs has become an essential component of reef management practice around the world. A recent development by the U.S. National Oceanic and Atmospheric Administration’s Coral Reef Watch (NOAA CRW program provides daily global monitoring at 5 km resolution—at or near the scale of most coral reefs. In this paper, we introduce two new monitoring products in the CRW Decision Support System for coral reef management: Regional Virtual Stations, a regional synthesis of thermal stress conditions, and Seven-day Sea Surface Temperature (SST Trend, describing recent changes in temperature at each location. We describe how these products provided information in support of management activities prior to, during and after the 2014 thermal stress event in the Commonwealth of the Northern Mariana Islands (CNMI. Using in situ survey data from this event, we undertake the first quantitative comparison between 5 km satellite monitoring products and coral bleaching observations. Analysis of coral community characteristics, historical temperature conditions and thermal stress revealed a strong influence of coral biodiversity in the patterns of observed bleaching. This resulted in a model based on thermal stress and generic richness that explained 97% of the variance in observed bleaching. These findings illustrate the importance of using local benthic characteristics to interpret the level of impact from thermal stress exposure. In an era of continuing climate change, accurate monitoring of thermal stress and prediction of coral bleaching are essential for stakeholders to direct resources to the most effective management actions to conserve coral reefs.

  15. Monitoring system for thermal plasma; Sistema de monitoreo para plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, M.; Vilchis P, A.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  16. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  17. Effect of nonlinear thermal radiation on non-aligned bio-convective stagnation point flow of a magnetic-nanofluid over a stretching sheet

    Directory of Open Access Journals (Sweden)

    M. Jayachandra Babu

    2016-09-01

    Full Text Available The current study covers the relative study of non-aligned magnetohydrodynamic stagnation point flow of a nanofluid comprising gyrotactic microorganisms across a stretching sheet in the presence of nonlinear thermal radiation and variable viscosity. The governing equations transitioned as nonlinear ordinary differential equations with suited similarity transformations. With the assistance of Runge-Kutta based shooting method, we derived solutions. Results for oblique and free stream flow cases are exhibited through plots for the parameters of concern. In tabular form, heat and mass transfer rate along with the local density of the motile microorganisms are analyzed for some parameters. It is found that local density of the motile microorganisms is highly influenced by the Biot and Peclet numbers. Rising values of the magnetic field parameter, Biot number, thermal radiation parameter and thermophoresis parameter increase the thermal boundary layer. Bioconvection Peclet number and bioconvection Lewis number have tendency to reduce the density of the motile microorganisms. It is also found that thermal and concentration boundary layers become high in free stream flow when compared with the oblique flow.

  18. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets

    Science.gov (United States)

    Lin, Chunjing; Xu, Sichuan; Chang, Guofeng; Liu, Jinling

    2015-02-01

    A passive thermal management system (TMS) for LiFePO4 battery modules using phase change material (PCM) as the heat dissipation source to control battery temperature rise is developed. Expanded graphite matrix and graphite sheets are applied to compensate low thermal conductivity of PCM and improve temperature uniformity of the batteries. Constant current discharge and mixed charge-discharge duties were applied on battery modules with and without PCM on a battery thermal characteristics test platform. Experimental results show that PCM cooling significantly reduces the battery temperature rise during short-time intense use. It is also found that temperature uniformity across the module deteriorates with the increasing of both discharge time and current rates. The maximum temperature differences at the end of 1C and 2C-rate discharges are both less than 5 °C, indicating a good performance in battery thermal uniformity of the passive TMS. Experiments on warm-keeping performance show that the passive TMS can effectively keep the battery within its optimum operating temperature for a long time during cold weather uses. A three dimensional numerical model of the battery pack with the passive TMS was conducted using ANSYS Fluent. Temperature profiles with respect to discharging time reveal that simulation shows good agreement with experiment at 1C-discharge rate.

  19. Optical monitoring of thermal effects in RPE during heating

    Science.gov (United States)

    Schuele, G.; Huie, Ph.; Yellachich, D.; Molnar, F. E.; O'Conell-Rodwell, C.; Vitkin, E.; Perelman, L. T.; Palanker, D.

    2005-04-01

    Fast and non-invasive detection of cellular stress is useful for fundamental research and practical applications in medicine and biology. Using Light Scattering Spectroscopy we extract information about changes in refractive index and size of the cellular organelles. Particle sizes down to 50nm in diameter can be detected using light within the spectral range of 450-850 nm. We monitor the heat-induced sub-cellular structural changes in human RPE cells and, for comparison, in transfected NIH-3T3 cells which express luciferase linked to the heat shock protein (HSP). Using inverse light scattering fitting algorithm, we reconstruct the size distribution of the sub-micron organelles from the light scattering spectrum. The most significant (up to 70%) and rapid (20sec) temperature-related changes can be linked to an increase of refractive index of the 160nm sized mitochondria. The start of this effect coincides with the onset of HSP expression. This technique provides an insight into metabolic processes within organelles larger than 50nm without exogenous staining and opens doors for non-invasive real-time assessment of cellular stress, which can be used for monitoring of retinal laser treatments like transpupillary thermo therapy or PDT.

  20. Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data

    Science.gov (United States)

    Gulbe, Linda; Caune, Vairis; Korats, Gundars

    2017-12-01

    The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.

  1. Photoacoustic temperature measurements for monitoring of thermal therapy

    Science.gov (United States)

    Wang, Shiou-Han; Wei, Chen-Wei; Jee, Shiou-Hwa; Li, Pai-Chi

    2009-02-01

    Plasmonic photothermal therapy is a new cancer thermotherapy method based on surface plasmon resonance of nanoparticles. It is important to measure the temperature during thermotherapy for safety and efficacy. In this study, we apply a photoacoustic (PA) method for real-time, non-invasive temperature measurements. In particular, this method can be effectively combined with a photothermal therapy system that we developed in parallel. The method is based on the fact that the PA pressure amplitude is linearly related to temperature. To explore its potential, a home-made, 20 MHz PA transducer was used, in which an optical fiber was inserted in its center for emitting laser pulses while the PA signal was simultaneously detected. Continuous wave (CW) laser was used to heat the subject, including both phantoms and mice. The temperature of the region of interest was also measured by a fine-needle thermal couple. Results show that the temperature was linearly proportional to the PA signal with good correlation with the CW laser irradiation. The in vivo study also demonstrated potential of this technique.

  2. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  3. [Monitoring method of underground coal fire based on night thermal infrared remote sensing technology].

    Science.gov (United States)

    Jiang, Wei-Guo; Wu, Jian-Jun; Gu, Lei; Yang, Bo; Chen, Qiang; Liu, Xiao-Chen

    2011-02-01

    Land surface temperature is higher in the zones of underground coal fire than in their surroundings areas. It is possible to monitor the coal fire and the heat anomalies using the remote sensing technology of thermal infrared. By taking the coal fire of Wuda in Inner Mongolia Autonomous Region as an example, the monitoring methods of underground coal fire were explored based on different seasons night ASTER thermal infrared images. By employing the TES-ADE algorithm and threshold segmentation method, land surface temperature was retrieved and coal fire areas were extracted. Finally the seasonal variation of surface temperature, the surface temperature differences between night and day, and the change and distribution of coal fire area were analyzed. The results showed that (1) it is effective to retrieve land surface temperature and to avoid the interference of sand, bare land and building based on the remote sensing of thermal infrared at night; (2) it is best time to extract the coal fire areas based on the winter night images of thermal infrared; (3) it is effective to monitor the change and distribution of coal fire areas based on the winter night images of thermal infrared.

  4. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  5. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    J. W. Goodge

    2018-02-01

    Full Text Available Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2–2.0 Ga granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho of about 2.6  ±  1.9 µW m−3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo ranging from 33 to 84 mW m−2 and an average of 48.0  ±  13.6 mW m−2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal

  6. Understanding the thermal sciences in the electron beam melting process through in-situ process monitoring

    Science.gov (United States)

    Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Dehoff, R. R.; Babu, S. S.

    2017-04-01

    Additive Manufacturing provides the opportunity to fabricate components of nearly limitless complexity compared to that of traditional manufacturing techniques. However, thermal gyrations imparted into the material from the passing of the heat source cause challenges in fabricating complex structures with the proper process parameters. While the thermal history of the material can be simulated, validating the simulations requires access to thermal data generated through in-situ process monitoring. While generation of in-situ thermal data seems trivial, acquiring and developing reliable calibrations for metallic materials is difficult due to the physical state of the material transitioning from powder to liquid to a solid. To be discussed is the methodology taken to integrate IR in-situ process monitoring within the electron beam melting process and the approach developed to accurately correlate a materials emissivity to temperature during the build process. Further the wealth of information contained within the thermal data will be discussed in the context of understanding of microstructural evolutions within the material during the build process, identification of material defects, and ability to determining the similarity/repeatability of builds fabricated with identical processing parameters as based only on the thermal signature of the build.

  7. A thermal-capillary mechanism for a growth rate limit in edge-defined film-fed growth of silicon sheets

    Science.gov (United States)

    Thomas, P. D.; Ettouney, H. M.; Brown, R. A.

    1986-01-01

    Capillarity, acting to set the shape of the melt/gas interfaces, and heat transfer can interact to cause limits to steady-state growth of thin silicon sheets by the Edge-Defined Film-Fed Growth (EFG) method. A finite-element/Newton solution method for a two-dimensional thermal-capillary model of EFG is used to show that limiting values of pull rate exist beyond which steady-state growth is impossible. The pull rate limit is also predicted by a one-dimensional heat transfer model valid when the die sides and menisci are almost parallel and when the thermal conductivities of melt, crystal, and die are all equal. Both the one- and two-dimensional heat transfer models show that heat loss from the melt is dominated by conduction into the crystal and slow heat release to the ambient along the length of the ribbon. The limiting pull rate results from the reduced efficiency of conduction through the melt caused by the curvature of the meniscus which increases height of the die top above the level of the melt. Thermal-capillary limits are predicted for both positive and negative pressure differences across the meniscus.

  8. Influence of nonlinear thermal radiation and Magnetic field on upper-convected Maxwell fluid flow due to a convectively heated stretching sheet in the presence of dust particles

    Directory of Open Access Journals (Sweden)

    Koneri L. Krupalakshmi

    Full Text Available A numerical investigation of two-dimensional MHD boundary layer flow and thermal characteristics of an electrically conducting dusty non-Newtonian fluid over a convectively heated stretching sheet has been considered. The effects of nonlinear thermal radiation, heat source or sink and viscous dissipation are also taken into the account. The Rosseland approximation is used to model the nonlinear thermal radiation. Suitable similarity transformations are used to transform the flow governing equations into a set of nonlinear differential equations of one independent variable. The Shooting method is adopted to solve transformed equations. The effects of various material parameters on the flow and heat transfer in terms of velocity and temperature distributions are drawn in the form of graphs and are briefly discussed. The numerical computations for the Nusselt number and skin friction drag are also carried out for the emerging parameters of interest in the problem. The obtained numerical results show the good agreement with the existing one for limiting case.

  9. The Holocene thermal maximum in the Nordic Seas: the impact of Greenland Ice Sheet melt and other forcings in a coupled atmosphere–sea-ice–ocean model

    Directory of Open Access Journals (Sweden)

    M. Blaschek

    2013-07-01

    Full Text Available The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene thermal maximum (HTM, is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveals a complex interaction of mechanisms active in the HTM. Previous studies have investigated the impact of the Laurentide Ice Sheet (LIS, as a remnant from the previous glacial period, altering climate conditions with a continuous supply of melt water to the Labrador Sea and adjacent seas and with a downwind cooling effect from the remnant LIS. In our present work we extend this approach by investigating the impact of the Greenland Ice Sheet (GIS on the early Holocene climate and the HTM. Reconstructions suggest melt rates of 13 mSv for 9 ka BP, which result in our model in an ocean surface cooling of up to 2 K near Greenland. Reconstructed summer SST gradients agree best with our simulation including GIS melt, confirming that the impact of the early Holocene GIS is crucial for understanding the HTM characteristics in the Nordic Seas area. This implies that modern and near-future GIS melt can be expected to play an active role in the climate system in the centuries to come.

  10. Double diffusive magnetohydrodynamic heat and mass transfer of nanofluids over a nonlinear stretching/shrinking sheet with viscous-Ohmic dissipation and thermal radiation

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2017-03-01

    Full Text Available The study of magnetohydrodynamic (MHD convective heat and mass transfer near a stagnation-point flow over stretching/shrinking sheet of nanofluids is presented in this paper by considering thermal radiation, Ohmic heating, viscous dissipation and heat source/sink parameter effects. Non-similarity method is adopted for the governing basic equations before they are solved numerically using Runge-Kutta-Fehlberg method using shooting technique. The numerical results are validated by comparing the present results with previously published results. The focus of this paper is to study the effects of some selected governing parameters such as Richardson number, radiation parameter, Schimdt number, Eckert number and magnetic parameter on velocity, temperature and concentration profiles as well as on skin-friction coefficient, local Nusselt number and Sherwood number.

  11. Velocity slip effects on heat and mass fluxes of MHD viscous–Ohmic dissipative flow over a stretching sheet with thermal radiation

    Directory of Open Access Journals (Sweden)

    M. Kayalvizhi

    2016-06-01

    Full Text Available In the present article, we discussed the velocity slip effects on the heat and mass fluxes of a viscous electrically conducting fluid flow over a stretching sheet in the presence of viscous dissipation, Ohmic dissipation and thermal radiation. A system of governing nonlinear PDEs is converted into a set of nonlinear ODEs by suitable similarity transformations. The numerical and analytical solutions are presented for the governing non-dimensional ODEs using shooting method and hypergeometric function respectively. The results are discussed for skin friction coefficient, concentration field, non-dimensional wall temperature and non-dimensional wall concentration. The non-dimensional wall concentration increases with slip and magnetic parameters and decreases with Schmidt number. Furthermore, comparisons are found to be good with bench mark solutions.

  12. Don't get burned: thermal monitoring of vessel sealing using a miniature infrared camera

    Science.gov (United States)

    Lin, Shan; Fichera, Loris; Fulton, Mitchell J.; Webster, Robert J.

    2017-03-01

    Miniature infrared cameras have recently come to market in a form factor that facilitates packaging in endoscopic or other minimally invasive surgical instruments. If absolute temperature measurements can be made with these cameras, they may be useful for non-contact monitoring of electrocautery-based vessel sealing, or other thermal surgical processes like thermal ablation of tumors. As a first step in evaluating the feasibility of optical medical thermometry with these new cameras, in this paper we explore how well thermal measurements can be made with them. These cameras measure the raw flux of incoming IR radiation, and we perform a calibration procedure to map their readings to absolute temperature values in the range between 40 and 150 °C. Furthermore, we propose and validate a method to estimate the spatial extent of heat spread created by a cautery tool based on the thermal images.

  13. Empirical Retrieval of Surface Melt Magnitude from Coupled MODIS Optical and Thermal Measurements over the Greenland Ice Sheet during the 2001 Ablation Season

    Directory of Open Access Journals (Sweden)

    Rui Peng

    2008-08-01

    Full Text Available Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS daily reflectance Band 5 (1.230-1.250μm and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89. SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1% at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8% were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ~ ±2%.

  14. Validation and operational measurements with SUSIE – A sar ice motion processing chain developed within promice (Programme for monitoring of Greenland ice-sheet)

    DEFF Research Database (Denmark)

    Merryman Boncori, John Peter; Dall, Jørgen; Ahlstrøm, A. P.

    2010-01-01

    This paper describes the validation of an ice-motion processing chain developed for the PROMICE project – a long-term program funded by the Danish ministry of Climate and Energy to monitor the mass budget of the Greenland ice-sheet. The processor, named SUSIE, (Scripts and Utilities for SAR Ice......-motion Estimation) uses a combination of differential SAR interferometry (DInSAR) and offset-tracking techniques to measure the horizontal velocity components, providing also an estimate of the corresponding measurement error standard deviations. In this performance of SUSIE’s offset-tracking chain is compared...

  15. RESULTS OF CALCULATION-EXPERIMENTAL INVESTIGATIONS OF ELECTRO-THERMAL RESISTIBILITY OF SHEET STEEL SAMPLES TO ACTION OF RATIONED COMPONENTS OF PULSED CURRENT OF ARTIFICIAL LIGHTING

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2016-06-01

    Full Text Available Purpose. Calculation and experimental researches of the electro-thermal resistibility of the steel sheet samples to action standard pulse current components of the artificial lightning with amplitude-time parameters (ATP, corresponded the requirements of normative documents of USA for SAE ARP 5412 & SAE ARP 5416. Methodology. Electrophysics bases of technique of high tensions and large impulsive currents (LIC, and also scientific and technical bases of planning of devices of high-voltage impulsive technique and measuring in them LIC. Сurrent amplitude ImA=±200 kA (with a tolerance of ±10 %; current action integral JA=2∙106 A2•s (with a tolerance of ±20 %; time, corresponding to the amplitude of the current ImA, tmA≤50 microseconds; the duration of the current flow τpA≤500 microseconds. Results. The results of the evaluation of the calculated and experimental studies of electro-thermal resistance of the samples of plates measuring 0,5 m  0,5 m stainless steel 1 mm thickness to the action on them artificial lightning impulse currents with rationed ATP on the requirements of normative documents of USA for SAE ARP 5412 & SAE ARP 5416. A pulse A- component have a first amplitude 192 kA, the corresponding time of 34 μs, and the duration aperiodic component amplitude 804 A, corresponding to the time 9 ms. It has been shown that the long C- component current of artificial lightning can lead to keyhole these samples. The diameter of the holes in this thin steel sheet, which is formed during the flow of current C- components can reach 15 mm. The results of calculation and experiment agree within 28 %. Originality. For the first time in world practice on the generator large pulsed currents experimental studies of resistibility of sheet steel samples to the action of artificial lightning currents with critical parameters. Practical value. Using the results obtained in the practice of lightning protection will significantly improve the

  16. Magnetohydrodynamic thin film and heat transfer of power law fluids over an unsteady stretching sheet with variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Lin Yanhai

    2016-01-01

    Full Text Available This paper presents an investigation on the MHD thin film flow and heat transfer of a power law fluid over an unsteady stretching sheet. The effects of power law viscosity on a temperature field are taken into account with a modified Fourier’s law Proposed by Zheng by assuming that the temperature field is similar to the velocity field. The governing equations are reduced to a system of nonlinear ordinary differential equations. The numerical solutions are obtained by using the shooting method coupled with the Runge-Kutta method. The influence of the Hartmann number, the power law exponent, the unsteadiness parameter, the thickness parameter and the generalized Prandtl number on the velocity and temperature fields are presented graphically and analyzed. Moreover, the critical formula for parameters are derived which indicated that the magnetic field has no effect on the critical value.

  17. Monitoring bisphenol A and estrogenic chemicals in thermal paper with yeast-based bioreporter assay.

    Science.gov (United States)

    Rajasärkkä, Johanna; Koponen, Jani; Airaksinen, Riikka; Kiviranta, Hannu; Virta, Marko

    2014-09-01

    Bioluminescent Saccharomyces cerevisiae yeast-based bioreporters were used to monitor bisphenol A and other estrogenic chemicals in thermal paper samples collected mainly from Finland on two occasions in 2010/2011, and 2013. The bisphenol A-targeted (BPA-R) and the human oestrogen receptor (hERα) bioreporters were applied to analyse both non-treated and extracted paper samples. Bisphenol A was readily bioavailable to the yeast bioreporters on the non-treated paper samples without any pre-treatment. Detected concentrations ranged from a detection limit of 9-142 μg/g to over 20 mg/g of bisphenol A equivalents in the thermal papers. Low bisphenol A like activities were detected in many samples, and were considered to be caused by residual bisphenol A or other types of bisphenols, such as bisphenol S. Most of the thermal paper samples were toxic to the yeast bioreporters. The toxicity did not, however, depend on the bisphenol A concentration of the samples. The yeast bioreporters were demonstrated to be a robust and cost-efficient method to monitor thermal paper samples for their bisphenol A content and estrogenicity. Thermal paper was considered as a potential BPA source for both human exposure and environmental emission.

  18. Integrated thermal treatment system study: Phase 1 results. Appendix B, Flow sheets and material balances: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01

    This document accompanies a full report which describes the testing and evaluation of ten different methods for incinerating mixed low-level radioactive wastes. It consists of flowsheets and diagrams of a rotary kiln, pyrolysis methods, a plasma furnace, a fixed hearth, and thermal desorption methods.

  19. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    OpenAIRE

    Lei Ren; Qing Jiang; Keyun Chen; Zhipeng Chen; Chengfeng Pan; Lelun Jiang

    2016-01-01

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 ? 6 micro-needles with an average height of about 500 ?m. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The inser...

  20. Electrostatic-assembly-driven formation of micrometer-scale supramolecular sheets of (3-aminopropyl)triethoxysilane(APTES)-HAuCl4 and their subsequent transformation into stable APTES bilayer-capped gold nanoparticles through a thermal process.

    Science.gov (United States)

    Sun, Xuping; Wei, Wentao

    2010-05-04

    In this letter, we demonstrate for the first time the electrostatically driven assembly of (3-aminopropyl)triethoxysilane (APTES) and HAuCl(4) in aqueous media into novel micrometer-scale supramolecular sheets and their subsequent transformation into small, stable APTES bilayer-capped gold nanoparticles through a thermal process. The nanoparticle formation mechanism is also discussed.

  1. Multi-sensor sheets based on large-area electronics for advanced structural health monitoring of civil infrastructure.

    Science.gov (United States)

    2014-09-01

    Structural Health Monitoring has a great potential to provide valuable information about the actual structural : condition and can help optimize the management activities. However, few eective and robust monitoring technology exist which hinders a...

  2. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong

    2017-08-30

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film\\'s structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  3. Thin Film Williamson Nanofluid Flow with Varying Viscosity and Thermal Conductivity on a Time-Dependent Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Waris Khan

    2016-11-01

    Full Text Available This article describes the effect of thermal radiation on the thin film nanofluid flow of a Williamson fluid over an unsteady stretching surface with variable fluid properties. The basic governing equations of continuity, momentum, energy, and concentration are incorporated. The effect of thermal radiation and viscous dissipation terms are included in the energy equation. The energy and concentration fields are also coupled with the effect of Dufour and Soret. The transformations are used to reduce the unsteady equations of velocity, temperature and concentration in the set of nonlinear differential equations and these equations are tackled through the Homotopy Analysis Method (HAM. For the sake of comparison, numerical (ND-Solve Method solutions are also obtained. Special attention has been given to the variable fluid properties’ effects on the flow of a Williamson nanofluid. Finally, the effect of non-dimensional physical parameters like thermal conductivity, Schmidt number, Williamson parameter, Brinkman number, radiation parameter, and Prandtl number has been thoroughly demonstrated and discussed.

  4. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  5. MHD Slip Flow of Newtonian Fluid past a Stretching Sheet with Thermal Convective Boundary Condition, Radiation, and Chemical Reaction

    Directory of Open Access Journals (Sweden)

    Reda G. Abdel-Rahman

    2013-01-01

    Full Text Available An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.

  6. No strings attached: Physiological Monitoring of Rhesus Monkeys (Macaca mulatta with Thermal Imaging.

    Directory of Open Access Journals (Sweden)

    Stephanos eIoannou

    2015-06-01

    Full Text Available Methodological challenges make physiological affective observations very restrictive as in many cases they take place in a laboratory setting rather than the animals’ natural habitat. In the current study using Infrared Thermal Imaging we examine the physiological thermal imprints of 5 macaques. The monkeys were exposed in 3 different experimental scenarios. Playing with a toy, food teasing as well as feeding. It was observed that during teasing the temperature of the region surrounding the eyes was higher than play as a result of rapid saccades directed at the food. Compared to play and teasing, a lower temperature accompanied feeding on the upper lip, nose and orbital region suggesting elevated levels of distress. These findings prove that thermal imaging is a reliable method of physiological monitoring the subject at a distance while preserving a semi-experimental setting.

  7. The Porretta thermal springs (Northern Apennines: seismogenic structures and long-term geochemical monitoring

    Directory of Open Access Journals (Sweden)

    F. Italiano

    2007-06-01

    Full Text Available The thermal springs of Porretta are located on a seismically active area of the Northern Apennines. In 19th Century a chemist identified anomalous behaviour of the thermal waters in concomitance with local seismic events. Recent studies assessed the geochemical features of the circulating fluids (e.g., waters carry a dissolved CH4-dominated gas phase with a radiogenic signature of the helium isotopic ratio and observed anomalous hydrologic and geochemical signals possibly related to crustal strain phenomena due to local seismic events. Long-term geochemical monitoring was carried out from 2001 to 2006 with the aim of detecting the behaviour of the circulating fluids possibly coinciding with seismic activity. The collected data reveal a sensitivity of the thermal waters to the activity of the main fault crossing the village of Porretta and identify a «seismogenic» structure crossing the village.

  8. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces.

    Science.gov (United States)

    Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos

    2017-12-08

    Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.

  9. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces

    Directory of Open Access Journals (Sweden)

    Víctor Echarri

    2017-12-01

    Full Text Available Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100, air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.

  10. Evaluation of risk and benefit in thermal effusivity sensor for monitoring lubrication process in pharmaceutical product manufacturing.

    Science.gov (United States)

    Uchiyama, Jumpei; Kato, Yoshiteru; Uemoto, Yoshifumi

    2014-08-01

    In the process design of tablet manufacturing, understanding and control of the lubrication process is important from various viewpoints. A detailed analysis of thermal effusivity data in the lubrication process was conducted in this study. In addition, we evaluated the risk and benefit in the lubrication process by a detailed investigation. It was found that monitoring of thermal effusivity detected mainly the physical change of bulk density, which was changed by dispersal of the lubricant and the coating powder particle by the lubricant. The monitoring of thermal effusivity was almost the monitoring of bulk density, thermal effusivity could have a high correlation with tablet hardness. Moreover, as thermal effusivity sensor could detect not only the change of the conventional bulk density but also the fractional change of thermal conductivity and thermal capacity, two-phase progress of lubrication process could be revealed. However, each contribution of density, thermal conductivity, or heat capacity to thermal effusivity has the risk of fluctuation by formulation. After carefully considering the change factor with the risk to be changed by formulation, thermal effusivity sensor can be a useful tool for monitoring as process analytical technology, estimating tablet hardness and investigating the detailed mechanism of the lubrication process.

  11. H-G Diagram Based Rotor Parameters Identification for Induction Motors Thermal Monitoring

    OpenAIRE

    Naït-Saïd, Mohamed-Saïd; Benbouzid, Mohamed

    2000-01-01

    International audience; In this paper, an effective on-line method for induction motor parameter identification, especially rotor parameters, based on the H-G diagram is presented for motor thermal monitoring purpose. The H-G diagram is established from the analysis of the induction motor measurement of active and reactive power consumption for each operating point. Computer simulations and experimental tests, carried out for a 4-kW four-pole squirrel cage induction motor, provide an encourag...

  12. APPLICATION OF MONITORING, DIAGNOSIS, AND PROGNOSIS IN THERMAL PERFORMANCE ANALYSIS FOR NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    HYEONMIN KIM

    2014-12-01

    Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

  13. Sheet music

    OpenAIRE

    Martin, Gregory

    2016-01-01

    Sheet music is a handwritten or printed form of music notation that uses modern musical symbols. Like its analogs – books, pamphlets, etc. – the medium of sheet music typically is paper (or, in earlier times, parchment), although the access to musical notation in recent years also includes presentation on computer screens. Use of the term "sheet" is intended to differentiate written music from an audio presentation, as in a sound recording, broadcast or live performance, which may involve vid...

  14. Avian Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Wildlife Work Group

    2004-12-01

    OAK-B135 After conducting four national research meetings, producing a document guiding research: Metrics and Methods for Determining or Monitoring Potential Impacts on Birds at Existing and Proposed Wind Energy Sites, 1999, and another paper, Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States, 2001, the subcommittee recognized a need to summarize in a short fact sheet what is known about avian-wind interaction and what questions remain. This fact sheet attempts to summarize in lay terms the result of extensive discussion about avian-wind interaction on land. This fact sheet does not address research conducted on offshore development. This fact sheet is not intended as a conclusion on the subject; rather, it is a summary as of Fall/Winter 2002.

  15. Air Guide for Sheet-Metal Grinder

    Science.gov (United States)

    Heermann, T.

    1984-01-01

    Tool attachment reduces heat distortion of sheet. Air-guide attachment directs air from grinder motor to grinding wheel and metal sheet being ground. Cooling air reduces thermal distortion of workpiece due to localized frictional heating. Particularly useful when grinding sheet metal.

  16. Characterization of Terrestrial Discharges into Coastal Waters with Thermal Imagery from a Hierarchical Monitoring Program

    Directory of Open Access Journals (Sweden)

    Claudia Ferrara

    2017-07-01

    Full Text Available Background: The hierarchical use of remotely-sensed imagery from satellites, and then proximally-sensed imagery from helicopter sand drones, can provide a range of spatial and temporal coverage that supports water quality monitoring of complex pollution scenarios. Methods: The study used hierarchical satellite-, helicopter-, and drone-acquired thermal imagery of coastal plumes ranging from 3 to 300 m, near Naples, Italy, and captured temporally- and spatially-overlapping in situ samples to correlate thermal and water quality parameters in each plume and the seawater. Results: In situ sampling determined that between-plume salinity varied by 37%, chlorophyll-a varied by 356%, dissolved oxygen varied by 81%, and turbidity varied by 232%. The radiometric temperature, Trad, for the plume area of interest had a correlation of 0.81 with salinity, 0.74 with chlorophyll-a, 0.98 with dissolved oxygen, and −0.61 with turbidity. Conclusion: This study established hierarchical use of remote and proximal thermal imagery can provide monitoring of complex coastal areas.

  17. Toward Monitoring Surface and Subsurface Lakes on the Greenland Ice Sheet Using Sentinel-1 SAR and Landsat-8 OLI Imagery

    Directory of Open Access Journals (Sweden)

    Katie E. Miles

    2017-07-01

    Full Text Available Supraglacial lakes are an important component of the Greenland Ice Sheet's mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days vs. daily but a higher spatial resolution (25–40 vs. 250–500 m, is then used together with a fully automated lake drainage detection algorithm. Rapid (<4 days and slow (>4 days drainages are investigated for both small (<0.125 km2, the minimum size detectable by MODIS and large (≥0.125 km2 lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m, and slightly earlier (mean 4.5 days in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1,270 m mean elevation. Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively. These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1,593 and 1,185 m, respectively. Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  18. MHD Flow and Heat Transfer Characteristics in a Casson Liquid Film Towards an Unsteady Stretching Sheet with Temperature-Dependent Thermal Conductivity

    Science.gov (United States)

    Mahmoud, Mostafa A. A.; Megahed, Ahmed M.

    2017-10-01

    Theoretical and numerical outcomes of the non-Newtonian Casson liquid thin film fluid flow owing to an unsteady stretching sheet which exposed to a magnetic field, Ohmic heating and slip velocity phenomena is reported here. The non-Newtonian thermal conductivity is imposed and treated as it vary with temperature. The nonlinear partial differential equations governing the non-Newtonian Casson thin film fluid are simplified into a group of highly nonlinear ordinary differential equations by using an adequate dimensionless transformations. With this in mind, the numerical solutions for the ordinary conservation equations are found using an accurate shooting iteration technique together with the Runge-Kutta algorithm. The lineaments of the thin film flow and the heat transfer characteristics for the pertinent parameters are discussed through graphs. The results obtained here detect many concern for the local Nusselt number and the local skin-friction coefficient in which they may be beneficial for the material processing industries. Furthermore, in some special conditions, the present problem has an excellent agreement with previously published work.

  19. Effects of variable viscosity and thermal conductivity on unsteady MHD flow of non-Newtonian fluid over a stretching porous sheet

    Directory of Open Access Journals (Sweden)

    Rahman Abdel-Gamal M.

    2013-01-01

    Full Text Available The unsteady flow and heat transfer in an incompressible laminar, electrically conducting and non-Newtonian fluid over a non-isothermal stretching sheet with the variation in the viscosity and thermal conductivity in a porous medium by the influence of an external transverse magnetic field have been obtained and studied numerically. By using similarity analysis the governing differential equations are transformed into a set of non-linear coupled ordinary differential equations which are solved numerically. Numerical results were presented for velocity and temperature profiles for different parameters of the problem as power law parameter, unsteadiness parameter, radiation parameter, magnetic field parameter, porous medium parameter, temperature buoyancy parameter, Prandtl parameter, modified Eckert parameter, Joule heating parameter , heat source/sink parameter and others. A comparison with previously published work has been carried out and the results are found to be in good agreement. Also the effects of the pertinent parameters on the skin friction and the rate of heat transfer are obtained and discussed numerically and illustrated graphically.

  20. An automatic energy-saving and thermal monitoring/controlling system for a pond

    Directory of Open Access Journals (Sweden)

    Cheng Ching-Chien

    2017-01-01

    Full Text Available Because of low temperatures and oxygen in cold water, fish will die when cold currents arrive. This will cause tremendous loss of money. In order reduce the cooling of the pond, an automatic thermal detecting and cold-roofing system using a wind-proofing device, heaters, and thermal detectors is proposed. To reduce heat loss due to thermal convection above the pond surface, a motor-driven wind-proofing device automatically controlled by a PLC controller is adopted. Here, the wind-proofing device, thermal detectors, and heating system are connected to the PLC controller. The PLC will also be connected to the PC interface. The temperature thresholds used to trigger the heater and the wind proofing device can be set at the PC interface. Two options for manipulating the heating and the automatic heating can be selected. The related wind-proofing area and the number of heaters will be determined according to the current temperature. Moreover, the PLC can be wirelessly connected to the server PC in the control room. The pond keeper can monitor everything online and control the pond water's temperature. With this, the problem of fish dying in a cold wave can be solved. Consequently, to reduce the electrical exhaust when heating up the pond water, green energy, solar energy and wind energy, is used.

  1. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  2. Monitoring large enrichment plants using thermal imagery from commercial satellites: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Adam Bernstein

    2000-05-01

    Thermal imagery from commercial satellites is an interesting candidate technology for use as a verification tool for the purpose of monitoring certain types of fissile material production sites. Examples of its potential treaty applications include the Fissile Material Cutoff Treaty (FMCT) or a Fissile Material Production Moratorium. To help determine the capabilities and limitations of such imagery as a monitoring tool, the author has examined archived LANDSAT-5 images of the Portsmouth Gaseous Diffusion Plant, a large US uranium-enrichment facility in Ohio. This analysis indicates that large-scale gaseous diffusion plants can very likely be recognized as operational with thermal imagery throughout most of the year in clear weather conditions. It may also be possible to identify certain other large-scale qualitative changes in operations, such as the shut-down of a single process building in a plant, by a comparison of its temperature with the temperatures of neighboring operational process buildings. However, uncertainties in the current data set prevent a definitive conclusion regarding the latter capability. This study identifies intrinsic weaknesses, including vulnerability to countermeasures, that prevent thermal imagery from satellites from being a robust standalone verification tool, even for very large enrichment plants. Nonetheless, the imagery may be useful as a trigger for an on-site inspection, to alert and train inspectors prior to an inspection, and possibly to reduce the frequency of on-site inspections required at a given site. It could have some immediate utility for monitoring the two large gaseous diffusion plants the US and the French plant at Tricastin, and possibly for determining the operational status of two gaseous diffusion plants in China as well--a total of five plants worldwide. The ease of acquisition and modest cost of thermal commercial imagery further increase its attractiveness as a verification tool. In addition to these basic

  3. Evaluate thermal lesion using Nakagami imaging for monitoring of high-intensity focused ultrasound

    Science.gov (United States)

    Zhang, Siyuan; Li, Chong; Zhou, Fanyu; Wang, Supin; Wan, Mingxi

    2017-03-01

    High-intensity focused ultrasound (HIFU) is currently being developed as a noninvasive technique for the treatment of cancer located in various tissues. Cavitation microbubbles (MBs) have been potential to aid treatment while the acoustic posterior shadowing effects of MBs influence the accuracy for defining the location and range of ablated thermal lesions during focused ultrasound surgery when using ultrasonic monitoring imaging. This work explored the feasibility of using ultrasonic Nakagami imaging to evaluate the ablated region induced by focused ultrasound exposures at different acoustic power levels in transparent tissue-mimicking phantoms.

  4. Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica

    Science.gov (United States)

    Schaefer, Carlos Ernesto; Michel, Roberto; Souza, Karoline; Senra, Eduardo; Bremer, Ulisses

    2015-04-01

    The Ellsworth Mountains occur along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east and the Sentinel Range to the West. The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The mean annual air temperature at the 1,000 m level is estimated to be -25°C, and the average annual accumulation of water-equivalent precipitation likely ranges from 150 to 175 mm yr-1 (Weyant, 1966). The entire area is underlain by continuous permafrost of unknown thickness. Based on data collected from 22 pits, 41% of the sites contained dry permafrost below 70 cm, 27% had ice-cemented permafrost within 70 cm of the surface, 27% had bedrock within 70 cm, and 5% contained an ice-core (Bockheim, unpublished; Schaefer et al., 2015). Dry-frozen permafrost, which may be unique to Antarctica, appears to form from sublimation of moisture in ice-cemented permafrost over time. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm (Bockheim, unpublished); our understanding of Antarctic permafrost is poor, especially at the continent. The active layer monitoring sites were installed at Edson Hills, Ellsworth_Mountains, in the summer of 2012, and consist of thermistors (accuracy ± 0.2 °C) installed at 1 m above ground for air temperature measurements at two soil profiles on quartzite drift deposits, arranged in a vertical array (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm and Lithic Anyorthel 850 m asl, 5 cm, 10 cm, 30 cm). All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from January 2nd 2012 until December 29th 2013. We calculated the thawing days (TD), freezing days (FD); isothermal days (ID), freeze thaw days (FTD), thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). Temperature at 5 cm reaches a maximum

  5. Towards monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    Science.gov (United States)

    Miles, Katie E.; Willis, Ian C.; Benedek, Corinne L.; Williamson, Andrew G.; Tedesco, Marco

    2017-07-01

    Supraglacial lakes are an important component of the Greenland Ice Sheet’s mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days versus daily) but a higher spatial resolution (25-40 m versus 250-500 m), is then used together with a fully-automated lake drainage detection algorithm. Rapid ( 4 days) drainages are investigated for both small (< 0.125 km2, the minimum size detectable by MODIS) and large (≥ 0.125 km2) lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m), and slightly earlier (mean 4.5 days) in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1270 m mean elevation). Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1593 m and 1185 m, respectively). Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  6. Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy

    Science.gov (United States)

    Schule, Georg; Huie, Philip; Vankov, Alexander B.; Vitkin, Edward; Fang, Hui; Hanlon, Eugene B.; Perelman, Lev T.; Palanker, Daniel V.

    2004-07-01

    Introduction: Light Scattering Spectroscopy has been a recently developed as a non-invasive technique capable of sizing the cellular organelles. With this technique, we monitor the heat-induced sub-cellular structural transformations in a human RPE cell culture. Material and Methods: A single layer of human RPE cells (ATCC) was grown on a glass slide. Cells are illuminated with light from a fiber-coupled broadband tungsten lamp. The backscattered (180 degree) light spectra are measured with an optical multichannel analyzer (OMA). Spectra are measured during heating of the sample. Results: We reconstructed the size distribution of sub-micron organelles in the RPE cells and observed temperature-related changes in the scattering density of the organelles in the 200-300nm range (which might be peroxisomes, microsomes or lysosomes). The sizes of the organelles did not vary with temperature, so the change in scattering is most probably due to the change in the refractive indexes. As opposed to strong spectral variation with temperature, the total intensity of the backscattered light did not significantly change in the temperature range of 32-49 °C. Conclusion: We demonstrate that Light Scattering Spectroscopy is a powerful tool for monitoring the temperature-induced sub-cellular transformations. This technique providing an insight into the temperature-induced cellular processes and can play an important role in quantitative assessment of the laser-induced thermal effects during retinal laser treatments, such as Transpupillary Thermal Therapy (TTT), photocoagulation, and Photodynamic Therapy (PDT).

  7. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2016-06-01

    Full Text Available A novel micro-needle array electrode (MAE fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid (PLGA into a micro-needle array (MA by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG, electrocardiography (ECG, and electroencephalograph (EEG were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  8. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation

    Directory of Open Access Journals (Sweden)

    Rosa Scapaticci

    2017-01-01

    Full Text Available Microwave thermal ablation is a cancer treatment that exploits local heating caused by a microwave electromagnetic field to induce coagulative necrosis of tumor cells. Recently, such a technique has significantly progressed in the clinical practice. However, its effectiveness would dramatically improve if paired with a noninvasive system for the real-time monitoring of the evolving dimension and shape of the thermally ablated area. In this respect, microwave imaging can be a potential candidate to monitor the overall treatment evolution in a noninvasive way, as it takes direct advantage from the dependence of the electromagnetic properties of biological tissues from temperature. This paper explores such a possibility by presenting a proof of concept validation based on accurate simulated imaging experiments, run with respect to a scenario that mimics an ex vivo experimental setup. In particular, two model-based inversion algorithms are exploited to tackle the imaging task. These methods provide independent results in real-time and their integration improves the quality of the overall tracking of the variations occurring in the target and surrounding regions.

  9. Monitoring of Thermal Protection Systems and MMOD using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2014-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.

  10. Building America Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  11. Aquarius Radiometer and Scatterometer Weekly-Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    Science.gov (United States)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the AquariusSAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freezethaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  12. Aquarius Radiometer and Scatterometer Weekly Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    Science.gov (United States)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the Aquarius/SAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freeze/thaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  13. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2016-07-01

    Full Text Available During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C, sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings, and frequency response (hundreds of kHz, are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  14. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview.

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-07-22

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C(-1) for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  15. Wireless Subsurface Sensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    Science.gov (United States)

    Milos, Frank S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and industry partners to develop "wireless" devices that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. These devices are sensors integrated with radio-frequency identification (RFID) microchips to enable non-contact communication of sensor data to an external reader that may be a hand-held scanner or a large portal. Both passive and active prototype devices have been developed. The passive device uses a thermal fuse to indicate the occurrence of excessive temperature. This device has a diameter under 0.13 cm. (suitable for placement in gaps between ceramic TPS tiles on an RLV) and can withstand 370 C for 15 minutes. The active device contains a small battery to provide power to a thermocouple for recording a temperature history during flight. The bulk of the device must be placed beneath the TPS for protection from high temperature, but the thermocouple can be placed in a hot location such as near the external surface.

  16. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  17. Optimization and Characterization of the Friction Stir Welded Sheets of AA 5754-H111: Monitoring of the Quality of Joints with Thermographic Techniques.

    Science.gov (United States)

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Palumbo, Davide; De Finis, Rosa; Galietti, Umberto

    2017-10-11

    Friction Stir Welding (FSW) is a solid-state welding process, based on frictional and stirring phenomena, that offers many advantages with respect to the traditional welding methods. However, several parameters can affect the quality of the produced joints. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on 5754-H111 aluminum plates. In particular, the thermal behavior of the material during the process has been investigated and two thermal indexes, the maximum temperature and the heating rate of the material, correlated to the frictional power input, were investigated for different process parameters (the travel and rotation tool speeds) configurations. Moreover, other techniques (micrographs, macrographs and destructive tensile tests) were carried out for supporting in a quantitative way the analysis of the quality of welded joints. The potential of thermographic technique has been demonstrated both for monitoring the FSW process and for predicting the quality of joints in terms of tensile strength.

  18. Development of exploration and monitoring techniques for the sustainable thermal use of the shallow subsurface

    Science.gov (United States)

    Vienken, Thomas; Dietrich, Peter

    2013-04-01

    The increasing use of shallow geothermal energy, especially the rising numbers of geothermal ground source heat pumps that are installed to nowadays heat entire residential neighborhoods and the increasing use of ground water to cool residential buildings, as well as industrial facilities have led to an increasing need to assess possible effects of the use of shallow geothermal energy and to model subsurface heat transport. Potential effects include depletion of groundwater quality with resulting reduction of ground water ecosystem services. Heat and mass transport by groundwater dispersion and convection may lead to a carryover of effects into groundwater dependent ecosystems. These effects are often not directly accessible. Therefore, conflicting interests between geothermal energy use and groundwater protection as well as conflicting use between geothermal energy users are expected to arise especially in densely populated urban areas where the highest demand for the use of shallow geothermal energy is located but exploitation of shallow geothermal energy is limited and, at the same time, groundwater vulnerability is at its highest. Until now, only limited information about the potential effects of the intensive use of ground source heat pumps are available. Analyses conducted in the course of regulatory permission procedures consider only single applications and often rely on models that are solely parameterized based on standard literature values (e.g. thermal conductivity, porosity, and hydraulic conductivity). In addition, heat transport by groundwater dynamics is not considered. Due to the costs of conventionally applied geothermal in-situ tests (e.g. Geothermal Response Test - GRT) these can often only be applied at larger project scale. In this regard, our study will showcase the necessity for the development of novel geothermal monitoring and exploration concepts and tools based on a case story of a thermal intensively used residential neighborhood. We

  19. The RISCO RapidIce Viewer: An application for monitoring the polar ice sheets with multi-resolution, multi-temporal, multi-sensor satellite imagery

    Science.gov (United States)

    Herried, B.; Porter, C. C.; Morin, P. J.; Howat, I. M.

    2013-12-01

    The Rapid Ice Sheet Change Observatory (RISCO) is a NASA-funded, inter-organizational collaboration created to provide a systematic framework for gathering, processing, analyzing, and distributing consistent satellite imagery of polar ice sheet change for Antarctica and Greenland. RISCO gathers observations over areas of rapid change and makes them easily accessible to investigators, media, and the general public. As opposed to existing data centers, which are structured to archive and distribute diverse types of raw data to end users with the specialized software and skills to analyze them, RISCO distributes processed georeferenced raster image data products in JPEG and GeoTIFF formats, making them immediately viewable in a browser-based application. Currently, the archive includes 16 sensors including: MODIS Terra, MODIS Aqua, MODIS Terra Bands 3-6-7, Landsat MSS, Landsat TM, Landsat ETM+, Landsat 8 OLI, EO-1, SPOT, ASTER VNIR, Operation IceBridge ATM and LVIS, and commercial satellites such as WorldView-1, WorldView-2, QuickBird-2, GeoEye-1 and IKONOS. The RISCO RapidIce Viewer is a lightweight JavaScript application that provides an interface to viewing and downloading the satellite imagery from predefined areas-of-interest (or 'subsets'), which are normally between 10,000 and 20,000 sq km. Users select a subset (from a map or drop-down) and the archive of individual granules is loaded in a thumbnail grid, sorted chronologically (newest first). For each thumbnail, users can choose to view a larger preview JPG, download a GeoTIFF, or be redirected back to the original data center to see the original imagery or view metadata. There are several options for filtering displayed including by sensor, by date range, by month, or by cloud cover. Last, users can select multiple images to play back as an animation. The RapidIce Viewer is an easy-to-use, software independent application for researchers to quickly monitor daily changes in ice sheets or download historical

  20. The use of thermal desorption in monitoring for the chemical weapons demilitarization program.

    Science.gov (United States)

    Harper, Martin

    2002-10-01

    Under international treaty, the United States and Russia are disposing of their aging stockpile of chemical weapons. Incineration and chemical neutralization are options for sites in the United States, although Russia prefers the latter. The storage and disposal of bulk and chemical agents and weapons involve unique hazards of handling extremely toxic materials. There are three major areas of concern--the storage stockpile, the disposal area, and the discovery and destruction of "found" material not considered part of the stockpile. Methods have been developed to detect the presence of chemical agents in the air, and these are used to help assure worker protection and the safety of the local population. Exposure limits for all chemical agents are low, sometimes nanograms per cubic meter for worker control limits and picograms per cubic meter for general population limits. There are three types of monitoring used in the USA: alarm, confirmation, and historical. Alarm monitors are required to give relatively immediate real-time responses to agent leaks. They are simple to operate and rugged, and provide an alarm in near real-time (generally a few minutes). Alarm monitors for the demilitarization program are based on sorbent pre-concentration followed by thermal desorption and simple gas chromatography. Alarms may need to be confirmed by another method, such as sample tubes collocated with the alarm monitor and analyzed in a laboratory by more sophisticated chromatography. Sample tubes are also used for historical perimeter monitoring, with sample periods typically of 12 h. The most common detector is the flame photometric detector, in sulfur or phosphorous mode, although others, such as mass-selective detectors, also have been used. All agents have specific problems with collection, chromatography and detection. Monitoring is not made easier by interferences from pesticide spraying, busy roadways or military firing ranges. Exposure limits drive the requirements for

  1. Monitoring and assessment of the outdoor thermal comfort in Bucharest (Romania)

    Science.gov (United States)

    Cheval, Sorin; Ciobotaru, Ana-Maria; Andronache, Ion; Dumitrescu, Alexandru

    2017-04-01

    Bucharest is one of the European cities most at risk of being affected by meteorological hazards. Heat or cold waves, extreme temperature events, heavy rains or prolonged precipitation deficits are all-season phenomena, triggering damages, discomfort or even casualties. Temperature hazards may occur annually and challenge equally the public, local business and administration to find adequate solutions for securing the thermal comfort in the outdoor environment of the city. The accurate and fine resolution monitoring of the air temperature pledges for the comprehensive assessment of the thermal comfort in order to capture as much as possible the urban influence. This study uses sub-hourly temperature data (10-min temporal resolution) retrieved over the period November 2014 - November 2016 collected from nine sensors placed either in plain urban conditions or within the three meteorological stations of the national network which are currently monitoring the climate of Bucharest (Băneasa, Filaret, Afumați). The relative humidity was estimated based on the data available at the three stations placed in WMO standard conditions, and the 10-min values of 8 Thermal Comfort Indices were computed, namely: Heat Index, Humidex, Relative Strain Index, Scharlau, Summer Simmer Index, Physiological Equivalent Index, Temperature-Humidity Index, Thom Discomfort Index. The indices were analysed statistically, both individually and combined. Despite the short range of the available data, this study emphasizes clear spatial differentiations of the thermal comfort, in a very good agreement with the land cover and built zones of the city, while important variations were found in the temporal regime, due to large variations of the temperature values (e.g. >4 centigrade between consecutive hours or >15 centigrade between consecutive days). Ultimately, this study has revealed that the continuous monitoring of the urban climate, at fine temporal and spatial resolution, may deliver

  2. Thermal Analysis of the Al Window for a New CESR-c Luminosity Monitor

    CERN Document Server

    He, Yun; Palmer, Mark A; Rice, David

    2005-01-01

    A luminosity monitor using photons from radiative bhabha events at the CLEO interaction point (IP) has been installed in the Cornell Electron Storage Ring (CESR). A key vacuum and detector component is the photon window/converter whose uniformity and thickness are critical for determining the resolution of the total energy deposited in the segmented luminosity monitor. The window design must accommodate the operational requirements of the new monitor at CLEO-c beam energies of 1.5-2.5 GeV and also provide sufficient safety margin for operation at 5.3 GeV beam energies for Cornell High Energy Synchrotron Source (CHESS) running. During 5.3 GeV operation, intense stripes of synchrotron radiation from the interaction region superconducting quadrupole magnets as well as nearby bending magnets strike the window. During the course of window development, several materials and designs were evaluated. Thermal stresses were calculated using the finite element code ANSYS for various beam conditions to guide the cooling d...

  3. Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan

    National Research Council Canada - National Science Library

    Md Bodruddoza Mia; Yasuhiro Fujimitsu; Jun Nishijima

    2017-01-01

    .... For the first time, Landsat 8 TIRS thermal data were used in this study area to evaluate and monitor the recent thermal status of this volcano, situated in Southwest Japan, from 2013 to 2016 using four sets of images...

  4. Local monitoring of atomic steps on GaAs(001) surface under oxidation, wet removal of oxides and thermal smoothing

    Energy Technology Data Exchange (ETDEWEB)

    Akhundov, I.O.; Kazantsev, D.M. [Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Alperovich, V.L., E-mail: alper@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Sheglov, D.V. [Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Kozhukhov, A.S.; Latyshev, A.V. [Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2017-06-01

    Highlights: • Specific atomic steps are monitored on the structured GaAs surface by ex situ AFM. • Oxidation and wet oxide removal keep the position and shape of atomic steps intact. • Thermal surface smoothing is studied on the structured GaAs surface. • The deviation from equilibrium towards growth during smoothing is revealed. • The step length smoothing kinetics is described by Monte Carlo simulation. - Abstract: The GaAs(001) step-terraced surface relief is studied under oxidation, wet oxide removal and thermal smoothing by ex situ atomic force microscopy with local monitoring of specific atomic steps using lithographic marks for surface area localization. Oxidation in the air and wet oxide removal lead to the formation of monatomic dips on terraces, while atomic steps keep their position and shape. Monitoring step mean position under thermal smoothing allows us to determine the deviation from equilibrium. The experimental smoothing kinetics is well described by Monte Carlo simulation.

  5. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    Science.gov (United States)

    Saveliev, Alexei V [Chicago, IL; Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  6. Biological monitoring of aromatic diisocyanates in workers exposed to thermal degradation products of polyurethanes.

    Science.gov (United States)

    Rosenberg, Christina; Nikkilä, Kirsi; Henriks-Eckerman, Maj-Len; Peltonen, Kimmo; Engströrm, Kerstin

    2002-10-01

    Exposure to diisocyanates was assessed by biological monitoring among workers exposed to the thermal degradation products of polyurethanes (PURs) in five PUR-processing environments. The processes included grinding and welding in car repair shops, milling and turning of PUR-coated metal cylinders, injection moulding of thermoplastic PUR, welding and cutting of PUR-insulated district heating pipes during installation and joint welding, and heat-flexing of PUR floor covering. Isocyanate-derived amines in acid-hydrolysed urine samples were analysed as perfluoroacylated derivatives by gas chromatography mass spectrometry in negative chemical ionisation mode. The limits of quantification (LOQs) for the aromatic diamines 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA) and 4,4'-methylenedianiline (4,4'-MDA) were 0.25 nmol l(-1), 0.25 nmol l(-1) and 0.15 nmol l(-1), respectively. The LOQ for the aliphatic diamines hexamethylenediamine (HDA), isophoronediamine (IpDA) and 4,4'-diaminodicyclohexyl methane (4,4'-DDHM) was 5 nmol l(-1). TDA and MDA were detected in urine samples from workers in car repair shops and MDA in samples from workers welding district heating pipes. The 2,4-TDA isomer accounted for about 80% of the total TDA detected. No 2.6-TDA was found in the urine of non-exposed workers. The highest measured urinary TDA and MDA concentrations were 0.79 nmol mmol(-1) creatinine and 3.1 nmol mmol(-1) creatinine, respectively. The concentrations found among non-exposed workers were 0.08 nmol mmol(-1) creatinine for TDA and 0.05 nmol mmol(-1) creatinine for MDA (arithmetic means). Exposure to diisocyanates originating from the thermal degradation of PURs are often intermittent and of short duration. Nevertheless, exposure to aromatic diisocyanates can be identified by monitoring diisocyanate-derived amines in acid-hydrolysed urine samples.

  7. Multi-Sensing system for outdoor thermal monitoring: Application to large scale civil engineering components

    Science.gov (United States)

    Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic

    2014-05-01

    Aging of transport infrastructures combined with traffic and climatic solicitations contribute to the reduction of their performances. To address and quantify the resilience of civil engineering structure, investigations on robust, fast and efficient methods are required. Among research works carried out at IFSTTAR, methods for long term monitoring face an increasing demand. Such works take benefits of this last decade technological progresses in ICT domain. The present study follows the ISTIMES European project [1], which aimed at demonstrate the ability of different electromagnetic sensing techniques, processing methods and ICT architecture, to be used for long term monitoring of critical transport infrastructures. Thanks to this project a multi-sensing techniques system, able to date and synchronize measurements carried out by infrared thermography coupled with various measurements data (i.e. weather parameters), have been designed, developed and implemented on real site [2]. Among experiments carried out on real transport infrastructure, it has been shown, for the "Musmesci" bridge deck (Italy), that by using infrared thermal image sequence with weather measurements during sevral days it was possible to develop analysis methods able to produce qualitative and quantitative data [3]. In the present study, added functionalities were designed and added to the "IrLAW" system in order to reach full autonomy in term of power supply, very long term measurement capability (at least 1 year) and automated data base feeding. The surveyed civil engineering structures consist in two concrete beams of 16 m long and 21 T weight each. One of the two beams was damage by high energy mechanical impact at the IFSTTAR falling rocks test station facilities located in the French Alpes [4]. The system is composed of one IR uncooled microbolometric camera (FLIR SC325) with a 320X240 Focal Plane Array detector in band III, a weather station VAISALA WXT520, a GPS, a failover power supply

  8. Thermal profiling for parallel on-line monitoring of biomass growth in miniature stirred bioreactors.

    Science.gov (United States)

    Gill, N K; Appleton, M; Lye, G J

    2008-09-01

    Recently we have described the design and operation of a miniature bioreactor system in which 4-16 fermentations can be performed (Gill et al., Biochem Eng J 39:164-176, 2008). Here we report on the use of thermal profiling techniques for parallel on-line monitoring of cell growth in these bioreactors based on the natural heat generated by microbial culture. Results show that the integrated heat profile during E. coli TOP10 pQR239 fermentations followed the same pattern as off-line optical density (OD) measurements. The maximum specific growth rates calculated from off-line OD and on-line thermal profiling data were in good agreement, at 0.66+/-0.04 and 0.69+/-0.05 h(-1) respectively. The combination of a parallel miniature bioreactor system with a non-invasive on-line technique for estimation of culture kinetic parameters provides a valuable approach for the rapid optimisation of microbial fermentation processes.

  9. Speed of sound estimation for thermal monitoring using an active ultrasound element during liver ablation therapy (Conference Presentation)

    Science.gov (United States)

    Kim, Younsu; Audigier, Chloé; Dillow, Austin; Cheng, Alexis; Boctor, Emad M.

    2017-03-01

    Thermal monitoring for ablation therapy has high demands for preserving healthy tissues while removing malignant ones completely. Various methods have been investigated. However, exposure to radiation, cost-effectiveness, and inconvenience hinder the use of X-ray or MRI methods. Due to the non-invasiveness and real-time capabilities of ultrasound, it is widely used in intraoperative procedures. Ultrasound thermal monitoring methods have been developed for affordable monitoring in real-time. We propose a new method for thermal monitoring using an ultrasound element. By inserting a Lead-zirconate-titanate (PZT) element to generate the ultrasound signal in the liver tissues, the single travel time of flight is recorded from the PZT element to the ultrasound transducer. We detect the speed of sound change caused by the increase in temperature during ablation therapy. We performed an ex vivo experiment with liver tissues to verify the feasibility of our speed of sound estimation technique. The time of flight information is used in an optimization method to recover the speed of sound maps during the ablation, which are then converted into temperature maps. The result shows that the trend of temperature changes matches with the temperature measured at a single point. The estimation error can be decreased by using a proper curve linking the speed of sound to the temperature. The average error over time was less than 3 degrees Celsius for a bovine liver. The speed of sound estimation using a single PZT element can be used for thermal monitoring.

  10. Automated Ground-based Time-lapse Camera Monitoring of West Greenland ice sheet outlet Glaciers: Challenges and Solutions

    Science.gov (United States)

    Ahn, Y.; Box, J. E.; Balog, J.; Lewinter, A.

    2008-12-01

    Monitoring Greenland outlet glaciers using remotely sensed data has drawn a great attention in earth science communities for decades and time series analysis of sensory data has provided important variability information of glacier flow by detecting speed and thickness changes, tracking features and acquiring model input. Thanks to advancements of commercial digital camera technology and increased solid state storage, we activated automatic ground-based time-lapse camera stations with high spatial/temporal resolution in west Greenland outlet and collected one-hour interval data continuous for more than one year at some but not all sites. We believe that important information of ice dynamics are contained in these data and that terrestrial mono-/stereo-photogrammetry can provide theoretical/practical fundamentals in data processing along with digital image processing techniques. Time-lapse images over periods in west Greenland indicate various phenomenon. Problematic is rain, snow, fog, shadows, freezing of water on camera enclosure window, image over-exposure, camera motion, sensor platform drift, and fox chewing of instrument cables, and the pecking of plastic window by ravens. Other problems include: feature identification, camera orientation, image registration, feature matching in image pairs, and feature tracking. Another obstacle is that non-metric digital camera contains large distortion to be compensated for precise photogrammetric use. Further, a massive number of images need to be processed in a way that is sufficiently computationally efficient. We meet these challenges by 1) identifying problems in possible photogrammetric processes, 2) categorizing them based on feasibility, and 3) clarifying limitation and alternatives, while emphasizing displacement computation and analyzing regional/temporal variability. We experiment with mono and stereo photogrammetric techniques in the aide of automatic correlation matching for efficiently handling the enormous

  11. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring.

    Science.gov (United States)

    Alarifi, Ibrahim M; Alharbi, Abdulaziz; Khan, Waseem S; Swindle, Andrew; Asmatulu, Ramazan

    2015-10-14

    This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN) fibers as a sensor material in a structural health monitoring (SHM) system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM) applications in different industries.

  12. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  13. Process capability index Cpk for monitoring the thermal performance in the distribution of refrigerated products

    Directory of Open Access Journals (Sweden)

    Antonio Galvão Naclério Novaes

    2016-03-01

    Full Text Available Abstract The temperature of refrigerated products along the cold chain must be kept within pre-defined limits to ensure adequate safety levels and high product quality. Because temperature largely influences microbial activities, the continuous monitoring of the time-temperature history over the distribution process usually allows for the adequate control of the product quality along both short- and medium-distance distribution routes. Time-Temperature Indicators (TTI are composed of temperature measurements taken at various time intervals and are used to feed analytic models that monitor the impacts of temperature on product quality. Process Capability Indices (PCI, however, are calculated using TTI series to evaluate whether the thermal characteristics of the process are within the specified range. In this application, a refrigerated food delivery route is investigated using a simulated annealing algorithm that considers alternative delivery schemes. The objective of this investigation is to minimize the distance traveled while maintaining the vehicle temperature within the prescribed capability level.

  14. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.

    Science.gov (United States)

    Nagarajan, Vivek Krishna; Yu, Bing

    2016-09-01

    Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, and , for native porcine tissues (n = 66) at room temperature, were 5.4

  15. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  16. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Zuo

    2014-01-01

    Full Text Available Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting vector machine (SVM technology is applied to mine the data. The thermal performances of iron pipes and high-density polyethylene (HDPE pipes are compared. The data mining result shows that iron pipe has a better heat removal performance when flow rate is lower than 50 L/min. It has revealed that a turning flow rate exists for iron pipe which is 80 L/min. The prediction and classification results obtained from the data mining model agree well with the monitored data, which illustrates the validness of the approach.

  17. Planning and Computerised Monitoring of an Experiment of Thermal Analysis of the Alloys in the Al-Cu-Si System

    OpenAIRE

    Florentina Cziple

    2007-01-01

    The paper presents an installation conceived for the automatic registration of the temperature in the thermal analysis, at the industrial and laboratory level, with application to the system of non-ferrous alloys Al-Cu-Si. The experiment performed on the above installation is compared to processes monitored through simulation with specialised software.

  18. Optimization and Characterization of the Friction Stir Welded Sheets of AA 5754-H111: Monitoring of the Quality of Joints with Thermographic Techniques

    Directory of Open Access Journals (Sweden)

    Luigi Alberto Ciro De Filippis

    2017-10-01

    Full Text Available Friction Stir Welding (FSW is a solid-state welding process, based on frictional and stirring phenomena, that offers many advantages with respect to the traditional welding methods. However, several parameters can affect the quality of the produced joints. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on 5754-H111 aluminum plates. In particular, the thermal behavior of the material during the process has been investigated and two thermal indexes, the maximum temperature and the heating rate of the material, correlated to the frictional power input, were investigated for different process parameters (the travel and rotation tool speeds configurations. Moreover, other techniques (micrographs, macrographs and destructive tensile tests were carried out for supporting in a quantitative way the analysis of the quality of welded joints. The potential of thermographic technique has been demonstrated both for monitoring the FSW process and for predicting the quality of joints in terms of tensile strength.

  19. Real-time monitoring of lubrication properties of magnesium stearate using NIR spectrometer and thermal effusivity sensor.

    Science.gov (United States)

    Nakagawa, Hiroshi; Kano, Manabu; Hasebe, Shinji; Suzuki, Tatsuya; Wakiyama, Naoki

    2013-01-30

    Real-time monitoring techniques based on an NIR spectrometer and a thermal effusivity sensor for lubrication properties of magnesium stearate (Mg-St) are proposed. The lubrication properties of Mg-St are defined by its concentration distribution and flatting state in a mixture. The concentration distribution of Mg-St significantly affects the absorbance in the NIR wavelength region between 1128 nm and 1240 nm. Thus, the absorbance area in this region after baseline correction was selected as a monitoring index (MI). In laboratory-scale experiments, the difference of Mg-St concentration distribution could be detected by the proposed MI with high sensitivity. In addition, experimental results using spherical mannitol granules confirmed that the changes of the flatting state of Mg-St could also be detected by the proposed MI. Similar experiments with spherical mannitol granules and the thermal effusivity sensor confirmed that effusivity could also be used to detect the changes of the flatting state of Mg-St. The applicability of these monitoring techniques was verified using a 2000 L commercial-scale blender equipped with the NIR spectrometer and the thermal effusivity sensor. The results showed that both lubrication properties could be monitored by the proposed MI, and that the flatting state of Mg-St could be monitored more sensitively by using the effusivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Biomechanical assessment and monitoring of thermal ablation using Harmonic Motion Imaging for Focused Ultrasound (HMIFU)

    Science.gov (United States)

    Hou, Gary Yi

    Cancer remains, one of the major public health problems in the United States as well as many other countries worldwide. According to According to the World Health Organization, cancer is currently the leading cause of death worldwide, accounting for 7.6 million deaths annually, and 25% of the annual death was due to Cancer during the year of 2011. In the long history of the cancer treatment field, many treatment options have been established up to date. Traditional procedures include surgical procedures as well as systemic therapies such as biologic therapy, chemotherapy, hormone therapy, and radiation therapy. Nevertheless, side-effects are often associated with such procedures due to the systemic delivery across the entire body. Recently technologies have been focused on localized therapy under minimally or noninvasive procedure with imaging-guidance, such as cryoablation, laser ablation, radio-frequency (RF) ablation, and High Intensity F-ocused Ultrasound (HIFU). HIFU is a non-invasive procedure aims to coagulate tissue thermally at a localized focal zone created with noninvasively emitting a set of focused ultrasound beams while the surrounding healthy tissues remain relatively untreated. Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a dynamic, radiation-force-based imaging technique, which utilizes a single HIFU transducer by emitting an Amplitude-modulated (AM) beam to both thermally ablate the tumor while inducing a stable oscillatory tissue displacement at its focal zone. The oscillatory response is then estimated by a cross-correlation based motion tracking technique on the signal collected by a confocally-aligned diagnostic transducer. HMIFU addresses the most critical aspect and one of the major unmet needs of HIFU treatment, which is the ability to perform real-time monitoring and mapping of tissue property change during the HIFU treatment. In this dissertation, both the assessment and monitoring aspects of HMIFU have been investigated

  1. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Sandison, G.A.; Loye, M.P.; Rewcastle, J.C. [Departments of Oncology and Medical Physics, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Hahn, L.J. [Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Saliken, J.C. [Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); McKinnon, J.G. [Department of Surgery, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Donnelly, B.J. [Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada)

    1998-11-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue. (author)

  2. Geochemical and geophysical monitoring of thermal waters in Sloveniain relation to seismic activity

    Directory of Open Access Journals (Sweden)

    T. Dolenec

    2005-06-01

    Full Text Available Pre-seismic related strains in the Earth s crust are the main cause of the observed geophysical and geochemical anomalies in ground waters preceding an earthquake. Posoc?je Region, situated along the Soc?a River, is one of the most seismically active areas of Slovenia. Our measuring stations close to the Posoc?je Region were installed in the thermal springs at Bled in 1998 and at Zatolmin in 1999. Since the beginning of our survey, radon concentration, electrical conductivity and water temperature have been measured continuously once every hour. In May 2002, the number of geochemical parameters monitored was extended to ionic concentration, pH and Eh, which are analysed once a month. Before seeking a correlation between geochemical and geophysical anomalies with seismic events, the influence of meteorological (atmospheric precipitation, barometric pressure and hydrological (water table of the Tolminka River factors on observed anomalies were studied. Results at Zatolmin showed that some radon variation during the period from June to October 2002 may be related to seismic activity and not only to meteorological effects.

  3. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2009-08-01

    Full Text Available Atmospheric remote sounding from satellites is an essential component of the observational strategy deployed to monitor atmospheric pollution and changing composition. The IASI nadir looking thermal infrared sounder onboard MetOp will provide 15 years of global scale observations for a series of key atmospheric species, with unprecedented spatial sampling and coverage. This paper gives an overview of the instrument's capability for measuring atmospheric composition in the perspective of chemistry and air quality. The assessment is made in terms of species, accuracy and vertical information. Global distributions are presented for CO, CH4, O3 (total and tropospheric, HNO3, NH3, and volcanic SO2. Local distributions of organic species measured during fire events, such as C2H4, CH3OH, HCOOH, and PAN are also shown. For each species or process, the link is made to specialized papers in this issue.

  4. Digital thermal monitoring (DTM) of vascular reactivity closely correlates with Doppler flow velocity.

    Science.gov (United States)

    McQuilkin, Gary L; Panthagani, David; Metcalfe, Ralph W; Hassan, Haider; Yen, Albert A; Naghavi, Morteza; Hartley, Craig J

    2009-01-01

    The noninvasive measurement of peripheral vascular reactivity, as an indicator of vascular function, provides a valuable tool for cardiovascular screening of at-risk populations. Practical and economical considerations demand that such a test be low-cost and simple to use. To this end, it is advantageous to substitute digital thermal monitoring (DTM) for the more costly and complex Doppler system commonly used for this measurement. A signal processing model was developed to establish the basis for the relationship between finger temperature reactivity and blood flow reactivity following a transient brachial artery occlusion and reperfusion protocol (reactive hyperemia). Flow velocity signals were acquired from the radial artery of human subjects via an 8 MHz Doppler probe while simultaneous DTM signals were acquired from a distal fingertip via DTM sensors. The model transforms the DTM temperature signals into normalized flow signals via a deconvolution method which employs an exponential impulse function. The DTM normalized flow signals were compared to simultaneous, low-frequency, normalized flow signals computed from Doppler sensors. The normalized flow signals, derived from DTM and Doppler sensors, were found to yield similar reactivity responses during reperfusion. The reactivity areas derived from DTM and Doppler sensors, indicative of hyperemic volumes, were found to be within +/- 15%. In conclusion, this signal processing model provides a means to measure vascular reactivity using DTM sensors, that is equivalent to that obtained by more complex Doppler systems.

  5. RST analysis of thermal infrared satellite data for a continuous oil spill detection and monitoring

    Science.gov (United States)

    Grimaldi, C. S. L.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2012-04-01

    Oil spills is one of the main sea pollution sources causing remarkable ecological impact on maritime and coastal environments. Oil spills can derive both from natural phenomena (hurricanes, landslides, earthquakes) and "human errors" (tankers collisions, shipwrecks, platform accidents), even if the main contribution to this kind of technological hazard comes from operational discharge from tankers (i.e. oil dumped during cleaning operations) representing 45% of total hydrocarbons marine pollution. Mainly for this reason, the developing of systems able to provide a high frequent sampling and observation of sea surface is fundamental. Satellite remote sensing, thanks to global coverage and continuity of observations, might effectively contribute to mitigate oil spill environmental impact, provided that reliable and effective detection techniques are developed and that relevant information and products are timely delivered and made available. In particular, satellite remote sensing by passive optical sensors on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), can give a significant opportunity in this field. Unfortunately, up to now, optical satellite data found a poor application in oil spill alert system mainly for the lack of data analysis techniques suitable for an automatic oil spill detection. The few methods up to now proposed are only able to manually and interactively localize the presence of an already known oil spill, mainly for "a posteriori" mapping purpose, often requiring the intervention of an expert operator. In particular, techniques based on Thermal Infrared (TIR) records exploit oil and water different thermal inertia in order to map spill sea pollution. Oil thermal inertia, in fact, is lower than sea water one, so that oil polluted areas usually show Brightness Temperature (BT) higher than sea water in TIR images collected in daytime

  6. Game species monitoring using road-based distance sampling in association with thermal imagers: a covariate analysis

    Directory of Open Access Journals (Sweden)

    Morelle, K.

    2012-01-01

    Full Text Available Monitoring of game species populations is necessary to adequately assess culling by hunters in areas where natural large predators are absent. However, game managers have to control several species and they often lack of an efficient and convenient survey design method. Monitoring several species at that same time over large areas could thus be cost– and time–effective. We tested the influence of several factors during monitoring of three common game species, (wild boar, roe deer and red fox, using road–based distance sampling in association with thermal imagers. This pilot survey based on 20 night counts in five contrasting sites studied the effect of several covariates (species, thermal imaging, observer, group size, and habitat type on the detection probabilities (= dp. No differences were observed between thermal imagers (dpJENOPTIK: 0.186, dpFLIR: 0.193 and group sizes (dp1ind.: 0.243, dp2ind.: 0.259, dp> 2ind.: 0.223, but we found differences between observers (dpobs1: 0.207, dpobs2: 0.274, dpobs3: 0.159. Expected differences were also observed between species (dpwild boar: 0.22, dproe deer: 0.35, dpred fox: 0.32 and between habitat type (dpforest: 0.27, dpedge: 0.74, dpopen: 0.35. Our results show that the detectability of low cost thermal imaging equipment is similar to that of more expensive methods, highlighting new possibilities for the use of thermal imagery by game managers. Although adjustments should be made to the study design our findings suggest that large–scale multi–species monitoring could be an efficient method for common game species.

  7. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control.

    Science.gov (United States)

    Prakash, Punit; Diederich, Chris J

    2012-01-01

    To determine the impact of including dynamic changes in tissue physical properties during heating on feedback controlled thermal ablation with catheter-based ultrasound. Additionally, we compared the impact of several indicators of thermal damage on predicted extents of ablation zones for planning and monitoring ablations with this modality. A 3D model of ultrasound ablation with interstitial and transurethral applicators incorporating temperature-based feedback control was used to simulate thermal ablations in prostate and liver tissue. We investigated five coupled models of heat dependent changes in tissue acoustic attenuation/absorption and blood perfusion of varying degrees of complexity. Dimensions of the ablation zone were computed using temperature, thermal dose, and Arrhenius thermal damage indicators of coagulative necrosis. A comparison of the predictions by each of these models was illustrated on a patient-specific anatomy in the treatment planning setting. Models including dynamic changes in blood perfusion and acoustic attenuation as a function of thermal dose/damage predicted near-identical ablation zone volumes (maximum variation models using constant values for acoustic attenuation predicted ablation zone volumes up to 50% larger or 47% smaller in liver and prostate tissue, respectively. Thermal dose (t(43) ≥ 240 min) and thermal damage (Ω ≥ 4.6) thresholds for coagulative necrosis are in good agreement for all heating durations, temperature thresholds in the range of 54°C for short (thermal dose and Arrhenius damage measures of ablation zone dimensions are in good agreement, while appropriately selected temperature thresholds provide a computationally cheaper surrogate.

  8. ANALYSIS OF COMBINED UAV-BASED RGB AND THERMAL REMOTE SENSING DATA: A NEW APPROACH TO CROWD MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schulte

    2017-08-01

    Full Text Available Collecting vast amount of data does not solely help to fulfil information needs related to crowd monitoring, it is rather important to collect data that is suitable to meet specific information requirements. In order to address this issue, a prototype is developed to facilitate the combination of UAV-based RGB and thermal remote sensing datasets. In an experimental approach, image sensors were mounted on a remotely piloted aircraft and captured two video datasets over a crowd. A group of volunteers performed diverse movements that depict real world scenarios. The prototype is deriving the movement on the ground and is programmed in MATLAB. This novel detection approach using combined data is afterwards evaluated against detection algorithms that only use a single data source. Our tests show that the combination of RGB and thermal remote sensing data is beneficial for the field of crowd monitoring regarding the detection of crowd movement.

  9. Analysis of Combined Uav-Based RGB and Thermal Remote Sensing Data: a New Approach to Crowd Monitoring

    Science.gov (United States)

    Schulte, S.; Hillen, F.; Prinz, T.

    2017-08-01

    Collecting vast amount of data does not solely help to fulfil information needs related to crowd monitoring, it is rather important to collect data that is suitable to meet specific information requirements. In order to address this issue, a prototype is developed to facilitate the combination of UAV-based RGB and thermal remote sensing datasets. In an experimental approach, image sensors were mounted on a remotely piloted aircraft and captured two video datasets over a crowd. A group of volunteers performed diverse movements that depict real world scenarios. The prototype is deriving the movement on the ground and is programmed in MATLAB. This novel detection approach using combined data is afterwards evaluated against detection algorithms that only use a single data source. Our tests show that the combination of RGB and thermal remote sensing data is beneficial for the field of crowd monitoring regarding the detection of crowd movement.

  10. Nine year active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    Science.gov (United States)

    Michel, Roberto; Andrade, André; Simas, Felipe; Silva, Tássio; Loureiro, Diego; Schaefer, Carlos

    2017-04-01

    Most global circulation models predict enhanced rates of climate change, particularly temperature increase, at higher latitudes witch are currently faced with rapid rates of regional climate change (Convey 2006, Vaughan et al. 2003, Quayle et al. 2002), Antarctic ecosystems are expected to show particular sensitivity and rapid responses (Freckman and Virginia 1997, Quayle et al. 2002, 2003). The active layer and permafrost are important components of the cryosphere due to their role in energy flux regulation and sensitivity to climate change (Kane et al., 2001; Smith and Brown, 2009). Compared with other regions of the globe, our understanding of Antarctic permafrost is poor, especially in relation to its thermal state and evolution, (Bockheim, 1995, Bockheim et al., 2008). The active layer monitoring site was installed in the summer of 2008, and consists of thermistors (accuracy ± 0.2 °C) arranged in a vertical array (Turbic Eutric Cryosol 60 m asl, 10.5 cm, 32.5 cm, 67.5 cm and 83.5 cm). All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from March 1st 2008 until November 30th 2012. We calculated the thawing days (TD), freezing days (FD); thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). The active lawyer thickness was calculated as the 0 °C depth by extrapolating the thermal gradient from the two deepest temperature measurements (Guglielmin, 2006). The temperature at 10.5 cm reaches a maximum daily average (5.6 °C) in late January 2015, reaching a minimum (-9.6 °C) in in early August 2011, at 83.5 cm maximum daily average (0.6 °C) was reached in mid March 2009 and minimum (-5.5 °C) also in early August 2011. The years of 2008, 2009 and 2011 recorded thaw days at the bottom of the profile (62 and 49 in 2009 and 2011), and logged the highest soil moisture contents of the time series (62%, 59% and 63%). Seasonal variability of the active layer shows

  11. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    Science.gov (United States)

    Michel, Roberto; Schaefer, Carlos; Simas, Felipe; Pregesbauer, Michael; Bockheim, James

    2013-04-01

    International attention on the climate change phenomena has grown in the last decade, intense modelling of climate scenarios were carried out by scientific investigations searching the sources and trends of these changes. The cryosphere and its energy flux became the focus of many investigations, being recognised as a key element for the understanding of future trends. The active layer and permafrost are key components of the terrestrial cryosphere due to their role in energy flux regulation and high sensitivity to climate change (Kane et al., 2001; Smith and Brown, 2009). Compared with other regions of the globe, our understanding of Antarctic permafrost is poor, especially in relation to its thermal state and evolution, its physical properties, links to pedogenesis, hydrology, geomorphic dynamics and response to global change (Bockheim, 1995, Bockheim et al., 2008). The active layer monitoring site was installed in the summer of 2008, and consist of thermistors (accuracy ± 0.2 °C) arranged in a vertical array (Turbic Eutric Cryosol 600 m asl, 10.5 cm, 32.5 cm, 67.5 cm and 83.5 cm). King George Island experiences a cold moist maritime climate characterized by mean annual air temperatures of -2°C and mean summer air temperatures above 0°C for up to four months (Rakusa-Suszczewski et al., 1993, Wen et al., 1994). Ferron et al., (2004) found great variability when analysing data from 1947 to1995 and identified cycles of 5.3 years of colder conditions followed by 9.6 years of warmer conditions. All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from March 1st 2008 until November 30th 2012. Meteorological data for Fildes was obtained from the near by stations. We calculated the thawing days, freezing days; thawing degree days and freezing degree days; all according to Guglielmin et al. (2008). The active lawyer thickness was calculated as the 0 °C depth by extrapolating the thermal gradient from the two

  12. Application of MCR-ALS to reveal intermediate conformations in the thermally induced α-β transition of poly-L-lysine monitored by FT-IR spectroscopy

    Science.gov (United States)

    Alcaráz, Mirta R.; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard

    2017-10-01

    Temperature-induced conformational transitions of poly-L-lysine were monitored with Fourier-transform infrared (FT-IR) spectroscopy between 10 °C and 70 °C. Chemometric analysis of dynamic IR spectra was performed by multivariate curve analysis-alternating least squares (MCR-ALS) of the amide I‧ and amide II‧ spectral region. With this approach, the pure spectral and concentration profiles of the conformational transition were obtained. Beside the initial α-helical, the intermediate random coil/extended helices and the final β-sheet structure, an additional intermediate PLL conformation was identified and attributed to a transient β-sheet structure.

  13. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    Science.gov (United States)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  14. Monitoring thermal processes in low-permeability fractured media using fibre-optics distributed temperature sensing (FO-DTS)

    Science.gov (United States)

    Brixel, Bernard; Klepikova, Maria; Jalali, Mohammadreza; Loew, Simon; Amann, Florian

    2017-04-01

    Fibre-optics distributed temperature sensing (FO-DTS) systems constitute arguably one of the main significant advances in the development of modern monitoring techniques in field hydrogeology, both for shallow (e.g. quantification of surface water-groundwater interactions) and deeper applications (borehole temperature monitoring). Deployment of FO-DTS monitoring systems in boreholes has notably allowed further promoting the use of temperature as a tracer to improve the characterization of heterogeneous media, with a strong focus on permeable environments such as shallow unconsolidated aquifers and/or highly-fractured rocks, generally found close to ground surface. However, applying this technology to low-permeability media, as in the case of intact rock mass intersected by isolated, discrete fractures still remains a challenge, perhaps explaining the limited number of field results reported in the scientific literature to date. Yet, understanding the transport, storage and exchange of heat in deep, low-permeability crystalline rocks is critical to many scientific and engineering research topics and applications, including for example deep geothermal energy (DGE). In the present contribution, we describe the use and application of FO-DTS monitoring to a broad range of processes, varying from the propagation and persistence of thermal anomalies (both natural and induced) to the monitoring of the curing of epoxy resin and cement grouts along the annular space of boreholes designed for monitoring discrete, packed-off zones. All data provided herein has been collected as part of a multi-disciplinary research program on hydraulic stimulation and deep geothermal energy carried out at the Grimsel Test Site (GTS), an underground rock laboratory located in the Aar massif, in the Swiss Alps. Through these examples, we illustrate the importance of understanding the spatial and temporal variations of local thermal regimes when planning to monitoring boreholes temperatures

  15. Chlamydia - CDC Fact Sheet

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  16. Temperature monitoring during thermal treatments using magnetic resonance imaging incorporating novel multi spatial and temporal resolution strategies

    Science.gov (United States)

    Aljallad, Mohammed H.

    Thermal therapy is widely used for the treatment of tumors such as uterine fibroid tumors. When heating the fibroid volume, continuous and fast temperature monitoring is required to limit the damage to healthy tissue. The phase component of the Magnetic Resonance (MR) image changes with heating; this phase change can be converted to temperature using a scaling parameter. One plane alone can be imaged in the current treatments while monitoring the temperature during heating because of time limitations. This plane is usually prescribed at the focus of the transducer (focal plane) to cover the maximum heat deposition. However, the heat distribution is not limited to the focal plane only, which requires temperature monitoring in more than one plane. MUltiple Resolution along Phase-encode and Slice-select-dimensions (MURPS) was a method previously introduced [7] to produce a variable slice thickness in the z-direction and variable phase encodings in the y-direction. MURPS is implemented to address the need for very fast imaging of multiple planes. Because only a small portion of the field of view (FOV) has real clinical value in the thermotherapy of a large volume, the FOV can be reduced to image that portion and speed up the scanning. The MURPS method, combined with half reduced field of view (rFOV), can image three planes in the same time needed to image a single full field of view plane without MURPS. The proposed technique of MURPS with rFOV should have a significant advantage for monitoring thermal therapies and should provide more robust temperature control for current thermal therapy treatment procedures.

  17. Apparatus for thermoforming thermoplastic sheet materials

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, L.W.; Kovacs, F.; Vlahek, J.

    1985-02-19

    The present invention relates to an improved plug or tool for use in the production of shaped articles from thermoplastic sheet materials. An important feature of the present invention is that the tool or plug comprises a body portion which incorporates one or more inserts which possess a thermal conductivity different from the thermal conductivity of the body portion.

  18. Monitoring chemical degradation of thermally cycled glass-fibre composites using hyperspectral imaging

    Science.gov (United States)

    Papadakis, V. M.; Müller, B.; Hagenbeek, M.; Sinke, J.; Groves, R. M.

    2016-04-01

    Nowadays, the application of glass-fibre composites in light-weight structures is growing. Although mechanical characterizations of those structures are commonly performed in testing, chemical changes of materials under stresses have not yet been well documented. In the present work coupon tests and Hyperspectral Imaging (HSI) have been used to categorise possible chemical changes of glass-fibre reinforced polymers (GFRP) which are currently used in the aircraft industry. HSI is a hybrid technique that combines spectroscopy with imaging. It is able to detect chemical degradation of surfaces and has already been successfully applied in a wide range of fields including astronomy, remote sensing, cultural heritage and medical sciences. GFRP specimens were exposed to two different thermal loading conditions. One thermal loading condition was a continuous thermal exposure at 120°C for 24h, 48 h and 96h, i.e. ageing at a constant temperature. The other thermal loading condition was thermal cycling with three different numbers of cycles (4000, 8000, 12000) and two temperature ranges (0°C to 120°C and -25°C to 95°C). The effects of both conditions were measured using both HSI and interlaminar shear (ILSS) tests. No significant changes of the physical properties of the thermally cycled GFRP specimens were detected using interlaminar shear strength tests and optical microscopy. However, when using HIS, differences of the surface conditions were detected. The results showed that the different thermal loading conditions could be successfully clustered in different colours, using the HSI linear unmixing technique. Each different thermal loading condition showed a different chemical degradation level on its surface which was indicated using different colours.

  19. Magmatic accretion and thermal convection at the sheeted dike complex-gabbro boundary in superfast spreading crust, ODP Hole 1256D

    Science.gov (United States)

    Trela, Jarek; Ferré, Eric C.; Launeau, Patrick; Bartz, Daniel M.; Morris, Antony

    2015-10-01

    The magmatic processes responsible for accretion of new oceanic plutonic crust at fast-spreading centers remain unclear. Expedition 312, at Ocean Drilling Program Hole 1256D, on the eastern flank of the East Pacific Rise, barely drilled through the uppermost gabbros but offers unparalleled opportunities to constrain deep magmatic processes and the mode of construction of the gabbroic layer. Gabbro 1 and gabbro 2, respectively 52 and 24 m-thick, were intruded in an altered and baked sheeted dike complex. Both gabbros lack a macroscopic fabric and were until now considered isotropic. Here, we use digital 3-D fabric analysis of plagioclase phenocrysts in 33 non-azimuthally oriented samples. In contrast with previous observations, the two gabbros display a distinct and consistent shape-preferred orientation. Both gabbros exhibit magmatic, equilibrated microstructures, with minor submagmatic microstructures. The calculated Rayleigh numbers range between 1015 and 1018, proving that the gabbroic magma was initially undergoing turbulent magmatic flow. Magmatic foliations dip moderately, with a mean of 48° in gabbro 1 and 61° in gabbro 2. Magmatic lineations plunge in gabbro 1 between 1 and 44° (mean 28°), while in Gabbro 2, plunges range from 6 to 69° (mean 41°). These inclined magmatic structures, combined with the inclined magmatic contacts between the gabbros and their host-rock, show that these two gabbro bodies, instead of being horizontal sills, more likely are inclined intrusions that cut obliquely through the sheeted dike complex. Seismic reflection data around Hole 1256D shows inclined reflectors similar to those produced by gabbroic saucer-shaped intrusions in passive margins. On the basis of the inclined fabrics, inclined contacts and the regional seismic data, we propose that the uppermost gabbroic intrusions at fast-spreading centers form with a saucer-shape. This new shape of intrusion, never reported before in the oceanic environment, may constitute a

  20. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nakamiya

    2013-06-01

    Full Text Available We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method” using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”. Our new method detects vehicles based on tires’ thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8% out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  1. Robust vehicle detection under various environmental conditions using an infrared thermal camera and its application to road traffic flow monitoring.

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2013-06-17

    We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as "our previous method") using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as "our new method"). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  2. The Holocene thermal maximum in the Nordic Seas: the impact of Greenland Ice Sheet melt and other forcings in a coupled atmosphere-sea ice-ocean model

    NARCIS (Netherlands)

    Blaschek, M.; Renssen, H.

    2012-01-01

    The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene Thermal Maximum (HTM), is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveal a

  3. Development of monitoring and modelling tools as basis for sustainable thermal management concepts of urban groundwater bodies

    Science.gov (United States)

    Mueller, Matthias H.; Epting, Jannis; Köhler, Mandy; Händel, Falk; Huggenberger, Peter

    2015-04-01

    Increasing groundwater temperatures observed in many urban areas strongly interfere with the demand of thermal groundwater use. The groundwater temperatures in these urban areas are affected by numerous interacting factors: open and closed-loop geothermal systems for heating and cooling, sealed surfaces, constructions in the subsurface (infrastructure and buildings), artificial groundwater recharge, and interaction with rivers. On the one hand, these increasing groundwater temperatures will negatively affect the potential for its use in the future e.g. for cooling purposes. On the other hand, elevated subsurface temperatures can be considered as an energy source for shallow geothermal heating systems. Integrated thermal management concepts are therefore needed to coordinate the thermal use of groundwater in urban areas. These concepts should be based on knowledge of the driving processes which influence the thermal regime of the aquifer. We are currently investigating the processes influencing the groundwater temperature throughout the urban area of Basel City, Switzerland. This involves a three-dimensional numerical groundwater heat-transport model including geothermal use and interactions with the unsaturated zone such as subsurface constructions reaching into the aquifer. The cantonal groundwater monitoring system is an important part of the data base in our model, which will help to develop sustainable management strategies. However, single temperature measurements in conventional groundwater wells can be biased by vertical thermal convection. Therefore, multilevel observation wells are used in the urban areas of the city to monitor subsurface temperatures reaching from the unsaturated zone to the base of the aquifer. These multilevel wells are distributed in a pilot area in order to monitor the subsurface temperatures in the vicinity of deep buildings and to quantify the influence of the geothermal use of groundwater. Based on time series of the conventional

  4. Effect of Cattaneo-Christov heat flux on buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts

    Science.gov (United States)

    Dogonchi, A. S.; Ganji, D. D.

    2017-12-01

    In this study, buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts, are studied. Cattaneo-Christov heat flux model instead of conventional Fourier's law of heat conduction is applied to investigate the heat transfer characteristics. A similarity transformation is used to transmute the governing momentum and energy equations into non-linear ordinary differential equations with the appropriate boundary conditions. The obtained non-linear ordinary differential equations are solved numerically. The impacts of diverse active parameters such as the magnetic parameter, the radiation parameter, the buoyancy parameter, the heat source parameter, the volume fraction of nanofluid and the thermal relaxation parameter are examined on the velocity and temperature profiles. In addition, the value of the Nusselt number is calculated and presented through figures. The results demonstrate that the temperature profile is lower in the case of Cattaneo-Christov heat flux model as compared to Fourier's law. Moreover, the Nusselt number raises with the raising volume fraction of nanofluid and it abates with the ascending the radiation parameter.

  5. Dynamic Angular Control Of Thermal Therapy With Stationary Multi-Sectored Tubular Ultrasound Applicators Under MR Temperature Monitoring

    Science.gov (United States)

    Kinsey, Adam M.; Diederich, Chris J.; Nau, William H.; Ross, Anthony B.; Butts Pauly, Kim; Rieke, Viola; Sommer, Graham

    2006-05-01

    Multi-sectored ultrasound heating applicators with dynamic angular and longitudinal control of heating profiles are being investigated for the thermal treatment of tumors in sites such as prostate, uterus, and brain. Multi-sectored tubular ultrasound transducers with independent sector power control were incorporated into interstitial and transurethral applicators and provided dynamic angular control of a heating pattern without requiring device manipulation during treatment. Acoustic beam measurements of each applicator type demonstrated a 35-40° acoustic dead zone between each independent sector, with negligible mechanical or electrical coupling. Despite the acoustic dead zone between sectors, simulations and experiments under MR temperature (MRT) monitoring showed that the variance from the maximum lesion radius (scalloping) with all elements activated on a transducer was minimal and did not affect conformal heating of a target area. A biothermal model with a multi-point controller was used to adjust the applied power and treatment time of individual transducer segments as the tissue temperature changed in simulations of thermal lesions with both interstitial and transurethral applicators. Transurethral ultrasound applicators for benign prostatic hyperplasia (BPH) treatment with either three or four sectors conformed a thermal dose to a simulated target area in the angular and radial dimensions. The simulated treatment was controlled to a maximum temperature of 85°C, and had a maximum duration of 5 min when power was turned off as the 52°C temperature contour reach a predetermined control point for each sector in the tissue. Experiments conducted with multi-sectored applicators under MRT monitoring showed thermal ablation and hyperthermia treatments had little or no border `scalloping', conformed to a pretreatment target area, and correlated very well with the simulated thermal lesions. The radial penetration of the heat treatments in tissue with interstitial

  6. Fiber-optic combined FPI/FBG sensors for monitoring of radiofrequency thermal ablation of liver tumors: ex vivo experiments.

    Science.gov (United States)

    Tosi, Daniele; Macchi, Edoardo Gino; Braschi, Giovanni; Cigada, Alfredo; Gallati, Mario; Rossi, Sandro; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2014-04-01

    We present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry-Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy. The sensing system has been applied to monitor online the radiofrequency thermal ablation of tumors in liver tissue. Preliminary experiments have been performed in a reference chamber with uniform heating; further experiments have been carried out on ex vivo porcine liver, which allowed the measurement of a steep temperature gradient and monitoring of the local pressure increase during the ablation procedure.

  7. Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring

    DEFF Research Database (Denmark)

    Alldieck, Thiemo; Bahnsen, Chris Holmberg; Moeslund, Thomas B.

    2016-01-01

    introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two...... parallel segmentation pipelines of the RGB and thermal video streams. The potential of the proposed context-aware fusion is demonstrated by extensive tests of quantitative and qualitative characteristics on existing and novel video datasets and benchmarked against competing approaches to multi-modal fusion....

  8. A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat generation and thermal radiation

    Directory of Open Access Journals (Sweden)

    T.M. Agbaje

    2017-03-01

    Full Text Available In this paper we investigate the unsteady boundary-layer flow of an incompressible Powell-Eyring nanofluid over a shrinking surface. The effects of heat generation and thermal radiation on the fluid flow are taken into account. Numerical solutions of the nonlinear differential equations that describe the transport processes are obtained using a multi-domain bivariate spectral quasilinearization method. This innovative technique involves coupling bivariate Lagrange interpolation with quasilinearization. The solutions of the resulting system of equations are then obtained in a piecewise manner in a sequence of multiple intervals using the Chebyshev spectral collocation method. A parametric study shows how various parameters influence the flow and heat transfer processes. The validation of the results, and the method used here, has been achieved through a comparison of the current results with previously published results for selected parameter values. In general, an excellent agreement is observed. The results from this study show that the fluid parameters ε and δ reduce the flow velocity and the momentum boundary-layer thickness. The heat generation and thermal radiation parameters are found to enhance both the temperature and thermal boundary-layer thicknesses.

  9. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    Science.gov (United States)

    Rupnowski, Przemyslaw; Ulsh, Michael; Sopori, Bhushan; Green, Brian G.; Wood, David L.; Li, Jianlin; Sheng, Yangping

    2018-01-01

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min-1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.

  10. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    OpenAIRE

    Sobota Tomasz

    2017-01-01

    The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented me...

  11. Monitoring of Thermal and Gas Activities in Mining Dump Hedvika, Czech Republic

    Science.gov (United States)

    Surovka, D.; Pertile, E.; Dombek, V.; Vastyl, M.; Leher, V.

    2017-10-01

    The negative consequences of mining of the black coal is occurrence of extractive waste storage locations - mining dumps. The mining activities carried out within the area of Ostrava are responsible for at least six mine dumps of loose materials arising as wastes from mining of mineral resources, many of which show presence of thermal processes. The thermal activity in dumps is responsible for many hazardous substances that pollute the environment and harm human health in the surroundings. This paper deals with the results of the first phase of project CZ.11.4.120/0.0/0.0/15_006/0000074 TERDUMP, on exploration of thermally active mining dumps are published in the article. As a first studied thermally active dump was a Hedvika dump. To localize of hot spots with hot gas emission was used a thermovision scanning by drone. The place with high temperature (49.8 °C) identified natural gas emission through natural cracks. Analysing the occurring pollutants in Hedvika Dump using the GC-MS or HPLC, respectively and the inert gases (CO2, CO and SO2) were determined by ion chromatography. The pollutants were determined in five sampling points during two measurements executed from July to August 2017.

  12. Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO{sub 2} immobilized on porous titanium sheets via thermal-chemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Arlos, Maricor J., E-mail: mjarlos@uwaterloo.ca [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Liang, Robert; Hatat-Fraile, Melisa M. [Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Bragg, Leslie M. [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Zhou, Norman Y. [Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Servos, Mark R. [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Andrews, Susan A. [Civil Engineering Department, University of Toronto, Toronto, Ontario M5S 1A4 (Canada)

    2016-11-15

    Highlights: • TiO{sub 2} self-assembled on oxidized porous titanium sheets. • UV-LED/TiO{sub 2} membrane treatment reduced the concentrations of estrogens. • Different pH conditions affect treatment efficiency. • The estrogenic activity removal was similar to the chemical disappearance. - Abstract: The removal of endocrine disrupting compounds (EDCs) remains a big challenge in water treatment. Risks associated with these compounds are not clearly defined and it is important that the water industry has additional options to increase the resiliency of water treatment systems. Titanium dioxide (TiO{sub 2}) has potential applications for the removal of EDCs from water. TiO{sub 2} has been immobilized on supports using a variety of synthesis methods to increase its feasibility for water treatment. In this study, we immobilized TiO{sub 2} through the thermal-chemical oxidation of porous titania sheets. The efficiency of the material to degrade target EDCs under UV-LED irradiation was examined under a wide range of pH conditions. A yeast-estrogen screen assay was used to complement chemical analysis in assessing removal efficiency. All compounds but 17β-estradiol were degraded and followed a pseudo first-order kinetics at all pH conditions tested, with pH 4 and pH 11 showing the most and the least efficient treatments respectively. In addition, the total estrogenic activity was substantially reduced even with the inefficient degradation of 17β-estradiol. Additional studies will be required to optimize different treatment conditions, UV-LED configurations, and membrane fouling mitigation measures to make this technology a more viable option for water treatment.

  13. Dual solutions of magnetohydrodynamic stagnation point flow and heat transfer of viscoelastic nanofluid over a permeable stretching/shrinking sheet with thermal radiation

    Science.gov (United States)

    Jusoh, R.; Nazar, R.; Pop, I.

    2017-09-01

    The present study is intended to encompass the stagnation point flow and heat transfer of viscoelastic nanofluid with the presence of thermal radiation. The viscous incompressible electrically conducting and Jeffrey fluid model is taken into account. The governing partial differential equations are reduced to ordinary differential equations by using the appropriate similarity variables. The resulting differential equations are solved numerically using the built in bvp4c function in Matlab. Dual solutions are discovered for a certain range of the governing parameters. Numerical results for the velocity and temperature profiles as well as the skin friction coefficients and the local Nusselt number are elucidated through tables and graphs.

  14. Monitoring Delamination of Thermal Barrier Coating During Interrupted High-Heat Flux Laser Testing Using Upconversion Luminescence Imaging

    Science.gov (United States)

    Eldridge, Jeffrey I.; Zhu, Dongming; Wolfe, Douglas E.

    2011-01-01

    Upconversion luminescence imaging of thermal barrier coatings (TBCs) has been shown to successfully monitor TBC delamination progression during interrupted furnace cycling. However, furnace cycling does not adequately model engine conditions where TBC-coated components are subjected to significant heat fluxes that produce through-thickness temperature gradients that may alter both the rate and path of delamination progression. Therefore, new measurements are presented based on luminescence imaging of TBC-coated specimens subjected to interrupted high-heat-flux laser cycling exposures that much better simulate the thermal gradients present in engine conditions. The TBCs tested were deposited by electron-beam physical vapor deposition (EB-PVD) and were composed of 7wt% yttria-stabilized zirconia (7YSZ) with an integrated delamination sensing layer composed of 7YSZ co-doped with erbium and ytterbium (7YSZ:Er,Yb). The high-heat-flux exposures that produce the desired through-thickness thermal gradients were performed using a high power CO2 laser operating at a wavelength of 10.6 microns. Upconversion luminescence images revealed the debond progression produced by the cyclic high-heat-flux exposures and these results were compared to that observed for furnace cycling.

  15. Volcanic SO2 and SiF4 visualization and their ratio monitored using 2-D thermal emission spectroscopy

    Science.gov (United States)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2011-09-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a save distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume, animation and determination of its propagation speed. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 which was confirmed from the strong ash emission registered around 01:00 a.m. LST (Local Standard Time) and a pronounced SO2 cloud was registered. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential imagees is used to calculate the emission rates at different distances from the crater.

  16. Partial shadowing detection based on equivalent thermal voltage monitoring for PV module diagnostics

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Rodriguez, Pedro

    2009-01-01

    Partial shadowing of photovoltaic systems can overproportionally reduce the energy yield and lead to early ageing and failure of the shadowed cells. Large area shadows are relatively easy to detect due to the eminent power reduction and decrease of fill factor. However, small area partial shadows...... in a larger system do not have a very obvious effect on the output power or fill factor of the PV array and can remain undetected, leading to failure. In this paper a method for detecting small area partial shadows, based on equivalent thermal voltage, is presented. A simplified expression of the equivalent...... thermal voltage is proposed, which increases the robustness against measurement errors and model limitations at low irradiation conditions. Experimental results confirm the high sensitivity of the method even to a relatively small area shadow, while showing very good robustness against increase in series...

  17. A database for the monitoring of thermal anomalies over the Amazon forest and adjacent intertropical oceans.

    Science.gov (United States)

    Jiménez-Muñoz, Juan C; Mattar, Cristian; Sobrino, José A; Malhi, Yadvinder

    2015-01-01

    Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download.

  18. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    Directory of Open Access Journals (Sweden)

    Sobota Tomasz

    2017-01-01

    Full Text Available The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented method allows to the operation of steam boiler with high efficiency.

  19. A Comparison of Multiple Datasets for Monitoring Thermal Time in Urban Areas over the U.S. Upper Midwest

    Directory of Open Access Journals (Sweden)

    Cole Krehbiel

    2016-03-01

    Full Text Available Traditional studies of urban climate used air temperature observations from local urban/rural weather stations in order to analyze the general pattern of higher temperatures in urban areas compared with corresponding rural regions, also known as the Urban Heat Island (UHI effect. More recently, satellite remote sensing datasets of land surface temperature have been exploited to monitor UHIs. While closely linked, air temperature and land surface temperature (LST observations do not measure the same variables. Here we analyze land surface temperature vs. air temperature-based characterization and seasonality of the UHI and the surface UHI (SUHI from 2003 to 2012 over the Upper Midwest region of the United States using LST from MODIS, and air temperature from the Daymet modeled gridded daily air temperature dataset, and compare both datasets to ground station data from first-order weather stations of the Global Historical Climatology Network (GHCN located in eleven urban areas spanning our study region. We first convert the temperature data to metrics of nocturnal, diurnal, and daily thermal time and their annual accumulations to draw conclusions on nighttime vs. daytime and seasonal dynamics of the UHI. In general, the MODIS LST-derived results are able to capture urban–rural differences in daytime, nighttime, and daily thermal time while the Daymet air temperature-derived results show very little urban–rural differences in thermal time. Compared to the GHCN ground station air temperature-derived observations, MODIS LST-derived results are closer in terms of urban–rural differences in nighttime thermal time, while the results from Daymet are closer to the observations from GHCN during the daytime. We also found differences in the seasonal dynamics of UHIs measured by air temperature observations and SUHIs measured by LST observations.

  20. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    Science.gov (United States)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.

    2018-01-01

    Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.

  1. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    Science.gov (United States)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.

    2017-11-01

    Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.

  2. Description of the behavior of an aquifer by using continuous radon monitoring in a thermal spa

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Carlos, E-mail: sainzc@unican.es; Rábago, Daniel; Fuente, Ismael; Celaya, Santiago; Quindós, Luis Santiago

    2016-02-01

    Radon ({sup 222}Rn) levels in air and water have been analyzed continuously for almost a year in Las Caldas de Besaya thermal spa, north Spain. Radon is a naturally occurring noble gas from the decay of radium ({sup 226}Ra) both constituents of radioactive uranium 238 series. It has been recognized as a lung carcinogen by the World Health Organization (WHO) and International Agency for Research on Cancer (IARC). Furthermore the Royal Decree R.D 1439/2010 of November, 2010 establishes the obligation to study occupational activities where workers and, where appropriate, members of the public are exposed to inhalation of radon in workplaces such as spas. Together with radon measures several physico-chemical parameters were obtained such as pH, redox potential, electrical conductivity and air and water temperature. The devices used for the study of the temporal evolution of radon concentration have been the RTM 2100, the Radon Scout and gamma spectrometry was complementarily used to determine the transfer factor of the silicone tubes in the experimental device. Radon concentrations obtained in water and air of the spa are high, with an average of 660 Bq/l and 2900 Bq/m{sup 3} respectively, where water is the main source of radon in the air. Radiation dose for workers and public was estimated from these levels of radon. The data showed that the thermal processes can control the behavior of radon which can be also influenced by various physical and chemical parameters such as pH and redox potential. - Highlights: • Radon in water is the major source of indoor air radon concentration in thermal facilities. • Radon in water has been used to characterize the origin of water used for treatments in a spa. • Preliminary dose assessment from radon exposure has been performed.

  3. Zika Virus Fact Sheet

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key facts ... and last for 2-7 days. Complications of Zika virus disease Based on a systematic review of the ...

  4. Cholera Fact Sheet

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Cholera Fact sheet Updated December 2017 Key facts Cholera ... behaviour and to the control of cholera. Oral cholera vaccines Currently there are three WHO pre-qualified ...

  5. Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Take, S.; Yoshinaga, S.; Yanagita, M.; Itoi, Y. [Oyama College, Tochigi (Japan)

    2016-12-15

    With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from 800 ℃ to 350 ℃) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

  6. Clinching for sheet materials

    OpenAIRE

    He, XiaoCong

    2017-01-01

    Abstract Latest developments in the clinching of sheet materials are reviewed in this article. Important issues are discussed, such as tool design, process parameters and joinability of some new lightweight sheet materials. Hybrid and modified clinching processes are introduced to a general reader. Several unaddressed issues in the clinching of sheet materials are identified.

  7. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    Science.gov (United States)

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  8. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    Directory of Open Access Journals (Sweden)

    Imran Ullah

    Full Text Available Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  9. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation].

    Science.gov (United States)

    Zhu, Li; Zhao, Li-Min; Wang, Qiao; Zhang, Ai-Ling; Wu, Chuan-Qing; Li, Jia-Guo; Shi, Ji-Xiang

    2014-11-01

    Thermal plume from coastal nuclear power plant is a small-scale human activity, mornitoring of which requires high-frequency and high-spatial remote sensing data. The infrared scanner (IRS), on board of HJ-1B, has an infrared channel IRS4 with 300 m and 4-days as its spatial and temporal resolution. Remote sensing data aquired using IRS4 is an available source for mornitoring thermal plume. Retrieval pattern for coastal sea surface temperature (SST) was built to monitor the thermal plume from nuclear power plant. The research area is located near Guangdong Daya Bay Nuclear Power Station (GNPS), where synchronized validations were also implemented. The National Centers for Environmental Prediction (NCEP) data was interpolated spatially and temporally. The interpolated data as well as surface weather conditions were subsequently employed into radiative transfer model for the atmospheric correction of IRS4 thermal image. A look-up-table (LUT) was built for the inversion between IRS4 channel radiance and radiometric temperature, and a fitted function was also built from the LUT data for the same purpose. The SST was finally retrieved based on those preprocessing procedures mentioned above. The bulk temperature (BT) of 84 samples distributed near GNPS was shipboard collected synchronically using salinity-temperature-deepness (CTD) instruments. The discrete sample data was surface interpolated and compared with the satellite retrieved SST. Results show that the average BT over the study area is 0.47 degrees C higher than the retrieved skin temperature (ST). For areas far away from outfall, the ST is higher than BT, with differences less than 1.0 degrees C. The main driving force for temperature variations in these regions is solar radiation. For areas near outfall, on the contrary, the retrieved ST is lower than BT, and greater differences between the two (meaning > 1.0 degrees C) happen when it gets closer to the outfall. Unlike the former case, the convective heat

  10. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    Science.gov (United States)

    Langran, Kenneth J.

    1986-01-01

    The Mount St. Helens 1980 eruption offers an opportunity to study vegetation recovery rates and patterns in a perturbed ecosystem. The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. It was observed that during maximum daytime solar heating, surface temperatures of vegetated areas are cooler than surrounding nonvegetated areas, and that surface temperature varies with percent vegetation cover. A method of measuring the relationship between effective radiant temperature (ERT) and percent vegetation cover in the thermal infrared (8 to 12 microns) region of the electromagnetic spectrum was investigated.

  11. Operation and maintenance of thermal power stations best practices and health monitoring

    CERN Document Server

    Chanda, Pradip

    2016-01-01

    This book illustrates operation and maintenance practices/guidelines for economic generation and managing health of a thermal power generator beyond its regulatory life. The book provides knowledge for professionals managing power station operations, through its unique approach to chemical analysis of water, steam, oil etc. to identify malfunctioning/defects in equipment/systems much before the physical manifestation of the problem. The book also contains a detailed procedure for conducting performance evaluation tests on different equipment, and for analyzing test results for predicting maintenance requirements, which has lent a new dimension to power systems operation and maintenance practices. A number of real life case studies also enrich the book. This book will prove particularly useful to power systems operations professionals in the developing economies, and also to researchers and students involved in studying power systems operations and control. .

  12. Description of the behavior of an aquifer by using continuous radon monitoring in a thermal spa.

    Science.gov (United States)

    Sainz, Carlos; Rábago, Daniel; Fuente, Ismael; Celaya, Santiago; Quindós, Luis Santiago

    2016-02-01

    Radon ((222)Rn) levels in air and water have been analyzed continuously for almost a year in Las Caldas de Besaya thermal spa, north Spain. Radon is a naturally occurring noble gas from the decay of radium ((226)Ra) both constituents of radioactive uranium 238 series. It has been recognized as a lung carcinogen by the World Health Organization (WHO) and International Agency for Research on Cancer (IARC). Furthermore the Royal Decree R.D 1439/2010 of November, 2010 establishes the obligation to study occupational activities where workers and, where appropriate, members of the public are exposed to inhalation of radon in workplaces such as spas. Together with radon measures several physico-chemical parameters were obtained such as pH, redox potential, electrical conductivity and air and water temperature. The devices used for the study of the temporal evolution of radon concentration have been the RTM 2100, the Radon Scout and gamma spectrometry was complementarily used to determine the transfer factor of the silicone tubes in the experimental device. Radon concentrations obtained in water and air of the spa are high, with an average of 660 Bq/l and 2900 Bq/m(3) respectively, where water is the main source of radon in the air. Radiation dose for workers and public was estimated from these levels of radon. The data showed that the thermal processes can control the behavior of radon which can be also influenced by various physical and chemical parameters such as pH and redox potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Monitoring the Impacts of Severe Drought on Southern California Chaparral Species using Hyperspectral and Thermal Infrared Imagery

    Directory of Open Access Journals (Sweden)

    Austin R. Coates

    2015-10-01

    Full Text Available Airborne hyperspectral and thermal infrared imagery acquired in 2013 and 2014, the second and third years of a severe drought in California, were used to assess drought impacts on dominant plant species. A relative green vegetation fraction (RGVF calculated from 2013–2014 Airborne Visible Infrared Imaging Spectrometer (AVIRIS data using linear spectral unmixing revealed seasonal and multi-year changes relative to a pre-drought 2011 reference AVIRIS image. Deeply rooted tree species and tree species found in mesic areas showed the least change in RGVF. Coastal sage scrub species demonstrated the highest seasonal variability, as well as a longer-term decline in RGVF. Ceanothus species were apparently least well-adapted to long-term drought among chaparral species, showing persistent declines in RGVF over 2013 and 2014. Declining RGVF was associated with higher land surface temperature retrieved from MODIS-ASTER Airborne Simulator (MASTER data. Combined collection of hyperspectral and thermal infrared imagery may offer new opportunities for mapping and monitoring drought impacts on ecosystems.

  14. Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts.

    Science.gov (United States)

    Wang, Yi-Cheng; Lu, Lin; Gunasekaran, Sundaram

    2017-06-15

    Quality and safety of perishable products such as foods, pharmaceutics, and biologicals is a constant concern. We have developed a plasmonic thermal history indicator (THI) taking advantage of the localized surface plasmon resonance of gold nanoparticles (AuNPs) synthesized in situ in alginate, a natural polysaccharide. The color of the THIs becomes more intense with increased storage temperature and/or duration, with the color changing from grey to red with time of exposure at high temperature (40°C). The results suggest that decreasing viscosity with increasing number of AuNPs being synthesized in the system, along with aggregation of newly synthesized AuNPs onto larger ones and their settling are potentially responsible for the distinct color change observed. The use of alginate in the THIs also facilitates fabricating them as solid hydrogel matrices by adding divalent calcium ions. This alginate-AuNPs THI system is tunable by altering its composition to suit different time-temperature monitoring scenarios and the color-change reaction is irreversible. The THI provides a convenient, reliable, safe, and inexpensive means for tracking the thermal history of perishable products without the need for a read-out device. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Functionalized single graphene sheets derived from splitting graphite oxide.

    Science.gov (United States)

    Schniepp, Hannes C; Li, Je-Luen; McAllister, Michael J; Sai, Hiroaki; Herrera-Alonso, Margarita; Adamson, Douglas H; Prud'homme, Robert K; Car, Roberto; Saville, Dudley A; Aksay, Ilhan A

    2006-05-04

    A process is described to produce single sheets of functionalized graphene through thermal exfoliation of graphite oxide. The process yields a wrinkled sheet structure resulting from reaction sites involved in oxidation and reduction processes. The topological features of single sheets, as measured by atomic force microscopy, closely match predictions of first-principles atomistic modeling. Although graphite oxide is an insulator, functionalized graphene produced by this method is electrically conducting.

  16. Monitoring Delamination of Thermal Barrier Coatings by Near-Infrared and Upconversion Luminescence Imaging

    Science.gov (United States)

    Eldridge, J. I.; Martin, R. E.; Singh, Jogender; Wolfe, Doug E.

    2008-01-01

    Previous work has demonstrated that TBC delamination can be monitored by incorporating a thin luminescent sublayer that produces greatly increased luminescence intensity from delaminated regions of the TBC. Initial efforts utilized visible-wavelength luminescence from either europium or erbium doped sublayers. This approach exhibited good sensitivity to delamination of electron-beam physical-vapor-deposited (EB-PVD) TBCs, but limited sensitivity to delamination of the more highly scattering plasma-sprayed TBCs due to stronger optical scattering and to interference by luminescence from rare-earth impurities. These difficulties have now been overcome by new strategies employing near-infrared (NIR) and upconversion luminescence imaging. NIR luminescence at 1550 nm was produced in an erbium plus ytterbium co-doped yttria-stabilized zirconia (YSZ) luminescent sublayer using 980-nm excitation. Compared to visible-wavelength luminescence, these NIR emission and excitation wavelengths are much more weakly scattered by the TBC and therefore show much improved depth-probing capabilities. In addition, two-photon upconversion luminescence excitation at 980 nm wavelength produces luminescence emission at 562 nm with near-zero fluorescence background and exceptional contrast for delamination indication. The ability to detect TBC delamination produced by Rockwell indentation and by furnace cycling is demonstrated for both EB-PVD and plasma-sprayed TBCs. The relative strengths of the NIR and upconversion luminescence methods for monitoring TBC delamination are discussed.

  17. Strategy of high efficiency and refined high-intensity focused ultrasound and ultrasound monitoring imaging of thermal lesion and cavitation

    Science.gov (United States)

    Wan, Mingxi; Zhang, Siyuan; Lu, Mingzhu; Hu, Hong; Jing, Bowen; Liu, Runna; Zhong, Hui

    2017-03-01

    We proposed that high efficiency high-intensity focused ultrasound (HIFU) could be achieved by using a splitting transducer with various frequencies and focusing patterns, and explored the feasibility of using ultrafast active cavitation imaging (UACI), pulse inversion (PI) sub-harmonic cavitation imaging and bubble wavelet transform imaging for monitoring of cavitation during HIFU, as well as the ultrasonic B-mode images, differential integrated backscatter (IBS) images, Nakagami images and elastography for monitoring HIFU-induced lesion. The use of HIFU splitting transducer had the potential to increase the size of the thermal lesion in a shorter duration and may improve the ablation efficiency of HIFU and would shorten the exposure duration significantly. The spatial-temporal evolution of residual cavitation bubbles at the tissue-water interface was obtained by UACI and the results showed that the UACI had a frame rate high enough to capture the transient behavior of the cavitation bubbles. The experiments demonstrated that comparing with normal sub-harmonic and PI harmonic images, PI sub-harmonic images had higher sensitivity and CTR, which was conducive to showing cavitation bubbles. The CTR would be further improved by combining PI ultrafast plane wave transmitting with cavitation bubble wavelet transform.

  18. Effects of mirror distortion by thermal deformation in an interferometry beam size monitor system at PLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji-Gwang [Korea Institute of Radiological and Medical Sciences, 215-4, Gongneung-dong, Nowon-t, Seoul 139-706 (Korea, Republic of); Kim, Eun-San, E-mail: eskim1@korea.ac.kr [Department of Accelerator Science, Graduate School, Korea University Sejong Campus, Sejong 30019, Republica of Korea (Korea, Republic of); Kim, Changbum; Huang, Jung-Yun; Kim, Dotae [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 135-703 (Korea, Republic of)

    2016-10-11

    Extraction mirrors installed at the most upstream position of interferometry beam size monitor are frequently used for measuring the beam size in storage rings. These mirrors receive the high power synchrotron radiation and are distorted owing to the heat distribution that depends on the position on the mirror surface. The distortion of the mirror changes the effective separation of the slit in the interferometry beam size monitor. Estimation of the effects of the front-end mirror distortion is important for measuring the beam size accurately. In this paper, we present the result of the numerical simulation of the temperature distribution and thermal expansion of the front-end mirror using ANSYS code, the theoretical basis of the effects of mirror distortion and compare with experimental results from Pohang Light Source II (PLS-II) at the Pohang Accelerator Laboratory (PAL). The equipment in the beam diagnosis line in PLS-II and experimental set-up for measuring the distortion of the front-end mirror using a multi-hole square array Hartmann screen are described.

  19. Fiber-Optic Thermal Sensor for TiN Film Crack Monitoring.

    Science.gov (United States)

    Hsu, Hsiang-Chang; Hsieh, Tso-Sheng; Chen, Yi-Chian; Chen, Hung-En; Tsai, Liren; Chiang, Chia-Chin

    2017-11-11

    The study focuses on the thermal and temperature sensitivity behavior of an optical fiber sensor device. In this article, a titanium nitride (TiN)-coated fiber Bragg grating (FBG) sensor fabricated using an ion beam sputtering system was investigated. The reflection spectra of the FBG sensor were tested using R-soft optical software to simulate the refractive index sensitivity. In these experiments, the temperature sensitivity of the TiN FBG was measured at temperatures ranging from 100 to 500 °C using an optical spectrum analyzer (OSA). The results showed that the temperature sensitivity of the proposed TiN FBG sensor reached 12.8 pm/°C for the temperature range of 100 to 300 °C and 20.8 pm/°C for the temperature range of 300 to 500 °C. Additionally, we found that the produced oxidation at temperatures of 400-500 °C caused a crack, with the crack becoming more and more obvious at higher and higher temperatures.

  20. Surface Modification of Titanium and Polyimide Sheet for Adhesive Bonding

    NARCIS (Netherlands)

    Akram, M.

    2015-01-01

    Major industrial sectors like automotive, aerospace and others are increasingly using polymer composites in their structural parts. Polyimide sheet and adhesives, are high performance polymers. They are widely used in various engineering applications due to their excellent thermal, mechanical and

  1. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater

    Directory of Open Access Journals (Sweden)

    Fabio Sansivero

    2013-11-01

    Full Text Available Infrared remote sensing monitoring is a significant tool aimed to integrated surveillance system of active volcanic areas. In this paper we describe the realization and the technological evolution of the permanent image thermal infrared (TIR surveillance system of the Vesuvius volcano. The TIR monitoring station was installed on the Vesuvius crater rim on July 2004 in order to acquire scenes of the SW inner slope of Vesuvius crater that is characterized by a significant thermal emission. At that time, it represented the first achievement all over the world of a permanent surveillance thermal imaging system on a volcano. It has been working in its prototypal configuration till May 2007. The experience gained over years about the engineering, management and maintenance of TIR remote acquisition systems in extreme environmental conditions, allows us to design and realize a new release of the TIR monitoring station with improved functionalities and more flexibility for the IR image acquisition, management and storage, which became operational in June 2011. In order to characterize the thermal background of the Vesuvius crater at present state of volcanic quiescence, the time series of TIR images gathered between July 2004 and May 2012 were analyzed using a statistical approach. Results show no significant changes in the thermal radiation during the observation periods, so they can be assumed as representative of a background level to which refer for the interpretation of possible future anomalies related to a renewal of the volcanic dynamics of the Vesuvius volcano.

  2. Monitoring

    Science.gov (United States)

    ... Heart Disease and Diabetes Blood Glucose Monitoring Insulin Injection Resources Mental Health and Diabetes Healthy Holiday Eating Lifestyle Resources Improve Medication Taking Spanish Language Resources AADE7 Self-Care Behaviors ...

  3. Biomonitoring of bees. Upgrading of electronic monitoring of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cuhalev, I.; Rajh-Alatic, Z. [Electroinstitute Ljubljana (Slovakia)

    1995-12-31

    Environmental monitoring of the air quality associates procedures whose task is to acquire data about the measurement of the polluted air in the real time and on-line mode. Air quality measurements are made at the point of the measurement site which is the most exposed to pollution. Apart from the point measurements, there are also line measurements carried out. They are made in a particular area where they provide better results about the environmental pollution. Data that are obtained in this way provide the basis for adequate procedures for the air protection. The effect of noxious substances from the air on living organisms under laboratory conditions is known to a certain degree. The real extent of the effect of the air pollution under existing conditions in a particular area and time can only be established with biomonitoring. One of its most frequent forms is observation of a particular plant specimen which is sensitive to some noxious components from the air. Biomonitoring of plants provides data about the complex pollution stress to which an observed plant is exposed. It covers a certain time period and gives point results of an area. To get a complete insight into the effect of the pollution stress in an area biomonotoring was expanded onto bees

  4. Thermal monitoring as a method for estimation of technical state of digital devices

    Directory of Open Access Journals (Sweden)

    Lavrich Yu. N.

    2015-08-01

    Full Text Available Requirements to the reliability level of modern element base are so high that traditional methods of assessing the technical condition of electronics become ineffective, the modern theory of reliability has almost no practical applications [1], and reliability index does not reflect the true state of an electronic device due to an insufficient amount of information received during testing of electronic devices. The majority of modern electronics are limitedly easy-to-test. They are equipped with small number of tools for direct measurement that leads to a delayed troubleshooting and the inability to take measures efficiently. Despite the fact that new generations of electronics use modern components and new design technologies, their performance is still defined by two states — serviceability or failure, and the failure still happens unexpectedly. We may note, that failure is an uncontrolled result of an irreversible degradation process, taking place in time and having appropriate time parameters, but it's not the critical act. Research of various structural and hierarchical levels of functional units of digital electronics show that temperature control can be used for automatic condition monitoring of such devices in real time. As a generalized control parameter, it is advisable to use the temperature of the case of the element, and the case itself — as a generalized point.

  5. T1 and T2 temperature dependence of female human breast adipose tissue at 1.5 T : groundwork for monitoring thermal therapies in the breast

    NARCIS (Netherlands)

    Baron, Paul; Deckers, RHR; Knuttel, Floor M.; Bartels, LW

    2015-01-01

    The T-1 and T-2 temperature dependence of female breast adipose tissue was investigated at 1.5 T in order to evaluate the applicability of relaxation-based MR thermometry in fat for the monitoring of thermal therapies in the breast. Relaxation times T-1, T-2 and T-2TSE (the apparent T-2 measured

  6. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions....... On page 590 of this issue, MacGregor et al. (2) estimate the mean rates of snow accumulation and ice flow of the Greenland Ice Sheet over the past 9000 years based on an ice sheet-wide dated radar stratigraphy (3). They show that the present changes of the Greenland Ice Sheet are partly an ongoing...... response to the last deglaciation. The results help to clarify how sensitive the ice sheet is to climate changes....

  7. Ice sheet margins and ice shelves

    Science.gov (United States)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  8. Potential of the future thermal infrared space-borne sensor IASI-NG to monitor lower tropospheric ozone

    Science.gov (United States)

    Sellitto, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Dauphin, P.; Forêt, G.; Gaubert, B.; Beekmann, M.; Peuch, V.-H.; Flaud, J.-M.

    2012-09-01

    The lower tropospheric (LT) ozone concentration is a key factor for air quality (AQ). Observing efficiently LT ozone from space is crucial to monitor and better understand pollution phenomena occurring from inter-continental to local scales, and that have a proven noxious effect on the human health and the biosphere. The Infrared Atmospheric Sounder Interferometer (IASI) flies on MetOp-A spacecraft and is planned to be launched in the next future as part of the other MetOp modules, i.e. MetOp-B and C. IASI has demonstrated to have the capability to single out the LT ozone signal only at favourable conditions, i.e. in presence of high thermal contrast scenarios. New generation satellite instruments are being designed to address several pressing geophysical issues, including a better observation capability of LT ozone. IASI-NG (New Generation), now having reached the accomplishment of design phase-A for launch in the 2020 timeframe as part of the EPS-SG (EUMETSAT Polar System-Second Generation, formerly post-EPS) mission, may render feasible a better observation of AQ in terms of LT ozone. To evaluate the added-value brought by IASI-NG in this context, we developed a pseudo-observation simulator, including a direct simulator of thermal infrared spectra and a full inversion scheme to retrieve ozone concentration profiles. We produced one month (August 2009) of tropospheric ozone pseudo-observations based on both IASI and IASI-NG instrumental configurations. We compared the pseudo-observations and we found a clear improvement of LT ozone (up to 6 km altitude) pseudo-observations quality for IASI-NG. The estimated total error is expected to be more than 35% smaller at 5 km, and 20% smaller for the LT ozone column. The total error on the LT ozone column is, on average, lower than 10% for IASI-NG. IASI-NG is expected to have a significantly better vertical sensitivity (monthly average degrees of freedom surface-6 km of 0.70) and to be sensitive at lower altitudes (more

  9. Synthesis of nanometre-thick MoO3 sheets

    Science.gov (United States)

    Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.

    2010-03-01

    The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.

  10. Thermally induced crystallization kinetics of uncrosslinked and unfilled synthetic cis-1,4-polyisoprene rubber monitored by shear rheological tests

    Science.gov (United States)

    Yang, Wei; Hong, Daesun; Kim, Hyungsu; Kim, Byungsoo; Chang, Wenji V.

    2016-11-01

    This study demonstrates the unique capability of a shear rotational rheometer for studying the thermally induced crystallization (TIC) of uncrosslinked and unfilled cis-1,4-polyisoprene rubber (IR). At temperatures below -15°C, a crystallization phenomenon (TIC) occurred in a quasi-unstrained IR specimen. Such a distinguished phenomenon was determined from the steady and sharp changes of both tanδ and the modulus. The changing ratio of those parameters with time characterizes the crystallization rate, on which the effects of the compressive force magnitude, testing repeat, and temperature are studied. The crystallization rate was shown to depend less on the magnitude of normal force, but depended largely on the specimen's previous testing history. A specimen not fully recovered from the previous crystallized memory showed a faster rate than before. More cooling to -25°C increased the crystallization rate, but the slow crystallization helped increase the final crystallinity. The crystallization rate was further interpreted by the Avrami equation to propose the crystal structure, whose morphological feature was shown in agreement with the reported TEM and X-ray results. However, our study found a thermo-mechanically aged specimen showed a very different rheological behavior at the late stage of crystallization suggesting the crystalline metamorphosis. But this unexpected behavior turned out to be unrecoverable indicating a property failure due to material aging more plausibly. All these findings were successfully monitored by the rheometer. It is expected the well-organized rheometric measurements can sufficiently supplement some instrumental limitations of the traditional crystallization monitoring analyzers on soft materials.

  11. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests.

    Science.gov (United States)

    Chan, Allison M; Bowling, David R

    2017-07-01

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter-spring and fall-winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density method to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze-thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. New Indices of Endothelial Function Measured by Digital Thermal Monitoring of Vascular Reactivity: Data from 6084 Patients Registry

    Directory of Open Access Journals (Sweden)

    Morteza Naghavi

    2016-01-01

    Full Text Available Background. Endothelial function is viewed as a barometer of cardiovascular health and plays a central role in vascular reactivity. Several studies showed digital thermal monitoring (DTM as a simple noninvasive method to measure vascular reactivity that is correlated with atherosclerosis risk factors and coronary artery disease. Objectives. To further evaluate the relations between patient characteristics and DTM indices in a large patient registry. Methods. DTM measures were correlated with age, sex, heart rate, and systolic and diastolic blood pressure in 6084 patients from 18 clinics. Results. DTM vascular reactivity index (VRI was normally distributed and inversely correlated with age (r=-0.21, p<0.0001. Thirteen percent of VRI tests were categorized as poor vascular reactivity (VRI < 1.0, 70 percent as intermediate (1.0 ≤ VRI < 2.0, and 17 percent as good (VRI ≥ 2.0. Poor VRI (<1.0 was noted in 6% of <50 y, 10% of 50–70 y, and 18% of ≥70 y. In multiple linear regression analyses, age, sex, and diastolic blood pressure were significant but weak predictors of VRI. Conclusions. As the largest database of finger-based vascular reactivity measurement, this report adds to prior findings that VRI is a meaningful physiological marker and reflects a high level of residual risk found in patients currently under care.

  13. Monitoring heat losses using Landsat ETM+ thermal infrared data — a case study at Kuju fumarolic area in Japan

    Science.gov (United States)

    Mia, Md.; Fujimitsu, Yasuhiro

    2013-10-01

    To monitor heat losses using Landsat 7 thermal infrared data from 2002 to 2010 within the active fumarolic region of Kuju volcano in Japan, we used the Stefan-Boltzmann equation for radiative heat flux (RHF) estimation. Heat discharge rate (HDR) was calculated by using the relationship coefficient of RHF and HDR, obtained from two previous studies. The highest total RHF was found to be about 57.7 MW in 2002 and the lowest was about 21.1 MW in 2010. We found the highest HDR, of about 384.5 MW, in 2002 and the lowest, of about 140.8 MW, in 2010. The RHF anomalous areas were showing a declining trend during our study period. The relationship between the land surface temperature (LST) above ambient and RHF was, as expected, in a strong correlation for each result during our study period. Overall, our study was able to delineate the declining trend of heat losses that supports a previous study of similar declining trend of HDR using steam maximum diameter method from the active fumarolic region of Kuju volcano.

  14. Thermoforming of foam sheet

    NARCIS (Netherlands)

    Akkerman, Remko; Pronk, Ruud M.

    1997-01-01

    Thermoforming is a widely used process for the manufacture of foam sheet products. Polystyrene foam food trays for instance can be produced by first heating the thermoplastic foam sheet, causing the gas contained to build up pressure and expand, after which a vacuum pressure can be applied to draw

  15. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring

    Science.gov (United States)

    Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose

    2018-02-01

    accurately. These results indicate that thermal infrared hyperspectral imaging can support the oil industry profusely, by revealing new petroleum plays through direct detection of gaseous hydrocarbon seepages, serving as tools to monitor leaks along pipelines and oil processing plants, while simultaneously refining estimates of CH4 emissions.

  16. Use of thermal infrared remote sensing data for fisheries, environmental monitoring, oil and gas exploration, and ship routing.

    Science.gov (United States)

    Roffer, M. A.; Gawlikowski, G.; Muller-Karger, F.; Schaudt, K.; Upton, M.; Wall, C.; Westhaver, D.

    2006-12-01

    Thermal infrared (TIR) and ocean color remote sensing data (1.1 - 4.0 km) are being used as the primary data source in decision making systems for fisheries management, commercial and recreational fishing advisory services, fisheries research, environmental monitoring, oil and gas operations, and ship routing. Experience over the last 30 years suggests that while ocean color and other remote sensing data (e.g. altimetry) are important data sources, TIR presently yields the most useful data for studying ocean surface circulation synoptically on a daily basis. This is due primarily to the greater temporal resolution, but also due to one's better understanding of the dynamics of sea surface temperature compared with variations in ocean color and the spatial limitations of altimeter data. Information derived from commercial operations and research is being used to improve the operational efficiency of fishing vessels (e.g. reduce search time and increase catch rate) and to improve our understanding of the variations in catch distribution and rate needed to properly manage fisheries. This information is also being used by the oil and gas industry to minimize transit time and thus, save costs (e.g., tug charter, insurance), to increase production and revenue up to 500K dollars a day. The data are also be used to reduce the risk of equipment loss, loss of time and revenue to sudden and unexpected currents such as eddies. Sequential image analysis integrating TIR and ocean color provided near-real time, synoptic visualization of the rapid and wide dispersal of coastal waters from the northern Gulf of Mexico following Hurricanes Katrina and Rita in September 2005. The satellite data and analysis techniques have also been used to monitor the effects and movement of other potential environmentally damaging substances, such as dispersing nutrient enriched waste water offshore. A review of our experience in several commercial applications and research efforts will reinforce the

  17. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  18. Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan

    Directory of Open Access Journals (Sweden)

    Md. Bodruddoza Mia

    2017-11-01

    Full Text Available Thermal remote sensing is currently an emerging technique for monitoring active volcanoes around the world. The study area, the Aso volcano, is currently the most active and has erupted almost every year since 2012. For the first time, Landsat 8 TIRS thermal data were used in this study area to evaluate and monitor the recent thermal status of this volcano, situated in Southwest Japan, from 2013 to 2016 using four sets of images. The total heat discharged rate (HDR, radiative heat flux (RHF, land surface temperature (LST, and land cover (LC were evaluated, and the relationship between them was determined, to understand the thermal status of the study area. We used the NDVI (normalized difference vegetation index for land cover, the NDVI-threshold method for emissivity, the split-window algorithm for LST, and the Stefan–Boltzmann equation for radiative heat flux estimation in this study. The total heat discharge rate was computed using a relationship coefficient of RHF and HDR here. The highest HDR was obtained in 2013, at about 4715 MW, and was the lowest in 2016, at about 3819 MW. The total heat loss showed a declining trend, overall, from 2013 to 2016. The highest pixel RHF was in 2013 and the lowest was in 2014; after that, it increased gradually until 2016, coinciding with the LST of this study area. LC showed that, with decreasing heat loss, the vegetated coverage increased and bare land or mixed land decreased, and vice versa. From the spatial distribution of RHF, we saw that, within the Nakadake craters of the Aso volcano, Crater 1 was the most active part of this volcano throughout the study period, and Crater 3 was the most active after 2014. We inferred that the applied methods using the continuous Landsat 8 TIRS data showed an effective and efficient method of monitoring the thermal status of this active volcano.

  19. Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons

    Science.gov (United States)

    Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.

    2017-10-01

    This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems – electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.

  20. Solar cell sheet. Taiyo denchi sheet

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazutomi; Nakatani, Kenji; Okaniwa, Hiroshi.

    1989-08-09

    This invention consists of a module sheet containing a thin film solar cell formed on a polymer film substrate, a cushioning sticky film layer and a protective film layer; thickness of module sheet is less than 1000 micron and its bending rigidity of 5 mm thick sample is less than 100 kg-mm {sup 2}. By this, the soalr cell can be wound and unwound in small roll of several cm level. This eliminates the internal wiring in the plural number of cells giving high durability of integrated amorphous solar cell against the repeated bending. The polymer film is films of PET, polysulphone, polyamide, with proper thickness of 30 - 300 micron. 2 figs.

  1. Eficiência térmica de telhas onduladas de fibrocimento aplicadas em abrigos individuais para bezerros expostos ao sol e à sombra Thermal efficiency of fiber cement corrugated sheets applied to individual housing for calves exposed to sun and shade

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2012-01-01

    Full Text Available Este trabalho apresenta um estudo da eficiência térmica de coberturas de bezerreiros individuais expostas ao sol e à sombra, por meio de termografia infravermelha, temperatura interna e índices de conforto térmico. Foram avaliados quatro bezerreiros, três expostos ao sol, a saber: (i cobertos com telhas de fibrocimento sem amianto - pintadas de branco, (ii sem pintura e (iii com sombrite posicionado internamente aos bezerreiros, à distância de 0,10m da face inferior da telha. O quarto bezerreiro foi instalado em área sombreada e coberto com telhas de fibrocimento sem pintura. As coletas de dados foram realizadas durante 21 dias, nos horários das 11h00min, 14h00min e 17h00min. Os resultados mostraram variações significativas na temperatura de superfície das coberturas e nos índices de conforto térmico, entre os tratamentos expostos ao sol e à sombra, para todos os horários avaliados. As imagens termográficas infravermelhas mostraram-se eficientes para melhor compreensão dos processos de transferência de calor da cobertura para o interior das instalações.This research presents a study of roof thermal efficiency in individual housing for calves exposed to sun and shade through infrared thermography, internal temperature and thermal comfort indexes. Four different individual housing for calves covered with asbestos-free fiber-cement corrugated sheets were evaluated. Three of them were directly exposed to the sun: (i corrugated sheets painted white in the external surface, (ii corrugated sheets without painting and (iii with screen shade fabric installed 0.10m under de internal surface of the corrugated sheet. The fourth individual housing was installed in the shade area and covered with unpainted corrugated fiber-cement sheets. The analysis was taken for 21 days at 11h00min, 14h00min and 17h00min. The results indicate significant variations in the roofing surface temperature and thermal comfort indexes among the treatments

  2. Potential of the Thermal Infrared Wavelength Region to predict semi-arid Soil Surface Properties for Remote Sensing Monitoring

    Science.gov (United States)

    Eisele, Andreas; Chabrillat, Sabine; Lau, Ian; Hecker, Christoph; Hewson, Robert; Carter, Dan; Wheaton, Buddy; Ong, Cindy; Cudahy, Thomas John; Kaufmann, Hermann

    2014-05-01

    Digital soil mapping with the means of passive remote sensing basically relies on the soils' spectral characteristics and an appropriate atmospheric window, where electromagnetic radiation transmits without significant attenuation. Traditionally the atmospheric window in the solar-reflective wavelength region (visible, VIS: 0.4 - 0.7 μm; near infrared, NIR: 0.7 - 1.1 μm; shortwave infrared, SWIR: 1.1 - 2.5 μm) has been used to quantify soil surface properties. However, spectral characteristics of semi-arid soils, typically have a coarse quartz rich texture and iron coatings that can limit the prediction of soil surface properties. In this study we investigated the potential of the atmospheric window in the thermal wavelength region (long wave infrared, LWIR: 8 - 14 μm) to predict soil surface properties such as the grain size distribution (texture) and the organic carbon content (SOC) for coarse-textured soils from the Australian wheat belt region. This region suffers soil loss due to wind erosion processes and large scale monitoring techniques, such as remote sensing, is urgently required to observe the dynamic changes of such soil properties. The coarse textured sandy soils of the investigated area require methods, which can measure the special spectral response of the quartz dominated mineralogy with iron oxide enriched grain coatings. By comparison, the spectroscopy using the solar-reflective region has limitations to discriminate such arid soil mineralogy and associated coatings. Such monitoring is important for observing potential desertification trends associated with coarsening of topsoil texture and reduction in SOC. In this laboratory study we identified the relevant LWIR wavelengths to predict these soil surface properties. The results showed the ability of multivariate analyses methods (PLSR) to predict these soil properties from the soil's spectral signature, where the texture parameters (clay and sand content) could be predicted well in the models

  3. Zika Virus Fact Sheet

    Science.gov (United States)

    ... Fact files Questions & answers Features Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key facts ... last for 2-7 days. Complications of Zika virus disease Based on a systematic review of the ...

  4. Sepsis Fact Sheet

    Science.gov (United States)

    ... Education About NIGMS NIGMS Home > Science Education > Sepsis Sepsis Tagline (Optional) Middle/Main Content Area PDF Version ( ... KB) En español Other Fact Sheets What is sepsis? Sepsis is a serious medical condition. It is ...

  5. Sheet electron beam tester

    Science.gov (United States)

    Spear, Alexander Grenbeaux

    The DARPA HiFIVE project uses a pulsed electron sheet beam gun to power a traveling wave tube amplifier operating at 220 GHz. Presented is a method for characterizing the high current density 0.1 mm by 1 mm sheet electron beam. A tungsten tipped probe was scanned through the cross section of the sheet electron beam inside of a vacuum vessel. The probe was controlled with sub-micron precision using stepper motors and LabView computer control while boxcar averaging hardware sampled the pulsed beam. Matlab algorithms were used to interpret the data, calculate beam dimensions and current density, and create 2-dimensional cross section images. Full characterization of two separate HiFIVE sheet electron guns was accomplished and is also presented.

  6. Trauma Fact Sheet

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Physical Trauma Physical Trauma Tagline (Optional) Middle/Main Content Area PDF Version (572 KB) Other Fact Sheets What is physical trauma? Physical trauma is a serious injury to the ...

  7. Burns Fact Sheet

    Science.gov (United States)

    ... of most of these problems is the body’s explosive inflammatory response. A normal inflammatory response protects the ... your website or other digital platform? This fact sheet and others are available for syndication through the ...

  8. Biodiesel Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  9. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  10. Concentrating Solar Power Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-01

    This fact sheet is an overview of the Concentrating Solar Power (CSP) subprogram at the U.S. Department of Energy SunShot Initiative. CSP is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation’s goal of making solar energy fully cost-competitive with other energy sources by the end of the decade. Worldwide, CSP activity is rapidly scaling, with approximately 10 gigawatts (GW) in various stages of operation or development. In the United States alone, nearly 2 GW of CSP are in operation.

  11. Monitoring the restoration of interfacial contact for self healing thermal interface materials for LED and microelectronic applications

    NARCIS (Netherlands)

    Lafont, U.L.; Van Zeijl, H.W.; Van der Zwaag, S.

    2013-01-01

    While conventional self healing materials focus on the restoration of mechanical properties, newer generations of self healing materials focus on the restoration of other functional (i.e. non-mechanical) properties. Thermal conductivity is an example of an important functional property of a Thermal

  12. Thermal regime and potential bedrock weathering in alpine rockwalls of Austria: Results from eight years of monitoring (2006-2014)

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas; Wecht, Matthias

    2015-04-01

    Bedrock temperature at sites with a minor winter snow cover gives a good indication for the effects of air temperature anomalies on ground thermal conditions as well as for the intensity of near-surface physical weathering in bedrock. In this study we present results from an ongoing bedrock temperature monitoring program initiated in 2006. Within the framework of this program nine surface boreholes in rockwalls with different slope orientations and two additional boreholes at flat bedrock sites were drilled between August and September 2006 and subsequently instrumented. The altogether eleven rock temperature sites (RTS) are located in the alpine periglacial zone of the Austrian Alps at latitude 46°55' to 47°22' and longitude 12°44' to 14°41'. All RTS have been installed in metamorphic rock (5 x mica schist; 6 x gneiss) at elevations between 1960 and 2725 m asl (mean 2491 m asl.). Three temperature sensors (PT1000) have been inserted at each borehole site at vertical depths of 3, 10 and 30-40 cm. At each RTS the three sensors are connected to a 3-channel miniature temperature datalogger (MTD) manufactured by GeoPrecision, Germany. Our analysis focussed on (a) the variation of mean and extreme daily temperatures at the rock surface and at depth, (b) the variation of the daily temperature range, (c) the number of freeze-thaw-cycles (FTC) and (d) effective freeze-thaw cycles for frost shattering (eFTC), (e) the duration and intensity of freeze-thaw-cycles (DI-FTC), (f) the number of hours and days within the so-called frost-cracking-window (FCW), and effects of (g) aspect and (h) snow cover on the thermal regimes in the bedrock. Results show for instance that the number of FTC and eFTC varied substantially during the observation period at all eleven RTS and at all sensor depths. However, this variation differs from site to site related to snow cover condition, elevation and aspect. For instance, at one lower-elevated (2255 m asl) north exposed RTS the number of

  13. Monitoring of active layer thermal regime and depth on CALM-S site, James Ross Island, Eastern Antarctic Peninsula

    Science.gov (United States)

    Hrbáček, Filip; Kňažková, Michaela; Nývlt, Daniel; Láska, Kamil; Mueller, Carsten W.; Ondruch, Jakub

    2017-04-01

    Active layer thickness and its dynamic are considered one of the key parameters of permafrost-affected ground. They variability are very sensitive to specific local conditions, especially climate, vegetation, snow cover or soil texture and moisture. To better understand the local variability of active layer thickness in Antarctica, the original Circumpolar Active Layer Monitoring protocol (CALM) was adapted as its southern form (CALM-S) with respect to specific conditions of Antarctica. To date, almost 40 CALM-S sites were registered across the Antarctic continent with the highest density on western Antarctic Peninsula (South Shetlands) and Victoria Land in East Antarctica (McMurdo region). On James Ross Island, CALM-S site was established in February 2014 as the first CALM-S in the eastern Antarctic Peninsula region. The CALM-S site is located near the Johann Gregor Mendel Station on the northern coast of James Ross Island. The area delimited to 80 × 70 m is elevated at 8 to 11 m asl. Geologically it consists of a Holocene marine terrace ( 80% of CALM-S area) with typical sandy material and passes to lithified to poorly disintegrated sedimentary rocks of Cretaceous Whisky Bay Formation ( 20% of CALM-S area) with a more muddy material and a typical bimodal composition. For both geologically different parts of CALM-S site, ground temperature was measured at two profiles at several levels up to 200 cm depth using resistance thermometers Pt100/8 (accuracy ± 0.15 °C). The air temperature at 2 m above surface was monitored at the automatic weather station near Johann Gregor Mendel Station using resistance thermometer Pt100/A (accuracy ± 0.15 °C). Data used in this study were obtained during the period from 1 March 2013 to 6 February 2016. Mechanical probing of active layer depth was performed in 72 grid points at the end of January, or beginning of February in 2014 to 2016. During the whole study period, mean annual air temperature varied between -7.0 °C (2013

  14. Experimental Investigation of Current Sheet Instabilities

    Science.gov (United States)

    Markusic, Thomas E.; Choveiri, E. Y.; Schafer, Charles (Technical Monitor)

    2001-01-01

    Configuration space instabilities of propagating current sheets were studied in order to better understand acceleration mechanisms in pulsed plasma thrusters. Experiments were carried out in a parallel plate accelerator with argon as propellant. Propagating current sheets were visualized using fast framing cameras with inter-frame delays ranging between 0.05 - 2 microsecond. Schlieren photography using a pulse-burst Nd:YAG laser was used to image electron density gradients in the discharge. Magnetic field probes were used to map the magnetic field topology during the evolution of the discharge. Pressure probes were used to monitor axial pressure gradients. Emission spectroscopy was used to estimate the electron temperature in the arc. The motivation for applying all of these diagnostics was to gain an understanding of what parameters influence the macroscopic stability of a propagating current sheet. Since a stable current sheet is required for any effective snowplow-type of accelerator, an understanding of the processes which can cause current sheets to break apart into filaments is essential for the design of future pulsed plasma thrusters.

  15. The role of ice sheets in the pleistocene climate

    OpenAIRE

    Oerlemans, J.

    1991-01-01

    Northern hemisphere ice sheets have played an important role in the climatic evolution of the Pleistocene. The characteristic time-scale of icesheet growth has the same order-of-magnitude as that for the orbital insolation variations. The interaction with the solid earth, the importance of the thermal conditions at the base of ice sheets and feedback on the climate system (albedo feedback, precipitation regime) make the cryospheric response to climatic forcing complicated. Feedback of surface...

  16. Shape Optimization of Swimming Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  17. In Situ Monitoring the Thermal Degradation of PCPDTBT Low Band Gap Polymers with Varying Alkyl Side-Chain Patterns

    OpenAIRE

    Marin, Lidia; Penxten, Huguette; Van Mierloo, Sarah; Carleer, Robert; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2013-01-01

    The degradation pattern of a series of low band gap PCPDTBT polymers under thermal stress is investigated by in situ UV-vis and FT-IR techniques combined with thermal degradation analysis. Thermogravimetric analysis is used to predetermine the decomposition intervals, revealing that thermolysis occurs in two stages. TG-TD-GC/MS shows that loss of the alkyl side chains predominantly happens within the first temperature regime and degradation of the polymer backbone occurs thereafter. UV-vis sp...

  18. Safety advice sheets

    CERN Multimedia

    HSE Unit

    2013-01-01

    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.

  19. Recommendations on the choice of gas analysis equipment for systems of continuous monitoring and accounting of emissions from thermal power plants

    Science.gov (United States)

    Kondrat'eva, O. E.; Roslyakov, P. V.; Burdyukov, D. A.; Khudolei, O. D.; Loktionov, O. A.

    2017-10-01

    According to Federal Law no. 219-FZ, dated July 21, 2014, all enterprises that have a significant negative impact on the environment shall continuously monitor and account emissions of harmful substances into the atmospheric air. The choice of measuring equipment that is included in continuous emission monitoring and accounting systems (CEM&ASs) is a complex technical problem; in particular, its solution requires a comparative analysis of gas analysis systems; each of these systems has its advantages and disadvantages. In addition, the choice of gas analysis systems for CEM&ASs should be maximally objective and not depend on preferences of separate experts and specialists. The technique of choosing gas analysis equipment that was developed in previous years at Moscow Power Engineering Institute (MPEI) has been analyzed and the applicability of the mathematical tool of a multiple criteria analysis to choose measuring equipment for the continuous emission monitoring and accounting system have been estimated. New approaches to the optimal choice of gas analysis equipment for systems of the continuous monitoring and accounting of harmful emissions from thermal power plants have been proposed, new criteria of evaluation of gas analysis systems have been introduced, and weight coefficients have been determined for these criteria. The results of this study served as a basis for the Preliminary National Standard of the Russian Federation "Best Available Technologies. Automated Systems of Continuous Monitoring and Accounting of Emissions of Harmful (Polluting) Substances from Thermal Power Plants into the Atmospheric Air. Basic Requirements," which was developed by the Moscow Power Engineering Institute, National Research University, in cooperation with the Council of Power Producers and Strategic Electric Power Investors Association and the All-Russia Research Institute for Materials and Technology Standardization.

  20. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  1. Combining monitoring and modelling tools as a basis for city-scale concepts for a sustainable thermal management of urban groundwater resources.

    Science.gov (United States)

    Mueller, Matthias H; Huggenberger, Peter; Epting, Jannis

    2018-02-05

    Increasing anthropogenic impacts lead to elevated temperatures of the shallow subsurface, including the unsaturated and groundwater saturated zone, in many urban areas in comparison to unaffected natural thermal states. The "current thermal state" of four groundwater bodies in the urban area of Basel-City, Switzerland, was investigated by means of high-resolution multilevel temperature wells and numerical 3D groundwater flow and heat transport models. The calibrated and validated numerical groundwater flow and heat transport models allow evaluating and comparing groundwater and heat fluxes for the investigated groundwater bodies and defined cross-sections for differing urban districts, e.g. residential and industrial areas under development. We present the overall and the specific advective heat fluxes within two urban districts, which will be restructured in the near future. The management of groundwater resources in urban areas plays an important role not only for groundwater quantity but also for its quality, i.e. thermal subsurface and groundwater regimes. We demonstrate how monitoring and modelling tools can be the basis for a sustainable management of complex urban groundwater resources. Furthermore, we argue that such tools should be integrated in the thermal management of urban groundwater bodies. Such tools also allow integrating the potentially available energy of shallow subsurface resources into energetic management strategies on the urban scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  3. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known...... as Dansgaard-Oeschger (DO) events would add to our knowledge of the climatic system and – hopefully – enable better forecasts. Likewise, to forecast possible future sea level rise it is crucial to correctly model the large ice sheets on Greenland and Antarctica. This project is divided into two parts...

  4. Sheet molding composite recycling

    Energy Technology Data Exchange (ETDEWEB)

    Jost, K.

    1995-08-01

    This article describes how the SMC Automotive Alliance is helping to develop commercial processes to convert sheet molding composite scrap into new raw materials. A projected 200 million pounds of sheet molding composite (SMC) will be used by the auto industry in 1995. The increasing use of SMC in automobiles has prompted the industry to resolve some of the technical challenges involved with recycling the material. The SMC Automotive Alliance, composed of 30 molders and raw materials suppliers, has implemented cooperative research and development programs that have led to the commercialization of processes to recycle and reuse both postindustrial and eventually post-consumer SMC in new automotive applications.

  5. Beating the Heat: Fast Scanning Melts Beta Sheet Crystals

    Science.gov (United States)

    Cebe, Peggy; Hu, Xiao; Kaplan, David; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniella; Schick, Christoph

    2014-03-01

    Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk. Previous thinking was that beta-pleated-sheet crystals in the dry solid state would not melt upon input of heat energy alone. Indeed, at conventional heating rates (~1-50 °C/min), silk exhibits its glass transition (~175 °C), followed by cold crystallization, and then by immediate thermal degradation beginning at about 225 °C. Here we demonstrate that beta-pleated-sheet crystals can melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s to avoid thermal degradation, and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. The authors acknowledge support from the National Science Foundation and German Academic Exchange Service DAAD; EZ acknowledges a European Union funded Marie Curie EST fellowship (ADVATEC); XH and DK acknowledge NIH P41 Tissue Engineering Resource Center.

  6. Satellite thermal monitoring of the 2010 - 2013 eruption of Kizimen volcano (Kamchatka) using MIROVA hot-spot detection system

    Science.gov (United States)

    Massimetti, Francesco; Coppola, Diego; Laiolo, Marco; Cigolini, Corrado

    2017-04-01

    After 81 years of rest, the Holocenic stratovolcano of Kizimen (Kamchatka, Russia) began a new eruptive phase on December 2010. The eruption was preceded by a year-long seismic unrest and fumarole activity, and persisted for 3 years showing a transition from explosive to effusive style. The initial explosive phase caused the partial disruption of the volcano summit and was followed by the effusion of andesitic lava flow along the eastern side of the edifice. Here we used an automatic hot-spot detection system named MIROVA (Middle InfraRed Observation of Volcanic Activity), in order to track the thermal evolution of the eruption and to understand the eruptive dynamic. MIROVA is based on the analysis IR images acquired by the MODIS sensor (Moderate Resolution Imaging Spectroradiometer) and is able to provide thermal maps (1 km resolution) and Volcanic Radiative Power (VRP, in Watt) time series in near real time (1-4 hours from satellite overpass). Each image with a thermal alert has been classified, distinguishing different quality level of the data based on cloud cover, viewing geometry and coherence with the VRP trend. The analysis of VRP variation show different thermal phases that have been correlated with independent observations of KVERT (Kamchatka Volcanic Eruption Response Team). Finally, we show that the relation between total thermal energy radiated (VRE, in Joule) and erupted lava volume is consistent with the typical radiant density of an intermediate-silicic lava flow (Coppola et al., 2013).

  7. Production (information sheets)

    NARCIS (Netherlands)

    2007-01-01

    Documentation sheets: Geo energy 2 Integrated System Approach Petroleum Production (ISAPP) The value of smartness 4 Reservoir permeability estimation from production data 6 Coupled modeling for reservoir application 8 Toward an integrated near-wellbore model 10 TNO conceptual framework for "E&P

  8. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  9. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  10. Respirator Fact Sheet

    Science.gov (United States)

    ... wear the escape hood and get the expected protection? Respirator Fact Sheet [PDF - 706 KB] Follow NIOSH Facebook Flickr Pinterest Twitter ... PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word ... last updated: June 6, 2014 Content source: National Institute for Occupational Safety and Health Education ...

  11. Photoacoustic Monitoring of Internal Plastification in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate Copolymers: Measurements of Thermal Parameters

    Directory of Open Access Journals (Sweden)

    Sanchez Ruben R.

    1999-01-01

    Full Text Available Basic data on thermophysical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate copolymers poly(3HB-co-3HV were investigated with the aim of understanding the role of 3-hydroxyvalerate monomeric units (3HV incorporated during random copolymerization. The results show strong evidence that internal plastification is produced by the introduction of 3HV units in the copolymer. It was observed that copolymer thermal conductivity increased approximately linearly with the 3HV content. On the other hand, thermal diffusivity was very sensitive to the change in the copolymer composition showing a sudden rise that attained a saturation plateau. Amplitude-frequency plots indicate that a thermoelastic bending mechanism is operating. In this paper a new photoacoustic arrangement for the measurement of thermal effusivity is presented.

  12. Permafrost in vegetated scree slopes below the timberline - characterization of thermal properties and permafrost conditions by temperature measurements and geoelectrical monitoring

    Science.gov (United States)

    Schwindt, Daniel; Kneisel, Christof

    2010-05-01

    Discontinuous alpine permafrost is expected to exist at altitudes above 2400m a.s.l. at mean annual air temperatures (MAAT) of less than -1°C. Below timberline only a few sites are known, where sporadic permafrost exists in vegetated talus slopes with positive MAAT. Aim of the study is to characterize permafrost-humus interaction, the thermal regime and its influence on temporal and spatial permafrost variability. Results of geophysical and thermal measurements from three talus slopes, located in the Swiss Alps (Engadin, Appenzell) at elevations between 1200 and 1800m a.s.l. with MAAT between 2.8°C and 5.5°C are presented. Parent rock-material of the slopes are granite (Bever Valley, Engadin) and dolomite (Susauna Valley, Engadin; Brüeltobel, Appenzell). Joint application of electrical resistivity tomography (ERT) and refraction seismic tomography (RST) is used to detect and characterize permafrost. To observe temporal and spatial variability in ice content and characteristics year-around geoelectrical monitoring and quasi-3D ERT are used. A forward modeling approach has been applied to validate the results of geoelectrical monitoring. A number of temperature data loggers were installed in different depth of the humus layer and in different positions of the slope to monitor the ground thermal regime. Isolated permafrost has been detected by the combination of ERT and RST in the lower parts of the investigated talus slopes. Results from geophysical measurements and monitoring indicate a high spatial and temporal variability in ice content and ice characteristics (temperature, density, content of unfrozen water) for all sites. A distinct rise of resistivities between November and December indicates a decrease of unfrozen water content, caused by a pronounced cooling in the lower parts of the slope. Decreasing ice content and extent of the permafrost lenses can be observed in decreasing seismic velocities from 2600m/sec in spring to only 1500m/sec in October. Ice

  13. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    Science.gov (United States)

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  14. Magma extrusion during the Ubinas 2013–2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-01-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  15. Evidences of volcanic unrest on high-temperature fumaroles by satellite thermal monitoring: The case of Santa Ana volcano, El Salvador

    Science.gov (United States)

    Laiolo, M.; Coppola, D.; Barahona, F.; Benítez, J. E.; Cigolini, C.; Escobar, D.; Funes, R.; Gutierrez, E.; Henriquez, B.; Hernandez, A.; Montalvo, F.; Olmos, R.; Ripepe, M.; Finizola, A.

    2017-06-01

    On October 1st, 2005, Santa Ana volcano (El Salvador) underwent a VEI 3 phreatomagmatic eruption after approximately one century of rest. Casualties and damages to some of the local infrastructures and surrounding plantations were followed by the evacuation of the nearby communities. The analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) infrared data reveals that the main explosion was preceded by a one-year-long thermal unrest, associated to the development of a fumaroles field, located at the western rim of the summit crater lake. By combining space-based thermal flux and ground-based measurements (seismicity, sulfur emissions and lake temperatures), we suggest that the activity observed at Santa Ana between 2004 and 2005 was driven by the gradual intrusion of an undegassed magma body at a very shallow depth. Magma injection induced thermal anomalies associated with sustained degassing from the fumaroles field and promoted the interaction between the magmatic-hydrothermal system and the overlying water table. This process culminated into the VEI 3 phreatomagmatic eruption of October 2005 that strongly modified the shallow structure of the crater area. The subsequent three-years-long activity resulted from self-sealing of the fracture system and by the opening of a new fracture network directly connecting the deeper hydrothermal system with the crater lake. Our results show that satellite-based thermal data allow us to detect the expansion of the high-temperature fumarolic field. This may precede an explosive eruption and/or a lava dome extrusion. In particular, we show that thermal records can be analyzed with other geochemical (i.e. SO2 emissions) and geophysical (seismicity) data to track a shallow magmatic intrusion interacting with the surrounding hydrothermal system. This provides a remarkable support for volcano monitoring and eruption forecasting, particularly in remote areas where permanent ground data acquisition is hazardous, expensive

  16. Airborne thermal imaging for the leakage monitoring and state estimation in Dresden. Leak location and leak monitoring; Luftgestuetzte Thermografie zur Leckueberwachung und Zustandsermittlung in Dresden. Leckortung und -ueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Doehnert, Frank [Drewag Netz GmbH, Dresden (Germany). Anlagenmanagement Rohrnetze; Krickau, Hans-Joerg [Scandat Gesellschaft fuer Fernerkundungstechnologien mbH, Berlin (Germany)

    2013-01-15

    In the spring of 2012, Drewag Netz GmbH (Dresden, Federal Republic of Germany) engaged Scandad GmbH (Berlin, Federal Republic of Germany) to map the complete district heating grid of Dresden by means of airborne thermal imaging. The recommendation came from district heating operators already having applied this technology successfully. The scope of this technology is to get information on leaks in district heating grids as well as supplementary information on the state of the total district heating grid. These information are directly included in the strategy of maintenance for the next twenty years.

  17. Rubella - Fact Sheet for Parents

    Science.gov (United States)

    ... this page: About CDC.gov . Redirect for the Rubella fact sheet page. The current fact sheet can ... http://www.cdc.gov/vaccines/parents/diseases/child/rubella.html Print page Share Compartir File Formats Help: ...

  18. Magneto-hydrodynamics of coupled fluid–sheet interface with mass suction and blowing

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, R., E-mail: uqrahma3@uq.edu.au

    2016-01-15

    There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid–sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses. - Highlights: • The momentum equation is modelled for both the surrounding MHD fluid and the sheet with the effects of mass suction and blowing. • The current study further investigates the heat and mass transfer characteristics between a permeable sheet and the surrounding electrically conducting fluid across the thermal and mass boundary layers. • Both the approximated and analytical techniques have been included for the purpose of comparison, and the perfect numerical agreements have been established with the previous studies. • Dual solutions for the skin friction coefficients are found for various categories of

  19. An In-Core Power Deposition and Fuel Thermal Environmental Monitor for Long-Lived Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Don W. Miller

    2004-09-28

    The primary objective of this program is to develop the Constant Temperature Power Sensor (CTPS) as in-core instrumentation that will provide a detailed map of local nuclear power deposition and coolant thermal-hydraulic conditions during the entire life of the core.

  20. Light Sheet Fluorescence Microscopy

    Science.gov (United States)

    Santi, Peter A.

    2011-01-01

    Light sheet fluorescence microscopy (LSFM) functions as a non-destructive microtome and microscope that uses a plane of light to optically section and view tissues with subcellular resolution. This method is well suited for imaging deep within transparent tissues or within whole organisms, and because tissues are exposed to only a thin plane of light, specimen photobleaching and phototoxicity are minimized compared to wide-field fluorescence, confocal, or multiphoton microscopy. LSFMs produce well-registered serial sections that are suitable for three-dimensional reconstruction of tissue structures. Because of a lack of a commercial LSFM microscope, numerous versions of light sheet microscopes have been constructed by different investigators. This review describes development of the technology, reviews existing devices, provides details of one LSFM device, and shows examples of images and three-dimensional reconstructions of tissues that were produced by LSFM. PMID:21339178

  1. Biomolecular Science (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  2. Honda Civic fact sheet

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-05-01

    The U.S. Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). The National Renewable Energy Laboratory (NREL) has been directed to conduct projects to evaluate the performance and acceptability of light-duty AFVs. This fact sheet describes the test results on 1998 Honda Civics: one dedicated CNG and a gasoline model as closely matched as possible.

  3. Is it possible to create a thermal model of warm-up? Monitoring of the training process in athletic decathlon

    Science.gov (United States)

    Adamczyk, Jakub Grzegorz; Olszewska, Magdalena; Boguszewski, Dariusz; Białoszewski, Dariusz; Reaburn, Peter

    2016-05-01

    The aim of the present study was to define if the athletes may vary their warm-up according to the specific demands of event they are preparing for and that higher-level athletes may differ in their thermal responses than lower-level athletes. Ten top level Polish male decathletes (19.9 ± 3.0 yr, 187.9 ± 4.7 cm, 82.7 ± 6.7 kg) who participated in the study were examined with a thermographic camera. Thermal imaging of each athlete was undertaken three times: at rest before the warm-up began, immediately after the general warm-up, and immediately after the specific warm-up. As significant changes in skin surface temperatures were observed between rest and both general and specific warm-ups (p body surface temperature within the decathletes as a cohort. Interestingly, correlation was found between decathlon result measured by points and decrease of temperatures after commencing the general or specific warm-up exercises (r = 0.62; p imaging can be useful observe thermoregulatory responses. Due to these observed individual thermal reactions to the physical effort of warm-up, the present findings suggest it is possible to individually adapt the warm-up to the needs of both the event being prepared for and the level of athlete.

  4. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  5. Performance analysis of the incremental sheet forming on PMMA using a combined chemical and mechanical approach

    Science.gov (United States)

    Conte, R.; Gagliardi, F.; Ambrogio, G.; Filice, F.; Russo, P.

    2017-10-01

    Single Point Incremental Forming (SPIF) has been widely investigated highlighting advantages as low-cost, higher formability and greater process flexibility if compared to traditional processes [1]. Recent works have proven the SPIF feasibility for polymers processing. Experimental researches have been carried out with the aim to investigate the influence of several working variables, i.e. spindle speed, tool diameter, step depth, etc., on the final quality of the formed parts [2, 3]. The processed thermoplastic materials are characterized by glass temperatures close to the room temperature and, therefore, SPIF has been performed without external thermal source, exploiting mostly the friction heat generated during the forming phases. In the proposed work, the attention has been focused on extruded poly(methyl methacrylate) (PMMA) sheets, which are characterized by a glass temperature of more than 100 °C. Because of that, an experimental equipment has been designed and the PMMA sheets have been placed on the top of chamber with controlled temperature before SPIF beginning. The temperature on the upper face of the sheets has been monitored by thermocamera, which has been properly set by matching its readings with the ones extracted by a thermocouple in contact with the sheets. SPIF at different temperatures has been carried out by changing both the heater temperature and the process parameters which have an influence on the workpiece heating. The influence of the highlighted process conditions on the worked parts and on the process feasibility has been investigated. Furthermore, examinations on the quality of the formed parts have been performed pointing out the effects that different process conditions have on surface integrity.

  6. Thermal performance monitoring side of NPP ASCO (BOP); Monitorizacion del rendimiento termico del secundario de C. N. Asco (BOP)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, S.

    2013-07-01

    Monitoring of the BOP's main objectives are the improvement of the reliability and safety, maximize the electric power generated by the floor, minimizing the heat rejected to the environment, measures of improvement or correction, as well as feedback to the maintenance schedule preventive.

  7. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W. [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Laumonier, Herve; Trillaud, Herve [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Saint-Andre, CHU Bordeaux, Bordeaux (France); Seror, Olivier [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Jean Verdier, Bondy (France); Sesay, Musa-Bahazid [Service d' Anesthesie Reanimation III, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France); Grenier, Nicolas [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service d' Imagerie Diagnostique et Therapeutique de l' Adulte, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France)

    2010-01-15

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  8. Geothermal Heat Flux Underneath Ice Sheets Estimated From Magnetic Satellite Data

    DEFF Research Database (Denmark)

    Fox Maule, Cathrine; Purucker, M.E.; Olsen, Nils

    The geothermal heat flux is an important factor in the dynamics of ice sheets, and it is one of the important parameters in the thermal budgets of subglacial lakes. We have used satellite magnetic data to estimate the geothermal heat flux underneath the ice sheets in Antarctica and Greenland...

  9. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    Science.gov (United States)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of

  10. Nd{sup 3+} doped LaF{sub 3} nanoparticles as self-monitored photo-thermal agents

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Uéslen; Upendra Kumar, K.; Jacinto, Carlos [Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas (Brazil); Ramiro, Julio; Caamaño, Antonio J. [Department of Signal Theory and Communication, Universidad Rey Juan Carlos, Madrid 28943 (Spain); García Solé, José; Jaque, Daniel [Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Facultad de Ciencias, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-02-03

    In this work, we demonstrate how LaF{sub 3} nanoparticles activated with large concentrations (up to 25%) of Nd{sup 3+} ions can simultaneously operate as biologically compatible efficient nanoheaters and fluorescent nanothermometers under single beam (808 nm) infrared laser excitation. Nd{sup 3+}:LaF{sub 3} nanoparticles emerge as unique multifunctional agents that could constitute the first step towards the future development of advanced platforms capable of simultaneous deep tissue fluorescence bio-imaging and controlled photo-thermal therapies.

  11. Real-time monitoring of initial thermal oxidation on Si(001) surfaces by synchrotron radiation photoemission spectroscopy

    CERN Document Server

    Yoshigoe, A; Teraoka, Y

    2003-01-01

    The thermal oxidation of Si(001) surfaces at 860 K, 895 K, 945 K and 1000 K under the O sub 2 pressure of 1 x 10 sup - sup 4 Pa has been investigated by time-resolved photoemission measurements with synchrotron radiation. Based on time evolution analyses by reaction kinetics models, it was found that the oxidation at 860 K, 895 K and 945 K has progressed with the Langmuir adsorption type, whereas the oxidation at 1000 K has showed the character of the two-dimensional island growth involving SiO desorption. The oxidation rates increases with increasing surface temperature in the passive oxidation condition. The time evolution of each Si oxidation state (Si sup n sup + : n = 1, 2, 3, 4) derived from the Si-2p core-level shifts has also been analyzed. The results revealed that the thermal energy contribution to the migration process of the adsorbed oxygen and the emission of the bulk silicon atoms. Thus, the fraction of the Si sup 4 sup + bonding state, i.e. SiO sub 2 structure, was increased. (author)

  12. Adaptive management, monitoring, and the ecological sustainability of a thermal-polluted water ecosystem: a case in SW Spain.

    Science.gov (United States)

    Lavado Contador, J F

    2005-05-01

    The construction of the Almaraz nuclear power plant in Spain in the 1970s posed interesting environmental problems concerning the construction of a cooling reservoir (Arrocampo reservoir) to cool the steam condensers and the consequent heating of the reservoir's water. The socio-political context forced decision makers to set up a project for the monitoring and management of the environmental impacts derived from the construction and operation of the power plant. Numerous scientific and technical specialists collaborated with the representatives of social groups towards two goals: the improvement of the biodiversity and of the efficiency of the cooling system. These goals involved the monitoring and managing of the system with respect to different biological aspects, mainly limnology, ichthyology, avian fauna and vegetation. The management plan yielded numerous results. The control of the water eutrophy is one of the most important due to its repercussion on the rest of the ecosystem, especially the fish fauna. The development of the shore vegetation slowly increased the patchwork nature of the reservoir, leading to a greater diversity of the avian species. This paper describes the monitoring and management of the Arrocampo ecosystem, the condition before and after the construction of the reservoir and the results obtained concerning some biological communities.

  13. Monitoring Heat Losses Using Landsat ETM + Thermal Infrared Data: a Case Study in Unzen Geothermal Field, Kyushu, Japan

    Science.gov (United States)

    Mia, Md. Bodruddoza; Bromley, Chris J.; Fujimitsu, Yasuhiro

    2013-12-01

    The Unzen geothermal field, our study area, is situated in the Shimabara Peninsula of Kyushu Island in Japan and is an area of active fumaroles.. Our prime objectives were (1) to estimate radiative heat flux (RHF), (2) to calculate approximately the heat discharge rate (HDR) using the relationship of RHF with the total heat loss derived from two geothermal field studies, and (3) finally, to monitor RHF as well as HDR in our study area using seven sets of Landsat 7 ETM + images from 2000 to 2009. We used the normalized differential vegetation index (NDVI) method for spectral emissivity estimation, the mono-window algorithm for land surface temperature (LST), and the Stefan-Boltzmann equation analyzing those satellite TIR images for RHF. We estimated that the maximum RHF was about 251 W/m2 in 2005 and minimum was about 27 W/m2 in 2001. The highest total RHF was about 39.1 MW in 2005 and lowest was about 12 MW in 2001 in our study region. We discovered that the estimated RHF was about 15.7 % of HDR from our studies. We applied this percentage to estimate HDR in Unzen geothermal area. The monitoring results showed a single fold trend of HDR from 2000 to 2009 with highest about 252 MW in 2005 and lowest about 78 MW in 2001. In conclusion, TIR remote sensing is thought as the best option for monitoring heat losses from fumaroles with high efficiency and low cost.

  14. Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plant-Derived, Low-Acid Foods, and Biomaterials.

    Science.gov (United States)

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Sandeep, K P; Simunovic, Josip; Harris, Keith; Osborne, Jason A; Hassan, Hosni M

    2015-08-01

    Cycle threshold (Ct) increase, quantifying plant-derived DNA fragmentation, was evaluated for its utility as a time-temperature integrator. This novel approach to monitoring thermal processing of fresh, plant-based foods represents a paradigm shift. Instead of using quantitative polymerase chain reaction (qPCR) to detect pathogens, identify adulterants, or authenticate ingredients, this rapid technique was used to quantify the fragmentation of an intrinsic plant mitochondrial DNA (mtDNA) gene over time-temperature treatments. Universal primers were developed which amplified a mitochondrial gene common to plants (atp1). These consensus primers produced a robust qPCR signal in 10 vegetables, 6 fruits, 3 types of nuts, and a biofuel precursor. Using sweet potato (Ipomoea batatas) puree as a model low-acid product and simple linear regression, Ct value was highly correlated to time-temperature treatment (R(2) = 0.87); the logarithmic reduction (log CFU/mL) of the spore-forming Clostridium botulinum surrogate, Geobacillus stearothermophilus (R(2) = 0.87); and cumulative F-value (min) in a canned retort process (R(2) = 0.88), all comparisons conducted at 121 °C. D121 and z-values were determined for G. stearothermophilus ATCC 7953 and were 2.71 min and 11.0 °C, respectively. D121 and z-values for a 174-bp universal plant amplicon were 11.3 min and 9.17 °C, respectively, for mtDNA from sweet potato puree. We present these data as proof-of-concept for a molecular tool that can be used as a rapid, presumptive method for monitoring thermal processing in low-acid plant products. © 2015 Institute of Food Technologists®

  15. Monitoring thermally induced structural deformation and framework decomposition of ZIF-8 through in situ temperature dependent measurements.

    Science.gov (United States)

    Xu, Ben; Mei, Yingjie; Xiao, Zhenyu; Kang, Zixi; Wang, Rongming; Sun, Daofeng

    2017-10-18

    ZIF-8 is an easily synthesized porous material which is widely applied in gas storage/separation, catalysis, and nanoarchitecture fabrication. Thermally induced atomic displacements and the resultant framework deformation/collapse significantly influence the application of ZIF-8, and therefore, in situ temperature dependent FTIR spectroscopy was utilized to study the framework changes during heating in the oxidative environment. The results suggest that ZIF-8 undergoes three transition stages, which are the lattice expansion stage below 200 °C, the "reversible" structural deformation stage from 200 to 350 °C, and the decomposition/collapse stage over 350 °C. Our research indicates that the Zn-N bond breaks at a temperature of 350 °C in the oxidant environment, leading to a drastic deformation of the ZIF-8 structure.

  16. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes.

    Science.gov (United States)

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F

    2012-02-06

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  17. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Jorge H. F. Ribeiro

    2012-02-01

    Full Text Available Different types of experimental studies are performed using the hydrogen storage alloy (HSA MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal, chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC. The recently developed molecular beam—thermal desorption spectrometry (MB-TDS technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA, and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  18. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    Science.gov (United States)

    Lobo, Rui F. M.; Santos, Diogo M. F.; Sequeira, Cesar A. C.; Ribeiro, Jorge H. F.

    2012-01-01

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam—thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption. PMID:28817043

  19. Development of elements of the condition monitoring system of turbo generators of thermal power stations and nuclear power plants

    Science.gov (United States)

    Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.

    2017-08-01

    The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing

  20. Using airborne hyperspectral scanner to monitoring the oceanic thermal plume produced by the surface discharge of the cooling water from Angra dos Reis nuclear power plant

    Directory of Open Access Journals (Sweden)

    Enio S. C. Esposito

    2005-04-01

    Full Text Available This paper describes the first results obtained using a hyperspectral scanner system (HSS and field measurements of the sea surface temperature to map a heated liquid effluent jet (plume produced by the surface discharge of the cooling water from two nuclear power plants into a rather closed bay in southeastern Brazil. The adopted methodology is based on the flight and imaging of study area using the HSS sensor, collecting temperature data from the sea surface and acquiring the imagery at the same time and finally, the statistical analysis of data collected in the field and those ones from the imageries. At this phase, beyond the identification of the best suited IVT channel for the characterization of temperature variations of the thermal plume, coefficients were also generated to create an image of this channel with corrected temperature values for the effects caused by atmosphere acting in data collected by the sensor. Results obtained show that this sensor and the used metodology of data acquisition and processing are well suitable for the study and the monitoring of local thermal plumes. The absolute temperature values from the sea surface obtained from the images after the use of coefficients obtained from statistical analysis agree in average with the measured values from the field with an uncertainty of 0,8oC.

  1. Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: Thermal stability, conductivity and antimicrobial properties

    Science.gov (United States)

    Yılmaz Baran, Nuray; Saçak, Mehmet

    2017-10-01

    A novel Schiff base polymer containing phenol group, Poly(3-[[4-(dimethylamino)benzylidene]amino]phenol) P(3-DBAP), was prepared by oxidative polycondensation reaction of 3-[[4-(dimethylamino)benzylidene]amino]phenol (3-DBAP) using NaOCl, H2O2, O2 oxidants in aqueous alkaline medium. Yield and molecular weight distribution of P(3-DBAP) were monitored depending on oxidant types and concentration, monomer concentration and as well as polymerization temperature and time. UV-Vis, FTIR and 1HNMR techniques were used to identify the structures of Schiff base monomer and polymer. Thermal behavior of P(3-DBAP), which was determined to be thermally stable up to 1200 °C via TG-DTG techniques, was illuminated by Thermo-IR spectra recorded in the temperature range of 25-800 °C. It was determined that the electrical conductivity value of the P(3-DBAP) increased 108 fold after doped with iodine for 24 h at 60 °C according to undoped form and it was measured 4.6 × 10-4 S/cm. Also, antibacterial and antifungal activities of the monomer and polymer were assayed against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans, Saccharomyces cerevisiae fungi.

  2. The effect of thermal processing on the behaviour of peanut allergen peptide targets used in multiple reaction monitoring mass spectrometry experiments.

    Science.gov (United States)

    Sayers, R L; Johnson, P E; Marsh, J T; Barran, P; Brown, H; Mills, E N C

    2016-06-20

    Mass spectrometry-based methods offer an alternative means of determining allergens in foods. Whilst targeted methods are likely to offer the most robust approach for detection and quantification, little is known about how food processing may affect the behaviour of peptide targets. A systematic study has been undertaken to investigate the effects of thermal processing (boiling, roasting, frying) on the behaviour of a suite of peanut peptide targets representing the major clinically-relevant allergens. Initially the effect of thermal processing on protein extractability was investigated and a mass spectrometry-compatible buffer identified comprising 50 mM Tris-HCl, pH 8.8 containing 50 mM dithiothreitol and 0.04% (w/v) acid labile detergent which was able to extract 45-100% of protein from raw, boiled, roasted and fried peanuts using sonication at 60 °C. Eight peptide targets were identified including two peptides from each cupin allergen, Ara h1 and Ara h3 and four peptides from the prolamin superfamily allergens Ara h2, 6 and 7. AQUA peptide standards were synthesised and used to undertake multiple-reaction monitoring experiments, giving assay sensitivities of 0.1-30 amoles of peptide on-column (3 : 1 signal : noise), calculated limits of quantification between 96-1343 amoles of peptide on-column and a linear dynamic range of 4-5 orders of magnitude. Absolute quantification of individual peanut allergens in thermally processed samples showed that peptide targets in the cupin allergens were more prone to processing-induced effects than those from Ara h2, 6 and 7. Targets flanked by arginine residues showed greater thermostability. Identification of processing-stable targets, coupled with more efficient extraction procedures and a wide dynamic range, shows that targeted mass spectrometry methods have great potential as an additional method for quantifying peanut allergens in complex food matrices.

  3. Potential of the future thermal infrared space-borne sensor IASI-NG to monitor lower tropospheric ozone

    OpenAIRE

    P. Sellitto; Dufour, G.; M. Eremenko; Cuesta, J.; P. Dauphin; G. Forêt; Gaubert, B.; Beekmann, M.; V.-H. Peuch; J.-M. Flaud

    2012-01-01

    The lower tropospheric (LT) ozone concentration is a key factor for air quality (AQ). Observing efficiently LT ozone from space is crucial to monitor and better understand pollution phenomena occurring from inter-continental to local scales, and that have a proven noxious effect on the human health and the biosphere. The Infrared Atmospheric Sounder Interferometer (IASI) flies on MetOp-A spacecraft and is planned to be launched in the next future as part of the other MetOp modules, i.e...

  4. Historical Consumption of Heating Natural Gas and Thermal Monitoring of a Multifamily High-Rise Building in a Temperate/Cold Climate in Argentina

    Directory of Open Access Journals (Sweden)

    Celina Filippín

    2012-12-01

    Full Text Available This paper analyzes the historical consumption of natural gas in a multifamily high-rise building and the monitored winter thermal behavior of an apartment sample. The building is located in the center of Argentina (latitude: 36º27’S; longitude: 64º27’W, where the climate is a cold temperate with an absolute minimum temperature that may reach −10 °C. The building has two blocks, North and South. The building’s annual gas consumption and its variability between 1996 and 2008 are shown. The South block consumed 78% more gas, a situation expected due to lower solar resource availability and greater vulnerability regarding strong and cold SW winds. Indoor temperatures monitored during 2009 in four apartments are described. The outdoor minimum temperature reached −5 °C, with solar irradiance around 500 W/m2 at midday. Results showed that the average indoor temperatures were 20.1, 20.6, 24.0 and 22.1 °C. The highest consumption value corresponded to the apartment exposed to SW cold winds. Compared to the rest of the building, the apartment on the top floor consumes 59% more energy than the average for the gas consumed throughout the year. The authors assume that the energy potentials of intervention are different, and not necessarily all the apartments should have the same technological response.

  5. Nuclear Data Sheets for A = 183

    Science.gov (United States)

    Baglin, Coral M.

    2016-05-01

    Evaluated nuclear structure and decay data for all nuclides with mass number A=183 (Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb) are presented here. At, Po and Fr have not yet been observed, but for prediction of ground state and/or isomer properties see, e.g., 2015Bh08 (At, Fr), 2013Ba41 (Tl), 2013Ho05 (Po). This evaluation includes structure and decay data information available by 15 April 2015 and supersedes that by R.B. Firestone published in Nuclear Data Sheets65, 589 (1992) (literature cutoff 9 January 1991), and subsequent revisions by C.M. Baglin for 183Au in ENSDF database (literature cutoff 13 March 1999), 183Hg in Nuclear Data Sheets91, 117 (2000) (literature cutoff 25 September 2000), 183Tl in Nuclear Data Sheets95, 49 (2002) (literature cutoff 1 January 2002) and 183Pb in ENSDF (literature cutoff 6 January 2003). Since the prior Nuclear Data Sheets publication of this mass chain: 183Yb (2012Ku26) and 183Pb (2006An11, 2006Se18, 2007De09, 2009Se13) have been observed; our knowledge of high-spin states has been significantly expanded for 183Ta (2009Sh17), 183W (1999Sa60), 183Re (1998Ha51, 2001Sh41), 183Au (2002Jo18, 2005So01) and 183Tl (2001Mu26, 2004Ra28); a large amount of new structure information for 183W has been obtained from transfer reactions (1997Pr02, 2011Bo09), (n,n'γ) (1993Pr09) and thermal neutron capture (1993Pr09, 1997Pr02, 2011Bo09, 2014Hu02), as well as from the two-photon cascade study by 2005Su29.

  6. Nuclear Data Sheets for A = 183

    Energy Technology Data Exchange (ETDEWEB)

    Baglin, Coral M.

    2016-05-15

    Evaluated nuclear structure and decay data for all nuclides with mass number A=183 (Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb) are presented here. At, Po and Fr have not yet been observed, but for prediction of ground state and/or isomer properties see, e.g., 2015Bh08 (At, Fr), 2013Ba41 (Tl), 2013Ho05 (Po). This evaluation includes structure and decay data information available by 15 April 2015 and supersedes that by R.B. Firestone published in Nuclear Data Sheets65, 589 (1992) (literature cutoff 9 January 1991), and subsequent revisions by C.M. Baglin for {sup 183}Au in ENSDF database (literature cutoff 13 March 1999), {sup 183}Hg in Nuclear Data Sheets91, 117 (2000) (literature cutoff 25 September 2000), {sup 183}Tl in Nuclear Data Sheets95, 49 (2002) (literature cutoff 1 January 2002) and {sup 183}Pb in ENSDF (literature cutoff 6 January 2003). Since the prior Nuclear Data Sheets publication of this mass chain: {sup 183}Yb (2012Ku26) and {sup 183}Pb (2006An11, 2006Se18, 2007De09, 2009Se13) have been observed; our knowledge of high–spin states has been significantly expanded for {sup 183}Ta (2009Sh17), {sup 183}W (1999Sa60), {sup 183}Re (1998Ha51, 2001Sh41), {sup 183}Au (2002Jo18, 2005So01) and {sup 183}Tl (2001Mu26, 2004Ra28); a large amount of new structure information for {sup 183}W has been obtained from transfer reactions (1997Pr02, 2011Bo09), (n,n'γ) (1993Pr09) and thermal neutron capture (1993Pr09, 1997Pr02, 2011Bo09, 2014Hu02), as well as from the two–photon cascade study by 2005Su29.

  7. Embedded Aligned Carbon Nanotube Sheets for Strain and Damage sensing in Composite Structures

    Science.gov (United States)

    Aly, Karim Aly Abdelomoaty Elsayed

    The world demand for fiber reinforced composite materials has been steadily increasing because of the widespread adoption of this class of material in many markets. The automotive, aerospace, marine and energy sectors account for a large percentage of this grow. Outstanding fatigue performance, high specific stiffness and strength, and low density are among the most important properties that fiber reinforced polymer composites offer. Furthermore, their properties can be tailored to meet the specific needs of the final applications. However, this class of material is composed of multiple layers of inhomogeneous and anisotropic constituents, i.e. fibers and matrix. Therefore, this laminated nature make the composite material prone to intrinsic damage including interfacial debonding and delamination and their strength and failure are dependent on the fiber architecture and direction of the applied stresses. Consequently, it is of prime importance to monitor the health of these structures. New and improved methods for early detection of damage and structural health monitoring of composite materials may allow for enhanced reliability, lifetime and performance while minimizing maintenance time during a composite part's service life. Over the last few decades different non-destructive methods and materials have been investigated for use as strain sensors. Since the discovery of carbon nanotubes (CNTs), they have attracted much research interest due to their superior electrical, thermal and mechanical properties as well as their high aspect ratio. In this context, CNTs have been used in the recent years to enable sensing capabilities. In this dissertation, the usage of CNTs for performing strain and damage sensing in composites is evaluated. This was enabled by embedding aligned sheets of two millimeters long, interconnected CNTs into laminated structures that were then subjected to different forms of mechanical loading. The localization of the CNT sheets inside the host

  8. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  9. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  10. Thermal impact of a small alas-valley river in a continuous permafrost area - insights and issues raised from a field monitoring Site in Syrdakh (Central Yakutia)

    Science.gov (United States)

    Grenier, Christophe; Nicolas, Roux; Fedorov, Alexander; Konstantinov, Pavel; Séjourné, Antoine; Costard, François; Marlin, Christelle; Khristoforov, Ivan; Saintenoy, Albane

    2017-04-01

    Lakes are probably the most prominent surface water bodies in continuous permafrost areas. As a consequence, they are also the most studied features in these regions (e.g. Fedorov et al. 2014). They are indeed of great interest, not only for local populations that use the water resource they represent both in winter and summer, but also from a climatic point of view as they can be a specific source of green-house gases due to the relatively warmer environment they create, especially associated with their taliks (thawed zone surrounded by permafrost located beneath large enough lakes). From a hydrogeological perspective, such taliks can form complex groundwater networks, thus possibly connecting sub-permafrost groundwater with surface water in the present context of climate change. On the other hand, rivers, another important feature of permafrost landscapes providing similar challenges, have drawn less attention so that only a few studies focus on river interactions with permafrost (e.g. Costard et al. 2014, Grenier et al. 2013). However, the processes of heat transfer at stake between river and permafrost strongly differ from lake systems for several reasons. The geometries differ, the river water flow and thermal regimes and interactions with the lateral slopes (valley) are specific. Of particular importance is the fact that the water, in the case of rivers, is in motion leading to specific heat exchange phenomena between water and soil. (Roux et al., accepted) addressed this issue recently by means of an experimental study in a cold room and associated numerical simulations. The present study focuses on a real river-permafrost system with its full natural complexity. A small alas-valley in the vicinity of Yakutsk (Central Yakutia, Siberia) was chosen. Monitoring was started in October 2012 to study the thermal and hydrological interactions between a river and its underground in this continuous permafrost environment. Thermal sensors were installed inside the

  11. Requirements and Implementation Feasibility for a CubeSat Thermal Infrared Imaging System to Monitor the Structure of Volcanic Ash Clouds

    Science.gov (United States)

    Thorsen, D.; Carroll, R.; Webley, P.; Hawkins, J.

    2014-12-01

    The 2010 eruption of the Eyjafjallajökull volcano in Iceland caused the cancellation of approximately 108,000 flights over an 8-day period, disrupted air traffic worldwide, and cost the airline industry more than $400 million per day. The inconvenience and economic impact of this and similar events, such as Puyehue-Cordon-Caulle in 2011, have heightened the interest in developing improved satellite remote sensing techniques for monitoring volcanic plumes and drifting clouds. For aviation safety, the operational/research community has started to move towards classifying the concentrations within volcanic plumes and clouds. Additionally, volcanic ash transport and dispersion (VATD) models are often used for forecasting ash cloud locations and they require knowledge of the structure of the erupting column to improve their ash simulations and also downwind 3-D maps of the ash cloud to calibrate/validate their modeling output. Existing remote sensing satellites utilize a brightness temperature method with thermal infrared (TIR) measurements from 10 - 12 μm to determine mass loading of volcanic ash along a single line of sight, but they have infrequent revisit times and they cannot resolve the three-dimensional structure of the ash clouds. A cluster of CubeSats dedicated to the monitoring of volcanic ash and plumes could provide both more frequent updates and the multi-aspect images needed to resolve the density structure of volcanic ash clouds and plumes. In this presentation, we discuss the feasibility and requirements for a CubeSat TIR imaging system and the associated on-board image processing that would be required to monitor the structure of volcanic ash clouds from Low Earth Orbit.

  12. Development of a cell sheet transportation technique for regenerative medicine.

    Science.gov (United States)

    Oie, Yoshinori; Nozaki, Takayuki; Takayanagi, Hiroshi; Hara, Susumu; Hayashi, Ryuhei; Takeda, Shizu; Mori, Keisuke; Moriya, Noboru; Soma, Takeshi; Tsujikawa, Motokazu; Saito, Kazuo; Nishida, Kohji

    2014-05-01

    A transportation technique for cell sheets is necessary to standardize regenerative medicine. The aim of this article is to develop and evaluate a new transportation technique for cell sheets. We developed a transportation container with three basic functions: the maintenance of interior temperature, air pressure, and sterility. The interior temperature and air pressure were monitored by a recorder. Human oral mucosal epithelial cells obtained from two healthy volunteers were cultured on temperature-responsive culture dishes. The epithelial cell sheets were transported via an airplane between the Osaka University and Tohoku University using the developed cell transportation container. Histological and immunohistochemical analyses and flow cytometric analyses for cell viability and cell purity were performed for the cell sheets before and 12 h after transportation to assess the influence of transportation on the cell sheets. Sterility tests and screening for endotoxin and mycoplasma in the cell sheets were performed before and after transportation. During transportation via an airplane, the temperature inside the container was maintained above 32°C, and the changes in air pressure remained within 10 hPa. The cell sheets were well stratified and successfully harvested before and after transportation. The expression patterns of keratin 3/76, p63, and MUC16 were equivalent before and after transportation. However, the expression of ZO-1 in the cell sheet after transportation was slightly weaker than that before transportation. The cell viability was 72.0% before transportation and 77.3% after transportation. The epithelial purity was 94.6% before transportation and 87.9% after transportation. Sterility tests and screening for endotoxin and mycoplasma were negative for all cell sheets. The newly developed transportation technique for air travel is essential technology for regenerative medicine and promotes the standardization and spread of regenerative therapies.

  13. Extrusion and characterization of thermoplastic starch sheets from "macho" banana.

    Science.gov (United States)

    Alanís-López, P; Pérez-González, J; Rendón-Villalobos, R; Jiménez-Pérez, A; Solorza-Feria, J

    2011-08-01

    Starch isolated from macho banana was oxidized by using 2.5% and 3.5% (w/w) of sodium hypochlorite. Native and oxidized starches with glycerol were processed using a conical twin screw extruder to obtain thermoplastic laminates or sheets, which were partially characterized. Oxidized banana starches presented higher moisture and total starch but lower ash, protein, lipids, and apparent amylose content than the native starch. Micrographs of sheets from oxidized starches showed wrinkles and cavities presumably caused by the plasticizer, but with less free glycerol and unplasticized starch granules than those from native starch. Sheets from oxidized starch showed a notorious increase in all thermal parameters (To, Tp, and ΔH), mechanical properties (tensile strength, elongation at break, and elasticity), and solubility. Banana starch X-ray diffraction patterns corresponded to a mixture of the A- and B-type polymorphs, with apparently slightly higher crystallinity in oxidized specimens than in native starch. A similar trend was observed in the corresponding sheets. Due to the pollution problem caused by the conventional plastics, there has been a renewed interest in biodegradable sheets, because they may have the potential to replace conventional packaging materials. Banana starch might be an interesting raw material to be used as edible sheet, coating or in food packaging, and preservation, because it is biodegradable, cheap, innocuous, and abundant. © 2011 Institute of Food Technologists®

  14. Photovoltaics Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  15. Soft Costs Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-05-01

    This fact sheet is an overview of the systems integration subprogram at the U.S. Department of Energy SunShot Initiative. Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meet their needs, while at the same time creating sustainable solar market conditions.

  16. Gas detection using low-temperature reduced graphene oxide sheets

    Science.gov (United States)

    Lu, Ganhua; Ocola, Leonidas E.; Chen, Junhong

    2009-02-01

    We demonstrate a high-performance gas sensor using partially reduced graphene oxide (GO) sheets obtained through low-temperature step annealing (300 °C at maximum) in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally reduced GO showed p-type semiconducting behavior in ambient conditions and were responsive to low-concentration NO2 diluted in air at room temperature. The sensitivity is attributed to the electron transfer from the reduced GO to adsorbed NO2, which leads to enriched hole concentration and enhanced electrical conduction in the reduced GO sheet.

  17. In situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance

    Science.gov (United States)

    Sun, Yunna; Wang, Bo; Wang, Huiying; Wu, Kaifeng; Yang, Shengyong; Wang, Yan; Ding, Guifu

    2017-12-01

    The in situ measurement of TSVs deformation at different temperature is meaningful for learning more about the thermal deformation schemes of 3D TSVs in the microelectronic devices. An efficient and smart hotplate based on sheet resistance is designed for offering more heat, producing a uniform temperature distribution, relieving thermal stress and heat concentration issues, and reducing room space, which was optimized by the finite element method (FEM). The fabricated hotplate is efficient and smart (2.5 cm  ×  2.0 cm  ×  0.5 cm) enough to be located in the limited space during measuring. The thermal infrared imager was employed as the temperature sensor for monitoring the temperature distribution of TSVs sample. The 3D profilometry was adopted as the observer for TSVs profiles survey. The in situ 2D top surface profiles and 3D displacement profiles of TSVs sample at the different temperature were measured by 3D profilometer. The in situ average relative deformation and effective plastic deformation of the TSV sample were measured. With optical measurement method, 3D profilometry, the TSV sample can be tested repeatedly.

  18. Development of a vital-sign/fluid-balance flow sheet.

    Science.gov (United States)

    Ozuna, L A; Adkins, A T

    1993-01-01

    An improved flow sheet for recording vital signs and fluid balance on a medical oncology unit was developed and tested using quality-assurance techniques. The new form, which replaced three separate forms, measurably improved documentation on all quality-assurance monitors tested. Additional benefits include cost-savings and decreased time expenditures by nursing staff.

  19. Monitoring Delamination of Thermal Barrier Coatings During Interrupted High-Heat-Flux Laser Testing using Luminescence Imaging

    Science.gov (United States)

    Eldridge, Jeffrey I.; Zhu, Dongming; Wolfe, Douglas E.

    2011-01-01

    This presentation showed progress made in extending luminescence-base delamination monitoring to TBCs exposed to high heat fluxes, which is an environment that much better simulates actual turbine engine conditions. This was done by performing upconversion luminescence imaging during interruptions in laser testing, where a high-power CO2 laser was employed to create the desired heat flux. Upconverison luminescence refers to luminescence where the emission is at a higher energy (shorter wavelength) than the excitation. Since there will be negligible background emission at higher energies than the excitation, this methods produces superb contrast. Delamination contrast is produced because both the excitation and emission wavelengths are reflected at delamination cracks so that substantially higher luminescence intensity is observed in regions containing delamination cracks. Erbium was selected as the dopant for luminescence specifically because it exhibits upconversion luminescence. The high power CO2 10.6 micron wavelength laser facility at NASA GRC was used to produce the heat flux in combination with forced air backside cooling. Testing was performed at a lower (95 W/sq cm) and higher (125 W/sq cm) heat flux as well as furnace cycling at 1163C for comparison. The lower heat flux showed the same general behavior as furnace cycling, a gradual, "spotty" increase in luminescence associated with debond progression; however, a significant difference was a pronounced incubation period followed by acceleration delamination progression. These results indicate that extrapolating behavior from furnace cycling measurements will grossly overestimate remaining life under high heat flux conditions. The higher heat flux results were not only accelerated, but much different in character. Extreme bond coat rumpling occurred, and delamination propagation extended over much larger areas before precipitating macroscopic TBC failure. This indicates that under the higher heat flux (and

  20. Vitamin and Mineral Supplement Fact Sheets

    Science.gov (United States)

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  1. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin; Delin, Geoffrey N.; Hare, Danielle K.

    2016-01-01

    Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.

  2. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    Science.gov (United States)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  3. Analysis of causes of warping the plywood sheets

    Directory of Open Access Journals (Sweden)

    Jaroslav Hrázský

    2011-01-01

    Full Text Available The aim of the paper was to analyse the shape stability of plywoods. Following operations were monitored: storing the construction veneers, spreading the gluing mixtures, prepressing, pressing and the storage of plywoods. The shape stability of plywoods is affected by various factors and technological parameters of particular operations. It is one of the important parameters to assess the quality and use of plywood sheets in practice. On the basis of the analysis of the present condition of the problems a methodical procedure was prepared to determine causes of warping the plywood sheets. According to this procedure an experiment was created. Within this experiment parameters were determined, which affect warping the plywoods. The moisture and temperature of veneers and pressed plywood sheets rank among the most important parameters affecting shape stability. The size of the camber of pressed plywood sheets was also determined. Results showed that the warping of plywood sheets resulted particularly from the area distribution and variation of the moisture of veneers and plywoods, which was also related to temperature. These values of moisture and temperature result, e.g., from the relative air humidity and temperature, pressing parameters but also storing in stacks and appropriate storage. On the basis of the effect of determined parameters mentioned in this paper, the larger or smaller warping of plywood sheets originates, which is expressed by the shape change and size of their camber.

  4. The spectral stability of several sunscreening agents on stratum corneum sheets

    NARCIS (Netherlands)

    Kammeyer, A.; Westerhof, W.; Bolhuis, P. A.; Ris, A. J.; Hische, E. A.

    1987-01-01

    Synopsis Film layers of seventeen commercially available sunscreen products and sixteen active ingredients on stratum corneum sheets were spectrophotometrically monitored before and after simulated solar irradiation. Fixed irradiation doses were given within the daily terrestrial limits. From the

  5. Dynamic of Current Sheets and Their Associated Particle Energization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Laboratory; Guo, Fan [Los Alamos National Laboratory; Makwan, Kirit [Univ. Chicago; Li, Xiaocan [Los Alamos National Laboratory; Zhandrin, Vladimir [Univ. Washington; Daughton, William Scott [Los Alamos National Laboratory

    2015-08-19

    Magnetic reconnection in current sheets has relevance to Earth's magnetosphere, solar flares, high-energy astrophysics (pulsar wind nebula (e.g. Crab Nebula), gamma-ray bursts, black hole jets), and laboratory plasma/fusion. Data are shown for several cases with varying values of configuration energy Ec and β. Several conclusions were drawn: Depending on the “configuration energy”, the formation, shape, and lifetime of current sheets can vary. Plasma condition (configuration, β, driving, etc.) strongly affect the efficiency of particle acceleration. For low β and general “configuration energy”, particle heating is expected. For low β, large and long-lived current sheets, it is possible to produce highly non-thermal particles via collisionless plasmoid reconnection.

  6. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  7. State Fact Sheets on COPD

    Science.gov (United States)

    ... Submit Search The CDC Chronic Obstructive Pulmonary Disease (COPD) Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . COPD Homepage Data and Statistics Fact Sheets Publications Publications ...

  8. 2008 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  9. 2010 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  10. 2009 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  11. 2007 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  12. 2006 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  13. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...... to sea level high stands during past interglacial periods. A number of AIS models have been developed and applied to try to understand the workings of the AIS and to form a robust basis for future projections of the AIS contribution to sea level change. The recent DCESS (Danish Center for Earth System...... Science) Antarctic Ice Sheet (DAIS) model (Shaffer 2014) is forced by reconstructed time series of Antarctic temperature, global sea level and ocean subsurface temperature over the last two glacial cycles. In this talk a modelling work of the Antarctic ice sheet over most of the Cenozoic era using...

  14. Industrial Stormwater Fact Sheet Series

    Science.gov (United States)

    Fact sheets for the industrial sectors regulated by the MSGP. Each describes the types of facilities included in the sector, typical pollutants associated with the sector, and types of stormwater control measures used to minimize pollutant discharge.

  15. Energy information sheets, July 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  16. Flow visualization by laser sheet

    OpenAIRE

    Chlebanowski, Joseph S., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited. A flow visualization system using smoke and a laser sheet for illumination has been designed and developed for use in the 32- x 45-inch low speed wind tunnel. Major design features include a portable smoke rake designed for ease of installation and removal, the use of fiber optics to transport the laser light in a safe and convenient manner, and a portable traversing mechanism to traverse and orient the laser light sheet. The capabili...

  17. Editorial : Optimal Satellite Sensor Selection Utilized to Monitor the Impact of Urban Sprawl on the Thermal Environment in Doha City, Qatar

    OpenAIRE

    Al Kuwari, NY; Ahmed, S; Kaiser, MF

    2016-01-01

    In the present study, the most appropriate Landsat and ASTER Image spatial and spectral resolutions were selected to extract thermal infrared data in Doha City, Qatar from 1990-2015. Results indicated Urban Heat Island(UHI) calculated from Landsat sensor data was more consistent with ground truthed temperatures. Landsat TM thermal infrared data with low spatial resolution (60-120 m) was more appropriate for large-scale thermal studies, but was not suitable to assess complex urban thermal e...

  18. Spontaneous curling of graphene sheets with reconstructed edges.

    Science.gov (United States)

    Shenoy, Vivek B; Reddy, Chilla Damodara; Zhang, Yong-Wei

    2010-08-24

    Recent microscopy experiments have revealed novel reconstructions of the commonly observed zigzag and armchair edges in graphene. We show that tensile edge stresses at these reconstructed edges lead to large-scale curling of graphene sheets into cylindrical surfaces, in contrast to the warping instabilities predicted for unreconstructed edges. Using atomic-scale simulations and large deformation plate models, we have derived scaling laws for the curvature and strain of the curled sheets in terms of the edge stress, shape, and the bending and stretching moduli. For graphene nanoribbons, we show that tensile edge stress leads to periodic ripples, whose morphologies are distinct from those observed due to thermal fluctuations or thermally generated mismatch strains. Since the electronic properties of graphene can be altered by both curvatures and strain, our work provides a route for potentially fabricating nanoelectronic devices such as sensors or switches that can detect stresses induced by dopants at the edges.

  19. FDTD modeling of thin impedance sheets

    Science.gov (United States)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  20. High speed imaging, lightning mapping arrays and thermal imaging: a synergy for the monitoring of electrical discharges at the onset of volcanic explosions

    Science.gov (United States)

    Gaudin, Damien; Cimarelli, Corrado; Behnke, Sonja; Cigala, Valeria; Edens, Harald; McNutt, Stefen; Smith, Cassandra; Thomas, Ronald; Van Eaton, Alexa

    2017-04-01

    Volcanic lightning is being increasingly studied, due to its great potential for the detection and monitoring of ash plumes. Indeed, it is observed in a large number of ash-rich volcanic eruptions and it produces electromagnetic waves that can be detected remotely in all weather conditions. Electrical discharges in volcanic plume can also significantly change the structural, chemical and reactivity properties of the erupted material. Although electrical discharges are detected in various regions of the plume, those happening at the onset of an explosion are of particular relevance for the early warning and the study of volcanic jet dynamics. In order to better constrain the electrical activity of young volcanic plumes, we deployed at Sakurajima (Japan) in 2015 a multiparametric set-up including: i) a lightning mapping array (LMA) of 10 VHF antennas recording the electromagnetic waves produced by lightning at a sample rate of 25 Msps; ii) a visible-light high speed camera (5000 frames per second, 0.5 m pixel size, 300 m field of view) shooting short movies (approx. duration 1 s) at different stages of the plume evolution, showing the location of discharges in relation to the plume; and iii) a thermal camera (25 fps, 1.5 m pixel size, 800 m field of view) continuously recording the plume and allowing the estimation of its main source parameters (volume, rise velocity, mass eruption rate). The complementarity of these three setups is demonstrated by comparing and aggregating the data at various stages of the plume development. In the earliest stages, the high speed camera spots discrete small discharges, that appear on the LMA data as peaks superimposed to the continuous radio frequency (CRF) signal. At later stages, flashes happen less frequently and increase in length. The correspondence between high speed camera and LMA data allows to define a direct correlation between the length of the flash and the intensity of the electromagnetic signal. Such correlation is

  1. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  2. Temperature monitoring along the Rhine River based on airborne thermal infrared remote sensing: qualitative results compared to satellite data and validation with in situ measurements

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2014-10-01

    Water temperature is an important parameter of water quality and influences other physical and chemical parameters. It also directly influences the survival and growth of animal and plant species in river ecosystems. In situ measurements do not allow for a total spatial coverage of water bodies and rivers that is necessary for monitoring and research at the Federal Institute of Hydrology (BfG), Germany. Hence, the ability of different remote sensing products to identify and investigate water inflows and water temperatures in Federal waterways is evaluated within the research project 'Remote sensing of water surface temperature'. The research area for a case study is the Upper and Middle Rhine River from the barrage in Iffezheim to Koblenz. Satellite products (e. g. Landsat and ASTER imagery) can only be used for rivers at least twice as wide as the spatial resolution of the satellite images. They can help to identify different water bodies only at tributaries with larger inflow volume (Main and Mosel) or larger temperature differences between the inflow (e. g. from power plants working with high capacity) and the river water. To identify and investigate also smaller water inflows and temperature differences, thermal data with better ground and thermal resolution is required. An aerial survey of the research area was conducted in late October 2013. Data of the surface was acquired with two camera systems, a digital camera with R, G, B, and Near-IR channels, and a thermal imaging camera measuring the brightness temperature in the 8-12 m wavelength region (TIR). The resolution of the TIR camera allowed for a ground resolution of 4 m, covering the whole width of the main stream and larger branches. The RGB and NIR data allowed to eliminate land surface temperatures from the analysis and to identify clouds and shadows present during the data acquisition. By degrading the spatial resolution and adding sensor noise, artificial Landsat ETM+ and TIRS datasets were created

  3. The application of two-step linear temperature program to thermal analysis for monitoring the lipid induction of Nostoc sp. KNUA003 in large scale cultivation.

    Science.gov (United States)

    Kang, Bongmun; Yoon, Ho-Sung

    2015-02-01

    Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Horizontal electromagnetic casting of thin metal sheets

    Science.gov (United States)

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  5. Horizontal electromagnetic casting of thin metal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  6. Comparative Study between Programming Systems for Incremental Sheet Forming Process

    Directory of Open Access Journals (Sweden)

    Moayedfar Majid

    2014-07-01

    Full Text Available Incremental Sheet Forming (ISF is a method developed to form a desired surface feature on sheet metals in batch production series. Due to a lack of dedicated programming system to execute, control and monitor the whole ISF, researchers tried to utilize programming systems designed for chip making process to suits for ISF. In this work, experiments were conducted to find suitability and quality of ISF parts produced by using manual CNC part programming. Therefore, ISF was carried out on stainless steel sheets using Computer Numerical Control (CNC milling machines. Prior to running the experiments, a ball-point shaped tool made of bronze alloy was fabricated due to its superior ability to reduce the amount of friction and improve the surface quality of the stainless steel sheet metal. The experiments also employed the method of forming in negative direction with a blank mould and the tool which helped to shape the desired part quickly. The programming was generated using the MasterCAM software for the CNC milling machine and edited before transferring to the machine. However, the programming for the machine was written manually to show the differences of output date between software programming and manual programming. From the results, best method of programming was found and minimum amount of contact area between tool and sheet metal achieved.

  7. Soldering sheets using soft solders

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2013-01-01

    Full Text Available The paper contains strength tests results of joints soldered using lead and leadless soft solders. For tests lead solders types Pb60Sn40 and Sn60Pb40 and leadless soft solders types Sn95.5Ag3.8Cu0.7 and Sn96Ag4 were used. As basic materials steel sheet, zinc-coated steel sheet, copper sheet and brass sheet 100 x 20 x 1 mm was the test samples size. Always two sheets were cleaned and jointed together. For heating the propane-butane + air flame was used. Then the tested assemblies were loaded using the universal tensile-strength testing machine till to failure. At the tests the force needed for assemblies failure and failure type (in soldered joint, in basic material were recorded. From measured data the solder strength was calculated. From the experiment results it follows that from the point of view of the soldered joints strength as well of the solder strength relatively small differences were found. At the same time it is evident that the joint strength and solder strength depend on soldered material type and on soldered joint lapping length. On the basis of carried out experiments it can be stated that the substitution of lead solders by leadless solders is possible without risk of soldered joints strength decrease.

  8. Sheets of branched poly(lactic acid obtained by one step reactive extrusion calendering process: Melt rheology analysis

    Directory of Open Access Journals (Sweden)

    J. Cailloux

    2013-03-01

    Full Text Available One-step reactive extrusion-calendering process (REX-Calendering was used in order to obtain sheets of 1mm from two PD,L-LA extrusion grades modified with a styrene-acrylic multifunctional oligomeric agent. In a preliminary internal mixer study, torque versus time was monitored in order to determine chain extender ratios and reaction time. Once all parameters were optimized, reactive extrusion experiments were performed. Independently of the processing method employed, under the same processing conditions, PD,L-LA with the lower D enantiomer molar content revealed a higher reactivity towards the reactive agent, induced by its higher thermal sensitivity. REXCalendering process seemed to minimize the degradations reactions during processing, although a competition between degradation and chain extension/branching reactions took place in both processes. Finally, the rheological characterization revealed a higher degree of modification in the melt rheological behaviour for REX-Calendered samples.

  9. Transient thermal analysis of a titanium multiwall thermal protection system

    Science.gov (United States)

    Blosser, M. L.

    1982-01-01

    The application of the SPAR thermal analyzer to the thermal analysis of a thermal protection system concept is discussed. The titanium multiwall thermal protection system concept consists of alternate flat and dimpled sheets which are joined together at the crests of the dimples and formed into 30 cm by 30 cm (12 in. by 12 in.) tiles. The tiles are mechanically attached to the structure. The complex tile geometry complicates thermal analysis. Three modes of heat transfer were considered: conduction through the gas inside the tile, conduction through the metal, and radiation between the various layers. The voids between the dimpled and flat sheets were designed to be small enough so that natural convection is insignificant (e.g., Grashof number 1000). A two step approach was used in the thermal analysis of the multiwall thermal protection system. First, an effective normal (through-the-thickness) thermal conductivity was obtained from a steady state analysis using a detailed SPAR finite element model of a small symmetric section of the multiwall tile. This effective conductivity was then used in simple one dimensional finite element models for preliminary analysis of several transient heat transfer problems.

  10. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  11. Hydrogeological map of Kabo Sheet 80NW topographical sheet 1 ...

    African Journals Online (AJOL)

    A hydro geological mapping of the Federal Surveys of Nigeria, Kabo Sheet 80 NW, on scale 1:50,000 were made with areal coverage of 729Km2 on the Crystalline Basement Complex, and the hydrogeoogical maps produced are maps of depth to the water table and maps of configuration peak of dry season and wet ...

  12. hydrogeological map of kabo sheet 80 nw topographical sheet 1

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. A hydro geological mapping of the Federal Surveys of Nigeria, Kabo Sheet 80 NW, on scale 1:50,000 were made with areal coverage of 729Km2 on the Crystalline Basement Complex, and the hydrogeoogical maps produced are maps of depth to the water table and maps of configuration peak of dry season ...

  13. MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet

    Directory of Open Access Journals (Sweden)

    B.C. Prasannakumara

    2017-01-01

    Full Text Available The problem of heat and mass transfer of Siskonanofluid flow over a nonlinear stretching sheet under the influence of nonlinear thermal radiation and chemical reaction is considered. suitable set of similarity transformations are implemented to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. An efficient Runge–Kutta–Fehlberg fourth–fifth order method along with shooting technique is employed to solve the reduced equations. The influence of several emerging physical parameters on velocity, temperature and concentration profiles for both linear and nonlinear stretching sheet in the presence of linear and nonlinear thermal radiation has been studied and analyzed through plotted graphs and tables in detail. It is found that the Nusselt and Sherwood number are high in case of nonlinear stretching sheet than linear. Further, it is observed that the nonlinear thermal radiation has more influence on temperature profiles than linear.

  14. Methodologies for analysis of patterning in the mouse RPE sheet.

    Science.gov (United States)

    Boatright, Jeffrey H; Dalal, Nupur; Chrenek, Micah A; Gardner, Christopher; Ziesel, Alison; Jiang, Yi; Grossniklaus, Hans E; Nickerson, John M

    2015-01-01

    Our goal was to optimize procedures for assessing shapes, sizes, and other quantitative metrics of retinal pigment epithelium (RPE) cells and contact- and noncontact-mediated cell-to-cell interactions across a large series of flatmount RPE images. The two principal methodological advances of this study were optimization of a mouse RPE flatmount preparation and refinement of open-access software to rapidly analyze large numbers of flatmount images. Mouse eyes were harvested, and extra-orbital fat and muscles were removed. Eyes were fixed for 10 min, and dissected by puncturing the cornea with a sharp needle or a stab knife. Four radial cuts were made with iridectomy scissors from the puncture to near the optic nerve head. The lens, iris, and the neural retina were removed, leaving the RPE sheet exposed. The dissection and outcomes were monitored and evaluated by video recording. The RPE sheet was imaged under fluorescence confocal microscopy after staining for ZO-1 to identify RPE cell boundaries. Photoshop, Java, Perl, and Matlab scripts, as well as CellProfiler, were used to quantify selected parameters. Data were exported into Excel spreadsheets for further analysis. A simplified dissection procedure afforded a consistent source of images that could be processed by computer. The dissection and flatmounting techniques were illustrated in a video recording. Almost all of the sheet could be routinely imaged, and substantial fractions of the RPE sheet (usually 20-50% of the sheet) could be analyzed. Several common technical problems were noted and workarounds developed. The software-based analysis merged 25 to 36 images into one and adjusted settings to record an image suitable for large-scale identification of cell-to-cell boundaries, and then obtained quantitative descriptors of the shape of each cell, its neighbors, and interactions beyond direct cell-cell contact in the sheet. To validate the software, human- and computer-analyzed results were compared. Whether

  15. Characterization of the thermal insulating properties of vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Ng, N. [School of Physics, University of Sydney, New South Wales 2006 (Australia)]. E-mail: n.ng@Physics.usyd.edu.au; Collins, R.E. [School of Physics, University of Sydney, New South Wales 2006 (Australia); So, L. [School of Physics, University of Sydney, New South Wales 2006 (Australia)

    2007-03-25

    Methods are described for characterizing the thermal insulating properties of vacuum glazing-two flat sheets of glass, hermetically sealed together around the edges containing a highly evacuated space, and separated by small pillars. The small-area guarded hot plate apparatus gives absolute measurements of the different heat flows through the glazing due to radiation, gaseous conduction and thermal conduction through the pillars. In the transient technique, a step temperature increase is applied to one side of the glazing, and the resultant slow temperature rise of the other glass sheet is measured. This method can be used in ageing studies to characterize glazings at elevated temperatures. In the cool-down method, one glass sheet of a glazing that is initially at high temperature is insulated, the opposite glass sheet is rapidly cooled, and the rate of cooling of the thermally insulated sheet is then measured.

  16. High Blood Pressure Fact Sheet

    Science.gov (United States)

    ... High Blood Pressure Salt Cholesterol Million Hearts® WISEWOMAN High Blood Pressure Fact Sheet Language: English (US) Español (Spanish) Recommend ... time. High blood pressure is also called hypertension. High Blood Pressure in the United States Having high blood pressure ...

  17. Higher Education Act. Fact Sheet.

    Science.gov (United States)

    National Council on Disability, 2004

    2004-01-01

    This fact sheet highlights the challenges for students with disabilities in the nation's university system and recommends solutions that would result in better support systems for postsecondary students with disabilities. This document discusses several interrelated issues that impact student preparation and access to postsecondary education. The…

  18. Application of Incremental Sheet Forming

    Directory of Open Access Journals (Sweden)

    Karbowski Krzysztof

    2015-12-01

    Full Text Available This paper describes some manufacturing aspects and an example of application of the Incremental Sheet Forming (ISF technology which was used for production of the craniofacial prosthesis. The brief description of prosthesis designing was presented as well. The main topic of the paper is comparison of milling and ISF technologies for preparing the tools for prosthesis thermoforming.

  19. Double discontinuities at the magnetotail plasma sheet-lobe boundary

    Directory of Open Access Journals (Sweden)

    Y. C. Whang

    Full Text Available A double discontinuity is a compound structure composed of a slow shock layer and an adjoining rotational discontinuity layer on the postshock side. We use high-resolution data from Geotail and Wind spacecraft to examine the interior structure within the finite thickness of the discontinuity at the plasma sheet-lobe boundary and found that recognizable MHD structures at the boundary can be stand-alone slow shocks or double discontinuities. The plasma density increases significantly and the magnetic field intensity decreases significantly across the interior of the slow shock layer. Through the rotational layer, the magnetic field rotates about the normal direction of the shock surface, as the plasma density and the magnetic field intensity remain nearly unchanged. The rotational angle can vary over a wide range. We notice that the observations of double discontinuities are no less frequent than the observations of stand-alone slow shocks. Identification of slow shocks and double discontinuities infers that plasma and magnetic field lines continuously move across the boundary surface from the lobe into the plasma sheet, and there is a conversion of magnetic field energy into plasma thermal energy through the slow shock layer. The double discontinuities also allows for a rapid rotation of the postshock magnetic field lines immediately behind the shock layer to accommodate the environment of the MHD flow in the plasma sheet region.

    Key words. Magnetospheric physics (plasma sheet Space plasma physics (discontinuities; shock waves

  20. Highly Reflective Roofing Sheets Installed on a School Building to Mitigate the Urban Heat Island Effect in Osaka

    Directory of Open Access Journals (Sweden)

    Jihui Yuan

    2016-05-01

    Full Text Available Currently, strategies to mitigate urban heat island (UHI effects and reduce building energy consumption are implemented worldwide. In Japan, as an effective means of mitigating UHI effects and saving energy of buildings, highly reflective (HR roofs have increasingly been used. In this study, in order to evaluate the effect of HR roofs on building energy conservation, we investigated the solar reflectivity of a subject school roof in Osaka, Japan, in which HR roofing sheets were installed on the roof from 2010. Additionally, monthly and annual thermal loads, including the cooling load and heating load of the top floor of the school, were calculated using the thermal load calculation software New HASP/ACLD-β. Comparing the calculated thermal loads of the school after HR roofing sheet installation to before, the annual thermal load decreased about 25 MJ/m2/year, and the cooling load decreased about 112 MJ/m2/year. However, the heating load increased about 87 MJ/m2/year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered to be used together with HR roofing sheets. Thermal load calculations showed that the combination of HR roofing sheets and thermal insulation can be effective in further reducing the annual thermal load.

  1. In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere

    Directory of Open Access Journals (Sweden)

    Aurora Piazza

    2017-02-01

    Full Text Available The effects of temperature and atmosphere (air and O2 on the doping of monolayers of graphene (Gr on SiO2 and Si substrates, and on the doping of MoS2 multilayer flakes transferred on the same substrates have been investigated. The investigations were carried out by in situ micro-Raman spectroscopy during thermal treatments up to 430 °C, and by atomic force microscopy (AFM. The spectral positions of the G and 2D Raman bands of Gr undergo only minor changes during treatment, while their amplitude and full width at half maximum (FWHM vary as a function of the temperature and the used atmosphere. The thermal treatments in oxygen atmosphere show, in addition to a thermal effect, an effect attributable to a p-type doping through oxygen. The thermal broadening of the line shape, found during thermal treatments by in situ Raman measurements, can be related to thermal phonon effects. The absence of a band shift results from the balance between a red shift due to thermal effects and a blue shift induced by doping. This shows the potential of in situ measurements to follow the doping kinetics. The treatment of MoS2 in O2 has evidenced a progressive erosion of the flakes without relevant spectral changes in their central zone during in situ measurements. The formation of MoO3 on the edges of the flakes is observed indicative of the oxygen-activated transformation.

  2. Photovoltaic Reliability and Engineering (Revised) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Photovoltaic Reliability and Engineering. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

  3. Strategic surfaces in sheet metal forming

    DEFF Research Database (Denmark)

    Olsson, David Dam; Andreasen, Jan Lasson; Bay, Niels

    Out-line: Introduction to tribology in sheet metal forming Developed strategic surfaces Tribological testing of strategic surfaces Conclusion......Out-line: Introduction to tribology in sheet metal forming Developed strategic surfaces Tribological testing of strategic surfaces Conclusion...

  4. A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations

    Directory of Open Access Journals (Sweden)

    G. Q. Yan

    2005-11-01

    Full Text Available By using the data of two spacecraft, TC-1 and ACE (Advanced Composition Explorer, a statistical study on the correlations between plasma sheet and solar wind has been carried out. The results obtained show that the plasma sheet at geocentric distances of about 9~13.4 Re has an apparent driving relationship with the solar wind. It is found that (1 there is a positive correlation between the duskward component of the interplanetary magnetic field (IMF and the duskward component of the geomagnetic field in the plasma sheet, with a proportionality constant of about 1.09. It indicates that the duskward component of the IMF can effectively penetrate into the near-Earth plasma sheet, and can be amplified by sunward convection in the corresponding region at geocentric distances of about 9~13.4 Re; (2 the increase in the density or the dynamic pressure of the solar wind will generally lead to the increase in the density of the plasma sheet; (3 the ion thermal pressure in the near-Earth plasma sheet is significantly controlled by the dynamic pressure of solar wind; (4 under the northward IMF condition, the ion temperature and ion thermal pressure in the plasma sheet decrease as the solar wind speed increases. This feature indicates that plasmas in the near-Earth plasma sheet can come from the magnetosheath through the LLBL. Northward IMF is one important condition for the transport of the cold plasmas of the magnetosheath into the plasma sheet through the LLBL, and fast solar wind will enhance such a transport process.

  5. 40 CFR 1502.11 - Cover sheet.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Cover sheet. 1502.11 Section 1502.11 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.11 Cover sheet. The cover sheet shall not exceed one page. It shall include: (a) A list of the responsible...

  6. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Long, R.C.

    1996-12-31

    This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

  7. Mass balance of the Greenland ice sheet (2003-2008) from ICESat data

    DEFF Research Database (Denmark)

    Sørensen, Louise Sandberg; Simonsen, Sebastian Bjerregaard; Nielsen, Karina

    2011-01-01

    ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique dataset for monitoring the changes of the cryosphere. Here, we present a novel method for determining the mass balance of the Greenland ice sheet, derived from ICESat...... studies of the Greenland ice sheet mass balance, based on different remote-sensing techniques....... altimetry data. Three different methods for deriving elevation changes from the ICESat altimetry dataset are used. This multi-method approach provides a method to assess the complexity of deriving elevation changes from this dataset. The altimetry alone can not provide an estimate of the mass balance...

  8. Fabrication Method for Series Production of Sheet Metal Parts with Integrated Piezoelectric Transducers

    OpenAIRE

    Nestler, Matthias; Drossel, Welf-Guntram; Hensel, Sebastian; Müller, Roland

    2014-01-01

    The paper presents a high volume compatible production method for the fabrication of sheet metal parts with integrated piezoelectric transducers. The functionality of the integrated piezomodule is shown on a wing assembly, consisting of two sheet metals shaped with roll bending and three point bending operations. The stimulation of the structure is performed with a shaker, the reduction of the acoustic noise was realized with the integrated piezomodule and monitored with vibrometer measuremen...

  9. Preparation and In Vitro Behavior of a Poly(lactic acid-Fiber/Hydroxyapatite Composite Sheet

    Directory of Open Access Journals (Sweden)

    Yasuhiro Tanimoto

    2009-01-01

    Full Text Available This paper describes the processing and in vitro behavior of a poly(lactic acid (PLA-fiber/hydroxyapatite (HA composite sheet consisting of a knitted PLA-fiber sheet and HA powder for bone tissue engineering. Type I collagen was used as a binding agent to combine the PLA fibers and the HA powder. Precipitate formation in Hanks' balanced salt (HBS solution was monitored to evaluate the in vitro apatite formation ability of the PLA-fiber/HA composite sheet. Precipitate formation was observed on the surface of the PLA-fiber/HA composite sheet after immersion in HBS solution for only 1 day, while no precipitate formation was observed on the PLA-fiber sheet without HA as a control. In conclusion, a PLA-fiber/HA composite sheet for use as a scaffold was successfully prepared. Within the limitations of this investigation, we confirmed that the PLA-fiber/HA composite sheet has a high apatite formation activity compared with the PLA-fiber sheet and represents a promising material for use as a scaffold.

  10. Quantum friction between graphene sheets

    Science.gov (United States)

    Farias, M. Belén; Fosco, César D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2017-03-01

    We study the Casimir friction phenomenon in a system consisting of two flat, infinite, and parallel graphene sheets, which are coupled to the vacuum electromagnetic (EM) field. Those couplings are implemented, in the description we use, by means of specific terms in the effective action for the EM field. They incorporate the distinctive properties of graphene, as well as the relative sliding motion of the sheets. Based on this description, we evaluate two observables due to the same physical effect: the probability of vacuum decay and the frictional force. The system exhibits a threshold for frictional effects; namely, they only exist if the speed of the sliding motion is larger than the Fermi velocity of the charge carriers in graphene.

  11. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden))

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  12. Technology to Market Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-01

    This fact sheet is an overview of the Technology to Market subprogram at the U.S. Department of Energy SunShot Initiative. The SunShot Initiative’s Technology to Market subprogram builds on SunShot’s record of moving groundbreaking and early-stage technologies and business models through developmental phases to commercialization. Technology to Market targets two known funding gaps: those that occur at the prototype commercialization stage and those at the commercial scale-up stage.

  13. Light Sheet Fluorescence Microscopy (LSFM)

    OpenAIRE

    Adams, Michael W.; Loftus, Andrew F.; Dunn, Sarah E.; Joens, Matthew S.; Fitzpatrick, James A. J.

    2015-01-01

    The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light Sheet Fluorescent Mi...

  14. World sheets of spinning particles

    Science.gov (United States)

    Kaparulin, D. S.; Lyakhovich, S. L.

    2017-11-01

    The classical spinning particles are considered such that quantization of classical model leads to an irreducible massive representation of the Poincaré group. The class of gauge equivalent classical particle world lines is shown to form a [(d +1 )/2 ]-dimensional world sheet in d -dimensional Minkowski space, irrespectively to any specifics of the classical model. For massive spinning particles in d =3 , 4, the world sheets are shown to be circular cylinders. The radius of the cylinder is fixed by representation. In higher dimensions, the particle's world sheet turns out to be a toroidal cylinder R ×TD, D =[(d -1 )/2 ]. Proceeding from the fact that the world lines of irreducible classical spinning particles are cylindrical curves, while all the lines are gauge equivalent on the same world sheet, we suggest a method to deduce the classical equations of motion for particles and also to find their gauge symmetries. In d =3 Minkowski space, the spinning particle path is defined by a single fourth-order differential equation having two zero-order gauge symmetries. The equation defines the particle's path in Minkowski space, and it does not involve auxiliary variables. A special case is also considered of cylindric null curves, which are defined by a different system of equations. It is shown that the cylindric null curves also correspond to irreducible massive spinning particles. For the higher-derivative equation of motion of the irreducible massive spinning particle, we deduce the equivalent second-order formulation involving an auxiliary variable. The second-order formulation agrees with a previously known spinning particle model.

  15. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.

    2003-01-01

    The vibrational Raman optical activity (ROA) spectrum of a polypeptide in a model beta-sheet conformation, that of poly(L-lysine), was measured for the first time, and the alpha-helix --> beta-sheet transition monitored as a function of temperature in H2O and D2O. Although no significant population...... in beta-sheet shows amide I and amide II ROA bands similar to those of beta-sheet poly(L-lysine), which suggests that the C-terminal domain of the prion protein is able to support unusually flat beta-sheets. A principal component analysis (PCA) that identifies protein structural types from ROA band...

  16. Experimental and scale up study of the flame spread over the PMMA sheets

    Directory of Open Access Journals (Sweden)

    Mamourian Mojtaba

    2009-01-01

    Full Text Available To explore the flame spread mechanisms over the solid fuel sheets, downward flame spread over vertical polymethylmethacrylate sheets with thicknesses from 1.75 to 5.75 mm have been examined in the quiescent environment. The dependence of the flame spread rate on the thickness of sheets is obtained by one-dimensional heat transfer model. An equation for the flame spread rate based on the thermal properties and the thickness of the sheet by scale up method is derived from this model. During combustion, temperature within the gas and solid phases is measured by a fine thermocouple. The pyrolysis temperature, the length of the pyrolysis zone, the length of the preheating zone, and the flame temperature are determined from the experimental data. Mathematical analysis has yielded realistic results. This model provides a useful formula to predict the rate of flame spread over any thin solid fuel.

  17. Enhanced ferromagnetism in a Mn(3)C(12)N(12)H(12) sheet.

    Science.gov (United States)

    Liu, Junyi; Sun, Qiang

    2015-02-23

    Based on a recent experimental study on the Ni3 C12 S12 sheet [J. Am. Chem. Soc. 2013, 135, 2462] and a theoretical study on the Mn3 C12 S12 sheet [Nanoscale- 2013, 5, 10404], by using density functional theory combined with a thermodynamic model, it is shown that when sulfur atoms are replaced by NH groups the resulting Mn3 C12 N12 H12 sheet can exhibit strong ferromagnetism with a Curie temperature of 450 K. The enhanced ferromagnetism is due to two main factors: the reduced lattice constant and nitrogen is more effective in mediating magnetic couplings through p-d exchange interactions. Furthermore, it is also confirmed that the Mn3 C12 N12 H12 sheet is kinetically and thermally stable, and displays half metallicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A minimal-invasive method for systemic bio-monitoring of the environmental pollutant phenanthrene in humans: Thermal extraction and gas chromatography - mass spectrometry from 1 mL capillary blood.

    Science.gov (United States)

    Gruber, Beate; Schneider, Julian; Föhlinger, Michael; Buters, Jeroen; Zimmermann, Ralf; Matuschek, Georg

    2017-03-03

    Phenanthrene is present in numerous environmental media and serves as a model substrate for the biomonitoring of polycyclic aromatic hydrocarbon (PAH). PAH exposure studies are commonly focused on urinary metabolites, concentrations of which are dependent on absorption, biotransformation and excretion. Monitoring of unmetabolized PAHs in blood would allow more reliable exposure assessment, but requires invasive sampling and extensive sample preparation. We describe the analysis of phenanthrene in 1μL capillary blood using thermal extraction (TE) combined with gas chromatography - mass spectrometry (GC-MS). Less invasive sampling of 1μL capillary blood does not require the assistance of medical staff. Compared to previous studies, analysis time was improved significantly by TE due to minimization of sample preparation steps. The evaluate method was applied successfully to the monitoring of phenanthrene blood levels. This is the first report presenting the pharmacokinetics of unmetabolized PAHs in human. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Graphene: powder, flakes, ribbons, and sheets.

    Science.gov (United States)

    James, Dustin K; Tour, James M

    2013-10-15

    Graphene's unique physical and electrical properties (high tensile strength, Young's modulus, electron mobility, and thermal conductivity) have led to its nickname of "super carbon." Graphene research involves the study of several different physical forms of the material: powders, flakes, ribbons, and sheets and others not yet named or imagined. Within those forms, graphene can include a single layer, two layers, or ≤10 sheets of sp² carbon atoms. The chemistry and applications available with graphene depend on both the physical form of the graphene and the number of layers in the material. Therefore the available permutations of graphene are numerous, and we will discuss a subset of this work, covering some of our research on the synthesis and use of many of the different physical and layered forms of graphene. Initially, we worked with commercially available graphite, with which we extended diazonium chemistry developed to functionalize single-walled carbon nanotubes to produce graphitic materials. These structures were soluble in common organic solvents and were better dispersed in composites. We developed an improved synthesis of graphene oxide (GO) and explored how the workup protocol for the synthesis of GO can change the electronic structure and chemical functionality of the GO product. We also developed a method to remove graphene layers one-by-one from flakes. These powders and sheets of GO can serve as fluid loss prevention additives in drilling fluids for the oil industry. Graphene nanoribbons (GNRs) combine small width with long length, producing valuable electronic and physical properties. We developed two complementary syntheses of GNRs from multiwalled carbon nanotubes: one simple oxidative method that produces GNRs with some defects and one reductive method that produces GNRs that are less defective and more electrically conductive. These GNRs can be used in low-loss, high permittivity composites, as conductive reinforcement coatings on Kevlar

  20. Utilizing Interfaces for Nano- and Micro-scale Control of Thermal Conductivity

    Science.gov (United States)

    2015-08-17

    which structure is like [B]- graphene sheets sandwiching Al, shows higher thermal conductivity perpendicular to the planes compared to the in-plane...modifying the balance of thermal conductivity and electrical conductivity , since bismuth telluride-type materials are the champion thermoelectric...substantially reduce thermal conductivity by ~30% in crystals examined. (2) A striking contrast with thermal transport in carbon/ graphene materials was

  1. Wrinkling of floating monoatomic graphene sheets

    Science.gov (United States)

    Elettro, Herve; Melo, Francisco; Soft Matter Research; Technology Center (SMAT-C) Team

    Graphene is a carbon-based honeycomb structure only one atom thick that combines exceptional thermal, electrical, optical and mechanical properties. Whereas conventional bulk and thin film materials have been studied extensively, the key mechanical behavior of 2D materials (cracking, folding) are barely explored, mainly due to complexity of manipulation. Reaching quantitative understanding of these phenomena will prove valuable to the production of high-quality graphene at industrial scale, applicable in a wide range of technologies such as wearable bio-sensors and supercapacitors. In that state of mind, we investigate the complex behavior of graphene under compression and bending in a free-floating configuration. This adaptative support allows study of graphene intrinsic properties both at large and local scales. We have optimized preparation protocols for production of few defects mm scale floating samples. We use capillary confinement and micromechanical indentation to induce wrinkling, folding and tearing of monoatomic graphene sheets. Graphene samples are characterized by high-resolution optical microscopy combined with confocal Raman analysis to assess its physical quality and monoatomic thinness. Our results show exciting insights into the unique mechanics of 2D membranes. We acknowledge support from the chilean ministry of science Fondecyt/Conycit.

  2. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Coral Reef Watch program produces a suite of near-real-time global 50 km monitoring products, based on sea surface temperature (SST) observations from NOAA's...

  3. Stabilization of TRAIL, an all-{beta}-sheet multimeric protein, using computational redesign

    NARCIS (Netherlands)

    van der Sloot, Almer Martinus; Mullally, Margaret; Fernandez-Ballester, G.; Serrano, L.; Quax, Wim

    2004-01-01

    Protein thermal stability is important for therapeutic proteins, both influencing the pharmacokinetic and pharmacodynamic properties and for stability during production and shelf-life of the final product. In this paper we show the redesign of a therapeutically interesting trimeric all-beta-sheet

  4. Stabilization of TRAIL, an all-beta-sheet multimeric protein, using computational redesign

    NARCIS (Netherlands)

    van der Sloot, AM; Mullally, MM; Fernandez-Ballester, G; Serrano, L; Quax, WJ

    Protein thermal stability is important for therapeutic proteins, both influencing the pharmacokinetic and pharmacodynamic properties and for stability during production and shelf-life of the final product. In this paper we show the redesign of a therapeutically interesting trimeric all-beta-sheet

  5. Life cycle monitoring of lithium-ion polymer batteries using cost-effective thermal infrared sensors with applications for lifetime prediction

    Science.gov (United States)

    Zhou, Xunfei; Malik, Anav; Hsieh, Sheng-Jen

    2017-05-01

    Lithium-ion batteries have become indispensable parts of our lives for their high-energy density and long lifespan. However, failure due to from abusive usage conditions, flawed manufacturing processes, and aging and adversely affect battery performance and even endanger people and property. Therefore, battery cells that are failing or reaching their end-of-life need to be replaced. Traditionally, battery lifetime prediction is achieved by analyzing data from current, voltage and impedance sensors. However, such a prognostic system is expensive to implement and requires direct contact. In this study, low-cost thermal infrared sensors were used to acquire thermographic images throughout the entire lifetime of small scale lithium-ion polymer batteries (410 cycles). The infrared system (non-destructive) took temperature readings from multiple batteries during charging and discharging cycles of 1C. Thermal characteristics of the batteries were derived from the thermographic images. A time-dependent and spatially resolved temperature mapping was obtained and quantitatively analyzed. The developed model can predict cycle number using the first 10 minutes of surface temperature data acquired through infrared imaging at the beginning of the cycle, with an average error rate of less than 10%. This approach can be used to correlate thermal characteristics of the batteries with life cycles, and to propose cost-effective thermal infrared imaging applications in battery prognostic systems.

  6. Thermal conductivity of electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  7. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    Directory of Open Access Journals (Sweden)

    Yao Yao

    2015-04-01

    Full Text Available Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs.

  8. AI applications in sheet metal forming

    CERN Document Server

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  9. Sheet flow caves of Kilauea Caldera, Hawaii County, Hawaii

    Directory of Open Access Journals (Sweden)

    William R. Halliday

    1998-01-01

    Full Text Available Terminal lobes of sheet flows of pahoehoe lava sometimes form three-dimensional nests, initially separated by partitions consisting of accreted ‘skins” of each lobe. Melting breaks down these partitions, forming a uniform flow unit. In Kilauea Caldera we have found and mapped sizable drained cavities in low-slope sheet flows. Their general pattern includes three-dimensional nests, with partially melted septa evident in some examples. Christmas Cave is the most extensive found to date, with 632 meters surveyed on two levels. It is located at the lower end of an inflated sheet flow tongue which underwent local deflation as a result of drainage through the cave after its parameters were partially fixed. Small conduit remnants persist in its boundary ridges. The major part of the cave consists of wide, low nestled chambers. Meltdown of such partitions is one of the few emplacement mechanisms of thermal erosion which may not involve any mechanical element. Additional caves in this caldera are being identified and studied.

  10. Gadolinium sheet converter for neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lima, C.T.S. [Laboratorio de Neutrongrafia em Tempo Real (LNRTR/PEN/COPPE), Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21941-972 Rio de Janeiro, RJ (Brazil); Crispim, V.R. [Laboratorio de Neutrongrafia em Tempo Real (LNRTR/PEN/COPPE), Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21941-972 Rio de Janeiro, RJ (Brazil); PEN/COPPE-DNC/Escola Politecnica CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21941-972 Rio de Janeiro, RJ (Brazil)], E-mail: verginia@con.ufrj.br; Santos, W.M.S. [Laboratorio de Colisao Atomica e Molecular (LACAM/IF), Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil)

    2007-12-15

    This work describes a methodology developed for the confection of gadolinium sheet converter for neutron radiography using the gadolinium chloride (GdCl{sub 3}) as material converter. Though manufactured at a relatively low cost, they are as good as the sheet converter on the market. Here, we present neutron radiography of the penetrameter, the edge spread function, the modulation transfer function and characteristic curves for each set sheet-AA400 Kodak film.

  11. Oxygen limitation of thermal tolerance in cod, Gadus morhua L., studied by magnetic resonance imaging and on-line venous oxygen monitoring.

    Science.gov (United States)

    Lannig, Gisela; Bock, Christian; Sartoris, Franz J; Pörtner, Hans O

    2004-10-01

    The hypothesis of an oxygen-limited thermal tolerance due to restrictions in cardiovascular performance at extreme temperatures was tested in Atlantic cod, Gadus morhua (North Sea). Heart rate, changes in arterial and venous blood flow, and venous oxygen tensions were determined during an acute temperature change to define pejus ("getting worse") temperatures that border the thermal optimum range. An exponential increase in heart rate occurred between 2 and 16 degrees C (Q(10) = 2.38 +/- 0.35). Thermal sensitivity was reduced beyond 16 degrees C when cardiac arrhythmia became visible. Flow-weighted magnetic resonance imaging (MRI) measurements of temperature-dependent blood flow revealed no exponential but a hyperbolic increase of blood flow with a moderate linear increase at temperatures >4 degrees C. Therefore, temperature-dependent heart rate increments are not mirrored by similar increments in blood flow. Venous Po(2) (Pv(O(2))), which reflects the quality of oxygen supply to the heart of cod (no coronary circulation present), followed an inverse U-shaped curve with highest Pv(O(2)) levels at 5.0 +/- 0.2 degrees C. Thermal limitation of circulatory performance in cod set in below 2 degrees C and beyond 7 degrees C, respectively, characterized by decreased Pv(O(2)). Further warming led to a sharp drop in Pv(O(2)) beyond 16.1 +/- 1.2 degrees C in accordance with the onset of cardiac arrhythmia and, likely, the critical temperature. In conclusion, progressive cooling or warming brings cod from a temperature range of optimum cardiac performance into a pejus range, when aerobic scope falls before critical temperatures are reached. These patterns might cause a shift in the geographical distribution of cod with global warming.

  12. Light Sheet Fluorescence Microscopy (LSFM).

    Science.gov (United States)

    Adams, Michael W; Loftus, Andrew F; Dunn, Sarah E; Joens, Matthew S; Fitzpatrick, James A J

    2015-01-05

    The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light sheet fluorescent microscopy (LSFM), a century-old idea made possible with modern developments in both excitation and detection optics, provides sub-cellular resolution and optical sectioning capabilities without compromising speed or excitation efficiency. Over the past decade, several variations of LSFM have been implemented each with its own benefits and deficiencies. Here we discuss LSFM fundamentals and outline the basic principles of several major light-sheet-based imaging modalities (SPIM, inverted SPIM, multi-view SPIM, Bessel beam SPIM, and stimulated emission depletion SPIM) while considering their biological relevance in terms of intrusiveness, temporal resolution, and sample requirements. Copyright © 2015 John Wiley & Sons, Inc.

  13. Experimental Investigation of Thermal Behaviors in Window Systems by Monitoring of Surface Condensation Using Full-Scale Measurements and Simulation Tools

    Directory of Open Access Journals (Sweden)

    Goopyo Hong

    2016-11-01

    Full Text Available The aim of the present study was to investigate the thermal performance of window systems using full-scale measurements and simulation tools. A chamber was installed on the balcony of an apartment to control the temperatures which can create condensation on the interior surfaces of window systems. The condensation process on the window was carefully scrutinized when outdoor and indoor temperature and indoor relative humidity ranged from −15 °C to −20 °C, 23 °C to 24 °C, and 50% to 65%, respectively. The results of these investigations were analyzed to determine how the moisture is influenced by changing temperatures. It appears that the glass-edge was highly susceptible to the temperature variations and the lowest temperature on the glass edge was caused by the heat transfer through the spacer, between the two glass panels of the window. The results from the simulation used in this study confirm that the thermal performance of window systems can be improved the use of super insulated or thermally broken spacers. If the values of the indoor humidity and temperature are given, then the outdoor temperature when condensation forms can be obtained by using Temperature Difference Ratio (TDR. This methodology can be employed to predict the possible occurrence of condensation.

  14. Adaption of a PIN-diode detector as an online neutron monitor for the thermal column of the TRIGA research reactor.

    Science.gov (United States)

    Schmitz, Tobias; Blaickner, Matthias

    2017-10-01

    A BNCT online neutron monitoring system was tested in a TRIGA reactor, using a silicon PIN-diode with a conversion foil. The setup was tested with different reactor powers at the hot and cold ends of the irradiation channel, using activation foils to compare with measured fluxes. The results demonstrate good reproducibility and show a linear correlation between signal of the PIN-diode and neutron flux at all positions, demonstrating this approach to be suitable for online monitoring of the neutron flux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fact Sheet: Water Monitoring Reveals More Well Contamination

    Science.gov (United States)

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  16. Starch, cellulose acetate and polyester biodegradable sheets: Effect of composition and processing conditions.

    Science.gov (United States)

    Fialho E Moraes, Allan Robledo; Pola, Cícero Cardoso; Bilck, Ana Paula; Yamashita, Fabio; Tronto, Jairo; Medeiros, Eber Antonio Alves; Soares, Nilda de Fátima Ferreira

    2017-09-01

    The production of biodegradable plastic materials using natural resources has aroused increased attention due to environmental concerns. This study aimed to manufacture novel, commercially feasible, biodegradable sheets by flat die extrusion-calendering process produced with thermoplastic starch/plasticized cellulose acetate (TPS/PCA) and thermoplastic starch/plasticized cellulose acetate/poly (butylene adipate-co-terephthalate) (TPS/PCA/PBAT) blends, and to investigate the effects of composition and processing conditions, morphological characteristics, and thermal properties. The results showed that TPS/PCA and TPS/PCA/PBAT biodegradable sheets properties were highly dependent upon both composition and processing temperature. The morphological characteristics and thermal properties of the sheets demonstrated the good compatibility between TPS and PCA in TPS/PCA blends, mainly at higher processing temperatures, whereas TPS/PCA/PBAT sheets present a heterogeneous structure due to the poor compatibility between the components. TPS/PCA biodegradable sheets presented suitable processability and handleability characteristics that allow them to be considered as a novel eco-friendly, economically feasible alternative to conventional plastic materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optothermal window method for on-line monitoring of decay kinetics of trans-á-carotene in thermally treated vegetable oils

    NARCIS (Netherlands)

    Ganguli, O.; Bicanic, D.D.; BonifaSi', M.; Nicoli, M.C.; Chirtoc, M.

    2003-01-01

    The optothermal window detection method at 488 nm was used to monitor on-line the concentration of trans-ß-carotene that was added to several vegetable oils after treating them at 200 °C in the presence of air for varying amounts of time. Results obtained for extra virgin oil show a direct

  18. Climate modification by future ice sheet changes and consequences for ice sheet mass balance

    OpenAIRE

    Vizcaino, M.; Mikolajewicz, U.; J. Jungclaus; G. Schurgers

    2010-01-01

    The future evolution of global ice sheets under anthropogenic greenhouse forcing and its impact on the climate system, including the regional climate of the ice sheets, are investigated with a comprehensive earth system model consisting of a coupled Atmosphere-Ocean General Circulation Model, a dynamic vegetation model and an ice sheet model. The simulated control climate is realistic enough to permit a direct coupling of the atmosphere and ice sheet components, avoiding the use of anomaly co...

  19. Refreezing on the Greenland ice sheet: a comparison of parameterizations

    Directory of Open Access Journals (Sweden)

    C. H. Reijmer

    2012-07-01

    Full Text Available Retention and refreezing of meltwater are acknowledged to be important processes for the mass budget of polar glaciers and ice sheets. Several parameterizations of these processes exist for use in energy and mass balance models. Due to a lack of direct observations, validation of these parameterizations is difficult. In this study we compare a set of 6 refreezing parameterizations against output of two Regional Climate Models (RCMs coupled to an energy balance snow model, the Regional Atmospheric Climate Model (RACMO2 and the Modèle Atmosphérique Régional (MAR, applied to the Greenland ice sheet. In both RCMs, refreezing is explicitly calculated in a snow model that calculates vertical profiles of temperature, density and liquid water content. Between RACMO2 and MAR, the ice sheet-integrated amount of refreezing differs by only 4.9 mm w.e yr−1 (4.5 %, and the temporal and spatial variability are very similar. For consistency, the parameterizations are forced with output (surface temperature, precipitation and melt of the RCMs. For the ice sheet-integrated amount of refreezing and its inter-annual variations, all parameterizations give similar results, especially after some tuning. However, the spatial distributions differ significantly and the spatial correspondence between the RCMs is better than with any of the parameterizations. Results are especially sensitive to the choice of the depth of the thermally active layer, which determines the cold content of the snow in most parameterizations. These results are independent of which RCM is used to force the parameterizations.

  20. Combining Modis and Quikscat Data to Delineate Surface and Near-Surface Melt on the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Nghiem, Son V.; DiGirolamo, Nicolo E.; Neumann, Gregory

    2010-01-01

    Over the last two decades, increasing melt has been measured on the Greenland Ice Sheet, along with mass loss as determined from satellite data, Monitoring the state of the Greenland Ice Sheet becomes critical especially because it is actively losing mass, and the ice sheet has a sea-level rise potential of 7 in. However measurement of the extent of surface melt varies depending on the sensor used, whether it is passive or active microwave or visible or thermal infrared. We have used remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet. We present a blended MODIS-QS melt daily product for 2007 [1]. The products, including Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST) and a special daily melt product derived from the QuikSCAT (QS) scatterometer [2,3] show consistency in delineating the melt boundaries on a daily basis in the 2007 melt season [I], though some differences are identified. An assessment of maximum melt area for the 2007 melt shows that the QSCAT product detects a greater amount of melt (862,769 square kilometers) than is detected by the MODIS LST product (766,184 square kilometers). The discrepancy is largely because the QS product can detect both surface and near-surface melt and the QS product captures melt if it occurred anytime during the day while the MODIS product is obtained from a point in time on a given day. However on a daily bases, other factors influence the measurement of melt extent. In this work we employ the digital-elevation model of Bamber et al. [4] along with the National Centers for Environmental Prediction (NCEP) data to study some areas and time periods in detail during the 2007 melt season. We focus on times in which the QS and MODIS LST products do not agree exactly. We use NCEP and elevation data to analyze the atmospheric factors forcing the melt process, to gain an improved understanding of the conditions that lead to melt

  1. Validation of a Climate-Data Record of the "Clear-Kky" Surface Temperature of the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR. The

  2. Triggering of explosive reconnection in a thick current sheet via current sheet compression: Less current sheet thinning, more temperature anisotropy

    Science.gov (United States)

    Shimizu, K.; Shinohara, I.; Fujimoto, M.

    2016-12-01

    Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.

  3. Aircraft Sheet Metal Practices, Blueprint Reading, Sheet Metal Forming and Heat Treating; Sheet Metal Work 2: 9855.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This course is designed to familiarize vocational students with construction in sheet metal layout. The document outlines goals, specific block objectives, layout practices, blueprint reading, sheet metal forming (by hand and by machine), and heat treatment of metals, and includes posttest samples. Layout techniques and air foil developing are…

  4. Monitoring of bisphenol A and bisphenol S in thermal paper receipts from the Italian market and estimated transdermal human intake: A pilot study.

    Science.gov (United States)

    Russo, Giacomo; Barbato, Francesco; Grumetto, Lucia

    2017-12-01

    Bisphenol A (BPA), a synthetic xenoestrogen widely used in various industrial fields, can be present, in its un-reacted form, as an additive in thermal paper. BPA is virtually ubiquitous in industrialized societies and humans are exposed to this chemical via dietary and non-dietary sources. Since in 2015 European Food Safety Authority (EFSA) indicated that thermal paper is the second source of BPA exposure after the food chain, some suppliers replaced BPA with its analogue Bisphenol S (BPS), speculatively supposed to be safer. In this work BPA and BPS concentration levels were determined in thermal paper receipts collected in Italy from 50 different sources by liquid chromatography coupled to tandem fluorescence and ultraviolet detection. BPA was found in 44 samples at mean concentration of 107.47μg/100mg of paper (from below Limits of Quantification (LOQ) to 1533.733μg/100mg of paper). BPS was found in 31 samples at mean concentration of 41.97μg/100mg of paper (from below the LOQ to 357.989μg/100mg of paper). 26 samples were positive to both BPA and BPS. The estimate daily intake (EDI) values of BPA and BPS occurring through dermal absorption were calculated for 70kg body weight individuals. For general population, they were 0.0625μg/day for BPA and 0.0244μg/day for BPS, based on the mean content of bisphenols found. For occupationally exposed individuals, they were 66.8μg/day for BPA and 15.6μg/day for BPS, based on the worst scenario. Such levels would produce a dermal intake below the Tolerable Day Intake established by EFSA (4μg/kg·bw/day); nevertheless, the occurrence of co-exposure to dietary and non-dietary sources should be considered in the health risk assessment, mainly for people frequently exposed to thermal paper contact for occupational reason. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Junction temperature measurements via thermo-sensitive electrical parameters and their application to condition monitoring and active thermal control of power converters

    DEFF Research Database (Denmark)

    Baker, Nick; Liserre, Marco; Dupont, L.

    2013-01-01

    implementation of active thermal control to reduce losses and increase lifetime can be performed given an accurate knowledge of temperature. Temperature measurements via thermo-sensitive electrical parameters (TSEP) are one way to carry out immediate temperature readings on fully packaged devices. However......, successful implementation of these techniques during the actual operation of a device has not yet been achieved. This paper provides an overview of literature where the usage of TSEPs has been hypothesised or realised in realistic power electronic converter setups. Barriers and limitations preventing wider...

  6. Numerical modelling of unsteady 2D sheet cavitation

    NARCIS (Netherlands)

    de Lange, D.F.; de Bruin, G.J.; van Wijngaarden, L.; van Wijngaarden, L.

    1996-01-01

    Unsteady 2D sheet cavitation has been calculated by a BEM. Cubics are used to represent various quantities like the potential on the wet part of the profile, the normal velocity on the sheet, the geometry of the profile and the sheet. The growing cavity sheet, the re-entrant jet and the sheet

  7. Ice sheet studies with DESDynI

    Science.gov (United States)

    Rignot, E.

    2007-12-01

    DESDynI L-band InSAR promises timely and major advances in our monitoring capability and scientific understanding of the evolution of ice sheets and glaciers. InSAR has a long history of glaciology applications which started in 1991 with the launch of ERS-1. The European Space Agency ERS-1/2 satellites demonstrated the capability of InSAR to measure ice motion, grounding line migration, downdraw of ice surfaces, ice-shelf rifting and tidal flexure, glacial surges and other essential characteristics of ice dynamics, however with limited temporal and spatial coverage. Radarsat-1 and Envisat ASAR permitted significant advances in ice motion mapping using speckle tracking techniques, and longer-term observations of glacier evolution, but missed the shorter time scale resolution of ERS-1/2 tandem data. DESDynI will offer both, with higher quality and higher frequency of visit. The higher quality stems from the higher coherence of L-band signals on snow and ice demonstrated with SIR-C and confirmed with ALOS PALSAR, which is important in high- acumulation coastal sectors. Higher frequency of re-visit stems from the 8-day repeat and a plan to systematically acquire data with controlled baselines. ALOS PALSAR early results in West Antarctica and Greenland are very encouraging, with more data to come.Yet ALOS PALSAR 46-day repeat limits its capability to observe short-terms events e.g. calving, grounding line migration, tidal modulation in glacier velocity, downdraw consecutives to changes in basal sliding or subglacial drainage, which are important to observe to characterize the impulse response of glaciers to climate perturbations. DESDynI promises important discoveries and new science advances that are not possible with existing and planned InSAR missions. These advances will be a pillar for the development of more realistic numerical ice sheet models capable of realistic predictions of their evolution in a continously warming climate. This work was performed at Caltech

  8. Ultra-broadband microwave metamaterial absorber based on resistive sheets

    Science.gov (United States)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2017-01-01

    We investigate a broadband perfect absorber for microwave frequencies, with a wide incident angle, using resistive sheets, based on both simulation and experiment. The absorber uses periodically-arranged meta-atoms, consisting of snake-shape metallic patterns and metal planes separated by three resistive sheet layers between four dielectric layers. We demonstrate the mechanism of the broadband by impedance matching with free space, and the distribution of surface currents at specific frequencies. In simulation, the absorption was over 96% in 1.4-6.0 GHz. The corresponding experimental absorption band over 96% was 1.4-4.0 GHz, however, the absorption was lower than 96% in the 4.0-6.0 GHz range because of the rather irregular thickness of the resistive sheets. Furthermore, it works for wide incident angles and is relatively independent of polarization. The design is scalable to smaller sizes in the THz range. The results of this study show potential for real applications in prevention of microwave frequency exposure, with devices such as cell phones, monitors, and microwave equipment.

  9. Advanced friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.

    2012-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  10. Antibubbles and fine cylindrical sheets of air

    NARCIS (Netherlands)

    Beilharz, D.; Guyon, A.; Li, E.Q.; Thoraval, Marie-Jean; Thoroddsen, S.T.

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a

  11. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  12. Steel Sheet Pile Walls in Soft Soil

    NARCIS (Netherlands)

    Kort, D.A.

    2002-01-01

    For almost a century, steel sheet pile walls are applied worldwide as earth retaining structures for excavations and quay walls. Within the framework of the development of European structural codes for Civil Engineering works, the Eurocodes, Eurocode 3 Part 5 for design of steel sheet pile walls was

  13. Sheet flow dynamics under monochromatic nonbreaking waves

    NARCIS (Netherlands)

    Dohmen-Janssen, Catarine M.; Hanes, Daniel M.

    2002-01-01

    For the first time, detailed measurements of sediment concentrations and grain velocities inside the sheet flow layer under prototype surface gravity waves have been carried out in combination with measurements of suspension processes above the sheet flow layer. Experiments were performed in a

  14. Light-sheet optimization for microscopy

    NARCIS (Netherlands)

    Wilding, D.; Pozzi, P.; Soloviev, O.A.; Vdovine, G.V.; Verhaegen, M.H.G.; Bifano, Thomas G.; Kubby, Joel; Gigan, Sylvain

    2016-01-01

    Aberrations, scattering and absorption degrade the performance light-sheet fluorescence microscopes (LSFM). An adaptive optics system to correct for these artefacts and to optimize the light-sheet illumination is presented. This system allows a higher axial resolution to be recovered over the

  15. Reinforcement for Stretch Formed Sheet Metal

    Science.gov (United States)

    Lea, J. B.; Baxter, C. R.

    1983-01-01

    Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.

  16. Fact Sheets on Pesticides in Schools.

    Science.gov (United States)

    National Coalition against the Misuse of Pesticides, Washington, DC.

    This document consists of a collection of fact sheets about the use of pesticides in schools and how to reduce it. The sheets are: (1) "Alternatives to Using Pesticides in Schools: What Is Integrated Pest Management?"; (2) "Health Effects of 48 Commonly Used Pesticides in Schools"; (3) "The Schooling of State Pesticide…

  17. Advanced friction modeling in sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  18. Mass balance of the Greenland ice sheet - a study of ICESat data, surface density and firn compaction modelling

    DEFF Research Database (Denmark)

    Sørensen, L. S.; Simonsen, Sebastian Bjerregaard; Nielsen, K.

    2010-01-01

    ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique data set for monitoring the changes of the cryosphere. Here we present a novel method for determining the mass balance of the Greenland ice sheet derived from ICESat...... in estimating the mass balance of the Greenland ice sheet. We find firn dynamics and surface densities to be important factors in deriving the mass loss from remote sensing altimetry. The volume change derived from ICESat data is corrected for firn compaction, vertical bedrock movement and an intercampaign...... boundary conditions. We find an annual mass loss of the Greenland ice sheet of 210 ± 21 Gt yr-1 in the period from October 2003 to March 2008. This result is in good agreement with other studies of the Greenland ice sheet mass balance, based on different remote sensing techniques....

  19. Thermal imaging in medicine

    Directory of Open Access Journals (Sweden)

    Jaka Ogorevc

    2015-12-01

    Full Text Available AbstractIntroduction: Body temperature monitoring is one of the oldest and still one of the most basic diagnostic methods in medicine. In recent years thermal imaging has been increasingly used in measurements of body temperature for diagnostic purposes. Thermal imaging is non-invasive, non-contact method for measuring surface body temperature. Method is quick, painless and patient is not exposed to ionizing radiation or any other body burden.Application of thermal imaging in medicine: Pathological conditions can be indicated as hyper- or hypothermic patterns in many cases. Thermal imaging is presented as a diagnostic method, which can detect such thermal anomalies. This article provides an overview of the thermal imaging applications in various fields of medicine. Thermal imaging has proven to be a suitable method for human febrile temperature screening, for the detection of sites of fractures and infections, a reliable diagnostic tool in the detection of breast cancer and determining the type of skin cancer tumour. It is useful in monitoring the course of a therapy after spinal cord injury, in the detection of food allergies and detecting complications at hemodialysis and is also very effective at the course of treatment of breast reconstruction after mastectomy. With thermal imaging is possible to determine the degrees of burns and early detection of osteomyelitis in diabetic foot phenomenon. The most common and the oldest application of thermal imaging in medicine is the field of rheumatology.Recommendations for use and standards: Essential performance of a thermal imaging camera, measurement method, preparation of a patient and environmental conditions are very important for proper interpretation of measurement results in medical applications of thermal imaging. Standard for screening thermographs was formed for the human febrile temperature screening application.Conclusion: Based on presented examples it is shown that thermal imaging can

  20. Technology monitoring; Technologie-Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R. [Eicher und Pauli AG, Liestal (Switzerland); Ott, W. [Econcept AG, Zuerich (Switzerland)

    2003-07-01

    This study made for the Swiss Federal Office of Energy (SFOE) examines ways of systematically monitoring energy technology development and the cost of such technologies in order to pave the way to a basis for judging the economic development of new energy technologies. Initial results of a survey of the past development of these technologies are presented and estimates are made of future developments in the areas of motor-based combined heat and power systems, fuel-cell heating units for single-family homes and apartment buildings, air/water heat pumps for new housing projects and high-performance thermal insulation. The methodology used for the monitoring and analysis of the various technologies is described. Tables and diagrams illustrate the present situation and development potential of various fields of technology.

  1. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    Science.gov (United States)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  2. THERMAL DIGITAL TERRAIN MODEL OF A COAL SPOIL TIP – A WAY OF IMPROVING MONITORING AND EARLY DIAGNOSTICS OF POTENTIAL SPONTANEOUS COMBUSTION AREAS

    Directory of Open Access Journals (Sweden)

    Paulina Lewińska

    2016-09-01

    Full Text Available Spoil tips are anthropomorphic terrain structures built out of leftover materials from underground or open pit mining. Usually the term spoil tips refers to those build out of unusable particles from coal exploration. As such they consist mostly of slate and various types of sandstone or mudstone. But also include some amount of coal and, what is more important, coal dust. Fires of spoil tips are dangerous to the environment and humans. They can cause degradation of air, and water qualities. Sometimes degradation to the environment can be irreversible. The presented survey was done in two stages. the first included creating a general terrain model. This was done with the use of long range laser scanner. The second step was a more detailed analysis of spatial and temperature conditions. Two measuring seasons ware performed. The first included a survey made with a short range laser scanner and a hand-held inferred camera. The obtained point cloud was supplemented with temperature value with the use of software and hardware provided by the authors. The visualization of 3D discreet thermal model was done in Bentley MicrioStation. The second included a usage of Z+F IMAGER 5010 laser scanner equipped with T-Cam Rev 1.0 thermal camera insole. A new and unique device that connects laser scanner with infrared camera. This season also provide a point cloud with attached temperature value of measured points. This article provides the description of those two methods including a comparison of their effectiveness and costs. It also describes the heat conditions occurring on spoil tip of Lubelski Węgiel "Bogdanka" S.A coal mine surveyed in December 2015.

  3. Estimation and monitoring heat discharge rates using Landsat ETM+ thermal infrared data: a case study in Unzen geothermal field, Kyushu, Japan

    Science.gov (United States)

    Mia, Md. B.; Fujimitsu, Yasuhiro; Bromely, Chris J.

    2012-10-01

    The Unzen geothermal field, our study area is active fumaroles, situated in Shimabara Peninsula of Kyushu Island in Japan. Our prime objectives were (1) to estimate radiative heat flux (RHF), (2) to calculate approximately heat discharge rate (HDR) using the relationship of radiative heat flux with the total heat loss derived from two geothermal field studies and (3) finally, to monitor RHF as well as HDR in our study area using seven sets of Landsat 7 ETM+ images from 2000 to 2009. We used the NDVI (Normalized differential vegetation index) method for spectral emissivity estimation, the mono-window algorithm for land surface temperature (LST) and the Stefan-Boltzmann equation analyzing those satellite TIR images for RHF. We obtained a desired strong correlation of LST above ambient with RHF using random samples. We estimated that the maximum RHF was about 251 W/m2 in 2005 and minimum was about 27 W/m2 in 2001. The highest total RHF was about 39.1 MW in 2005 and lowest was about 12 MW in 2001 in our study region. We discovered that the estimated RHF was about 15.7 % of HDR from our studies. We applied this percentage to estimate heat discharge rate in Unzen geothermal area. The monitoring results showed a single fold trend of HDR from 2000 to 2009 with highest about 252 MW in 2005 and lowest about 78 MW in 2001. In conclusion, TIR remote sensing is thought as the best option for monitoring heat losses from fumaroles with high efficiency and low cost.

  4. Supervisory system for real time monitoring of transient thermal stresses in turbines rotors; Sistema supervisorio para el monitoreo en tiempo real de esfuerzos termicos transitorios en rotores de turbinas

    Energy Technology Data Exchange (ETDEWEB)

    Urquiza Beltran, Gustavo; Rios Miranda, Edmundo; Venegas Guzman, Ricardo; Alvarez Garcia, Gabriela [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    This article presents a supervisory system that, as its main functions, assists the operator on base of the thermal stresses, monitoring in real time the high pressure (HP) and intermediate pressure rotors (IP) of a steam turbine during the start, shut down and/or sudden load changes. The system is based on a thermal model uni-dimensional integrated to the SIMPER (Information System for the Predictive Maintenance of Rotating Equipment), tested in a 300 MW unit of Comision Federal de Electricidad (CFE). [Espanol] En este articulo se presenta un sistema supervisorio que, como funciones principales, asiste al operador con base en el monitoreo de esfuerzos termicos en tiempo real en los rotores de presion alta (PA) y presion intermedia (PI) de una turbina de vapor durante un arranque, paro y/o variaciones bruscas de carga. El sistema esta basado en un modelo termico unidimensional integrado al SIMPER (sistema informatico para el mantenimiento predictivo de equipo rotatorio), experimentado en una unidad de 300 MW de la Comision Federal de Electricidad (CFE).

  5. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  6. Mass balance of the Greenland ice sheet - a study of ICESat data, surface density and firn compaction modelling

    OpenAIRE

    Sørensen, L. S.; Simonsen, S.B.; Nielsen, K.; Lucas-Picher, P.; Spada, G.; G. Adalgeirsdottir; Forsberg, R.; Hvidberg, C. S.

    2010-01-01

    ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique data set for monitoring the changes of the cryosphere. Here we present a novel method for determining the mass balance of the Greenland ice sheet derived from ICESat altimetry data.

    Four different methods for deriving the elevation changes from the ICESat altimetry data set are used. This multi method approach gives an understanding of the co...

  7. Using open hole and cased-hole resistivity logs to monitor gas hydrate dissociation during a thermal test in the mallik 5L-38 research well, Mackenzie Delta, Canada

    Science.gov (United States)

    Anderson, B.I.; Collett, T.S.; Lewis, R.E.; Dubourg, I.

    2008-01-01

    Gas hydrates, which are naturally occurring ice-like combinations of gas and water, have the potential to provide vast amounts of natural gas from the world's oceans and polar regions. However, producing gas economically from hydrates entails major technical challenges. Proposed recovery methods such as dissociating or melting gas hydrates by heating or depressurization are currently being tested. One such test was conducted in northern Canada by the partners in the Mallik 2002 Gas Hydrate Production Research Well Program. This paper describes how resistivity logs were used to determine the size of the annular region of gas hydrate dissociation that occurred around the wellbore during the thermal test in the Mallik 5L-38 well. An open-hole logging suite, run prior to the thermal test, included array induction, array laterolog, nuclear magnetic resonance and 1.1-GHz electromagnetic propagation logs. The reservoir saturation tool was run both before and after the thermal test to monitor formation changes. A cased-hole formation resistivity log was run after the test.Baseline resistivity values in each formation layer (Rt) were established from the deep laterolog data. The resistivity in the region of gas hydrate dissociation near the wellbore (Rxo) was determined from electromagnetic propagation and reservoir saturation tool measurements. The radius of hydrate dissociation as a function of depth was then determined by means of iterative forward modeling of cased-hole formation resistivity tool response. The solution was obtained by varying the modeled dissociation radius until the modeled log overlaid the field log. Pretest gas hydrate production computer simulations had predicted that dissociation would take place at a uniform radius over the 13-ft test interval. However, the post-test resistivity modeling showed that this was not the case. The resistivity-derived dissociation radius was greatest near the outlet of the pipe that circulated hot water in the wellbore

  8. Novel lighter weight crystalline silicon photovoltaic module using acrylic-film as a cover sheet

    Science.gov (United States)

    Kajisa, Taira; Miyauchi, Haruko; Mizuhara, Kazumi; Hayashi, Kentaro; Tokimitsu, Tooru; Inoue, Masanao; Hara, Kohjiro; Masuda, Atsushi

    2014-09-01

    Lighter weight multicrystalline silicon photovoltaic (PV) modules were investigated by substitution of acrylic thin film for standard glass as a cover sheet. Acrylic-film PV mini modules were fabricated with the composition determined from stress simulation results and tested for long-term reliability against thermal changes and humidity. The results revealed that the acrylic-film-cover-sheet PV module satisfied the qualifying standards of all the reliability tests in both the module appearance after tests and the electrical properties. Moreover, the PV module proved to be durable in the impact resistance test, even though the cover sheet was thinner. In addition, the electrical properties of the PV module were unaffected in the potential-induced degradation (PID) test, whereas those of the standard glass module were significantly deteriorated. These results indicated that it is possible for the lighter weight acrylic-film PV module to be used in the immediate future.

  9. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available wider range of temperature limits, saving energy while still satisfying the majority of building occupants. It is also noted that thermal comfort varies significantly between individuals and it is generally not possible to provide a thermal environment...

  10. Photobiology Research Laboratory (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

  11. Light sheet microscopy in cell biology.

    Science.gov (United States)

    Tomer, Raju; Khairy, Khaled; Keller, Philipp J

    2013-01-01

    Light sheet-based fluorescence microscopy (LSFM) is emerging as a powerful imaging technique for the life sciences. LSFM provides an exceptionally high imaging speed, high signal-to-noise ratio, low level of photo-bleaching, and good optical penetration depth. This unique combination of capabilities makes light sheet-based microscopes highly suitable for live imaging applications. Here, we provide an overview of light sheet-based microscopy assays for in vitro and in vivo imaging of biological samples, including cell extracts, soft gels, and large multicellular organisms. We furthermore describe computational tools for basic image processing and data inspection.

  12. Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nourmohammadi, Amin; Rahighi, Reza [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-11-05

    Highlights: • Involvement of GO into the vertically aligned ZnO nanowires using electrophoretic deposition. • UV assisted photocatalytic reduction of the GO sheets involved in the ZnO nanowires. • Visible light photoinactivation of bacteria by the reduced graphene oxide/ZnO nanocomposite. - Abstract: Vertically aligned ZnO nanowires (NWs) hybridized with reduced graphene oxide sheets (rGO) were applied in efficient visible light photoinactivation of bacteria. To incorporate graphene oxide (GO) sheets within the NWs two different methods of drop-casting and electrophoretic deposition (EPD) were utilized. The EPD method yielded effective penetration of the positively charged GO sheets into the NWs to form a spider net-like structure, whereas the drop-casting method resulted in only a surface coverage of the GO sheets on top of the NWs. The electrical connection between the EPD-incorporated sheets and the NWs was checked by monitoring the electron transfer from UV-assisted photoexcited ZnO NWs into the GO sheets, during photocatalytic reduction of the sheets. The obtained rGO/ZnO composites were applied in visible light photoinactivation of Escherichia coli bacteria. The ZnO NWs could inactivate only ∼58% of the bacteria, while both drop-casting and EPD-prepared GO/ZnO composites exhibited strong antibacterial activities (especially the EPD sample with ∼99.5% photoinactivation), under visible light irradiation for 1 h. In fact, the visible light photocatalytic activity of the EPD-prepared GO/ZnO NW composite was found ∼1.9 and 6.2 folds of the activity of the GO/ZnO composite prepared by drop-casting method and the bare ZnO NWs.

  13. Robust satellite techniques (RST for the thermal monitoring of earthquake prone areas: the case of Umbria-Marche October, 1997 seismic events

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    2008-06-01

    Full Text Available Several authors claim a space-time correlation between increases in Earth’s emitted Thermal Infra-Red (TIR radiation and earthquake occurrence. The main problems of such studies regard data analysis and interpretation, which are often done without a validation/confutation control. In this context, a robust data analysis technique (RST, i.e. Robust Satellite Techniques is proposed which permits a statistically based definition of TIR «anomaly » and uses a validation/confutation approach. This technique was already applied to satellite TIR surveys in seismic regions for about twenty earthquakes that occurred in the world. In this work RST is applied for the first time to a time sequence of seismic events. Nine years of Meteosat TIR observations have been analyzed to characterize the unperturbed TIR signal behaviour at specific observation times and locations. The main seismic events of the October 1997 Umbria-Marche sequence have been considered for validation, and relatively unperturbed periods (no earthquakes with Mb ? 4 were taken for confutation purposes. Positive time-space persistent TIR anomalies were observed during seismic periods, generally overlapping the principal tectonic lineaments of the region and sometimes focusing on the vicinity of the epicentre. No similar (in terms of relative intensity and space-time persistence TIR anomalies were detected during seismically unperturbed periods.

  14. Thermal Annealing Effect on Structural, Morphological, and Sensor Performance of PANI-Ag-Fe Based Electrochemical E. coli Sensor for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Norshafadzila Mohammad Naim

    2015-01-01

    Full Text Available PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300°C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS. The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm–424 nm and 426 nm–464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.

  15. Thermal Annealing Effect on Structural, Morphological, and Sensor Performance of PANI-Ag-Fe Based Electrochemical E. coli Sensor for Environmental Monitoring.

    Science.gov (United States)

    Mohammad Naim, Norshafadzila; Abdullah, H; Umar, Akrajas Ali; Abdul Hamid, Aidil; Shaari, Sahbudin

    2015-01-01

    PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300 °C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS). The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm-424 nm and 426 nm-464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.

  16. The memory of volcanic waters: Shallow magma degassing revealed by halogen monitoring in thermal springs of La Soufrière volcano (Guadeloupe, Lesser Antilles)

    Science.gov (United States)

    Villemant, Benoît; Hammouya, Gilbert; Michel, Agnès; Semet, Michel P.; Komorowski, Jean-Christophe; Boudon, Georges; Cheminée, Jean-Louis

    2005-09-01

    The halogen contents of thermal waters collected since 1979 at La Soufrière volcano (Guadeloupe, Lesser Antilles) are interpreted as a retarded record of magma degassing pulses dispersed into the hydrothermal system. The further the spring is located from the source, the larger the time delay and the older the event recorded in water chemistry. Using advection-dispersion transport models in porous media, we reconstruct the time-series of degassing pulses for the period 1971-1992 and show that it correlates with the seismic records. The 1975-1977 sismo-volcanic crisis at La Soufrière is thereby interpreted as the result of a magma intrusion at shallow depth (˜3 km) which likely began in approximately 1973 and degassed in a pulsatory regime during ˜15 yr. The recent recrudescence of fumarolic and seismic activity could represent the initial stage of new magma injection. Measurement of halogen contents in hydrothermal waters collected around active volcanoes may provide a powerful tool for detection of the initial stages of magma intrusions.

  17. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  18. Hydrologic Outlets of the Greenland Ice Sheet

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Outlets of the Greenland Ice Sheet data set contains GIS point shapefiles that include 891 observed and potential hydrologic outlets of the Greenland...

  19. More Fact Sheets - SEER Cancer Statistics

    Science.gov (United States)

    Cancer Statistical Fact Sheets are summaries of common cancer types developed to provide an overview of frequently-requested cancer statistics including incidence, mortality, survival, stage, prevalence, and lifetime risk.

  20. Collector/Receiver Characterization (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities for collector/receiver characterization: determining optical efficiency, measuring heat loss, developing and testing concentrators, concentrating the sun's power, and optically characterizing CSP plants.

  1. Proctor Creek Boone Boulevard Fact Sheet

    Science.gov (United States)

    This fact sheet provides an overview of the Proctor Creek watershed and community, green infrastructure, the Boone Boulevard Green Street Project Conceptual Design, and the added value and application of Health Impact Assessment (HIA) to the project.

  2. Wall Insulation; BTS Technology Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  3. Geometry of Thin Nematic Elastomer Sheets

    Science.gov (United States)

    Aharoni, Hillel; Sharon, Eran; Kupferman, Raz

    2014-12-01

    A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this Letter, we describe the intrinsic geometry of such a sheet and derive an expression for the metric induced by general nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry. We provide an explicit recipe for how to construct any surface of revolution using this method. Finally, we show that by inscribing a director field gradient across the sheet's thickness, one can obtain a nontrivial hyperbolic reference curvature tensor, which together with the prescription of a reference metric allows dictation of actual configurations for a thin sheet of nematic elastomer.

  4. The microbiome of glaciers and ice sheets

    National Research Council Canada - National Science Library

    Alexandre M Anesio; Stefanie Lutz; Nathan A M Chrismas; Liane G Benning

    2017-01-01

    .... Habitats on glaciers and ice sheets with enough liquid water to sustain microbial activity include snow, surface ice, cryoconite holes, englacial systems and the interface between ice and overridden rock/soil...

  5. HIV/AIDS Clinical Trials Fact Sheet

    Science.gov (United States)

    ... AIDS Drugs Clinical Trials Apps skip to content HIV Overview Home Understanding HIV/AIDS Fact Sheets HIV/ ... 4 p.m. ET) Send us an email HIV/AIDS Clinical Trials Last Reviewed: August 25, 2017 ...

  6. Photothermally reprogrammable buckling of nanocomposite gel sheets.

    Science.gov (United States)

    Hauser, Adam W; Evans, Arthur A; Na, Jun-Hee; Hayward, Ryan C

    2015-04-27

    Patterning deformation within the plane of thin elastic sheets represents a powerful tool for the definition of complex and stimuli-responsive 3D buckled shapes. Previous experimental methods, however, have focused on sheets that access a limited number of shapes pre-programmed into the sheet, restricting the degree of dynamic control. Here, we demonstrate on-demand reconfigurable buckling of poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM) hydrogel network films containing gold nanoparticles (AuNPs) by patterned photothermal deswelling. Predictable, easily controllable, and reversible transformations from a single flat gel sheet to numerous different three-dimensional forms are shown. Importantly, the response time is limited by poroelastic mass transport, rather than photochemical switching kinetics, enabling reconfiguration of shape on timescales of several seconds, with further increases in speed possible by reducing film thickness. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Coordinated Specialty Care Fact Sheet and Checklist

    Science.gov (United States)

    ... Checklist Share Coordinated Specialty Care Fact Sheet and Checklist Download PDF Download ePub Order a free hardcopy ... webpage: http://www.nimh.nih.gov/raise . CSC Checklist If you are interested in a CSC program, ...

  8. PV Module Reliability Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

  9. Drinking Water Fact Sheet: Coliform Bacteria

    OpenAIRE

    Mesner, Nancy; Daniels, Barbara

    2010-01-01

    This fact sheet provides information about coliform bacteria. Including sections about what coliform bacteria is, how it enters drinking water, health concerns from exposure, drinking water standards, and how to treat drinking water that contains coliforms.

  10. Nanotechnology for Site Remediation: Fact Sheet

    Science.gov (United States)

    This fact sheet presents a snapshot of nanotechnology and its current uses in remediation. It presents information to help site project managers understand the potential applications of this group of technologies at their sites.

  11. Advancing Concentrating Solar Power Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  12. Laser bending process of preloaded sheet metal

    Directory of Open Access Journals (Sweden)

    Xu Lang

    2015-01-01

    Full Text Available Laser bending process of preloaded sheet metal was reviewed on theoretical researches, forming experiments, numerical simulations and material performance studies of formed sheets. Considering the pre-bending platforms that used in the forming experiments can only work on few simple pre-bending types and small sized sheet metals, a large and flexible pre-bending platform was developed by authors. Experiments were done on this platform. The results of experiments showed that different pre-bending types lead to bending sheet metals into different curved shapes and large sized structure components of flight vehicles can be formed using this process. Based on the current research status, further developments and challenges of this process are discussed.

  13. Monitoring the kinetic evolution of self-assembled SiGe islands grown by Ge surface thermal diffusion from a local source

    Science.gov (United States)

    Vanacore, G. M.; Zani, M.; Bollani, M.; Bonera, E.; Nicotra, G.; Osmond, J.; Capellini, Giovanni; Isella, G.; Tagliaferri, A.

    2014-04-01

    In this paper we experimentally study the growth of self-assembled SiGe islands formed on Si(001) by exploiting the thermally activated surface diffusion of Ge atoms from a local Ge source stripe in the temperature range 600-700 °C. This new growth strategy allows us to vary continuously the Ge coverage from 8 to 0 monolayers as the distance from the source increases, and thus enables the investigation of the island growth over a wide range of dynamical regimes at the same time, providing a unique birds eye view of the factors governing the growth process and the dominant mechanism for the mass collection by a critical nucleus. Our results give experimental evidence that the nucleation process evolves within a diffusion limited regime. At a given annealing temperature, we find that the nucleation density depends only on the kinetics of the Ge surface diffusion resulting in a universal scaling distribution depending only on the Ge coverage. An analytical model is able to reproduce quantitatively the trend of the island density. Following the nucleation, the growth process appears to be driven mainly by short-range interactions between an island and the atoms diffusing within its vicinities. The islands volume distribution is, in fact, well described in the whole range of parameters by the Mulheran’s capture zone model. The complex growth mechanism leads to a strong intermixing of Si and Ge within the island volume. Our growth strategy allows us to directly investigate the correlation between the Si incorporation and the Ge coverage in the same experimental conditions: higher intermixing is found for lower Ge coverage. This confirms that, besides the Ge gathering from the surface, also the Si incorporation from the substrate is driven by the diffusion kinetics, thus imposing a strict constraint on the initial Ge coverage, its diffusion properties and the final island volume

  14. Properties of hot-rolled sheets from ferritic steel with increased strength

    Science.gov (United States)

    Perlovich, Yu.; Isaenkova, M.; Dobrokhotov, P.; Stolbov, S.; Bannykh, O.; Bannykh, I.; Antsyferova, M.

    2017-10-01

    Sheets from ferritic steel 3 mm thick with increased strength after thermal hardening were studied by use of various X-ray methods and mechanical testing. Rolling of steel was carried out at 1100°C with rather great reductions per pass, so that plastic deformation of metal spread by the significant distance from the surface. The texture of sheet proved to have two sharply different layers: the inner layer of ˜40% thick with the usual rolling texture of BCC metals and the external layer with the rolling texture of FCC metals. At that, within the intermediate layer the texture is weakened. Texture formation within the external layer is conditioned by the process of dynamical deformation ageing: interstitial impurities from atmosphere block dislocations, prevent from their slip and at increased temperatures promote their collective climb. As a result, the direction of lattice rotation as well as the final rolling texture change. Due to texture layering, by impact testing of the sheet the plane of crack propagation must be changed when this crack reaches the inner layer, and then an additional energy for its further movement is required. Thermal hardening of the sheet retains the type of rolling texture, though results in some its scattering, but at the same time the breaking point of steel grows twice owing to formation of intermetallic particles.

  15. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.

    2003-01-01

    The vibrational Raman optical activity (ROA) spectrum of a polypeptide in a model beta-sheet conformation, that of poly(L-lysine), was measured for the first time, and the alpha-helix --> beta-sheet transition monitored as a function of temperature in H2O and D2O. Although no significant population......-sheet poly(L-lysine) contains up-and-down antiparallel beta-sheets based on the hairpin motif. The ROA spectrum of beta-sheet poly(L-lysine) was compared with ROA data on a number of native proteins containing different types of beta-sheet. Amide I and amide II ROA band patterns observed in beta-sheet poly...... in beta-sheet shows amide I and amide II ROA bands similar to those of beta-sheet poly(L-lysine), which suggests that the C-terminal domain of the prion protein is able to support unusually flat beta-sheets. A principal component analysis (PCA) that identifies protein structural types from ROA band...

  16. Adolescence and abstinence. Fact sheet.

    Science.gov (United States)

    1997-01-01

    This fact sheet presents statistics on adolescent sexual activity in the US and a brief description of comprehensive sex education and abstinence-only programs. The statistical profile indicates that over 50% of teenagers are virgins until at least 17 years of age. 20% of boys and 24% of girls are virgins by the age of 20 years. Only 6.9% of men 18-59 years old and 21% of women 18-59 years old were still virgins on their wedding night. However, among a sample of high school students, over 33% of male and female virgins had engaged in some form of heterosexual genital sexual activity in the preceding year. 29% of virgins had masturbated a partner of the opposite gender. 31% had been masturbated by a partner of the opposite gender. 9% had engaged in fellatio with ejaculation with a partner of the opposite gender. 10% had engaged in cunnilingus with a partner of the opposite gender. 1% had engaged in anal intercourse with a partner of the opposite gender. Comprehensive sex education aims to help adolescents postpone sexual intercourse until they are ready for mature relationships by helping them develop interpersonal skills to resist premature sexual involvement. Messages include information about sexual abstinence, contraception, and safer sex. A 1993 study found that sexual abstinence messages were one of the most frequently covered topics in state curricula and guidelines. Other key topics were families, decision making, and sexually transmitted diseases including AIDS. The least covered topics were sexual identity, shared sexual behavior, sexual response, masturbation, and abortion. There were only six studies of abstinence-only programs, of which at least two showed no impact on sexual or contraceptive behavior. The National Institute of Health says that abstinence-only programs ignore the success of other programs and conflict with science.

  17. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics

    OpenAIRE

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-01-01

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests ...

  18. Additive Manufacturing of Functional Elements on Sheet Metal

    Science.gov (United States)

    Schaub, Adam; Ahuja, Bhrigu; Butzhammer, Lorenz; Osterziel, Johannes; Schmidt, Michael; Merklein, Marion

    Laser Beam Melting (LBM) process with its advantages of high design flexibility and free form manufacturing methodology is often applied limitedly due to its low productivity and unsuitability for mass production compared to conventional manufacturing processes. In order to overcome these limitations, a hybrid manufacturing methodology is developed combining the additive manufacturing process of laser beam melting with sheet forming processes. With an interest towards aerospace and medical industry, the material in focus is Ti-6Al-4V. Although Ti-6Al-4V is a commercially established material and its application for LBM process has been extensively investigated, the combination of LBM of Ti-6Al-4V with sheet metal still needs to be researched. Process dynamics such as high temperature gradients and thermally induced stresses lead to complex stress states at the interaction zone between the sheet and LBM structure. Within the presented paper mechanical characterization of hybrid parts will be performed by shear testing. The association of shear strength with process parameters is further investigated by analyzing the internal structure of the hybrid geometry at varying energy inputs during the LBM process. In order to compare the hybrid manufacturing methodology with conventional fabrication, the conventional methodologies subtractive machining and state of the art Laser Beam Melting is evaluated within this work. These processes will be analyzed for their mechanical characteristics and productivity by determining the build time and raw material consumption for each case. The paper is concluded by presenting the characteristics of the hybrid manufacturing methodology compared to alternative manufacturing technologies.

  19. Shape change in mouthguard sheets during thermoforming.

    Science.gov (United States)

    Takahashi, Mutsumi; Koide, Kaoru; Satoh, Yoshihide; Iwasaki, Shin-Ichi

    2016-10-01

    The purpose of this study was to identify changes in sheet shape during thermoforming and the effect of the model position in the molding machine on fabricated mouthguard thickness. Ethylene vinyl acetate mouthguard sheets (3.8 mm thick) were used that had cross-stripes (10 × 10 mm), and the anteroposterior and bilateral lengths were used for measurements. Two forming machines were used: a vacuum- and a pressure-forming machine, and two heating conditions were investigated that defined as the time when sagging of the softened sheet was 15 mm (H-15) and 20 mm (H-20) below the clamp, and the length of each cross-stripes was measured. The area of each lattice was calculated using Bretschneider's formula to compare changes in sheet shape for each condition. Next, mouthguards were molded by forming machine where the working model was positioned under two different conditions: with the model anterior centered in the forming unit and with the model centered. The sheet thickness after fabrication was determined for the incisal and the molar portion, and dimensional measurements were obtained using a measuring device. Differences in the thickness were analyzed by two-way analysis of variance (anova). In both molding machines, the change in the area under H-20 was greater than H-15. While the increase in area tended to expand from the center of the sheet in concentric circles, the difference between the central and surrounding areas was only approximately 5%. For both molding machines, differences in thickness after molding due to setting position of the model were not observed. The results showed that shape changes of the sheet during thermoforming tend to concentrically and almost uniformly expand from the center and that it is important to center the sheet and the model when positioning the model in the forming unit. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Preparation and transplantation of photoreceptor sheets.

    Science.gov (United States)

    Huang, J C; Ishida, M; Hersh, P; Sugino, I K; Zarbin, M A

    1998-06-01

    Photoreceptor (PR) transplantation may be a treatment for blindness secondary to PR degeneration. We studied different technical aspects of PR-sheet preparation. Geographic variation in the thickness of the cat PR layer (from the outer segments to the outer plexiform layer) and inner retina (width of the remainder of the retina) was studied. PR sheets (cat and human) were prepared through gelatin embedding and subsequent vibratoming or excimer laser ablation. Cat PR sheets were evaluated after transplantation. The thickness of the cat PR layer and inner retina varied in different regions. The superior central retina, including the area centralis, was thickest (PR layer: 115-123 microm, entire retina: 225-230 microm, in fixed tissue). The peripheral retina was approximately 40% thinner than the center. Fresh retina was approximately 7.9% thicker than the fixed retina. Both vibratomy and excimer laser ablation removed the inner retina, leaving a PR-layer sheet with good morphology. To produce good quality PR sheets with vibratomy, use of different gelatin concentrations (2% to 35%) at various stages of sheet preparation was crucial. To produce PR sheets of uniform thickness with excimer laser ablation, control of fluid on the retinal surface was critical. Twenty-four hours after PR transplantation surgery, donor PR cells were well oriented and in close contact with host retinal pigment epithelial cells. Gelatin supporting the transplant dissolved as early as 100 min after surgery. We confirmed and expanded the work of previous investigators and showed that cat and human PR sheets can be manufactured using vibratomy or excimer laser ablation. This preparation provides a well oriented and organized PR cell layer after transplantation.